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i» bstrodüctioií

Infanaation measures are defined in terms of certain jrdbetoility 
distributions. In practice, we can only take samples from such distributions, 
and estimate the true information measures from the samples# In tele- 

communication samples of virtually infinite sise can be obtained in a msec, 
or so# But in many other situations where one wishes to apply information 
measures it is either impracticable or Impossible to obtain very large 
samples from a constant source. In such, situations, one must mke the beat 
use of a limited number of observations when evaluating the information 
measures. Thus, the application of information theory to small-sample 
situations depends upon the development of an appropriate small-sample 
distribution theory. One problem that has been attacked by several 
authors is that of finding unbiased or nearly unbiased estimates
of the true Information functions. The stochastic model generally used 
in this context is one in which sample frequencies are generated by one 
or several multinominal samplings. It can be shown that no truly unbiased 
estimates of Information functions exist in this situation. Accordingly, 
the search had to be restricted to nearly unbiased estimates.

The population functions we considered below are exemplified by 
H, T, and A:

(1.1) I > ■ I log Pi
1

H 1» the uncertainty associated with the set of probabilities, 

representing the states of a single variable.

(l.a) f . a  Pi, iogg pij
id Pi • Pj
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where = Z p-y. This can he written as 
i

(1.2a) T = H(l) + H(J) - H(i,j)
where E'(i) is the uncertainty about the ith variate (input), Kj the uncertainty 
about the jth variate (output) and H(i,j) the joint uncertainty about both 
the variates i and j . T is the measure of transmission in a single channel 
where the input-output relationships con be represented by a 2-dimensional 
matrix of probabilities, pij.

(1 .3) a  » a i  pl t  loss ’ pi • PJ • pk
ljk " Pij • Pile • Pjk

where P1 » S£ PiJk and PiJ » Z p1Jk 
Jk k

(1.3a) A » - H(l) - H(J) - H(k) + H(i,j) + H(i,k) + H(j,k) - H(i,J,k).
A, which is an interaction term, is the difference in transmission between 
two variates due to having or not having knowledge of a third variate« A 
is defined by a sat of probabilities, p-ŷ , which populate a 5-dimensional 
matrix representing the input-output probabilities for multi-channel 
transmission.

The most natural way of estimating information functions is to use 
the observed sample frequencies ¿m estimates of the population frequencies 
and evaluate the funotionn from them» These estimates will be biased, 
i.e«, their average values for a .large number of repititioas of the sampling 
procedure are not the same as the population value« In particular, H will 
be negatively biased, (i.e*, it will be too small) and T will be positively 
biased, (to© large). The a im  of the bias can be approximated according to
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Miller and Madow^) by:

(l.^) Bias ¿ + degrees of freedom
1.3865 H

where "degrees of freedom" is a quantity depending on the number of categories, 

n is the sample size, and the sign depends on the function to be estimated.

It turns out, incidentally, that this bias term is very effective In 

locating the mean and the principal mode of the sample distribution.

However, relation (l„h) does not apply to the situation where all 

probabilities are equal. Rogers and Green(2) have developed an expression 

which gives the exact value of the bias of H for the equiprobable case,

Good(3) has presented an alternative estimation of H which is almost 

unbiased and is valuable in the case where there are many classes sparsely 

populated. His estimator does not use the sample frequencies as estimators 

of the population frequencies. Another method also based on a different 

estimation of population frequencies is being developed by Blyth^,

All of these methods deal with the problem of point estimation, 
i.®., of obtaining a single number to represent the "best" estimate of 
an information function from a single sample. However, at the tine we 

started our work, a satisfactory theory of confidence intervals did not 
exist. In most experimental work,, the estimation of confidence intervals 

Is more important than point estimation. This is true because the problem 
of whether the value of a functional derived from a given set of 
observations is or is not compatible with some theoretical value is the 
one most frequently encountered. To improve this situation we pooled the 
talents of three statisticians {from the Statistical Research Genter, 

University of Chicago) two experimenters (from the Mo-Systems Group,
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of the Control Systems Laboratory, University of Illinois) and one high 
speed digital computer (ILLIAC, University of Illinois).

It is possible to obtain a general idea of the variability of 
information functions in a given situation by using Monte Carlo methods. 
With the help of a high speed digital computer a sampling distribution for 
a given sample size and set of probabilities is readily constructed. We 
seriously considered using this method to construct a catalog of sampling 
distributions of information functions for all situations of interest. 
However, such a catalog would need to be prohibitive in size even if one 
were satisfied with a low precision. Therefore, we have concentrated on 

developing analytic methods for constructing confidence intervals. This 
means essentially finding a function of the sample frequencies which has 
the following properties: i) it can be inverted to yield a confidence
statement and ii) the tails of its distribution have a predictable 
behavior•

The general method we used was to investigate a likely function with 
the help of Monte Carlo methods and used the results to suggest a more

I
suitable function. To begin with, we oriented ourselves by generating 
distributions of the maximum likelihood estimators, H, T, A, constructed 
by substituting the sample (l.e., Monte Carlo generated) frequencies, §±, 
for the population frequencies, p1, in relations (1.1, 1.2, 1.3). The 
means of the distributions so generated confirmed the Miller -Madow 
estimate of the bias (relation l.k). The tails of the distributions 
were usually right skewed, i.e., the right tail was larger than the left 
one. ¡9 was usually more skewed than i, and { more than i .
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We next investigated a normalization of H which is distributed 

asymptotically unit normal in the sense of convergence in distribution.

■fn“1 (z p± log2 Pj. - Z Pi log2 Pi)

(1.5) K = pj_ log| Pi - 
'i

Z Pi log2 p± 
hi

With small samples this function is also usually skewed to the right. 

The skewness of K is linked to the skewness of H itself. Therefore,

the next reasonable step seemed to be to work not with the normalized H 

itself, but with a normalized function of H designed such that the 

skewness is minimized. Such a function is the exponential: it turned 

out to be very successful except for cases with nearly equal probabilities.

In order to avoid an indiscriminate and time-consuming 

exploration of various functions of the ex type, it was decided to look 

for a principle which could be used to pinpoint a desirable transformation. 

One such principle is variance-stabilization. This happily leads to an 

arcsine transformation which has the exponential property of a monotonically 

increasing slope.

Following these introductory remarks are three sections. Section 

II is a thorough exposition of certain considerations pertaining to the 

arcsine transformation and contains graphical summaries of representative 

results*. Section III is practical and contains the recipe for constructing 

confidence intervals using the arcsine transformation. Section IV is a 

collection of representative distributions. Section V is a summary.

* This section is based on a lecture given by H.T. David at a meeting of 
the American Institute of Mathematical Statistics, Ann Arbor, Michigan 
(1955).
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II. THEORETICAL

We have been concerned with establishing computationally simple 

confidence intervals for a large class of information functions. Besides 

simplicity, our criterion has been that nominal and actual confidence 

levels be in good agreement. Relations (l.l, 1.2, 1.5) are some examples 

of information functions, as we will understand them here. The discussion 

will not concern Fisherian information or other related concepts. At the 

risk of perhaps being more abstruse than is necessary, we define exactly 

the type of function that will be dealt with; these functions are precisely 

those which, under certain assumptions discussed below, lead to an 

asymptotic variance term in eqn. (l) amenable to the arcsine transformation 

proposed here.

a) Let (x^, xk ) be a set of k arguments, and let /fta [a: 1, 2, .., 

be A partitions of this set, with elements TTa , all distinct. A function
P * k

f of (x -l .., xk) is of the information type if f (xj_, .., xk ) = Z x^ .., xk)
i=l

A A
where (x±, .., xk ) = Z j log (Z xv/ x v £ TTa with Z j

constant over i - TT a stands here for the element of 1TU containing x-t,
P(i)

a

and Ca , . is a constant associated with TT
$(i) P(i)

b) An information function l(x-|_, . xk ) is a function of the information 

type whose arguments are restricted by Z x.̂  = 1, x-^ ̂  o.

c) Note that, for the information functions H, T and A defined above,
. /

the number of partitions 1ta is, respectively 1 , 5 and 7, and the are all

equal to +1 or - 1 (for the logarithmic base 2).
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The arguments of the information function I (or, specifically, H,

T, A, etc.) can he population probabilities p, in which case I is a 

population characteristic» Or they may be sampling fractions in which 

case I is denoted by I, (or, specifically, H, T, A, etc.) the maximum 

likelihood estimate and a natural statistic for inference on its population 

counterpart.

This discussion is based on I. Other statistics might also be 

useful, depending perhaps on the nature of the sampling process giving 

rise to the £. Our assumption regarding this process has been that cells 

are filled by independent repetitions of a single multinominal trial 

encompassing the entire array. Some very useful prior work has already 

been done on the distribution problem for I under our assumption of simple 

or single raultinomiality. First, Miller5 has written E(H) in the form

E(H) + ? 2 + 0  /
n n2 k n? '

where depends only on the number of categories and not on the 

population p's, and correspondingly for E(T).

B]_ is equal to

B1>h » (log2e )
2 n

for 1 , and is equal to

is (i.̂ jJ-.-(.Cli.).) (.10g£e)

for T. B, generalizes immediately for general I, by the linearity of 
©^©station. s

Miller alto pointed out that i is a multiple of the log of the
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likelihood ratio for testing independence in a bi-viriate array, hence is 
distributed assymptotically as a multiple of X 2 under independence, which 
is equivalent to T a 0, Further, Madow and Miller*wrote Var (fi) in the form

Var (H) - Z Pi [logg PjJ a - H2
n +

Aand pointed out that H, suitably normed, tends in distribution to the normal 
when the population p ’s are not all equal, and to central X 2 when they are. 
Other very useful work has been done by I.J. Good^, who developed an almost 
unbiased estimate of H.

Concerning the distribution of the general f, we can draw on the 
easily verified fact that, for any well-behaved function G of (k-l) 
k-nomial probabilities pi,

(2.1) W  [a(£i) - o(pi)J D tN jo, ( o W ) ®  - ( V p i

where the symbol means "tends in distribution”, and g W  is the
partial derivative of G with respect to p^. This is the central fact on 
which the following discussion is based. (Another possibly very useful 
fact, mentioned to us by S. Kullbaek, but not explored here, is that l($), 

at least for all its usual specialisations, tends to normality vis non-central 
X^’-nesa).

For information functions, the asymptotic variance term in (2.1) becomes
k-l / v k-l . . k k k
t - ( £ PI l(l))® - ZPi - ( £ Pi $i)® - 2 Pi $i®-I®» V(Pi).

!■! i*l iwl ' ini ~ ini
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Though it doesn't constitute an essential link in the present arguemnt,

it seems of some interest to locate the information functions in the
k

larger domain of functions G(pi, pk), Z Pi = 1, = Z Pi g± (p i > P^)
i=l

which admit a reduction of the asymptotic variance expression similar to 

that possible for information functions. To this end we can make three 

remarks:
1 k1) Let s Z pa g^i), where the superscript denotes 

o=l

differentiation with respect to the indicated argument of g^ (pj_, . pk)

k- 1 k
Then Z Pi(G^ ' ) 2 - ( Z p± G W ) 2*: z pt gi2-G2 if and only if 

i=l i=l i=l

k-i fk- 1
Z V± (gi-gk) + (Ai-Ak) 2 - Z Pi [(gi-gk) + (Vi-Vk)! 
i=l L J i=l

2 = Z Pi(gi-gk)2 
i=l

k- 1
Z Pi (gi - gk) 1 2
i=l J

2)lt is clearly sufficient for the condition of l) that

k k
Z xi ^ gi(xi> % )  = Z Xf ^ gi(xi, Xk) identically, 

1 * 1 i=l

for j, m: 1, 2, ..., k and arbitrary unrestricted arguments xi.

5) Let iraa:l, 2, . A be defined as in the above definition

of a function of the information type, and let gi (x^, Xk) *s

A 
Z 

a=l

A
Z a .(x1 ,.,,xk), wiiere the arguments■ of \ are exactly the x's
x=l 6(i)

in the partition element tT a
P(i)

on its arguments only through their sum, the condition of 2 ) is equivalent 

to "G is an I".

containing Xi. Then, if lu a
r p (i )

depends
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Returning now to the main discussion, we will focus attention on two 

attractive and available first order terns; Miller’s bias correction B W n, 

and the first order variance term V(,P| ). B]/n deserves to be called 

attractive, if accurate, because it does not depend on the population p's. 

The variance term if accurate, also has several virtues, not the least of 

which is simplicity; some of the others are given below.

How accurate are these two terms? Bp/n has been tested by Madow 

and Miller, and also by us, intensively for H, and also for T and A. It 

appears to be surprisingly good; it is almost more effective as an 

estimate of Med (i) - I than as an estimate of E(f) - I, which seems not 

at all undesirable for our purposes,since a confidence interval procedure 

pertains to quantile rather than moment estimation. Also, it appears to 

be literally better than the supposedly finer estimate Bi/n + Bg/n2.

The variance term has been 'Less extensively investigated, but the 

results we do have are again gratifying. We considered the case of Jr for 

n a 31 and three categories, with class probabilities belonging to the 

one-parameter set

p, 1/2 - p/2, l/2 - p/2

We then plotted against p both the actual stand, dev. of H, a,, estxma!ed
by Illiac on the basis of 200 samples, and also the approximation V(p)/n. 

The two curves show excellent agreement.
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Fig. 2.1 Standard deviation of* H for a trinomial distribution (P2”P5”iZi3: )
2 '

It seems reasonable, therefore, inducing from these specific 

investigations to the general I, to begin by looking at confidence
intervals based on Si and V(p). The first statistic that suggests itself is

n
: (a,a) - [x(p) + S i ]

[a - xa ( f ) ] 1/2

If one computes by Xlliae (200 sample runs) the actual sig© of the nominal 
upper and lower 5 and 10^ tails of this statistic, for H with the probability 
get (p^ l/2-p/g, l/g«p/g) given above, one obtains (again plotting against p).
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The result© are disappointing# partly because the distribution of 
the statistics Is skewed* Thin skewness seems to be due primarily to the 
numerator# that is ft itself# when p is small or large, and to the denominator# 
that is V(J)1/1# in the middle region. In consequence# on might expect that 
replacing H($) by H(p) in the denominator would improve the picture in the 
center. This substitution yields a statistic almost as useful for interval 
construction as the original. However# things are not improved.9

Since the skewness of ft appears as partly responsible for the mediocre 
behavior of these first expressions# one is led to consider transformations
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on H, and, assuming that H is indicative of I, also on the latter.

Variance stabilizing transformations (2.3, 2.k, 2.5) have expedited normality, 

or at least symmetry, in other instances0, and the form of the asymptotic 

variance of I, V(p), enables us to attempt this trick, at least to first 

order; by the usual argument, we deduce that

" — - | - arcsine ( ^(p ) * Bl/n
J2 Pi 4>f' J (y 2 Pi

should have variance close to unity, mean zero, and be less skewed than 

l(£) itself. Variance stabilization in this case is flexible enough to 

suggest that also

T V cosine
( Tz pi <t>!' /

arcsine itei

may meet these specifications. Some experimenting indicates that the 

arcsine arguments should be reduced as much as possible, so that Bi/n 

should appear in the first term when it is positive, and in the second when 

it is negative. This empirical fact may be introduced into the expression 

by writing

(2.3) fn arcsine I " ^l/n|- arcsine |l(p) + B W n
T ^ n r  / \ 1 2 Pi ' /_

Expression (2.1+) will denote egression (2.3) with the sample 

estimate |E $i introduced in the first arcsine term

/(2 .i+) fir arcsine l(?) ~ Bf/n )- arcaine/l(p) + Bi/n
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Expression (2.5) will be expression (2.t) with the sample estimate “fz pi ' 

also introduced in the second arcsine term

(2 .5) arcsine arcsine i(p )
W I T

Expressions (2.3), (2.1+) and (2.5) all are asymptotically normal, since they 

are well-behaved functions of multinomial probabilities. They further should 

have mean approximately zero, end variance approximately 1. Expression (2.5) 

will conform to these specifications best. However, it is impossible to 

construct simple confider.ee intervals on the basis of it. It does so happen 

that, for H with three categories, the equicontours of

/,
arcsine

/ +c - Bl/n arcsine

i£ pi

do seem to follow fairly closely the equicontours of H(p) itself, on the 

triangle in which the population p's take values, so that a fairly tight 

confidence interval might be obtainable for H by way of these contours. 

However, rone of our goals was simplicity, and,it seems doubtful whether 

it could be achieved here; hence we proceed to expression (2.1+).

Expression (2.1+) is especially suitable for establishing confidence 

intervals for X(p) /ft p and hence for the coefficient of variation, 

since these two population parameters are monotonicaUy related, at least 

to first order. However, m  regards intervals for l(p), the only possibility 

seems again to lie In contour matching. Quite unlike the case of expression 

(2.5) this turns out to be unfeasible. For example, in the case of H, H/ ft 1 

is equal to unity in the middle of all faces and edges of the simplex in
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which the p's take values, whereas the value of H itself drops off 

monotonically from the center along every ray.

Our real hope for a simple confidence interval is therefore 

expression (2.5). The question is whether the insertion of the two 

sample quantitives in place of their population analogous has materially 

altered the distribution; it turns out that things still look fairly good. 

Plotting actual (computed by Illiac - 100 sample runs) and nominal tail 

sizes for the H situation already discussed, we obtain the curves shown 

in figure 2 .3 .

Fig. 2.3 5 and 10$ limits of the distribution of expression (2.5) 
1 ■ for a trinomial distribution where Pp » p* *

’ " 2
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What these graphs show first is that the arcsine may be expected to give 
good lower confidence bounds (corresponding to the U curves) for H, which, 

if not exact, are at least conservative. The L curves are also pretty good 
except for the two symmetrically placed peaks which, both for .05 and .10, 
seem to reach to approximately .17, although we haven’t checked the entire 
neighborhood. These peaks are quite reminiscent of what has been found by 
Eisenhart in9 for the Binomial. If they could be eliminated, we would be 
in good shape, at least as far as H is concerned. We have tried to cut 

them down in several ways, for example, by a device analogous to the 
Freeman-Tukey correction for the binomial arcsine and Poisson square root?; 
this did not work out. We have had somewhat more success reassigning the 
sample fraction zero to rare classes (quite analogously to what has been 
suggested for the Binomial in® and^) but this hasn't been entirely 
satisfactory either.

We've been curious, of course, about the performance of the 
arcsine in situations other than H with three categories. We've applied 

expression (2.5) to H with five categories and n a 31, avoiding very low 
probabilities. The same pattern manifests itself: the upper tall is 

conservative, and the lower tail is not far from exact.

Our studies of T are fragmentary at the moment; the following are 
typical results for a low, intermediate and high value of population T, all 
with n ■ 3 1,
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Figure IV

.267 .033 .033

.033 .267 .033

*033 .033 .267

.133 .100 .3.00

.100 .133 .100

.100 .100 .133

T = .01 T = .67

U5 = 0* U5 = .05
U10 à .0^ Ü10 = .09
L10 = .13 L10 = .16
L5 « .07 L5 » .13

.301 .016 .016

.016 .301 .016

.016 .016 .301

T = 1.03

U5 = .07
U10 = .16
L10 = .07
L5 = .0^

Things are quite hopeful especially in view of the good behavior of 

arcsine in the presence of low population probabilities.

In brief what we have found so far does indicate that arcsine 

makes fairly good sense for information functions, especially in 

situations where the lower confidence bound is of primary interest; 

further details of our ILLIAC runs are given section IV.

* U$ « 0 means' tVat'"the nominal upper 5# VaiY actually is a Ofj tail, 
according to the Illiae run.
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III. CONSTRUCTION OF CONFIDENCE INTERVALS

We now give a ’’recipe" for the computation of a symmetric two-sided 

confidence interval for H and for T. This should illustrate how one-sided 

or two-sided confidence intervals can be computed in general.

First, fix a level of confidence (95$, say) and determine the 
corresponding symmetric unit normal deviates (+I.96 and -I.96 when the 

level is 95$)«

For H, compute
k

H(e) . - z  ii l°g2 ©i 
i=l

and

s(S)
k
£ (log2 ^i)2i-1

where

k : the number of classes (categories)
: the observed class frequencies (Z g a l).

i 1

and

Now compute
H(fO ]
B(©) J

[arcsine i § -  1
[ 8(i) J

arcsine

(We are now assuming a 95$ level of confidence), where arcsine is measured 
in radians and n is the number of trials (items classified).

The upper confidence bound, N, for H is now computed as follows: “

f arcsine (~— + iiii]
L l s(j) J r r  J

1) If
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Is less than 17/2, compute

COO _ [(k-l)/gj [log2ej
n n

and
C(k)F = + I |S($) J sine ^arcsine f t ®  * i t l l  ■

Then H is either F or log2k, whichever is smaller,

2) If
r
arcsine H(g) \, + 1.96 1

f a 7 J
is

l \(s m /

equal to or greater than 77/2, then

H = log2 k

The lower confidence hound, E, for H is computed as follows:

' ” h ( i S )  - W]
is greater than 0,

H = 5 M + [ R i o j ^ i n e  [arcsinej^,)- 

2) If [arcsine/ - j--96 1
L m  W r ^ J

is less than, or equal to 0,

H = 0

In the case of T, again assuming that a two-sided symmetric 95$ 

interval is desired, compute

T(S) = - Z Z $±1 flog2 $±. + log2 £ 4 - log2 Pij] 
i=l .1* 1 l* J
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and

where

SyiS) m Z_̂ Z^ g±j jlogg §i. + log2 $#tj - log2

r : the number of rows ("inputs") 
c : the number of columns ("outputs")

and

: the observed frequency of the
r c

i and output j ( Z Z §-m  = 
i=l j=l 

c
fi. : Zj-1 J

Now compute

A » arcsine j T<S) - D(r,c)^

. [ 1 ap ($)

B a arcsine T(fO - D(r^c) |

1 %  W

1.96

- 1.96
r r

where

D(r,o) - [(p-1) (c-l)/a] [logge] ,
n is the number of items (input-output combinations) classified, and where 
arcsine, measured in radians, is defined as zero for negative arguments. 

The upper confidence found, T, for T is now computed as follows:
1) If A is less than compute

G - (isT/^*)(sin a )
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Then T is either G, or H(i) or H(j), whichever is smallest.

2) If A £ %  ,

T = H(i) or H(j), whichever is smaller.

The lower confidence bound, T, for T is computed in the following

way:

1) If B is greater than zero,

T * ( f a T a » 1 ) ( sin b )

2) If B £ 0,

T = 0

Note that the computation of unsymmetric or one-sided intervals 

afford no additional difficulties of any kind. For example, the upper 

bounds H and T considered here are equally well interpreted as 97.5$ 

upper bounds of one-sided intervals (i.e. intervals with lower bound 

identically zero).
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This section contains examples of the sampling distributions (cumulative 

distributions) of the various functions we have investigated. Since we 

were interested in normal approximation all distributions were plotted on 

normal probability paper. These distributions were constructed by a 

Monte Carlo method using ILLIAC. All of the functions tested had one feature 

in common; they involved a probability matrix. Thus, in all cases the 

Monte Carlo operations consisted of the generation of a large number of 

probability matrices from which values of the particular function being 

tested were then calculated.

In practice a probability matrix, concerning the variates associated 

with the particular function, was read into ILLIAC. A set of n random 

numbers was generated and each random number was assigned to one of the 

matrix cells according to the probabilities which were specified in 

the input. The resulting matrix cell population was converted into a set

of relative frequencies, $2f .... ftc* This set formed a maximum

likelihood estimate of the "true", i.e., input, probabilities, p;j_, P2, ....p^.

Values for the function being tested were then computed on the basis 

of the generated matrix, Those values were estimators f($j_) of the

"true" values of the function, f (p^), computed from the input probabilities, 

Pi* This process was repeated s times and a distribution of the £ estimates 

formed. The resulting distribution is one which could have been obtained 

with s experiments of & trials each, given a set of true probabilities, pj_. 

From these distributions it wag possible to determine the mean, variance, 

normalcy, etc. for the input parameters specified.

* Any cell having an input probability of zero remained empty, i.e., that 
outcome was treated as impossible.
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The computational procedures adopted are as follows: when a 3-dimensicnal 

matrix was input into ILLIAC the columns were given i-designations, the 

rows ¿-designations and the planes k-designations.

J -

J =

P =

1 2  3 b 5

P =

1  2 3 k 5

k = 1

k = 2

J =

1  2 3 k 5

k = 5

A

Distributions involving H were generated by filling the j = k = 1 row of 

the matrix with h random numbers according to the Pj_n probability set;
A

distributions involving T by filling the k = 1  plane with t random 

numbers according to the P-yl’s; and A distributions by filling all of 

the matrix with a random numbers according to the P. ., ' s *— 1JX
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The distribution of information functions, for samples of limited 

size, are necessarily discontinuous» . This accounts for the steps in the 

cumulative distributions observed in the figures in this section. The 

arrows in the figures indicate that increment which yields cumulative 

frequencies of 0 or 100*
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h» Sample size for H»3I 
t« Sample size for T* 31 
a» Sample size for A» 31 
s »Number of samples»100 
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4.1 Cumulotlv« distribution« of H,T, and A plotted on normal probability pap«r. Th* plots ore o«nt*r*d on a 

mean whloh was eitlmated according to relation (1.4). The abeoleeal Increments are 0.08 bite.
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»

Fig.42 . Plots of the cumulative distribution for the function K defined in relation (1.5). The straight lines represent the 
unit normal distribution which K approaches asymptotically.
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f

1

n*3l

«

Fig.4.5. Plots of the cumulative distribution of the function Jn [arcsine(T-B)/ST -  arcsine (Tt/ S t )] defined in relation (2.5). 
The straight lines represent the normal distribution which the function asymptotically approaches.



V. SUMMARY

We have described a study concerning the distribution theory of i .. 

information functions, where our main concern was to develop a suitable 

method for determining confidence intervals. We employed Monte Carlo 

procedures.to investigate the behaviour of the distributions of a 

number of functions which it was felt could be used for this purpose. 

The application of the principle of variance stabilization lead to an 

arcsine transformation of the information functions. From this 

transformation it has been possible to construct confidence intervals 

where the lower bound is conservative and the upper bound is close to 

exact. A “recipe" is presented for computing these intervals.
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