
May 1986 UILU-ENG-86-2215

COORDINATED SCIENCE LABORATORY
College of Engineering

OCTREE GENERATION
AND DISPLAY

Narendra Ahuja
Jack Veenstra

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

Unclassified
S E C U R ITY C LA S S IFIC A TIO N OF TH IS PAGE

REPORT DOCUMENTATION PAGE
1a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N 1b. R E S T R I C T I V E M A R K I N G S

None
2a. S E C U R I T Y C L A S S I F I C A T I O N A U T H O R I T Y

N/A
2b. OE CLASSI F IC A TIO N /D O W N G R A O IN G S C H ED U LE

N/A

3. O IS T R I B U T I O N / A V A I L A S I L I T Y O F R E P O R T

Approved for public release; distribution
unlimited

A. PERFOR M IN G O R G A N IZ A TIO N R EP O R T N UM BER (S)

UILU-ENG-86-2215
5. M O N ITO R IN G O R G A N IZ A T IO N R EP O R T NUM BER (S)

N/A
6a. NAM E OF PERFOR M IN G O R G A N IZ A TIO N

Coordinated Science Lab
University of Illinois

8b. O FF IC E S YM B O L
(I f applicable)

N/A

7a. NAM E OF M O N ITO R IN G O R G A N IZ A TIO N

National Science Foundation
6c. AOORESS (C ity, S ta te and Z IP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. AOORESS (C ity, S ta te and Z IP Code)

1800 G Street
Washington, D.C. 20550

. N AM E OF FUNOING/SPONSORING
O R G A N IZ A TIO N

National Science Foundation

8b. O FF IC E S Y M B O L
(I f applicable)

N/A

9. P R O C U R EM E N T IN S TR U M E N T ID E N TIF IC A T IO N NUM BER

ECS 83-52408
Be. AO O RESS (C ity, S ta te and Z IP Code)

1800 G Street
Washington, D.C. 20550

10. SO URCE OF F U N D IN G NOS.

11. T IT L E (Include Security Classification)

ÜQctree' Generation and Display"

PROGRAM P R O JEC T TA S K W ORK U N IT
E L E M E N T NO. NO. NO. NO.

N/A N/A N/A N/A

12. P ERSO N AL A U TH O R (S)
Narendra Ahuja and Jack Veenstra

13a. TY P E OF R EPO RT
Technical

13b. TIM E C O V ER ED

FROM TO
14. O A TE OF R EP O R T (Yr„ Mo„ Day)

May 1986
15. PAGE C O U N T

73
1«. S U P P LE M EN TA R Y N O T A T IO N

N/A

17. C O S A T I C O D E S

f i e l d G R O U P SUB. GR.
18. S U B JE C T TER M S (C ontinue on reverse if necessary and id en tify by b lock n u m b er)

three-dimensional object representation, octree,
orthographic projection, silhouette, octree generation

algorithm

This report addresses the following problem: given a sequence of silhouette views
of an object, construct the octree representing the object which gave rise to those views.
A given silhouette constrains the object to lie in a cone (for perspective projection) or a
cylinder (for orthographic projection) whose cross section is defined by the shape of the
silhouette. In this report, we will consider orthographic projection of an object into
a plane perpendicular to a viewing direction. We will call "extended silhouette" the
solid region of space defined by sweeping the silhouette along a line parallel to the
viewing direction used in obtaining the silhouette. The object is constrained to lie
in the intersection of all extended silhouettes. As the number of silhouettes processed
increases, the fit of the volume of intersection of the cylinders to the object volume
becomes tighter. In our algorithm, we do not perform the intersection explicitly, but
infer the octree nodes from silhouette images according to a predetermined table that
pairs image regions with their corresponding octree nodes.

20. O IS T R I S U T IO N / A V A I L A B I L I T Y O F A 8 S T R A C T

U N C L A S S I FI ED /U N L I M I T E D 2 S A M E AS RPT. G O T I C U SERS □

21. A B S T R A C T S E C U R I T Y C L A S S I F I C A T I O N

Unclassified
22a. n a m e o f r e s p o n s i b l e i n d i v i d u a l 22b. T E L E P H O N E N U M B E R

(Include Area Code)
22c. O F F I C E S Y M B O L

NONE l
ta dDO FORM 1473, 83 APR E D I T I O N O F 1 J A N 73 IS O B S O L E T E . Unclassified

S E C U R I T Y C L A S S I F I C A T I O N O F T H IS P A G E

1

TABLE OF CONTENTS

1. INTRODUCTION ... j

2. OCTREE GENERATION ALGORITHM.. 6
2.1. Face View ... 6
2.2. Edge V iew ... g
2.3. Corner View ... 10
2.4. Algorithm D etails... 14

3. PERFORMANCE OF THE OCTREE GENERATION ALGORITHM 22
3.1. Defining Accuracy ... 22
3.2. Measuring Accuracy... 24
3.3. Accuracy-Computation Trade-Off ... 30
3.4. Stability ... 31
3.5. Complex Objects... 32
3.6. Experimental Details .. 41

4. LINE DRAWING GENERATION ALGORITHM ... 44
4.1. Elimination of “Cracks” .. 45
4.2. Elimination of Hidden Lines ... 47
4.3. Elimination of “Dots” .. 4g
4.4. Representation of Graphics Inform ation.. 49
4.5. Performance of the Line Drawing Generation Algorithm 50

5. SUMMARY...................................... 69

REFERENCES .. 70

1

1. INTRODUCTION

Three-dimensional object representation is of crucial importance to robot vision. Part of

the task lies in the generation and maintenance of a spatial occupancy map of the environment.

The occupancy map describes the space occupied by objects. Some of the uses of such a

representation include robot navigation and manipulation of objects on an assembly line. This

report is concerned with the construction of one such representation, namely, the octree

representation, of an object from its silhouette images.

An octree [1,6,1 lj is a tree data structure. Starting with an upright cubical region of space

that contains the object, one recursively decomposes the space into eight smaller cubes called

octants which are labeled 0 through 7 (see Figure 1). If an octant is completely inside the

object, the corresponding node in the octree is marked black; if completely outside the object,

the node is marked white. If the octant is partially contained in the object, the octant is decom

posed into eight sub-octants each of which is again tested to determine if it is completely inside

or completely outside the object. The decomposition continues until all octants are either inside

or outside the object or until a desired level of resolution is reached. Those octants at the finest

level of resolution that are only partially contained in the object are approximated as occupied

or unoccupied by some criteria.

We call the starting cubical region the "universe cube". The recursive subdivision of the

universe cube in the manner described above allows a tree description of the occupancy of the

space (see Figure 2). Each octant corresponds to a node in the octree and is assigned the label of

the octant. Figure 2(b) shows the octree for the object in Figure 2(a). The children nodes are

arranged in increasing order of label values from left to right. The black nodes are shown as

2

A cube and its decomposition into octants.

dark circles and the white and gray nodes are shown as empty circles. In practice, of course, the

white nodes need not be stored.

This report addresses the following problem: given a sequence of silhouette views of an

object, construct the octree representing the object which gave rise to those views. A given

silhouette constrains the object to lie in a cone (for perspective projection) or a cylinder (for

orthographic projection) whose cross section is defined by the shape of the silhouette. In this

report, we will consider orthographic projection of an object onto a plane perpendicular to a

viewing direction. We will call extended silhouette” the solid region of space defined by

sweeping the silhouette along a line parallel to the viewing direction used in obtaining the

silhouette. The object is constrained to lie in the intersection of all extended silhouettes. As the

number of silhouettes processed increases, the fit of the volume of intersection of the cylinders

to the object volume becomes tighter. In our algorithm, we do not perform the intersection

explicitly, but infer the octree nodes from silhouette images according to a predetermined table

3

that pairs image regions with their corresponding octree nodes.

An alternate approach, due to Shneier et al. [5. 12], to the problem of constructing the

octree from silhouettes explicitly tests for the intersection between an octree node and the

extended silhouette by projecting the nodes of the tree onto the silhouette image. The relative

performance of algorithms based on their approach and ours needs to be determined. Chien and

Aggarwal [3] describe an efficient method for constructing an octree for an object from

silhouettes of its three orthogonal views. Their method is similar to the method described here,

though it provides much coarser results since they only use three axial views. The accuracy of

the octree describing the object is improved if, in addition to the three orthogonal views, infor

mation from other views of the object is also used. Of course, the challenge lies in containing

Figure 2

An object (a) and its octree representation (b).

4

the amount of computation while improving accuracy.

During the development of our image-to-octree algorithm, we felt the need for a octree-

to-image display algorithm to visually monitor the accuracy of the octree as it evolves by

assimilating object information present in successive silhouette views. We developed an algo

rithm for this octree-to-object transformation, which is the reverse transformation of con

structing the octree from the object discussed in the first part of the report. The octree-to-image

algorithm displays an object represented by a given octree as a line drawing in perspective with

hidden lines removed. The line drawing can be displayed corresponding to any arbitrary

viewpoint. We use this algorithm to display line drawings of the octrees derived by the octree

generation algorithm. A visual comparison of the original objects with those depicted by the

line drawing algorithm then serves as a useful test of the correctness of the octree generation

algorithm.

We also present results on more precise evaluation of the performance of our octree gen

eration algorithm. The performance measure used is the ratio of the true volume of the object

to the volume represented by the octree generated. The variation of the accuracy of representa

tion with changes m object orientation, object complexity, and allowed computation time are

studied.

The algorithm described in this report is part of a three-dimensional representation, mani

pulation. and navigation system that we are developing. The common theme through the vari

ous components of the system is the use of octree representation. The problem addressed in this

paper is that of initial acquisition of the occupancy information and construction of octree

representation. Elsewhere, we have addressed the problem of updating the octree in response to

motion of objects in the scene. The work on using the octrees for path planning and manipula

tion tasks is in progress.

5

In Section 2 we describe our octree generation algorithm. Section 3 discusses the perfor

mance of the algorithm. Section 4 describes the line drawing display algorithm and presents

experimental results as line drawings of the objects represented by the generated octrees. Sec

tion 5 presents concluding remarks.

6

2. OCTREE GENERATION ALGORITHM

The algorithm described in this section constructs the octree without computing any pro

jections or performing any intersection tests. The viewing directions are defined with reference

to the universe cube and are restricted to be those providing one of the six 'face” views, one of

the twelve edge views, or one of the eight corner” views of the universe cube. Although

this allows only thirteen useful views (since views from any two opposite directions provide

the same silhouette), the viewpoints are distributed widely in space and together provide

significant information to construct a good approximation of the object.

Restricting the viewpoints in this manner allows us to find correspondences between the

pixels in the two-dimensional silhouette image and the octants in the three-dimensional space

that define the octree. The relationship between pixels and octants for an orthographic face

view is easily derived so it is described first. Then the relationships between pixels and octants

for orthographic edge and corner views are presented. Similar relationships would be difficult

to obtain for an arbitrary viewpoint.

2.1. Face V iew

A ‘face view” is the view obtained when the line of sight is perpendicular to one of the

faces of the universe cube and passes through the center of the cube. Thus a face x view is the

orthographic projection of the object onto the yz plane. A digitized silhouette image would be

represented in the computer as a square array of pixels. Pixels having a value of 1 denote the

region onto which the object projects. Pixels having a value of 0 represent the projection of free

space.

The projection of the cube in Figure 1 along the x direction results in pairs of octants pro

jecting onto the same region in the image. For example, octants 5 and 4 project onto the upper

left quadrant, octants 7 and 6 project onto the upper right quadrant, and so on. (See Figures 1.

7

3(a).) This simple relationship between octants and their projections allows the construction of

the octree directly from the pixels in a digitized silhouette image.

Given a square array of pixels representing a face x silhouette image, its contribution to

the octree can be obtained using the decomposition scheme shown in Figure 3(a). The quadrants

of the silhouette image are processed as if a quadtree were being constructed. A quadrant is

recursively decomposed until it is either all ones or all zeroes. But instead of adding to the tree

only one node per quadrant during recursive decomposition, as is the case with quadtrees, two

nodes are added, as in Figure 3(a). Thus, when a quadrant of the silhouette is further decom

posed, each sub-quadrant could add up to four nodes to the octree instead of one. Figure 3(b)

shows the nodes assigned to the sub-quadrants.

A similar procedure is used for the other two face views, the only difference being in the

labeling scheme for the image quadrants. For example, the labels for the upper left quadrant

for the face y view are 7, 5, and for the face z view are 4, 0. (See Figure 4).

5,4 7,6

1,0 3, 2

(a)

5,4
75, 74
6 5 , 64

7 7 , 76
6 7 , 66

7 1 ,7 0
6 1 , 60

7 3 , 72
6 3 , 62

1,0 3, 2

(b)

Figure 3

The labeling scheme for quadrants for the face x view. Each quadrant is assigned two labels (a)
instead of one. Each time a quadrant is sub-divided, the sub-quadrants have twice as manv la
bels (b). » J

7 , 5 6 , 4

3 , 1 2 , 0

(a)

4 , 0 6 , 2

5 , 1 7 , 3

(b)

Figure 4

The labeling scheme for quadrants for the face y view (a), and face z view (b).

2.2. Edge V iew

An edge view of a cube is the view obtained when the line of sight bisects an edge of the

universe cube and passes through the center of the cube. An edge view is labeled with the two

adjacent octants of the universe cube each of which contains one half of the bisected edge. The

octants of the cube in Figure 1 viewed from edge 3-7 would appear as shown in Figure 5. The

silhouette of a cube in an edge view is longer in the horizontal direction by a factor of \/2.

Since the octree generation algorithm requires a square array, the elongated image from an edge

view must be compressed into a square array. This is accomplished by resampling the digitized

image with smaller sampling density along the horizontal direction.

The recursive procedure for constructing an octree from a square array of pixels

representing an edge view is similar to procedures for constructing a quadtree. If the square

array is all ones or all zeroes, then it is marked black or white, respectively. Otherwise it con

tains some ones and some zeroes and it is decomposed recursively in two different ways.

9

5 7 6

1 3 2

Figure 5

The cube in Figure 1 viewed from edge 3-7.

(1) It is decomposed into the usual four quadrants, each with one label. The labels depend on

which edge is being viewed. For example, the labels for the four quadrants for the edge

3-7 view are given in Figure 6(a). If a quadrant contains both zeroes and ones then it is

recursively decomposed.

(2) It is decomposed into two center squares and two margins (see Figure 6(b)). The center

squares are the same size as the quadrants in the first decomposition step. The margins are

half the width of the squares and are not used. Each center square has two labels. These

are treated in a manner similar to the way the quadrants with two labels for the face

view were treated. Whenever a node with one of the two labels is added to the octree,

another node with the other label is also added. If a center square contains both zeroes and

ones, then it is recursively decomposed.

Each time a quadrant or a center square is decomposed, both methods of decomposition

described above are used, unless it is a 2 X 2 square in which case only the first method is used.

At each recursive decomposition step the dimension of the quadrants examined is half that at

the previous step. When the dimension of a quadrant is 2, it can'only be decomposed according

to the first method above (otherwise an image pixel would have to be split in half). To prevent

10

(a)

7,4

3,0

(b)

Figure 6

The decomposition of the image array for the edge 3-7 view into 4 quadrants (a) and 2 center
squares (b).

the introduction of nonexistent “holes'’ in the octree during this process, a center square of a

2 x 2 array is marked black if either one of the two quadrants intersecting with it is marked

black. For example, if a silhouette image taken from edge 3-7 is decomposed down to a 2 X 2

square and the upper right quadrant (whose label is 6) is black, then, in addition to octant 6.

octants 7 and 4, corresponding to the upper central square, will also be marked black.

Figure 7(a) shows the center squares decomposed into four quadrants (each quadrant

inherits two labels from the parent square) and Figure 7(b) shows quadrant 6 decomposed into

two center squares.

2.3. Corner V iew

A corner view is the view obtained when the line of sight intersects a corner of the

universe cube and passes through the center of the cube. Each corner view is labeled according

to the corner octant which is closest to the viewer. The silhouette of a cube viewed from one of

its corners is a regular hexagon (see Figure 8(a)). Because the geometry of the corner view

silhouette does not correspond naturally with the rectangular image plane, processing a corner

11

75.
45

76,
46

71.
41

72.
42

35.
05

36.
06

31.
01

32.
02

(a)

5
67.
64

63,
60

1 2

(b)

Figure 7

Further decomposition of center squares into quadrants (a), and of the upper right quadrant
into center squares (b).

view is somewhat more complicated than processing face or edge views where the silhouette of

the universe cube is a rectangle.

The silhouettes of the different octants of a cube are all regular hexagons whose regions of

intersection are composed of equilateral triangles (see Figure 9). The silhouette of any octant is

a union of a subset of these triangles. Thus, the occupancy of an octant can be inferred from

the occupancy of an appropriate set of triangles. Occupancy of the universe cube can be

inferred from the occupancy of the six major triangular cells (Figure 8(a)). To generate nodes

at lower levels in the octree, the triangles of interest are the result of recursive triangular

decomposition (see Figures 8(b) and 8(c)) of the six major triangles. Therefore, the processing

of a corner view is done in two phases. First, six quadtrees are generated from the digitized

image m such a way that each quadtree represents one of the six triangular sections of the regu

lar hexagonal silhouette of the universe cube. Second, the octree is constructed from the six

quadtrees. The quadtrees and octree are constructed recursively.

To construct the quadtrees, the universe hexagon is divided into six triangles labeled 0 to

5 as shown in Figure 8(a). Each triangle is recursively subdivided and its nodes are labeled 0 to

12

(b) (c)

Figure 8

The division of the universe hexagon into six triangular sections (a). Each section is represented
by a triangular quadtree. The labels of the quadtree nodes for each of the two orientations of a
triangle (b and c).

3 according to one of the two schemes shown in Figure 8(b) and 8(c). The orientation of the

triangle determines which labeling scheme is used. In both labeling schemes, quadtree node 0 is

in the center and node 2 is in the lower corner. The recursive subdivision of a triangle into

four sub-triangles continues until the distance between the centers of adjacent triangles is less

than or equal to the distance between pixels in the digitized image. The image pixel nearest the

center of a triangle at the lowest level in the quadtree determines whether the corresponding

quadtree node is black or white. The color of a quadtree node above the lowest level is deter

mined by the colors of its children. If the children of a quadtree node are all white or all

black, then the parent node is assigned the same color as its children, and the children are

removed from the tree. Otherwise, some children are white and some are black so the parent is

assigned the color gray. Each quadtree is given the label (0 - 5) of the major triangle it

13

represents. Once the six quadtrees are constructed, the raw silhouette image data is no longer

needed. The octree is generated directly from the quadtrees; quadtrees are used only as an

intermediate step in the octree construction.

The octree construction is best explained by showing how the color of a particular octant

is determined. Figure 9 shows the projection of octant 5 in relation to the projection of the

universe cube viewed from octant 7. Octant 5 also projects as a hexagon and overlaps triangular

quadtrees 0 and 1. Octant 5 is labeled white if the nodes of quadtrees 0 and 1 covered by the

projection of octant 5 are all white. In this case the relevant nodes that need to be examined are:

nodes 0,1,3 of quadtree 0 immediately below the root level, and nodes 0,1.2 of quadtree 1

immediately below the root level. If these nodes are not all white nor all black and the

predetermined maximum depth for the octree has not been exceeded, then octant 5 is recur

sively subdivided and the appropriate children of these node; in the quadtree at the next lower

Figure 9

The projection of octant 5 (shown in bold lines) which overlaps triangular quadtrees 0 and 1.

14

level are examined. This process continues until all nodes are labeled black or white. The same

procedure is used for the other octants, the only difference being in the set of quadtree children

which needs to be examined.

2.4. A lgorithm D etails

This section describes in more detail the implementation of the octree generation algo

rithms. All of the algorithms described in this report were implemented in the C programming

language [7]. Example C procedures which implement the face, edge, and corner views are given

below along with an explanation for each one. The example routines are actual working C pro

cedures although they have been simplified for clarity. The following C structure was used by

all the routines to represent an octree:

typedef struct octree {
char black:
struct octree *child[8];

} OCTREE:

The first element of the OCTREE structure, “black”, has value 1 if the corresponding octree

node is a black leaf node: else “black" has value 0. The second element in the structure is an

array of eight pointers to the subtrees representing the children of this node. White leaf nodes

are not stored and their corresponding pointers are null (zero).

2.4.1. Face V iew

A simple C procedure, face_x, to generate the octree for the face x view is given in Figure

10. The digitized silhouette image is stored in the global array image.

The three parameters to the procedure are dim. row, and col. The variables row and col

give the location of the upper leftmost pixel in the quadrant currently being examined, and dim

gives the side length of the quadrant. Initially, row and col are zero and dim is the dimension

of the square silhouette image which must be an integer power of two. This procedure

15

recursively calls itself, dividing dim in half at each recursive step, until dim = 2. The four pix

els in the final 2 x 2 square correspond to the four quadrants of the image; for each pixel that

has value 1, the corresponding two octree nodes are made black.

16

extern char image[512][512];

/*
* face_x() returns a pointer to an OCTREE structure representing the occupied
*space of the extended silhouette of a "face x" view of an object.

OCTREE *face_x(dim, row, col)
int dim, row, col;
{

OCTREE *root;

root = newtreeO;
dim = dim /2;
if (dim > 1) {

/* newtreeO returns a pointer to an octree */

/* recursively subdivide image quadrants */

root->child[4] = face_x(dim, row, col);
root->child[5] = copy(root->child[4]);
root->child[6] = face_x(dim. row, col+dim);
root->child[7] = copy(root->child['6]);
root->child[0] = face_x(dim, row+dim. col);
root->child[l] = copy(root- > child[0]);
root->child[2] = face_x(dim, row+dim, col+dim);
root->child[3] = copy(root->child[2]);

/* upper left quadrant */

/* upper right quadrant */

/* lower left quadrant */

/* lower right quadrant */

} else { /* examine image pixels in 2x2 square array */

if (image[row][col]) {
root->child[4] = new_black_child();

 ̂ root->child[5] = new_black_child();

if (image[row][col+l]) {
root->child[6] = new_black_child();
root-> child[7] = new black childO;

}
if (image[row+l][col]) {

root->child[0] = new_black_child();
root-> childfl] = new black childO;

}
if (image[row+l][col+l]) {

root->child[2] = new_black_child();
root-> child[3] = new black childO;

}
}

/* if pixel value is 1, */
/* then make children black */

/* upper right pixel */

/* lower left pixel */

/* lower right pixel */

return(compact(root)); /* return compacted octree V

Figure 10

A C procedure to generate an octree for the face x view.

17

Procedures for the face y and face z views can be obtained by appropriately changing the

integer labels of the octree children, or a general procedure can be defined by using variables as

the labels of the octree children.

2.4.2. Edge V iew

A simple C procedure, edge_37. to generate the octree for the edge 3-7 view is given in

Figure 11. As with the face x procedure, the digitized silhouette image is assumed to be stored

m the §lobal array image. The parameters supplied to the procedure are the same as supplied to

face_x. The variable dim is the dimension of the current quadrant being examined and row and

col are used to index the pixels in the image.

The image is recursively subdivided using both methods described in Section 2.2 until the

quadrant is a 2 X 2 array. If either the upper left or the upper right pixel in this array has

value 1, then the corresponding child 5 or 6 , respectively, is added to the octree as a black leaf

node and the variable black is set to 1, causing additional octree children 7 and 4 to be added.

Similarly, if either the lower left or lower right pixel (corresponding to children 1 and 2,

respectively) in the 2 X 2 square is black, then children 0 and 3 are also added tc the octree as

black leaf nodes.

By substituting variables for the octant labels, this procedure can be generalized so that it

works for all edge views.

18

/*
edge_37() returns a pointer to an OCTREE structure representing the occupied
space in the extended silhouette of the edge 3-7 view of an object.

OCTREE *edge_37(dim. row, col)
int dim, row, col;

OCTREE *root;
int black;

/* newtreeO returns a pointer to an octree */

/* recursively subdivide image quadrants */

root = newtreeO;
dim = dim/2;
if (dim > 1) {

root->child[5] = edge_37(dim, row, col);
root->child[6] = edge_37(dim, row, col+dim);
root->child[7] = edge_37(dim, row, col+dim/2);
root->child[4] = copy(root->child[7]);
root->child[l] = edge_37(dim, row+dim, col);
root->child[2] = edge_37(dim, row+dim, col+dim);
root->child[3] = edge_37(dim, row+dim, col+dim/2);
root->child[0] = copy(root->child[3]);

 ̂ e ŝe ̂ examine image pixels in 2x2 square arrav V
black = 0; J
if (image[row][col]) { /* if pixel value = 1, then make child black */

root->child[5] = new_black_child(); black = 1;

/* upper left quadrant */
/* upper right quadrant */
/* upper center squares */

/* lower left quadrant */
/* lower right quadrant */
/* lower center squares V

if Gmage[row][col+l]) { /* Upper right pixel V
 ̂ root->child[6] = new_black_child(); black = 1;

if (black) { /* if either child 5 or 6 is black, then make both 7 and 4 black */
root->child[7] = new_black_child();
root->child[4] = new_black_child();

black = 0;
if (image[row+l][col]) { /* if pixel value = 1, then make child black */
 ̂ root->child[l] = new_black_child(); black = 1;

if (image[row+1][col+1]) { /* lower right pixel */
 ̂ root->child[2] = new_black_child(); black = 1;

if (black) { /* if either child 1 or 2 is black, then make both 3 and 0 black */
root->child[3] = new_black_child();
root->child[0] = new_black_child();

return(compact(root)); /* return compacted octree */

Figure 11

A C procedure to generate an octree for the edge 3-7 view.

19

2.4.3. C om er V iew

A simple C procedure, corner_7, to generate the octree for the corner 7 view of an object

is given in Figure 12. This procedure is called with two parameters: hex and treedepth. The

first parameter, hex, is an array of 6 pointers to the triangular quadtrees which together

represent the silhouette image data. The quadtrees are represented by a QUADTREE structure

which is analogous to the OCTREE structure for octrees defined earlier. The second parameter,

treedepth, is an integer that controls the number of levels in the octree and prevents the octree

from growing beyond a predetermined maximum depth, which is stored in the external variable

Maxdepth. Without the treedepth parameter, this routine could easily get into an infinite loop.

The value of treedepth is initially zero and is incremented each time the routine calls itself.

The array octnode lists the octree children in the order in which they are generated by this

routine. The first element (5 in this case) is the octant whose projection overlaps quadtrees 0

and 1, the second element is the octant which overlaps quadtrees 1 and 2; the third element

overlaps quadtrees 2 and 3, and so on. By appropriately permuting the octant numbers in

octnode, this routine will generate the octree from any other corner view.

The first six elements of octnode project close to the border of the hexagon in Figure 8(a)

and so overlap only two quadtrees. The last two elements of octnode both project onto the

center of the hexagon and overlap parts of all six quadtrees. For this reason, the last two ele

ments are handled separately.

The for loop generates the first six octants in the list of octree nodes. The routines

allblack, notallwhite, and nextargs are not shown: allblack returns true if the quadtree children

overlapped by the projected octant are all black: notallwhite returns true if the quadtree chil

dren are not all white; nextargs stores the pointers to the six quadtree children in the array

newhex which is used for the next recursive call.

20

extern int Maxdepth;
static char octnode[8] = { 5,4 ,6,2 ,3,1,7.0 };

/*
corner—7() returns a pointer to an OCTREE structure representing the occupied

* space in the extended silhouette of the corner 7 view of an object.
*/

OCTREE *corner_7(hex,treedepth)
QUADTREE *hex[]:
int treedepth;
{

OCTREE *root;
QUADTREE *newhex[6];
int node, parentO, parentl;

if (treedepth >= Maxdepth) {
root = new_black_child(); /* return black node */
return(root);

}
root = newtreeO;
for (node=0 ; node < =5; node++) { /* for each perimeter octree node V

parentO = node, /* find its two overlapping quadtrees */
parent 1 = (node + 1) % 6;
if (allblack(hex,parentO,parentl)) /* if both quadtrees all black. */

root- > child[octnode[node]] = new_black_child(); /* then make octree child’black V
else if (notallwhite(hex,parentO,parentl)) { /* if quadtrees are not both white. */

nextargs(hex,newhex,parentO,parentl); /* then subdivide perimeter node */
root->child[octnode[node]] = corner_7(newhex,treedepth+l);

/* next, check octree nodes which project onto center of hexagon V
if (midallblack(hex)) { /* if center of hexagon all black, */

root-> child[octnode[6]] = new_black_childO; /* then make center nodes black V
root->child[octnode[7]j = new_black_child();

} else if (notmidallwhite(hex)) { /* if center is not all white, */
nextmidargsGiex,newhex); /* then subdivide center */
root->child[octnode[6]] = corner_7(newhex.treedepth+l);

 ̂ root->child[octnode[7j] = copy(root->child[octnode[6]]);

return(compact(root)); /* return compacted octree */

Figure 12

A C procedure to generate an octree for the corner 7 view.

21

Finally, the two octants which project into the middle of the hexagon are generated. The

routines midallblack, notmidallwhite, and nextmidargs are not shown but are analogous to the

routines described above.

The only change necessary to make this routine work for another corner view is to per

mute the octree children labels in the array octnode. A general routine can be created by using

a doubly subscripted array in place of octnode', the first subscript determining the corner being

viewed, and the second subscript being the child label.

22

3. PERFORMANCE OF THE OCTREE GENERATION ALGORITHM

There are several aspects to the performance of any octree generation algorithm. First and

foremost is the issue of the accuracy of the object shape captured by the octree generated. Next

is the question whether any trade-off is possible between the accuracy of the representation

obtained and the complexity of the computation performed to obtain it. Another aspect of the

performance of the algorithm concerns the execution time, i.e., the efficiency with which the

algorithm implements the necessary computations. In this section, we will discuss the perfor

mance of our octree generation algorithm described earlier.

3.1. Defining Accuracy

An algorithm of the kind described in this report that attempts to reconstruct an object

shape from its silhouette views suffers from some inherent limitations. First, the algorithm

cannot detect those three-dimensional features of the object that are lost during the projection

process. For example, no surface concavities are registered. Thus, at its very best the algorithm

suffers from such detection errors occurring during the data acquisition phase, and can provide

a representation of only a bounding volume of the object. Then, there are the inaccuracies aris

ing from the limitations of the representation itself. In our case, the octree of a given depth will

have an associated error due to the 3-D spatial quantization. An increase in the allowed depth

(resolution) of the octree will reduce the error, possibly to zero. Finally, there is the usual 2-D

digitization error in obtaining the image. This error can also be reduced by using higher resolu

tion images.

Beyond these general sources of inaccuracy are the specific features of our algorithm that

may contribute to further approximations. In particular, our algorithm restricts the choice of

the viewing directions to a predetermined set of thirteen directions. Since this restricts, in gen

eral, the amount of available information about the object, it is desirable to compare the shapes

23

of the object captured by the octree and the original object. In order to evaluate the perfor

mance of any given set of viewing directions, it is first necessary to define a measure that

reflects the accuracy with which an object s volume (shape) can be approximated using

silhouettes obtained from the given viewing directions. The approximation, of course, depends

on the shape and orientation of the object viewed.

One possible measure of accuracy for a set of viewing directions is the ratio of the volume

of the smallest object which could give rise to a given set of silhouettes to the volume of inter

section of the extended silhouettes. This measure is a fraction since the volume of the intersec

tion of extended silhouettes of an object contains that object. Even if the object is convex, the

volume of the object is probably smaller than the volume of intersection. This worst-case

definition means that if a given set of silhouettes has an accuracy measure of 90% then the

volume of the actual object can be no less than 90% of the computed volume. Some restrictions

must be placed on the object shape (like requiring it to be convex) to prevent the smallest

object from having an arbitrarily small volume. Even with restrictions, however, the accuracy

measure can be very low if only a few views are used. For example, there exist convex objects

smaller than a unit cube which have unit squares as silhouettes when viewed along three

orthogonal directions. The projection of a tetrahedron oriented so that its four vertices coincide

with four vertices of the unit cube is a unit square when viewed along any direction perpendic

ular to a face of the unit cube. The tetrahedron would be represented as a cube by the algo

rithm since the intersection of extended silhouettes is a cube. The volume of the tetrahedron,

however, is only one-third the volume of the cube. Since a tetrahedron inscribed in a unit cube

is the smallest convex object whose three orthogonal silhouettes are unit squares, the accuracy

measure for that set of three silhouettes is 33.3%.

The above definition of accuracy may be of only theoretical interest; the difficulty of

finding the smallest object for each set of silhouettes makes this definition impractical. An

alternate approach is to empirically measure the performance of a chosen set of viewing

24

directions on a suitably selected set of objects. The measure of accuracy for a given object is

the observed ratio of the volume of the object to the volume of the intersection of the extended

silhouettes of the object. For example, a sphere would have an accuracy measure equal to the

ratio of its volume to the volume of the intersection of circular cylinders containing it. where

the axes of the cylinders coincide with the viewing directions. Using this measure of accuracy,

three orthogonal views of a sphere would yield an accuracy of 88.9%. The accuracy of nine face

and edge views is approximately 98.7%.

Except for the sphere, the accuracy of a set of viewing directions for a given object is

dependent on the object s orientation. In one orientation, the tetrahedron yields an accuracy of

33.3% for three orthogonal views; in another orientation, the accuracy is 100%. In fact, only

two orthogonal views of the tetrahedron are necessary to represent it exactly. To obtain the

average performance over all orientations, a Monte Carlo simulation experiment can be per

formed to measure the desired ratio of volumes over a large number of randomly chosen orien

tations. Then, for a given set of objects, the measure of accuracy for a set of viewing directions

is the estimated expected value of the ratio of the object volume to the constructed volume for

a randomly selected object at a randomly selected orientation.

3.2. M easuring Accuracy

How should the objects constituting the test set be chosen? One way to resolve this ques

tion is to use objects having shapes used as primitives for three-dimensional representations,

e.g., generalized cones. A generalized cone is defined by a space curve spine and a planar cross

section which is swept along the spine according to a sweeping rule. The sweeping rule deter

mines how the cross section changes as it is translated along the spine. Figure 13 shows a sam

ple of generalized cones used by Brooks [2] as primitive volume elements.

25

The measure of accuracy can then be computed as the average of the results of a large

number of executions of the following three step procedure. First, an arbitrary object from the

chosen set and a random orientation are selected. Second, the object is projected along each

viewing direction to provide a set of silhouette images. Finally, the octree is constructed and

the corresponding object volume computed. The ratio of the actual to the computed volume is

the desired result for the chosen object and orientation.

In our experiments we used the geometric objects shown in Figure 13 with the following

modifications. In place of 13(f) we used a circular cone; in place of 13(g) we used a regular

cube; and in place of 13(i) we used a regular pyramid. We further added the sphere and a

small cube to the set of objects giving us eleven objects on which to observe the performance of

the octree generation algorithm. These objects were viewed at random orientations to deter

mine an average accuracy resulting from the thirteen viewing directions described in this

report. Figure 14 lists the objects used along with their mathematical definitions and volumes.

The cube is the largest object in the list and all other objects fit inside it. This was done so that

Figure 13

A selection of generalized cones as taken from [2]. A rectangular prism (a), an octagonal prism
(b). a wedge (c). an arc (d), a cylinder (e). a partial cone (f). a rectangular solid (g), a slice (h),
and a partial pyramid (i).

26

the silhouettes of all the objects would be guaranteed to fit on the simulated image screen.

For each object in the test set, one hundred random orientations were selected. For each

orientation, the thirteen digitized silhouette images in the form of binary-valued square arrays

were computed assuming that the object is placed with its center at the origin. The octree was

then constructed from the thirteen silhouettes and the ratio of the object volume to the octree

volume was computed.

The silhouettes were generated on the computer from mathematical definitions of the test

objects and a simulated 128 X 128 digitized image was created. To determine the value of an

image pixel, a line was constructed perpendicular to the image plane and passing through the

center of the image pixel. If this line intersected the test object the pixel value was set to 1, else

it was set to 0. This process was repeated for each of the 16,384 pixels to generate a digitized

silhouette image.

Since the octree constructed from extended silhouettes represents an object larger than or

equal to the actual object, the ratio of the object volume to the octree volume should always

have a value less than or equal to 1. Due to digitization error, sometimes a pixel on the border

of a silhouette is marKed empty (set to zero) when it is actually partially covered by the
\

silhouette. This can lead to lost volume in the object represented by the octree since the method

of taking intersections of extended silhouettes always yields a smaller (or possibly the same

size) octree as each new silhouette is processed. Once an octant is removed from the octree, it is

never returned. This problem becomes more pronounced for smaller objects since the removal

of a fixed chunk of the object represents a larger portion of its volume. To compensate for such

digitization error, we grow the silhouette by locating every pixel with value 1 and setting its

neighbors (in all eight directions) to 1. This process, in general, overcompensates for the digiti

zation error and reduces the accuracy of the resulting octree, especially for small objects. But it

at least guarantees that the octree will not represent an object smaller than the actual object.

27

We have included a small cube in the set of test objects to assess the impact of silhouette

expansion on accuracy. Since this cube has such a small volume (_1_ of the volume of the

large cube), any lost volume due to digitization error will have a more noticeable effect on the

accuracy measure.

Figure 15 shows the average accuracies over a sample of one hundred random orientations

for each object. The results for both the original silhouettes and the expanded silhouettes, after

preprocessing, are shown for comparison. Above each object’s name are shown two bars. The

left bar depicts the accuracy using silhouettes with no preprocessing, and the right bar depicts

the accuracy using expanded silhouettes. The average accuracy for the entire set of test objects

with no silhouette preprocessing is 93.7% and with silhouette expansion is 76.5%.

#

28

Objects Used in Performance Analysis
Name Definition Volume
Cube x . y . z in [—1. 1] 8.0
Cylinder x 2 + y 2 ^ 1,

and z in [—1, l]
6.2832

Cone x 2 + y 2 $ ^-D2
4

and z in [—1, lj
2.0944

Sphere x 2 + y 2 + z 2 ̂1 4.1888
Slice x . z in [—1, l],

and y in [—0.25, 0.25]
2.0

Pyramid x 2 (z _ 1)2 ,
4

and y 2 ̂ ^ ,
4

and z in [—1, l]

2.6667

Wedge (,-D2

and y 2 ^ (2 _ 1)2 ,
4

and z in [0, 0.8]

0.6293

Octagonal
Prism

x . y . z in [—1, 1],

if n/2-1 ^ x ^ 1 th e n x —J l ^ y ^ - x + > / 2

and if —s/2+1 ^ x < V2-1 th e n -1 ^ y ^ 1.
if “1 ^ x < —\/2+ l th e n —x —' J l ^ y ^ x + ' J Ì

6.6274

Rectangular
Prism

x in [0 , l],
and y , z in [—1, l],
and 2y — 1 ^ z ^ 2y + 1

2.0

Arc x ,y ^ 0 ,
and 0.25 ^ x 2 + y 2 ^ 1,
and 2 in [—0.25. 0.25]

0.2945

Small Cube x . y . z i n [—0.125, 0.125] 0.0156

Figure 14

List of primitive objects used to test the accuracy of the octree generation algorithm.

29

u
o
L

3 UIEUS 9 UIEUS 13 ÜIEUS

Figure 15

Ratios of the volume of a randomly oriented object to the volume represented by the octree gen
erated from the object s silhouettes. For each object the left bar corresponds to the case of no
preprocessing of silhouettes and the right bar corresponds to preprocessing.

30

3.3. Accuracy-C om putation Trade-Off

In many cases it may suffice to have occupancy information which is even less detailed than

that provided by the 13 directions. Of greater importance may be the speed at which the octree is

generated. Under such conditions it is of interest to know how the accuracy degrades with a

decrease in the number of directions. In Figure 15 we have indicated the ratios of actual volumes to

the octree volumes corresponding to (1) only face views (3 directions), (2) face and edge views (9

directions), and (3) face, edge and corner views (13 directions). The successive increments in bar

heights represent the additional accuracy contributed by the additional silhouettes. The graphs

show that for all the objects tested, the additional six edge views contribute a significant amount of

new information. The addition of the four corner views to the nine face and edge views, however,

increases the accuracy only slightly.

3.3.1. Coarse-to-Fine Com putation

The choice and order of the viewing directions used in our algorithm constitute a coarse-to-

fine mechanism of acquisition of occupancy information. The face views act as coarse sensors of

occupancy. Their spatial orthogonality contributes to independence of the information they pro

vide. The additional edge views are well separated and reveal occupancy of the space half way

between the face viewing directions. Thus, they provide finer grain occupancy information. The

corner views further increase the density of viewing directions fairly isotropically since the corner

viewing directions are located far away from the face and edge viewing directions. Fortunately,

these sparsely located directions also allow efficient computation of the octree nodes.

Since the object orientation is random, there is no significance to the absolute direction of

viewing. The incremental information provided by a new viewing direction is only a function of

the location of the new direction relative to the previous directions. If (a, ft) denotes the vector a

degrees counterclockwise from the x-axis in the xy plane, and ft degrees above the xy plane, then

31

the 13 directions used in our algorithm are the following: (0,0). (90,0), (0,90), (45,0), (-45,0),

(0,45), (0,-45), (90.45), (90,-45), (45,35.3), (-45,35.3), (45,-35.3), (-45.-35.3). These directions

are fairly, although not precisely, isotropic collectively, and so are the directions within each of the

three subsets corresponding to the face. edge, and corner views. Therefore, the sequential use of the

three subsets results in an efficient strategy to acquire occupancy information with increasing accu

racy. The information acquisition can be stopped after using either the first one or two sets of

viewing directions to obtain different trade-offs between accuracy and computation time. Using the

three sets of viewing directions in different orders results in different, near optimal ways of acquir

ing the silhouette information in a coarse-to-fine manner. For example, if the order (face*, edge,

corner) is used, then one can stop after using 3, 3 + 6 = 9, or 3 + 6 + 4 - 13 directions: if the order

(edge, face, corner) is used, then one can stop after 6 , 9, or 13 directions. All different possible ord

ers define the set of all near optimal ways of using different numbers of viewing directions. Given

a specific number of viewing directions allowed, say 10, one can use the order (face, corner) or

(corner, face) to select the viewing directions. Of course, some numbers of viewing directions, e.g.,

8. do not allow near optimal trade-off of accuracy and computation time in the sense discussed

here.

3.4. S ta b ility

The measure used in the performance analysis of the derived octree representation is an aver

age computed over a large number of random orientations of the objects. Thus, the results

correspond to the expected fraction of the volume represented by the octree that is actually occu

pied by the object. In practice, we may derive the octree for a given single orientation of the

object, which may be random. The question then arises as to how reliable the resulting representa

tion is. In other words, how stable is the representation from orientation to orientation even though

we know how the representation performs on an average over many orientations. Table 1 lists the

observed maximum and minimum values of the measure over all 100 observations for each object

32

and for the case of no preprocessing. Also listed are the average values and the standard deviations
/

of the values. Figure 16 shows the results graphically. Clearly, the smaller the standard deviation,

and the smaller the differences among the maximum, minimum, and the average values, the better

the stability of the derived octree representation. Table 2 and Figure 17 are analogous to Table 1

and Figure 16 but for the case with silhouette preprocessing. The improvement in the stability of

the representation with increasing number of views can be seen in Tables 1 and 2 and in Figures 16

and 17. Figures 23 through 33 show a graphic display of the objects represented by the constructed

octrees.

3.5. Complex Objects

An inadequacy of the above performance analysis is the simplicity of the objects analyzed.

Originally, these objects were chosen because they are diverse and fairly powerful to serve as

geometrical primitives to construct arbitrary objects. However, the construction entails simultane

ous presence of these objects in the octree space, as components of the larger object whose octree

representation is to be derived. Their relative configuration is determined by the complexity of the

object to be constructed. For example, consider the object shown in Figure 18 consisting of the

volumetric primitives of Figure 13. The spatial configuration of the components leads to their

mutual occlusion when the object is viewed from an arbitrary direction. Thus, the already incom

plete information in the silhouettes about the object is further confounded by self-occlusion. Of

course, unlike surface concavities, the information about occupancy of regions self-occluded from a

viewpoint may be recovered if other, allowed directions are more revealing. The availability of a

large number of viewing directions assumes increased importance in this context.

To test the performance of our algorithm over more complex objects than shown in Figure 13,

we conducted experiments with the object shown in Figure 18. Table 3 lists the results analogous to

those given in Tables 1 and 2. Figure 19 is analogous to Figures 16 and 17. Figure 35 shows a

graphic display of the self-occluding object in Figure 18 as represented by the constructed octree.

33

The upright rectangular solids have reproduced well without any staircase effect because these are

oriented with their faces parallel to the faces of the universe cube. Parts of the curved surfaces of

the circular cylinders are lost since these parts were occluded by the rectangular solids in all the

silhouette views used.

34

Table 1

Stability characteristics of the generated octree with no silhouette preprocessing. The entries are the
observed values of the accuracy measure -- the ratio of the actual to generated volume.

— 1 ----- ■
Average Standard Deviation High Value Low Value

Object Face Face +
Edge

Face +
Edge +
Corner

Face Face +
Edge

Face +
Edge +
Corner

Face
—
Face +
Edge

Face +
Edge +
Corner

Face Face +
Edge

Face +
Edge +
Corner

| Cube 0.751 0.884 0.909 0.102 0.041 0.031 0.996 0.987 1.018 0.601 0.810 0.844

! Cylinder 0.801 0.947 0.960 0.052 0.021 0.015 0.969 0.992 0.991 0.738 0.910 0.931

Cone 0.743 0.931 0.948 0.074 0.039 0.027 0.904 1.003 1.000 0.617 0.866 0.892

1 Sphere 0.889 0.995 1.001 0.000 0.000 0.000 0.889 0.995 1.001 0.889 0.995
—

1.001 j

j Slice 0.653 0.827 0.869 0.141 0.070 0.061 0.952 0.991 0.985 0.453 0.714
---------- !
0.766 !

1j
i Pyramid
1

0.677 0.862 0.881
.

0.082 0.041 0.033 0.960 0.980 0.973 0.539 0.774 0.818 !

Wedge
I

0.665 0.867 0.893 0.071 0.037 0.036 0.894 0.966 0.988 0.529 0.784 0.820

Octagonal
Prism

0.781 0.913 0.933 0.061 0.025 0.023 0.999 0.998 1.015 0.705 0.866 0.899

Rectangular
Prism

0.693 0.S75 0.899 0.074 0.043 0.036 0.912 0.979 0.992 0.543 0.791
!

0.814

Arc
,

I

0.728 0.905 0.919 0.097 0.044 0.035 1.018 1.015 1.001 0.590 0.828 0.833

Small Cube 0.730 1.076 1.090 0.094 0.066 0.070 0.950 1.303 1.303 0.566 0.982 0.999

A verage 0.737 0.917 0.937 0.077 j 0.039 0.033 0.949 1.019 1.024 0.615 0.847 0.874

35

* 1
1 . 3 -j

1. 2 _j

1 . 1 J

i.° _j
0 . 9 _j

0.8 _
0 . 7 _

0.6 J

0 . 5 _

0 . 4 _

0 . 3 _

0 . 2 _
0 . 1 _

0 . 0 __

CUBI CYLINDER CUNh SPHERE SLICE PYRAMID

1 . 4 _

0 . 1 J

0 .0 _

WEDGE OCTAGON A1 RECTANGULAR ARC SMALL AVERAGE
PRISM PRISM CUBE

Figure 16

Graphical depiction of the stability characteristics of Table 1. For each object the three bars
correspond, respectively, to 3. 9. and 13 views, with no silhouette preprocessing. Each bar extends
from the minimum to the maximum observed measure value over the 100 observations made. The
band in the bar is centered at the observed average value and has a thickness of the observed stan
dard deviation.

36

Table 2

Stability characteristics of the generated octree with silhouette preprocessing. The entries are the
observed values of the accuracy measure — the ratio of the actual to generated volume.

1 Average Standard Deviation High Value Low Value

Object

i

Face Face +
Edge

Face +
Edge +
Corner

Face Face +
Edge

Face +
Edge +
Corner

Face Face +
Edge

Face +
Edge +
Corner

Face Face +
Edge

Face +
Edge +
Comer

Cube 0.659 0.811 0.820 0.080 0.035 0.027 0.858 0.900 0.911 0.556 0.742 0.765

Cylinder 0.736 0.862 0.865 0.051 0.017 0.016 0.906 0.914 0.914 0.670 0.827 0.839

Cone 0.650 0.802 0.805 0.061 0.026 0.024 0.769 0.867 0.873 0.543 0.750 0.758

Sphere 0.799 0.896 0.898 0.000 0.000 0.000 0.799 0.896 0.898 0.799 0.896 0.898

Slice 0.568 0.711 0.720 0.123 0.055 0.052 0.843 0.828 0.846 0.394 0.615 0.637 !

Pvramid*
|

0.582 0.746 0.756 0.061 0.033 0.025 0.738 0.829 0.816 0.459 0.680 0.699 j
j

|
1 Wedge
|

0.546 0.695 0.704 0.056 0.027 0.027 0.755 0.771 0.776 0.448 0.622 0.659
!

- 1

| Octagonal
i Prism

0.717 0.836 0.837 0.064 0.024 0.019 0.903 0.900 0.899 0.639 0.788 0.806.

| Rectangular
Prism

0.612 0.753 0.762 0.079 0.033 0.028 0.830 0.858 0.831 0.473 0.683 0.701

| Arc
j

0.566 0.683 0.686 0.068 0.028 0.028 0.732 0.758 0.773 0.465 0.636 0.638

j Small Cube 0.400 0.561 0.561 0.044 0.037 0.038 0.518 0.698 0.665 0.335 0.502 0.505

j Average 0.621 0.759 0.765 0.062 0.029 0.026 0.787 0.838 0.836 0.526 0.704 0.719

1 . 4
37

1 . 3 J

1.2 J
1. 1 J

0.5^
0 . 4 _

0 . 3 _

0.2 _
0.1 _
0.0

CU)1: CYLINDER CON'F SPHERE SLICE PYRAMID

0 . 3 H

0 . 2 J

0.0 J_______________
w e d g e OCTAGONAL r e c t a n g u l a r ARC

PRISM PRISM
SMALL AVERAGE
CUBE

Figure 17

Graphical depiction of the stability characteristics of Table 1. For each object the three bars
correspond, respectively, to 3, 9. and 13 views, with silhouette preprocessing. Each bar extends
from the minimum to the maximum observed measure value over the 100 observations made. The
band in the bar is centered at the observed average value and has a thickness of the observed stan
dard deviation.

38

Figure 18

A self-occluding object used in testing the octree generation algorithm.

39

Table 3

Stability characteristics of the generated octree for the object shown in Figure 18. The entries are
the observed values of the accuracy measure — the ratio of the actual to generated volume.

Silhouette
j
! Preprocessing
I

Average Standard Deviation High Value | Low' Value
i

Face Face -
Edge

S====

Face -1-
Fdge +
Cornerp~— ' —

Face Face -
Ed°e

Face +
Edge +
Corner

Face Face +
Edge

Face +
Edge +
Corner

Face
.

Face +
Edge

Face +
Edge ■+•
Corner

i Without

i-------------------

0.542 0.821 0.864 0.091 0.038 0.037 0.732 0.921 0.991 0.373 0.757 0.802

! With
1
1

0.438 0.626 0.640 0.071 0.024 0.021 0.665 0.691

0.710 0.308 0.578 0.608
1

40

1,4 n
1.3 _

1.2 _

1.1 _

1.0 _

VVIIHOLI WITH
SILHOUETTE SILHOUETTF

PREPRiXTESSING PREPROCESSING

Figure 19

Graphical depiction of the stability characteristics of the self-occluding object shown in Figure 18.
The three bars correspond to the 3. 9. and 13 views. Each bar extends from the minimum to the
maximum observed value over the 100 observations made. The band in the bar is centered at the
observed average value and has a thickness of the observed standard deviation. The three bars on
the left show the results with no silhouette preprocessing and the three bars on the right show the
results with silhouette preprocessing.

41

3.6. Experim ental D etails

The algorithms were implemented in C on a VAX 11/780 computer running the Berkeley 4.2

version of the UNIX operating system. After a Gould 9000 computer became available, the pro

grams were converted to run on that machine since it was several times faster and had twice the

virtual memory. We experienced a five-fold increase in speed when the same programs were run

on the Gould. A VICOM computer was used to acquire and process 512 X 512 images. A Pascal

program running under the VERSAdos operating system on the VICOM was used to perform the

resampling of the images showing edge views. After thresholding the image to produce a silhouette,

the image was transferred over a high-speed, dedicated DMA channel to the VAX, where the image

data was used as input to the octree generating programs.

Some simple modifications were made to the edge view algorithm to improve its efficiency. For

example, some pixels in the silhouette image array (especially those toward the middle) are exam

ined several times by the recursive procedure since center squares overlap with quadrant squares.

Some of these repeated pixel examinations can be avoided if these pixels are contained in large

regions of uniform intensity values. Thus, if two horizontally adjacent quadrants have pixel values

which are all zeroes or all ones, then the overlapping center square need not be examined. The

necessary changes were incorporated into our algorithm so that a center square was only examined

if the overlapping horizontally adjacent quadrants were not uniformly ones or zeroes.

The C programs were timed using test data in the form of 64 X 64 arrays representing binary

images of varying complexity. The average cpu time spent in the octree generation procedures was

recorded and plotted as a function of the number of nodes in the octree. (See Figure 20.) The octree

generation times for a single face view and a single edge view are plotted separately. The data for

the edge view do not include the time to resample the rectangular image into a square array. The

graph shows that the execution time increases linearly with the number of nodes in the octree for a

fixed image size.

42

NUMBER of nooes in octree

Figure 20

o represents the octree generation time for a face view
+ represents the octree generation time for an edge view

The accuracy of the octree increases as its depth increases. For the face views there is a direct

relationship between the depth of the octree and the image resolution. The octants at the lowest

level in an octree of depth d correspond directly to individual pixels in a 2J X 2d image. So. for

example, an octree of depth 6 can capture a single pixel resolution of 64 x 64 face views. If the

image resolution is finer than the maximum allowed tree depth, then octants at the lowest level in

the tree represent square regions of image pixels instead of individual pixels. When the square

regions are not of uniform value, some criteria must be used to determine the color of the represen

tative octree node. In our case, we chose to label the node black if at least of the pixels were

black. This resulted in a good approximation without being too conservative. Alternatively, one

could label the octree node black if any one of the pixels was black but this would vastly overesti

mate the size of the object.

43

The depth of the generated octree in our experiments is determined by a parameter under user

control. In all the experiments described earlier in this section, we set the tree depth so that the

deepest node corresponds to a pixel in the face views. The same depth value is used for the edge

and corner views. On the VAX, we could not use silhouette views larger than 128 X 128 since

octrees of depth greater than 7 were too large for the virtual memory space of the VAX. On the

Gould machine, which has a larger virtual memory space, we successfully created a depth 8 octree

from 256 x 256 silhouette images of a coffee cup (see Figure 34).

44

4. LINE DRAWING GENERATION ALGORITHM

During our work on the octree generation algorithm, it was necessary to monitor the accuracy

of the octree representation constructed at different stages of development. First, we did this by

printing each node in the octree with its associated “black” or "grey” label ("white” or empty

nodes were not stored), and then verifying by hand that the octree was correct. As the octrees

became larger, however, it became necessary to be able to view directly the object which the octree

represented. This section describes an algorithm we developed for this purpose. The algorithm pro

duces a line drawing of an object represented by an octree. The object is drawn in perspective with

hidden lines removed. An alternative method of displaying the object represented by an octree is

described by Meagher [8.9]. His algorithm produces a surface display from octree after hidden sur

face removal. However, surface displays depend upon light source positions. In addition, many

output devices cannot draw shaded surfaces. A line drawing representation, on the other hand, cap

tures the essential details of the object structure in the form of edges since the objects are

polyhedral. We therefore chose to display the objects represented by the octree as line drawings

which can be easily drawn.

The algorithm consists of the following steps. First, the octree is traversed, visiting octants in

order of increasing distance to the viewer. For each black leaf node, graphics information is col

lected and stored in a graphics node . (To avoid confusion with octree nodes, we will call the

data structure containing the graphics information a graphics node .) When a graphics node is

created it is added to the end of a linked list. Since the tree is traversed so that octants closer to the

viewer are visited first, this linked list has the property that elements closer to the beginning of the

list represent octants which are closer to the viewer. By traversing the tree in this manner, we take

advantage of the spatial organization of the octree which simplifies the removal of hidden lines

later on. During tree traversal, black leaf nodes are "threaded” to point to their neighbors. This

allows the elimination of "cracks” discussed below, and is also useful in the final stage when the

45

line segments are displayed.

After the linked list of graphics nodes has been created, each such node is projected in perspec

tive onto the image screen and the screen coordinates of the vertices of the projection are stored in

the graphics node. Each graphics node represents a cube which projects, in general, as a hexagon.

The numbering schemes for the corners and edges of a projected cube are given in Figure 21. The

top corner or edge is numbered 0 and successive integers are assigned clockwise around the projec

tion.

Finally, hidden lines are removed by comparing each graphics node in the linked list against

graphics nodes closer to the beginning of the list. Since graphics nodes closer to the beginning of the

list are closer to the viewer, any overlap represents part of a graphics node which should be hidden

and is therefore removed.

The labeling scheme for the corners (a) and edges (b) of a projected octant.

46

The coordinate frame of reference for the octree is such that the coordinates of the viewer are

always positive. The universe cube is rotated, if necessary, so that the viewpoint falls in the posi

tive octant. Since this requires rotation by multiples of 90°, it is performed by simply re-labeling

the octants.

4.1. E lim in ation o f “Cracks”

A problem unique to line drawing from octree is the elimination of “cracks” from the draw

ing. A crack is a line which should not be drawn because it corresponds to an edge between two

adjacent octants whose surfaces are contiguous, and, were it to be drawn, would appear as a crack

on an otherwise smooth surface. Since a large octant may have many small neighbors along an edge,

eliminating the cracks may fragment the edge into several pieces. For this reason edges are stored

as linked lists of visible segments.

To eliminate cracks, all the neighbors must be found and tested to see if they share a common

border. In our algorithm, we do this by traversing the tree and “threading” black leaf nodes to

point to their neighbors. We use six of the eight unused child pointers of the black leaf node to

point to neighbors in the six directions corresponding to the faces of a cube. Since the black nodes

have no children, these pointers are known to be threads. The threaded octree turns out to be use

ful for other reasons as well. We use a seventh child pointer to point to the graphics node which is

created at the time the black octant is first encountered.

Only black octants have associated graphics nodes, and a black octant which is surrounded on

all six sides by other black octants is skipped since it will not show in the display.

After cracks are removed, the perspective projections of the black octants are calculated and

stored in their respective graphics nodes. Each graphics node also contains a pointer to the octant it

represents so that the neighbors of a graphics node can be found quickly. This facilitates the plot

ting of long straight lines as a unit instead of a sequence of short, contiguous line segments.

47

4.2. E lim in ation o f Hidden Lines

After cracks are removed and the perspective projections are calculated, the hidden lines are

removed [4,10] using a straightforward edge intersection technique. Each edge of a projected octant

is tested for intersection with projections of all other octants which are closer to the viewer. Thus,

the computation time to eliminate hidden lines is proportional to the square of the number of

graphics nodes.

To carry out the intersection tests, a modified Cohen-Sutherland clipping algorithm is used.

(See Figure 22.) The line which contains an edge of a projected octant defines two half planes, one

of which contains the projection and one which does not. The six edges define six half planes which

do not contain the projected octant. Each of these half planes is assigned a different bit in a 6-bit

code. The code for a point is the logical OR of the bit codes of the half planes which contain that

point.

010000 000010

Figure 22

The bit codes for the six half planes defined by the edges of a projected octant.

48

Given an edge segment, we calculate the bit codes for its two endpoints. If the edge is com

pletely outside the projection (and. therefore, visible), the logical AND of the two bit codes will be

non-zero. If the edge is completely within the projection (and. therefore, hidden), then both bit

codes will be zero. Otherwise, the edge partially overlaps the projection. The overlapping segment

of the edge corresponds to its hidden part and must be removed.

If an edge segment partially overlaps the projected octant, then the intersection with the pro

jection must be calculated. This can be done by taking the intersection of the edge segment with the

appropriate edge of the projection that corresponds to a nonzero bit in the bit code for an endpoint

of the edge segment.

4.3. E lim ination o f “D ots”

After hidden lines are removed, the data are ready for display. At this point, the graphics

nodes contain pointers to all the visible edge segments. On certain output devices (notably, moving

pen plotters) an aesthetic problem will arise if the edges are output in the obvious sequence of their

order of occurrence in the linked list of graphics nodes. Because the octree representation decom

poses the object into various sized cubes, a long smooth line on the object may be broken up and

represented as several pieces - each piece in a different octree node. So instead of plotting one long

line segment, several short line segments are plotted. On a moving pen plotter, a small dot is visi

ble at the start and end of every line segment. Not only is this displeasing to the eye, but in addi

tion. when a long line is plotted as several dozen short segments the tip of the pen takes a beating.

These problems do not arise on a graphics terminal or on a laser printer but plotting short segments

has other undesirable traits which apply to all output devices. On all output devices, plotting a

long list of short line segments will, in general, be less efficient (slower) than plotting a single, long

line segment. Furthermore, since each segment is processed separately (for the perspective projec

tion), the plotted segments may have slightly different slopes and may not line up exactly, thereby

giving a jagged, broken appearance to what should be a smooth straight line.

49

The solution to these problems is to logically connect contiguous line segments before plotting.

The threaded octree is useful for this purpose since it allows us to check the neighboring octant and

connect adjacent edge segments. The result is a line drawing without any jagged edges.

4.4. Representation o f Graphics Inform ation

To facilitate integer instead of floating point representations, the side length of an octant at

the lowest level in the octree (that is. the smallest possible octant) is defined to be 1. The center of

the octree is defined to be the origin of the octree coordinate system.

The graphics node used to represent an octant and its projection onto the screen coordinate

system is defined by the following C structure:

typedef struct box {
OCTREE *oct;
int origin[3];
int len:
float corners[6][2];
float xhigh, yhigh. xlow. ylow;
float xleft, yleft, xright. yright:
EDGE *edges[9];
struct box *next;

} BOX;

Each BOX structure describes a cube. The first element, oct. points to the black octree node;

origin contains the coordinates of the corner farthest from the viewer (that is. the hidden corner);

len is the side length of the cube; corners is an array of the screen coordinates of the vertices of the

hexagonal projection of the cube; xhigh, yhigh, xlow, ylow, xleft, yleft xright, yright are the screen

coordinates of the highest, lowest, leftmost, and rightmost vertices, respectively, in corners', edges

is an array of pointers to EDGE structures representing the nine potentially visible edges of the

projected cube; and. finally, next is a pointer to the next element in the linked list.

Edges of projected cubes are represented by linked lists and are defined in C as:

typedef struct edge {

50

int min, max;
float xmin, ymin, xmax, ymax;
struct edge *next;

} EDGE;

The first two elements of the EDGE structure, min and max, store the beginning and ending posi

tions of a segment of the edge. The values of min and max represent the distance from the begin

ning of the edge in terms of the side length of the smallest octree node. The next four elements,

xmin, ymin, xmax, ymax are the screen coordinates of the points represented by min and max

Finally, next points to the next edge segment.

4.5. Perform ance o f th e L ine D raw ing G eneration A lgorithm

The octree generation algorithm followed by the line drawing generation algorithm should

provide a display of the original object. Any differences between an object and its line drawing

represent the approximations and errors involved in octree generation, and thus serve as a quick

method of evaluating the performance of the octree generation algorithm.

4.5.1. Exam ple Line D raw ings

Figures 23 through 33 show the line drawings generated by our algorithm for the octrees of

the test objects in Figure 14. Figure 34 is a line drawing generated from an octree that was

obtained from gray level, silhouette images of a coffee cup. Figure 35 shows the drawing for the

octree of the self-occluding object in Figure 18. Figures 36 and 37 show two different perspective

views of 8 cubes. Figure 38 shows an object whose silhouette is a diamond when viewed from any

face of the universe cube which contains it. The line drawing algorithm was executed on a VAX

and the output sent to a QMS laser printer.

51

Figure 23

The line drawing for the derived octree representation of the cube in Figure 14.

52

Figure 24

The line drawing for the derived octree representation of the cylinder in Figure 14.

Figure 25

The line drawing for the derived octree representation of the cone in Figure 14.

54

Figure 26

The line drawing for the derived octree representation of the sphere in Figure 14.

55

Figure 27

The line drawing for the derived octree representation of the slice in Figure 14.

56

Figure 28

The line drawing for the derived octree representation of the pyramid in Figure 14.

Figure 29

The line drawing for the derived octree representation of the wedge in Figure 14.

58

Figure 30

The line drawing for the derived octree representation of the octagonal prism in Figure 14.

59

Figure 31

The line drawing for the derived octree representation of the rectangular prism in Figure 14.

Figure 32

The line drawing for the derived octree representation of the arc in Figure 14.

61

Figure 33

The line drawing for the derived octree representation of the small cube in Figure 14.

62

Figure 34

A line drawing of a coffee cup.

Figure 35

The line drawing for the derived octree representation of the self-occluding object in Figure 18.

64

Figure 36

A line drawing of eight cubes.

65

Figure 37

Another view of the eight cubes in Figure 36.

66

Figure 38

A line drawing of a diamond-shaped object.

67

4.5.2. Execution Tim e o f th e Line D raw ing G eneration A lgorithm

Figure 39 shows the execution time of the line drawing algorithm as a function of the

number of nodes in the octree. The graph shows that there is no simple relationship between the

two. We would normally expect the execution time to increase roughly as the square of the

number of octree nodes since the hidden line removal subroutine searches through the linked

list of graphics nodes for each node in the list, looking for overlapping nodes. But the

overwhelming factor determining the execution time is not the search time but the time to com

pute intersections and remove hidden lines from overlapping graphics nodes. Hence, the execu-

tion time depends more on the complexity of the image (i.e., how many hidden lines must be

removed) than on the number of octree nodes.

68

* • •

N U M B E R O F M O O E S I N O C T R E E

Figure 39

Graph of line drawing generation time as a function of the number of nodes in the octree: o'
represents total nodes: V represents black (leaf) nodes.

69

5. SUMMARY

We have presented an algorithm to generate the octree representation of an object from

silhouette images taken from a set of thirteen viewing directions. These viewing directions are

parallel to three orthogonal faces, six face-diagonals, and four long-diagonals of an upright

cube. Each silhouette of an object is first extended into a cylinder parallel to the viewing direc

tion, and the corresponding octree is constructed. An intersection is performed on the octrees

generated from the silhouettes to obtain an octree representing the space occupied by the object.

The octree for each silhouette image is computed efficiently by a recursive quadtree decomposi

tion of the image, and identification of the occupied octree nodes from a table listing

corresponding pairs of image windows and octree nodes. In actual applications, the require

ments of the 13 images may be met very simply by placing cameras in fixed positions in a cubi

cal room, namely, at centers of walls, edges and corners, all pointing at the room center and

taking orthographic images. We have also run performance tests on the accuracy of the octree

and concluded that thirteen silhouette views can provide enough information for a good

approximation of the object. The three sets of viewing directions (face, edge, and corner) act as

coarse-to-fine. information acquisition probes. Fewer than 13 directions may be used'to reduce

computation time in exchange for reduced accuracy of the representation generated.

Although the general view algorithm allows an arbitrary viewpoint, this generality

requires an explicit computation of the volume of intersection for determining the octree nodes

corresponding to extended silhouettes. The corresponding intersection tests are more complex

and may require greater computation time than the direct construction of octree nodes from

image pixels used in our approach. Moreover, since silhouette images taken from viewing direc

tions which are widely spaced yield more information, in general, than do silhouette images

which are close together, and since the thirteen viewing directions used in our algorithm are

distributed widely about the entire octree space, it is unlikely that a large amount of additional

information will be obtained by using a silhouette taken from a viewpoint which falls at an

70

intermediate position. The results of our experiments bear out this expectation, where the

accuracy for the thirteen views used in our algorithm is over 90% (with no silhouette prepro

cessing). Thus, there may be only a marginal gain in accuracy by using the general view algo

rithm, especially considering the inherent limitations discussed earlier of any shape-from-

silhouette reconstruction algorithm. Given that the octree representation is useful only as a

coarse occupancy map (for applications such as rough path planning), and is not intended as a

representation of fine shape details, the accuracy provided by the thirteen viewing directions

may suffice. This may be particularly important if the general-view algorithm turns out to be

more expensive than our algorithm in processing silhouette views. We have not so far been

able to obtain a copy of the general viewpoint algorithm of Shneier et al. [5, 12] so we are

currently unable to compare the results of our algorithm with the general viewpoint algorithm.

It remains to be determined how much more accuracy the general viewpoint algorithm can pro

vide and what the cost of the additional accuracy is in terms of execution speed.

We have also developed a display algorithm to produce a line drawing of an object from

its octree. The object is drawn in perspective with cracks and hidden lines removed. The line

drawing produced may be used to check the performance of the octree generation algorithm by

comparing the original and the represented object.

One of the inherent weaknesses of using silhouette images to obtain 3-D information is

that surface concavities cannot be identified. A subject worthy of study is the use of range

information, in addition to the silhouettes, to help identify these concavities. The range infor

mation could be obtained from such sources as sonar devices or laser range finders.

Several applications of this research suggest themselves. One possibility is the construc

tion of a working system of thirteen cameras to monitor the objects in a room. The resulting

octree representation of the occupied space in the room might be used to guide a robot. Another

possibility is to point cameras at a spot above a conveyor belt and as objects pass through the

V

71

octree space defined by the camera viewing directions, perform some task based on the volume

or shape of the octree approximated objects. If cameras are a scarce or precious resource, one

could experiment with using multiple or movable mirrors (in conjunction with a single camera)

to obtain the silhouette images. Finally, one could experiment with mounting a camera on a

moving vehicle to obtain sequential images of an object or an environment for the purpose of

maintaining a representation of the workspace, planning paths, and locating objects.

n

72

REFERENCES

1. N. Ahuja and C. Nash, Octree representations of moving objects. Computer Vision, Graph
ics, and Image Processing, 26, 1984, 207-216.

R. Brooks, Symbolic reasoning among models and 2-D images, Artificial Intelligence, 17,
(1981)285-348.

C. H. Chien and J. K. Aggarwal, A volume/surf ace octree representation. Seventh Interna
tional Conference on Pattern Recognition, July 30 - August 2, 1984.

4. J. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, Addison-
Wesley, Reading, Massachusetts, 1983.

T. H. Hong and M. Shneier, Describing a robot's workspace using a sequence of views from
a moving camera, unpublished manuscript, National Bureau of Standards.

C. L. Jackins and S. L. Tanimoto, Oct-trees and their use in representing three-dimensional
objects. Computer Graphics and Image Processing, 14, 1980, 249-270.

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978).

8. D. Meagher, Efficient Synthetic Image Generation of Arbitrary 3-D Objects, Proc. IEEE
Conf. on Pattern Recognition and Image Processing, Las Vegas, Nevada, June 14-17, 1982,
p. 473.

9. D. Meagher, Geometric Modeling Using Octree Encoding, Computer Graphics and Image
Processing, vol. 19. 1982, p.129.

10. W. Newman and R. Sproull. Principles of Interactive Computer Graphics, McGraw-Hill,
New York, 1979.

11. W. Osse and N. Ahuja. Efficient octree representation of moving objects, Proc. 7th Int.
Conf. on Pattern Recognition, Montreal, Canada. July 30 - August 2, 1984, 821-823.

12. M. Shneier, E. Kent, and P. Mansbach, Representing workspace and model knowledge for a
robot with mobile sensors, Proc. Seventh Int. Conf. on Pattern Recognition, Montreal,
Canada, July, 1984, 199-202.

13. J. Veenstra and N. Ahuja, Octree Generation of an Object from Silhouette Views, 1985
IEEE Int. Conf. on Robotics and Automation, St. Louis, Missouri, March 25-28, 1985 pp
843-848. ’

