
June 1991 UILU -EN G-91-2231
CRHC-91-21

Center fo r Reliable and High-Performance Computing

PERFORMANCE IMPLICATIONS
OF SYNCHRONIZATION
SUPPORT FOR PARALLEL
FORTRAN PROGRAMS

Sadun Anik
Wen-mei W. Hwu

Coordinated Science Laboratory
College o f Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Approved for Public Release. Distribution Unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION
Unclassified

lb. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-91-2231 (CRHC-91-21)
5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
Office of Naval Research
AMD, NCR, N S F , a " * "ASA ICLAS

6c ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS (C/ty, State, and ZIP Code)

Arlington, VA _ Dayton, Ohio
California “ Hampton VA
Washington. DC

8a. NAME OF FUNDING /«onwcnoiMi;
o r g a n iz a t io n

7a
8b. OFFICE SYMBOL

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014- 90-J-1270 NASA NAG 1-613
8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

- PROGRAM PROJECT TASK

7b. ELEMENT NO. NO. NO.
WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

Performance Implications of Synchronization Support for Parallel FORTRAN Programs (unclassifi

12. PERSONAL AUTHOR(S)
Anik, Sadun and Hwu, Wen-Mei

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Technical FROM TO 1991 -June 17 45
16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
synchronization, shared memory, scheduling, parallel
processing

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper studies the performance implications of architectural synchronization support for automatically
parallelized numerical programs. As the basis for this work, we analyze the needs for synchronization in automati
cally parallelized numerical programs. The needs are due to task management, loop scheduling, barriers, and data
dependency handling. We present synchronization algorithms for efficient execution of programs with nested
parallel loops. Next, we identify how various hardware synchronization primitives can be used to satisfy these
software synchronization needs. The synchronization primitives studied are test & set, fetch & add, exchange-byte
and synchronization bus implementation of lockJunlock operations. Lastly, we ran experiments to quantify the
impact of various architectural support on the performance of a bus-based shared memory multiprocessor running
automatically parallelized numerical programs. We found that supporting an atomic fetch & add primitive in
shared memory is as effective as supporting locklunlock operations with a synchronization bus. Both achieve sub
stantial performance improvement over the cases where atomic test & set and exchange-byte operations are sup
ported in shared memory.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
® UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

U n c l a s s i f i e d
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

_____________________________ I
DD FORM 1473,84 MAR 83 APR edition may be used until exhausted.

All other editions are obsolete.
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS RACE

1

w'

UNCLASSIFIED
% e<

Performance Implications of Synchronization

Support

for Parallel FORTRAN Programs

Sadun Anik and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory

University of Illinois, Urbana-Champaign

1101 W. Springfield Ave.

Urbana, IL 61801

Correspondent: Wen-mei W. Hwu

Tel: (217) 244-8270

Email: hwu@crhc.uiuc.edu

1

mailto:hwu@crhc.uiuc.edu

Abstract

This paper studies the performance implications of architectural synchronization

support for automatically parallelized numerical programs. As the basis for this work,

we analyze the needs for synchronization in automatically parallelized numerical pro

grams. The needs are due to task management, loop scheduling, barriers, and data

dependency handling. We present synchronization algorithms for efficient execution

of programs with nested parallel loops. Next, we identify how various hardware syn

chronization primitives can be used to satisfy these software synchronization needs.

The synchronization primitives studied are test&set, fetch&add, exchange-byte and

synchronization bus implementation of lock/unlock operations. Lastly, we ran experi

ments to quantify the impact of various architectural support on the performance of a

bus-based shared memory multiprocessor running automatically parallelized numerical

programs. We found that supporting an atomic fetch&add primitive in shared memory

is as effective as supporting lock/unlock operations with a synchronization bus. Both

achieve substantial performance improvement over the cases where atomic test&set and

exchange-byte operations are supported in shared memory.

1 Introduction

Automatically parallelized numerical programs represent an important class of parallel appli

cations in high-performance multiprocessors. These programs are used to solve problems in

many engineering and science disciplines such as Civil Engineering, Mechanical Engineering,

Electrical Engineering, Chemistry, Physics, and Life Sciences. In response to the popular

2

demand, parallelizing FORTRAN compilers have been developed for commercial and experi

mental multiprocessor systems to support these applications [2] [12] [1] [8] [11]. With maturing

application and support software, the time has come to study the architecture support re

quired to achieve high performance for these parallel programs.

Synchronization overhead has been recognized as an important source of performance

degredation in the execution of parallel programs. Many hardware and software tech

niques have been proposed to reduce the synchronization cost in multiprocessor systems

[13] [20] [19] [3] [14] [15] [16]. Instead of proposing new synchronization techniques, we address

a simple question in this paper: does architecture support for synchronization substantially

affect the performance of automatically parallelized numerical programs?

To answer this question, we start with analyzing the needs of synchronization in par

allelized FORTRAN programs in Section 2. Due to the mechanical nature of parallelizing

compilers, parallelism is expressed in only a few structured forms. This parallel program

ming style allows us to systematically cover all the synchronization needs in automatically

parallelized programs. Synchronization issues arise in task management, loop scheduling,

barriers and data dependence handling. A set of algorithms are presented which use generic

lock()/unlock() and increment() operations. We then identify how several hardware syn

chronization primitives can be used to implement these generic synchronization operations.

These synchronization primitives are test&set, fetch&add, exchange-byte, and lock/unlock

operations . Since these primitives differ in functionality, the algorithms for synchronization

in parallel programs are implemented with varying efficiency.

3

Section 3 describes the experimental procedure and the scope of our experiments. In

Section 4, the issue of loop scheduling overhead is addressed in the context of hardware

synchronization support. We present an anlytical model for the effect of loop scheduling

overhead and loop granularity on execution time. Furthermore we measure loop scheduling

overhead for different synchronization primitives with simulation.

Synchronization needs of a parallel application depend on the numerical algorithms and

the effectiveness of the parallelization process, therefore the performance implications of ar

chitectural synchronization support can only be quantified with experimentation. Section 5

addresses the issues of granularity and lock locality in real applications. Using programs

selected from the Perfect Club [6] benchmark set, we evaluate the impact of various architec

tural support on the performance of a bus-based shared-memory multiprocessor architecture

in Section 6. We conclude that architectural support for synchronization has a profound

impact on the performance of the benchmark programs.

Finally, the related work is presented in Section 7 and Section 8 includes the concluding

remarks.

2 Background

In this section, we first describe how parallelism is expressed in parallel FORTRAN pro

grams. We then analyze the synchronization needs in the execution of these programs.

Most importantly, we show how architectural support for synchronization can affect their

performance.

4

DOALL 30 J=1,J1
X(II1+J) * X(II1+J) * SCI
YCII1+J) = Y(II1+J) * SCI
z(i i i+j) = z(i i i+j) * sci

30 CONTINUE

Figure 1: A DO ALL loop

2.1 Parallel FORTRAN Programs

The application programs used in this study are selected from the Perfect Club benchmark set

[6]. The Perfect Club is a collection of numerical programs for benchmarking supercomput

ers. The programs were written in FORTRAN. For our experiments, they were parallelized

by the Cedar source-to-source parallelizer [11] which generates a parallel FORTRAN dialect,

Cedar FORTRAN. This process exploits parallelism at the loop level and loop level paral

lelization has been shown to capture most of the available parallelism for these programs [7].

Cedar FORTRAN has two major constructs to express loop level parallelism: DOALL and

DOACROSS loops. A DOALL loop is a parallel DO loop where there is no dependence be

tween the iterations. The iterations can be executed in parallel in arbitrary order. Figure 1

shows an example of a DOALL loop.

In a DOACROSS loop [9], there is a dependence relation across the iterations. A

DOACROSS loop has the restriction that iteration i can only depend on iterations j where

j < i. Because of this property, even a simple loop scheduling scheme can guarantee deadlock

free allocation of DOACROSS loop iterations to processors. In Cedar FORTRAN, depen

dences between loop iterations are enforced by Advance/Await synchronization statements

5

[2]. An example of a DO ACROSS loop is shown in Figure 2. The first argument of Advance

and Await statements is the name of the synchronization variable to be used. The second

argument of an Await statement is the data dependence distance in terms of iterations. In

this example, when iteration i is executing this Await statement, it is waiting for iteration

i — 3 to execute its Advance statement. The third argument of Await is used to enforce

sequential consistency in Cedar architecture [11]. The third argument implies that upon

the completion of synchronization, the value of X (I-3) should be read from shared memory.

Similarly, the second argument of Advance statement implies that writing the value X (I) to

shared memory should be completed before Advance statement is executed.

DOACROSS 40 1=4,IL

AWAIT(1, 3, X(I-3))
X(I) = Y(I) + X(I-3)
ADVANCE (1, X(I))

30 CONTINUE

Figure 2: A DOACROSS loop

2.2 Synchronization Needs

In executing parallel FORTRAN programs, the need for synchronization arises in four con

texts: task management, loop scheduling, barrier synchronization, and Advance/A wait. Task

management is used for starting the execution of a parallel loop on multiple processors. In

this study, task management is implemented by a global task queue. The processor which

6

put_task() {
new_loop->number_of_processors = 0 ;
new_loop->number_of-iterations = number of iterations in loop;
new_loop->barrier_counter = 0 ;
new_loop->iteration_counter * 0 ;
lock(task-queue) ;
insert_task_queue(new_loop) ;
task_queue.status * NOT-EMPTY ;
unlock (task-queue) ;

}

Figure 3: Producer algorithm for loop distribution

executes a DOALL or DOACROSS statement places the loop descriptor in the global task

queue. All idle processors receive this loop descriptor and start the execution of the loop

iterations. The accesses to the task queue by the processors are mutually exclusive. In our

implementation, we use a task queue lock to enforce mutual exclusion. Figures 3 and 4 show

the algorithms for the processor which executes the parallel DO statement and for the idle

processors respectively. The removal of the loop descriptor from the task queue is addressed

in the discussion of the barrier synchronization algorithm.

The implementation issues for the functions lock(), unlockO, and increment () with

different primitives is presented in the next section. By definition lo c k () and unlockO

operations are atomic. Whenever underlined in an algorithm, the increment () operation

is also atomic and can be implemented with a sequence of lock, read-modify-write, unlock

operations.

During the execution of a loop, each processor is assigned with different iterations. This

is called loop scheduling. We used the processor self-scheduling algorithm [18] to implement

7

read-taskO {
while (task_queue_status - EMPTY) ;
lockCtask-queue) ;
current-loop = read_task_queue_head() ;

/* Doesn't remove the loop from the queue */
increment (current_loop->number_of .processors) ;
unlock(task-queue) ;

}

Figure 4: Consumer algorithm for loop distribution

schedule_iteration() {
last-iteration - increment(current_loop->iteration-Counter) ;
if (last-iteration >= currentJLoop->number_of-iterations) {

barrier synchronization ;
}
else { ■

execute (last-iteration + 1)th iteration of loop;
}

}

Figure 5: Self scheduling algorithm for loop iterations

loop scheduling. In processor self-scheduling, each processor executes the self-scheduling code

before executing a parallel loop iteration. The self-scheduling algorithm shown in Figure 5 is

executed at the beginning of each loop iteration and it uses an atomic increment operation

on a shared counter. Unless the multiprocessor supports an atomic fetch&add operation, a

lock is required to enforce the mutually exclusive accesses to the shared counter.

After all iterations of a loop are executed, processors synchronize at a barrier. For barrier

synchronization, we used a non-blocking linear barrier algorithm which is implemented with

8

barrier_synchronization() {
if (current_loop->barrier_counter == 0) {

lockCtask-queue) ;
if (current.loop == read_task_queue_head()) {

delete_task_queue_bead() ;
if (task_queue_empty() == TRUE) task_queue_status = EMPTY ;

}
unlock (task-queue) ;

}
if (increment(current_loop->barrier-Counter) ==

current_loop->number_of_processors - 1) {
resume executing program from the end of this loop ;

}
else read_task() ;

Figure 6: Barrier synchronization algorithm

a shared counter (see Figure 6). After all iterations of a parallel loop have been executed,

each processor reads and increments the barrier counter associated with the loop. The

last processor to increment the counter completes the execution of the barrier. As in the

case of loop self-scheduling, unless the multiprocessor system supports an atomic fetch&add

operation, the mutually exclusive accesses to the shared counter are enforced by a lock.

In this algorithm, the first processor to enter the barrier removes the completed loop

from the task queue. Using this barrier synchronization algorithm, the processors entering

the barrier do not wait for the barrier exit signal and can start executing another parallel

loop whose descriptor is in the task queue. In contrast to the compile time scheduling of

“fuzzy barrier” [15], this algorithm allows dynamic scheduling of loops to the processors in

a barrier.

9

In its presented form, the last processor to enter the barrier executes the continuation of

the parallel loop — the code in the sequential FORTRAN program that is executed after all

iterations of the current loop are completed1.

This combination of task scheduling, iteration self scheduling and non-blocking barrier

synchronization algorithms allows deadlock free execution of nested parallel loops with the

restriction that DO ACROSS loops appear only at the deepest nesting level [18].

The overhead associated with task management and barrier synchronization depends on

the number of participating processors. When an P processor system is executing a parallel

loop with N iterations, this task can be distributed to at most P processors. Therefore, at

most P processors synchronize at a given barrier. Using processor self-scheduling, the N

iterations are distributed to processors one at a time.

For the last type of synchronization, the ADVANCE/AWAIT statements are implemented

by a vector for each synchronization point. In executing a DOACROSS loop, iteration i,

waiting for iteration j to reach synchronization point synch_pt, busy waits on location

V[synch_pt] [j] . Upon reaching point synch.pt, iteration j sets location V[synch_pt] [j] .

This implementation, as shown in Figure 7, uses regular memory read and write operations,

thus does not require atomic synchronization primitives. This implementation assumes a

coherent and sequentially consistent memory system. In the presence of a memory system

with weak ordering, an AWAIT statement can be executed only after the previous memory

write operations complete execution. For a multiprocessor with software controlled cahce

XBy using a semaphore, the processor which executed the corresponding DOALL/DOACROSS statement
can be made to wait for the barrier exit to execute the continuation of the loop.

10

initialization(syncli_pt) {
for (i = 1 ; i < number_of_iterations ; i++) V[synch_pt] [i] = 0 ;

}

advance (synch-pt) {
V[synch_pt] [iteration-number] ■ 1 ;

}

await (synch_pt, dependence-distance) {
if (iteration-number <= dependence-distance) returnQ ;
else while (V[synch_pt] [iteration-number - dependendence_distance] -- 0) ;

}

Figure 7: Algorithm for ADVANCE/AWAIT operations

coherency protocols, Cedar FORTRAN ADVANCE/AWAIT statements include the list of

variables whose values should be read from/written to shared memory before their execu

tion. The implementation details of these statements in multiprocessors with weakly ordered

memory models or software controlled cache coherency protocols are beyond the scope of

this paper.

In a multiprocessor which does not support an atomic fetch&add operation, lock accesses

play an important role in the execution of scheduling and barrier synchronization algorithms.

The next section discusses the implementation issues of lock accesses in the presence of

different synchronization primitives.

11

2.3 Locks and Hardware Synchronization Primitives

In executing numeric parallel programs, locks are frequently used in synchronization and

scheduling operations. In the task scheduling algorithm (See Figures 3 and 4), the use of

locks enforces mutually exclusive access of processors to the task queue. Locks are also used

to ensure correct modification of shared counters when an atomic fetch&add operation is not

supported by the architecture. Such shared counters are used both by loop scheduling (See

Figure 5) and barrier synchronization (See Figure 6) algorithms.

There are several algorithms for implementing lock accesses in cache coherent multipro

cessors using hardware synchronization primitives [3] [14]. These algortihms have different

dynamic characteristics. Consider the execution of a linear barrier, which is implemented by

a shared barrier counter. In the case where all processors arrive at the barrier at the same

time, a simple spin lock algorithm to enforce exclusive access to the counter will cause ex

cessive bus traffic. This would slow down the execution of the barrier. However, in the best

case, processors would arrive at the barrier at different times, causing no lock contention. In

this case, the latency of a lock operation is important for the overhead in entering a barrier.

An important tradeoff in lock algorithms is their performance under heavy load versus the

latency of lock operations. In Section 4 we analyze the implications of using different lock

algorithms on the performance of loop scheduling.

All existing multiprocessor architectures provide some hardware support for atomic syn

chronization operations. Functionally, any synchronization primitive can be used to satisfy

the high level synchronization needs of a parallel program. In practice, different primitives

12

may result in very different performance levels. For example, a queuing lock algorithm [3] [14]

can be implemented efficiently with an exchange-byte or a fetch&add primitive but a test&set

implementation is more complicated and may be inefficient.

The exchange-byte version of the queuing lock algorithm is shown in Figure 8. In this

implementation, the exchange-byte primitive is used to construct a logical queue of processors

which contend for a lock. The variable my_id is assumed to be set at the start of the program

such that it is value for the ¿th processor is i. The variable queue.ta il holds the I.D. of

the last processor which tried to acquire this lock. A processor which tries to access the

lock receives the I.D. of the processor which preceded it and writes its own I.D. into the

variable queue_tail. This algorithm constructs a queue of processors waiting for a lock

where each processor waits only on its predecessor for the release of the lock. By mapping

the elements of synchronization vector f la g s [] to non-conflicting cache lines, the memory

accesses in the while loop of this algorithm can be confined to individual caches of processors.

When a processor releases the lock, only the cache line read by its successor in the queue is

invalidated.

In implementing the queuing lock algorithm with the test&set primitive, because of the

functional limitations of this primitive, the queue of processors contending for a lock can

not be constructed with a single atomic operation. This introduces a critical section into

the implementation of queuing operation, which requires the use of an auxiliary lock. When

test&set is used to emulate the exchange-byte primitive in the algorithm in Figure 8, the

queuing operation becomes the sequence of operations

13

initializationO {
flags [0] = FREE ;
flags[1...P] * BUSY ;
queuejtail = 0 ;

}

lock() {
queueJ.ast = exchange-byte(my _id, queuejtail) ;
while (flags [queue JLast] == BUSY) ;
flags [queueJLast] * BUSY ;

}
unlock() {

flags [my_id] = FREE ;
}

Figure 8: Queuing lock algorithm for lock accesses

lock(auxilaryJock) ; read(queue.tail) ; write(myid) ; unlock(auxilary_lock).

Clearly, the lock operations used in the implementation of the queuing lock algorithm need

to be implemented with a different algorithm like test&test&set (see Figure 9).

In the synchronization algorithms presented in Section 2.2, most of the lock operations

are used to implement atomic increment operations. The critical section involved in an

atomic increment operation consists of one memory-read, one addition, and one memory-

write instruction, which is similar to the critical section used in emulating an exchange-byte

operation (one memory-read and one memory-write instruction). Therefore, the overhead

of constructing the lock queue in the test&set implementation of a queuing lock would be

similar to the overhead in using the test&test&set algorithm to implement lock operations for

accessing shared counters. Therefore, whenever the architecture supports only the test&set

14

lockO {
while(lock == BUSY II test&set(lock) == BUSY) ;

}

unlock() {
lock * CLEAR ;

}

Figure 9: Test&test&set algorithm for lock accesses

primitive, a plain test&test&set algorithm is used in this study to implement all lock opera

tions 2. For an architecture with the exchange-byte primitive, the queuing lock algorithm is

used for lock operations.

Due to the emphasis on atomic increment operations, supporting a fetch&add operation

in hardware can significantly decrease the need for lock accesses in the synchronization

algorithms. When fetch&add is the main synchronization primitive of a system, we used a

fetch&add implementation of test&test&set algorithm to support the lock/unlock operations

in task management. The performance implications of supporting a fetch&add primitive on

loop scheduling algorithm will be presented in Section 4.

The functionality and sophistication of hardware synchronization support increase the

cost of a system. In the Alliant FX/8, a separate synchronization bus and a Concurrency

Control Unit is provided [2] and which can improve parallel program performance by reducing

the and latency of lock accesses and the memory contention caused by them. Therefore in

“However, We would like to point out that in an environment where critical sections of algorithms in
volve many instructions and memory accesses, a iest&set implementation of a queuing lock may enhance
performance.

15

our analysis in Section 4, we also consider the case where a synchronization bus is used

to implement lock operations. Finally, the cost performance tradeoffs for synchronization

support can only be decided by evaluating the performance implications of different schemes

for real parallel applications. These experiments are presented in Section 6.

3 Experimental Method

To evaluate the performance of several parallel processor architectures, we used a high-level

trace driven simulator. In our approach, we used an abstract model of parallel program exe

cution which presents a simplified view of the application program while allowing a detailed

evaluation of synchronization support.

Execution of a sequential program on one of the processors of a shared memory MIMD

machine can be modeled by-partitioning the program execution time into two sections: the

execution that is local to the processor (execution of instructions in the CPU and memory

accesses to the local cache) and the time spent in handling memory requests to the shared

memory. For computationally intensive numeric applications where I/O and system calls ac

count for a small fraction of execution time, this simplistic model can be used to approximate

sequential program execution time.

Using a RISC based processor model where instruction execution times are defined by

the architecture, the local execution time of a program can be calculated directly from its

dynamic instruction count. On the other hand, the time to service the accesses to shared

memory depends not only on the data and instruction access patterns of the local processor

16

but also on the activities of other processors in the system.

Extending this model to parallel processing, a parallel FORTRAN program can be mod

eled as a collection of program segments, that we will call task-pieces, where each task-piece

is a sequential part of the application which executes on a single processor. The depen

dences among task-pieces are enforced by events. The two special events program_start and

program.end mark the beginning and the completion of a program. With this model, the

execution of a sequential program consists of a program-start event followed by a task-piece

which covers the whole of the program execution, and a program.end event. For parallel

FORTRAN programs, the additional events are: execution of DOALL and DOACROSS

statements, beginning and end of parallel loop iterations, barriers, and execution of Ad

vance/ Await statements.

A high level trace is the record of events that took place during execution and the in

formation about task-pieces executed between pairs of events. In this study, the high level

traces are collected by manual source code instrumentation of parallelized applications. In

the trace, each event is identified by its type (DOALL, iteration start, barrier etc.) and

applicable arguments (e.g., the synchronization point and the iteration number for an Await

event). The task pieces are represented by the dynamic count of read and write accesses to

shared data and the approximate number of dynamic instructions executed.

An event driven, bus based shared memory multiprocessor simulator is used to calculate

the program execution time from a high level trace. The simulator implements the task

management and synchronization algorithms for different synchronization primitives by using

17

Table 1: Relative timing parameters for simulations

component / operation cycle time
processor (base) 1
memory bus 1
memory module 3
test&set 6
exchange-byte 6
fetch&add 6
lock/unlock (synchronization bus) 1
fetch&add (synchronization bus) 1

the algorithms described in Section2. In our experiments, the atomic operations test&set,

exchange-byte and fetch&add are implemented in shared memory. The processor memory

interconnection is a decoupled access bus whose cycle time is equal to the processor cycle

time. We assumed that shared memory is 8-way interleaved where an access to a module

takes 3 bus cycles. Atomic operations that are implemented in memory take two memory

cycles (e.g. a test&set operation takes 6 bus cycles to execute in memory). When support of

a synchronization bus is evaluated, a single cycle access synchronization bus model is used.

A summary of the timings parameters is shown in Table 1.

In the simulation model, an invalidation based write-back cache coherence scheme is used.

The atomic operations implemented in shared memory are assumed to be write-through and

result in a single word bus transaction. This allows caching of synchronization variables (a

necessity for efficiency of spin-locks) with reduced bus traffic for atomic operations. The

event in a parallel program are simulated at the level of individual bus transactions, taking

into account the contention at the bus and memory module access conflicts.

18

Table 2: Assumptions for memory traffic

parameter value
memory/instruction ratio 0.20
shared data cache miss rate 0.80
non-shared data cache miss rate 0.05

The other component of shared memory traffic is the data needs of task-pieces. The

shared memory traffic contributed by the application is modelled based on the measured

instruction count and frequency of shared data accesses. Table 2 lists the assumptions used

to 'simulate the memory traffic for the task-pieces. We assume that 20% of the instructions

executed are memory references. In addition, we measured that 6-8% of all instructions

(approximately 35% of all memory references) are to shared data. We assume that references

to shared data cause the majority of cache misses (80% shared data cache miss rate and 5%

non-shared data cache miss rate)3.

The bus transactions due to the cache misses of the task pieces are combined with those

contributed by the servicing of events to simulate the overall system behavior. The simulation

is performed on a cycle-by-cycle basis.

4 Analysis of loop scheduling overhead

In the execution of a parallel loop, the effect of loop scheduling overhead on performance

depends on the number of processors, total number of iterations, and the size of an iteration.

3When we repeated the experiments by lowering the shared cache miss rate to 40%, the speedup figures
reported in Section 5 changed by less than 2%.

19

In this section we will first derive the expressions for speedup in executing parallel loops where

the loop iterations are large (coarse granularity) and where the loops iterations are small

(fine granularity). These expressions provide an insight to how loop scheduling overhead

influences loop execution time, and will be used in analysis of simulation results later in this

section.

Consider a DO ALL loop with N iterations where each iteration, without any parallel

processing overhead, takes ti time to execute. For a given synchronization primitive and

lock algorithm, let t3Ch be the time it takes for a processor to schedule an iteration. We will

look at the impact of scheduling overhead for two cases. For the first case we assume that

when a processor is scheduling an iteration, it is the only processor doing so. When the

accesses to the shared counter in loop scheduling algorithm are implemented with a lock,

tsch can be written as

tsch — tlock “ h tupdate tunlock

where tiock and tuniock are the time it takes to acquire and release a lock respectively, and

tupdate is the time for reading and incrementing the shared counter. The execution of several

iterations of a loop for this case is shown in Figure 10. In the figure, when Px completes the

execution of the first iteration, it schedules the next iteration without delay.

For any given P and tsch, the necessary condition for this case is

t i> (P - 1) x tsch,

and the time to execute the loop with P processors can be written as

tp = ((tsch + ti) x [TV/P]) + toh,

20

processors

Figure 10: Scheduling of iterations for Case 1

21

where tQh is the total task scheduling and barrier synchronization overhead per processor.

Since the task scheduling and barrier synchronization overhead depends only on the number

of processors, tQh, is constant for a given P.

The execution time of the sequential version of this loop, tseq, is ti x N which is not

equal to ti — single processor execution time of the parallel loop. We define speedup for P

processors as the ratio of tseq to tp. The speedup for a DO ALL loop is

speedup = 'seq

tp
UN

((tSch + U) X \N/P]) + t0h

bc/i+fy _L Pxtghti ' Nxti

for N P

speedup P x
tsch “b tl

using t i> (P - 1) x t3ch

speedup > P x —

> P x

p-T + il
P - 1

> P - 1

Therefore, when ti > (P — 1) x tsch, the speedup is linear with number of processors hence

the execution time depends only on P and the total amount of work in the loop, N x t\.

22

Now let us consider the case where a processor completing the execution of an iteration

always has to wait to schedule the next iteration because of another processor scheduling an

iteration at that time. We will call the scheduling overhead for this case t'sch. This scenario

is illustrated in Figure 11. In this figure after the completion of the first iteration, Pi waits

completion of the scheduling operations by other processors before scheduling an iteration.

In general, t'3ch is different from t3Ch, because of the contention caused by several processors

trying to schedule an iteration. The necessary condition for this case is

i, < (P - 1) x t’ich,

and the loop scheduling overhead forms the critical path in determining the loop execution

time. When loop scheduling becomes the bottleneck, execution time is:

tp — N x t'sch + ti,

for N P

t p ^ N x t'sch.

When the loop scheduling algorithm is implemented with lock operations, scheduling an

iteration involves transferring the ownership of the lock from one processor to the next, and

reading and incrementing the shared counter. Therefore

lsch — llock—transfer T tupdate-

In the remainder of this section we will first look at how loop execution time varies

with loop granularity. Since t'sch directly influences the execution time of a loop, we will then

23

processors

Figure 11: Scheduling of iterations for Case 2

24

measure this loop scheduling overhead for different hardware synchronization primitives using

our simulation tool.

4.1 Granularity effects

The analysis above shows the existence of two different types of behavior of execution time

for a parallel loop. Given a multiprocessor system, the parameters P, tsch and t'sch do not

change from one loop to another. Keeping these parameters constant, the granularity of a

loop, determines whether scheduling overhead will be significant in overall execution time

or not.

The architectural support for synchronization primitives influences the execution time of

a parallel loop in two ways. On one hand, different values of t'sch for different primitives result

in different execution time when the loop iterations are small (i.e., fine granularity loops).

On the other hand tsch determines whether a loop is of fine or coarse granularityi In this

section we present the simulation results on how loop execution time varies across different

implementations of the loop scheduling algorithm. Since t'sch determines the execution time

of a fine granularity loops, we quantify how t'3ch changes with synchronization primitives

used, and the number of processors in the system. In our simulations, the memory access

characteristics of the loops were modelled as presented in Table 2.

Figures 12-15 show the simulation results for execution time vs. the size of an iteration in

a DOALL loop. The loop sizes are in terms of the number of instructions, and the execution

time in terms of CPU cycles. In these simulations, the total amount of instructions in the

25

140000

Figure 12: Execution time vs. granularity for test&set primitive

loop is kept constant while changing the number of instructions in an iteration. It can be

seen in these figures that when loop iterations are very large, the execution time of a loop

on a given number of processors is that same for diiferent synchronization primitives. There

is also a monotonie increase in execution time as loop size gets smaller in all cases.

Figure 12 shows that for 16 processors and using test&set primitive, there is a sharp

increase in execution time when iteration size is less than 550 instructions. This number

is around 300 for exchange-byte, and 200 for a synchronization bus, see Figures 13 and 14.

As shown in Figure 15, using the fetch&add primitive, the iteration size where execution

time starts increasing is around 100 instructions. We observed that in the FORTRAN

programs we used in our experiments the iteration sizes of the parallel loops vary from 20 to

1000 instructions. This shows that the choice of a synchronization primitive will influence

the perrformance of some loops. The distribution of instructions in the dynamic execution

26

Figure 13: Execution time vs. granularity for exchange-byte primitive

Figure 14: Execution time vs. granularity for synchronization bus

27

Figure 15: Execution time vs. granularity for fetch&add primitive

traces with respect to loop granularity for the application programs is presented in Section 5.

4.2 Scheduling overhead for fine grain loops

For fine grain loops, the loop execution time Tp is approximated by N x t'sch. The change of

execution time with respect to the number of iterations of a loop is shown in Figures 16-19.

The synthetic loops used in these simulations has a total of 220000 instructions. Therefore,

the region where iteration size < 50 instructions corresponds to N > 4400 in these figures.

The common observation from these figures is that when loop iterations are sufficiently

small (N is sufficiently large), the execution time increases linearly with N. Also, when

extrapolated, Tp vs. N lines go through the origin which validates the linear model

TP = N x t'sch

for execution time.

28

Figure 16: Execution time vs. number of iterations for test&set primitive

Figure 17: Execution time vs. number of iterations for exchange-byte primitive

29

Figure 18: Execution time vs. number of iterations for synchronization bus

Figure 19: Execution time vs. number of iterations for fetch&add primitive

30

Figure 20 shows how scheduling overhead per iteration, t'sch, changes for the different

synchronization primitives as the number of processors increases.

Using the test&set primitive, the scheduling overhead increases with number of pro

cessors. For the exchange-byte and fetch&add primitives and the synchronization bus, the

scheduling overhead scales well. Furthermore t’sch shows great variance across primitives. For

the 16 processor case the average number of cycles to schedule a loop iteration are 98, 31,

17 and 7 cycles for test&set, exchange-byte, synchronization bus, and fetch&add primitives

respectively.

The synchronization bus model used in these simulations has single cycle access time

for free locks and single cycle lock transfer time. Therefore the synchronization bus data

shows the highest performance achievable by hardware support for lock accesses alone. In

Section 6, the performance figures for a synchronization bus which also supports single cycle

fetch&add operation are given. Such a synchronization bus is capable of scheduling a loop

iteration every clock cycle. Therefore its overall performance can be expected to be better

than all the primitives analysed in this section.

5 Synchronization Characteristics of Applications

5.1 Loop granularity of application programs

The two applications we used in this study are BDNA and FL052. BDNA is a molecular dy

namics simulator for biomolecules in water and it uses ordinary differential equation solvers.

31

Figure 20: Loop scheduling overhead vs. number of processors

FL052 is a fluid dynamics program which uses multigrid schemes and ordinary differential

equation solvers. Both programs are vectorizable.

These programs have different parallelism structures and loop granularity. In the BDNA

program, most of the parallel loops are not nested and the iterations are 200-1000 instructions

long. Two thirds of all parallel loops in the trace are DOACROSS loops. In the FL052

program, most of the parallelism exists in the form of nested DOALL loops. The size of the

innermost loop iterations varies between 20-250 instructions.

The cumulative distribution of instructions executed with respect to the iteration size

of parallel loops is shown in Figure 21 for both programs. Because the analysis of loop

scheduling showed that execution of loops with iterations larger than 500 instructions do

not suffer from scheduling overhead, only the loops with iterations less than 500 instructions

are of concern. The BDNA curve in Figure 21 shows that for this program only 17% of all

32

Figure 21: Cumulative distribution of dynamic instructions for loop iteration size

instructions were executed in loops with iteration size less than 500 instructions. On the

other hand, more than half of the total computation in FL052 program is done in loops

where iterations have less than 100 instructions. From the analysis and simulation results in

the previous section, we can expect the performance of FL052 program be limited by loop

scheduling overhead.

5.2 Locality of lock accesses in synchronization algorithms

In our simulations, we observed that both programs exhibit very low locality for lock accesses.

When a processor acquires a lock, we consider it a lock hit if the processor which released

the lock last is the same processor. Otherwise, acquiring a lock is said to result in a lock

miss. The measured lock hit rate for the two programs with 4 or more processors was less

than 0.2%. Such a low value of lock locality can be explained by the dynamic behavior of

33

scheduling and synchronization algorithms.

For each parallel loop, every processor acquires the task queue lock and barrier lock only

once. This results in a round-robin style accesses to these locks. For the same parallel loop,

the loop counter lock used in the loop self-scheduling algorithm is accessed multiple times

by each processor. However, a lock hit can occur only when, the last processor which got

an iteration number finishes execution of that iteration before the executions of previously

scheduled iterations complete. Due to the very low variance of iteration size among the

iterations of a parallel loop in these programs, this scenario is unlikely.

In the experiments, because of the low lock hit rate, the atomic memory operations

are implemented in shared memory. An implementation of atomic operations in caches or

processors would result in excessive invalidation traffic, and would also increase the latency

of atomic operations.

6 Experimental Results

In this section we present the experimental results for two programs from the Perfect Club

benchmark set: BDNA and FL052. Speedup of parallel programs with respect to the ex

ecution time of the sequential version of the programs is used as the performance metric.

There is no parallel processing overhead in the sequential version. In Section 6.1 the is

sues of lock contention and lock access latency are discussed. For this analysis we use the

test&set atomic operation to implement the test&test&set algorithm and the exchange-byte

atomic operation to implement the queuing lock algorithm. In Section 6.2, we present the

34

10

8

6
Speedup

4

2

0
2 4 6 8 10 12 14 16

Number of Processors

Figure 22: Lock latency and contention effects on BDNA program

performance implications of more sophisticated synchronization support.

6.1 Lock contention and latency

The first issue we focus on is lock contention. In the first set of simulations, we used the

test&test&set algorithm to implement lock accesses. The speedup obtained from the two

programs are shown in Figure 22 and Figure 23. In the BDNA program (Figure 22), using

the test&test&set algorithm, the peak speedup of 5.75 is reached with 12 processors. In

FL052 (Figure 23), a speedup of 1.14 is obtained with 4 processors. Increasing the number

of processors beyond 4 makes the performance worse.

The speedup for the single processor case is 0.86 for BDNA and 0.54 for FL052. This

data shows that, running on a single processor, FL052 spends almost half of its execution

time in scheduling and synchronization algorithms.

35

10

8

6
Speedup

4

2 V]
<

0
2 4 6 8 10 12 14 16

Number of Processors

Figure 23: Lock latency and contention effects on FL052 program

In the second set of experiments, we used a queuing lock algorithm for lock accesses to

observe the effect of decreasing lock contention. As shown in Figures 22 and 23, the queuing

lock significantly increases the performance of both programs when the number of processors

is large. With 16 processors, the speedup improves by 50% in BDNA and 200% in FL052.

These results show that controlling lock contention with algorithms such as queuing lock

does increase program performance.

The next issue we looked at was the importance of lock access latency. The effect of

doubling the lock access latency in a queuing lock is shown in Figures 22 and 23 (slow

queuing lock). For the 16 processor case, doubling the lock access latency decreases the

speed up by 10% for BDNA and by 50% for FL052.

36

10

8

6
Speedup

4

2

0
2 4 6 8 10 12 14 16

Number of Processors

Figure 24: Performance of BDNA program with the use of synchronization bus and
fetch&add primitive

6.2 Efficient architectural support for synchronization

In the previous section, we pointed out the importance of efficient lock operations. The next

issue is the effect of using a synchronization bus for lock operations on program performance.

A synchronization bus allows execution of synchronization operations with minimal latency

and isolates synchronization traffic from memory traffic.

As shown in Figure 22, the speedup obtained from BDNA using a synchronization bus is

8.25 for the 16 processor case. The improvement in speedup over the queuing lock case (see

Figure 22) ranges from 2% to 7% when the number of processors changes from 8 to 16. For

the FL052 program, from Figure 23 it can be seen that using a synchronization bus has a

dramatic effect on program execution time. The speedup obtained for 8 or more processors

is 2.5 which is 60% higher than the speedup in the case of a queuing lock.

37

Figure 25: Performance of FL052 program with the use of synchronization bus and
fetch&add primitive

As discussed in Section 2.3, a significant number of the lock accesses required to increment

the shared counters can be eliminated with the support of a fetch&add primitive in hardware.

In the next experiment, the fetch&add operation (implemented in shared memory) was

used for incrementing shared counters in loop self-scheduling and barrier synchronization

algorithms. The results of these simulations are shown in Figures 24 and 25 for programs

BDNA and FL052 respectively.

In the BDNA program, the speedup obtained by using a fetch&add primitive implemented

in hardware is the same as the speedup obtained by using a synchronization bus for lock

accesses. In FL052, a similar behavior is observed. Therefore, the performance benefits

of a dedicated synchronization bus for lock accesses can be achieved at a lower cost by

implementing an atomic fetch&operation in shared memory.

Finally, we considered the case where a synchronization bus is used to implement both

38

lock accesses and fetch&add operation. As shown in Figure 24, this resulted in a marginal

increase in performance for the BDNA program. However, for the synchronization bound

program FL052, Figure 25 shows that the performance increase is in excess of 100%, reaching

5.3 for 16 processors.

7 Related Work

There has been considerable attention paid to the synchronization problem for multiproces

sors. Brooks proposed the Butterfly Barrier [16] which does not have the hot spots observed

in linear barriers. Gupta’s “Fuzzy Barrier” improves processor utilization by allowing proces

sors to do useful work in a barrier as a result of compile time analysis. The barrier algorithm

we presented overlaps barrier execution with useful work by exploiting parallelism in nested

parallel loops. An analytical analysis of different barrier synchronization algorithms were

made by Arenstrof and Jordan [4]. Beckmann and Polychronopoulos studied the effect of

barrier synchronization and scheduling overhead and presented a similar analytical formula

tion for execution time characterization for loop scheduling bound execution [5]. They used

synthetic parallel loops as workload in their experiments. Polychronopoulos also developed

guided self-scheduling scheme for loop scheduling [17]. In the future, we plan to evaluate per

formance implications of alternative loop scheduling and barrier synchronization algorithms

for parallel scientific applications.

Finally, another experimental study on synchronization in real parallel applications was

done previously by Davis and Hennesey [10]. Their work concentrated on how program

39

characteristics change synchronization behavior. For their class of applications, they con

cluded that implementation of synchronization operations have little effect on program per

formance.

8 Concluding Remarks

In this paper we demonstrated the feasibility of concentrating on one aspect of parallel pro

gram execution within the perspective of the overall program performance. We analyzed

the performance implications of synchronization support for FORTRAN programs paral

lelized by a state-of-the-art compiler. In these programs, parallelism was exploited at loop

level where the granularity of loops showed large variance across applications. We addressed

the task management and synchronization issues that arise in executing these programs at

different levels of abstraction. We presented dynamic task management and barrier synchro

nization algorithms for efficient execution of programs with nested parallel loops. The issues

in implementation of the atomic lock access and counter increment operations that are used

in loop self-scheduling, task management and barrier synchronization were addressed at the

level of hardware synchronization primitives.

In the execution of parallel FORTRAN programs, we focused on loop scheduling overhead

as the potential cause of performance degradation. Loop scheduling overhead was shown to

determine execution time for fine granularity loops and to vary significantly with the archi

tectural synchronization support. The synchronization algorithms used in executing these

programs depend heavily on shared counters. In accessing shared counters, we concluded

40

that lock algorithms which reduce bus contention do enhance performance. For the class

of applications we looked at, due to the importance placed on shared counters, a hardware

implementation of a fetch&add primitive in shared memory can be as effective as a special

synchronization bus which handles lock accesses.

We observed that in the execution of parallel FORTRAN programs, there is a very

low locality of lock accesses. This implies that implementing atomic operations in private

caches or in processors rather than in shared memory will result in loss of performance and

additional memory traffic.

The simulation results with real program traces showed that while for an application

with fine granularity loops the execution time showed large variance across synchronization

primitives, performance of an application with coarse granularity is less sensitive to the

particulars of hardware synchronization support. The simulation results with real parallel

application traces showed that the choice of the hardware synchronization primitive in a

shared-memory multiprocessor does have a significant effect on overall program performance.

Our assumptions on system architecture were targeted to increase the throughput of

synchronization operations by implementing them in shared memory, and to decrease the

interaction between regular memory operations and synchronization primitives by using split

phase transactions. On architectures with longer memory access latency or where atomic

operations consume more shared memory bus bandwith, we expect to see a more severe

performance degredation due to synchronization overhead.

41

Acknowledgements

This research has been supported by the, Joint Services Engineering Programs (JSEP) under

Contract N00014-90-J-1270, National Science Foundation (NSF) under Grant MIP-8809478,

Dr. Lee Hoevel at NCR, the AMD 29K Advanced Processor Development Division, the

National Aeronautics and Space Administration (NASA) under Contract NASA NAG 1-613

in cooperation with the Illinois Computer laboratory for Aerospace Systems and Software

(ICLASS).

42

References

[1] Alliant Computer Systems Corp. Alliant FX/Series Architecture Manual, 1986.

[2] T. E. Anderson. The performance of spin lock alternatives for shared-memory multi

processors. Transactions on Parallel and Distributed Systems, 1, No. 1:6-16, 1990.

[3] N. S. Arenstorf and H. F. Jordan. Comparing barrier algorithms. Parallel Computing,

No. 12:157-170, 1989.

[4] Balance(tm) 8000 Guide to Parallel Programming, 1003-40425 rev. a edition, July 1985.

[5] C. J. Beckmann and C. D. Polychronopoulos. The effect of barrier synchronization and

scheduling overhead on parallel loops. Proceedings of the 1989 International Conference

on Parallel Processing, 2:200-204.

[6] M. Berry and et al. The perfect club benchmarks: Effective performance evaluation

of supercomputers. Technical Report CSRD Rpt. No. 827, Center for Supercomputing

Research and Development, University of Illinois, 1989.

[7] D. Chen, H. Su, and P. Yew. The impact of synchronization and granularity on parallel

systems. Technical Report CSRD Rpt. No. 942, Center for Supercomputing Research

and Development, University of Illinois, 1989.

[8] Cray Research Inc. CRAY XM-P Multitasking Programmer’s Reference Manual, publi

cation sr-0222 edition, 1987.

43

[9] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of the

International Conference on Parallel Processing, pages 836-845, 1986.

[10] H. Davis and J. Hennessy. Characterizing the synchronization behavior of parallel

programs. Proceedings of PPEALS, pages 198-211, 1988.

[11] P. A. Emrath, D. A. Padua, and P. Yew. Cedar architecture and its software. Proceedings

of Twentysecond Hawaii International Conference on System Sciences, 1:306-315, 1989.

[12] Encore. Multimax Technical Summary, January 1989.

[13] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchronization primitives for

large-scale cache-coherent multiprocessors. Proceedings of ASPLOS, pages 64-75, 1989.

[14] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multipro

cessors. Computer, pages 60-69, June 1990.

[15] R. Gupta. The fuzzy barrier: A mechanism for high speed synchronization of processors.

Proceedings of ASPLOS, pages 54-63, 1989.

[16] E. D. Brooks III. The butterfly barrier. International Journal of Parallel Programming,

15, No. 4:295-307, 1986.

[17] C. D. Polychronopoulos. The impact of run-time overhead on usable parallelism. Pro

ceedings of the 1988 International Conference on Parallel Processing, pages 108-112,

August 1988.

44

[18] P.Tang and P. Yew. Processor self-scheduling for multiple-nested parallel loops. In

Proceedings of International Conference on Parallel Processing, pages 528-534, 1986.

[19] G. S. Sohi, J. E. Smith, and J. R. Goodman. Restricted fetch&;</> operations for parallel

processing. Proceedings of the 16th International Symposium on Computer Architecture,

pages 410-416, 1989.

[20] C. Zhu and P. Yew. A scheme to enforce data dependence on large multiprocessor

systems. Transactions on Software Engineering, SE-13, No. 6:726-739, June 1987.

45

