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I. Introduction

The basic function of all present day MPI radar is to examine the 

signal returned to the radar from a target or group of targets and to 

determine whether any doppler frequencies are present in that signal.

Among the several devices which may be used to accomplish this end* are 

various types of delay and subtraction systems, which are rather well 

known both in practical details and in theory. Somewhat less widely 

known are MTI systems of the tuned filter variety. In this report we 

shall concern ourselves mainly with certain theoretical details of one 

particular system of this class, —  the Sinufly computer.

The results reported here are somewhat mathematical in nature, and 

are not essentially bound to the Sinufly system. Rather, they are 

answers to questions motivated by a study of Sinufly. They are also 

answers to questions which could conceivably arise in other applications and 

it is therefore hoped that our presentation has been cast in a form 

which will not obscure the broader implications of our results. Never

theless, these results do answer questions about sinufly, and since 

Sinufly is our principal interest here, the discussion will be centered

about it.
A simplified description of the manner in which Sinufly works is 

the following. Video returns from a number of transmitted pulses are 

stored, as charge modulation, in successive traces on a barrier grid 

storage tube, each trace being displaced slightly from its predecessor, 

so as to form a B-Scope type raster on the storage surface. The wave 

packet which results when each range element of the storage tube is read 

out in a direction perpendicular to the direction of writing, is then

C O N F I D E N T I A L
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fed into a balanced modulator -which multiplies its amplitude by a certain 

weighting function» A spectral analysis of the weighted wave packet is 

then made by means of a tuned filter bank»
The spectral analysis is performed in the following way: The

weighted wave packet of length, say T , is fed into the filter bank.

At time Tq the packet ends and the filter oscillations begin to decay.

At time T > T the output amplitude of each filter is sampled in order 
r o

to determine to what extent the basic frequency, to which that filter 

is tuned, was present in the -wave packet. For practical reasons, the 

sample time T is very soon after T .
Unfortunately it is found that various disturbances modify the 

wave packet which represents the radar return; disturbances such as 

thermal noise and storage tube noise for example. In addition the 

radar return itself has an undesired component which results from 

clutter. Both the noise disturbances and the clutter impart a random 

character to the output amplitude of the Sinufly filter. Noise dis

turbances are by nature random, and clutter is a function of terrain 

conditions which vary in a somewhat random manner. This means that any 

precise analysis of our system must be to some extent statistical.

The statistical part of the analysis given in this report consists 

in the use of some elementary probability theory. The adjective 

"elementary" is meant to express the fact that no conditional proba

bilities are used, and no powerful limit theorems are invoked.

In section II a theorem is proved which shows that all of our 

analysis can be concentrated, essentially, on examining the output 

spectrum of the storage tube.

*̂For a more detailed description see Refs. 1 and 2.

C O N F I D E N T I A L
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Sections IV, V and VI deal with the problems of noise, signals in 

additive white noise, and signals in multiplicative noise, respectively. 

In these sections the probability density functions for the filter 

output amplitude are developed using the general forms for these density 

functions which are derived in Appendix A. The purpose of these sections 

is primarily to illustrate the method, which is in itself quite simple. 

Despite the conceptual simplicity however, some of the computations 

yield rather complex formuli. In fact one of the main features of this 

report is to show, by example, that certain types of analysis are 

impractical.
In section VII we introduce a notion of "enhancement" which, while 

it is not as meaningful or useful a criterion for the Sinufly system as 

detection probability, is still of value and is much more amenable to 

calculation.
The authors of this report have been assisted by every member of 

the Sinufly group at CSL, but they feel that some names must be mentioned 

explicitly. We have profited much from informative discussions with 

J. Robe, R. Swallow and W. Unruh; and, outside the Sinufly group, from 

discussions with D. Cooper, A. Nordsieck and J. Ruina. The numerical 

results of R. Swallow were an indispensable guide. The computations 

for graphs were done by Shirley Bailey and M. Martin.

C O N F I D E N T I A L
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II. A Method of Filtering and Detecting Signals 

in Finite Length Video Pulse Packets, and a 

Theorem on Packet Weighting and Sampling«

In this section we shall prove a simple theorem which will mater

ially simplify our subsequent work of determing certain probability 

distributions. Let us first give a description of the problem 

considered.
We are given a linear filter, which we may consider as described 

by the differential operator

L = —  + 2X —  + u> 2 . 
dt2 dt 0

1Also we are given a certain stochastic process of finite duration, 

which in our interpretation is some combination of signal and noise, 

let us denote it by f(t) and choose our time origin so that f(t) = 0 

for t <( 0 and f(t) = 0 for t ^  T . We then weight this process by a 

factor e”**, and pass the weighted process through our filter. Now let 

F(t) be the output of our filter resulting from the input f(t) e~Kt, 

i.e., F(t) is the unique function satisfying the identities

L F(t) = f(t) e"Xt, F(t) = 0 for t < 0 .  (2.1)

Of course, F(t) is also a stochastic process. Next let us "sample”
F(t) at time T T , i.e., we consider F(T). The amplitude R of this

o
sample F(t ) is a random variable“ (as is F(t ) itself). Our main

t
problem in this chapter is to determine the probability distribution

a stochastic process we mean merely an indexed family cf 

random variables. The indexing parameter is usually denoted by t and 

interpreted as time. (Ref. k, p. ^6)

^Ref. k, p. 5
C O N F I D E N T I A L
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* \

function for R. (Actually what we shall do is to determine the density 

function for this probability distribution.)

Our analysis can be materially simplified by utilizing a theorem 

which we can infer from the following discussion. If one solves the 

differential equation (2.1) he finds that the function F(t) can be 

represented in the form'*'

sin u)s f(s)ds )cos wt + ( ' cos ws f(s)ds)sin wt) . (2.2)

s ^  T , and if we restrict t so that t ^  T , we see that we can write s o7 o
this solution in the more symmetric form 

F(t) =

0) sin ws f(s)ds)cos wt + ( / cos ws f(s)ds)sin wt> . (2.3)
-oo / V  1 -00

If we write F(t) in the form

F(t) = X(t) cos wfc + Y(t) sin wt,

(which is possible for any function), the amplitude of F(t), for t )> Tq,
t ,.is given by the expression ^

fx2(t) + Y2(t )]2 ,

where we are assuming that for t >  T , X(t) and Y(t) are functions of 

slow variation.

■^This solution is readily found by any of the standard methods of 

solving second order linear differential equations with constant 

coefficients.

C O N F I D E N T I A L
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Before proceeding further, we should recall that F(t) is, in fact, 

a function of X and w^ as well as of t • If we hold X fixed, we may 

consider F(t) as a function F(w^ t) of t and w since the defining 

equation fo r w (p. 9) is w2 = w q2 - X2 . All of this may be seen from 

either of the integral representations (2 .2) or (2.3) given above. 

Henceforth in our discussion, X is to be considered a constant.

Now let us fix t = T )> T , and introduce the notation
1

R(w) = Qc2(T) + Y ^ T )]2 (2.10

for the amplitude of F(T)(remembering that F(T) is a function of w). 

Our representation (2.3) shows that

sin ws f(s)ds

(2.5)

cos ws f(s)ds

These two integrals suggest a Fourier analysis of our function f(t) 

which we can make as follows. We write the integrals as imaginary and 

real parts of a function
P  OO P  00

2jt S(w) = cos ws f(s)ds - i / sin ws f(s)ds.
J  -00 J  -00

. -iws ,Writing cos ws - i sin ws = e , we have

S(u) =
00

1 / ,-iws
2* I

1 -00

e”lws f(s) ds•

The complex valued function S(w) is called the spectrum of f(s).

C O N F I D E N T I A L
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Actually we are interested in the modulus (absolute value) of S(w),

and this is given by 1
2ao

cos ms f(s)' +
2

(j:
oo

sin tas f(s) . (2.6)

If we now compare (2.6) with (2A) and (2.5) we see that

Let us now collect our results in the succinct form of a theorem. 

In the statement of this theorem we shall retain precisely the notation 

introduced in our discussion.

Theorem: Let L, f(t), and F(t) be as introduced above i. e.,

function in (2 .1 ) becomes obvious upon carrying out the details of its 

solution. It is just this weighting factor which is largely responsible 

for the simple form of the conclusion of our theorem. The condition on 

the sample time (t = T ^  T ) must be specified in order for (2.5) to 

follow from (2.2) as a valid representation of F(t). It is this 

representation of our solution (i.e. (2.5)) which can be directly 

related to a Fourier integral.
As mentioned earlier, R(w ) is (for fixed u)) a random variable, and 

our immediate problem is to determine its probability density function. 

The theorem established above allows us to do this directly, from the

L F(t) = f(t) e~Xt, etc., let R(gj) be the amplitude of F(T) where T Tq, 

and let S(io) be the spectrum of f(t), then we have the relation

The importance of the weighting factor e ** as part of the driving

C O N F I D E N T I A L
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density function p (s) for(*} S(w) , by a simple substitution. Thus our

real problem is now seen to consist in the determination of the density

function for S(w) . We shall attempt to illustrate the procedures 

and difficulties involved in this by a number of examples in the 

following sections.

C O N F I D E N T I A L
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HI. Spectra of a Class of Functions Associated with Signals

Let 7 (t) denote the "rectangle function" defined by a

The spectrum of 7 (t) is, therefore, a

(3.1)

The functions 7 (t) play a considerable role in our further -work, a
but, it can be shown that the final results do not depend on a, but only

on T . We could thus work with any particular 7Q(t) we chose in order o a
to obtain our ultimate results. As the discerning reader will note 

there is a definite computational advantage in choosing a = 0, and we

shall henceforth work with 7(t) = 7 (t).
*1Now let us consider the spectrum of 7(t) e ^ . Proceeding as 

above, we find the spectrum to be

C O N F I D E N T I A L
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We note that in particular,
toT

Sin "vy-
S0(“) = Ho(u) = H(u) = I — (3.2)

that is to say, we may consider H(w) as defined by (3*l).

By using the spectra S (u>) properly, we may write down the spectraM’
of 7(t) cos pt and ?(t) sin pt. Let us denote their spectra by U^(w) 

and V̂ (c*)) respectively. Then we have

U..(u) = i

V W) = 2Î

S (u) + S (u)P -P

s^(w) - S_^(u>)

or more explicitly
T

1 . sin(w - p)-^ sin(w + p)-̂ -
V u) = s  { T “ -'ïïl— + ( » W J —

T T
sin(u) - p)-~ sin(o) + p)-̂ ~

V “ ) = s r S ~ ü r : T ü (u + n)

(5 -3 )

(3 A )

This method of obtaining spectra from linear combinations of the 

S (w) allows us to write down fairly general cases quite easily. Thepv
following examples, though interesting and worth noting at this point, 

will not be used in the subsequent sections.

For the first case, suppose that
- itn

g(t)= £
k=l

iHjt
°k e - ’

where ui, __, u is any sequence (finite, of length n) of real numbers,n "
and the c^ are constant (real or complex). Then the spectrum Sg(w)

C O N F I D E N T I A L
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of 7(t) g(t) is given by
n

S (w) = ) c. S (u>). S L j * hrk=l

The next case is quite general. Let G(t) be any function which
T

is of bounded variation for ^  -*•. Then G(t) possesses a Fourier 
T

^  and which repre-
T<f_2V  2

series which is convergent in the interval

sents G(t) (almost everywhere) in that interval. Thus, for

.2jrkt oo —

o<t> ■ i ck e
k=-oo

where

-l-
G(t) e

,2irkt
T

dt.

(if G(t) is real, then c ^ = cv, the complex conjugate of cv .) The

spectrum of ?(t) G(t)'is therefore

oo

SG(“ ) = Z  Ck (toK
k=-oo

■ W .  5, p. 175

C O H F I D E N T I A L
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IV. Noise through a Filter

First let us discuss the notion of a stationary (wide sense) 

stochastic process.1 The adjective stationary (wide sense) means that 

the expectations E^n(s) and E | n(s) n(s + t) are independent of s, 

where n(t) is our process. We shall henceforth assume that E ^ n ( t ) ^  = 0.

Now let us perform a purely formal analysis of n(t). We repre

sent n(t) by
oo

(*.l)

then

N(u) =

00

e"iwt at. (^.2)

-oo

At this point it becomes convenient to calculate the covariance function 

E^N(wi) N(u>2) }  for subsequent use .2 Using the facts that n(t) is

real, and that
oo

"(“) = s r lu(s+t) n(s+t) at,
-00

we find that 

e | n (w i ) N(w 2) ^  =

00 / 00

E {n(s) n( s+t )j> e_1“lS ei“a(s+t) as at
-00 / -oo

"Stef, b-j pp. 8 and 95

2N(u)2) denotes the complex conjugate of N(oj2) •

C O N F I D E N T I A L
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Since n(t) is stationary we may write

E < n(s) n(s+t) > = R(t) = lim ~  / n(s) n(s+t) ds. 
I- J 0 too / q

(^•3)

R(t) is called the correlation function of the process, and we 

should emphasize that R(t) is a function, not a process.1 The Fourier 

transform of R(t) is frequently referred to as the power spectrum of the
ui

process n(t). Let
CD

W(U) = £ elart R(t) dt (b.k)

-CO

be the power spectrum, then we have

oo

2a 'E «jll(wi) h (u 2 ) j =
i(w 2 - 0) l)s

w( (i)2) ds

ei(W2-Ul)B is = W(w2 ) 6 ( w2- u)i ) , (^-»5 )

where &(w2-u)i) is a Dirac 6-function.
We shall now interpret our process n(t) as noise. When we speak 

of white noise, we refer to a stationary Gaussian process whose power 

spectrum is constant. Let W(w) = c2 denote this constant in our case, 

From (^.3) and it follows that, for white noise, we have

E-jn(s) n(s+t)j> = / e‘ia)t W(w) do) = a2 &(t),
. / -oo /

■̂ Ref. k, pp. hG and 71 

^Ref. 3, pp. 305 and 306

^This assumption is not a necessary one and it will be dropped in 
section seven.

C O N F I D E N T I A L
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or
^n(tx) n(t2)| = o2 8(t2 - ti).E

This means the noise is totally uncorrelated.

A few words might he in order at this point concerning the occur

rence of 8-functions and the corresponding infinite variances. This 

situation arises from representing a physically impossible situation 

by a mathematically non-existent process, and is further aggravated by 

using a nonexistent integral to obtain an equally nonexistent trans

form. This is the formal analysis of (^.l) and (^.2). Explicitly, we 

mean to say that n(t), as a nontrivial, totally uncorrelated stochastic 

process is nonexistent, and N(w) is also a nonexistent process. This 

lack of existence does not, however, void them from being useful, any 

more than the 8-function is obstructed from its usefulness by its non

existence. In fact, n(t) and N((*>) are useful in the same way and for 

the sane reasons as the 5-funetion— namely, to shorten and facilitate 

computation.
Of course, the use of the nonexistent n(t) and N(w) could be

avoided by a careful formulation of our noise process as arising from
1 2a process with orthogonal increments. 3 Since there would be little

practical gain from this, we shall make free use of 8-functions.

Next we wish to investigate noise f(t) which is given by f(t) =
T T

7(t) n(t), i.e., the noise exists only over the time from — to -75-. 

Thus it follows from (3»l) and (^.l) that

■^ef. k, pp. ii-25 - ^36 

^Ref. 3, pp. 31^ - 322
C O N F I D E N T I A L
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or

where

f(t) =
oo

-0 0

00

eiurb S^tt) dw

S*(w) = / H(a) N(w-a) da.
-oo

Using this last expression we may calculate the covariance function^

00 C  00

E ^S#(ü>i ) S^.(w2) - H(a) H(p) E |N(wi-a) N(w2-p)j-da dp
-00 / -00

00 / 00

= a2 I I H(a) H(p) 6(w2-wi+a-p) da dp,
-00./ -00

by referring to (4.5)* Thus we have
oo

E js*(u)i) S*(w2)j> = a2 / H(a) HÍ^-Wi+a) da.
-oo

Let us now introduce the notation

and

p(ü)x, ù>2) -  E ^S^.(wi) S*(-c»>2 ) ^  = E js*(u>i) S*(u)2 )j- 

p(w) = p(u), fci) = E^S*(u>) S * ( « ) j  ,

and

(4.6)

PQ = p(o).
Introducing this notation into (4.6) gives

'00 r  oo
p(w) = a2 I H(a) H(a-2w) da = a2 / h (o h j ) H(a-w) da. (4.7) 

-oo . / -oo

■^Ref. 4, p. 95 (clearly E |s*(w)^ 0)
C O N F I D E N T I A L
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and r  oo
= a2 / H(a) H(a) da = p(o) = pQ .

J  "°°
From (^.7) and (3.2) we see that p(u>) is real, hence 

e | s*(co) S*(w )J> = p(w).

Perhaps we should remark here that p(w) is real only because we chose 

?(t) = 7Q(t),* for of &11 the Ha(w )> -* <  a < it, only Hq (w ) is real.
In section VI we shall see the complication which arises when we do not 

force the imaginary part of p(w) to vanish.

The variances cti2(w ) and a22(w) of the real and imaginary parts 

of S*(w) are given by

= £  e | [s*(«) + S . ( - 0

022(w ) - -  ̂E £ [s^Cto) - S#(wf] 2J>.
Thus we have

tfi2(<*>) = \ [po + p(w)] 

c22(w ) = ^ [po - p(w)] (^.8)

In order to make the formulas more explicit, we calculate p(to)

and p ,
T T

sin (a + u>)~ sin (a - u>)-̂

a2 -
da

w
( M )

T a2 o
“ 2jt

sin toTo
cjTo

C O N F I D E N T I A L
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This makes (4.8) become

a2^
ai2(w) =

a22M  =

4jt

a2T ___c
bn

1 +

1 -

sin toT ______ c
ojTo

sin a)Tc
wT (4.10)

Our primary interest is not in ai2(w) and G22{u>), but in the proba

bility density function p^(s), of S*(to) , which is expressed in terms

of these variances.

In Appendix A the probability density function p(s) is derived

for the modulus Z = X + iY of a complex random variable. The most 

general result of this derivation (A.1 5 ) displays the explicit 

dependence of p(s) on the variances ax2 and C22 . Since these variances 

are functions of w (4.10), we introduce the subscript u on p(s) to 

indicate its dependence on the specific filter frequency under consider

ed
From (4.8) we see that

and that

also be expressed simply in terms

that

(ai2 + o2z = po

|ai2 - a22 = p(a>)

2 2 1 2 ai2 a22 = ¥ J_P0 - P2(^f] .

Since the real and imaginary parts of S*(w) each have Gaussian 

distributions with zero means and variances 0i2(w) and cr22(w) respec

tively,^ the probability density function Pw(s) S*(o)) is immediately 

obtainable from formula (A.19) which is derived in Appendix A. This

"Stef. 8, p. 209

C O N F I D E N T I A L
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formula gives

P (s)

—

S r'm ( 0 l 2 +  022 ) s 2 T (ai2 - Og2 ) „ 2

0102 4 0 i 2022
O

4 0 l2022
—  —

In order to insure the validity of this formula we must be certain that 

the real and imaginary parts of Ŝ .(u)) are independent. The real part 

of S*(w) is given by | [s*(w) + S*(wf] and the imaginary part by 

^r£s^(o)) - S*(u>r] . Since S*(o)) is Gaussian we only need to show that

e { |  [s»(w ) + S*(w)] 55- (s*(w) - S#(u)]| = 0

in order to establish the independence of the real and imaginary parts. 

On expanding this expression we see that

E || Qs»(u) + S»(wf] ^  - S*(w)]j

= i r  E <|s#(w) S*(u>) + S*(w) S*(u) -  S*(w) S*(w) -  S#(w) S*(w)j

= ji- E |s*(w) S ,(u ) j  - 53- E |s*(u>) S,(w) j  

- p(^) - ¿j- p M  = 0 *

Thus the independence is established.

It is useful to have this density given in terms of our correla

tion (or covariance) functions pQ, and p(w). In terms of these we have

P (s) = w
2s exp

P s2 0 T

— —

p(oj)s2
p02 - p2M

X
0 Po2 - p2(ü))

(4.11)

In this particular case we can be even more explicit, since pQ 

and p(w) are known explicitly, from (4.9). Upon substitution

C O N F I D E N T I A L
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we find

86-23

(^.12)

Of course, all of these expressions are for p (s) when s \  0; forCO '

s v< 0  we have p (s) = 0 identically. The density function p (s), for ^ CO o
the special case u = 0, is given by

p (s) = — -—  exp( - — ■ ■ ) for s >  0.° ojv; V °%)
In order that one may get a feeling for how the density function 

behaves as the parameter co changes, we have included in Fig. ^-1 some 

graphs of p (s) as a function of s for several values of w. Graphs of(jO
ai2(w) and a22(a>) as a function of w have been included in Fig. b-2 to

provide some idea of their behavior. For computational convenience we

have chosen the constants T = 2 and o2 - it. These choices are un-o
realistic, but we are justified in making them since the graphs are not 

to be used quantitatively. Density functions were plotted for values 

of u) = 0, 75 . In Fig. b-3 the distribution functions

corresponding to the density functions plotted in Fig. ^-1 are plotted 

on Rayleigh probability paper. On this paper a Rayleigh distribution 

is represented by a straight line.
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S

FIG. h-1. Graphs of Pu(s) (Eq. ^.12) with Tq 
different values of u. _ r

p / (s) « 2s exp (-s2) is a Rayleigh distribution

nit ,It occurs periodically for every w = and
is also the limit density function towards which
p (s) tends as to — > ao 

oj

*= 2; a2 = it for

2 sin 2a> 
s — 5 7 "

n /Sin 2gjn2
1 - H s t *' j

hjrve " T oj ST 0
1» ii (0 St it
ft h i OJ m it

tj:
u IV to ss n

5H V to s K
5
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FIG. k-2. Graphs of ai2(u>) and Q22(w ) (Eq.. ^.10) with Tq * 2, 
a2 * Jt

_ p/ \ 1 /-, , sin 2t»KCurve I ai (w) « 75 vl + — gw— '

Curve II a 2*!(w) * i (1 - sin 2u) 
” 2~
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FIG. Graphs of normalized probability distribution functions
corresponding to the probability density functions plotted in FIG. -̂-1.

These graphs are plotted on Rayleigh probability 
paper and consequently the Rayleigh distribution 
which results when u * ^ is a straight line.

The points from which these curves were plotted 
were obtained by measuring areas under the probabil
ity density curves of FIG. ^-1.

CURVE I U) SM

it II W 2

it III U) m

it IV 0) 2

ti V U) SI

«
15n
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V. Signals Plus Additive Noise through the Sinufly Filter

Let us now consider the case in which we have a signal s(t) 

present as well as Gaussian noise n(t). Our input ("before weighting) 

is now
f(t) = 7(t)|s(t) + n(t)| .

Let the frequency spectrum of the signal s(t) be

e~icot ¿it,

then the spectrum S,(co) of f(t) is given by

Since E-^S

Let

S+(o>) •■= M(w) + S*(io) 

*(w)| = 0, we have

(<o)J = M(w).e { s+ .

M(co) = |i.(w) + i v(to)̂  

then we can find the probability density

p,Xs) =co

a 2.02 exp (ai2+g a2)s2+2(g z2h2+2o i2v2)
k-02.2022

N

(5.1)

(5.2)

SV S \1 (02.2-022)„2....y " ~~~~y ®„ 2 - 2 2^ 2 02 T-Cfi O2

from (A.l8) in Appendix A. The p. and V occurring in this formula are 

the |i(co) and v((o) of (5.1). The ai2 and cr22 are the Ci2(co) and a22(<o) 

of the previous section.
We must point out now, however, that the formula (5.2), although 

complete for the simple case under consideration, is actually too
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complex to be of much practical use. In order to illustrate what we

mean, let us find p (s) explicitly for a few simple examples.go
First, suppose that s(t) consists merely of a constant

then the spectrum of s(t) 7(t) is

From (5.1) we see that

a
n

goT„. osin-75—
GO

off
sin-^

GO

v(to) = 0.
Using the expressions for ai2(u) and cr22(w) from the previous section,

a 4> f d  O  \ V A r t / M Y i a c »

T
^as sin

7 sin goT\ ’
aX ( 1+

2jcs2 sin toT
/ s in  oil? \ 2T|

02gjT0
!  ( _ ° \L \ J

(The function N(a, P, 7 ) is discussed in Appendix B.)

For values of off? sufficiently large, is negligible compared 
0 o

to unity and p^(s) becomes
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sin wTo

In order to see this we must make the approximation — --- = 0 and
o

apply (A .16) and (A.17) of Appendix A. I Q is the modified Bessel 

coefficient of order zero."^
This density is a familiar one, presented by many authors. It 

can be put in a more familiar form by setting a2TQ = and using

for the mean, then the expression for p^(s) given above becomes

This expression is a natural one to use if it can be assumed that Tq

is large and w is bounded away from zero.

Unfortunately, the approximation ( (  1 is not valid in our
o

application. This is best appreciated by referring to one of the

examples in section VII (say example 1, p. 50) where in a typical

sinufly system we are interested in studying the range of values of w 
to

from zero to = 2000 it radians per second. In this example, Tq = .03

seconds and the approximation < < 1  is good for u)To> 10 or u ) 333
o

radians per second and poor in the range of frequencies (o = 0 to 

to = 333 radians per second.

In order to indicate further the great complexity which is mani

fest in even the simplest cases, we shall calculate Pw(s) f*or s("fc) = aQ 

+ a cos pt + b sin fit, a simple sinusoidal signal plus a constant term. 

Again working from (3»2) and (3*3) we see that the spectrum of

■ W .  5 , P- 375
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7(t) s(t) is

M(o>) =

off l T T
a sin—^  )sin(o)-|i)-£ sin(oH-fi)-o ___ 2 . a / 2
IT  o> 2jt S (oj-|i) " + [w+iiy

T T
b .sin(w-|i)~ sin(o>Hi)-~

+ 2jri\ (w -|ji) T^+mT

= ji(o>) + i v(w). (5-3)
With a little squaring of expressions here and there, we find, from

(5.2) and (5«3) that pw(s) is given by

P (s) = (*}
ĴtS
sin off\ 2  o\

off

+ aa

off
sin-^ /sin(w-ii)-“  sin(aH-(i)-~ \ fl2 /sin(u>-n)-*-\ 2

T

exp /  -2 jt[s2 + - i

T

sin off\ /£
offOxŝm  2 ■ \ 2

U)

T

o 0) (w-M-) (oH-̂ i) )+ "5~ ( (w-M-)

_0
2

T T T
sin(o>-|i)-~ sin((iH-|i)-̂  ^/SinCoH-p.)-^^ 2

(o)2-p2 )

T

+ T l — C^h TT + J ^ ( i+
$

sin off'
off

/£in(o>-p)-^\ 2 

v (w-nl /

-  2
T(
2sin(o)-p)^ sin(oH-p)—  /sin(oH-p) -~ \ 2

T -]\
(  sin(e*H-|i)-~ ^ 2 ^ 1

(»■-»=)
£

sin off 2 '
_____ £ )off '

T T
sin(u)-fi)-^ sin(oH-p)-~

T

(w-|i) (oH*|l) ij-sa
. 0sin u>-?r

0)

T T
2 rsin(w-fi)—  sin(oH-n)-̂ "')

+ 2 sa l ----- (u-n) " + -----(w-n) "J
” 7 sin off ' 

a2To( 1 ■ uT “
r sin off > 

1 + °o off

2jrs
sin off 

2 ______ o
off

7 sin off i V
^ o ( -  < - ^ >  )
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A formula of this complexity is somewhat discouraging and one would 
attempt to make graphs from it only in a case of direst need. It is 

unlikely that we shall ever be so tempted since, in any case, the 
signal presented here is still far too simple to be realistic.
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VI. Signals and Multiplicative Noise through 

the Sinufly Filter

There is a certain type of noise we encounter which is proportional 

to the strength of the detected signal. This noise can be represented by

fit) = 7(t) s(t) n(t) (6.1 )

where /(t) • s(t) is signal and n(t) is a noise factor. Such noise is 

usually called multiplicative noise. Our method may be applied to deal 

with it as follows. Let

oo

and

as before. Then

where

7(t) s(t) = eiuJt M(u)) dw,
-oo

n(t) = elult N(u>) dw

f(t) =

S(w) =

eiwt doo,

M(a) N(w-a)da.

( 6 .2 )

(6.3)

(6A)

As an illustration, let us consider the case where n(t) is white 

Gaussian noise and we assume that n(t) has zero mean for each value of t 

As before, what we wish to know is the probability density function for 

S(o)) . Since N(w) is Gaussian, so is S(w), consequently we need only 

to know the variances of the real and imaginary parts of S(w) in order 

to know its distribution completely.
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Proceeding as before, we have

e £ s(w i ) S(w2)j =
0 0 / 0 0

-00. / -00

M(a) M(p) E ĵ N(o)i-a) N(w2-P)j>da dp,

and using the fact that

E^N(wi-a) N(w2-P)j> = a2S(w2-u>i+a-p),

which comes from (*J-.5)> we see that

E |s(u>x) S(w2)j>= a
00

2 1 mCqh-u)!) m(qh-u)2) dec.
-oo

We now define

p(a>i, w2) — E ̂ S(wi) S(w2)̂  . 

Since S(w) = S(-u>), we have

p(wi, w2) = E ̂ S(ooi) S(-Ct)2)̂

We further define

and we clearly have

oo
a“ / m(qh-u)1) M(a-(o2) da.

-oo

p(w) = p(w,w), and pQ = p(0)

p(o), -u>) = p(0) = p .

We observe that M(u>) is in general complex, in contrast to H(w) 

which is real; consequently, p(w) can no longer be assumed to be real, 

Let pi(w) and p2(w) be the real and imaginary parts of p(oj) so that

p(w) = Pi(w) + i P2(w).
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The real and imaginary parts of S(u>) are respectively i £s(w) + S(wjTJ 

and ~  £s(w) - SCc*))̂ ] . Thus their respective variances ai2(w) and 022(w) 

are given by
ffi2(w) - ̂ []po + Pi(w)]

a22(w) = | ^ P Q “ P i(w)] •

The correlation coefficient of the real and imaginary parts of 

S(w) is1

r(w) = Pz(w)
\/P 2- Pi2(u)

e || [-s(M)+s(M)] ¿ [ s M - s ( . ) ] j

From these relations we see that

and

Since

Pi = cri2 - CÎ22, P2 - 2r 03.02,

^(l-r2) cf! 2 a22 = P0~ - 1 P

PQ = cri2 + c22

w(o,o, a, e) = xjvoi2 + e2 ),

where W(-) is defined in (A.l^), Appendix A, and if we use the formula 

(A.19) for the distribution, (the special case, with zero means) we see 

that the density function p^(s) of j S(u>) | is given by

PJ s )  = 2s exp I -
P s‘ o pM\

P02-|p(w )|/ ° \P02-|p (w )|2/\/po2-|p(w)|2

This expression clearly reduces to the one given in (^.11) if p2(w) = 0, 

where pi(w) remains general and is not the special case given in .10).

■ W .  8, p. 277
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An alternate method of treating the multiplicative noise encounter

ed in the output of the storage tube is the following. Under suffici

ently ideal conditions such noise need not be considered as random.

For example, suppose that under identical conditions of storage on a

multiplies the desired storage signal. Specifically, if the stored 

signal is a D-C term of strength a, the output would be a • n(t) each 

time the entire process is carried through.

We can, therefore, treat the problem of multiplicative noise from 

the storage tube in the following way. Let the lines to be read out 

be numbered with an index j, and let the noise function, for a constant 

term of strength 1, be n^.(t) for the jth line. Then the representation 

of the wave packet arising from the jth line can be given by

which replaces (6.1). We represent the spectrum of n̂ .(t) by N̂ .(w), as 

in (6.3), and thus find the spectrum S^(w) of f^(t) by

the analogue of (6.^).
To carry out the analysis of the multiplicative noise arising 

from the storage tube, based on these latter assumptions we would 

examine each line (of the read out) separately,using (6.5).

In a practical sinufly system the multiplicative noise read out 

of the storage tube has both a random and a nonrandom component and a 

precise analysis of it would require the use of both of the techniques 

proposed in this section.

given range element of the tube, a specific output noise function n(t)

f.(t) = 7(t) s(t) n^(t),

(6.5)
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VII. Clutter and Enhancement

The analysis for white noise, given in section IV, can easily be 

extended to include other stochastic processes. The assumption of 

whiteness is the assumption that the power spectrum W(u>), occurring in 

(if.5), is a constant 02 . This assumption is by no means necessary, and 

we shall now repeat part of the development without making use of it.

Let 00

c(t) = / elcJfc N(u) du 
-00

and let

f(t) = 7(t) c(t) =
OO

-OO
eia* S(u>) du,

then oo
S(u) = / H(a) N(w-a) cbcc,

-00

where H(u>) is the function defined in (3*2).

The covariance function for S(ui), and S(w2) is given by

(7.1)

E-|s(wi) S(u2)| =
00 / 00

- 0 0 /  -oo

H(cc) H(ß) E-^Niui-a) N(cü2-ß)j>dcc dß. (7-2)

Using (if.5) we see that (7.2) above becomes

0 0 / 0 0

E j s ^ x )  s(u2 )j> = /  / H(a) H(ß) w(^2-ß) 5(u2-u!+a-ß) da dß
-00 /-00

00

-00

H(a) H(u2-wi+a) w(üJi-a) da.
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If we replace a by u>i-a, we obtain the formula
co

E^S(t*»i) s((*>2) } • '  W(a) H(u)i-a)H(w2-a) da.
-ao

More explicitly 

E^S(u)i) l(u)2)^*

T T
sin(wi-a)-^ sin(w2-a)^-

w<a) r«i=g)------- {*z- c c T ~ da* (7.3)
-oo

If we assume a random ground model , the form of the power spectrum for 

clutter is shown in Fig. 7.1 and is given by the expression

W(a) • (maQ)2 6(a) + |(a) (7.*0

wh8r® m *(o h io ) for - a ^ a ^ O

{(a) ^ - -s?(a~a0) for 0 ^ a Q

0 otherwise

where a is the width of the clutter spectrum, o

FIG. 7-1. Video power spectrum for clutter, assuming a non
coherent radar, a square law detector and the random ground model to 
represent the terrain. (E^l* 7»*0

^■Ref. 1, p. 36
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For this particular ground model, the power in the D-C part of the 

clutter spectrum is equal to the power in the A-C part of the spectrum. 

Later, when signal is introduced it will be seen that the power in the 

D-C part of the spectrum is increased.'*'

We now introduce the mean power function

In our case, using the £(a) introduced above we find tc(w) to be given

(7.5)

*>y T

This is easily seen to be

The integral
T

(7.6)

can be evaluated by setting (3 = cx-ti), so that (7.6) becomes

T T
‘(ao-w)~

o
2

"Stef. 6
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But integration by parts shows that

hence

2x
sin^ du =
u

0

sin u s m &x-----  au - -----  ju x (7-7)

'a sin2(a-w
(a-a )° (a-w)2

da =

_  <
Ss(x) + -~(u)-aQ) ( Si(2x) - sin2x'

coT

In like manner we see that

a
sin2(ûH-a))-§

(a-a ) ---------° (a+co)2
da =

T
-, (ao+u)T

sin2xSs(x) -  -g2(GH-ao) ( Si(2x) - x

Consequently, ijr (to) is given explicitly by

ooT

wT
ma sin— \ 2 z

t(u) = - £ ----£. ' m
V  ' \ It W / ^2

T T ü)T
Ss (w-a^)-^ + Ss (oj+â )-̂ - - 2 Ss( ^ ■)

To
2

t

ff "I sln2(u-a )•
(u-ao) Si (u-ao )TQ ---------- ç-

L \ L J (“-“ohr

_22 + (uH-ao) ( Si (aH-ao )To

sin2(uH-aQ )-^ s m
ojT , 2 °

+ (0To ( Si (cJTo ) - ^ (7.8)
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The functions Ss(x) and Si(x) are defined by

Si (x) = sin u 
u du , Ss (x) = iin^

u du .

These functions are well known and well tabulated.^

The function given by (7*8) is the mean power function for

clutter alone. We shall also need the mean power function for signal 

plus clutter. We shall denote this as f (u,v). As an example of 

our method we will consider a function f(t) which consists of a single 

non-random sinusoidal signal s(t) = a sin Vt in addition to a random 

clutter signal c(t),

f(t) = 7(t) [c(t) + s(t)]j = r(t) c(t) + r(t) s(t)

From (6.2) and (7-l) the spectrum of f(t) is given by

S(u>) + M(u>

W “'v) - E {|[s(u) + M(“'v)] Is] ■ E { [  S(u)) + M(o),v)] £*S(u>)+M(w,v)j|

where

= E js(w) S(w) j + E |m(w ,v ) M(w ,v )|= ĉ(w ) + 

E^S(w) I(ca,v) j = E^S(w) M(w,v)| = 0

M(w,v)

because the signal and clutter are uncorrelated and S(oi) has zero mean.

We may now define an ’’enhancement function” G(v) which will be used 

as a criterion for judging the quality of performance of a given system, 

and for comparing different systems.

•^ef *s . 10 and 11
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G(v) =
*s+c*M,V* tc(w) + M(iu,v) = 1 + 1! M

^c(w) ^c(w) tc(w)

We define signal strength for a signal r(t) s(t) by

+ oo l/2

s2(t) ?(t) dt >
-0 0 J

Applying Parseval's theorem we have

(7.9)

as our expression for signal strength.

The corresponding expression for mean clutter strength is

(7 .10)

The signal to clutter ratio is then obtained by dividing (7.9) by

(7 .10).
If one substitutes values of the parameters m, ct̂ , Tq, and w into

(7 .8), (u) can be determined explicitly. Also M(w,v) 2 could be

obtained from and G(v) could then be plotted.

Rather than proceed in this way however, we will turn our attention 

to a realistic example; one in which we do not make the assumption that
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the signal and clutter at the output of the second detector are inde

pendent random processes. Just such an example is furnished by the 

random ground model with a single moving target located in the center 

of the ground patch and moving with a velocity such that its center 

doppler angular frequency at the output of the radar second detector

is v. The power spectrum corresponding to this model has been derived
\

by R. Swallow1 and is illustrated in Fig. 7-2 and given by the expres

sion
¥i(a) = m2aQ2(l + X )2 5(a) + Ei(a) (7.11)

2where X is defined by

a = amplitude of the moving target return

= amplitude of return from each of J random scatterers in the 

patch

and where
= m2 (a+a ) - a  >^a n̂ O ' o o x

= -m2(a-a ) ' o 0 V< a N< “o
a a

*i(a) < = m2 a X o V - ^ X < « N <  V + T
a a

= m2 a Xo -v - ^  a ^  - v +
(.

o
2

= 0 otherwise

■^ef. 6

^Ref. 7 , pp. k, 23, 28
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FIG. 7-2. Video power spectrum for clu tter, plus a target baring 
a center doppler angular freq. v, assuming a non-coherent radar and a 
square law detector. (Eq. 7*11) The signal to clutter ra tio , (X) is  1 
in the example illustrated.

From (7.3) and (7*5) we see that

*s+c(w' v) Wx(a) sin2(w-a)^£

(w-a)2
da (7.12)

T
8in2(w-a)-S

jm2a02(l+2X+X2) B(a) + l i ( a ) | ---------3------da.
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The second term in (7-13) represents the D-C power added to the spectrum 

due to the presence of the moving target, while the third and fourth 

terms represent its A-C power.

The integral

2 T
sin2(a-oj)-^

(a-c*))2
da

can be evaluated by setting f3 = a-w, so that (7 «1 -̂) becomes
a a  T
1 ~ -  w )-°

sin^
T u2

r  v+ -  « T r ( w -  -

sin26-7r T 
^ d p =  2°

a
'•  j a

v- —  - w ( V - ^

du

- * ) f

It was shown previously in (7*7) that

2x
¡in^ du =
u

s m  u 
u du - sin2x

x

(7.1*0

Therefore, (7.1^-) becomes

T \ ao ) Si {v+ o _ w)
a

sin2(v+ 0
T\ VJ

2 - U)~

In a like manner

s m

a To X O- u ) ~2

a T ■0 -2

a
Si (V - - w)To

(v -
a T\ ow)-g-

a
-v+

ao
2

sin2(a-co)- 

(a-w)‘

T

da
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becomes

T ( a
-f \S± (-V + -5-

C O N F I D E N T I A L

a T
sin2(-V + ~  - u)-rr

a T / o \ o( -V + ”2" “ w)-£-

a
Si(-v - ~ W)TC

a  T. p t o \ os m  (-v - 2—  w )—
‘ a T~~

(-V  - -3- -  “ >2-

Thus (7.15) becomes

W U’ V) = + ( 2X+x2^  , u>

cjT
/ no sin- ^ \ 2  m2a X T  1 ' ° 2 \ + o o a

2tc
2 , * 1<W - f  -  « )  T0

- Si (v - ^  - 10) Tq + Si (-V + t|  - u) T0- Si (-V - -g u) Tq

a T a T a T
sin2(v+ -§■ - sin2(v— $■ - t*>)-pr sin2(-v+ -g* - w )-tt

a T a T
(V + 4  -  “hr (v - -S - “hr

a T 
(-V + ^  - CO)-#

a T
sin2(-v — £  - w)-^-

a"' t “
(-V - -g- - «)-§-

From (7*12) we now get wT
ma o \  2

03. V c (“ ' v > , , ( 2X+x2>V *
G(v) = -f (a))—  = 1 + -------- ------------c c

m2cc XT ( a a , a0
+ ---2— 2 /si (V+ ~  - o>)T - Si (v- -p - u)T + Si (-V+ -g- - w)T

2«at > )  )

ao
2

a T a T
sin2( V + —  - u>)-§ sin2(v - -5—  w W -

a_c
2

- - a T - + — a
(v + ^ - w)-g- ( V - - I

a T a T N0
IT - <-)-£ sin2(-V 0

" 2 - * H \
T a T (D

1 u>)-̂ (-V - 0
2 “hr J

T

(7.15)
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In order to illustrate further these ideas we choose some realistic 

values for the constants in (7 *8) and (7 -15), and graph the resultant 

enhancement functions.

It might be worthwhile to point out here that the functions we

have been discussing deviate significantly from the functions which

appear at the input to the sinufly filter. The most important aspect of

this deviation results from the fact that f(t) is read off a storage

tube, in a manner described in the introduction, consequently it is of

the form N2
f(t) = 7(t) c(t)

n

g(t-rn-)

rather than

f't) = r(t) c(t)

as previously assumed. 

The function
N
?

g(t-rn-)

represents the modification of the signal 7("k) c("k) resulting from 

reading the video information off of the storage tube in a direction 

orthogonal to the direction in which it had previously been stored. 

g(t) describes the profiles of the individual lines read off the tube 

and T is the time interval between these lines.

The main effect of this "combing”1 of the signal is that the 

resulting spectrum of f(t) is "folded" about a frequency f^ = i . 

Functions of the spectrum of f(t), such as G(v) are also folded about

hiet. 9, P- 28 (7) C O N F I D E N T I A L
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the frequency f . Consequently it is necessary to plot G(v) only over
37 frthe range of frequencies from zero to at most.

Other modifications of the spectrum are dependent upon the exact

form of the function g(t) .1 If g(t) is non zero only over a time

interval t  f <  t , this means we have complete resolution of the radar

range traces in the read out packet; the form of g(t) can then he

neglected and it can be approximated by a 5 function.1 With these

assumptions N
2

f(t) = r(t) c(t) ^  b(t-nr).
N

n = - 2

X
(Signal to 
clutter ratio)

To
(Seconds)

os) = 2jtf r r
(radians per

second)
“/“r a /ot> o' r m

Example 1 
Fig. 7-3 1 .05 4000 n .078 .045 n

v/5

Example 2 
Fig. 7-4 1 .005 4000 it .064 OJO n

s/Io

Table 7-1. Values of the constants used in (7*8) and (7.15) from

which the curves for G(v) in Figs. 7-5 and 7-4 were plotted.

The radar pulse repetition frequency (fr ) is 2000 pulses per

second. The filter angular frequency is w radians per second

and the clutter width is a radians per second.o

Using the constants in Table 7-1 and (7*8) and (7-15)> G(v) vs. 

target angular frequency V has been plotted in Figs. 7-5 and 7-4.

•^ef. 2
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FIG* 7-3* Graph of a single filter enhancement function G(v) for 
a Sinufly system. The pulse packet derived from each range element 
consists of samples from 6l video range traces.

X “ e i S l e r p o ^ f “ 1' To “ T1“  duration of f(t) - .03 see. 
aQ - Width of clutter spectrum * ,0k3 u>r; u> ■ Filter freq. « .078 wr
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FIG. 7-^. Graph of a single filter enhancement function G(v) for 
a Sinufly system. The pulse packet derived from each range element 
consists of samples from 11 video range traces.

X = power
Clutter power 1; Tq - Time duration of f(t) .005 sec.

aQ = Width of clutter spectrum = .038 w * Filter freq. « .076

C O N F I D E N T I A L
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The essential difference between examples 1 and 2, which gives rise

to the change in the enhancement function G(v) is the difference in the

pulse packet time Tq . A qualitative understanding of the reason for

the relative sharpness of G(v) in example 1 as compared to example 2

may be obtained by considering the power spectra for the two cases.

Any frequency component present in the power spectrum before sinufly
J+jcprocessing is spread into a band of frequencies of width 25w =
o

(neglecting the power which falls outside of the main lobe of

the — — —  distribution). Fig. 7-5 qualitatively illustrates the power 
x 2

spectra for the two cases shown in Figs. 7-5 and 7-k, after sinufly 

processing.

T
0

(seconds)

R 2lt
o

(rad. per. sec.)
5 w 
0)r

Example 1 
Fig. 8-3

.03 67* .017

Example 2 
Fig. 7-*+

.005 k-OOit .1

Table 7-2. —  is a measure of the amount of spreading

of the mean power spectrum of the process f(t) as a 

result of sampling for Tq seconds.

A more precise treatment of this effect would involve a consideration 

of the complete clutter power spectrum including all side lobes of all 

frequency components present in the initial spectrum. The function 

G(v) is in fact a consequence of just such a complete treatment. It 
is the power in the side lobes (neglected in the preceding qualitative

C O N F I D E N T I A L
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9C .1 .U

l - l f - ' — I

FIG. 7-5. Mean power spectrum for signal plus clutter after
SInufly processing.

(a) Example 1 (b) Example 2

C O N F I D E N T I A L
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discussion) which prevents G(v) from becoming infinite outside the main 

lobe of the clutter spectrum over the band of frequencies from

A study of these examples should make it clear how one would obtain 

enhancement curves for any desired combination of fixed and moving 

targets.
In Appendix C, the enhancement function G(v) is calculated for the 

clutter signal c(t) defined on page 39, but with Gaussian weighting 

rather than uniform weighting of the pulse packet.

The results of this calculation are plotted in Figs. C-l and C-2 and the 

G(v) functions for f(t) = ?(t) e(t) are replotted on these same graphs 

in order to facilitate direct comparison.

a
- 5u to V + ^  + 5w.

i .e. f(t) = fi(t) c(t)

where ?(t) in (7 *l) is replaced by fi(t) and where

C O N F I D E N T I A L
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Appendix A. Probability Density Function for the Modulus of a

Complex Random Variable.

In the main text of this report, there are a number of places 

where we must know the probability density function of a random variable 

Z which is the modulus (or absolute value) of a complex random variable 

X + i Y, where X and Y are real random variables whose probability 

density functions are known. Thus we have

Although we may assume, usually, that X and Y are independent random 

variables, there are some occasions on which X and Y will actually be 

dependent. In such cases, we must know the joint probability density1 

function of X and Y .
Our interest in this report is limited to the case for which X and 

Y are both Gaussian and, in case they are dependent, have a Gaussian 

joint distribution. In the special case where X and Y are independent, 

with zero means and equal variances, we get the well known Rayleigh 

distribution.
We shall use the following notation. The probability density 

function for Z will be denoted by p(s). It is defined by

where P is the probability measure. The joint probability density

function for X and Y will be denoted by q(x, y), and it is defined by

(A.1)

(A.2)

We shall denote the mean of X by p, and its variance by 0i2; and the 

mean of Y will be denoted by V, and its variance by o22 . The correlation

"Stef, k, pp. 6 and 7
C O N F I D E N T I A L
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coefficient it of X and Y is defined by

E -j(X - n)(Y - V)J
1C = (A A )

01 0 2

it is, of course, zero if X and Y are independent.

From (A.l) and (A.2) we have

p(s) ds = P is < v/x2 + Y2 «^s + dsj

= P <js2 <  X2 + Y2 x<Cs2 + 2s ds|

( A . 5)

2^ P ^ y 2 < Y2 < y2 + 2y dy, s2 - y2 < X2 ^  s2 - y2 + d(s2 - y2 )|

•2 v< "2y

But this last egression is equal to (A .6)

^  pfy < Y ^ y  + dy, ±v/s2 - y2 < X ̂  ± V s 2 - y2 + d \/s2 - y2 j  .

y2
Using (A.3) we can express (A.5) in more explicit form by using the 

equivalent integral expression for (A.6).
(A .7 )

p(s) ds = / q(\/s2 - y2, y) — S-^ —  + / q(-\A2 - y2 , y) ’ ds- ~ -
-s v s  - r  j  -s \/s2 - y*

Since we are restricting our interest to the case in which X and Y
2have a Gaussian joint density function, we have

<l(x, y) = exp -1

2jt 0102 \/l - K2 1-2(1 - K2 ) \ 0;
ix - yjf _ 2k (x - (y - v)

01 02

(A.8)

■^Ref. 8, p. 265 

*TRef. 8, p. 287
C O N F I D E N T I A L
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Therefore we have

p(s) =
2jt a i0 2  y/l -  k£

exp -1 ( n/s2 - y2 - n)a

-S 2(1 - K2) CTl

-  2 k
( \/s2 -  y2 -  n) (y  -  v) , (y  ■ v )2\  1 ___ &y

CJl CT2 - 2a2 v / i ^ T 5

exp -1____A - n/s2 - y2 - n)2
-s 2 (1  -  k2 ) \

+  2 k
s2 - y2 + p) (y - v) (y  - v )2 &y

<*i a2 a22 / S \Js2 - y2
(A .9)

If we make the substitutions

y = s cos 0, \/s2 - y2 = s sin 0, dy = - s sin 0 <30 , (A.IO)

then our integrals become

exp -1 M s  sin 0 - p )2 0„ (s sin 0 - p) (s cos 0 - v)
2(1 - k 2) \ ai

-  2k
2 al n2

and

, (s cos 0 - v)‘
T  ■ '' " 1 d0, (A.11)

Oz

exp -1 M s  sin 0 + p )2 , 0u. U  sin 0 + p) (s cos 0 - v)
2 (1  -  k2 ) cfi

+  2 k
2 <*i 02

(s cos e - v)2\  ) ^  _ (A.12)
O 2

Taking the periodicity of sin 0 and cos 0 into account, we may therefore

C O N F I D E N T I A L
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write p(s) in the form
r- r 2jc

p(s) =
2jc a i0 2  v/l' -  k2

exp -1 / (s sin 0 - |i)‘
2(1 - k2) ■CTl

-  2 k
(s sin 0 - |i) (s cos 0 - v) + (s cos 0 - v ) ; d0

cfi 02 O 2
(A.13)

In anticipation of the final result, let us now introduce the 

function

W(cti, Pi, ¡te, p2) = l  / exp Oi cos 0 + Pi sin 0

(A.1*0+ a2 cos 20 + P2 sin 20 d# .

With a little algebraic manipulation on (A.13), combined with a use of 

the function introduced in (A.l^), we can now write (A.15)

p(s) =
0i02 v/l - k '

exp < - (012 + 022)s2 + 2(q22M-2 ~ 2Kq1q2MV + h  V )
M l  - K2)cTi2a22

W VOi2 - icpaiQ2 a |iqg2 - K V O 1 O 2  s (g2g ■ gig)s2 2Kai(72s<

>(i - K2 )ai2a22 (l - K2)oi2d22 M l  “ IC2)Ol2<?22 M l  - *t2)si2022

This is the most general expression which we shall derive here. A 

number of important cases occur upon specializing various of the para

meters Oi* 02f k , we shall tabulate some of these below. But

first we must make the following observations about W(ai, Pi, «2, P2 ) • 

We see that
W(ax, px, 0, 0) =: Io Çs/cxi2 + Pi2^

Ç\Jct22 + P22^w(o,  0 ,  a 2 , P2 ) »  I (A.l6)

C O N F I D E N T I A L
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where I (a) is the modified Bessel*s function of order zero . We also ox
introduce

N(a, p, 7) = w(a, p, 7, 0), (A.1 7 )

which proves to be convenient.

With this notation we now make our specializations. Let us assume 

first that X and Y are independent, that is that k = 0, then

( a i 2 + a22)s2 + 2(pz2[i2 + a i 2v2 )lp(s) = — —  exp { -a 10 2 J+ai2a22

N f vs fis (a 22 - a i 2 ) g2\  

\a22 ax2 ^ai2a22 /
(A,18)

Next we shall add the assumption that \x = V = 0, i.e., zero means, then

p(s) = — exp
0x02

f- (ax2 + e£l6a] x 7 (,ax2 - g22).. SA  .(A.X9)
(  ^cri2a22 j  ° \  W i 2a22 /

Now let us assume that k = 0 and ai2 = 022 = a2, then we have

p(s) = exp j - S2 + [L2  + V2 ) j. (  S
2a ‘ o \ 2a

(A*20)

If we now add the assumption that fi = V = 0 also, we get the simple 

Rayleigh distribution

p(s) = —  exp { - (A.21)
2a'

As a final specialization of (A.15) we retain the assumptions 

Ox2 = a22 = a2, and p = V = 0 but allow k to be non zero (i.e. X and Y 

are dependent). Then we have

p(s) = exp KS
>/l - k (. 2a2(l - k2)) ° \ 2a2(l - k2)

(A.22)

- W .  5, p. 573
C O I F I D E S I I A L
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While it is possible to enumerate other cases, it seems pointless to do 

so here; all such cases can be derived from (A.15). On the other hand, 

it seems worthwhile to offer a few comments on the functions N(a, P, 7) 

and W(ax, Pi, a2, p2) introduced above. This discussion of N(a, p, y) 

and W(ax, Pi, a2, P2) is the subject of Appendix B.

C O N F I D E N T I A L
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Appendix B. Probability Density Function for the Case of 
Approximately Equal Variances.

It is clear from the text of chapter five that (A.l8) is an important 

expression. We are particularly interested in this expression for cases 

where a22 is nearly equal to c±z, thus it is worthwhile to obtain an 

expression for N(a, p, 7 ) which is valid(and single) for small 7 .

Observe first that

(a cos 0 + 0 sin 0 + 7  cos 20) ev =
e(a cos 6 + P sin 0 ) £l + 7 cos 20 + 0(72)J 1 (B.l)I + 7  cos

where o(72) signifies terms of order 72 an -̂ higher.

Consequently we have

( a  cos 0 + (3 sin e 'l&e

e(a cos e + p s m  e ) oos 2e ^  + 0(72). (b .2)

Now let Q
8 = Arc tan (B.3)

then
a cos 0 + P sin e = \fo? + P2 cos (e - 5) (B.U)

so that (B.2) becomes

H(ff, 7) = IQ ( x / ^ T i 2 )

"Stef. 5, p. 11
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Upon replacing cos 20 by cos 20 = cos (20 - 26)cos 26 - sin(20 - 25)sin 26, 

and letting r = s]c£ + P2, we get

2« C z *
er cos(0 - 6)eos 20 6.6 = er cos(0 " 6)cos(20 - 26)cos 26 d0

2k
+ / er cos 0̂ ' 5'sin(20 - 26) sin 26 d9 .

'o
(B.6)

On letting \Jr = 0 - 5 we see that

2k f  2k
er cos ^sin 2^ d^ = - 2 / er C0S ^cos ^d(cos ty) (B.T)

Since however,

er cos ^cos \Jrd(cos t) * d er COS ^(eos y

which is periodic of period 2k , we also see that

(B.8)

2it
er 003 ♦sin 2* d* = 0. (B.9)

Applying this to (B.6) we see that

2k 2k
1_
2k

r oos(e - 8)cos 26 00 = i  cos 26 er 003 '''cos 2* dt

= cos 26 I2(r),

where I2(r) is the modified Besselfs function of order two, 

Since
cos 26 = 0(2 —  —  , and r = \foF~T~^ ,

a2 + P2

(B.10)

(B.ll)
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we have

N(a, p, y) = I ( \/o£ + W )  + 7 a I2 ( \/a2 + + 0(r2). (B.12)
0 or + 62

For the sake of completeness we shall give the power series expan

sion of N(a, P, 7 ) about the origin. Let us define

b = (-i)J ( 1  + (-1 ) ^  - 2¿ + k)+ (-i)(2J + m)+ (-X)(2n + k + m)},jkmn N L J

and define
n

r  1  V  b

2¿ + m + 1  ̂p ^ 2n - 2 j  + k +1 ^

kmn kimlnl  )  jkmn
J=0

|^ 2n + m + k +

then
00 00 00

H (a, p , 7 )  = jjj )
V  V  k n

I  L  ak-  °  P 7 •
* * m=t> n^O

In t h i s  e x p re ssio n  P ( « )  denotes th e  o rd in a ry  P f u n c t i o n .1

^ef. 5, P. 255

C O N F I D E N T I A L
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Appendix C* Enhancement Function for Signal in Clutter, with

Gaussian Packet Weighting

Let us replace the function r(t) of (T-l) with the function

7(t) g(t)

i .e. f(t) = r(t) g(t) c(t)

where g(t) » exp T- I ( ~ ) 2

T T
Since g(-^) = g(- -£)».01 g(t) . and in view of the definition 

of ?(t) we can write as a good approximation

f(t) = g(t) c(t).

The spectrum of g(t) is given by

oo
g(t) e”iayt dt

exp - .01^ a)2 T 2 o

We now define

and form the covariance function

(C.l)

w(a) e-°^[(»i-«)02 e-.0l*C(«a-a)To]« da

C O N F I D E N T I A L
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Now letting u = £Tq we get

a -to o

-CO

a —to
P e- 028O T o )2 ^  + (u_a) / 0 dp

-to

- ° 28 “ 2 du y  u'a°
(a -to)T

T
° ° -.028 u2 ^e du

o o - exp

-coT

-.028 to2 T 2 o

(o.-a

v/(2) ( .056) \ To
e r f \/-056 (ao-(o)TQ + erf \/ .056 coT ( C A )

- /~2where erf X : u  —it
-t72 at.

The integral
a

(a-aQ) e-.028 £(cofa)To ] 2
o J da

can be e v a lu a te d  b y  s u b s t i tu t in g  (-to) f o r  to i n  ( C . 3 )

- exp -.028 co2 T

/— / (o+a \ c r  ____

v/t2 J ( .05b) \ o *
- erf \/To 56 (0T

C O N F I D E N T I A L
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Therefore (C.2) becomes

, , \(V a o )2 -.028 u2 T
= ' 727—  e

m

2 m 2
O

r * / \ ■ r /  \ ■
< exp -.028 f (ao-u)To J 2 + exp -.028 ( (aQ+co)To J 2+ c.ossinstT)“®

> yft m2 T
- 2 exp (-.028 co2 T 2) > -

v/(2)(.056) (72«)
^  CO ̂ erf ^\/ «056056 (ao-(o)TQ

+ erf ( \/ .056 (ao+co)To) - a erf ^\/ .056 (ao-co)To

- erf ( \/ .056 (aQ+co) J Tq + 2 erf \/ .056 co Tq ( C. 5 )

^(co) (C.5) is the expression for the mean power spectrum for clutter 
alone. If'we let W(a) of (C.l) be the power spectrum for signal plus 
clutter, i.e. Wi(a) of (7.1l), then we get an expression for ^s+c(w>v) 

which is the counterpart of (7 .13).

W “ ’v)

To
72n

2 / 00

m2a 2 o
-00

= *c(oo) + (2X + X2) --T2n

(l+2X+X2 )6(a) + 61(a)] e--028[(“-a )To ] 

(”“oTo)2 -.028 w2 T 2 , To2” °o

da

o + 72*

a

.028 [[(u-a)T ,-.028[(u-a)To] da

C O N F I D E N T I A L
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(no T )2 2 m 2 m2a T, , x /__ „PS v o o '  -.028 ur T . o o= * (w) + (2X+X2) — sx---- e o + ---- ; ■
c 72rt 72 s/(2«)(.056)

erf

+ erf

a
>/.05Ó (v+ ~  - u>)TqJ - erf

v^056 (-\h- ̂  - (o)t 1 -

a
\P05& (v - - u)T

erf
a

Then
« . . .G(v) - T T w l ----- 1 ----cx

- g  - w)T

(m“oTo )S -.028 io2 T

•]'

+c(wJ

(c.6)

(C.7)

m2a T o o
72 V(2«)( -05^1 *,(<■>) { " l / 7

a
>/T055 (v+ - w)T

- erf v/705^ ( v-  -g - w)T qJ  + erf £\/.056
a

05^ (-v+ - w)To

- erf
a

( -V -  -§ - u )t

This function G(v) has been plotted in Figs. C-l and C-2 using the
same values for the constants m. a ,T and X, as were used in section VIIo o
(examples 1 and 2, Figs. 7-3 and 7-^)* The examples of section VII have 
been replotted in Figs. C-l and C-2 to facilitate a direct comparison 
of the enhancement function for the weighted and unweighted cases.

C O N F I D E N T I A L
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FIG. C-l. Graph of single filter enhancement functions G(v) 
corresponding to uniform packet weighting and Gaussian packet weighting. 
The pulse packet derived from each range element consists of samples 
from 6l video range traces.

_ Signal power = 1 T _ Time duration of f(t) = .03 sec. 
Clutter power 7 o

a = Width of clutter spectrum = .Ok? w : w = Filter freq. = *078 wro ■*-

C O N F I D E N T I A L
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FIG. C-2. Graph of single filter enhancement functions G(v) 
corresponding to uniform packet weighting and Gaussian packet weighting. 
The pulse packet derived from each range element consists of samples 
from 11 video range traces.

X " Clutter^power = To = Time °f fW  = -0°5 sec.
aQ = Width of clutter spectrum = .038 go = Filter freq. = .076

C O N F I D E N T I A L
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