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I. Introduction

Consider a family of prol
where V is a point of En (Euclidean n-space) and a belongs to some real 
interval A. A classical result in the theory of parameter estimation 
is that the quantity

a ) »* («J = I
d log p(V,q)

3a
-1

p(v,ao) dV
a=a

is a lower bound for the quantity

(2) F(v) - ao p (v ,o q ) av

for all "regular" estimates P(V) satisfying

(3) J f (v ) p(v,«) av = a for all aeA.

2That is, D# (an) is a lower bound for the variance of regular
unbiased estimates of when the true parameter value is aQ. A regular

2unbiased estimate whose variance equals D„ (a ) for all a is bailed* o o2efficient. D# (aQ) is not in general, however, the greatest lower bound 
for (2) subject to the constraint (3)..

Let us call an estimate F(V) satisfying (3), which attains for 
all aQ the greatest lower bound of (2), a uniformly minimum variance 
unbiased estimate. Kendall^1  ̂states that in the regular estimation case 
a necessary and sufficient condition for the existence of a uniformly 

minimum variance unbiased estimate is

w a log p(V,q) _ H(v) -a
"3a Ma) all oceA
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This is not correct— the condition is sufficient "but not

necessary, as is well known. Moreover, it might he possible for an
estimate satisfying (3) to minimize (2) for one particular value of

( k )a but not for others. Kieferv , Barankin' 1, and others have given o ^
(5)stronger lower bounds than (l)--and in fact, Barankinv 7 derived under 

certain conditions the greatest lower bound.
In the following, we develop a method for calculating the 

greatest lower bound of (2) for the class of all estimates satisfying 
(3)— i.e. with no regularity restrictions on the type of estimate 
considered. This method is actually an elaboration of Barankin's work, 
but with some of the restrictions removed. Also it provides in some 
cases a more explicit method of calculation than is given in Ref. 4 or 
Ref. 5. The method is applied to several examples, among which are: 

estimation of the standard deviation of a normal population with known 
mean and with unknown mean; estimation of the range of a rectangular 

distribution of known mean; and estimation of the mean of a Rayleigh 
distribution. (The results for these particular examples can be 
derived by other methods involving the properties of sufficient statistics, 
but the present method is applicable even in cases where sufficient 

statistics do not exist.)

II. A Method for Evaluating the Greatest Lower Bound
We suppose given a family -^dP(V,a)^“ of probability measures 

over En (Euclidean n-space), where V = (v^, . . . , vQ ) eEn and a is
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in some real interval A. It will be assumed that the measurable sets in
E are the same for a h  aeA. By "function of V" we shall henceforth n
mean a function measurable on the sample space for all dP(V,a).

By an "unbiased estimate of a," we mean any function F(V) 
satisfying

(5) F(v) dP(V,a) » a all aeA.

(integrals with respect to V always are taken over E .) 
For each aQ€A and function F(v), consider

( 6 ) / F(V) - a dP(V,aQ)

We shall assume henceforth that at least one function of V satisfying 

(5) identically for aeA exists for which (6) is finite.
We define

(7)
2

Dm (aQ) » greatest lower bound of (6) 
for all F satisfying (5).

(a0)Now, for any given aQ, consider the set C of functions of 

V consisting of all functions satisfying (5) identically for aeA and 
having finite second moment with respect to dP(V,o:o), and the limits in 
the mean of such functions with respect to dP(V,aQ).

(a )
The set C ° is clearly closed relative to convergence in mean 

with respect to dP(V,ao); also it is clearly a convex set. Thus, there 
exists a unique (with probability one) function, which we shall denote by

(a )
Fm (V/x ), which minimizes (6) for all functions in C . Clearly
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(8) f?JV,a0) dP(V,aQ) = aQ

(9) D (a ) m o F (V,a ) - ol va. ’ o o dP(v,a0)

If F (V.a ) satisfies m 9 o

(10) J Fm (V,“o) ap(v ’a) = a all aeA

then F (V,a ) is the unbiased estimate of a having minimum variance when m 7 o
the true parameter value is aQ. Otherwise, there exists no unbiased 

estimate of a having minimum variance when the true value is
For our purposes, the most important property of Fm(V,aQ) is 

the following: consider functions f(a) defined over A of the form

(1 1 ) f(a) = J H(V) dP(V,a) , all aeA 

where H(V) has finite second moment with respect to dP(V,aQ); i.e. where

(12) . J H2(V) clP(V,ao) <co

Theorem 1: Let f(a) be of the form (ll); then

(13) J Fm (V,ao) H(V) clP(V,ao)

is a constant for all H satisfying (12) and satisfying (ll) for the 

given f(a).
Proof; Let H^V) and H2(V) both satisfy (ll) and (12).

Then

F*(V) = Fm (V,aQ) + e HX(V) - H2(V) , e real, is an element of

How consider
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” w  ■ /

F t (v,a )J  m' 9 o '

F*(V) - a

HX(V) - H2(V)

dP(V,a ). If

äP(V,ao) 0, then §§
€=0

4 °-

This contradicts the definition of Fm(V>a0)-

(«0)
We shall use Theorem 1 to define a linear functional A 

on the set of functions f of form (ll), as follows: if f is of form

(ii),

(HO
(a ) r

a ¡jfj » / h (v ) F (V.a ) - am dP(V,a )

where H(V) is any function of V satisfying both (ll) and (12). By

(aQ)
Theorem 1, this defines A |_f J uniquely (no matter which H 
satisfying (ll) and (12) is used in (1*0).

Denote by 0Q the function whose values on A are 0Q (a) = 1J 
and denote by 0 the function whose values on A are 0^ (a) = a. It is

(a )
clear from the definition of A and from the properties of Fm (V,aQ) 

that

(15)

(16)

(a)

(aQ) r 1

(“J

0,

h

S3 0

= D„ (a )m

*i

Thus, evaluation of (cx̂ ) Is equivalent to evaluation of

. It is also clear that
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(a ) r k 1V-1 V  (ao} - -
(17) A °

L* c± f±i=l
- 1  ci Ai=l

f.1

(18)

(a )
We must next prove some continuity properties of A ° 

Theorem 2 : Suppose

f.(a) = f H.(V) dP(V,a) all aeA 

1
and i=oo

and suppose that for each i (including oo ) H^V) can be selected 
among all functions of V satisfying (l8) for the given i in such 

a way that H4 approaches in mean with respect to dP(V,ao).

Then

(19) o (a) - -
f00 = lim A f. 1

i->00 -

Proof:

(“ o> (a ) - -
foo - A °

F (v.a ) - am v 9 o '  o

and the conclusion follows immediately. 
Theorem 3: Suppose

H ( V) - H. ( V)  ap(v,a)00 ]

> all aeA(20) f t (a) = / Hl(v) dP(v,a)

i=i, 2, .
and suppose that for each i, can be selected among all functions 
satisfying (20) for the given i in such a way that the sequence M
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converges in mean to the same function H (V) with respect to dP(V,a) 
for all aeA.

Then

( 21) lim f^cr) = / H^iv) dP(v,a) = f  (a)
i—>00

all oeA

(the last equality is a definition)) and

(a) (a) r
(22) A 0 f00 = lim A 0 f.1

i—>00 _

Proof: (21) is obvious from the hypothesis of Theorem 3 and
(22) follows from Theorem 2.

Theorem k: Let u be in some finite real interval U and let

(23) f(a,u) = J H(v,u) dP(v,a) all aeA
ueU

where, for each u, H(V,u) has finite second moment with respect to 
dP(V,a) for all aeA. Also suppose that \(u) is a function defined on 
U such that \(u) H(V,u) and \(u) f(a,u) are integrable with respect to

u for each VeE , aeA. Define n'

(2k)

(25)

H*(V) = J \(u) H(V,u) du
Ü

f*(a) = J '\(u) f(a,u) du
u

Also suppose that X.(u) H(V,u) is continuous in the mean over U with
respect to dP(V,aQ), and is measurable over the product space E^ X u
for each aeA. Then
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(26)

and

f*(a) = H*(V) dP(V,a) all ae.A

(27)
(aQ) r

H \(u) A [f(.,u)_ du

U
Proof: (26) follows from integrating both sides of (23) 

after multiplying by \(u), and exchanging the order of integration. 

To prove (27), consider the Rieraann sums

£  \(|t) (u. - u ^ )  , where u . ^  ̂  li <  .

Now,

£  f(a,it) fcUp (ut - u.^) = J ^  tfsp H(v,ii) (Ui - u ^ )  ap(v,a)

Also, by the continuity in the mean hypothesis, the Riemann sums

x( |^) HiV,^) (u^ “ uj[ ]_) converge in mean with respect to

dP(V,a ) to H*(V). Thus, (27) follows from Theorem 2. o
Theorems 2, 3, and k are admittedly tailored to the examples

of the next section. Many other similar theorems can be stated— for
(a )

example, giving sufficient conditions for A to commute with 
differential operators; or perhaps weakening the conditions, or giving 

slightly different conditions, for the above theorems.
From this point on we assume that the probability measures 

dP(V,a) have density functions p(V,a). We turn our attention to the 

following function, defined for every fixed Q^eA:
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(28) 0(o0,P,7) = jP P<'p(v,aP'iY;7  ̂ dv ’ reA
(a )

peB
(a )

The notation 7eA, PeB ° means that for the given ct̂f G(a ,p,7) is

( ° 0 )assumed to exist for all 7eA, provided P is in some set B C  A. 
(Examples are given in the next section.) It is clear that p(V,a ) * 0

for some V must imply that p(V,p) = 0 for all peB
(a )

If both
numerator and denominator of the integrand in (28) are zero for some V, 

the integrand is understood to be zero.
We also assume that

(29)
(a.) (aQ)

/  (p z y  p(v'ao) d v <  °° f°r peBi a° c b

(a ) (a )
We may thus for each P£B. 0 consider A 0 acting on G(cx ,P,7)t1 o

(a )
considered as a function of 7. From the definition (14) of A 0 , it 

is clear that

G(«0,P ,.)
(«)

(30) A °

(«)for all PsB^ for which

-  P - a

(3!) J Fm (v,ao) p(V,P)dV = p

(a ) (a )
We denote the subset of B^ 0 for which (3 1) is satisfied by B^ 0 .

Theorem 5: A sufficient condition that a particular p
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(a ) (a )
belonging to B1 ° be in B2 ° is that any sequence of functions 

of V which converges in mean to a function H (V) with respect to 

p(V,aQ) also converges in mean to the same function H^iV) with 

respect to p(V,p).
Proof: F (V,a ) is defined to be the limit in the mean----- m o

with respect to p(V,aQ) of functions satisfying (5) identically in

a. Then F (V.a ) is also the limit in the mean with respect to m o
p(V,0) of functions satisfying (5), for any p for which the stated 
condition of Theorem 5 holds. Thus, (31) holds for any such p.

We now have at our disposal the machinery to compute

in many cases. Eq. (30) gives the valueso (a )D 2(a ) = A ° m N o
(a )

of A ° on a certain family of functions of 7 , each member of the

family corresponding to some peB,
(a )  (aJ

0 . If B gives a sufficiently

large family of functions of 7, we may be able to express 0,(7) = 7  as
(oo)

a linear combination of functions G ,7 ) for PeB^ , or as a

limit of such linear combinations. If this can be done in such a

way as to satisfy the conditions of Theorems 2, 3, kf or the like,
(a )

h can be calculated.

Since G(ao,p,7) is fundamental to this process, it is 
useful to state one more fact concerning it:

n
Theorem 6 : If p(V,a) = "~1 T h^ (v^,a) , all oseA

i=l

(where h^ are density functions)



define

(32) dv.c (1) H  P r5 r hi(vi'p) hi(v 7)Gi (ao'P'r)-J h-J-v-a) 1
and. assume that for all 7eA, G.h) exists for the same values7 1

of £ for each i. Then

(33) G(ao,P,r) = T T  o1(1) (ao,P,r)

(i)In particular, if h^(V,cO = h(V,a), all i; hence, if J (a ,0,7) 

(aq ,0,7) for all i, then

(34) G(ao,P,7) • («0^/7)^ n

Proof: Let E^ j- be the expected value of the quantity
in braces with respect to p(V,7). Then,

n h (v ,0)
G(a ,0,7) - E < T T  ~ r  ---- r

° ' ? ) i=i V W
n \ h.(v.,B)

= n  Gi(1) i«0»p»7)i=i 1 °

III. Examples 
Suppose

(35) p(V,a) = [c(k)]n ±
a

exp
n

i=l
k a positive even integer
a > 0.

Here c(k) is an appropriate normalizing constant. This corresponds
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to estimation of a, using a sample of n from the population
k-L /V- &-XT) -  — ( —a(36)

(37)

h(v,a) = c(k) i exp 2 Ka J

From Theorem 6, it is readily determined that

2
G(aQ,P,7) =

a
* ‘ 7  k k \ 1/k

(aok - Pk ) + ay

a k - pkO K

for 7 >  0, p = a ./ ✓ Q

<a0>It is easily verified (applying Theorem 5) that B^ is the set

P = a .

Now let

(38)

Then

u =
a Po

(a k - £k ) ' o
I7E

p =*
a u o

T7k

(39)

and (30) implies that

(to)

G(aQ,e,7) 3

k , kx (a + u )o

k k \ £ a + u \ k _o_____
k k 7 + u

, 0 = u <  00

A (ao> 1 -a
0 1 -  U - i

, k ^ k 
_\7 + u ) J

i
s Q O
W + % , k k 1 /* 

(aQ + u )

for 0 = u <  00
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(°L)This defines A 0 on the family of functions |(7k + u ) 
0 = u < oo. Now, it can be shown that for 7 ^ 0 ,

-n
k N k

n ^ >
(ia ) 7 = r

n W R ¥ )

n j u du
o / k , k\ (7 + u )

n/k

(*0

This can be derived as follows: let us find ^(u) such that
,njkv

o) k k ;
x(u) (rk + uk )

nrk-1

The expression on the left side of (1̂ 2) can be transformed by
(2)suitable change of variable to a generalized Stieltjes transform' .

It tunas out^2  ̂that

r < & )
(^3) \(u) = - unn

k-1Now, Eq. (1+2) cannot be multiplied by and then integrated
with respect to 7 under the integral, since the result would diverge. 

However, for 0 <  T <  oo, let
/n+k\ 
k ;

(1A) - n f \(u) (rk + uk ) du = fT(7)
J o

where ^ ( 7)— 7 1 as T — »oo for each 7 >  0. Eq. (H) may be integrated 
between zero and 7 under the integral sign, giving

P ( ^ )
(^5)

n w >r ¥ >
p 7

= / fTU )  d?
J o

T n
1 - u

(7k + uk )
n/k du
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Letting T— >oo, we obtain (4-1). Therefore assuming for

the moment the applicability of our method, and recalling that 
(a ) _

A ° I^TJ » 0, all T, we get

0*) a '“« ’
h

nu

tao n ¥ >
n

n ¥ >  n ¥ )

which, after another transformation of variable, gives

1 - u

(a K + u*)o
1 7 k du

(a k + uk ) N o
n/k

( v r ) D 2(a ) = A(ao } m o K
- J

ka r ¥ )
n n/njdx P/k-lv /

M  k ' I  ̂k ' °

v l A
°° (1 * vk) -1n+1

2 _ k N k v (1 + v )

dv

Two special cases of interest are:
a) k=2 (estimation of the standard deviation of a normal 

population)

o 1/2pOO / 2v 7
In this case, / ----— *— dv

V (1 + V )

can be evaluated in closed form (as lim J' "^e
t—>o

result is:
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0*8)
a 2 ( 2 H 2(!Ì)

D 2(a ) = -4- } - 2nm xuto 2n r 2( ^ )
(for k=2)

(i)Now, it so happens v ' that the estimate

P9)
/\a = \jsi D t L ) ±  y

V2 [» L

is unbiased and has variance equal to Dm (aQ) as given by (ij8) for
all a 0. Thus, a given by (¿j-9) is the uniformly minimum-variance 

® -j
unbiased estimate of the standard deviation of a normal population.

b) k— > oo
2As k — >oo, one can evaluate lim D (a ) with the aid3 m o

k —>oo

of the formulas

k(50) lim (l + v ) = max (l,v)
k—>00

(5 1) lim

k-^00

k

r < r >
s n + 1

One obtains

(52)
a

lim  Dm (ao ) = a(n + ¿)
k —>00

As k —^ 00, the probability density function h(v,a) in (36)
approaches

(53) h(v,a) = ̂  , I v = a

« 0 v •> a
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Therefore, it is reasonable to suppose that (52) gives Dm2(aQ) 
for the estimation of a in a population with density function 
given by (53), for a sample of n. That this is in fact the case 
can be checked by applying the above methods directly to a 

population with density function given by (53)* This is left as 
an exercise for the reader. (Here one may use the additional fact

(a ) r i
that in this case A I f J = 0 for any f(a) which is constant

2
for 0 <  a i (̂ o*) ^or estimatiorl a f*1 (53), (a0) is attained
for an dQ by the unbiased estimate

(5*0
Aa n+1

n max
i

To show that the conditions for applying this method of 
evaluation are satisfied (in the general case given by (35)), we 
will first point out that, from the definition of G(aQ,£,7) and

0

from the expression (35) Tor p(Y,oO, it is readily determined that

(55)
, k . kv (7 + u )

--- ^  = J H(V,u) p(V,7) dV

where

(56)

It is readily verified that the conditions of Theorem 4 
(with \(u) given by (43), and U = [ o ,t ] ) and of Theorem 3 are

satisfied.
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Still another example is

(57)
)2v. 2-V.
\ 1 exn i

2 exp 2a

corresponding to a sample of n from a population with density function
2

(58) h (v ,a ) = ^  exp 
or

-V
£

It turns out that

(59) G(ao>ß>7) =
2 2a + u_o______
2 27 + u

n
0 = u < oo

where

(60) u = a0ß
f 2 2»1/2(aQ - P )

> P * a.

and

(a ) (6l) A °
j- - — —

l -«0 1 u
, 2 2 11 U? + u ) J l 2 2\n (ao + u ) \/ 2 2 \Jql + u 1— ' 0

This is exactly the same as (1(0) for k = 2, with n in place of

(62) D 2 (a )m v o
a P  (n + l)

P 2(n + §)
- n

Since the mean v in (58) is given by

ölcvj
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the minimum variance of unbiased estimates of the mean is just —It
times Dm (d^).

There are some cases in which 0^(7) - 7 must be expressed 

in terms of a differential operator acting on G(aQ,£,7), e-S*

+ constant^

As an example, the reader might try applying the above methods to 
the case of estimation of the mean of a normal population with 
known variance. (The classical results are readily obtained.)

IV. More than One Unknown Parameter
The present section will extend the above results to cases 

where there is more than one unknown parameter. Since the development 
parallels that of the above sections closely, and the theorems are 

proved in the same way, we will not give detailed proofs of the various 

steps in the argument.
Consider a family -jdP(V,a)j- of probability measures over 

Euclidean n-space En, where V = (v1, . . . , vn ) € En and Ct m 
(c^, . . . , aK ) belongs to some parallelopiped A in E^. It is assumed 
that the measurable sets are the same for all a in A. By "function of V" 
we mean a function measurable on the sample space En for all dP(V,0i).

By "unbiased estimate of a " we mean any function F(V) satisfying

(6h) F(V) dP(V,a) = °i all aeA
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(integrals with respect to V always are taken over En .)

Let Ct̂ - (a n̂, . . . , aoK) denote a particular point of A.ol'
For any given F and a 9 consider

(65) I F(v) - aol dP(V,aQ)

We assume henceforth that at least one function F(V) exists 

satisfying (6^) for all QieA and for which (65) is finite.
Define

(66) D d(a ) = greatest lower bound of (65)m o
for all F satisfying (6^).

(a )
For any given <X , consider the set C 0 of functions of V 

consisting of all functions satisfying (6^) for all aeA and having 
finite second moment with respect to dP(Vyceo), and the limits in the 

mean of such functions with respect to dP(V,ao). There is a unique 
(with probability one) function, denoted by F^V^a^), which minimizes

(a )
(65) for all functions in G . (

(67) J \ ( V , « 0) dP(v,aQ) = aol

(68) D 2(a ) = fm O J Fm(V’ao> -«ol ap(v,a0)

Now consider functions f(a) defined over A of the form

(69) f(a) =» f H(V) dP(V,a) , all aeA

where
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(70) J V ( v )  ap(v,ao) <  00

(a)
We define a linear functional A ° on the set of functions 

f of form (69) by

(71) a '“ 1 M  - F (v,a ) - a nr 9 o ol H(V) cLP(V,ao)

where H(v) is any function of V satisfying (70) and satisfying (69)
(«0) f 1for the given f. This can be shown to define A [f J uniquely

(regardless of which particular H satisfying (69) is used) by the same
reasoning as employed in Section IX.

Denote by 0 the function of a whose values on A are ro
0 (O) ss 1* and denote by 0^ the function of a whose values on A

are 0̂ (05) = <3̂ . Then

(c l ) 1r 1
(72) A

1k j

toJ r 1
(73) A

1 *

0

= Dm <“o>

Linearity and continuity properties can be shown for

A 0 similar to those proved in Section II.
Also, as in Section II, we now suppose that the probability 

measures dP(V,a) have density functions p(V,a) and we consider the 

function

(a )

(7*0 G(ao,p,r) = J  dv * r *
(aJPeB
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(a) (a )
Also assume that for (3eB̂  ° C B  °

(75)
I  f e “

1  2
«IT p(V,aQ) dV <  oo

(a )
Thus, we may consider A ° acting on G(a ,£,7 ) considered as a function

(«)of 7 for each PeB^ . From (7l)

(76) A( q) J^G(ao,ß, . )j - ß1 - aol
(a )

for all w for which

(77) f  Fm (v >a 0) p(V,ß) dV = Pl-

(a ) (a )
We denote by B 0 the subset of ° for which (77) is satisfied.

Also, we may state that if

n
(78) p(V,a) = I I h(v.,a) , all aeA

i=l

(where h(v^,a) is a density function), then

(79) G(aQ,ß,r) = Jg (i )(c(o ,p ,7) J

where

(8o) GW(ao,0,r) = J  h(v,ß) h(v,7). dvk(v,ao)

We will apply this to the case of estimation of the standard 
deviation of a normal population with unknown mean. In this case, let
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1(8 1) h(v,a) =
\/2jr

exp
v - “2

®L

where - oo < a < oo; <2-, >  0.

Also, for n = 2, let

(82)
n

p(V,a) = TT h(v^,a)
i=l

It is readily determined that, for (3 such that (3-̂ = a 0î

(83) G(aQ,ß,7)
aol

2n

f 2 2 a c. c- c-\
(aol ?1 + aol Pi " Pi 71 )

2 2 2 2 ~nj2

X exp - n
a

23

2-y ¿o 2 2q 2 2  ̂g 2 2 2
ol 71 ^ 2  ol P1 7 2 P1 71 ao2

2a 2 2
ßl 71ol

p p pa / x  ß^ + a _ ol 1 2 ol ^ 272 - f ^ V ao2]

+ n
^ o l W  [aa l V  + “o l V  - »lV ]

It is clear that D 2(a ) is independent of the true value of m o
the mean— i.e. of ^q2”~SC) no Seneral ^ y  is l°s^ "by setting 55 0*
Then (83) simplifies to
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(8*0 G(oe0>&,7) =
a 2n
ol

, 2 2 2„ 2  ̂2 2n 
âoi ri + ad  h  - h  *i >

n72

X exp \ - n
20 2 , 2 2

71 ^2 72
2 2 2 ^  7X

+ n

2 f  2 2
°bl |̂ 71 ^2 + ^1 72

OQ 2 2 2 2 2 2 2 2 
2^1 71 aol 71 aol ^1 ^1 71

Now consider a function \(p„) defined by

(85) i n r  „ 2
vl/2

^  V “ o l  -  P1

exp
-n&

2(“ol2 - Pi2)

We have

oo
(86) f  \(e2) G(aQ,p,7) d02 =

-00

aol
\ / 2 2 _ _Van 7n + a- - f3n 72_ 2 0 2 £ 

ol '1 ' "'ol P1 “ P1 71

n-1

and

oo
(87) ^  " a0i^ ^ 2  “ ^1 aol

-00

Thus, integrating both sides of ( 76) , (which holds for 
all p such that = aol)j with respect to \(£2)dP2, we obtain
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( 88)
(a)

A °

n-1
abl

Vr 2 2 2~ 2 7 2 1
“ol 71 + °ol P1 - P1 71

= P, - a1 ol
But this is of precisely the same form as Eq. (bo) of 

Section III (for k = 2), with n - 1 in place of n. Thus, we can now 
apply exactly the same methods as applied in Section III to obtain

(89)

v2 2 /n-1 .
- P 2 '2/_ x ol J Ia (n-iy

Dra (“.) * STnTT r <i>
- 2(n-l)

Consider the unbiased estimate

(90) /\ai = y i r (t) n I (vi - v )2
i=l

where

(91)

/ -3 \ 2
According to Cramer'^ , Ct̂  has variance equal to (aQ) as 

given by (89).
Using (89) and the results of Section III, we can compare 

the results for unbiased estimation of the standard deviation of a 
normal population a) with known mean, and b) with unknown mean. It

HlCVJ
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2is seen that Dm (aQ) for case b), for a sample of n, is equal to
2(aQ) for case a), for a sample of n-1.

2We may apply the same methods to obtain Dm (aQ) for the

unbiased estimation of the mean of a normal population of unknown 
variance. It is convenient to retain the notation of Eq's. (8l), 

(83), and (8*0 , and to substitute the subscript 2 for the subscript 1  

in Eq's. (6*0-(7l), (78), and (77)- Also, we may again without loss 
of generality set aq2 =0. It is then easy to verify that

2
(92) G(a0 ,p,r)

Thus, (where now 01(a) = a2 for aeA),

(93)

2aol
n

which is the classical result.
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