
December 1991 UILU-ENG-91 -2252
CRHC-91-31

Center for Reliable and High-Performance Computing

COMPILER-ASSISTED MULTIPLE INSTRUCTION RETRY

Chung-Chi Jim Li, Shyh-Kwei Chen
W. Kent Fuchs, and Wen-Mei W. Hwu

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

U iN U L A ò à ir I L O
SECURITY CLASSIFICATION OF fm$ PAGÉ

REPORT DOCUMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CRHC-91-31

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research
6c ADDRESS (Gty, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS (C/ty, State, and ZIP Code)

800 N. Quincy St.
Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING
o r g a n iz a t io n Joint Services

Electronics Program
8b. OFFICE SYMBOL

(If applicable)
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014- 90-J-1270 and N00014-91-J-1283
8c ADDRESS (City, State, and ZIP Code)

800 N. Quincy St.
Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)
Compiler-assisted Multiple Instruction Retry

12. PERSONAL AUTHOR(S)L i j chung_c h i Jim; chen, s -K . , Fuchs-, W. Kent; Hwu, Wen-Mei

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical FROM TO 91-11-25 31

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

rollback recovery, fault-tolerant computing, compilers

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This paper describes a compiler-assisted approach to providing multiple instruction rollback

capability for general purpose registers. The objective is achieved by having the compiler re
move all forms of N-instruction anti-dependencies. Pseudo register anti-dependencies are re
moved by loop protection, node splitting, and loop expansion techniques; machine register anti
dependencies are prevented by introducing anti-dependency constraints in the interference grapt
used by the register allocator. To support separate comilation, inter-procedural anti-depen
dency constraints are added to the code generator to guarantee the termination of machine
register anti-dependencies across procedure boundaries. The algorithms are implemented in
the IMPACT-C compiler and experiements are performed to evaluate the effectiveness of this
approach.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
0UNCLASSIFIED/UNUMITED □ SAME AS RPT. □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified ____

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

D D FO RM 1473,84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED
S E C U R I T Y CLASS! ' » T IO N O F T H IS P A G E

SUBMITTED TO: IEEE TRANSACTIONS ON COMPUTERS

C o m p ile r -A s s is t e d M u lt ip le I n s t r u c t io n R e t r y

Chung-Chi Jim L i , Shyh-Kwei Chen, W. Kent Fuchs, and Wen-Mei W. Hwu

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1101 W. Springfield Ave.

Urbana. IL 61801

Correspondent: W. Kent Fuchs
Tel: (217)333-9731

FAX: (217)244-1764
Email: fuchs@crhc.uiuc.edu

Abstract

This paper describes a compiler-assisted approach to providing multiple instruction rollback
capability for general purpose registers. The objective is achieved by having the compiler remove
all forms of X-instruction anti-dependencies. Pseudo register anti-dependencies are removed by
loop protection, node splitting, and loop expansion techniques; machine register anti-dependencies
are prevented by introducing anti-dependency constraints in the interference graph used by the
register allocator. To support separate compilation, inter-procedural anti-dependency constraints
are added to the code generator to guarantee the termination of machine register anti-dependencies
across procedure boundaries. The algorithms are implemented in the IMPACT C compiler and
experiments are performed to evaluate the effectiveness of this approach.

Index Terms: rollback recovery,'fault-tolerant computing, compilers

This research was supported in part by the Joint Services Electronics Program (U S. Army. U.S.
Navy, and U.S. Air Force) under Grant N00014-90-J-1270. and in part by the Department of the Navy and
managed by the Office of the Chief of Naval Research under Contract N00014-yi-J-12S3.

mailto:fuchs@crhc.uiuc.edu

1

I . I n t r o d u c t i o n

A. Multiple Instruction Retry

The capability of retrying a few instructions is desirable in situations requiring rapid recovery

from transient processor failures. This involves preserving the state of memory locations and CPU

registers. If all errors can be detected immediately, single instruction retry is sufficient. This has

been successfully implemented on commercial machines, such as IBM 4341 processor [1] and VAX

8600 processor [2]. If the target position of the rollback is an established checkpoint rather than a

point within a sliding window [3], the state of memory locations can be preserved by copying the

old values of all updated locations to a push-down stack, and the state of CPU registers can be

preserved by copying to a backup register file. When an error occurs, the contents of the backup

register file is copied to the working register file and the contents of the push-down stack is applied

to the memory system in reverse order. This approach is implemented in the IBM 3081 processor

with a checkpoint interval of 10-20 instructions [4, 5].

If the target position of the rollback is anywhere within a sliding window, the general approach

is to delay the effect of write operations by N instructions. The delayed writes to main memory can

be achieved by providing a delayed write buffer [3] or by modifying the cache coherence protocol

[6] ; the delayed writes to CPU registers are usually achieved by replicating the entire register file

[7] or by providing another delayed write buffer [3]. The basic assumption is that the usage pattern

can not be predicted. However, if the program is written in a high level language, the usage of the

general purpose registers is controlled by the compiler. This paper describes the use of compiler

technology to preserve the state of CPU registers within a sliding window in order to facilitate

multiple instruction retry.

2

Due to environmental variables, it may be difficult to determine the optimal value for N until

the system is in operation. Also, a new device may have a higher N than originally expected.

Therefore, it may be desirable to have a recovery mechanism that can adapt to different N after

the system is installed.

Our approach is to let N be a compile-time parameter. The resulting executable code will

not destroy the content of a register until it is voided for more than N instructions. This property

is obtained by prohibiting all anti-dependencies [8] within N instructions.

B . E rror M o d e l

To clarify which errors are considered in this multiple instruction retry scheme, we have made

the following assumptions:

1. CPU errors and memory errors are detected before the register contents cam be contaminated.
Otherwise, incorrectly fetched instructions can nullify any flow information recognized by the
compiler.

2. The maximum error detection latency is N instructions.

3. There is an external device or a buffer inside the CPU that records the executed instructions
with capacity C > N. This is to facilitate the rollback of the program counter.

4. There is a delayed write buffer [3] for the memory system with capacity C > N. Otherwise,
the memory system can not rollback to a state consistent with CPU registers.

5. The CPU state can be restored by loading the correct contents of the register file and the
program counter.

C. A n ti-D e p e n d e n cie s

There are generally three types of dependencies between instructions: 1) flow dependency

(read after write), 2) anti-dependency (write after read), and 3) output dependency(write after

write) [8]. The flow dependency and the output dependency do not impair rollback capability, but

the anti-dependency does. These situations are illustrated by the simple sequential code in Figure 1.

3

x dead

Ii : x = a -f 6

x dead

Ij : x = c + d

x correct
s---

(a) flow dependency IiS{lj (b) anti-dependency I{S%Ij (c) output dependency It6°Ij

Figure 1. Types of dependencies and their impact on rollback capability

Assume that an error requiring multiple instruction rollback is detected at the cross mark and there

are no other instructions containing variable x except those shown in the figure. In Figure 1(a),

there is a flow dependency from instruction to Ij based on variable x (denoted by IiS^Ij). If

the program counter is rolled back to a point before the execution of instruction / t-, the program

will produce the correct result since variable x is dead and will be reloaded in instruction If the

program counter is rolled back to a point after the execution of the program will also produce the

correct result since x now contains the correct value. Similar arguments hold for the points after Ii

in Figure 1(b) and all points in Figure 1(c). However, for the points before /,• in Figure 1(b), x now

contains the incorrect value c + d rather than its expected value. Therefore, to achieve complete

rollback capability, the anti-dependencies within N instructions must be prohibited.

Anti-dependencies come from two sources: 1) when the intermediate code generator assigns

live values to pseudo registers (or symbolic registers) [9], and 2) when the register allocator assigns

pseudo registers to machine registers. An example of the former case is the x variable in Figure 1(b).

The intermediate code generator will assign a pseudo register, say ijt, to variable x and generate

4

an anti-dependency. This type of anti-dependency is a pseudo register anti-dependency. The latter

case may introduce anti-dependencies on machine registers even when two values reside in different

pseudo registers. For example, in Figure 1(a), if the pseudo register tm for variable a and the pseudo

register in for variable c are assigned to the same machine register rj., then an anti-dependency

occurs between instruction and Ij on r T h i s type of anti-dependency is a machine register

anti-dependency.

One simple approach to resolve both types of anti-dependencies is to insert enough nops

(or other redundant operations that will not change the state of the register file) between the

use and definition that cause the anti-dependency. However, the execution time will be increased

dramatically. Figure 2 shows the effectiveness of applying compiler techniques to resolve the pseudo

register and machine register anti-dependencies compared with the simple nop insertion approach.

The program under test is the 12 queen problem which is one of the benchmarks described in

Section V. Figure 2(a) shows the run time overhead compared with the original run time of 17.0

seconds on a DECstation 3100. The x-axis is the intended anti-dependency distance iV. The y-axis

is the percentage overhead. The dotted line is for the version that utilizes only nop insertion. The

dashed line is for the version that resolves machine register anti-dependencies and then applies nop

insertion to resolve the remaining anti-dependencies. The solid line is for the version that resolves

both pseudo register and machine register anti-dependencies and then applies nop insertion to

resolve the inter-procedural anti-dependencies. From the figure, it is clear that applying compiler

techniques to resolve anti-dependencies can significantly reduce the run time overhead compared

with just inserting nops. The size overhead, measured by the number of machine instructions, is

shown in Figure 2(b). It is not improved or, in some cases, it is even worse than just inserting

nops. However, this is of less importance unless the cache miss problem becomes serious for very

Time i Size j
450%- • '■ pseudo+machine+nop 450%**
400%* . -------machine+nop 400%**
350%- 350% *'
300%- * ̂0 0 300% -
250%* 0 *» ̂0 250%*'
200%* 200% -
150%- * ..*** . 150% -
ioo%- 100% -
50% • 50% -

o%-
-50%

0%

¿ 2 3 4 5 6 7 8 9 10 N
-QU /0

(a) Run time overhead

"■ — pseudo+machine+nop
-------machine+nop

I I >- I I <--- H— I----1—*-
1 2 3 4 5 6 7 8 9 10 N

(b) Size overhead

Figure 2. Effectiveness of applying compiler techniques on the QUEEN benchmark

large programs. Our primary goal is to minimize the run time overhead.

D. Approach

Compiler techniques have been used to assist error recovery at the process level. For example,

checkpoint decision [10] and multi-processor state compression [11] can be achieved by having the

compiler insert code in the program. Also, algorithm-based error detection [12] can be assisted

by having the compiler analyze the source code. This paper is different in that it introduces

a coherent method to provide a particular property of programs for purposes of error recovery.

Most of the compiler techniques used in this paper, such as node splitting and loop expansion,

are variations of well known techniques that have been applied for other purposes [9, 13]. Our

contribution is the formulation of the register state preservation problem as an anti-dependency

removal problem, the provision of a practical solution that uses well-developed compiler techniques,

and an implementation with experimental results.

Section II describes the removal of iV-instruction pseudo register anti-dependencies by loop

6

protection, node splitting, and loop expansion techniques. Section III describes the prevention

of iV-instruction machine register anti-dependencies by introducing anti-dependency constraints

in the interference graph used by the register allocator [14, 15]. Since the machine register anti

dependency can exist across procedure boundaries, the inter-procedural anti-dependency constraints

are introduced in Section IV to support separate compilation. The algorithms are implemented

in the MIPS code generator of the IMPACT C compiler [16] and experiments are conducted to

evaluate the performance of this approach. The results are reported in Section V .

II. P seu do R e g iste r A n t i-D epen d en cies

A. The Problem

The input we consider is a flow graph G(V,E) where V is the set of nodes and E the set of

edges. Each node /,• 6 V represents an instruction. If there is a direct control flow from instruction

/,• to instruction Ij, then there is an edge (/,-,/,) 6 E. Define the distance d(Ii,Ij) to be the

smallest number of instructions on any path from /,• to Ij. The distance from a node to itself is

0. An instruction /, is called self-anti-dependent if e.g., Jt- : x = x + a. The objective is.

to remove all pseudo register anti-dependencies within distance N (i.e., and d(It, Ij) < N)

while still maintaining the semantics of the code.

The pseudo register anti-dependencies can be resolved by code transformation, pre-pass code

scheduling [17], or a combination of both. The former approach renames pseudo registers but

maintains the relative order of instructions; the latter approach changes the order of instructions

but does not rename pseudo registers. Both approaches require the insertion of extra code. This

paper utilizes the code transformation approach. After the transformation, only register allocation

7

and code emission as described in the next section are allowed; otherwise, the iV-instruction anti

dependencies may reemerge if other phases of the compiler, such as loop optimization, change the

sequence of the code.

B. Resolvability

The basic approach to resolving an anti-dependency is to rename the pseudo registers. For

example, in Figure 3(a), there is an anti-dependency I26fxh that needs to be resolved if N = 3.

This can be done by simply renaming the £1 in I3, I4, and I5 to is since the value in £1 is dead

at the entry of / 3. However, some flow graphs do not allow proper renaming. For example, in

Figure 3(b), the anti-dependency h 6fxI2 can not be resolved since any renaming of the tY in I2 will

result in a renaming of £1 in 1$ to the same new pseudo register in order to maintain the semantics.

Similarly, / 2<$t03/ 3 can not be resolved either. This problem can occur even in acyclic graphs. For

example, in Figure 3(c), the anti-dependency I4<$£ J3 can not be resolved since any renaming of tx

in I3 will result in the same renaming of t\ in Is- If the £1 in Is is renamed, so is the £1 in I\ and

hence the £1 in I2 and I4.

The problems presented in Figure 3(b) and 3(c) are formally described as follows. For each

pseudo register x, initialize the set of symbols Zx = <j>. If an instruction /,• defines x, put a symbol

i f in Zx\ if it uses x, put a symbol I f in Zx. Then define an equivalence relation = x on Zx as

follows: if x is defined in x is used in and the definition of x in Ij belongs to the set of reaching

definitions [9] of /,• (i.e., all definitions that can reach /,• without being redefined along the path),

then we have i f = x I f . Naturally, the equivalence relation = x is reflexive, symmetric, transitive,

and can partition the set Zx into disjoint subsets [18]. An anti-dependency IitixIj is unresolccible if

and only if I f = x i f since the renaming of x in one instruction requires all occurrences of x in all

8

(a) resolvable I2̂ xh (b) unresolvable (c) unresolvable I ^ h

Figure 3. Resolvability of anti-dependencies

the other elements belonging to the same subset to be renamed to the same new pseudo register

in order to maintain the correct semantics. This is exactly what happened in Figure 3(c). Since

I* = ti /J , J* = tl i j and ig = tl /g , by symmetry and transitivity, we obtain i j s tl Therefore,

the anti-dependency 4̂ ^ /3 is unresolvable.

To handle the unresolvable iV-instruction anti-dependencies, we can transform the original

code by the following two methods: 1) node splitting, and 2) loop expansion. The former breaks

the 3 X relation between the nodes; the latter effectively increases the distance between the two

instructions that cause the anti-dependency. Before presenting the two methods, we need to describe

the loop structure of the program that guides the application of node splitting and loop expansion.

Also, we need to describe a preparation step called loop protection that inserts code in the program

to prevent the loop structure from being destroyed by node splitting.

9

C. Loop Structure

A backedge is an edge such that h dominates It (i.e., any path from the initial node

of the program to It must go through /*) [9]. h is called the header and It the tail. The natural

loop induced by the backedge (It,Ih) is the node Ih plus the set of nodes that can reach It without

going through h [9]. In this paper, we define a loop Lk to be the union of all natural loops induced

by backedges that have the same header h. In other words, a loop has a single header and at least

one backedge associated with it.

Most of the programs written in structured high level languages use nested iteration constructs

such as the while loop. Therefore, we only consider programs with nested loops. If this is not the

case, nop insertion can always be used to resolve the anti-dependencies. The relationship among

the loops can be represented by a tree. The root of this tree stands for the entire flow graph,

each interior node indicates a loop, and each leaf node is an instruction. For example, the tree in.

Figure 4(b) describes the loop structure of the flow graph in Figure 4(a). Instruction I6 belongs

to loop ¿2 (the inner loop) which in turn belongs to loop X3 (the outer loop). Obviously, loop L3

belongs to the entire flow graph represented by the node Lq.

The level of an anti-dependency is the lowest level of the tree such that the paths

causing d(Ii,Ij) < N are entirely contained in a loop of that level. Our general approach is to

successively reduce the levels of the iV-instruction anti-dependencies until all of them occur at the

top level and get resolved.

To determine the actual processing sequence of the loops, we define a relation -< on loops as

follows: Li -< Lj if the nodes in Li is a proper subset of Lj. Li is called an inner loop of Lj and Lj

an outer loop of Li. The relation -< is transitive and defines a partial ordering of the loops. The

10

(a) nested loops (b) loop structure

Figure 4. Program loop structure

loops can then be sorted into an array by a topological sort algorithm [19]. The generated array

gives the processing sequence of the loops, which is not unique. However, as long as we process from

the beginning to the end of the array, inner loops must be processed before their corresponding

outer loops. For example, the processing sequence of the loops in Figure 4 could be L\. Lo, Z3. L0.

or it could be L2 , Li, X3, Lq.

D . L o o p P ro te c t io n

An anti-dependency is to be resolved by node splitting or loop expansion. However, if the anti

dependency is to be resolved by node splitting and a loop header is one of the nodes to split, more

11

loops and anti-dependencies will be generated which in turn requires more splitting. To prevent

this abnormal situation, the loop should be protected relative to the pseudo register that causes the

anti-dependency. Also, when we use loop expansion to resolve an anti-dependency, the targeted

pseudo register may not be able to be renamed freely because it is used outside the current loop.

This situation also requires the loop to be protected. The loop protection technique described in

this subsection is actually a preparation step for node splitting and loop expansion.

If a pseudo register tk causes an anti-dependency in a loop, the protection is done by renaming

every tk in the loop to a newly generated pseudo register and inserting nodes at one or more of

the following positions:

1. Header position: right before the loop header and inside the loop, performing U = tk.

2. Preheader position: right before the loop header but outside the loop, performing i, = tk.

3. Tail position: between each tail node and header, performing tk = U.

4. Exit position: between each exit node and its target, performing tk = £t‘.

The nodes inserted at the header or preheader positions are called save nodes and the nodes inserted

at the tail or exit positions are called restore nodes. The insertion is performed only if tk is live at

that point. For example, for loop L\ in Figure 4(a), the header and preheader positions are both

between I\ and I2, but the former is inside the loop receiving all incoming edges and the latter is

outside the loop receiving only the incoming edge from I\. The tail position is between I3 and I2,

and the exit positions are between I2 and /s, and between I2 and I4.

To determine which positions require node insertion, the following definitions should first be

understood. The extended loop Lh(tk) relative to pseudo register tk consists of all nodes in Lk

and all nodes /,• satisfying the following conditions: 1) tk G liveJn(/,•), where liveJn(/,•) is the set

of live variables at the entry point of /,• [9], 2) /,■ has only one successor, and 3) /, has only one

12

predecessor I j , and 4) I j is in Lk. For example, the extended loop of L\ in Figure 4(a) consists of

I2, / 3, and / 4, if tk is live at the entry point of J4. If tk is dead at every exit point of Lh{tk), the

extended loop is safe. The stripped graph VhC?h,~Eh) is a subgraph of G(V , E) such that V h = V

and ~Ek = E — {all backedges}. The outer-stripped graph GhiV^yEk) is a subgraph of G(V , E) such

that Vk = V and Ek = E - {all backedges associated with loops that are outer loops of Lh)- The

hazard set H {G) of a graph G consists of all pseudo registers tk such that Ii6fkIj, d (/t-, I j) < N ,

and 1“ = tfc / / , using only nodes and edges in G. In other words, the hazard set is the set of pseudo

registers that result in unresolvable anti-dependencies. The exclusive hazard set X (G ,L k) of a

graph G is the set H (G) excluding all pseudo registers that do not result in anti-dependencies if

the inner loops of Lk do not have anti-dependencies. The split set S(G, tk) of a graph G consists of

all nodes in G that need to be split relative to pseudo register tk using the node splitting algorithm

to be described in the next subsection.

The loop protection algorithm is outlined in Figure 5. The outer most if statement checks the

hazard set of Gk rather than G because the anti-dependencies in outer loops should be resolved at

the outer loop level rather than the current level. The first condition in the for loop is for the node

splitting step to prevent the loop structure from being destroyed. The insertion is at the preheader

and exit positions because all backedges have been disabled in Gk and the multiple definitions

that result in the node splitting must come from outside the loop (the criteria for node splitting is

described in next subsection). The second and third conditions are for the loop expansion step to

provide the renaming capability after the loop is expanded. The insertion is at the header, tail, and

exit positions because we want every iteration of the expanded loop to have unique set of save and

restore nodes in order to rename the pseudo registers freely. The last for loop is used to protect

the inner loops if the loop structure is to be destroyed due to the anti-dependencies of the current

13

if (H(GK) ï<t>){
for (each, tk 6 H(Gk)) {

if (the header node Ik is in S(üh,tk))
protect Lh by using the preheader and exit positions;

else if (Zfc(ifc) is not safe)
protect Lk by using the header, tail, and exit positions;

else if (any tail node It of Lk is in S(Gk,tk))
protect Lk by using the header, tail, and exit positions;

for (each inner loop Lu o f Lk)
if (tk is live at the entry of Lu and tk € X(G k))

protect Lu by using the preheader and exit positions;
}

}

Figure 5. The loop protection algorithm

loop. The insertion is at the preheader and exit positions due to the same reason for the first if

statement in the for loop.

E. Node Splitting

Since the loop body must be made resolvable before the loop can be considered, we describe

the node splitting technique before loop expansion. Various forms of the node splitting technique

have been used in other parts of optimizing compilers [9]. In our approach, the purpose of node

splitting is to break the I? = tfc i f relation if tk is in the current hazard set.

A node /,• will be in the split set S(Gk,tk) if tk € live_in(/t) and there are more than one

definition of tk that can reach After the splitting, two copies of the originally connected nodes

are connected if they are compatible, i.e., they have the same reaching definition of tk. The algorithm

is outlined in Figure 6. Note that the header will not be in the split set since the loop has been

protected.

Figure 7 shows the resulting flow graph after the code segment in Figure 3(c) is processed by

14

for (each £fc € H(@h))
if (S(Gh)*4>) {

split all nodes in
match the split nodes by a set of edges;

}
rename the pseudo registers;

Figure 6. The node splitting algorithm

Figure 7. Application of the node splitting algorithm

the node splitting algorithm relative to the pseudo register t\. The use of t\ in I2 has a unique

reaching definition from I\\ therefore, I2 is not to be split. The situation is the same in node I4 .

However, both definitions in I\ and / 3 can reach / 6. Therefore, we have a non-trivial node splitting

on / 6 resulting in the / 6 and / 7 in Figure 7. The final pseudo register renaming is done by changing

the ¿1 in i i , I2 , J4, and I7 to in , and the t\ in I3 and Iq to £12.

The node splitting technique works because of the following three reasons: 1) all the N-

instruction anti-dependencies in the inner loops have been resolved since we process the loops from

inside out, 2) the live ranges of the variations of tk (i.e., the definitions of £* before the renaming)

15

do not intersect, and 3) the definition always occurs before its use unless there is an unresolved

inner loop, which is impossible because it contradicts the first condition. Since an anti-dependency

requires a read before write, they must belong to different live ranges and can be renamed to

different pseudo registers.

If there are no back edges outside the current loop body, i.e., at the root level of the loop

structure, the anti-dependency can simply be resolved by removing all unnecessary save and restore

nodes (usually, too many are generated by loop protection and node splitting). However, if there

is a back edge outside this body, anti-dependencies may occur in the following cases: 1) between

the use of a variation of tk and its definition, going through the back edge, or 2) between the nodes

at an upper level. The latter will eventually be resolved since we are working from inside out. The

former is the subject of loop expansion.

F. Loop Expansion

Loop expansion is used to increase the distance between the nodes that cause an anti

dependency. The algorithm is outlined in Figure 8. The expansion itself is simply done by repli

cating all nodes and internal edges, connecting the tail of each iteration to the header of the next

iteration, and connecting the tail of the last iteration to the header of the first iteration. Notice

that the loop to be expanded is the extended loop Lh rather than Lh. Otherwise, the uses of tk

outside the loop may prevent the definitions of tk in the loop to be freely renamed. The most

important thing is to determine the constant T, i.e., the number of times the loop needs to be

expanded (T = 1 means no expansion).

There are two kinds of anti-dependencies that need to be considered. One goes through the

back edge and occurs only when there is a flow dependency in the loop body; another does

16

if (JT(ÖO#^){ . , r l
define a set of flow dependencies F = { I j6£li\Ii € Lh,Ij € Lh}',
for all flow dependencies IjS[li € F , find the maximum T f(I i,I j) and denote it Tf. r.r if -d(iijj)>N

Tj(Iiylj) - | + 2 if d (IiJ j) < N

define a set of anti-dependencies A = {Ii6%Ij\Ii 6 € Lk}\
for all anti-dependencies 6 A, find the maximum Ta(Ii,I j) and denote it Ta:

if * is dead at the entry of Ihf 1 if

T = max(T/,X»);_
expand the loop Lh to T consecutive iterations;
rename all pseudo registers;

x is live at the entry of Ih

Figure 8. The loop expansion algorithm

not go through the back edge and occurs when there is an anti-dependency in the loop body itself.

Therefore, we have two formulas shown in Figure 8 to calculate the number of times to expand.

The constant D is the shortest distance from I\ to any tail node It. The formula for Tf(Ii,Ij)

is derived from the fact that, after the expansion, the distance between It- and Ij is increased to

d(IiJt) + (Tf (I i ,I j) - 1) x (D + 1) + 1 + d(Ihylj) which should be greater than N. Similarly, the

formula for Ta(/t, Ij) is derived from the fact that, after the expansion, the distance between /,• and

Ij is increased to d(IiyIt) + (Ta(I » I j) - 2) x (D + 1) + 1 + d(Ih,I j) which should be greater than

N. The final T is just the maximum of the two numbers T/ and Ta.

The loop expansion technique is illustrated in Figure 9. The loop shown is an expanded loop

of Figure 3(b) with T = 2, assuming the last use of ti is in / 5. Instructions J6, I7 , la, and /9 are

copied from I2 , h , U, h with is replacing the t\ in Zs, I7 , and / 9, and i9 replacing the t3 in U and

I7. The distance for the anti-dependency has been increased by 3, i.e.. the length of the

loop body. Since all anti-dependencies go through the iteration boundary after the node splitting

17

Figure 9. Application of the loop expansion algorithm

step, the distance can be increased indefinitely by increasing T. Therefore, the N- instruction

anti-dependencies are resolved.

III. M a c h in e R e g iste r A n t i-D epen d en cies

The machine register anti-dependencies may be resolved by register allocation, post-pass code

scheduling [20], or a combination of both. This paper examines the former approach.

A. Machine Model

The CPU model we consider in this paper does not have out-of-order execution, multiple

instruction issuing, run-time register reordering, or register windows. Pipelining is allowed as long

18

as the hardware can guarantee a precise instruction boundary when the error being detected requires

a rollback.

The state of the Program Counter (PC) is preserved by an external recording device or by

shadowing registers such as described in the micro rollback scheme [3]. The Program Status Word

(PSW) is either not used in user space or is preserved by shadowing registers. Depending on

the specific micro architecture, the Stack Pointer (SP) may be considered a special register (e.g.,

many 16-bit CPUs) or a general purpose register (e.g., most of the 32-bit CPUs). Our objective

is to assign the general purpose registers such that the final code does not have any N -instruction

machine register anti-dependency on the general purpose registers.

B. Register Allocation

Most register allocators that can handle global register assignment use the graph coloring

method [14, 21]. By way of an interference graph, the register allocator guarantees that two values

that may be simultaneously live do not occupy the same machine register. This type of constraint

is called a live range constraint. If there are not enough registers available, spill code is generated to

put aside some live values to main memory. For example, the solid lines in Figure 10(b) represent

the live range constraints for the flow graph in Figure 10(a). The edge between £i and ¿2 indicates

that they may be live simultaneously, i.e., in instructions I2, I3, and I4. If we have no less than 3

registers available, the code in Figure 10(c) could be generated; otherwise, some values such as f3

may need to be spilled.

However, Figure 10(c) is not free of iV-instruction machine register anti-dependencies if N = 2.

Registers rx and r2 are defined right after their use. Therefore, another type of constraint, called

an anti-dependency constraint, is incorporated in the interference graph to prevent this situation.

19

(a) a flow graph

(c) only live range constraints (d) both types of constraints

Figure 10. Adding the anti-dependency constraints to the interference graph

20

The anti-dependency constraint is stated as follows:

Any value being defined in the current instruction can not occupy a register that has

been assigned to some value used within the previous iV instructions.

The anti-dependency constraints for the flow graph in Figure 10(a) are represented by the

dashed lines in Figure 10(b). If both types of edges exist between two nodes, only the solid line is

shown. The resulting code is shown in Figure 10(d). Note that the minimum number of registers

required has been increased from 3 to 4. If we have less than 4 registers available, some values such

as ¿3 need to be spilled.

Spill code may result in another problem: if two values in two consecutive instructions are

both spilled and use the same spill register, then an N-instruction anti-dependency immediately

follows if N is larger than the distance between the two spill code. For example, in Figure 10(a),

if t\ is spilled, the following spill code is generated for instructions I2 and Iy.

load ris by the value of t\ from memory
r2 = r 15 * 3
load 7*15 by the value of ¿1 from memory
7*3 = 7*15 — 7*2

where register 7*15 is the spill register for operand 1. The anti-dependency between the second and

the third instructions is easily seen. To resolve this problem, nops are inserted between them to

increase the distance. Similar situations exist for the stack pointer and frame pointer adjustment

at the beginning and end of a procedure or before and after a procedure call.

IV . In t e r -P r o c e d u r a l A n t i-D e p e n d e n c y C o n s t r a i n t s

In ordinary register allocation algorithm, the live range constraint is maintained across pro

cedure boundaries by one of the following methods:

21

caller A callee B

Figure 11. Inter-procedural anti-dependency IiS?kIj

1. Caller-saved registers: the registers containing live values are saved before a procedure call
and restored after the call.

2. Callee-saved registers: the registers that may be changed in the callee are saved by the callee
at the entry point and restored at the exit point.

3. Inter-procedural register allocation [21]: if every procedure is under the control of the current
compiling session, registers may be allocated across procedure boundary.

However, the machine register anti-dependencies are not terminated even if the above methods

are used. For example, in Figure 11, register rk is used in both the caller procedure A and the

callee procedure B. It is saved before the calling of B. But the initialization of rk at the beginning

of B results in an immediate anti-dependency if N is large enough.

To handle this problem, extra constraints are added to the following four regions:

1. Before a procedure call: the pseudo registers that are used within N instructions before the
procedure call can only be assigned to register set R ".

2. Entry point of a procedure: the pseudo registers that axe defined within N instructions after
the entry of the procedure can only be assigned to register set R'.

3. Exit point of a procedure: the pseudo registers are used within N instructions before the
return statement can only be assigned to register set R ".

4. After a procedure call: the pseudo registers that are defined within N instructions after the
procedure call can only be assigned to register set R

22

As long as iE'p|R" = & no anti-dependency will occur across the procedure boundary. If an

instruction belongs to more than one of the above regions, it should follow all the rules that apply.

Since the IMPACT C compiler always adjusts the stack pointer at the entry and exit points

of a procedure, the above inter-procedural anti-dependency constraints are implemented by first

splitting the stack pointer adjustment instruction ’$sp = Ssp —a’ into two instructions ’Sr = Ssp-a;
\

$sp = $r’ and then inserting nops to maintain the following conditions:

1. There should be at least N instruction between ’$r = $sp - a’ and ’Ssp = Sr’ at the entry.

2. There should be at least N instructions between the ’$sp = $r’ at the entry to any procedure
call.

3. There should be at least N instructions between any procedure call to the ’Sr = Ssp + a’ at
the exit.

4. There should be at least N instructions between ’$r = Ssp -I- a’ and ’Ssp = Sr’ at the exit.

Machine register Sr is a reserved register just for the stack handling purpose. Other unresolved anti

dependencies, such as between the preservation of a callee-saved register and its first assignment,

are also solved by nop insertion.

V . P e r f o r m a n c e E v a l u a t i o n

A. Implementation

The algorithms are implemented in the MIPS code generator of the IMPACT C compiler.

The algorithms for resolving pseudo register anti-dependencies (loop protection, node splitting, and

loop expansion) are called right before the register allocation phase. The machine register anti

dependency constraints are added after the live range constraints have been generated but before

graph coloring. The nop insertion algorithm is called right before the assembly code output routine.

The actual ’nop’ inserted is the assembly code ’move $0,$0’ to avoid the assembler complaining the

23

’nop’ should be in a special block. Since register $0 is hard-wired to the value 0, it can serve the

purpose of ’nop’ .

For simplicity, the data flow information (e.g., live variable, reaching definition, du chain) is

not incrementally maintained. In other words, once a node is inserted or deleted, the entire graph

needs to be processed again. This results in an intolerable compilation time for large procedures.

To overcome this drawback, we set a threshold for the size of the procedure. Once the number of

nodes in the graph exceeds this threshold, the algorithm enters the simplified mode which bypasses

the rest of pseudo register anti-dependency processing except the breaking of self-anti-dependent

instructions. In other words, the simplified mode transfers the responsibility of resolving anti

dependencies to the nop insertion phase. Currently, the threshold is set at 800 instructions. Both

the threshold and the parameter N are supplied as a compiler switch to the code generator.

B. Benchmarks

Seven programs were cross-compiled on a SPARCserver 490 and run on a DECstation 3100.

The original run time and size are listed in Table 1. The size is the number of assembly instructions

emitted by the code generator, not including the library routines and other fixed overhead. QUEEN

is based on the eight-queen program but with 12 queens as input. QSORT implements the quick

sort algorithm to process a randomly generated array. Both QUEEN and QSORT use recursive

calls. WC, CMP, and COMPRESS are well-known UNIX utilities. PUZZLE is a game. Finally,

NOP is the nop insertion routine mentioned above.

24

Table 1. Original run time and size of benchmarks

program run tim e (seconds) num ber o f static instructions
QUEEN 17.0 148

WC 11.3 181
QSORT 9.8 252

CMP 17.7 262
PUZZLE 15.0 932

NOP 27.5 * 2307
COMPRESS 41.3 1853

C. Performance data

There are several sources of performance degradation in our code transformation approach: 1)

loop protection inserts save and restore nodes in the flow graph, 2) the machine register antidepen

dency constraints result in the inefficiency in register usage and hence more spill code, 3) the nops

inserted for consecutive spill code, stack pointer updates, and inter-procedural anti-dependency

constraints will degrade the performance, and 4) the increased code size may increase the cache

miss ratio.

We compile each benchmark program for N = 1 to 10, and selectively disabled the machine

register anti-dependency solver and the nop inserter to generate a total of 31 versions (including

the original version). Run time and size information for each benchmark are shown in Figure 12 to

Figure 18. The x-axis is the parameter N. The y-axis is the percentage overhead. The dotted line

is for the versions with machine register anti-dependency solver and nop inserter disabled, i.e., it

shows the overhead that should be attributed to the pseudo register anti-dependency solver. The

dashed line is for the versions with nop inserter disabled, i.e., it shows the combined overhead of

pseudo register and machine register anti-dependency solver. The solid line gives the complete

overhead figures. Note that the N > 3 versions for NOP and the N > 1 versions for COMPRESS

25

Time 4 k
45% "
40% "
35% "
30%'■
25% "
20% -
15% "
10% -
5 % -
0% -

-5% L

pseudo+machine+nop
pseudo+machine
pseudo

1 2 3 4 5 6 7 8 9 10 N
(a) Run time overhead

Size i
450% -
400% -
350% -
300% -
250% ■ *
200% * *

150% -
100%-
50% -

0 % -
-50% *■

------- pseudo+machine+nop
-------pseudo+machine

H 1 I « —« I • > »—i
1 2 3 4 5 6 7 8 9 10 N

(b) Size overhead

Figure 12. Run time and size overhead of QUEEN

have some functions compiled in simplified mode. That is, the run time shown is usually an over

estimate of the true number, and the size shown is usually an under-estimate. Also note that the

libraries have not been recompiled by our compiler and the effect of the increased cache miss ratio

is not separately measured.

For most of the benchmarks, the time and size overhead tends to increase with N as expected.

However, this is not strictly true. For example, in Figure 12(a), the N = 5 version is a little faster

than the N = 4 version. There are several sources for this irregularity: 1) the measurement error

(about 0.1 to 0.2 seconds), 2) the postpass code reorganizer of the MIPS machine changed the

execution order, 3) the register allocator is not optimal, 4) the inherent jump optimizer in the

pseudo register anti-dependency solver made different decision for different N. In Figure 15(a) and

Figure 16(a), the versions with N > 1 even run faster than the original version due to the latter

three reasons mentioned above.

Notice that, in general, the difference between the dotted and the dashed lines of the run

time figures increases with N. This is because larger N requires a register to hold a value longer

26

Tim e, L
45% -
40% -
35% -
30% -
25% -
20% "
15% "
10% -
5% -
o%-

-5% L

..- pseudo+machine+nop
-------pseudo+machine
........ pseudo

I t -H----1 I I----1----1—H----I—
1 2 3 4 5 6 7 8 9 10 N
(a) Run time overhead

Size j
450% -
400% -
350% -
300% -
250% -
200% -
150% -
100%-
50% -
o%-

-50% L

— pseudo+machine+nop
— pseudo-f machine

pseudo

i i i ... i— i— i— i— i— i— H-*-
1 2 3 4 5 6 7 8 9 10 .V

(b) Size overhead

Figure 13. Run time and size overhead of WC

Time jl
45% -
40% -
35% -
30% -
25% "
20%-*
15% -
10% -
5% -
0 % -

-5% L

.. pseudo+machine+nop
------ pseudo+machine
........ pseudo

i t * ■ i i i > h— i— i—►
1 2 3 4 5 6 7 8 9 10 N
(a) Run time overhead

Size j
450% -
400% -
350% -
300% -
250% -
200% -
150% -
100%-“
50%--

0 % -
-50% L

------- pseudo+machine+nop
-------pseudo+machine
........ pseudo

I I I- 1 I I — i— H »- .-4- * -
1 2 3 4 5 6 7 8 9 10 -V

(b) Size overhead

Figure 14. Run time and size overhead of QSORT

27

Tim e, k
45% “
40% "
35%“
30%“
25%“
20% “
15% “
10% “

5% “
0% “

-5% L

------- pseudo+machine+nop
-------pseudo+machine
........ pseudo

t —«■
1 2 3 4 5 6 7 8 9 10 N
(a) Run time overhead

Size j
450%“ -
400%“
350%“
300%“
250%“
200% “

150%“
100% “

50% “
0% “

-50% *-

■ pseudo+machine+nop
-------pseudo-fmacliine
........ pseudo

H I 1 H---h—I----1---- 1 1—
1 2 3 4 5 6 7 8 9 10 N

(b) Size overhead

Figure 15. Run time and size overhead of CMP

Time l
45%“
40%“
35%“
30%“
25%“
20% “

15%“
10% “

5% ”
0% “

-5% L

------- pseudo+machine+nop
— — pseudo+machine
........ pseudo

■ ~ ii m'in I
1 I ♦■■■ I I » - I 1 ! » *■■»■
1 2 3 4 5 6 7 8 9 10 N
(a) Run time overhead

Size i
450%“
400%“
350%“
300%“
250%“
200% “
150%“
100% “
50%“

0 % “
-50% L

— pseudo+machine+nop
------ pseudo+machine
........ pseudo

t >■■■ >■—«— h—h— i— i--- I I »
1 2 3 4 5 6 7 8 9 10 A’

(b) Size overhead

Figure 16. Run time and size overhead of PUZZLE

Time i
45% ”
40%”
35%”
30%”
25% ”
20% ”

15%”
10% ”
5% ”
o%-

-5% L

Time i
45% ”
40% ■■
35% “
30% ”
25% '
20% ■

15% ■
10% •
5% ■
0%-

-5%

— pseudo+machine+nop
— pseudo+machine
■ • pseudo

i t i ' i i » ■■■"<— i » *—*-
1 2 3 4 5 6 7 8 9 10 N
(a) Run time overhead

Size j
450% ■ * •
400%”
350% ”
300%”
250%”
200% ”

150%”
100% ”
50% ”

0% ”
-50%

— pseudo+machine+nop

-i— i i i t i— i— i— i i » "
1 2 3 4 5 6 7 8 9 10 N

(b) Size overhead

Figure 17. Run time and size overhead of NOP

------- pseudo+machine+nop
— — pseudo+machine
........ pseudo

1 2 3 4 5 6 7 8 9 10 N
(a) Run time overhead

Size t
450%”
400%”
350%”
300%”
250%”
200% ”

150%”
100% ”

50% ”
0 % ”

-50% L

... pseudo+machine+nop
-------pseudo+machine
........ pseudo

i > - >— t i - i— i— i— i t » '
1 2 3 4 5 6 7 8 9 10 N

(b) Size overhead

Figure 18. Run time and size overhead of COMPRESS

29

before it can be used again. In other words, providing a larger register file can reduce the run time

overhead attributed to the machine register anti*dependency constraints.

If the number of reserved spill registers is increased (currently it is 3), the nops inserted due

to consecutive spills can be reduced. This in turn reduces the overhead shown by the solid lines.

However, it is a conflicting goal with the one described in the previous paragraph since the total

number of registers is fixed. There must be a compromise between these two goals. Code scheduling

could further decrease the nop insertion overhead.

In summary, the run time overhead of this compiler-assisted approach is comparable to the

hardware approach [3] for the examples examined with an additional benefit of changeable iV. How

ever, the cost is the increased compilation time and the larger executable code size. If more registers

are provided, the performance will improve, with the dotted lines in Figure 12(a) — Figure 18(a) as

lower bounds.

V I . C onclu sio n

This paper described a compiler-based alternative to a hardware delayed write buffer to pre

serve the state of the register file for N instructions. This objective is achieved by having the

compiler remove all forms of anti-dependencies within N instructions. Our method used loop pro

tection, node splitting, and loop expansion algorithms to remove pseudo register anti-dependencies:

the anti-dependency constraints were added to the interference graph to prevent machine register

anti-dependencies; the remaining anti-dependencies were resolved by nop insertion. The algorithms

have been implemented in the IMPACT C compiler. The experimental results indicated that the

run time performance of this software approach is comparable to that of the hardware approach,

with an additional benefit of changeable N. The trade-off is the increased compilation time and

30

the larger executable code size. The results also showed that a larger register file can further reduce

the run time overhead.

R e f e r e n c e s

[1] M. L. Ciacelli, “Fault handling on the IBM 4341 processor,” in The Eleventh International
Symposium on Fault-Tolerant Computing, pp. 9-12, June 1981.

[2] W. F. Bruckert and R. E. Josephson, “Designing reliability into the VAX 8600 system,” Digital
Technical Journal of Digital Equipment Corporation, pp. 71-77, Aug. 1985.

[3] Y. Tamir and M. Tremblay, “High-performance fault-tolerant vlsi systems using micro roll
back,” IEEE Transactions on Computers, vol. 39, pp. 548-554, Apr. 1990.

[4] M„ S. Pittler, D. M. Powers, and D. L. Schnabel, “System development and technology aspects
of the IBM 3081 processor complex,” IBM Journal of Research and Development, vol. 26,
pp. 2—11, Jan. 1982.

[5] R. N. Gustafson and F. J. Sparacio, “IBM 3081 processor unit: Design considerations and
design process,” IBM Journal of Research and Development, vol. 26, pp. 12-21, Jan. 1982.

[6] K.-L. Wu, W. K. Fuchs, and J. H. Patel, “Error recovery in shared memory multiprocessors
using private caches,” IEEE Transactions on Parallel and Distributed Systems, vol. 1. pp. 231-
240, Apr. 1990.

[7] W.-M. W. Hwu and Y. N. Patt, “Checkpoint repair for high-performance out-of-order execu
tion machines,” IEEE Transactions on Computers, vol. 36, pp. 1496-1514, Dec. 1987.

[8] D. A. Padua and M. J. Wolfe, “Advanced computer optimizations for supercomputers.” Com
munications of the ACM , vol. 29, pp. 1184-1201, Dec. 1986.

[9] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[10] C.-C. J. Li and W. K. Fuchs, “CATCH - Compiler-Assisted Techniques for Checkpointing,” in
The Twentieth International Symposium on Fault-Tolerant Computing, pp. 74-81, June 1990.

[11] C.-C. J. Li and W. K. Fuchs, “Maintaining scalable checkpoints on hypercubes,” in The 1990
International Conference on Parallel Processing, pp. 11.98—11.104, Aug. 1990.

[12] V. Balasubramanian and P. Banerjee, “Compiler-assisted synthesis of algorithm-based checking
in multiprocessors,” IEEE Transactions on Computers, vol. 39, pp. 436-446, Apr. 1990.

[13] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. The MIT Press. 1986.

[14] G. J. Chaitin, M. A. Ausländer, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein,
“Register allocation via coloring,” Computer Languages, vol. 6, no. 1, pp. 47-57, 1981.

31

[15] G. J. Chaitin, “Register allocation k spilling via graph coloring,” in The ACM SIG PL A N ’82
Symposium on Compiler Construction, pp. 98-105, June 1982.

[16] W.-M. W. Hwu and P. P. Chang, “Inline function expansion for compiling c programs,” in
The ACM SIGPLAN’89 Conference on Programming-Language Design and Implementation,
pp. 246—257, June 1989.

[17] J. R. Goodman and W.-C. Hsu, “Code scheduling and register allocation in large basic blocks,”
in 1988 International Conference on Supercomputing, pp. 442-452, July 1988.

[18] C. L. Liu, Elements of Discrete Mathematics. McGraw-Hill, second ed., 1985.

[19] N. Wirth, Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

[20] J. Hennessy and T. Gross, “Postpass code optimization of pipeline constraints,” ACM Trans
actions on Programming Languages and Systems, vol. 5, pp. 422-448, July 1983.

[21] F. Chow and J. Hennessy, “Register allocation by priority-based coloring,” in The ACM SIG-
PLAN’84 Symposium on Compiler Construction, pp. 222-232, 1984.

