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1. INTRODUCTION

Model reduction has long been a topic of interest, and it remains relevant to control 

problems of today. For example, large flexible space structures are modeled by finite ele

ment approximations of large order. Unfortunately, the computational constraints of 

on-board digital controllers make complex control algorithms based on large models 

infeasible. Thus, the control design requirements call for a simple model for closed-loop 

control.

Aggregation was proposed by Aoki (1968) as one method of model reduction. This 

concept was extended by the Generalized Hessen berg Representation (GHR) by Tse, et al 

(1978). In this report, we investigate further properties of the GHR. In particular, we 

discuss systems which nearly  aggregate. This idea has intuitive appeal; however, it 

turns out to be dependent on the scaling in the system. The usual algebraic formulation 

of state space models does not directly incorporate scaling in the model. Since the scaling 

issue appears directly in near aggregation, we incorporate it in the model by attaching an 

inner product to the state space. This inner product leads to a topological structure in the 

model which allows us to formalize near aggregation. Bart, et al (1980) used a similar 

idea in the factorization of transfer matrices.

Near aggregation is related to the observability structure of the system through the 

use of geometrical concepts (Wonham, 1979). To establish this connection, the concept of 

near unobservability is introduced. Roughly, a system is nearly unobservable if there 

exists an invariant subspace near the null space of C. It is shown that if an appropriate 

dimensioned invariant subspace exists, then near aggregation and near unobservability are 

equivalent concepts from a geometrical point of view. This generalizes the results of Aoki
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(1968) and Tse, et al (1978).

It is well known that unobservable systems exhibit a pole-zero cancellation in the 

transfer function. It is shown below that, under certain conditions, it is possible to gen

eralize this result. That is, under these conditions, nearly unobservable systems exhibit 

an almost pole-zero cancellation. Hence, near aggregation corresponds, roughly, to remov

ing an almost pole-zero cancellation, a well-known procedure in classical control.

Aggregation has been related to several other model reduction methods (Lindner and 

Perkins, 1984). The fact that the results here are used as a measure of observability sug

gests that this approach may be related to balancing (Moore, 1981). However, there are 

fundamental differences in the two approaches. Balancing requires the computation of the 

controllability and observability grammians. Hence, this technique is most useful for 

stable systems. Near unobservability is determined from the algebraic and topological 

properties of the vector space and operators associated with the system. Stability of the 

differential equation is not an issue. Secondly, balancing has not been related to zeros. 

Nonetheless, it would be interesting to compare these two concepts. Unfortunately, a 

complete theory is not available to date. Some preliminary results may be found in 

Lindner and Perkins (1984).

The report is organized as follows. Section 2 introduces the GHR and relates it to 

near aggregation. Section 3 discusses the geometry of the GHR and near aggregation. Sec

tion 4 introduces near unobservability and establishes the connection between near aggre

gation and near unobservability. Section 5 shows how near unobservability is related to 

almost pole-zero cancellation. Section 6 has the conclusions.
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2. THE GHR

Consider the system

x =  Ax + Bu , 

y =  C x ,
( 2 . 1)

where x€R , u€Rm , y€Rp, and (A,B,C) are appropriately dimensioned constant matrices. 

After i-steps of chained aggregation (Tse, et al, 1978), (2.1) is transformed into

r • iny ' Fn Fn 0 0 'G,

y 2 F22 F22 F23 o

= • X1 +
. i
y Fi.l . . . . . . F.M.i+l Gi

LXr J Ai+u Âi+l,i+lj ? i+I.

y =  [H , 0 .... 0 ] x‘ ,
or, more concisely,

ya f ‘ e 1
1ya g ‘

= +
Xr k ‘ a 1 i

Xr b ‘

y =  [h ‘ o ]

(2.3)

The representation (2.2) has the property that M H,] =  M F ,j+1] =  0 for j = l .........i—1.

Furthermore, if M Fj j+1] =  0  or Fi j+I = 0 ,  then the representation (2.2) is the General

ized Hessenberg Representation (GHR) of (2.1). If in (2.2) Fu+, =  O, then an obvious 

reduced order model is given by
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y =  FV j + g 'u ,
(2.4)

y =  Hy a .

If i=l in (2.4), then the reduction process is aggregation (Aoki, 1968). Thus, the GHR 

extends the notion of aggregation (Tse, et al, 1978). When Fi i+1 = 0 ,  we say that (2.1) 

exactly aggregates.

Another direction of extending the notion of aggregation is to consider systems in 

which none of the super diagonal blocks in (2.2) is zero but one of them is small. We for

malize this idea with:

Definition 2.1. Given /¿o>0, we say that (2.2) is /x0-aggregable, if there exists a block 

Fj,j+i such that II FjJ+1 II <  ilq.

□

Remark 2.2. From the engineering point of view, we are interested in the case when ¡jl0 is 

small. We describe those systems which are /¿0-agg regable when /iQ is small as nearly 

aggregable. This terminology will be applied again in Def. 4.2 and Def. 5.3 below.

□

Remark 2.3. By considering the dual system, the GHR and Def. 2.1 can be applied to the 

pair (A,B) in (2.1).

□

It is obvious that II Fj>j+1 II is basis dependent. Thus, for Def. 2.1 to be useful, we 

must impose further structure on (2.1). In addition to the usual algebraic structure of 

(2.1), we will attach the natural inner product to the state space which is defined with 

respect to the given basis of (2.1). This inner product leads to a 2-norm on the underlying 

vector space given by
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II X II =  (xTx)1/2. (2.5)

In this paper we will assume all norms are the 2-norm in (2.5) or the corresponding 

induced operator norm.

Once (2.1) is given with an inner product, we require that all operations on (2.1) 

preserve this structure. This implies that all state transformations on (2.1) must be 

orthogonal. In particular, the GHR (2.2) is constructed using orthogonal transformations 

(which is also numerically stable (Van Dooren, 1981)).

Lemma 2.4. Suppose that the GHR (2.2) is constructed from (2.1) using orthogonal 

transformations. Then IIFjj+1II is unique.

□

Proof: Consider (2.3) with i=l. The basis associated with this representation is not

unique. All allowable transformations which preserve the structure of (2.3) (i.e., 

M H1] =  0 ) are given by

X o'
O T2

where Tj is pxp and Tj and T2 are orthogonal. It follows that

II E1 II =  IIT1T E1T2 II . (2.7)

An induction argument completes the proof.

□

Remark 2.5. The choice of the inner product for (2.1) is essentially a scaling issue. It 

may be implied by the physical variables or it may be a design parameter in the selection 

of a reduced order model.
□



The rest of this report is devoted to interpreting near aggregability in system 

theoretic terms. We will start with a geometric interpretation of the GHR in the next sec

tion.
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3. GEOMETRY OF THE GHR

The following subspaces play a fundamental role below.

Definition 3.1 (Lindner, et al, 1982): The vector is an element of Ly the j-th  

unobservability subspace if £ =  x(0) implies y(0) =  y(0) =  ••• =  y(j_1)(0) = 0 . By 

definition, L 0 =  X.

□

The unobservability subspaces ^  are intimately related to the GHR. Let e{ be the ith 

natural basis vector and r{ the dimension of the Fu in (2,2) block in (2.2). Define
i

Pi =  Z  rr  
i=i

Theorem 3.2 (Lindner, et al, 1982): Assume that (2.2) is a GHR. With respect to this 

basis:

b* II M e k> 1 <  j  <  i

k = p j+ l

h" + II O i f F i,i+1 *  0

*4*
II+

4
” F i,i+1 =  0  •

The proof follows immediately from Def. 3.1 and (2.2).

Corollary 3.3. The system (2.1) is exactly aggregable iff L { coincides with an A-invariant 

subspace for some i.

□
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Proof: Obvious by comparing Theorem 3.2 and (2.2).

Corollary 3.3 gives a geometric interpretation of exact aggregation. If (2.2) is not 

exactly aggregable, but is nearly aggregable, is there an A-invariant subspace V "near" L?

We will obtain an answer to this question below and so obtain a geometric interpretation 

of near aggregability.

First, to interpret "near" we give a norm on the subspaces of X. Note that this norm 

is derived from the inner product on X.

Definition 3.4 (Kato, 1966): Let U and V be subspaces of Rn. The gap between U and V 

is the number

t{U,V) =  max{ sup inf II v -u  II , sup inf II v -u  II } .
II u II = l , v €  V It v II = l , u € t /

uZU v€V

□

Since we are using the two-norm, t{U,V) =  1 if U and V have different dimensions.

A useful geometrical interpretation of the gap enters through the use of canonical 

angles.

Definition 3.5: Let U and V7 be subspaces of Rn with orthonormal bases U and V, respec

tively. Let Oj be the singular values of UTV. Then the canonical angles between U and V 

are the numbers

9; =  cos 1 o - .

□
The gap i unction is related to canonical angles as follows.
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Proposition 3.6 (Stewart, 1973): r(£/,V) =  I sin 0max I .

□

Hence, if all the canonical angles between two subspaces are small, they are close in the

gap topology.

Next, we show how to compute the gap. In what follows, we assume that the system 

is given in the basis (2.3) and we are trying to find the gap between Lx and an A-invariant 

subspace V (although the method developed by Stewart (1973), can be used on an arbi

trary pair of subspaces).

The angles between two subspaces can be computed in the following way. Suppose 

that the natural orthonormal basis of R yields a basis for L ^  and L x, respectively. In

matrix form

O

m (3.1)

where the first r columns span L { and the last n-r columns span L v Let a second (n—pj) 

dimensional subspace V and its complement be spanned by the orthogonal basis

l r P (I+PPT) % o

-P T Ir n-p. o  (I+PTP)-%

(3.2)

=  [VcV ].

To compute the canonical angles between and V, note that
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L;TV =  (I + PTP) ,/!. (3.3)

Let P have singular values o j. Then the canonical angles between L,  ̂and V are given by

0; =  cos“ 1 (1 + o * T V2. (3.4)

It follows that

°i =  tan 6;, (3.5)

and

r(L e'/ ) =  's i n ^ a x 1 <  11 P" =  I tan 0max I . (3.6)

Thus, the matrix P can be used to compute the gap between subspaces.

Let us now return to the problem of interpreting near aggregability in geometric 

terms. Corollary 3.3 suggests that near aggregation might be characterized geometrically 

as an invariant subspace near Ly The GHR suggests that this situation occurs when

® ^j.j+i  ̂ *s small* To check for this geometry, we look for (n—Pj)-dimensional invariant 

subspaces of the form

(3.7)

If such a subspace exists, then (3.6) holds, from which r(LyV) can be computed. The fol

lowing example shows that there exists systems which have this geometry.

Example 3.7. The linearized model of a biomethanization process (Ioannou and 

Opdenacker, 1983) is given as
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.07 1 0 0
-.0049 0 1 0

-30.164 -78.631 -21.654 .0955
1 0 0 -.07

[0]
y

+ 0
1z
0

u ,

(3.8)

y =  [1 0 0 0]

For simplicity, we assume that the inner product is the natural one with respect to 

the basis in (3.8).

The model (3.8) is a GHR. Note that F3 4 =  .0955 is clearly small. Looking over all

one-dimensional eigenvectors, we find that the eigenvector corresponding to the pole1 at 

-0.75 is computed as

V =  [PT 1] =  [ —.49E—2.+.725E—3,—.787E—4,1]. (3.9)

Therefore, the angle between V =  sp(v) and L3 is

0 =  t a n '1 II PII =  0.28° , (3.10)

and

r(V,L3) =  sin 6 =  0.005 . (3.11)

□

Below, we will show that under certain conditions a nearly aggregable system does 

have an invariant subspace near L} for some j. But first, it is obvious from Theorem 3.2 

that exact aggregation and near aggregation are intimately related to observability. In the 

next section we will restate the geometry above in terms of observability and then show 

how the observability property is related to near aggregability.

'See also Example 5.10 below.
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4. NEAR AGGREGATION AND NEAR UNOBSERVABILITY

It is clear from Definition 3.1 that Lj =  A[C] and I jC L i+]. Therefore, if L x coincides 

with an A-invariant subspace, (2.1) is unobservable.

Lemma 4.1 (Aoki, 1968, Tse, et al, 1978): The system (2.1) is exactly aggregable iff it is 

unobservable.

□

The analysis of Section 3 suggested that nearly aggregable systems might have an A- 

invariant subspace close to Lv The observability interpretation above suggests the follow

ing definition for this geometrical condition.

Definition 4.2 (Lindner and Perkins, 1984): Given 0<€o< l ,  we say the system (2.1) is 

€o_ u n observable if there exists an A-invariant subspace V such that

r(V,L|) <  co

for some i.

□
(See Remark 2.2.)

We might guess that nearly aggregable systems are nearly unobservable. However, 

this is not true in general as the following example shows.

Example 4.3 Consider
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0 A 1
X = x +

-fJ- 0 0

y =  [ 1 0] x .

For ¿¿>0, there does not exist a 1-dimensional invariant subspace so (4.1) cannot be

nearly unobservable.

□

Roughly speaking, nearly aggregate systems are nearly unobservable if there exists 

an appropriately dimensioned invariant subspace. To develop this idea, we first give con

ditions under which these invariant subspaces of a given dimension exist. The following 

result by Stewart (1973) is useful.

Suppose that P in (3.2) is used to define a change of basis in Rn. (Note that P can be 

considered a kind of generalized rotation.) Since V is A-invariant, the (1,2) block in the 

new representation should be zero. Using the representation of A in (2.3), we have

v /A V  =  (I + PPT)-'/2 (F'p -  PA1 + e ‘ -  PK P) (I + PPTr ' A =  o . (4.2)

Each solution P of the Riccati equation in (4.2) corresponds to a particular n—pi dimen

sional invariant subspace V of the form (3.7). Thus, (4.2) will have a solution P if and

only if subspaces of the form (3.7) exist. If P satisfies (4.2) we can rewrite that equation 

as

F*P — PA* =  PK*P — E*. (4.3)

We can bound the roots of (4.3) as follows. First note that

T(P) =  F*P -  PA* (4.4)

is a linear operator in P. Hence, if K; is small enough the quadratic term in (4.3) can be
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neglected and we obtain the linear equation

TCP) =  -E * . (4.5)

This equation has a solution if TCP) is invertible. It can be shown CStewart, 1973) that if

(4.5) has a solution then (4.3) has a solution (under appropriate conditions). Thus, 

existence of solutions of (4.3) is related to the invertibility of T(P). So motivated we 

define

Definition 4.4 (Stewart, 1973): T he separation of F* and A*, denoted by 8, is defined as

8 =

Il T 1II 1 0 f  \(T )
9

O 0 € \(T )

where \(T ) denotes the eigenvalues of T.

□

Remark 4.5. It is well known that T has nonzero eigenvalues iff F* and A* have no com

mon eigenvalues.

□

Remark 4.6. Varah (1979) discusses the separation function.

□

Also note that from the approximate linear equations we get

II P II <  II T_1 II • II E‘ II . (4.6)

The ideas sketched above are stated precisely in the following theorem.

Theorem 4.7 (Stewart, 1973): Let 8 =  Il T 1 II 1 , y =  Il E* Il , q =  Il K* II. Then if
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y v  i

82 4
(T .l)

there exists a matrix P which satisfies (4.9) such that

2y
il P II <  —  .

8
(T.2)

□

Remark 4.8. Statement (T.2) of Theorem 4.7 provides an estimate of the distance from 

Lj to V which is computed in terms of the known data in (2.3).

□

Remark 4.9 As II E1 II -► 0 then V L- (in the gap topology) as suggested by the GHR. 

However, we see that the smallness" of II E II is measured against the separation of F1 and

a '.

□

Definition 4.10. The decomposition (2.3) is called separable if the separation of F* and 

A1 is nonzero.

□

In the following we will relate separable decompositions to near unobservability and 

near aggregability. The idea is to study the system structure as II Fj i+1 II -> 0 in one case, 

and as V —* in the other. To accomplish this analysis we will parameterize the system 

matrix. Note that these parameterizations only change the operator on X  but leave the 

underlying structure of X  (specifically the inner product) invariant.

Consider (2.3) and parameterize the system in /i by replacing F; i+1 with /n¥i .

Corollary 4.11. Suppose that (2.3) is separable. Then there exists a /jl such that for all 

0 < <  ,u there exists an (n—p^-dimensional A-invariant subspace.
□
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Proof: Immediate from Theorem 4.7.

□

The connection to near unobservability is now obvious. Again parameterize (2.3) on 

jjl as above. Let eo be given.

Proposition 4.12. Suppose that (2.3) is separable. Then there exists a /jl0 such that for all 

0 <  M ^  /V  the system is €0-unobservable.

□

Proof: By Corollary 4.11 there exists p. which guarantees the existence of an (n -p ^ -

dimensional invariant subspace. Select p o <  p such that

M0 < ------ —
2 II E1 II

Theorem 4.7 together with (4.7) implies that II P II <  eo. Now the proposition follows 

from (3.6).

□

We can establish a converse to Proposition 4.12 as follows. In (2.3), suppose there 

exists an invariant subspace V" which has a basis of the form (3.7). From (2.3) define a 

parameterized set of systems as follows:

x =  F‘( e) x + G u , 

Y =  Hx ,
(4.8)

where G* and H1 are identical to (2.3) and
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F‘( €) = I - e P > O I € P
0  I ^12 ^2 O I (4.9)

Note that at e — 1, (4.8) and (2.3) are identical. Also note that t{Lx,V)-*0 as e-*0. 

Let /jlo be given.

Proposition 4.13. Consider the system defined by (4.8). There exists an €o> 0  such that 

for all 0 <  €< €0, (4.8) is /¿0-aggregable.

□

Proof: From (4.9) we have

E'( i) =  eA,P -  PA2€ -  €2PA21P

so that if

II E‘( e)I <  II A,P — PA, II 6+ II PA,,P II 

=  ae +  < /x0

(4.10)

(4.11)

then (4.8) is yu0-aggregable. The last inequality in (4.11) is satisfied for all 0 <  e< ^  if ^  is 

chosen less than the positive root of

be + ac — /z0 =  0 . (4.12)

□
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5. POLE-ZERO CANCELLATION

In the previous sections we have related (near) aggregation to (near un-) observabil

ity. We can extend these concepts to transfer function matrices by generalizing the fol

lowing well known result: If the system is unobservable then the transfer function 

matrix exhibits a pole-zero cancellation. Thus, exact aggregation corresponds to pole-zero 

cancellation. Below, we will relate near aggregation and near unobservability to almost 

pole-zero cancellation.

Consider (2.3). In this section we assume that

O

(5.1)

and that G; is nonsingular. This assumption is equivalent to assuming the number of 

inputs equals the number of outputs and the first nonzero Markov parameter is nonsingu

lar.

Define the following state transformation

Z1 I 0
1

ya

Z2 X I i
Xr

x  =  to  —B.1+lG r ‘] .

Substituting (5.2) into (2.3) we obtain
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Sj s2 Z1 G*
= +

¿2 S3 S„ Z2 0

y =  [h ‘ o ]

Remark 5.1. It is shown in Lindner (1982) that (5.3) has the following properties:

1) =  A =  sp
O

where VT* is the largest (A,B)-invariant subspace in N[C] (Won-

ham, 1979).

2) R =  0. where R is the largest controllability subspace in N[C] (Wonham, 1979), and,

3) the invariant zeros of (5.3) are the eigenvalues of S4.

It is interesting that the invariant zeros should be explicitly displayed in (5.3). We will 

use this structure below.

□

Remark 5.2. The natural inner product implied by the basis in (5.3) is not the same as 

the natural inner product implied by the basis in (2.1) (see (5.2)). In this section we 

assume that the underlying system leads to no natural inner product for (2.1). In this 

case the choice of inner product is arbitrary and we choose the natural inner product asso

ciated with the basis in (5.3). See also, Remark 5.9 below.

□

To see where we are going, suppose that the system in (5.3) has an (n -p j)- 

dimensional invariant subspace V of the form
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V =  sp
P

I

Furthermore, suppose that (5.3) is ^-unobservable so that

(5.4)

(5.5)

(see (3.6)). Using (3.2) to define a change of basis co =  Pz, it can be shown (Stewart, 1973) 

that

MS) =  X(Sj -  PS3) U X(S4 + S3P ) . (5.6)

Recall that p;€A.(S4+S3P) are the poles of (5.3) (see (5.6)) and Zj€A.(S4) are the invari

ant zeros of (5.3) (Remark 5.1). Therefore, if S3P is a "small" perturbation of the eigen

values of S4, then (5.3) should exhibit an almost pole-zero cancellation.

Note that how close the poles and zeros are depends on the block S3 in (5.3). This 

block, which is associated with the controllability structure of (5.3), has not played a 

direct role in our results so far. Intuitively, its appearance in our analysis says that the 

controllability structure as well as the observability structure plays a role in determining 

almost pole zero cancellations. (This is in contrast to cancellations in which only one con

cept is involved per cancellation.) We can conclude both concepts in our analysis here by 

extending Definition 2.1. Let yao> 0  be given.

Definition 5.3. The system (5.3) is /¿0-inpu t/ou tpu t aggregable if II S2 II <  jjlq and 

II S3 II <  / v

□

Remark 5.4. It is easily seen by duality that all of the previous result on observability
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have corresponding results on controllability. By the dual of the results of Section 4, near 

input aggregability can be related to near uncontrollability.

□

We can characterize the deviation of the eigenvalues of S4, say, from the eigenvalues 

of S by applying an eigenvalue perturbation theorem.

Theorem 5.5 (Bauer and Fike, 1960): Let X_1S4X =  diag(Xj) and define

A( X) =  II X II • II X 1B. Let /jl be an eigenvalue of S4+S3P. Then

min I A.- j i  I <  A'(X) II S3P II .
i

□

Theorem 5.6. Assume that (5.3) is /¿0-input/output aggregable and ^-unobservable. 

Also, assume S4 in (5.3) has simple structure. Then

min I p.—Zj I <  A’(X )--------- .

□

Proof: Combine Theorem 5.3 and (5.5).

□

Remark 5.7. Roughly speaking, Theorem 5.4 says that a system which is nearly 

input/output aggregable and nearly unobservable exhibits an almost pole zero cancella

tion.

Example 5.8. Consider the transfer function

G(s) = --------------- .
(s+ e)(s+l)

□

(5.7)
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Realizing (5.7) in controllable canonic form we obtain

yi —( 1 + c) — € Vi 1
= +

¿i 1 o Z1 0

y =  [ i

(5.8)

Then we can check the near unobservability of (5.8) by computing a basis of the form 

(5.4) for the eigenvector associated with the eigenvalue €. In fact, P is given by

P =  tan 0 =  — e . (5.9)

This equation clearly shows the relationship between near aggregation and near unobser

vability. These two concepts are related to pole-zero cancellation by applying Theorem 

5.6:

U -O I <  1 • I el . (5.10)

Equation (5.10) is a state space version of the pole-zero cancellation evident in (5.7).

Note that these results do not depend on eigenvalue separation.

□

Remark 5.9. Note that (5.8) is a /¿0-aggregable for e</n0 but /¿0-input/output aggregable 

for 1 Suppose we scale zx by

2i =  ^ zi-  (5.11)

After substituting (5.11) into (5.8), the new representation is ,u0-input/output aggregable 

for any /r0 >  x/ -̂1 but not M0-input/output aggregable for any *u0 <  Ve. On the other



24

hand a scaling similar to (5.11) could make (5.8) yU0-aggregable for any /iQ. Apparently, 

there is a natural fi0 for input/output aggregation associated with (5.8). This idea is com

pletely worked out for single-input single-output systems by Lindner (1984). It is shown 

that the geometric structure leads to a natural basis in the state space. The metric associ

ated with that basis is then a natural setting for near unobservability.

□

Example 5.10. Consider again the system in Example 3.7. This system is nearly unob

servable. The transfer function of this model is

Y(s)
=  P(s) = (s + .07)

(s+.0749)(s+4.04984)(s+17.1785 )(s+.35055)

which shows an almost pole-zero cancellation.

(5.12)

□

Example 5.11. This example shows that when the assumption at the beginning of the

section is relaxed, the results fail. Consider the transfer function matrix (Rosenbrock, 

1970)

1

P(s) =
(s+1)

1

(s+ l)(s+2)

1

(s+ l)(s+2)

s+3

(s+2)

This matrix has Smith-McMillan form

M(s) =

1
-----------------  O
(s+ l)2(s+2)2

O s+2

(5.13)

(5.14)
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which shows a pole and zero at -2 but does not exhibit a pole-zero cancellation. A state 

space representation of this system is given by

‘-2 4 ' 1 0 '
-1 2 ' i 1 0

3 - 7  * - 4 1
.1 - 4  | -1 —O

1 0 0 0 y

0 1 0 0 z

+
1 - 3
.0 0 J

u

(5.15)

y =

Note that Gj is singular in (5.15). Also note that V =  L2.

It can be checked that the Jordan form of A in (5.15) has a block of order 2 

corresponding to each eigenvalue X = -l and \= - 2 .  Therefore, there are two one

dimensional invariant subspaces which are possibly near L2. The eigenvector correspond

ing to X=—2 is

V_T2 =  1.889,- .1 1 1 ,-.444, 1 ] =  [P T 1 ] , (5.16)

The angle between V_2 and L, is

0  =  tan-1 II Pll =45° (5.17)

so that

r(V_2, L2) =  sin © =  0.707 . (5.18)

The eigenvector corresponding to \  =  — 1 is

V_TJ =  [ -.250, -.50 , -1.75, 1 ] . (5.19)

We have

t(V_v  L 2) = sin 61.4° =  0.878 . (5.20)
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Since t{V, L 2) — 1 for any larger dimensional invariant subspace, we conclude that the 

system is not nearly unobservable. Therefore, we would not predict any almost pole-zero 

cancellation. Also note that (5.15) is not nearly aggregable.

□
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6. CONCLUSIONS

We have generalized the notion of aggregation to near aggregation by using the GHR. 

This generalization required the introduction of a metric into the state space model, a 

novel feature of our approach. We then showed that if there exists an appropriately 

dimensioned invariant subspace, then near aggregation was equivalent to near unobserva

bility from a geometric viewpoint.

Under certain restrictions, it is possible to interpret the previous results as pole-zero 

cancellations in the transfer functions. In order to interpret near unobservability in 

terms of pole-zero cancellations, we had to assume the first non-zero Markov parameter 

was nonsingular. This assumption can be relaxed for single-input-single-output systems 

(Lindner, 1984). The multivariable case is under investigation.
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