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Coordinating Dispatch of Distributed Energy Resources
with Model Predictive Control and Q-learning

Anupama Kowli, Ebony Mayhorn, Karanjit Kalsi and Sean P. Meyn

Abstract— Distributed energy resources such as renewable
generators (wind, solar), energy storage, and demand response
can be used to complement fossil fueled generators. The
uncertainty and variability due to high penetration of renew-
able resources makes power system operations and controls
challenging. This work addresses the coordinated operation
of these distributed resources to meet economic, reliability
and environmental objectives. Recent research proposes Model
Predictive Control (MPC) to solve this problem. However, MPC
may yield a poor performance if the terminal penalty function is
not chosen correctly. In this work, a parameterized Q-learning
algorithm is devised to approximate the optimal terminal
penalty function. This approximate penalty function is then
used in MPC, thus effectively combining the two techniques. It
is argued that this combination approach would lead to the best
solution in terms of computation, and adaptability to a changing
environment. Simulation studies demonstrating the efficacy of
the proposed methodology for power system dispatch problems
are presented.

I. INTRODUCTION

Environmental concerns have spearheaded the integration
of renewable energy sources into power grids all over the
world. While the energy derived from the wind, sun and
tides is clean with low running costs, it introduces higher
variability, greater uncertainty and increased dynamics in the
power grid when deployed on a large-scale. Such impacts
of increased use of renewable generation can be addressed
through better control designs combined with more resources
for control. These resources include responsive generators,
energy storage, and controllable loads (also known as de-
mand response). The operation of these resources is subject
to a range of physical constraints. For example, diesel
generators operate under ramping and capacity constraints,
while battery storage systems must satisfy complex inter
temporal constraints associated with their state of charge.
Energy usage in a building system is flexible, but it is also
subject to constraints that are not fully understood today. The
complexity of the power grid with its diverse set of resources,
each with its own dynamical properties and constraints,
makes real-time dispatch and control challenging.

Dispatch mechanisms based on model predictive control
(MPC) have been proposed (see [1], [2] and references
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therein). However, MPC may not be effective without care-
ful design. If the terminal penalty function is not chosen
correctly, then the performance may be poor, and the closed-
loop system may even be unstable. A large prediction horizon
could lead to good performance, but this comes at the
expense of correspondingly higher computational cost. It
is well known that all of these drawbacks are resolved
if the terminal penalty function is chosen as the infinite-
horizon value function that solves the dynamic-programming
equations (see [3] for a survey for deterministic systems, and
[4] in the context of stochastic systems).In fact, even a good
approximation of the infinite-horizon value function can
suffice to ensure good performance with a short prediction
horizon [3], [4].

The importance of the terminal penalty function can be
deduced based on the close relationship between MPC and
value iteration: The MPC algorithm in its standard form de-
fines a state-feedback policy, that is precisely the same policy
obtained after T steps of value iteration. It is known that if the
initialization of value iteration is a Lyapunov function, then
the resulting m-step value function is a Lyapunov function
for the (m+ 1)th policy obtained from value iteration [4].

In this work, reinforcement learning techniques are used
to approximate the infinite-horizon value function. A pa-
rameterized Q-learning algorithm is devised to construct
an optimal approximation of the value function, within a
parameterized class. This approach is favored because it can
be applied using real-world data, thereby avoiding the need to
adopt artificial assumptions regarding the system dynamics,
or the underlying statistics. However, it is argued that a
system model is highly valuable to formulate a basis for
Q-learning [5]. The Q-learning algorithm introduced here
could also be used in control synthesis for the applications
of interest. However, the focus of the paper is to show how
Q-learning can be coupled with MPC to provide a suitable
terminal penalty function, since the Q-function provides an
approximation of the infinite-horizon value function. This
insight allows us to view MPC and Q-learning algorithms
as complementary techniques which can be integrated seam-
lessly.

The effectiveness of the proposed MPC/Q-learning control
architecture is tested on the dispatch problem for a represen-
tative power system. The proposed approach is compared
against MPC implementations for which the terminal cost is
approximated from either the original cost function or the
solution to the linear quadratic regulator (LQR) problem.
Simulation results indicate that MPC with terminal penalty
derived from Q-function provides close-to-optimal solutions



even with a shorter prediction horizon, unlike typical MPC
implementations often provide solutions much different from
optimal. The proposed approach is particularly attractive for
systems with more uncertainty and/or more constraints, as
will be the case for power grids of the future.

The remainder of the report is organized as follows.
The parameterized Q-learning algorithm and its integration
into MPC framework is presented in Section II. Section III
presents an application of the proposed control approach
and demonstrates its effectiveness through simulation results.
Conclusions and directions of future research are contained
in Section IV

II. Q-LEARNING ENHANCED MODEL PREDICTIVE
CONTROL

This section contains a review of MPC and Q-learning
for the purposes of control, and in particular, for approxi-
mate dynamic programming. It is pointed out that the two
approaches are complementary. Based on this insight, a Q-
learning algorithm is proposed for control of fully observed
nonlinear state space models. This algorithm is used to
construct an approximation to the optimal terminal penalty
function for MPC.

A. MPC and the Bellman equation
Consider the nonlinear state-space model described as

below:
x(t+ 1) = x(t) + f̄ (x(t), u(t)) (1)

where x(t) is the state and u(t) the input, taking values
in X and U respectively. Actions may be subject to state-
dependent constraints: U(x) is used to denote the set of con-
trol actions that satisfy the state-dependent constraints when
the state is x ∈ X. The “bar” is used for this deterministic
discrete-time model, that typically will approximate an MDP
(Markov Decision Process) model (notation and motivation
borrowed from [5]).
MPC problem: The optimization criterion for the MPC
algorithm in the tth time step is to minimize the finite-horizon
cost,

J(x) =

T−1∑
τ=0

c
(
x(t+ τ), u(t+ τ)

)
+ c•

(
x(t+ T )

)
(2)

where T is the prediction horizon, and x is the state measured
at time step t; that is, x(t) = x. The one-step cost c(·, ·) and
terminal penalty cost c•(·) are non-negative valued.

At each step t, a control sequence
{
u(t), u(t +

1), . . . , u(t + T − 1)
}

is found so that the cost (2) is
minimized, subject to system dynamics and state/action
constraints. The first element u∗(t) of the minimizing control
sequence is implemented at the current time step t, and
the algorithm proceeds to next time step. This procedure
defines a state-feedback control law. It is stabilizing under
general conditions on the terminal cost c•. In fact, as we shall
review next, the computational complexity of MPC can be
reduced by choosing a smaller prediction horizon T if the
terminal penalty c• is appropriately chosen. Stability is also
guaranteed under mild conditions on c•; see [3] for a survey.

Value function: The value function of the infinite-horizon
control problem is defined as a minimum, similar to the
minimum appearing in MPC:

V ∗(x) = min
u

∞∑
t=0

c (x(t), u(t)) , x(0) = x ∈ X, (3)

where u = {u(0), u(1), . . .} denotes the sample path of
control actions. It is assumed that this function is finite
valued on X.

The corresponding dynamic programming (DP) equation
is given by,

V ∗(x) = min
u∈U(x)

{
c(x, u) +KV ∗ (x, u)

}
, (4)

where the DP operator K is defined as in MDP theory. That
is, for any function h : X→ R, Kh denotes the function on
X× U given by

Kh (x, u) = h(x+ f̄(x, u)) , x ∈ X , u ∈ U. (5)

The DP equation can be extended to any finite time-
horizon,

V ∗(x) = min
uT−1

0

(T−1∑
t=0

c(x(t), u(t)) + V ∗(x(T ))
)
. (6)

In this way the relationship with MPC is evident: If V ∗ is
chosen as the terminal penalty function c•, then the MPC
algorithm is infinite-horizon optimal, and this is true for any
time-horizon T ≥ 1. For these reasons, V ∗ is a perfect
candidate for the terminal penalty function in the MPC
algorithm. Of course, computation of the value function is
very difficult in most cases.

B. Approximate Value Function from Q-Learning

Approximations of a value function can be obtained using
reinforcement learning techniques such as TD- or Q-learning
[6]. This approach is illustrated here, in the setting of [5],
[7], [8] wherein an idealized model is used to inform the
construction of a basis.

The Q-function used in Q-learning is a real-valued func-
tion defined on X×U. It is closely related to the Hamiltonian
in optimal control theory [7]. It is defined as the function
appearing in the brackets in the DP equation (4):

H∗(x, u) := c(x, u) +KV ∗ (x, u) . (7)

On denoting

H∗(x) = min
u∈U(x)

H∗(x, u) , (8)

the DP equation implies that H∗ = V ∗. The reason for
introducing the new notation is that the DP equation can
be transformed to define a fixed point equation in H∗:

H∗(x, u) = c(x, u) +KH∗ (x, u) . (9)

In this form, it is not difficult to devise algorithms to
approximate H∗ and thence V ∗. A new approach is described
in the next paragraphs.



Approximation architecture: A natural parameterization for
the approximation of the Q-function defined in (9) is of the
form

Hθ(x, u) = c(x, u) + θTψ(x, u) (10)

where ψ : X × U → Rd. Given a basis {ϕi : 1 ≤ i ≤ d}
intended to approximate V ∗, a basis for Q-learning may be
chosen as the functions on X× U,

ψi(x, u) = Kϕi(x, u) = ϕi
(
x+ f̄(x, u)

)
, 1 ≤ i ≤ d. (11)

In prior work, it is found that idealized models (e.g., fluid,
diffusion, or mean-field games) can be used to obtain good
bases [5], [7], [8].

Given a parameterized family of functions {Hθ} as
defined in (10), the goal of Q-learning is to compute a
parameter θ ∈ Rd so that Hθ ≈ H∗. The approximation
is with respect to a specific norm.

Ergodic environment for learning: In the usual Q-learning
algorithm for MDPs, a randomized stationary policy is
applied to allow sufficient sampling of the state-action space
[9]. Similar assumptions are adopted here. It is assumed that
control actions are chosen so that the joint process (x,u) is
ergodic in some suitable sense, with stationary realization
denoted (X,U). This can be achieved by perturbing a
stabilizing state-feedback policy φ with an excitation signal
ζ as follows,

u(t) = φ
(
x(t)

)
+ ζ(t) . (12)

In the approach described here, the excitation signal is
obtained through a quasi-Monte-Carlo approach, following
[10]:

ζ(t) =

n∑
i=1

Ai sin(ωit) ,

where {Ai} are constants, {ωi} are various frequencies,
and n ≥ 1 is an integer. We assume that the resulting
controlled system admits a stationary realization, whose
marginal distribution is denoted $.

A Hilbert space setting is adopted for approximation,
based on the corresponding ergodic norm: For measurable
functions F,G : X×U→ R, the inner product and norm are
defined as follows:

〈F,G〉 :=

∫
F (x, u)G(x, u)$(dx, du) ,

‖F‖2 :=

∫
F 2(x, u)$(dx, du) .

In terms of the stationary realization (X,U),

〈F,G〉 = E[F (X(t), U(t))G(X(t), U(t))] ,

where the expectation is independent of time. Under general
conditions on the system and input (12), the Law of Large
Numbers holds and the expectation may be computed from
a sample trajectory on the X× U space.

Error criterion: A natural criterion for choosing parameter
θ is to minimize the actual error ‖H∗ −Hθ‖, which is the
viewpoint taken in TD-learning. Alternatively, error in the

fixed point equation (9) may be minimized, which is known
as the Bellman error.

The mean-square Bellman error is defined as,

E(θ) := 1
2 ‖H

θ −
(
c+KHθ

)
‖2

= 1
2 E
[(
Hθ
(
X(t), U(t)

)
−
[
c
(
X(t), U(t)

)
+Hθ

(
X(t+ 1)

)])2]
.

(13)

where the function Hθ : X→ R is defined as in (8),

Hθ(x) = min
u∈U(x)

Hθ(x, u) . (14)

Note that if E(θ∗) = 0, then the fixed point equation (9) holds
in a mean-square sense. Consequently, the DP equation (4)
is solved a.e. [$].

The goal of Q-learning is to find θ∗ ∈ Rd that minimizes
E over all θ ∈ Rd. The optimal parameter can be computed
using a stochastic-approximation of steepest descent. This
requires that we obtain a suitable expression for the gradient.
First, recall that the function Hθ(x, u) is affine in θ with
gradient ψ(x, u). If u∗x,θ denotes the minimizer in (14), then

∇Hθ(x) := ψθ(x) = ψ(x, u∗x,θ) .

Using this notation, the gradient for the steepest descent
algorithm is expressed,

∇E(θ) = 〈Hθ −
(
c+KHθ

)
, ψ −Kψθ〉

= 〈θTψ −KHθ, ψ −Kψθ〉
(15)

under the assumption that the derivative and expectation can
be exchanged.

This leads to the following stochastic approximation algo-
rithm to recursively estimate θ∗,

θ(t+ 1) = θ(t)− γt
[
θT(t)ψ

(
x(t), u(t)

)
−Hθ

(
x(t+ 1)

)]
×
[
ψ
(
x(t), u(t)

)
− ψθ

(
x(t+ 1)

)]
. (16)

where γt is a decreasing gain sequence, such as 1/(t + 1)
[10], [11].

C. MPC with Q-learning

Q-learning gives an approximation Hθ∗(x, u) to the Q-
function H(x, u) defined in (7) and, consequently, Hθ∗(x)
approximates the value function V ∗(x) defined in (3). Then,
MPC can be solved with this modified objective function:

J(x) =

T−1∑
τ=0

c
(
x(t+ τ), u(t+ τ)

)
+Hθ∗

(
x(t+ T )

)
. (17)

By plugging in the approximate value function from Q-
learning into the MPC framework, the benefits of the two
approaches can be combined. A better approximation of the
Q-function can lead to stability, improved performance and
smaller prediction horizon.



III. POWER SYSTEM DISPATCH

The effectiveness of the proposed Q-learning/MPC control
architecture was tested on a problem of dynamic scheduling
of power system resources: The results are surveyed in this
section. First, a brief overview of the classical dispatch
problem is provided followed by the problem considered
in this work, which is a variant of the control problem
considered in [2], with load and wind data taken from [12],
[13]. The section concludes with simulation results providing
a comparison of several MPC architectures.

A. Overview: Economic Dispatch

The economic dispatch problem determines the optimal
deployment of resources to meet predicted load demand over
a specified scheduling period, while satisfying physical con-
straints and minimizing cost of operations. The operational
costs include total fuel costs of generation, costs associated
with storage, and the cost of ramping generation.

It is typically formulated as a minimization problem with
the objective being the operational costs calculated across
the scheduling horizon consisting of T sch time steps. The
problem explicitly considers capacity constraints and ramp-
ing limitations on the resources.

The dispatch problem is typically solved in “open-loop”:
The optimization problem is solved once over an entire
horizon T sch – say, one day. This approach may provide sat-
isfactory performance when the main source of uncertainty
is the load forecast error, which is typically small. Open loop
control is not suitable in a highly uncertain environment. In
such systems, MPC based dispatch mechanisms may work
better [1], [2], but these approaches must be implemented
with care, as we have surveyed in the previous section.

B. Test System Description

A small representative power system is considered, con-
sisting of a diesel generator, a battery energy storage system
(BESS), a wind power plant, and a mix of loads which
constitute the total demand. Many factors are disregarded,
such as system losses, and the details of dynamics and costs.
The goal here is control synthesis, for which a simplified
model if frequently justifiable.

It is assumed that the BESS is used to compensate for net
load (total load minus wind generation) variability and that
its charging/discharging is determined based on a threshold
policy: The BESS is charged if the net load is less than the
threshold, and discharged if it is less than the threshold. The
threshold value can be viewed as power demanded by the
net load and BESS; it is supplied by the diesel generator.

A balancing service term is introduced to manage real-time
mismatch in supply and demand caused by the uncertainty
associated with wind generation and load. It is assumed that
the balancing service is procured from an expensive ancillary
service resource, whose operation is independent of the other
resources in the system. This resource can be thought of
either as the system’s interaction with the rest of the grid or
as an ancillary generation source/load sink which is run only
to manage the shortfalls/surpluses in system generation.

A quadratic cost structure is adopted for the diesel gen-
erator’s fuel costs. The BESS operational costs are cast as
proxy costs which penalize deviations of its state of charge
(SOC) from a specified reference value.

C. Problem Formulation

The problem formulation is adapted from [2]. Static mod-
els are used to represent the states of the system and dynam-
ics are introduced by set point changes in the generator’s
outputs and threshold values of BESS.

The output of the diesel generator, the threshold of BESS,
its SOC, the output of the wind plant, the total load and the
required balancing service at time t are denoted by PG(t),
Pthr(t), ξS(t), PW(t), PD(t) and Pbal(t), respectively. The
power supplied by the BESS is

PS(t) = PD(t)− PW(t)− Pthr(t) .

where PS(t) > 0 indicates discharged and PS(t) < 0
indicates charging. For the balancing service, Pbal(t) > 0
indicates excess generation while Pbal(t) < 0 indicates a
generation deficit.
System dynamics: The generation outputs, BESS thresholds
and SOC as well as the balancing service are considered to
be the states of the system, and the control actions are the
set-point changes in generation output and BESS threshold
denoted by ∆PG(t) and ∆Pthr(t). That is,

X(t) = [PG(t), Pthr(t), ξS(t), Pbal(t)]
T

and
U(t) = [∆PG(t),∆Pthr(t)]

T
.

The states and actions are constrained so that

Xmin ≤ X(t) ≤ Xmax and Umin ≤ U(t) ≤ Umax (18)

for each t. The limits Xmin and Xmax determined by the
capacity bounds on the states, while the limits Umin and Umax

depend on the ramping limitations associated with the set-
point changes.

Dynamics are introduced by the changing set-points and
take the form:
PG(t+ 1) = PG(t) + ∆PG(t) ,

Pthr(t+ 1) = Pthr(t) + ∆Pthr(t) ,

ξS(t+ 1) = ξS(t)− αS
(
PD(t)− PW(t)− Pthr(t)

)
Pbal(t+ 1) = PG(t+ 1)− Pthr(t+ 1)

= PG(t)− Pthr(t) + ∆PG(t)−∆Pthr(t)

(19)

where PW(t) and PD(t) are interpreted as disturbances in the
state dynamics, The parameter αS represents the conversion
factor,

αS =
ηS

Emax
S

∆t ;

where ηS and Emax
S represent the efficiency and energy

capacity of the storage device, and ∆t represents time step
duration in hours.

The dynamics in (19) can be cast in a linear form

X(t+ 1) = AX(t) +BU(t) +MV (t) (20)



where V (t) =
[
PW(t), PD(t)

]T
is the disturbance process.

Cost Function: The dispatch problem is set-up to minimize
the fuel costs of generators, operational costs of BESS,
balancing service needed, and the mechanical wear and
tear on generators caused by ramping. A cost function is
formulated to take into account these diverse costs. The
cost at time t is taken to be the weighted sum,

c
(
X(t), U(t)

)
= w1

(
aP 2

G(t) + bPG(t) + c
)

+ w2

(
ξS(t)− ξref

S

)2
+ w3P

2
bal(t)

+ w4∆P 2
G(t) + w5∆P 2

thr(t)

, (21)

where the weight wi determines the relative importance of
the ithobjective and

∑
i wi = 1. The cost can reformulated

in a quadratic form,

c
(
x, u

)
= (x− xref)TQ(x− xref) + uTRu+ κ , (22)

where xref is a reference state and κ is a constant.

MPC set-up: A predictive model for the system dynamics is
defined as follows

x̂(t+ 1) = Ax̂(t) +Bû(t) +Mv̂(t) . (23)

At each step t, the actual values measured from the
system are used to initialize these dynamics. Predic-
tions for the noise are made for the horizon, vT−11 :=
{v̂(t+ 1), . . . , v̂(t+ T − 1)}. An autoregressive integrated
moving average model is used to predict the wind generation
and a seasonal ARIMA model is used to forecast aggregate
load.

Given noise predictions vT−11 , the MPC algorithm chooses
the control trajectory to minimize the predicted costs defined
analogous to (2) subject to the dynamics in (23) and con-
straints in (18). Then, the control U(t) is chosen as û∗(t)
and applied to the system. In the simulation experiments,
the system evolves according to dynamics in (20), so that
X(t+ 1) is defined, and the procedure is repeated to obtain
û∗(t+1). More details on the MPC set-up and the forecasting
techniques used are available in [2].

Q-learning set-up: The Q-learning algorithm devised in Sec-
tion II-B is for a deterministic system. Although, the system
under consideration has stochasticity introduced by wind
generation and load demand, the algorithm of Section II-B
was applied by adopting a deterministic mean-field model.
In the design of the Q-learning algorithm, the dynamics are
assumed to follow the recursion

x̄(t+ 1) = Ax̄(t) +Bū(t) +Mv̄ (24)

where v̄ is the mean of the disturbance process. The DP
operator K is defined based on (24).

The basis was obtained using the structure (11), with {ϕi :
1 ≤ i ≤ d} obtained using d = 3 as follows. The basis
function ϕ1 is taken to be the value function obtained from
the LQR problem without state constraints (subject to the
above dynamics and costs given in (22)). The other two basis
functions, ϕ2 and ϕ3, are designed to penalize movement of

the state trajectory towards the generation boundary and the
SOC limits, respectively.

The Q-learning algorithm can be implemented with histor-
ical data of the wind generation and load demand. However,
in the simulation results presented next, the state trajectory
is computed using the mean-field model (24).

D. Simulation Results

In the simulations described here, the test system is
considered to have either 5 or 3 MW diesel generation
and 3.6 MWh BESS, with a tie to the grid to procure the
balancing service. The wind plant data is obtained from [12]
and the aggregate load data is generated using [13].

Three implementations of MPC are considered:
1) MPC with c•(x) = (x − xref)TQ(x − xref): This is

considered as the base case.
2) MPC with c•(x) = (x − xref)TSLQR(x − xref): The

matrix SLQR is obtained from the closed form solution
of the LQR problem with dynamics and costs given in
(23) and (22) (and unconstrained state-action space).

3) MPC with c•(x) = Hθ∗(x): The Q-learning algorithm
is run to find Hθ∗ .

The simulation studies were preformed with control steps
of 10 minutes and a scheduling horizon of 24 hours, so that
T sch = 144. The metric used for comparative analysis is the
total normalized cost for the scheduling period, given as

J∗tot =

T sch∑
t=1

c
(
x∗(t), u∗(t)

)
where x∗(t) and u∗(t) are based on the MPC state-feedback
policy. The performance of each algorithm is compared in
terms of J∗tot for various values of the prediction horizon T .

2 3 4 5 6 7 8 9 10
2

6

10

14

18

T

J∗
tot

Base Case
MPC with LQR
MPC with Q-learning

Fig. 1. Total costs as a function of the prediction horizon for Pmax
G = 5

MW and low wind generation.

Fig. 1 shows the total cost for each MPC implementation,
with Pmax

G = 5 MW. The MPC algorithm with c•(x) = Hθ∗

shows much better performance when compared with the
base-case, for all T ≤ 5, with a 5-fold improvement for
T = 2. The performance of LQR-based MPC is similar to
that of the MPC/Q-learning combination. A possible reason
for this could be that for the given noise sample path and
constraints, the state trajectory does not hit the boundaries
of the state space.

A better test of the effectiveness of LQR-based MPC
requires more stringent constraints and larger disturbances.
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Fig. 2. Total costs as a function of the prediction horizon for Pmax
G = 3

MW, generation ramping limit of 1 MW and high wind generation.

To compare the performance for such a noisy, constrained
system, the simulations were rerun with Pmax

G = 3 MW, a
ramping constraint of ∆Pmax

G = 1 MW, and wind generation
profile multiplied by a factor of 2. The total cost J∗tot for
the three MPC implementations is plotted as a function of
the prediction horizon T in Fig. 2. The plot demonstrates
how the MPC/Q-learning control architecture provides a
better performance even shorter prediction horizons. This
study demonstrates how combining the MPC and Q-learning
techniques not only improves the performance of the control
policy but also enhances the tolerance of the controlled
system to uncertainty and constraints.

IV. CONCLUSION

The contributions of this paper are three-fold. First, a
parameterized Q-learning algorithm is devised for the control
of fully observed nonlinear state space models. Second, the
Q-learning algorithm is used to construct an approximation to
the optimal terminal penalty function for MPC: in this way,
the two control approaches are coupled, and the benefits of
each approach are combined. Third, an application of the
proposed approach to the power system dispatch problem
is presented to showcase improved performance of MPC/Q-
learning control architecture.

Simulation results indicate that the proposed coupling is
particularly effective for systems with large disturbances and
heavily constrained state-action space. Future power grids
with a deep penetration of renewable resources and limited
flexibility in generation, demand response and storage, may
very well be examples of such systems. We provide here
an effective control mechanism for dispatching resources in
such grids. The improvement in performance and greater
adaptability of Q-learning based MPC may be of particular

importance in large grids with many resources and many
sources of uncertainty.

There are many avenues open for future research; a few
are listed below:
• The selection of the right basis functions for the Q-

learning algorithm can be investigated further. Fluid
and diffusion models provide a starting point [5]. Basis
selection for large scale, interconnected power systems
can be facilitated through model reduction in more
complex networked settings [8].

• The inclusion of statistical information may be used to
improve the Q-learning algorithm.

• Error bounds on the Bellman error can be used to obtain
performance bounds for both Q-learning and the MPC
algorithm introduced here.

• Implementation in a non-time-homogeneous environ-
ment will require modifications to the proposed ap-
proach.
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