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ABSTRACT

The impulse and step responses for cascaded, three or five pole 
Butterworth filters have been calculated on Illiac with an accuracy of 
three or more decimals. In this paper the dependence of the calculated 

step response upon the number of cascaded filters \2 is studied, both 
with no phase correction and with complete phase correction, with \2 in 

the range from ^ to 512.
It is found (for the three and five pole filters) that the rise

time, period of ringing, and non-linear part of the time delay in the
step response, for Butterworth filters without phase correction, are

+l/ *5each approximately proportional to ^2 ' * for large enough \ 2 • The
rise time and period of ringing are about proportional to \2+1/2 f°r 
large \ z (\i equals the number of poles) for the Butterworth filters 
with complete phase correction. Both asymptotic exponents are also 
derived analytically. In all cases studied the amount of overshoot 
seems to approach an upper limit and the logarithmic damping rate of the 

ringing seems to approach a lower limit as \ 2 increases.
The pronounced decrease in the damping rate of the ringing is the 

most important distortion accompanying cascading of the uncorrected 
Butterworth filters. This distortion is caused chiefly by the non­

linear phase lag.
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INTRODUCTION

In 1956-57 we developed an Illiac program which could he used to 

calculate the impulse and step response of a wide variety of cascaded 
Butterworth filters, these being the type of filters of principal 
interest to us. During the construction of this program we tried to 
keep in mind its potential usefulness for computing cosine and sine 

transformations of any reasonable function.
A Butterworth or flat-staggered tuned network1 is characterized by 

the number of poles it contains. This parameter we call Cascading
of identical Butterworth filters introduces a second parameter, \ 2 , 

the number of filters in cascade. In this paper we shall describe the 

results of calculations of transient response for X-i = 5 and 5 and \2 in 
the range k to 512. As an indication of the possible improvements to be 
achieved by phase correction networks, we also computed the transient 
response of "unrealizable" filters with no phase distortion but with the 

same amplitude response as the Butterworth filters.
The weight function or the response to unit impulse w°(t) may be

pdefined by the expression

1 Valley and Wallman, "Vacuum Tube Amplifiers". (Rad. Lab. Series, 
vol. 18.) McGraw-Hill (19^8). Sect. k .6 .

2 James, Nichols and Phillips, "Theory of Servomechanisms". (Rad. 
Lab. Series, vol. 25.) McGraw-Hill (19^7)« Sect. 2.15»

00

( 1 )

00
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■where Y(jw) = ?(u>) exp £-Jj(u)) J  is the system function for the filter 
network. The response to unit step u°(t) is given by^

u°(t) - w° (tx) dti (2)

Because the amplitude response 7(w ) of the filter is an even function 
of frequency and the phase lag ̂ (oo) is an odd function of frequency, 

Eq. 1 can be rewritten as

r  oo
w°(t) « (l/jt) / 7(w ) cos [cot-j(w)] dw (3)

For applications it is convenient to use dimensionless variables 

which may be introduced as follows:

f t  = T o
w * 2jtf x o

7(“) = f (x)
^(u) = G(x) 

w°(t) = w°(T) 

u°(t) = u°(T)

where f is the half-width of a filter at the half-power point.

5 Ref. 2, Sect. 2.7*
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In terms of these quantities Eq. 3 becomes

‘OO
wu(T) = 2 / F(x) cos |̂ 2jtxT - G(x)^] dx 

o
0 0

and Eq. 2 becomes

u°(t ) = / w°(T) dT (5)

The amplitude response F ( x ) ^ ^  of one *a-P°le Butterworth filter
(\2 - l)> in terms of the reduced frequency variable x, is given by

F (x)/ X.2=l 
k

= (1 + x2*1) *1/2 (6)

and the phase lag is given by

V  tg"1 ̂ 2x0080^/(1 - X2)] , = Jt(2j - l)/2X.i , even (7)
j=l

JX

tg-1x + y  tg"1 ^ 2xcos9^./(l - xz )~\ > ■ Jtd/2X.i , Aa
J=1

odd

where in each case k is chosen so that 0 <0̂ . (n/2- . Therefore the 
amplitude and phase responses of \2 such identical filters in cascade

Ref. 1, Sect. 7«5.
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axe given by

F(x) = [ F (x)/Xa=1] X2 

Gl(x) » X2[]Gx(x |/

Complete phase correction is expressed by the equation

G(x) = Gq(x ) = 0 (8)

Typical results of the Illiac calculation are shown in Fig. la, 
b for the inpulse response. (The following discussion would also 
apply to the distortion by the filters of unit step input.) The 
filter whose characteristics are illustrated is a five pole filter.
A unit impulse passed through the four, five-pole filters (either 
with full phase correction and with no phase correction) gives the 

responses shown in Fig. la. We note that the width of the impulse 
response is not significantly improved for this value of \ 2 by the 
phase correction but that the amplitude of the ringing is noticeably 
reduced by the phase correction. When the unit impulse has passed 
through 512 five-pole filters, its shape has been changed more 
drastically as is shown in Fig. lb. With full phase correction 
G(x) = 0 the impulse response for \2 - 512 is widened by a factor of 
1.5 over what it was for \2 = 1, and this change of shape can be 
attributed entirely to the slight narrowing of the band pass of the 

iterated filter owing to the repeated cascading. The situation for 
the 512-fold cascaded Butterworth filter with no phase correction is 
seen to be quite different. The impulse has set the system ringing 
with a long period and a very low rate of decay.



9 7 -9

FIG. l a b  TIME RESPONSE TO UNIT IMPULSE.OF À2. 5 POLE BUTTERWORTH FILTERS IN CASCADE.
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DESCRIPTION OF CALCULATIONS

Two values of were used, 3 and 5. The parameter \ 2 was varied 
between k and 512. In all cases, the impulse and step responses were 
calculated for no phase correction and with complete phase correction.

In this report we describe only the step response, the data for which 
is given in Table I. (Complete tables of w (t ) and u(T), which are the 
values of w°(T) and u°(T) obtained by numerical integration, are on file 

at CSL for the cases considered.)
We shall pick certain parameters characterizing these step 

responses and discuss these parameters in some detail. The parameters 
of interest are calculated from the coordinates of the six numbered 
points of a step response curve defined in Fig. 2. These coordinates 
are listed in Table I. The five parameters, listed in Table II, are 

derived from these coordinates and are defined as follows:

1. time delay Tq 1 = Ti

2. rise time T = (T2 - Ti)

3 . overshoot Au° = 100 (u°^ - l) 

period T^ = 2(T^ - T^)

5. damping factor ■ 2 In | (u°^ - l)/(u°£ - l) |
/

All of these characteristics refer to the response to unit step 
although some of them also have a direct relationship to the response 
to unit impulse. The time delay is the time required (measured from 
T = 0) for the step response to reach the value of 0.10 . The rise time 
is the interval of time required for the step response to increase from
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64 66 68 70 72 74

FIG. 2 RESPONSE TO UNIT STEP OF 128 5-POLE BUTTERWORTH 
FILTERS IN CASCADE.
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the value 0.10 to the value 0.90. The overshoot is defined as the 
amount, expressed as a percentage, by which the step response exceeds 

unity at the first maximum.
The last two characteristics refer to the behavior of the decay

and ringing of the filter response. The time of occurrence of success
sive minima and maxima can obviously be used as some measure of the
characteristics of the period of ringing of the filter. Both the
period of the ringing and its damping factor, from cycle to cycle,
tend to approach constant values as the time variable becomes very
large. It was not practicable, nor would it be very useful, to take
advantage of this simplification. Therefore we chose to take twice

the time interval between the second maximum and second minimum as
the "period" of the ringing and twice the natural logarithm of the
ratio of the amplitude of these two points as a measure of the
damping factor corresponding to this "period". Our calculations were,
correspondingly, carried in all cases to beyond the second minimum
of the step response. All of the quantities mentioned are listed in
Table II for the cascaded filters that were studied. It is believed

that the quantities in the table are accurate to the number of digits
*given in each instance.

The five parameters TQ T, T^, Au°, that we thus use to 
characterize the step response will now be discussed in this order.

* Description of methods used in performing the Fourier transforms 
on the Illiac and in studying the error problems associated with 
this calculation will be postponed to future reports.



97-15

RESULTS

To.i " (delay)

For G = Gi (no phase correction), the delay time for derived
from the Illiac calculations agrees closely with the values calculated 

from the equation

T0.1 " b̂o.i " ao.i ^ (9)

where a0.1> b0.1 have the values shown in the first two columns of the

following table:

■̂l a0.1 b0.1 b0.1

3 0.156 0.321 0.318

5 0.165 0.520 0.515
(Illiac) (stationary phase)

An elementary application of the method of stationary phase predicts the 

values of b 1 in the third column of the above table. The small 
difference between the values of a^ ^ for ■ 3 &nd - 5 suggests 
that possibly an 1 becomes independent of as increases 
indefinitely. It is clear that although the delay Tq ^  is not a linear 
function of the non-linearity decreases with increase of

For filters with G ■ GQ (full phase correction), a delay TQ 1 has 
no meaning unless features are added to these "unrealizable" filters

which are not considered in this report.
, \

T (rise time) Fig. 3•
For G * Gi (no phase correction) the calculated rise time of the
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FIG. 3 RISE TIME AS A FUNCTION OF X, AND X 2
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step response conforms to the formula

T ** Iai a.20.33 ( 10)

for Xz y 8 where a has the values 0.36 and 0.39 for 4i = 3 and 5> 
respectively. The rise time for the five pole network is thus 
uniformly about 7 o/o larger than for the three pole network for any 

given (large) value of X2 .
For G = Gq (full phase correction)

T A'
XzX' 2 ** ( 11)

where a = 0.44 for both values of X-i and for Xz ) 4. (See section

on T, for further discussion.) a

T^ - (period of ringing) Fig. k .

This parameter, especially in its asymptotic behavior, behaves 
in a fashion that is quite similar to that of the rise time T, for 
both G = Gq and G = Gi, although it begins to exhibit its asymptotic 
behavior only at larger values of X,2 .

For G ■ Gi (no phase correction)

Td ~  ad \ 20-5 (12)

•7
for \2 y 2 , where a^ is about k o/o larger for Xi = 5 than for 

m 3 , We note that the exponent in Eq. 12 is almost equal to the 
exponent in Eq. 10 for T, and the two values might be more nearly 
equal for larger values of \2. At X>2 = 2^, (T^/t ) = 1.20 and 1.23 
respectively for = 3 and 5»
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FIG. 4 PERIOD OF RINGING AS A FUNCTION OF X, AND X,
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For G = Gq (full phase correction)

Td = ad \ 21/ 2 Xl (15)

for X2 > 2^ where a = 0.83, 0.95 for \i = 3, 5 respectively. Comparing 
with the results for T we find that, asymptotically, (T^/t )*^ 1 .88, 2.11 

for \i = 5 respectively.
-l/2The half width Xi of the function F (x) when its value is 2" '

(half-power point) is accurately proportional to for values
of \2 )J> 1* If we replace F (x) by a square band pass with band-width
equal to xi, then the time t>cale of the transient response of this

square filter (with G = GQ) will be proportional to xi’ 1 or to ^1

which is just the variation we have found, for G = GQ, for the parameters
T, and T which are measures of the time scale. Apparently for G = Gi, d
the effect of the phase distortion is such as to nearly cancel this 

dependence of the time scale upon the number of poles, \ ly for, as we
/Vhave seen, and T behave very much the same for the two values of 

Au - (overshoot)
For G = Gi (with \ 2 > 8) and for G = GQ (with \z > the 

calculated overshoot data can be well represented by an equation of 

the form
-p

Au = bQ - aQ \ z (1*0

where the coefficients aQ, bQ, pQ have the following values:
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100 aQ 100 bQ

G = Gi 3 26.10 28.50 0 A 0

5 20.0 27.55 0.62

G =  G0 3 2.7 7.06 1.02

5 1.5 8.20 1.16

It is perhaps worth emphasizing that for each value of \i the

overshoot seems to have an upper limit which it approaches asymptoti­

cally for large X.2 .

- (damping ratio) Fig. 5«

The accuracy of the values of is both variable and question­
able in our calculations, partly because one to four significant 
digits are lost when (u - l) is formed from u . Like Au , 
appears to approach a limiting value, for each given \i, as X2 

increases. Within the accuracy of our data, this asymptotic approach 
may be represented (for \ 2 > 128),

ad ̂  ®d + ̂ d  ̂ (15)
where A and B have the following values:

*̂1

Q u 0 H 3 o M

5 7.8 0.30

G =  Gn 3 1.5(7) 2 .^(?)

5 1.75 1.37
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FIG. 5 DAMPING OF THE RINGING AS A FUNCTION Xt AND X2
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For G ■ Gi, = 5, the data supports the exponent one; for other cases, 

this value is assumed.
Even though the damping per cycle, cr̂ , asymptotically approaches 

a lower limit, the damping per unit time, (a^/T^) decreases indefinitely 
as X2 increases because T^, as we have seen, appears to increase 
proportionally to a positive power of \2 .

Analysis for large values of \ 2

When \ 2 is large, the amplitude function F(x) becomes negligibly 
small for all x ̂  xi where xi ~  as shown before and illustrated
in Fig. 6. If \ 2 is large enough, xi « 1  and the phase function Gi(x) 
is well approximated by the first two terms of its power series

Gi(x)/~ \ 2 (gi x + x5) (l6)

where

gi * 1 + 2 ) cos 0.

(17)

= - i (1 + 8 ^  cos5 ej) +
j=l J-l

cos ©j

for Butterworth filters with an odd number of poles. The angles ©^ 
give the positions, relative to the negative x axis, of those poles 
lying in the upper half plane. The angles and coefficients have the 

following values:
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©i 02 gl f3

3 60° — 2.00000 0.33333

5 36° 72° 3.23607 0 A 1202

The non-linear part of the phase lag* (for X2 = l)>
(AGx^/Tt^) - jj*i(x) - \ 2 gi x^ /jtX 2 is plotted in Fig. 6.

The impulse response now takes the form

r * i
w°(T) —  2 / cos£x(2jtT - >.2gi) - ^2g ^ ] d x  (l8)

J  o

in which Eq. 16 has been used and the approximation has been made 
that F(x) ~  1 for x N( xit When x ~ x1? the "frequency" of oscillations 

corresponding to the cubic term is about equal to (3g^ "^^1)*
which grows with \2 . The limit x2, may then be replaced by infinity 
with an error which decreases as \ 2 increases. We have then finally

r ° °w°(T)~ 2 / cos j~x(2jtT - X2gx) - X»2g*x J dx (19)
J  o

This integral* evaluated in terms of modified Bessel functions*
5has been discussed by Bi Toro . All we need here however is the 

nature of the dependence of the related function u°(T) upon \2 . Let 

us define
f = (2ttT - gl\2) (Xagj)-1'3 (20)

 ̂Di Toro, Proc. I.R.E. 36* 2k (19^8).
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Then
p  oo

w°(T)~ 2 / c o s - Z5 ]dZ (Xsg, ) -1' 5 

J  o
(21)

u°(T)~ (l/n) COS [̂ 2rtZ| - Z5 ]dZ (22)

The step response is thus a function off alone, for large X2 . Insofar 
as this is an accurate result, we should expect the following behavior 

of the step response (with no phase correction):
i) (2it Tq 1 - gi X2), T, and T^ should each be proportional to 
for large X2. This agrees more or less well with the empirical

formulae given in earlier sections, accordingly as the region of 
asymptotic behavior is reached sooner or later for differing values 

of Xi2»
ii) The overshoot ZH° should be asymptotically independent of 

X.2 and Xx. This seems to be the case rather closely.
iii) The damping of the ringing should also be independent of 

X*. This does not seem to agree with the Illiac results, possibly 
because this characteristic of the step response is more sensitive than 
the other characteristics to the nature of the small departures of the 
amplitude function from unity within the pass band.

* * * * * * * * * * * * * * * * *

The authors :would like to acknowledge the assistance of Sanford Stein, 
Jack Ullman, and Jerry McCall in developing the many sub-routines that 
were part of the Illiac program used for these computations.



Table I

Coordinates of Six Points on the Step Response Curve

G -  Gi (no phase correction)

X-i \2 " 1 2 3 1* 5 '■ 6

3 k T 1.01 1.59 1 .9288 2.5778 3 :199^ 3 .801*8
u 0.100 0.900 1.143 1.011 0.997

3 8 T 2.22 2.9^ 3.3^67 l*.0801 i*:756o 5.1*023
u 0.100 0.900 1.172 1.021 0.993

3 32 T 9®68 10.80 11.1*117 12.1*259 13.3091* li* .1257
u 0.100 0.900 1.220 1 .051* O.97I*

3 128 T 39 »95 1*1.71 1*2.6552 1*1* .1551* 1*5.1*221* 1*6:5685
u 0.100 0.900 1 .2l*8 1.095 0.936

3 256 T
u

3 512 T 161.72 l6i*.50 165.9799 168.2781 170.1882 171.8961
u 0.100 0.900 1.2 61* 1.131 0.899

97-31



Table I (cont*d.)

Coordinates of Six Points on the Step Response Curve

G = Gi (no phase correction)

^1 X.2 1 2 5 4 5

5 4 T 1.780 2.403 2.7596 3.3918 5.9779
u 0.100 0.900 1.196 1.049

5 8 T 5.775 4.544 4.9748 5.7032 6.3561
u 0.100 0.900 1.221 1.0758

5 52 T 15 17.159 17.7881 18.8235 19.7087
u 0.100 0.900 1.255 1.120

5 128 T 65.078 66.957 67.9630 69.5241 70.8256
u 0.100 0.900 1.266 1.143

5 256 T 134.4056 136.3467 137.95^1
u 1.269 1.148

5 512 T 262.36 265.529 266.9098 269.3350 271.3548
u 0.100 0.900 1.271 1.151

6

4.5449
0.975

6; 97*1-6 
0.956

20.5194
0.908

71.9958
0.880

139.5888
0.874

275.1151
0.871 97-55
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Table I (cont'd.)

Coordinates of Six

G = Gq (complete phase correction'

^1 X.2 1 2 *

3 if T -0 .26l*f 0 .261*4-
u 0.1000 0.9000

3 a T -0.300*4- 0 .300*4-
u 0.1000 0.9000

3 32 T -0 .38*4-9 0 .38*4-9
u 0.1000 0.9000

3 128 T -0.*f869 0 .*4-869
u 0.1000 0.9000

3 256 T
u

3 512 T -0.61*4-0 0 .6i*f0
u 0.1000 0.9000

* T = 0

Points on the Step Response Curve

3 if 5 6

0.5778
1.0637

1.1723 1.7722
1.0028

2.3606 
0.999*1-

0.6615
1 .067*4-

1.3188 1.9605
1 .00*fl

2.5786
0.9991

0.8*4-70
1.0698

1.6739 2.*f 607 
1.0056

3.2029
0.998*f

1.0716
1.070*4-

2 .ll*f 5 3.1022
1.0060

if .0298 
0.9982

1.3515
1.0705

2.6660 3.9096
1.0061

5.076*f
0.9981

u = 0.5000 for G = G_o 97-35



Table I (eane^d.)

Coordinates of Six Points on the Step Response Curve

G = Gq (complete phase correction)

X.1 \z 1 2*

5 4 T -0.2456 0.2456
u 0.1000 0.9000

5 8 T -0.2670 0.2670
u 0.1000 0.9000

5 32 T -0.3098 0.3098
u 0.1000 0.9000

5 128 T -0.3568 0.3568
u 0.1000 0.9000

5 256 T
u

5 512 T -o.4ioi 0.4101
u 0.1000 0.9000

* T » 0

3 4 5 6

0.5466 1.0932 1.6384 2.1803
1.0790 1.0130 0.9946

0.5943 1.1844 I .7667 2.3393
1.0807 1.0152 0.9931

0.6899 1.3730 2.0437 2.6996
1.0817 1.0168 0.9917

0.79^5 1.5808 2.3524 3.1061
1.0819 1.0172 0.9914

0.8519 1.6949 2.5221 3.3300
1.0820 1.0173 0.9913

0.9132 1.8169 2.7036 3.5696
1.0820 1.0174 0.9913

U = 0.5000 for G = G0

97-37



Table II

Characterisites of the Response to Unit Step

G a Gi (no phase correction)

X.1 X.2
TX0.1

A*T

3 * 1.01 0.58

8 2.22 0.72

32 9.68 1.12

128 39.95 1.76

256
512 161.72 2.78

5 b 1.779 0.623

8 3.772 0.771

32 1 5.9^ 1.198

128 65.078 1.879

256

512 262.56 2.97

td Au

1.21 14.3 2.8

1.29 17.2 2.3
1.65 22.0 1.5
2.29 24.8 0.8

3.42 26 .4 0/5

1.134 19.6 1.3

1.237 22.1 1.0

1.621 24.8 0.54

2.336 26.6 0.35

2.869 26.9 0.33

3.556 27.1 0.31

97-39



«

Table II (conci*d.)

Characteristics of the Response to Unit Step

G = Gq (complete phase correction)

TX0.1
A/
T TD An °D

3 k 0.5229 1.1768 6.37 3.3
8 0.6008 1.2365 6.74 2.9
32 0.7697 1.4844 6.98 2.5

128 0.9737 1.8552 7.04 2.4

256

512 1.2281 2.3337 7.06 2.4

5 k 0.^913 1.0838 7.90 1.77
8 0.5340 1.1453 8.07 1.58

32 0.6197 1.3116 8.17 1.42

128 0.7136 1.5075 8.20 1.38

256 1.6159 8.20 1.37

512 0.8202 1.7380 8.20 1.37

97-iH
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