THE TRANSIENT RESPONSE OF

CASCADED BUIIFRWORTH FILIERS
Report Number R-97
Av.gust, 1957

Contract DA-36-039-SC-56695
D/A. Sub-Task 3-99-06-111

The research reported in this document was made possible by support extended to the University of Illinois, Control Systems Laboratory, jointly by the Department of the Army (Signal Corps and Ordnance Corps), Department of the Navy (Office of Naval Research), and the Department of the Air Force (Office of Scientific Research, Air Research and Development Command) under Signal Corps Contract DA-36-039-SC-56695, D/A Sub-Task 3-99-06-111.

THE TRANSIENT RESPONSE

OF
CASCADED BUT PERWORTH FIIIERS

By

Bruce L. Hicks
Rosemarie Stemmler

Report Number R-97

August, 1957

CONIROL SYSTEMS LABORATORY
UNIVERSITY OF ILLTINOIS URBANA, ILLINOIS
Contract DA-36-039-SC-56695
D/A Sub-Task 3-99-06-111

ABSTRACT

The impulse and step responses for cascaded, three or five pole Butterworth filters have been calculated on Illiac with an accuracy of three or more decimals. In this paper the dependence of the calculated step response upon the number of cascaded filters λ_{2} is studied, both with no phase correction and with complete phase correction, with λ_{2} in the range from 4 to 512.

It is found (for the three and five pole filters) that the rise time, period of ringing, and non-linear part of the time delay in the step response, for Butterworth filters without phase correction, are each approximately proportional to $\lambda_{2}+1 / 3$, for large enough λ_{2}. The rise time and period of ringing are about proportional to $\lambda_{2}^{+1 / 2 \lambda_{1}}$ for large $\lambda_{2}\left(\lambda_{1}\right.$ equals the number of poles) for the Butterworth filters with complete phase correction. Both asymptotic exponents are also derived analytically. In all cases studied the amount of overshoot seems to approach an upper limit and the logarithmic damping rate of the ringing seems to approach a lower limit as λ_{2} increases.

The pronounced decrease in the damping rate of the ringing is the most important distortion accompanying cascading of the uncorrected Butterworth filters. This distortion is caused chiefly by the nonlinear phase lag.

INIRODUCTION

In 1956-57 we developed an Illiac program which could be used to calculate the impulse and step response of a wide variety of cascaded Butterworth filters, these being the type of filters of principal interest to us. During the construction of this program we tried to keep in mind its potential usefulness for computing cosine and sine transformations of any reasonable function.

A Butterworth or flat-staggered tuned network ${ }^{1}$ is characterized by the number of poles it contains. This parameter we call λ_{1}. Cascading of identical Butterworth filters introduces a second parameter, λ_{2}, the number of filters in cascade. In this paper we shall describe the results of calculations of transient response for $\lambda_{1}=3$ and 5 and λ_{2} in the range 4 to 512. As an indication of the possible improvements to be achieved by phase correction networks, we also computed the transient response of "unrealizable" filters with no phase distortion but with the same amplitude response as the Butterworth filters.

The weight function or the response to unit impulse $w^{0}(t)$ may be defined ${ }^{2}$ by the expression

$$
\begin{equation*}
w^{0}(t)=(1 / 2 \pi) \int_{-\infty}^{\infty} Y(j \omega) \exp (j \omega t) d \omega \tag{1}
\end{equation*}
$$

1 Valley and Wallman, "Vacuum Tube Amplifiers". (Rad. Lab. Series, vol. 18.) McGraw-Hill (1948). Sect. 4.6.

2 James, Nichols and Phillips, "Theory of Servomechanisms". (Rad. Lab. Series, vol. 25.) McGraw-Hill (1947). Sect. 2.13.
where $Y(j \omega)=7(\omega) \exp [-j g(\omega)]$ is the system function for the filter network. The response to unit step $u^{0}(t)$ is given by ${ }^{3}$

$$
\begin{equation*}
u^{o}(t)=\int_{0}^{t} w^{o}\left(t_{1}\right) d t_{1} \tag{2}
\end{equation*}
$$

Because the amplitude response $7(\omega)$ of the filter is an even function of frequency and the phase lag $g(\omega)$ is an odd function of frequency, Eq. 1 can be rewritten as

$$
\begin{equation*}
w^{0}(t)=(1 / \pi) \int_{0}^{\infty} 7(\omega) \cos [\omega t-g(\omega)] d \omega \tag{3}
\end{equation*}
$$

For applications it is convenient to use dimensionless variables which may be introduced as follows:

$$
\begin{aligned}
f_{0} t & =T \\
\omega & =2 \pi f_{0} x \\
7(\omega) & =F(x) \\
g(\omega) & =G(x) \\
w^{O}(t) & =w^{O}(T) \\
u^{O}(t) & =u^{O}(T)
\end{aligned}
$$

where f_{0} is the half-width of a filter at the half-power point.

[^0]In terms of these quantities Eq. 3 becomes

$$
\begin{equation*}
w^{0}(T)=2 \int_{0}^{\infty} F(x) \cos [2 \pi x T-G(x)] d x \tag{4}
\end{equation*}
$$

and Eq. 2 becomes

$$
\begin{equation*}
u^{O}(T)=\int_{0}^{T} w^{0}(T) d T \tag{5}
\end{equation*}
$$

The amplitude response $F(x) / \lambda_{2}=1$ of one λ_{1}-pole Butterworth filter $\left(\lambda_{2}=1\right)$, in terms of the reduced frequency variable x, is given by ${ }^{4}$

$$
\begin{equation*}
F(x) /_{\lambda_{2}=1}=\left(1+x^{2 \lambda_{1}}\right)^{-1 / 2} \tag{6}
\end{equation*}
$$

and the phase lag is given by ${ }^{4}$

$$
\begin{align*}
& G_{1}(x) /_{\lambda_{2}=1}= \\
& \sum_{j=1}^{k} \operatorname{tg}^{-1}\left[2 x \cos \bar{\theta}_{j} /\left(1-x^{2}\right)\right], \bar{\theta}_{j}=\pi(2 j-1) / 2 \lambda_{1}, \lambda_{1} \text { even } \tag{7}\\
& \operatorname{tg}^{-1} x+\sum_{j=1}^{k} \operatorname{tg}^{-1}\left[2 x \cos \bar{\theta}_{j} /\left(1-x^{2}\right)\right], \bar{\theta}_{j}=\pi j / 2 \lambda_{1}, \lambda_{1} \text { odd }
\end{align*}
$$

where in each case k is chosen so that $0<\bar{\theta}_{j}<\pi / 2$. Therefore the amplitude and phase responses of λ_{2} such identical filters in cascade

[^1]axe given by
\[

\left.$$
\begin{array}{rl}
F(x) & =\left[F(x) / \lambda_{2}=1\right.
\end{array}
$$\right]^{\lambda_{2}}
\]

Complete phase correction is expressed by the equation

$$
\begin{equation*}
G(x)=G_{0}(x)=0 \tag{8}
\end{equation*}
$$

Typical results of the Illiac calculation are shown in Fig. la, b for the impulse response. (The following discussion would also apply to the distortion by the filters of unit step input.) The filter whose characteristics are illustrated is a five pole filter. A unit impulse passed through the four, five-pole filters (either with full phase correction and with no phase correction) gives the responses shown in Fig. la. We note that the width of the impulse response is not significantly improved for this value of λ_{2} by the phase correction but that the amplitude of the ringing is noticeably reduced by the phase correction. When the unit impulse has passed through 512 five-pole filters, its shape has been changed more drastically as is shown in Fig. lb. With full phase correction $G(x)=0$ the impulse response for $\lambda_{2}=512$ is widened by a factor of 1.5 over what it was for $\lambda_{2}=1$, and this change of shape can be attributed entirely to the slight narrowing of the band pass of the iterated filter owing to the repeated cascading. The situation for the 512 -fold cascaded Butterworth filter with no phase correction is seen to be quite different. The impulse has set the system ringing with a long period and a very low rate of decay.

Fig. zab time response to unit impulse.of $\boldsymbol{\lambda}_{2 .} 5$ pole butterworth filters in cascade.

DESCRIPTION OF CALCULATIONS

Two values of λ_{1} were used, 3 and 5. The parameter λ_{2} was varied between 4 and 512. In all cases, the impulse and step responses were calculated for no phase correction and with complete phase correction. In this report we describe only the step response, the data for which is given in Table I. (Complete tables of $w(T)$ and $u(T)$, which are the values of $w^{\circ}(T)$ and $u^{0}(T)$ obtained by numerical integration, are on file at CSL for the cases considered.)

We shall pick certain parameters characterizing these step responses and discuss these parameters in some detail. The parameters of interest are calculated from the coordinates of the six numbered points of a step response curve defined in Fig. 2. These coordinates are listed in Table I. The five parameters, listed in Table II, are derived from these coordinates and are defined as follows:

$$
\begin{aligned}
& \text { 1. time delay } T_{0.1}=T_{1} \\
& \text { 2. rise time } \tilde{T}=\left(T_{2}-T_{1}\right) \\
& \text { 3. overshoot } \Delta u^{0}=100\left(u_{3}^{0}-1\right) \\
& \text { 4. period } T_{d}=2\left(T_{6}-T_{5}\right) \\
& \text { 5. damping factor } \sigma_{d}=2 \ln \left|\left(u_{5}^{0}-1\right) /\left(u_{6}^{0}-1\right)\right|
\end{aligned}
$$

All of these characteristics refer to the response to unit step although some of them also have a direct relationship to the response to unit impulse. The time delay is the time required (measured from $T=0$) for the step response to reach the value of 0.10 . The rise time is the interval of time required for the step response to increase from

FIG. 2 RESPONSE TO UNIT STEP OF 128 5-POLE BUTTERWORTH FILTERS IN CASCADE.
the value 0.10 to the value 0.90 . The overshoot is defined as the amount, expressed as a percentage, by which the step response exceeds unity at the first maximum.

The last two characteristics refer to the behavior of the decay and ringing of the filter response. The time of occurrence of successive minima and maxima can obviously be used as some measure of the characteristics of the period of ringing of the filter. Both the period of the ringing and its damping factor, from cycle to cycle, tend to approach constant values as the time variable becomes very large. It was not practicable, nor would it be very useful, to take advantage of this simplification. Therefore we chose to take twice the time interval between the second maximum and second minimum as the "period" of the ringing and twice the natural logarithm of the ratio of the amplitude of these two points as a measure of the damping factor corresponding to this "period". Our calculations were, correspondingly, carried in all cases to beyond the second minimum of the step response. All of the quantities mentioned are listed in Table II for the cascaded filters that were studied. It is believed that the quantities in the table are accurate to the number of digits given in each instance.*

The five parameters $T_{0.1}, \tilde{T}^{T}, T_{d}, \Delta u^{0}, \sigma_{d}$ that we thus use to characterize the step response will now be discussed in this order.

[^2]RESULTS
To.1-(delay)
For $G=G_{1}$ (no phase correction), the delay time for $\lambda_{2} \geqslant 4$ derived from the Illiac calculations agrees closely with the values calculated from the equation

$$
\begin{equation*}
T_{0.1}=\lambda_{2}\left(b_{0.1}-a_{0.1} \lambda_{2}^{-0.6}\right) \tag{9}
\end{equation*}
$$

where $a_{0.1}, b_{0.1}$ have the values shown in the first two columns of the following table:
$\frac{\lambda_{1}}{-}$
5
$\frac{{ }^{2} 0.1}{0.156}$
0.165
$\mathrm{b}_{0.1}$
0.321
${ }^{\mathrm{b}} 0.1$
0.318
0.520
0.515
(Illiac) (stationary phase)

An elementary application of the method of stationary phase predicts the values of $b_{0.1}$ in the third column of the above table. The small difference between the values of $a_{0.1}$ for $\lambda_{1}=3$ and $\lambda_{1}=5$ suggests that possibly $a_{0.1}$ becomes independent of λ_{1} as λ_{2} increases indefinitely. It is clear that although the delay $T_{0.1}$ is not a linear function of λ_{2}, the non-linearity decreases with increase of λ_{2}.

For filters with $G=G_{0}$ (full phase correction), a delay $T_{0.1}$ has no meaning unless features are added to these "unrealizable" filters which are not considered in this report.
\tilde{T} (rise time) Fig. 3 .
For $G=G_{1}$ (no phase correction) the calculated rise time of the

FIG. 3 RISE TIME AS A FUNCTION OF λ_{1} AND λ_{2}
step response conforms to the formula

$$
\begin{equation*}
\tilde{T} \cong \tilde{a}_{1} \lambda_{2} 0.33 \tag{10}
\end{equation*}
$$

for $\lambda_{2}>8$ where \tilde{a} has the values 0.36 and 0.39 for $\lambda_{1}=3$ and 5 , respectively. The rise time for the five pole network is thus uniformly about 7 o/o larger than for the three pole network for any given (large) value of λ_{2}.

For $G=G_{0}$ (full phase correction)

$$
\begin{equation*}
\tilde{T}=\tilde{a}_{0} \lambda_{2}^{1 / 2 \lambda_{1}} \tag{11}
\end{equation*}
$$

where $\tilde{a}_{0} \cong 0.44$ for both values of λ_{1} and for $\lambda_{2}>4$. (See section on T_{d} for further discussion.)
T_{d} - (period of ringing) Fig. 4.
This parameter, especially in its asymptotic behavior, behaves in a fashion that is quite similar to that of the rise time \tilde{T}, for both $G=G_{0}$ and $G=G_{1}$, although it begins to exhibit its asymptotic behavior only at larger values of λ_{2}.

For $G=G_{1}$ (no phase correction)

$$
\begin{equation*}
T_{d} \sim a_{d} \lambda_{2}{ }^{0.3} \tag{12}
\end{equation*}
$$

for $\lambda_{2}>2^{7}$, where a_{d} is about 4% larger for $\lambda_{1}=5$ than for $\lambda_{1}=3$. We note that the exponent in Eq. 12 is almost equal to the exponent in Eq. 10 for \tilde{T}, and the two values might be more nearly equal for larger values of λ_{2}. At $\lambda_{2}=2^{9},\left(T_{d} / \tilde{T}\right)=1.20$ and 1.23 respectively for $\lambda_{1}=3$ and 5 .

FIG. 4 PERIOD OF RINGING AS A FUNCTION OF λ_{1} AND λ_{2}

For $G=G_{0}$ (full phase correction)

$$
\begin{equation*}
T_{d}=a_{d} \lambda_{2}^{1 / 2 \lambda_{1}} \tag{13}
\end{equation*}
$$

for $\lambda_{2}>2^{6}$ where $a_{d}=0.83,0.93$ for $\lambda_{1}=3,5$ respectively. Comparing with the results for \tilde{T} we find that, asymptotically, $\left(T_{d} / \tilde{T}\right) \sim 1.88,2.11$ for $\lambda_{1}=3,5$ respectively.

The half width x_{1} of the function $F(x)$ when its value is $2^{-1 / 2}$ (half-power point) is accurately proportional to $\lambda_{2}{ }^{-1 / 2} \lambda_{1}$ for values of $\lambda_{2} \gg 1$. If we replace $F(x)$ by a square band pass with band-width equal to x_{1}, then the time seale of the transient response of this square filter (with $G=G_{0}$) will be proportional to $x_{1}{ }^{-1}$ or to $\lambda_{2}^{1 / 2} \lambda_{1}$ which is just the variation we have found, for $G=G_{0}$, for the parameters T_{d} and \tilde{T} which are measures of the time scale. Apparently for $G=G_{1}$, the effect of the phase distortion is such as to nearly cancel this dependence of the time scale upon the number of poles, λ_{1}, for, as we have seen, T_{d} and \tilde{T} behave very much the same for the two values of λ_{1}. Δu - (overshoot)

For $G=G_{1}$ (with $\lambda_{2}>8$) and for $G=G_{0}$ (with $\lambda_{2}>4$), the calculated overshoot data can be well represented by an equation of the form

$$
\begin{equation*}
\Delta u=b_{0}-a_{0} \lambda_{2}{ }^{-p_{0}} \tag{14}
\end{equation*}
$$

where the coefficients a_{0}, b_{0}, p_{0} have the following values:

$G=G_{1}$| λ_{1} | $\frac{100 a_{0}}{26.10}$ | | $\frac{100 b_{0}}{28.50}$ | $\frac{p_{0}}{0.40}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $G=G_{0}$ | 5 | 20.0 | | 27.55 | 0.62 |
| | 3 | 2.7 | 7.06 | 1.02 | |
| | 5 | 1.5 | 8.20 | 1.16 | |

It is perhaps worth emphasizing that for each value of λ_{1} the overshoot seems to have an upper limit which it approaches asymptotically for large λ_{2}.
$\underline{\sigma_{\mathrm{d}}-\text { (damping ratio) Fig. } 5 . ~}$
The accuracy of the values of σ_{d} is both variable and questionable in our calculations, partly because one to four significant digits are lost when $(u-1)$ is formed from u. Like $\Delta u, \sigma_{d}$ appears to approach a limiting value, for each given λ_{1}, as λ_{2} increases. Within the accuracy of our data, this asymptotic approach may be represented (for $\lambda_{2}>128$),

$$
\begin{equation*}
\sigma_{d} \sim B_{d}+A_{d} \lambda_{2}^{-1} \tag{15}
\end{equation*}
$$

where A and B have the following values:

	λ_{1} $G=G_{1}$ 3	A_{d} $G=G_{0}$	5

FIG. 5 DAMPING OF THE RINGING AS A FUNCTION λ_{1} AND λ_{2}

For $G=G_{1}, \lambda_{1}=5$, the data supports the exponent one; for other cases, this value is assumed.

Even though the damping per cycle, σ_{d}, asymptotically approaches a. lower limit, the damping per unit time, ($\sigma_{\mathrm{d}} / \mathrm{T}_{\mathrm{d}}$) decreases indefinitely as λ_{2} increases because T_{d}, as we have seen, appears to increase proportionally to a positive power of λ_{2}.

Analysis for large values of λ_{2}
When λ_{2} is large, the amplitude function $F(x)$ becomes negligibly small for all $x \geqslant x_{1}$ where $x_{1} \sim \lambda_{2}{ }^{-1 / 2 \lambda_{1}}$ as shown before and illustrated in Fig. 6. If λ_{2} is large enough, $x_{1} \ll 1$ and the phase function $G_{1}(x)$ is well approximated by the first two terms of its power series

$$
\begin{equation*}
G_{1}(x) \sim \lambda_{2}\left(g_{1} x+g_{3} x^{3}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{1}=1+2 \sum_{j=1}^{k} \cos \bar{\theta}_{j} \tag{17}\\
& g_{3}=-\frac{1}{3}\left(1+8 \sum_{j=1}^{k} \cos ^{3} \bar{\theta}_{j}\right)+2 \sum_{j=1}^{k} \cos \bar{\theta}_{j}
\end{align*}
$$

for Butterworth filters with an odd number of poles. The angles $\bar{\theta}_{j}$ give the positions, relative to the negative x axis, of those poles lying in the upper half plane. The angles and coefficients have the following values:

FIG. 6 AMPLITUDE AND PHASE CHARACTERISTICS OF 3 \& 5 POLE BUTTERWORTH FILTERS.

λ_{1}	$\bar{\theta}_{1}$	$\bar{\theta}_{2}$	g_{1}	g_{3}
3	6°	-	-	2.00000
5	36°	72°	3.23607	0.33333

The non-linear part of the phase lag, (for $\lambda_{2}=1$), $\left(\Delta G_{1}{ }^{N L} / \pi \lambda_{2}\right)=\left[G_{1}(x)-\lambda_{2} g_{1} x\right] / \pi \lambda_{2}$ is plotted in Fig. 6.

The impulse response now takes the form

$$
\begin{equation*}
w^{0}(T) \sim 2 \int_{0}^{x_{1}} \cos \left[x\left(2 \pi T-\lambda_{0} g_{1}\right)-\lambda_{2} g_{3} x^{3}\right] d x \tag{18}
\end{equation*}
$$

in which Eq. 16 has been used and the approximation has been made that $F(x) \sim 1$ for $x \leqslant x_{1}$. When $x=x_{1}$, the "frequency" of oscillations corresponding to the cubic term is about equal to $\left(3 g_{3} \lambda_{2}^{1-1 / \lambda_{1}}\right)$, which grows with λ_{2}. The limit x_{1} may then be replaced by infinity with an error which decreases as λ_{2} increases. We have then finally

$$
\begin{equation*}
w^{o}(T) \sim 2 \int_{0}^{\infty} \cos \left[x\left(2 \pi T-\lambda_{2 g_{1}}\right)-\lambda_{2} g_{3} x^{3}\right] d x \tag{19}
\end{equation*}
$$

This integral, evaluated in terms of modified Bessel functions, has been discussed by Di Toro ${ }^{5}$. All we need here however is the nature of the dependence of the related function $u^{0}(T)$ upon λ_{2}. Let us define

$$
\begin{equation*}
\xi=\left(2 \pi T-g_{1} \lambda_{2}\right)\left(\lambda_{2} g_{3}\right)^{-1 / 3} \tag{20}
\end{equation*}
$$

5 Di Toro, Proc. I.R.E. 36, 24 (1948).

Then

$$
\begin{align*}
& w^{0}(T) \sim 2 \int_{0}^{\infty} \cos \left[2 \pi Z \xi-z^{3}\right] d z\left(\lambda_{2} g_{3}\right)^{-1 / 3} \tag{21}\\
& u^{0}(T) \sim(1 / \pi) \int_{0}^{\xi} \int_{0}^{\infty} \cos \left[2 \pi z \xi-z^{3}\right] d z \tag{22}
\end{align*}
$$

The step response is thus a function of ξ alone, for large λ_{2}. Insofar as this is an accurate result, we should expect the following behavior of the step response (with no phase correction):
i) $\left(2 \pi T_{0.1}-g_{1} \lambda_{2}\right), \tilde{T}$, and T_{d} should each be proportional to $\lambda_{2}{ }^{1 / 3}$ for large λ_{2}. This agrees more or less well with the empirical formulae given in earlier sections, accordingly as the region of asymptotic behavior is reached sooner or later for differing values of λ_{2}.
ii) The overshoot Δu° should be asymptotically independent of λ_{2} and λ_{1}. This seems to be the case rather closely.
iii) The damping of the ringing should also be independent of λ_{1}. This does not seem to agree with the Illiac results, possibly because this characteristic of the step response is more sensitive than the other characteristics to the nature of the small departures of the amplitude function from unity within the pass band.

The authors would like to acknowledge the assistance of Sanford Stein, Jack Ullman, and Jerry McCall in developing the many sub-routines that were part of the Illiac program used for these computations.

Coordinates of Six Points on the Step Response Curve
$G=G_{1}$ (no phase correction)

λ_{1}	λ_{2}		1	2	3	4	5	6
3	4	T	$\begin{aligned} & 1.01 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 0.900 \end{aligned}$	$\begin{aligned} & 1.9288 \\ & 1.143 \end{aligned}$	2.5778	$\begin{aligned} & 3.1994 \\ & 1.011 \end{aligned}$	$\begin{aligned} & 3.8048 \\ & 0.997 \end{aligned}$
3	8	T u	$\begin{aligned} & 2.22 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 0.900 \end{aligned}$	$\begin{aligned} & 3.3467 \\ & 1.172 \end{aligned}$	4.0801	$\begin{aligned} & 4.7560 \\ & 1.021 \end{aligned}$	$\begin{aligned} & 5.4023 \\ & 0.993 \end{aligned}$
3	32	T u	$\begin{aligned} & 9.68 \\ & 0.100 \end{aligned}$	$\begin{gathered} 10.80 \\ 0.900 \end{gathered}$	$\begin{gathered} 11.4117 \\ 1.220 \end{gathered}$	12.4259	$\begin{gathered} 13.3094 \\ 1.054 \end{gathered}$	$\begin{gathered} 14.1257 \\ 0.974 \end{gathered}$
3	128	T u	$\begin{gathered} 39.95 \\ 0.100 \end{gathered}$	$\begin{gathered} 41.71 \\ 0.900 \end{gathered}$	$\begin{gathered} 42.6552 \\ 1.248 \end{gathered}$	44.1554	$\begin{gathered} 45.4224 \\ 1.095 \end{gathered}$	$\begin{gathered} 46: 5685 \\ 0.936 \end{gathered}$
3	256	T u						
3	512	T u	$\begin{array}{r} 161.72 \\ 0.100 \end{array}$	$\begin{array}{r} 164.50 \\ 0.900 \end{array}$	$\begin{gathered} 165.9799 \\ 1.264 \end{gathered}$	168.2781	$\begin{gathered} 170.1882 \\ 1.131 \end{gathered}$	$\begin{gathered} 171.8961 \\ 0.899 \end{gathered}$

Table I (cont'd.)

Coordinates of Six Points on the Step Response Curve

λ_{1}	λ_{2}		1	2	3	4	5	6
5	4	T \mathbf{u}	$\begin{aligned} & 1.780 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 2.403 \\ & 0.900 \end{aligned}$	$\begin{aligned} & 2.7596 \\ & 1.196 \end{aligned}$	3.3918	$\begin{aligned} & 3.9779 \\ & 1.049 \end{aligned}$	$\begin{aligned} & 4.5449 \\ & 0.975 \end{aligned}$
5	8	T	$\begin{aligned} & 3.773 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 4.544 \\ & 0.900 \end{aligned}$	$\begin{aligned} & 4.9748 \\ & 1.221 \end{aligned}$	5.7032	$\begin{aligned} & 6.3561 \\ & 1.0738 \end{aligned}$	$\begin{aligned} & 6.9746 \\ & 0.956 \end{aligned}$
5	32	T	$\begin{gathered} 15.94 \\ 0.100 \end{gathered}$	$\begin{array}{r} 17.139 \\ 0.900 \end{array}$	$\begin{gathered} 17.7881 \\ 1.253 \end{gathered}$	18.8235	$\begin{gathered} 19.7087 \\ 1.120 \end{gathered}$	$\begin{gathered} 20.5194 \\ 0.908 \end{gathered}$
5	128	T u	$\begin{array}{r} 65.078 \\ 0.100 \end{array}$	$\begin{array}{r} 66.957 \\ 0.900 \end{array}$	$\begin{gathered} 67.9630 \\ 1.266 \end{gathered}$	69.5241	$\begin{gathered} 70.8256 \\ 1.143 \end{gathered}$	$\begin{gathered} 71.9938 \\ 0.880 \end{gathered}$
5	256	\xrightarrow{T}			$\begin{gathered} 134.4056 \\ 1.269 \end{gathered}$	136.3467	$\begin{gathered} 137.9541 \\ 1.148 \end{gathered}$	$\begin{gathered} 139.3888 \\ 0.874 \end{gathered}$
5	512	T u	$\begin{array}{r} 262.36 \\ 0.100 \end{array}$	$\begin{array}{r} 265.329 \\ 0.900 \end{array}$	$\begin{gathered} 266.9098 \\ 1.271 \end{gathered}$	269.3350	$\begin{gathered} 271.3348 \\ 1.151 \end{gathered}$	$\begin{gathered} 273.1131 \\ 0.871 \end{gathered}$

Table I (cont'd.)
Coordinates of Six Points on the Step Response Curve
$G=G_{0}$ (complete phase correction)

λ_{1}	λ_{2}		1	2*	3	4	5	6
3	4	T u	$\begin{array}{r} -0.2614 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.2614 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.5778 \\ & 1.0637 \end{aligned}$	1.1723	$\begin{aligned} & 1.7722 \\ & 1.0028 \end{aligned}$	$\begin{aligned} & 2.3606 \\ & 0.9994 \end{aligned}$
3	8	T u	$\begin{array}{r} -0.3004 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.3004 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.6615 \\ & 1.0674 \end{aligned}$	1.3188	$\begin{aligned} & 1.9605 \\ & 1.0041 \end{aligned}$	$\begin{aligned} & 2.5786 \\ & 0.9991 \end{aligned}$
3	32	T \mathbf{u}	$\begin{array}{r} -0.3849 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.3849 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.8470 \\ & 1.0698 \end{aligned}$	1.6739	$\begin{aligned} & 2.4607 \\ & 1.0056 \end{aligned}$	$\begin{aligned} & 3.2029 \\ & 0.9984 \end{aligned}$
3	128	T \mathbf{u}	$\begin{array}{r} -0.4869 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.4869 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 1.0716 \\ & 1.0704 \end{aligned}$	2.1145	$\begin{aligned} & 3.1022 \\ & 1.0060 \end{aligned}$	$\begin{aligned} & 4.0298 \\ & 0.9982 \end{aligned}$
3	256	T \mathbf{u}						
3	512	T \mathbf{u}	$\begin{array}{r} -0.6140 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.6140 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 1.3515 \\ & 1.0705 \end{aligned}$	2.6660	$\begin{aligned} & 3.9096 \\ & 1.0061 \end{aligned}$	$\begin{aligned} & 5.0764 \\ & 0.9981 \end{aligned}$

Table I (concl'd.)
Coordinates of Six Points on the Step Response Curve

```
G= G
```

λ_{1}	λ_{2}		1	2*	3	4	5	6
5	4	$\begin{aligned} & \mathrm{T} \\ & \mathrm{u} \end{aligned}$	$\begin{array}{r} -0.2456 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.2456 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.5466 \\ & 1.0790 \end{aligned}$	1.0932	$\begin{aligned} & 1.6384 \\ & 1.0130 \end{aligned}$	$\begin{aligned} & 2.1803 \\ & 0.9946 \end{aligned}$
5	8	$\begin{aligned} & T \\ & u \end{aligned}$	$\begin{array}{r} -0.2670 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.2670 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.5943 \\ & 1.0807 \end{aligned}$	1.1844	$\begin{aligned} & 1.7667 \\ & 1.0152 \end{aligned}$	$\begin{aligned} & 2.3393 \\ & 0.9931 \end{aligned}$
5	32	T u	$\begin{array}{r} -0.3098 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.3098 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.6899 \\ & 1.0817 \end{aligned}$	1.3730	$\begin{aligned} & 2.0437 \\ & 1.0168 \end{aligned}$	$\begin{aligned} & 2.6996 \\ & 0.9917 \end{aligned}$
5	128	T	$\begin{array}{r} -0.3568 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.3568 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.7945 \\ & 1.0819 \end{aligned}$	1.5808	$\begin{aligned} & 2.3524 \\ & 1.0172 \end{aligned}$	$\begin{aligned} & 3.1061 \\ & 0.9914 \end{aligned}$
5	256	T u			$\begin{aligned} & 0.8519 \\ & 1.0820 \end{aligned}$	1.6949	$\begin{aligned} & 2.5221 \\ & 1.0173 \end{aligned}$	$\begin{aligned} & 3.3300 \\ & 0.9913 \end{aligned}$
5	512	T u	$\begin{array}{r} -0.4101 \\ 0.1000 \end{array}$	$\begin{aligned} & 0.4101 \\ & 0.9000 \end{aligned}$	$\begin{aligned} & 0.9132 \\ & 1.0820 \end{aligned}$	1.8169	$\begin{aligned} & 2.7036 \\ & 1.0174 \end{aligned}$	$\begin{aligned} & 3.5696 \\ & 0.9913 \end{aligned}$

Table II

Characterisites of the Response to Unit Step

$G=G_{1}$ (no phase correction)

λ_{1}	λ_{2}	$\mathrm{T}_{0.1}$	T	T_{D}	Δu	${ }^{\sigma}$ D
3	4	1.01	0.58	1.21	14.3	2.8
	8	2.22	0.72	1.29	17.2	2.3
	32	9.68	1.12	1.63	22.0	1.5
	128	39.95	1.76	2.29	24.8	0.8
	256					
	512	161.72	2.78	3.42	26.4	0.5
5	4	1.779	0.623	1.134	19.6	1.3
	8	3.772	0.771	1.237	22.1	1.0
	32	15.94	1.198	1.621	24.8	0.54
	128	65.078	1.879	2.336	26.6	0.35
	256			2.869	26.9	0.33
	512	262.36	2.97	3.556	27.1	0.31

Table II (concl'd.)

Characteristics of the Response to Unit Step
$G=G_{o}$ (complete phase correction)

AUTHORIZED DISTRIBUTION LIST

$$
\text { As of March 31, } 1957
$$

Number of Copies Agency

Director of Research and Development Headquarters United States Air Force Washington 25, D. C.
Attn: AFDRD-AC/2
AFDRD-CC/2
Deputy Chief of Staff/Development
Headquarters United States Air Force Washington 25, D. C. Attn: AFDAP

Commander
Headquarters, Air Research and Development Command P. O. Box 1395

Baltimore 3, Maryland
Attn: RDDDR-5
Headquarters, Air Force Office of Scientific Researd Air Research and Development Command
United States Air Force
Washington 25, D. G.
Attn: SROP
Commander
Air Force Cambridge Research Center
Laurence G. Hanscom Field
Bedford, Massachusetts Attn: CRR

Commander
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
Attn: WCOSI-3
WCLG
WCRR
WCLR
WCLOT-2 (Mr. Cooper)
WGLRW (Mr. Overhold) WCLRW (Mr. Clute)

Commander
USAF Security Service
San Antonio, Texas
Attn: CLR
Commanding officer
Rome Air Development Center Griffiss Air Force Base, New York
Number of Copies Agency1
Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D. G。
Attn: EL-402 TD-4
Department of the Navy
Office of Naval Research
Washington 25, D. C.
Attn: Code 900
Code 430
Code 437
Commanding Officer
Office of Naval Research
Chicago Branch
John Grerar Library Building loth Floor, 86 E. Randolph Street Chicago 1, Illinois
Bureau of Ordnance
Department of the Navy
Washington 25, D. C.
Attn: Reluc
i
Director
Office of Naval Research Branch Office
1000 Geary Street
San Francisco, California
Number of Copies Agency
2
(Progress Reports only)
U. S. Navy Inspector of OrdnanceApplied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Springs, Maryland
Commanding Officer and Director
U. S. Naval Electronics Laboratory
San Diego, 52, California
Attn: LibraryCode 2800, C. S. Manning
Director
Naval Research LaboratoryWashington 25, D. C.Attn: Code 4100Code 3620Code 1100
Chief of Naval Operations
Navy Department
Washington 25, D. C.
Attn: 0P-51

$$
O P-371-C
$$

$$
0 P-551
$$

$$
O P-34 I-D
$$

Commanding OfficerNaval Air Development CenterJohnsville, PennsylvaniaAttn: Code AAEL
Commander
Naval Ordnance LaboratoryWhite oaks
Silver Springs 19, Maryland
Attn: Technical Library
Head, Combat Direction Systems Branch
(Op-345)
Department of the Navy
Room 4C-5l8 Pentagon
Washington 25, D. C.
Department of the Army
Office of the Chief Signal Officer
Washington 25, D. C.
Attn: SIGRDSIGRD-9-b

Agency
Thi ef of Research and Development
Office of the Chief of Staff
Department of the Army
Washington 25, D. C.
Asst. Chief of Staff, Development and Test Headquarters, Continental Army Command Fort Monroe, Virginia

President, U. S. Army Airborne and Electronics Board Continental Army Command
Fort Bragg, North Carolina.
President, U. S. Army Defense Board Continental Army Command
Fort Bliss, Texas
Office of the Chief of Ordnance
Department of Ordnance
Washington 25, D。C.
Attn: ORDTR O RDTB

Commanding General
Redstone Arsenal
Funtsville, Alabsma
Attn: Technical Library
Commanding officer
Office of Ordnance Research
2127 Myrtle Drive
Duke Station
Durham, North Carolina
Director
Ballistics Research Laboratory
Aberdeen Proving Ground, Maryland
Attn: Dra L. A. Delsasso
Commanding officer
Frankford Arsenal
Philadelphia 37, Pennsylvania
9560 S. C. Electronics Research Unit
P. O. Box 205

Mountain View, Califorría

Number of Copies Agency

20

1
1 Director
National Bureau of Standards
Washington 25, D. G.
Attn: Dr. S. N. Alexander
Librarian
Instrumentation Laboratory
Massashusetts Institute of Technology Cambridge 39, Massachusetts

1
Director
Jet Propulsion Laboratory Califomia Institute of Technology Pasadena, California

Chicago Midway Labs
6040 South Greenwood Avenue
Chi cago 37, Illinois
Attn: Librarian.
1
Hughes Research and Development Library
Hughes Aircraft Compan y
Culver City, California
Attn: Miss Mary Jo Case
Mr. Robert R. Everett, Division Head
Lincoln Laboratory
Massachusetts Institute of Technology Lexington 73, Massachusetts

Universi ty of Michigan
Willow Run Research Center
Technical Data Service
Ypsilanti, Michigan
Attn: Mr. J. E. Corey
The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Library
1
Dr. C. C. Furnas

Cornell Aeronautical Laboratory
Buffalo, New York

Massachusetts Institute of Technology
Lincoln Laboratory
P. O. Box 73

Lexington 73, Massachusetts
W. L. Maxson Corporation
4.60 west 34 th Street

New York 1, New York
Stanford University
Electronics Research Laboratory Stanford, California

Radio Corporation of America RCA Laboratories Division David Sarnoff Research Center Princeton, New Jersey Attn: Mr. A. W. Vance
The Johns Hopkins University Operations Research Office
6410 Connecticut Avenue
Che vy Chase, Maryland
For: Contract DA 44-109 qm-266
Light Military Electronic Equipment Department General Electric Company
French Road
Utica, New York
For Contract AF 33 (600)-16934
Goodyear Aircraft Corporation
Akron 15, Ohio
For: Project MX 778 Contract W33-038 ac-14153
Mr. A. A. Lundstrom
Bell Telephone Laboratories
Whippany, New Jersey
Armed Services Technical Information Agency Document Service Center
Knott Building
Dayton 2, Ohio
Litton Industries 336 North Foothill Road Beverly Hills, California via: Inspector of Naval Materiel Los Angeles, California

Remington Rand Univac Division of Sperry Rand Corporation
via: Insmat, BuShips Insp. Officer 1902 West Minnehaha Avenue St. Paul 4, Minnesota

Technical Library, Code 142
David Taylor Model Basin
Washington 7, D. C.

[^0]: ${ }^{3}$ Ref. 2, Sect. 2.7.

[^1]: ${ }^{4}$ Ref. 1, Sect. 7.5.

[^2]: * Description of methods used in performing the Fourier transforms on the Illiac and in studying the error problems associated with this calculation will be postponed to future reports.

