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CHAPTER 1 

INTRODUCTION

The importance of designing control systems which are robust or 

insensitive to variations in the plant parameters has long been appreciated. 

However, the rapid advances in design techniques for multivariable systems has 

heightened interest in the study and design of robust systems. The purpose 

of this report is to provide an up to date survey of the work in this field 

and summarize the results of research in this area conducted at the Coordinated 

Science Laboratory.

The report begins in Chapter 2 with a description and examples of 

the robust control problem. Chapter 3 provides a survey of research in the 

field of robust control. It is apparent from this survey that the work can 

be divided into two areas. The first assumes unstructured perturbations and 

analyzes worst case effects. The second considers large, structured perturba

tions. The parameter space design method presented in Chapter 4 is directed 

at the second area. The tools of Chapter 4 are applied to a fighter aircraft 

example in Chapter 5. Chapter 6 presents an optimization approach to the same 

problem. Finally, Chapter 7 summarizes the report and presents several 

directions for future research.
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CHAPTER 2

THE ROBUST CONTROL PROBLEM

2.1. Description of the Robust Control Problem

The objective of a basic control system design problem is to satisfy 

a set of performance specifications for a given dynamical system. The robust 

control system design problem adds to the basic control problem by requiring 

the performance criteria to be satisfied under a specified class of perturba

tions to the dynamical system. Typical examples of performance criteria for 

which the overall closed loop system must be robust are:

1) Stability or nice stability (e.g. defined by constraints on 

eigenvalue locations).

2) Limited deterioration of a performance index.

3) Limited deviation from an ideal behavior, e.g. constraints 

on step responses or frequency responses or on the return 

difference.

4) Limited deviation from a reference behavior, e.g. deviation 

from a nominal trajectory or a reference model response.

5) Tracking, i.e. zero asymptotic error for a class of 

reference and disturbance inputs.

6) Limited demand on control iul and control rate lul.

The classes of perturbations which are considered can be grouped 

in two categories: structural perturbations and system parameter perturba

tions. Some examples of structural perturbations are:
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1) Sensor failures.

2) Actuator failures.

3) Switching from automatic to manual control.

4) Change in system order due to a failure. Example: An

aggregate description for several power generators or a 

traffic flow or economic variables must be dissolved into a 

more detailed description of transients between individual 

components in failure situations.

Parametric perturbations are due to uncertainties in the plant model and in 

the controller implementation. Examples are:

5) Analytically known dependence of a plant model on uncertain 

physical parameters. Example: The linearized equations of

a crane with physical parameters mc = crab mass, m^ = load mass, 

X-=rope length, g = gravitational constant, and state variables 

x ^ = crab position, x2 = crab velocity, x^ = rope angle and x^ = 

rope angular velocity are

"o 1 0 0~ “ 0 ~

•
0 0 mijg/mc 0 1 1

X =
0 0 0 1

x + —  — mc 0

0 0 2-CJU 0 _-i/je

u ( 1 )

2with co = (m^ +m^)g/mci. Input u is the force accelerating 

the crab. The crane may operate with an unknown load mass

m^ between the empty hook and the maximum mass, for which 

the crane is designed. It may also operate with an unknown 

constant rope length between zero and the height of the crane.
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6) Numerically known dependence of a plant model on an unknown

physical parameter vector _0. Example: linearized equations

of longitudinal motion of an aircraft depending on altitude 

and speed

x = A(0) + B(9)u (2)

A and B may be given for J typical flight conditions in the 

flight envelope. A.^=A(9j ), Bj=B(jL), j=l,2,...J.

7) Known dynamics, which have disappeared in a simplified design 

model by linearization, truncation of structural modes, model 

reduction, neglecting of actuator and sensor dynamics. In 

some cases it may be possible to pull out all uncertainties 

as illustrated by Fig. 2.1, where for P = 0 the nominal plant 

N is obtained.

Figure 2.1. Nominal plant N with perturbations P.

In simple cases the perturbations P can be expressed as a 

diagonal matrix of linear or nonlinear operators.

8) Unknown dynamics, which cannot be modeled. In this case only 

vague assumptions about perturbations 6A, 6B, 6C of the 

system matrices A, B, C(x=Ax + Bu, y = Cx) or perturbations 

6G(s) of the transfer function matrix G(s) can be made.
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9) Quantization effects and time delays in controller 

imp lemen t a t ion.

10) Variance of components in mass produced control systems 

and circuits.

These examples of system properties and perturbations show that many special 

combinations can be specified. Therefore many different definitions of 

"robust control" can be found in the literature.

The design problem for a robust control system may be formulated in 

one of the following three forms:

1. Given a system property, determine the class of perturbations 

with respect to which the system property is robust. Design 

the controller such that the class of admissible perturbations 

is extended in the direction of the really expected perturba

tions .

2. Given a class of perturbations, determine the maximum deviation 

from a desired system behavior which occurs under the worst 

perturbation in the given class. Design the controller such 

that the maximum deviation is minimized.

3. Given a system property and a class of perturbations, determine 

if there exists a set of controllers for which the system 

property is robust under the class of perturbations. If yes, 

select one on other criteria than robustness. If not, relax 

specifications.
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2.2. Controller Structure and Other Design Considerations

Design problems for control systems are usually parameterized by the 

assumption of a controller structure which defines a vector of design para

meters. Two typical assumptions for the controller structure are adaptive 

controllers or fixed gain controllers. One extreme is the attempt to obtain 

as much information about the perturbations as possible by on-line identifica

tion and failure detection. Then ideally the structure and parameters of the 

controller are adapted in order to achieve the best possible performance of 

the control system given the momentarily available information. An intrinsic 

difficulty of this approach is that plant inputs, which admit a fast and 

accurate identification, are not good to achieve the best performance and vice 

versa. Also a tradeoff between a fast failure detection, identification and 

adaptation and a reliable one, which avoids false alarms and noise sensitivity 

of the adaptation, must be made.

The other extreme is the attempt to find a fixed gain controller 

which accomodates a specified class of perturbations. In this approach it 

may be necessary to sacrifice some performance in the nominal case in order 

to achieve robustness for the perturbed situation. The assumed controller 

structure may be state feedback, or static or dynamic output feedback. Note 

that full state feedback is not the most general controller. Information 

about the unknown parameters is contained in past states, their processing in 

a dynamic system can therefore improve the performance. In some cases the 

unknown parameters can be introduced as additional states, which may be 

estimated and fed back. Most design techniques are restricted to linear 

systems, thus a linear controller is usually assumed.

Only the case of a fixed gain controller is usually called robust
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control. However it should be apparent from the previous discussion that 

robustness is also a desirable feature for an adaptive control system. The 

fixed gain solution indicates whether a more complex adaptive system is needed 

at all, or how far one has to go adaptive. Practical solutions to the robust

ness problem frequently are in between the two extremes and combine features 

of both cases. Examples are:

1. Gain scheduling with switching or continuous variation between 

fixed linear feedbacks dependent on a measurement of an 

environment condition, which has an influence on the plant 

parameter values.

2. Variable structures with state dependent switching between 

fixed linear feedbacks.

3. A fixed gain robust controller may be used for stabilization, 

with an adaptive controller then used for improvement of 

performance. (Some techniques for design of adaptive 

controllers assume an open loop stable system).

4. A fixed gain robust controller may be used as backup for the 

case of a failure in the adaptive system or in a gain 

scheduling system. Air data measurements (e.g. dynamic 

pressure) are not very reliable.

5. Under external noise an adaptive system may not adjust fast 

enough to a fast change in plant parameters. In such cases, 

it may be possible to switch to a fixed gain robust system 

until the identification has followed and adaptation can 

improve the performance.

6. Adaptive control theory usually does not deal with problems
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of structural identification (e.g. failure detection) and 

structural adaptation after a failure has been detected.

However problems are related: Fast structural identification

may lead to false alarms, in particular under noisy conditions. 

Slow and reliable structural identification may leave the 

system in a failed unstable configuration for a while. The 

control should be designed to provide robustness of stability 

with respect to the failure to ensure that nothing very bad 

happens until the failure is detected reliably.

7. Robust fixed gain control may be combined with some redundancy 

concepts. Various levels are possible:

a) Passive redundancy be paralleled components. For example

the 50% gain reduction margin of LQ designs offers the
1

possibility of using two paralleled sensors or actuators 

such that in case of a failure the gain is reduced only 

by 50%.

b) Removal of failed components. Even if a component failure 

can be tolerated, as far as stability is concerned, it 

may be necessary in the long run to remove a failed 

component, e.g. to close a leaking gas jet valve or to 

remove a bias term entering into a control system from a 

sensor failed at a nonzero constant value.

c) Analytic redundancy may help, if an adaptive observer 

provides an estimate for a missing signal.

d) Hardware redundancy, e.g. majority voting in a multiplexed 

system can bring the system back to its original performance.

r-  '' ‘ ■ * :/ii a J.y; v ' 1 to. n o  i
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However this part of the system ideally should not be 

vital for stability (see 6).

With the availability of cheap computers there are few constraints on the 

complexity of the controller structure. However there are several practical 

limitations and additional aspects for the design. Some of them are given here.

1. A main constraint on the controller complexity is given by the 

presently available design methods. Also it is a question with 

which methods the designer has experience and for which he

has design software available. Ideally, control theory should 

provide the designer with convenient tools, e.g. for the 

computer-aided design of control systems, instead of demanding 

that the designer has to put all thinkable tradeoff situations 

into one scalar performance index or set of inequalities.

2. In many control problems structural limitations are mainly 

dictated by the cost, availability and reliability of sensors 

and actuators. Thus output feedback and saturation of control 

or control rate are important design considerations. For 

robust control systems with control constraints it is a 

particularly important rule of thumb to make only physically 

reasonable requirements. For example, one should not try to 

make a slow system fast or a fast system slow (i.e., do not 

use one reference model, but fast and slow reference models 

for different operating conditions, or demand only invariance 

of damping or maximum overshoot, not of natural frequency or 

time of maximum overshoot). Of course such considerations



10

depend on which property of the application must be robust.

In the design of an oscillator the frequency must be constant 

whereas in the design of a crane the frequency is less 

important. Also it would be not reasonable to require an 

unchanged performance in cases of sensor or actuator failures. 

Thus emergency specifications should be given for these cases.

3. Some special consideration must be given to the case for

which there is a man (operator, pilot) in the outer loop. A 

pilot does not want to be a passenger. He may want to 

identify the controlled aircraft by "playing" with the input 

signals. Control schemes which give him the same feeling for 

a wide range of parameter variations may be dangerous if the 

dynamics suddenly become bad beyond an assumed range of 

parameter variation. The pilot needs a warning before the 

"cliff". This is another reason why the dynamics should 

change with changing parameters.

A plant operator may want to switch one or more loops from automatic to manual 

control. It is desirable that he always sees a stable system or better one, 

which he can easily control. A man can control an unstable plant provided 

the eigenvalues in the right half plane are close to the origin. He has more 

problems if he has to control fast modes, even if they are slightly damped.

In other words, the imaginary axis is not necessarily the best emergency 

boundary for sensor failures.

The problems of actuator and sensor failures look similar if we 

interpret them as a row or a column of the feedback matrix being switched to
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zero. For the human operator these cases are quite different, since for many 

variables he has sensors, which he can use as backup. This is rarely the 

case for actuators.
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CHAPTER 3

A SURVEY OF ROBUST CONTROL RESULTS

3.1. Introduction

The discussion of the preceding chapter has demonstrated that 

robustness is an important issue in areas of control system design ranging 

from fixed gain controllers to completely adaptive control systems. The 

intent of this report is to concentrate on fixed gain, linear time invariant 

control systems. Hereafter in this report, references to robust control 

system design will assume this structure.

There are two basic philosophies to the analysis and design of 

robust control systems. The first assumes that the perturbations are largely 

unstructured. The objective is to design the controller for the worst perturba 

tion and evaluate or bound the size of the permitted perturbations.

The second approach assumes that the structure of the disturbances 

and their size are known a priori. The design objectives are to minimize the 

sensitivity of the closed loop systems in the known perturbations directions.

Each of the two approaches have advantages and disadvantages. The 

first is more likely to provide robustness with respect to unmodeled errors, 

and hence requires less accurate models. The results are often very conserva

tive. The second requires accurate models of the perturbations which one 

likely to occur. However, the control effort is directed where it is needed 

most.

The purpose of this chapter is to review the work which has been 

done on the robust control problem. The survey is divided into two sections 

corresponding to the approaches outlined above.
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3.2. Sensitivity and Unstructured Perturbations

3,2.1, Frequency Domain Methods

The main reasons for the use of feedback are stabilization and the 

preservation of desirable system properties in spite of noise inputs and 

perturbations of system parameters. The reduction of nonlinear distortions 

was an essential reason for the use of feedback amplifiers, (see Black [1]).

The reduction of nonlinearity by high gain feedback has been further investi

gated by Cruz [2] and Desoer and Wang [3].

In frequency design methods the concept to compensate the loop, 

such that high gains are possible without instability, is the classic rule of 

thumb for the reduction of noise and uncertainty. Bode [4] expressed it in 

terms of gain and phase margins and a sensitivity function, which was 

generalized to the multivariable case by Cruz and Perkins [5]. A sensitivity 

matrix S(s) relates the output errors Ec(s) due to perturbations in a feedback 

system to the output errors Eq (s ) due to the same perturbations in a correspond

ing open loop system by E (s) =S(s)E (s). The sensitivity matrix S(s) is thec o
inverse of the return difference matrix, for the loop of Fig. 3.1.

S(s) = [I + G(s)K(s)H(s)]'1 (3)

Figure 3.1. Feedback system, return difference for loops 
broken at a.
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Note that G(s) is the actual plant, which may be expressed by the nominal 

design model GN (s) and a perturbation 6G(s), i.e. G(s) = GN (s)+ 6G(s). If 

the known GN (s) is used in eq. (3) instead of the unknown G(s), then all 

results are local, i.e. restricted to small 6g (s). For a reduction of 

sensitivity it is sufficient that

TS (-jou)S (ju)) - I £ 0 (neg. semidefinite) (4)

over the frequency band of interest, or in terms of the return difference 

F (s) = I +G(s)K(s)H(s)

FT (-jU))F(ju)) -1*0. (5)

Hsu and Chen [6] proved the relationship

det F(s') = cl°sed loop characteristic polynomial 
 ̂ 7 open loop characteristic polynomial ( 6)

Thus, if no cancellations occur, closed loop stability can be analyzed using 

det F(s). MacFarlane [7] studied the eigenvalues P^(s), j=l,2,...,m of 

F(s) and showed that the closed loop is stable, if all characteristic fre

quency loci Pj(jco), j = 1,2,... ,m satisfy the Nyquist criterion. He also

proved a necessary condition for the system to be optimal in the sense of a
00 T Tquadratic criterion J (y Qy + u Ru)dt:
0

P j ( I *1 for OiuiSco j = 1,2,...,m (7)

or

det F(jU))| *1 for all uo. (8)

These results have the graphical interpretation that the complex plane plots
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of Idet F(jau)l or lpj(j^)l must not penetrate the interior of the unit disc.

It follows from this that the characteristic frequency loci of an optimal 

proportional feedback controller have infinite gain margin and at least 60° 

phase margin.

Robustness of stability with respect to gain and phase changes may 

also be achieved in design by Rosenbrock's inverse Nyquist array [8]. Here 

I + Gq (jw) with Gq (s ) = G(s)K(s)H(s) (see Fig. 2) is analyzed graphically and 

modified in the design. A standard technique in multivariable control system 

design is to use compensation or feedback to decouple or approximately decouple 

a multivariable system into several single input systems, which may be designed 

by single-loop techniques. Rosenbrock [8] uses the criterion of diagonal 

dominance for approximate decoupling.

Doyle showed by counterexamples [9] that these methods can lead to 

highly optimistic margins for individual loop gains, even if only very small 

margins exist for simultaneous change of several loop gains. Already in the 

single-input case, gain and phase margins are insufficient to characterize 

what happens for simultaneous gain and phase perturbations. Another difficulty 

is that by compensation or feedback for diagonal dominance the actual loca

tion of the uncertainty is obscured.

Doyle [9] examines the properties of the return difference using the 

concepts of singular values, singular vectors and the spectral norm of a 

matrix. The singular value of a matrix A are the non-negative square roots 

of the eigenvalues of A*A, where A* is the conjugate transpose of A. Since 

A*A is Hermitian, its eigenvalues are real. The singular values give a measure 

of how close A is to being singular. The ratio of the smallest singular 

value £ and the largest one, a, is the condition number £/<j. One may also
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interpret the singular values as generalizing to matrices the notion of gain. 

This characterization is of great practical value, since good software to 

compute a singular values is widely accessible [10]. Using this singular 

value concept Doyle proved the following robustness theorem.

r
----- ►o--------- r  +  L ( s ) A ( s )

y
i k ---►

FP-7041

Figure 3.2. Perturbation by L(s).

In the system of Fig. 3.2, let G(s) be rational, square, invertible and such 

that the nominal closed loop with L(s) = 0 is stable, i.e. G(I + G)  ̂= I + G  ̂is 

stable. If the system is perturbed by L(s), which by itself is stable, then the 

perturbed system is stable if

£(I + G"1(jO))> >a(L(joo)) for all u>. (9)

For this theorem Sandell [11] gave a different proof, in which G(s) need not

be rational. £(I + G ^(j^)) is a frequency dependent measure of robustness in
“1terms of gain margins. For the eigenvalues X of A (here = I + G  (jou)) generally 

the relation

£ (A) £ |x (A) I £a(A) (10)

holds. It is possible that the smallest eigenvalue is much larger than ct(A). 

Thus the minimum singular value o gives a more reliable measure of robustness 

than the smallest eigenvalue. In fact Doyle constructed an example, where 

the diagonal dominance approach as well as the characteristic loci approach
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generates a Nyquist or Inverse Nyquist plot, which shows + °° db gain margin 

and 90° phase margin. However the system is only marginally stable.

The problem of uncertainties due to a reduced order design model is 

interrelated with the question of which modes of the system must be influenced 

by the control and which others should ideally not be influenced at all. In 

vehicle control it may for example be desirable to control the rigid body 

dynamics fast and accurately, i.e. with a reasonably high bandwidth, without 

interferring with structural vibrations. In frequency domain design techni

ques, this is achieved by a 40 db/decade roll off beyond the design band

width. This aspect is frequently ignored in state space design techniques.

In all design techniques it is important to study carefully the behavior in a 

frequency range above the bandwidth, where modes are still sufficiently 

controllable and observable, such that the control may move them into the 

right half s plane.

Stein and Doyle [12] give a design example for a CH-47 helicopter 

with two control inputs. They apply singular value analysis and the robustness 

condition (9). Rotor dynamics and rate limits are translated into a(L(jau)) 

using a result of Safonov [13]. The two singular values were made approxi

mately equal and the bandwidth in both loops was increased as much as <J(L(jU))) 

admitted. A low pass helped to meet the "roll-off" requirement. The example 

also showed that these methods may lead to very conservative results in cases 

of large variations of parameters in specific directions, here the flight 

condition variation.

3.2.2. State Space Methods

Single-input linear quadratic state feedback regulators have a 

return difference greater than unity at all frequencies, as was shown by Kalman
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[14]. Anderson and Moore [15] showed that this fact implies a +60° phase 

margin, infinite gain margin and 50 percent gain reduction tolerance. Safonov 

and Athans [16] generalized this result to the multiinput case:

x = Ax + Bu

u = -Kx (11)

with m inputs u^.

The feedback matrix K is determined by solving a Riccati equation minimizing

00

J = J (xTQx + uTRu)dt (12)
0

with Q positive definite and R = diagfr^,...,r^], r^ >0.

The individual inputs u^ are perturbed to ?Lu^ without interaction

between them, i.e.

(13)

Let each perturbation 71. be linear time invariant with proper rational stable
J0i(a))

transfer function P^(s). Its frequency response is P̂ (jtu) = â (uu) *e 

Then the closed loop remains stable under a phase perturbation 0 (̂uu), with 

10^(^) I ^ 60° for all co. it also remains stable under a gain perturbation 

a^uu) £0.5 for all cu.

Note that this emphasizes the importance of the bandwidth of the 

control system. The 60° phase margin without bandwidth limitations is not 

sufficient to accomodate neglected error dynamics since physical actuators 

have at least 90° phase lag at high frequencies. For this reason Otto Smith 

[17] used the "complex gain margin", i.e. the minimum distance of G(ju)) to

x = Ax + BTfct with Tfti =
V i

TVu m m
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the critical point, scaled by the local frequency increment along G(juJ).

This approximates the negative real part of a dominant pair of eigenvalues.

A multivariable measure for the distance of G(j^) from the critical point has 

been discussed already in form of the singular values of the return difference.

Doyle [18] showed by counterexample that the margins may be 

arbitrary small if the state is replaced by a state estimate from an observer 

or a Kalman filter. In his example, the gain margins were arbitrarily small 

in both the positive and negative db direction. To improve the margin in this 

situation, Doyle and Stein [19] developed a "design adjustment procedure", 

which introduces fictituous noise at the control input to the plant. In this 

procedure the observer eigenvalues tend to the finite transmission zeros and 

to infinity. Thus the procedure works only for minimum-phase plants. The 

procedure is essentially the dual of Kwakemaak*s sensitivity recovery method 

[20]. This however drives the plant poles instead of the observer poles to 

the transmission zeros, which may lead to large control inputs u.

Gain and phase margins may be much smaller in discrete time linear 

quadratic state feedback systems. Jacques Willems and van de Voorde [21] 

give bounds for the single-input case, which show that the system may be very 

sensitive to feedback gain variations. This is not surprising, since the 

hold element may be approximated by a phase shift of one half sampling 

interval.

Safonov and Athans [16] also generalize a single-input result by 

Anderson and Moore [15], which is useful for actuator nonlinearities. If 

the perturbation operator 71 in eq. (13) describes a time varying, memoryless 

nonlinearity = f^(u,t), then it is a sufficient condition for the closed

loop stability, that
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y < ̂  f(u,t) £ M for some M < 00 and for all t. (14)

For example,for an actuator saturation, stability is guaranteed if the inputs 

do not exceed twice the saturation level.

Comparisons of numerous optimization techniques for insensitive 

control systems were made by Harvey and Pope [22,23] for wing load alleviation 

for the C-5A aircraft and by Vinkler and Wood [24] for a lateral autopilot 

for a rudderless remotely piloted vehicle. A minimax technique by Salmon [25] 

and an uncertainty weighting technique by Porter [22] were judged superior to 

six other techniques in the first report; both however failed in the comparison

[27] . Here an expected cost technique by Ly and Cannon [26] and a multistep 

guaranteed cost technique by Vinkler and Wood [27] came out better than four 

other techniques. In [23] an information matrix approach by Kleimann and Rao

[28] compared favorably with other techniques.

In problems with insignificant constraints on the control inputs, 

the weighting matrix R in a quadratic criterion may be small. This leads to 

high gain solutions as they were discussed in the previous section. A 

comparison of various high gain feedback systems is made by Young, Kokotovic 

and Utkin [29]. This comparison also includes variable structure systems, 

which in their sliding mode are insensitive to parameter variations and distur

bances, similar to the high-gain system [30], Young [31] applied this concept 

to the design of an adaptive model following control system and compared the 

results for the longitudinal motion of a Convair C-131B aircraft with other 

model following techniques.

A special case of a high gain control system is useful, if the 

reference or disturbance input signals can be exactly modeled and asymptotic
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tracking or disturbance rejection is required. The use of integrators in 

the loop for zero stationary errors in step and ramp responses is a classical 

recipe. Also for other inputs an internal model of the input can be used, 

e.g. a tuned oscillator (notch filter) for disturbance rejection of helicopter 

rotor vibrations, whose frequency is regulated. Such a high gain at particular 

frequencies makes asymptotic tracking robust to plant parameter variations 

as long as the loop remains stable. This robustness problem was studied by 

Davison [32] and others. In sampled-data systems the internal model is to be 

implemented in continuous time, if the tracking property is required also 

between the sampling instants [33].

Some common problems in all high gain concepts are

• Measurement noise goes highly amplified to the actuator inputs.

• High values for Iu I and liil may occur.

• Non-cooperative efforts of the actuators may occur.

The LQG design method offers a systematic way to avoid these difficulties by 

increase in the R matrix and by the use of a Kalman filter.

3.3. Robustness with Respect to Large Perturbations in Known Directions

3.3.1. Parameter Methods

In the methods of Section 3 relatively little knowledge about the 

parametric perturbation is assumed. The results are therefore primarily valid 

for small perturbations. In some cases information is obtained about how big 

the perturbation is allowed to be in order to maintain stability.

In situations where large perturbations in known directions occur, 

the previous methods generally lead to very conservative results. In this 

section some tools are discussed by which such perturbations can be accomodated 

in the design. The next chapter and [34] also describe a parameter space
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method which is applicable to this problem.

In typical design examples not only the mathematical model of the 

plant is uncertain, but also the formulation and relative weight of many design 

criteria. Some of these criteria are in form of inequality constraints; others 

are to be minimized. It is artificial to put all of them together into one 

scalar performance index, which is then minimized over the parameters in an 

assumed controller structure. For the designer an interactive computer-aided 

design procedure is more useful, where he can make higher level decisions of 

how to change requirements after each computer solution or failure to find 

a solution. The computer may have to solve a nonlinear programming problem in 

each design step. Various aerospace problems have been formulated and solved 

this way. Schy [37,38] deals with a lateral stability augmentation system for 

a fighter airplane, Hauser [39] with an autopilot for a flexible space vehicle. 

Further design examples are given by Karmarkar [40] and Kanarachos [41]. It 

is convenient to formulate all design criteria for each operating point as 

components of a performance vector jg. It may, for example, contain

• bounds on the individual feedback gains Ik..1. 

and for each flight condition specifications on

. eigenvalue location.

• deviation from nominal response for typical reference and 

disturbance inputs.

• bounds on the control rate |ul for typical reference and 

disturbance inputs.

Kreisselmeier and Steinhauser [42] use in an example with five flight conditions 

of a F4-C aircraft a 40 dimensional vector _g. A vector constraints £ < c (i.e. 

componentwise g^ s c^) is given and the feedback gains K are the solution of
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the problem

Min[Max g (K)/c.}. (17)
K i

Using an algorithm described in [43] Kreisselmeier and Steinhauser obtain a 

Pareto-optimal solution. Figure 3.3 shows some reference step responses of 

this design for an F4-C. It is stable in the five flight conditions. The 

open loop responses on the left side show that the aircraft is slow in flight 

condition 1 (landing approach). Here a slower reference response was given 

than for the high speed condition 2 and 4. The desired reference response 

was specified as g^(t) = g^C0̂ )  w^ere for each flight condition i = l,2,...,5 

an appropriate time scale a was chosen. This resulted in the insensitive 

closed loop responses on the right side of Fig. 3.3, which required only a 

relatively small control rate iiil. The same feedback resulted in similarly 

good disturbance responses.

Also the results of Shy [38] showed that an amazingly large variation 

of parameters can be accomodated by a fixed gain controller, if the requirements 

were in good agreement with the physical limitations. These designs result 

in low gain solutions, and the dynamics change in an acceptable or desirable 

way as the physical parameters vary.

3.3.2. Integrity: Robustness with Respect to Sensor and Actuator Failures

If an actuator or sensor is connected to a high gain, then its 

failure is a larger perturbation than in a low gain situation. Thus requirements 

for robustness with respect to actuator and sensor failures tend to result in 

low gain solutions. Even more important is the aspect of avoiding non- 

cooperative efforts of actuators. If, for example, one input alone places some 

eigenvalues in the right half plane and another is needed to bring them back
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uncontrolled insensitive control

© I * 3 h- tC*]

Figure 3.3. Response to a step command: F-4 (Phantom) aircraft at 5 extremal
flight conditions (altitude 0 ... 40 000 ft, Mach number .2 ... 2.2)
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into the left half plane, then apparently no robustness of stability with 

respect to actuator failures can be achieved.

One approach to achieve robustness of stability with respect to 

certain failures is to try to extend gain reduction margins to include gain 

zero. Belletrutti and MacFarlane [44] use the term "high integrity" for 

robustness with respect to certain failures. They check the stability condi

tions for gains reduced to a small e using Nyquist stability criteria for 

characteristic loci of principal submatrices of the return ratio. In this 

analysis the loop must be broken at the point where the actual failure may 

occur and thus the gain reduction margin is needed. Owens [45] derived 

necessary and sufficient conditions for integrity of systems with multivariable 

proportional-integral controllers.

Solheim [46] formulated the integrity problem in the context of 

quadratic optimal control. In examples an increased integrity is obtained with 

an increased weight R on the control in the quadratic criterion, another 

indication that the solution will tend to a low gain solution. Wong, Stein 

and Athans [47] show the following gain reduction result for LQ regulators:

The matrix Ac(A) = A + bAk with A = diag[a^. . .a ], where K minimizes
00
jx'Qx + u'Rxdt for A = I, is stable for all

A >  j[I -  (R1 /2K ,Q" 1KR1/2)‘1] . (18)

This generalizes the bound a^>0.5 from [16]. The recommendation is, from a 

purely robustness standpoint, to choose Q and R such as to maximize

X0 “ ^ i n h R ^ K ' Q ' W 7 2 )'1}. (19)

Kreisselmeier [48] proposes to modify the quadratic criterion, where for each



26

considered failure situation, a quadratic criterion is formulated and the 

overall criterion is a weighted sum of these terms.

In failure situations it may be desirable to specify other emergency 

boundaries in the eigenvalue plane than only the imaginary axis. This problem 

is treated by parameter space methods in [34] and in Chapter 4. The concept 

is illustrated for the case of sensor failures in Fig. 3.4. A nominal region 

for the eigenvalue location and a larger emergency region are mapped into 

the space of

Figure 3.4. Illustration of failure robustness and 
emergency boundaries.

feedback gains. It is assumed that the system is represented in "sensor 

coordinates", then a failure of a sensor for state variable x^ corresponds to 

switching to zero. The projection of point 1 on the k^ axis is outside 

the emergency boundary, i.e. the emergency specification is not robust with 

respect to a sensor failure = 0. It is, however, robust with respect to 

k^ = 0. For all points in the shaded area the emergency specifications are 

robust with respect to either sensor failure. An alternative to this robust
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solution would be in this example to omit sensor 1 and to use multiplexed 

sensors for x^ and failure detection.

In the multiinput case a sensor failure is equivalent to changing a 

column of the K matrix to zero and an actuator failure is equivalent to 

changing a row of K to zero. In [34] an actuator failure example is studied, 

where the problem is formulated such that the eigenvalues are placed in a 

nominal position with two actuators and move as little as possible towards 

the stability boundary for failures of either one of two actuators.

Apparently a necessary condition for robustness with respect to 

failures is that the insufficiently damped eigenvalues (outside the specified 

region) remain controllable and observable after the failure. In the crane 

example, the sensor for the crab position x^ is essential, because x^ is not 

observable by other states. In such situations it is apparently misleading to 

use high gain feedback and to show gain reduction to only a few percent of the 

high gain. For failures of essential actuators and sensors only redundant 

components can help.
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CHAPTER 4

PARAMETER SPACE DESIGN OF ROBUST CONTROL SYSTEMS

4.1. Introduction

In this chapter a new tool for the design of robust control systems 

is proposed. First the type of robustness problem for which the tool can be 

applied is described.

Robustness of a control system is defined in terms of system properties 

which are invariant under a specified class of perturbations. The system 

property considered in this paper is "nice stability" as specified by a region 

T in the eigenvalue plane, in which all eigenvalues must remain in spite of 

perturbations. The perturbations may be large changes of physical parameters 

of the plant or failures of actuators and sensors or inaccurate implementation 

of the control law.

The following assumptions are made.

1. Only linear plants

x(k+l) =A x(k) + B u(k) or

x(t) =A x(t) + B u(t) (20)

X — [x.̂  ... X^] > u ~ [ui ... Up]

are considered. It is assumed that eq. (20) is written in 

"sensor coordinates", i.e. all measured variables are state 

variables x ^  It may be part of the design task to decide 

which states are to be measured.

2. A and B may depend on a physical parameter vector _9. Only 

some typical values
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A. =A(0.), B. = B(0 . ) “J - ~ J  “J “ '“J j = 1,2,... J ( 21 )

may be given. Also the required system property may 

depend on the operating point JL .

3. The simplest assumed controller structure is state feedback

u = -K x. (22)

It may not be possible to make all plant models A_, nicely 

stable with the same fixed K, i.e. to have all roots of

J
TT det(\l - A. +B.K) = 0 (23)
j=i J J

in the specified region T in the X-plane. In this situation 

the designer may decide

a) To relax the eigenvalue region specification such that a 

solution exists.

b) To use several feedback gains, each of which nicely stabilizes 

a group of pairs A^,B^. The gains can then be scheduled 

depending on a measurement, which admits a distinction 

between the groups.

c) To use linear dynamic feedback of order m with controller 

state vector x , i.e. try to find a state feedback

u K L X

u—c M N XL - c j
(24)

which nicely stabilizes the augmented system



(25)

— — „ —
X A 0 X B 0 u

= +#X 0 0 X 0 I u— c —c — c

The controller M,N,L with n inputs and p outputs may be

written in a canonical basis, such that the feedback matrix
. h ;(u| , cbuta
in eq. (24) contains pn-hnn+mp design parameters. ((p+m) x (n+m)

2coefficients in eq. (24) of which m are normalized by the

choice of an m x m  transformation matrix).

d) To use nonlinear feedback, e.g. an adaptive system

estimating the physical parameter vector _0 in eq. (2 1 ).

The tool proposed in this paper is useful for problems of the types a), b), 

and c).

If some states are not available for feedback, then the corresponding

columns of K in eq. (22) or of K and M in eq. (24) are zero.

4. A sensor failure is equivalent to switching all elements of the

corresponding column of K (or K and M) to zero. An actuator

failure is equivalent to switching all elements of the

corresponding row of K (or K and L) to zero. Assume that M

such failures or failure combinations have to be considered,

which lead to M crippled feedback matrices K , m=l,2,...,M.~m
The design goal is to find K such that all roots of 
M J

„-Hi i=i(^I"A.+B.K ) are inside an "emergency region" in X-plane. 

Apparently it is a necessary condition for nice stability to 

be robust under such failures, that the plant modes outside 

the specified region F in the eigenvalue plane remain control

lable and observable after the failure. This fact may be used
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in the decision for which sensors and actuators redundancy 

is necessary. Components which are needed to make the 

insufficiently damped modes observable and controllable are 

"essential”.

Example 4,1: (Essential sensor) Consider a crane with the physical parameters

mc = crab mass, m^ = load mass, l = rope length, g = gravitational constant. Its 

state variables are = crab position, x^ = crab velocity, x^ = rope angle, and 

x^ = rope angular velocity. For small rope angles the linearized state 

equations are

0 1 0 0 0

0 0 m^g/m^ 0

— m
1

0 0 0 1 c 0

0 0 -(ju2 0 n -1 /i
Jr —  —

(2 6)

with 0)̂  = (mc+m^)g/mcX. Input u is the force accelerating the crab. Eigen

values are [0,0,joo ,-joo ]. The observability analysis shows that x 1 is not 

observable by x3 > or Since one of the zero eigenvalues is unobservable, 

the crab position sensor is essential for stabilization.

5. It is assumed that desirable features of the dynamic behavior 

of the control system can be specified by a region T in the 

eigenvalue plane . Examples are

a) the stability region, i.e. the left half s plane or the 

interior of the unit circle in the z plane,

b) military specifications for damping and natural frequency of 

modes of an aircraft,

c) in some problem formulations it is convenient to define a
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family of regions with a parameter r. In the z-plane 

this may be a family of nonintersecting circles (see Fig. 

4.1). For r = 0 it is a deadbeat solution, and r in the range

0.3 to 0.5 corresponds to well damped transients. (The 

right shift of this circle excludes heavily oscillatory 

solutions, the circles approximate the usual logarithmic 

spirals for constant damping augmented by a constraint on 

Izl). For r = l the stability boundary is obtained.

Similarly in the left half s-plane, a family of hyperbolas 

(guaranteeing a minimum damping and a minimum negative real 

part of the eigenvalues) may be introduced, augmented by 

parallels to the imaginary axis in the right half plane 

(see Fig. 4.2). The equations for these families of 

boundaries will be given later.

Three types of design problems for robust control system may be distinguished.

1. Given a system property and a controller initially designed for 

nominal parameter values, under what perturbations of the para

meters is the property robust? Modify the controller such as 

to extend the admissible class of perturbations. Example:

Try to extend the gain and phase variations under which 

stability is robust. It is difficult in this approach to 

accomodate large perturbation in known directions, e.g. 

large variations of the physical parameter vector £ in eq. 2 1 . 

Typically very conservative results are obtained.

2. Given a class of perturbations and a system property with a

parameter r, e.g. the family of boundaries for a given

controller which is the best value of r such that T is robustr
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Figure 4.1. Circular boundaries in z-plane
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Figure 4.2t Hyperbolic boundaries in s-plane*
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under all perturbations in the given class? Modify the 

controller to improve r. The system property may be formulat

ed such as to include several design aspects and an optimization 

can be performed.

3. Given a system property and a class of perturbations, does 

there exist a state feedback solution such that the property 

is robust? If not, does there exist a linear dynamic feedback 

controller of order m, eqs. (24) and (25), such that the 

property is robust? Find the set of admissible controllers 

and select one based on criteria, other than robustness, e.g. 

based on simulations with a nonsimplified nonlinear plant model.

It is primarily this third problem formulation for which the proposed design 

tool can be applied. The concepts however, are useful also in the second 

problem. The design tool basically consists in mapping boundaries from the 

X plane into boundaries in the parameter space X 9 whose coordinates are the 

elements of the state feedback matrix. Then all tradeoffs between dynamic 

requirements, robustness requirements, and bounds on the feedback gains can 

be made in X  space.

The details and most of the examples are worked out for single input 

plants with state feedback

u = -k,x = -[k1 k2 ... k }x (27)

or state output feedback, i.e. some k^ = 0. For multi-input plants the basic 

result is formulated.

Parameter space methods have a long tradition, mainly in Russia
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and Yugoslavia. Siljak [49] gives a historical review of the work by 

Vishnegradsky, Neimark, Mitrovic, and others. Siljak generalized these 

parameter mapping methods significantly. A typical procedure for a continuous 

time system is to assume a controller structure with two free parameters Qi 

and 3 .  Determine the closed-loop characteristic polynomial

Substitute s=CT + ju) and separate eq. (28) into its real and imaginary parts: 

Re(a,ou,a,3) =0, Im(<j,a),a,0) = 0. Assume these nonlinear equations have a 

solution

Equation (29) allows mapping ct,gu pairs on the boundary into the a-3-plane.

The image boundaries divide the a-0-plane into regions characterized by the

number of eigenvalues inside and outside the s-plane region.

In the present paper the control system structure is restricted to

partial state feedback. This permits simplifying the determination of eq. (29)

by pole placement methods. Consider for example a second order single-input

system with k^ = Qi, k^ = 3 in eq. (27). In classical parameter plane methods
2P(s) * det (s_l-A+b k 1) = pQ (a, 3 )  + p^(a, 3 ) s + s = 0 is determined and with s=cH-jOQ 

solved for ot and 3. In the method proposed in this paper the p^ are expressed 

in terms of a and u) by

u  «

POO = i2opi(a,^)sl = 0m
n

(28)

a = a(a,aj), 3 = Ê(tf»ü>). (29)

(30)

Then by pole placement
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kl = a (p0 ,pl) = ^(CT̂ )

k2 = ̂ (P0,PP  =
(31)

Thus the mapping equation (29) is obtained in a different way.

More generally for an nth order single input system in both 

approaches an n dimensional parameter space ^ with coordinates p^ is introduced 

as an intermediate step between the set of eigenvalues A={X^ ... and the 

^-space. The relation between A and X  can be expressed in both directions:

a) From X  to &  by the characteristic equation P(X) = det(Xl-A+b k*), 

from @  to A by numerical factorization of P(X).

b) From A to &  by multiplication of elementary factors P(X) = 

(X-X^iX-^) ••• (^"^n)> from ̂  to K  by pole placement.

Apparently direction b) is much simpler than direction a). In this paper only 

direction b) is used.

In the next section pole placement is reformulated as a linear 

mapping from ^ to X  space. This is then used in the third section to map not 

only a trial point from &  to X  or from A to X > but to map boundaries.

4.2, Single Input Pole Placement--A Linear Mapping

4.2,1. State Feedback
n*" 1 nTheorem 1; Given a polynomial P(X) = PQ+p.jX + ... + pn_^X +X , an n x n  matrix
n— 1A and an n x 1 vector b such that det R^O, R=[b,Ab ...A b] . The unique 

solution to det(Xl-A+b k') = P(X) is

k* = £*E (32)

where
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P* = [PQ Px ••• Pn _ 1 !]> E = e'A

e 'An

and e' is the last row of R

Proof; Existence and uniqueness of the solution were shown by Rissanen [50] 

by transformation to control canonical form.

Let F = A - b k '  and expand powers of F as follows:

F ° = A ° = I  (1)

F = A - b k '  (2)

F2 =A 2 - A b k' -bk'F (3)
• •
• •

Fn =An - A11"1̂  k' -An‘2bk'F- ... -bk'F11'1. (n+1)

Multiply the first equation by pQ, the second by p^, etc., the (n+l)st row 

by one and add the equations

P(F) =P(A) - [b,Ab A

By Cayley-Hamilton P(F) =0. Then

= R_1P(A), R = [b,Ab ... An-1b] (33)

k' must satisfy the last row, i.e.

k' = e'P(A), e' = [0 ... 0 IJr "1. (34)

Explicitly
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k' — e ' [p I + p_A + ... + p ,A + A ]— — cr- 1— n-1— —

k' = [p p, ... p , 1 ]— o 1 n - 1

The form (34) of the result was derived in [33], The (n+1) xn matrix E is a 

convenient representation of a controllable pair A,b. It maps a vector 

£* = [PQ • • • Pn_^i in ^  space into a vector k' = £*E = [£* 1]E in X  space.

E is evaluated only once for a given pair A,b. The mapping of each trial 

design point in &  space then requires only n multiplications and n additions. 

This compares favorably with mapping a trial design point from the parameter 

space of quadratic criteria via the Riccati equation into X  space. This is 

an advantage for computer-aided design methods, in which many trial design 

points have to be mapped and displayed graphically.

Example 4.2: (Pole placement, output feedback, gain scheduling). For the

crane of Example 4.1

&nc/g 0 42mc/g 0

0 ¿mc/g 0 / m c/g

0 0 -jgmc 0

0 0 0 “^ c
0 0 <mc+mL)s 0

_e

_e'A

e'An

= £*E. Q.e .d ,

= PGimc/g

= P j ^ / g

2
= Po^ mc/g “ p2 imc + (mc+mL>g 

= «¿mc(Pl4/g-p3).
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This result admits some conclusions about state output feedback and gain 

scheduling

i) for stability p^ > 0, i.e. > 0,

ii) for stability p^ > 0, i.e. k > 0,

iii) k^ = 0  implies the constraint

P2 = Po ̂ 8 + (mc+mL) g/ »

iv) k^ = 0  implies the constraint P3 = Pj^/g>

v) a gain scheduleing for different loads m^ can be implemented as

2
k3 = k 30 + mL8 with k30 = po^ mc/ g “ P2imc + m cg*

The other k^ remain unchanged. With this gain scheduleing the 

closed loop eigenvalues do not depend on the load.

in numerical calculations with large n the accuracy of the vectors ¿'A*-,

i=l,2,...,n, must be checked. One test is to let p =p, =...*p ,=0.o 1 n - 1

Then k' = e’An. Evaluate det(Xl-A+b e 1 An) = p + p..X+...+p , + X n. Thep,

should ideally be zero. Their magnitude is a measure for the error in e'An . 

Another convenient test follows from the definition of e*

, 0 k=0,1 ,...,n- 2
e*A b = (36)

1 k=n-l.

This relation also implies that e', e'A... e'A are invariant under state 

feedback (A,b) -» (A-b k 1, b). If the inverse of eq. (32) is needed, the last 

row of E can be brought to the left side
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k'-e'A11 = 2 'W“1, p* = [pQ P]L ... Pn_L], W " 1 =

_e

e*A

i »u— 1e'A

£* = W ( k ,-e,An). (37)

It was shown in [33] that the columns of W can be evaluated recursively by

Leverrier's algorithm, which also gives the coefficients a^ of the charac-
n*" 1 nteristic polynomial of A, det(Xl-A) = a^ + a^X + ... + a^ ^X + X . In this 

case it is more convenient to express the last row of E by the Cayley-Hamilton 

theorem in terms of the previous ones. Then

k' = (£,-a,)w’1, a ’ = [aQ a1 *'«an_1] 

£' = W k' + a'
(38)

4.2,2. Partial Pole and Gain Assignment, Output Feedback

So far the mapping from &  to \  has been formulated. This is easily 

extended to mapping from A={X^ ... Xn] to }(. P(X) may be written as

P(X) = (X-X1 )(X-X2) ... (X-Xn). (39)

Then by eq. (34)

k* = e'CA-XjlHA-X^) ... (A-XnI). (40)

This form of the result admits consecutive assignment of one eigenvalue after 

the other. P(X) may be factorized in any form

P(X) = Q(X)R(X)

R(\) = r + r,X+...+r 1Xg *' + X8 (41)o I g-1 v '
Q(\) = qo + q 1X + . . . + q n_g_:1\n~g'1 +\n'8.
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Let for example the n-g roots of Q(X) be fixed, then

k* = e'P(A) = e'Q (A)R(A) = e'QR(A)

k' = [r •.. r 1 ] “ 1 o g- 1

- Q
= = [r' IJEq . (42)

It is also possible to fix g gains ^ -£*2-, where n^ is the ith column of E, 

These g linear equations in the p coefficients may be used to eliminate jr1 

[55], £* is written as

£*=[P0 • p , 1 ] = [r ... r 1 ] n - 1  L o g- 1  J

qo ql . . .  q -j 1n-g- 1 0. . .0

0 q 1 0o n-g- 1 •

q . . .  'q ! 1o n-g- 1

£* = [r* 1 ]
S

t*

where S is a g x(n+l) matrix and _t' a 1 x(n+l) vector. Let k£ be the fixed gains, 

which for convenience, are chosen to be the last g gains in k'. Then

S

k' = = £*[Ea Eb] = [r1 1] [Ea

kfa = £ ' S E b + t'Eb

which can be solved for

r' = (43)

if the g x g  matrix S is invertible. Note that this condition does not 

depend on the values of k£. Thus this is the same problem as in output feedback,
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k£ =0, where certain pole locations cannot be achieved [51]. The singularities 

of .SE^will require further study, is determined by

= £*Ea = (r'S + t*)Ea . (44)

Assigning the n-g eigenvalues of Q(X) determines S. The remaining eigenvalues 

can be determined by factoring the residual polynomial R(X) with coefficients 

given by eq. (43).

Example 4.3: (partial pole placement) For the crane let

P(s) = (qQ + qLs + s2 )(rQ + rjS + s2) (45)

where q and q., are fixed and r and r_ remain as free parameters, o i o i

= £*Q (A ) = [q Q q L l ]

im
= ~fKqi % ]

k* = e'q • R(A)

k 1 1 ]
qO qi • V s
0 qo -qjg m 0 -s (46)

0 0 < V qo)s -qig

Let for example the natural frequency 0) of the pendulum be unchanged,
P

2 2introduce a damping d, i.e. Q(s) = 0)p + 2d(0pS+s , then

but

c V Cj£

k* = [r r_ 1] —  L o 1 0 V " l -eg “ l  *
0 0 0 -Cg

(47)
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with c = 2d J  (mc+nLL)mc/g^.

Example 4.4: (fixed feedback gains) For the crane of Example 4.2 let and

k4 be fixed, i.e. kJJ = [k2 k3] , = tkL k4 3

E = —a

1 1

0 i2mc/g -0m,/g 0

^mc/g 0 0 i2mc/g

0 -hac r ii 0 0

0 0 0 -imc
0 (mc-*\)g 0 0

Then by eq. (43)

r* = [rQ rL] = [k± k ^ A a , ] .
q0imc/g qxje mc/g

'&nc (qo^/ g “ 1 2

The inverse exists if q ?^g/f and q ^0. Theno o

and with eq. (4 4)

kxg

r° = V v ri
qlmc~klql./qo+k4/'e
mc (qoJe/s’1)

(48)

k2 =
qoqlmci-k1gq1/qo + k 4qo

q^X-g
2

qi8 k /.q-
k 3 = V mc) (q0 + - i i + mc + mL)

(49)

O 'O “ *0

k^ will be fixed by the following consideration: Assume a force limitation

Iu(t)I £ U for all t for a typical operation of the crane, i.e. a displacement 

of a load at rest, x(0) = [L 0 0 0]*, L > 0  (e.g. length of a loading bridge) 

to a final position x(t£) =[0 0 0 0]*. Typical responses of sufficiently



45

stabilized cranes show an initial peak u(0) of the force as the maximum value 

of |u(t)l. A simple approach to avoid saturation is therefore to meet a 

necessary condition by fixing 1u (0)I =U and checking the conditions for 

u(0)/u(0) ̂  0. Then ju(t) I for t > 0  may be checked in a simulation. Here

u(0) = -k'x(O) = -kjL

û(0) = -k* (A-bk1 ) x(0) = L k^(k^ ~ k^/jC)/mc = L k^p^
(50)

Thus u(0)/u(0) = "I/P3 ^ 0 for all stabilizing feedbacks and Iu(0)I =U results 

in k^ = U/L.

It is desirable to avoid the difficult measurement of the rope 

angular velocity x ^ =cP. Thus k^ = 0 is chosen. Then by eq. (48)

q ^ C l - U / L m ^ )Ug____ = __________
o LXm q * rl Xq -gc o  o

(51)

rQ and r^ are the coefficients of the residual polynomial, which is obtained 

after qQ and q^ have also been fixed. Necessary and sufficient conditions for 

stability are qQ > 0, q ^ O ,  r 0 > 0 > ri >0# With eq* (49)

k2
V l mci‘Usql/Lqo

v - g

k3
qLg U iq2xg

(52)

-im (q +   — ) + — (q X-gH---:— ) + (m +m_)gc o q X“g Lq vno & q X-g c I/ 6

4.2.3. Sensitivities, Incremental Stabilization

The influence of a coefficient p^ of the characteristic polynomial 

on k 1, given the other p^, follows from eq. (32) as
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dk* i
d ^ : = -  - • (53)

The influence of an eigenvalue X. on k*, given the other X., is by eq. (40)
J

dk'
= -e'CA-X^) ... (A-Xi_1I)(A-Xi+1 I) ... (A-X^). (54)

For complex conjugate eigenvalues quadratic factors in P(X) are more convenient 
2

Let P(X) = (a+bX+X )R(X), then

k' = e' (a], + bA + A )«R(A)

dk'dk'
e ’R(A) 3b = e'AR(A).

(55)

(56)

Example 4.5: (Incremental stabilization, global robustness) For the crane of
2 2 2eqs. (26) and (35) the open loop characteristic equation is s (s +u) ) = 0.

Find a small stabilizing feedback Ak* with the least number of required sensors

2 2 2P(s) = (s +as+b) (s +cs+cDp+d) with small a>0,b>0,c>0, and small d

k ' = e ' (A2 +aA+b I) [A2 +cA+ (00p+d)l]

A1 , _ dk' ^ dk' . ^ dk* dk' .Ak — *r • sl + “tt—  • b + "=r—  • c + —  • dda db dc dd

(57)

(58)

dk 1
da

dk'
db

dk1
dc

dd

b=c=d=0

a=c=d=0

a=b=d=0

a=b=c=0

(A2+aA) (A2+U)̂ I) = e' (A3+co2A)

d i / A2 TX / A2 2 .5b e'(A +bl) (A -Ktô E) = e' (A2+oo2I) 
P"

d . 2 , 2  2 v . 3-r— e'A (A +cA-Ku I) d c ---- p-'
= e'A

d . 2 r 2 2 . 2
3d e'A [AZ+(a)p+d)I] = e'A
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Ak'

Ak,

e 1 • [ (a+c)A^ + (b+d ) +  acA~A + boû I]

büü im /g = (m -Hil ) *b p C  C JLi

Ak_ = aoi j&n /g = (m +m_ ) *aZ P C  C Li

2 2Ak^ = b(u i mc/g “ (b+d)imc = ¿(m^b-m^d)

Ak, =

P
2 2aa) 1 m /g - (a+c)im = j£(nLa-m c)p c  C J-i c

With a>0, b >0, c > 0  this is the cone of stabilizing directions at the origin 

of the four dimensional X. space. It includes the directions Ak^ = 0 and Ak^ = 0, 

i.e. no feedback of the rope angle is necessary with

*rd = b.m (59)

No feedback of the rope angular velocity is necessary with

“lc = —  a. mc
(60)

Ak^ and Ak^ must be positive for stabilization, i.e. crab position and crab 

velocity must be available for feedback. Output feedback

Ak' * (m -̂kn̂ ) [b a 0 0] (61)

with small positive a and b then stabilizes the system. For sufficiently small 

a and b the characteristic polynomial is arbitrarily close to

2 2 2 \P(s) = (s +as+b)(s H---as+Oü + —  b).m p mc c
(62)

If the physical parameters of the crane are unknown, and output feedback

Ak* = [Ak^ Ak^ 0 0] with small Ak^>0,

Ak2 >0
(63)
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is applied, then in eq. (61) a = k £ / a n d  b=k^/(mc+mL) are unknown, but 

positive, i.e. with the feedback of eq. (63) stability is robust with respect 

to arbitrary changes of load mass m^, crab mass mc, rope length 4, and gravi

tational constant g. Thus in this example global robustness of stability 

with respect to perturbations in four directions is achieved.

Note that it is possible to destabilize the model A and b in eq. (26) 

with feedback (63), if small changes in arbitrary coefficients of A and b are 

permitted. The general assumption in this paper is that A and b do not change 

arbitrarily but in known directions. Only by this assumption does it become 

possible to accomodate large parameter variations.

4,3. Mapping of Boundaries

4,3.1. Mapping from X plane to X  space 

In the complex plane of eigenvalues

\ = v + jw (64)

2 2boundaries w =w (v) (i.e. symmetric with respect to the real axis) are of 

interest, which are related to desirable system properties, e.g. stability, 

damping, bounds on the natural frequency. Examples were given in Figs. 4.1 

and 4.2.

Assume, due to a change of the state feedback gains k 1, a real root 

crosses the boundary at its intersection with the real axis at \ = vD . Then in 

&  space a boundary

P(\) = (\-vr ).R(\), R(X) =rQ + r1\ +  ... +r n _2 \ n ’ 2 + \ n ’ 1 (65)

is crossed, which is linear in its parameters r , r^>»“ >rn 2J i*e* it: is an
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(n-1) dimensional hyperplane. Due to the linearity of k* =£*E = [£* l]E, 

this boundary maps into a hyperplane in X  space, which is crossed by the 

feedback gain vector k*.

Assume, due to a change of the state feedback gains k 1 a complex 

conjugate pair crosses the X-boundary at v+jw. Then in space a boundary

P(X) = (X-v-jw)(X-v+jw).R(X) =*Q(X)R(X) (66)

where

Q(X) = X2 - 2vX + v2 + w 2 (v)

and

R(X) = r + r X + . . . + r  X*1 3 + X n 2o 1 n-3

is crossed. For a fixed v, i.e. a fixed pair of eigenvalues on the boundary,

this is a (n-2) dimensional hyperplane in ^ and X  space. However, for

different values of v different hyperplanes are obtained. For fixed R(X) the

boundary line in 0  and X  space is obtained by moving a pair of conjugate eigen
2values along the boundary. In this case the form of the boundary w (v) in eq. 

(66) determines the shape of the boundary line in &  and X  space.

Some boundaries of particular interest are:

1) Imaginary axis, stability boundary in s-plane, v =0, Q(
2 2 2 Q(X) =X +w , boundary linear in w .

2) Parallel to imaginary axis

2 2 2 2 v = v^, Q(X)=X - 2v^X + v^+ w  , linear in w .

3) Conic section symmetric to the real axis, i.e.

2 2w = cq + c 1v + c2v . (67)

Special cases are
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C2 < 0  ellipse, of particular interest are circles c^ = -1 , e.g. 

constant natural frequency curves in s-plane, stability 

limit and other boundaries in z-plane, see Fig. 1.

0 ^ = 0  parabola, or if also c^ = 0, c q > 0  straight line parallel to 

the real axis. For co = c ^ = C 2 = 0  boundary between real and 

complex eigenvalues.
2 2C2 > 0  hyperbola, in particular 2 straight lines for w =c 2 (v“v0) j 

C2 >0, e.g. constant damping lines in s-plane. This 

boundary is frequently combined with a parallel to the 

imaginary axis. Here it is more convenient to use a hyperbola, 

which guarantees the required damping and minimum negative 

real part of the eigenvalues, see Fig. 2.

Substituting eq. (67) into Q(\) from eq. (66) gives

Q(X) =X 2 - 2vX + (l+c2 )v2 + c-jV + cq. (68)

The boundary is quadratic in v. It becomes linear only if C2 =-1, i.e. for a 

circular boundary in X plane. In other words: If n-2 roots in R(X) are fixed

and the remaining two roots of P(X) move as a conjugate pair along any circle 

in the X-plane with center on the real axis, then the corresponding point in 

&  and X  space moves along a straight line. This is the reason for the proposal 

of a family of circles Fr in the z-plane in Fig. 4.1. Its equation is

2 2(v-v ) + w = r o
v (v -1) = 0.99r(r-l), v <0.5 for r < lo o ' v o

vq = 0 for r £ 1 .
(69)
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For r = 0 it is the deadbeat solution with all eigenvalues at z = 0. With 

increasing r the center v q of the circles moves to the right until it reaches

0.45 for r = 0.5, it then goes back to zero to produce the unit circle for 

r = 1. If boundaries in the unstable region are needed, concentric circles 

with radius r may be used. We may begin with a radius r such that all open 

loop eigenvalues are enclosed by the circle, and design the feedback such that 

r is reduced to a radius smaller than 1. In the further reduction of r at 

tradeoff with the required gains must be made. For continuous-time systems 

the family of hyperbolas T of Fig. 4.2 in the s (=CT+jO)>-plane may be used.
r

Its equation is

2 2 2 2U) = -p +<j /p for ct< 0 

a = -p for a > 0.
(70)

For large P an extremely fast solution is obtained, p =1 gives the 1/^2 damping 

line as asymptotes, for p-*0 it goes to the imaginary axis. Negative p 

represent parallels to the imaginary axis in the right half plane. Beginning 

with a sufficiently negative p to have all open loop eigenvalues to the left 

of the boundary T , p may be increased by the feedback to positive values,r
where again a tradeoff with the required gains must be made.

Besides the real and the complex root boundary there is the third 

possibility of a root leaving the region through infinity. This can be 

avoided by closing the contour in the s-plane by an arc of a circle with large 

radius. Practically this may be a circle corresponding to the design bandwidth. 

This is of particular importance if we need a 40 db/decade "roll off" band

width limitation, e.g. to avoid interaction with unmodeled modes at higher 

frequencies.
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Typical desirable regions for the eigenvalue location in the s- or 

z-plane are connected and have two intersections with the real axis. In this 

case there are two real root boundaries and a (possibly piecewise defined) 

complex root boundary in 0  and X  space.

Equations (65) and (66) show that the mapped boundaries in 0  and X  

space represent the conditions under which the number of eigenvalues inside 

and outside a X-region can change. The boundaries partition the 0  and X  

space into regions, each of them corresponds to a fixed number of eigenvalues 

inside the X region, and it must be decided for which 0  or X  region all eigen

values are inside the X region. For closed contours in the X-plane the X  

region is bounded, since by eq. (32) no can go to infinity. If there are 

several bounded regions, a simple test is to check the eigenvalues for an 

arbitrary K' in the considered X  region. An alternative are Siljak*s "shading 

rules" for the boundaries [49]•

For second and third order systems it is possible to visualize 

regions in X  space graphically. This is done in the following for the unit 

circle, i.e. the stability region of discrete systems in X  space is determined. 

Figure 4.3 shows the regions in the k^-k^-plane for a second order system. The 

two real root boundaries are two infinite straight lines intersecting at B.

Thus B can be obtained by placing one pole at z = -l and one at z = 1. The 

complex root boundary is the straight line AC. A is obtained by placing a 

double pole at z =-1 and C by a double pole at z =1. Thus Fig. 4.3 is completely 

determined by three pole placements
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Figure 4.3. Stability triangle ABC in k^-k^-plane for a 
second order discrete-time system
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kA' = [1 2 1]E—A —

kj = [-1 0 1]E (71)

= [ 1 - 2  1 ]E.

The boundaries partition the k^-k^-plane into five regions with the properties

1) both poles inside the unit circle, 2) one left, one inside, 3) one left, 

one right, 4) one inside, one right, 5) complex outside or both left or both 

right (a distinction between these three cases in region five would require a 

further boundary distinguishing real and complex roots). Usually only the 

stability region 1 is of interest.

Only the stability region will be determined now for third order 

systems. It is shown in Fig. 4.4. The two real root boundaries are the two 

planes in which the triangles ABC and BCD are contained. They intersect along 

the straight line BC. B is obtained by placing two poles at z = -1 and one at 

z = 1, C corresponds to one pole at z = -1 and two at z = 1. For any fixed real 

eigenvalue and the two others moving along the unit circle a straight line is 

obtained. Thus the complex root boundary may be visualized as being generated 

by a moving straight line from a point on AB to a point on CD. It moves as 

the real eigenvalue moves from -1 to +1. A corresponds to a triple eigenvalue 

at z =-1 and D to a triple eigenvalue at z=+l. Thus the vertices of the 

stability region are obtained as

¿ ¿ = [ 1 3 3 1 ]E

^ = [ - 1 - 1 1 1 ]E

¿ ¿ = [ 1 - 1 - 1 1 ]E

3 -3 1 ]E
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Figure 4.4. Stability region ABCD in k^-k^-k^-space for a 
third order discrete-time system;
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Apparently the tetrahedron ABCD is a convex hull for the stability region.

For the &  space Fam and Meditch [38] showed that this property generalizes 

to arbitrary degree n of the characteristic polynomial.

Theo rem 2 (Fam, Meditch): For an n-th order discrete system a convex hull

of the stability region in &  space is a polyhedron whose vertices correspond 

to the n+ 1 polynomials with zeros in the set {-1 , l].

Proof: See [38].

Corollary: If the unit circle is replaced by a circle with center vq and radius

r in the z-plane, which intersects the real axis at v, = v -r and v0 = v +r, 

then the vertices of the convex hull of the corresponding region in •& space 

correspond to the n+1 polynomials with zeros in the set {v^jV^}. This may be 

shown by reducing this problem to the previous one via z' = (z-vQ)/r.

Theorem 3: A necessary condition for all roots of det(z]>A+b k*) = 0, (A,b

controllable) to be inside a circle with real center and real axis inter

sections at z = v^ and z * v^ is that k' is in a polyhedron in X  space, whose 

vertices are obtained by pole placement of the n+ 1 polynomials with zeros in 

the set {v^,v2}.

Proof: Follows from Theorem 2 and the linearity of the map k' =j>*E.

If the circle in z-plane is deformed to a different closed contour 

with the same real axis intersections at v^ and v^, then the certices of the

region in X  space and the two real root boundaries remain unchanged, only the 

hypersurface for the complex root boundary is deformed. It is an open question, 

how far the region in X space can be extended in the X-plane such that k* 

remains in the previously described polyhedron. The inverse problem (given a 

region in Xi which is the corresponding region in the X-plane?) leads to 

sufficient conditions on k' to place all eigenvalues in the resulting region.
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This problem was studied by Marden [52, Theorem 8.2], However, these regions 

in X-plane are not nicely related to desirable dynamic properties. For the 

polyhedron discussed above the region in X-space is the union of two circles 

with complex conjugate centers and real axis intersections at v^ and v^.

Marden showed that this region cannot be reduced. Note that in this direction 

from the n-dimensional ^-boundary to the two-dimensional X.-boundary no necessary 

and sufficient conditions can be obtained for an arbitrary defined X  region.

This problem is overdetermined. Thus it is advisable to assume a region in 

\-plane and to determine the necessary and sufficient conditions on k*.

4,3.2. Mapping to a Subspace of X

Some gains may be fixed to zero, like in output feedback or under 

sensor failures, or to some other values like in Example 4.4. This means that 

we are looking for a solution in a subspace of X • Such a solution may not 

exist; take for example Fig. 4.3 and fix k^ to be bigger than k^(A). Then 

there does not exist a stabilizing k^. The set of admissible solutions may 

also become disconnected, even if it was connected in X  space; take for example 

Fig. 4.4 and fix k^ = c such that the plane k^ = c intersects the two tips of the 

stability region.

Example 4.6; (Disconnected stability regions in a subspace of X)

0 1 0 ~ 0

x(k+l) = 0 0 1 x(k) + 0

_0. 6 -2 2.1_ 1

u(k). (73)

The system is open loop unstable (eigenvalues z^ = 0.5, z^ ^ = 0.8+j*/ 0.56). 

Fix = 0 (output feedback) and find the set of stabilizing gains in the 

k^-k^-plane. The real root boundaries are the straight lines
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for z = 1 k3+ “ki " 0*3

for z = -1 k^_ = -k^ + 5.7

and the complex root boundary is the hyperbola

k3c = kL + 1.5 + l/(k1-0.6).

Figure 4.5 shows the three boundaries and the two disconnected stabilizing 

regions. Its vertices are

kl k3
E -0.4 0.1

F 0.1 -0.4

G 1.1 4.6

H 1.6 4.1

Nonconvex and disconnected solution sets like in this example lead to difficulties 

in numerical algorithms. Sirisena and Choi [53] formulate the problem of 

placing poles in a specified region by output feedback as minimization of a 

function J, which becomes zero, if a solution is found. Their conclusion from 

computational experience is: "If however a local (nonzero) minimum of J is

reached, the algorithm should be restarted with a different initial value of 

the feedback matrix. Repeated failure to reduce J to zero would indicate the 

absence of a solution". If we want to find the set of admissible solutions, a 

systematric or random search in the appropriate subspace may be necessary. In 

order to restrict the search to a promising region, necessary conditions, like 

the one provided in Theorem 3, are very useful. In Example 4.6 this is the 

quadrangle EFHG, more general the polyhedral cross-section of the subspace with
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Figure 4.5. Disconnected stability region in k^-k^ subspace.
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the polyhedron in the n dimensional space. If no such cross-section exists, 

it can be immediately concluded that no solution exists. The example indicates 

that points near the real root boundaries are promising candidates.

For a fourth order system there exist gains, for which two complex 

pairs of eigenvalues cross the boundary simultaneously. Here the complex 

root boundary in X  space intersects itself. If the two crossing points on 

the boundary approach each other and eventually become a crossing of a double 

pole, then the bow in the boundary becomes a cusp.

Example 4.7: (Partial gain fixing) For the crane of Example 4 let mc =1000 kg,
2

i = 10 m, g = 10 m/sec , U = 5000 Newton, L = 10 m. The load mass m^ is unknown. 

Example 2 showed that only k^ =

can be determined. For k^=U/L = 500 and 

k^ = 0  find the region in the ^-k^Q-plane, for which all eigenvalues are left 

of the hyperbola

U)2 = (2a)2 - 1/22 (74)

in the s-plane. Then for the complex root boundary from eq. (66)

qo = 5a2 -0.25, q1 = -2a. (75)

and by eqs. (51) and (52)

qi(l-l/2qo)
r = l/2q , r = ------- ----o o’ l q -lo

(76)

lOOOq
K  = ----- ^(q -i/2q )2c q -1 vno no' o

(77)

30c = 10000(l/2qo -l)[qo-l + q2/(qo-l)] (78)

k3c = k30c + 10 “L-

knowledge of m^ only ^ 0 = ^ - 1010^

kso+m^g depends on the load mass m^. Without
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The nice stability region will be constructed in the k^-k^-plane. The complex 

root boundary k^icr), ^ q C0 )̂ is obtained by substituting values ct^ - 0.25 into 

eq. (75) and qQ and q^ into eqs. (77) and (78). The real root boundary at 

ctr = -0.25 follows from eq. (65) with k ^ =500, k^ = 0 as the straight line

k3R “ k30R + 10 “l * k30R = 95625 **̂ 2 *5 k2* (79)

Both boundaries are shown in Fig. 4.6. For <t = -0.25 the complex root boundary 

starts at point A. With increasing a it goes through point B and for a -*-0.5, 

(i.e. qQ “*l)to infinity. In general this singularity occurs at qQ = g/i. For 

a <-0.5 the complex root boundary returns from the opposite side to intersect 

the real root boundary at C and itself at B.

Note that the characteristic polynomial is obtained by eqs. (75) and 

(76) in factorized form. Thus the determination of the eigenvalues is easy. 

They are given together with the k^ and k ^  coordinates in the following table.

k2 k30 Eigenvalues
A 4233 -84292 s ± 2 =-0.25, s3 4 = -1.867+j2.125

B 2367 -35012 S1 2 = -°-275±j°-231> s3 4 = -0.908+j 1.746

C 2769 -22056 s1 = -0.25, s2 =-1.337, s3 4 = -0.591+j 1.071

At A the real and complex root boundary intersect, i.e. there is a double pole

at s^ 2 = **0.25. At B the complex boundary intersects itself, i.e. here we

have two complex pairs of eigenvalues crossing the boundary simultaneously.

At C a real root at s =-0.25 crosses simultaneously with the complex pair s„ ..0,4-
The shaded region with vertices A, B and C corresponds to eigenvalues to the 

left of the hyperbola in s-plane.
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Figure 4.6. Nice stability region for crane with k^=500, k^=0.
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4.4. Robustness with Respect to Large Parameter Variations

Most existing methods for the design of parameter insensitive control 

systems try to achieve robustness of a system property, like stability, with 

respect to small perturbations of plant parameters in unknown or conveniently 

analyzable directions, e.g. gain or phase variations. Such methods lead to 

conservative results when applied to problems with large perturbations in known 

directions, e.g. for the crane with widely varying load mass or rope length or 

for an aircraft with widely varying altitudes and speeds. Let the plant model 

in sensor coordinates

x = A(6)x + B(0)u (80)

be given for several typical values of the physical parameter vector 0_, i.e.

Aj = A ^ , b^ = b(£j)> j=l,2,..., J. A fixed state feedback k* is sought, such 

that all eigenvalues of (A^-b Jc') are located in a specified region T in X-plane.

For each pair A ^ w e  obtain a different matrix E^, which maps a 

desired region from the canonical parameter space into the corresponding 

region in ?C-space via k' = jd* E y  The set of solutions to the above problem, 

if it exists, is the intersection of all regions in X  space. If no inter

section for all j=l,2,...,J exists, then it can be tested whether at least a 

group of plant models can be nicely stabilized with one gain, and it may be 

necessary to switch to a different gain for a different group of plant models. 

Example 4.8: (Maximum parameter variation, gain scheduling) Let the mass m^

of the crane load be an unknown constant between the weight of the empty hook 

and the maximum load for which the crane is designed. Under the constraints 

of Example 4.7 find the fixed gain controller which accomodates the largest 

load variation.
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The load mass enters only into k^=k^Q + 10 m^. In Fig. 4.6 the 

origin of the k^-axis is identical with k^Q = 0 for 111̂  = 0. With increasing 

load mass the shape of the region of nice stability is unchanged, but it is 

moved upwards by 10 m^ in the k^-k^-plane, or equivalently the origin of the 

k^-axis is moved downwards by 10 m^ in the k^-k^Q-plane. Thus for load varia

tions of cranes it is not necessary to plot the shifted diagrams in order to 

find the intersection. The largest load variation can be accommodated at the 

largest extension of the nice stability region in k^ direction, this is between 

C and D. D has the coordinates k2 =2769, k^Q = -45503 and corresponds to the 

eigenvalues s^ 2 = “0.267+j0.680 and s^ ^ = 1.118+j1.872. Thus k^ is chosen as 

2769. This results in an admissible load variation m^ = (-22056-f45503)/10 

= 2344.7 ss 2345kg. Assuming the weight of the empty hook is 50 kg, then k^=-21556 

puts the eigenvalues for 1̂  = 50 kg at s^ = -0.25, s2 = -1.337, ^ = -0.591+j 1.071,

where s^ and s^ ^ are on the boundary T. For 10^ = 2395 kg the eigenvalues are 

at sx 2 = -0.267+j0.680 and s^ ^ = 1.118+j1.872, where s^ 2 is on the boundary.

In summary: The solution

k' = [500 2769 -21556 0] (81)

gives the following properties of the control system.

a) Initial peak in the force u limited to 500L, where L is 

the required load displacement.

b) No measurement or estimation of the rope angular velocity 

x ^ = 9  reclu:i-red-

c) Under the constraints a) and b) maximum possible load
2 2 2variation. The eigenvalues are left of ou = (2ct) - 1/2 if

and only if 50 kg <m^ <2395 kg.
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Now assume that the crane is designed for a maximum load of 3500kg, i.e. a 

gain scheduling is necessary. The second load range may be chosen as 

1155 kg Cm^ <3500 kg, i.e. k3 = -10506. Then for 50 kg < 11̂  <1155 kg, k3 = -21556 

must be used and for 2395 kg <m^ <3500 kg, k3 = -10506. For the overlapping 

range 1155 kg < 11̂  <2395 kg either gain is good, such that the crane operator 

can switch between high and low load based on his very crude load estimate, 

which may be 135% wrong. This wide overlap provides robustness of the gain 

scheduling scheme.

If the rope length of the crane is varied, the shape of the nice 

stability region in Fig. 4.6 changes and an intersection of various regions 

must be found.

For different values J.. of a physical parameter vector different 

regions T^ in the \-plane may be given and the intersections of the corre

sponding space regions may be found. This is particularly useful, if the 

plant is slow for some parameter values and fast for others like in aircraft 

control. A general recommendation for the design of robust control systems 

with input constraints is: do not try to make a slow plant fast or a fast

plant slow by feedback.

The graphical determination of intersections is limited to two 

parameters at a time. Intersections of three dimensional regions may be made 

visible by computer graphic methods. In situations with more free controller 

parameter the design may proceed iteratively, where in each design step n-2 

feedback gains are fixed and admissible regions in the plane of the remaining 

two feedback gains are determined. The results of Section 4.3.1 on mapping 

circular boundaries give some additional insight, which is useful for a fully 

computerized search for intersections of regions. First it is important to
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note that the nice stability regions are not convex and thus their intersection 

may be disconnected. Consider for example the stability region for a third 

order discrete-time system in Fig. 4.4. Assume that for a different value of 

the parameter vector the stability region is turned around by 180 degrees 

such that the two tips of the stability regions intersect. Then the set of 

solutions is disconnected, even for full state feedback. In this situation 

a search in X  space may be made. Bounds for the search region are given 

by the following.

Theorem 4: A necessary condition for all roots of .TT det(zl-A. +b.k*) =0 to---------  ■/ j=l -j -j-
be on or inside a circle with real axis intersections at z=v^ and z = v^ is, 

that k' is on or inside the intersection of J polyhedra. The vertices of the 

j-th polyhedron are obtained by assigning all (n+1) polynomials 

P(z) = det(zI^-A^+bjk1) with zeros in the set {.v^jV^}.

Proof; Follows from Theorem 3.

The intersection of polyhedra is a polyhedron itself, its vertices 

are promising candidates in the search for points which also meet the sufficient 

conditions. In order to define a rectangular grid for the search it is 

convenient to put each polyhedron into the smallest box with surfaces parallel 

to the axes and to restrict the search to the intersection of the boxes.

4.5. Robustness with Respect to Sensor Failures

Sensor failures are assumed to occur in the form that the sensor 

output is no longer correlated with the measured variable. As far as the 

characteristic equation is concerned, this is equivalent to having a sensor 

output zero. There may be a bias or other noise term introduced by the 

failed sensor. This noise term can be considered as an external input. This
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may require that the failure is detected and the failed sensor is removed

from the control system. Then also the control law may be changed. However,

for this latter decision there should be sufficient time to come to a reliable

decision without false alarms. This requires that after the failure the system

at least remains stable with some stability margin. In other applications it

may suffice to be able to continue the mission after a sensor failure without

removal of the failed sensor, e.g. to drive an automobile safely to a service

station to get a broken sensor replaced, such that optimal fuel economy,

emission control, acceleration, etc. is regained.

The robustness problem is: Consider M failures of a sensor or

combinations of sensors leading to the crippled feedback vectors k',—m
m = 1,2,...,M, in which the appropriate elements of k' are replaced by zero.

Find k* such that all zeros of

M J
TT ,TT det(Xl-A. + b .k*) = 0 (82)m=l j=l ---j —j—m  v *

lie in an "emergency region" rE in X-plane. The emergency specification is 

robust with respect to a failure of sensor i if and only if in ?(-space the 

projection of k 1 into the subspace k^ = 0 is in the intersection of all J 

emergency regions.

Figure 4.7 shows an example of the intersection of emergency and

nominal regions in the k-^-k^-plane. If we choose k ’ at point 1, then the

projection on the k9 axis is inside the emergency boundary, i.e. T is robustz E
with respect to a failure of sensor 1. It is, however, not robust with respect 

to a failure of sensor 2, since the projection on the k^ axis is outside the 

emergency region. Points in the shaded region are robust with respect to 

failure of either sensor. For no k' T is robust with respect to failures of
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Figure 4.7. Robustness with respect to sensor failures.
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sensors 1 and 2, since the origin k-̂  = = 0 lies outside the emergency region.

Point 3 also meets the nominal specification and is a good candidate for a 

robust control system. Since the nominal boundary intersects the k2 axis, 

an alternative to the robust solution 3 is to eliminate the x^ sensor and to 

multiplex the x2 sensor. This would maintain the nominal specifications under 

a failure of one of the x^ sensors. However, it requires failure detection 

with at least three x̂, sensors. For robustness with respect to sensor failures 

a dynamic feedback structure like in eqs. (24) and (25) is more advantageous.

In Chapter 5 and [54], Franklin designs a flight control system with dynamic 

feedback such that emergency conditions are robust with respect to an accelero

meter or a gyro failure in different flight conditions.

4.6. Other Features of ^-Space Design

4,6.1, Input Constraints

Constraints of the type Iu(t) I £U for all t or |u(t) | for all 

t can be indirectly treated in K  space. For the regulator problem

Iu(t) | = Ik'x(t) | £ ||x(t)|| (83)

with equality for the worst case of x(t) (e.g., x = ck for some c^O). Assuming 

that all state variables have been normalized to their maximum value, the 

norm ||k|| =V/k ,k, i.e., the distance from the origin in X  space can be used as 

a measure for IuI. This provides a criterion for the selection of a gain from 

the admissible set: Choose the point closest to the origin. Similarly

iu(t) I = lk'x(t)| = Ik* (A-b k')x(t) I and ||k* (A-b k*) || can be used as a measure

for IuI.
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4.6.2. Short Wordlength Control Law Implementation

The feedback control law may be implemented approximately in a short 

wordlength microprocessor as

u +Au = (k* + Ak') (x +Ax) « k ' x  + Ak'x + k'Ax. (84)

For small x the dominant term in An is k'Ax, i.e. the gains should be not too 

high. For large x the dominant term is Ak'x. Robustness with respect to Ak' 

is achieved by maintaining a distance Ak^ from a boundary in each direction

V
Example 4.9:

0 -4 6/16
x(k+l) = Ax(k) + bu(k), A = b =

_ 1 . -5/16

u = -[k^ + Ak k2 +Ak]

Open loop eigenvalues z^ 2 = 2 .  F ind  Such t h a t  s t a b i l i t y is achieved for

the following cases

a) maximum admissible Ak

b) Ak = 1,

c) failure of sensor 1,

d) failure of sensor 2,

e) iikii-4 2+ k^ minimal.

k* = £*E = [pQ pL 1]
5 6
6 4 
4 -8

The vertices of the stability triangle ABC in the plane of Fig. 4.8 are

determined by the 3 pole placements of eq. (52): lĉ  = [21 6], k^ = [-1 -14],
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Figure 4.8. Design boundaries for example 4.9.
a) maximally Ak robust
b) A'B'C' is robust to Ak = 1
c) robust to failure of sensor 1
d) robust to failure of sensor 2
e) m inimum I lk 'l l  s o lu t io n
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k£-[-3 -10].

a) This is the center of the largest square inside ABC with

sides parallel to the axis. Here k' =[-0.4545 -10.7272],

It admits Ak =1.4545 and places the eigenvalues at z^ = 0.132,

= 0.686.

b) The region for which stability is robust with respect to

Ak = l, is the triangle A'B'C* with sides parallel to those

of ABC, with a distance of the sides of Jl under +45°. Note

that this region does not include the deadbeat solution at 
2k* =e'A =[4 -8]. This is a warning that points with the

maximum distance from the stability boundary in the X-plane 

need not be particularly robust.

c) The region c is robust with respect to a failure of sensor 1.

d) The region d is robust with respect to a failure of sensor 2.

e) Point E with k^ =[48/13 -72/13] has the minimum distance

from the origin. This minimum norm solution puts the eigen

values at s^ 2 = 0.442+j0.897 on the unit circle. For stability 

k^ can be increased or k2 decreased by an arbitrarily small e.

4.7. Multi-Input Problems

4.7.1. Characteristic Parameter Assignment

In the single-input case it was convenient to have the canonical 

parameter space @  as an intermediate step between the X-plane and ?(-space. It 

allowed studying the shape of stability regions without reference to a 

particular plant. By the linearity of k* = jd*E  linear properties in @  space
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were preserved in the X  space. X  and @  space had the same dimension n and 

the mapping was one to one. In the case of p inputs the feedback gain 

matrix K has p x n  free parameters., Thus a p x n  dimensional parameter space 

with the elements of K as coordinates is naturally defined. The question here 

is whether there exists a p x n  dimensional canonical parameter space 9 ,
CL

which is linearly related to X  hut independent of the particular plant. Another 

question is: If it exists, is there a simple relationship with the n-dimensional 

■9 space, in which stability or nice stability is defined as before. The 

answer to both questions is a conditional yes. Some results are available in 

[56], which will be reformulated and used to design simple systems for robust

ness with respect to actuator failures. Before the main result can be formu

lated we have to make some additional assumptions and to introduce some notation.

In the single-input case the implicit assumption was that changes 

in physical parameters do not cause changes in the order n of the system 

(which is true for all cranes, aircraft , and other examples). In the generali

zation to the multivariable case it is assumed here that the controllability 

structure, as defined by the Kronecker indices, is unchanged by physical 

parameter variations. For a controllable system

k  = A x  + Bu,  B = [b^ b2. .  *bp] ( 85)

the Kronecker indices i=l,2,...,p, are the smallest integers k such that 

ri,k = ri-l,k> where

ri,k = rank [2.*! ••• Ak'1B , A \ 1 ... A ^ ]  i-l,2,...,p

ro,k rp,k-l
(86)
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The Kronecker indices satisfy + ̂ 2 + * * * + = n * ^ vector

regular if r^ k = ̂  + ri-l k ’ t̂ie regula^ vectors

is called

b ,A b, “ r l
-  — 1

b ,A b V 1... A Z b2
- 2 3-- 2
•
• M- -1
b ,Ab
“P -- P - p

(87)

oare the first n linear independent columns of [B,AB,A B ... ] . By the defini- 
^ition (86) A b^ is not regular and can be uniquely expressed as

. j j ,. -1 |J,. |Jb

A V = -[B,A B ... A 1 B]a. -[A ... A (88)

where all elements of and _3̂  multiplying nonregular vectors are zero, in 

particular li = [3i l ... 3ii_1] 'has 3 ^ = 0  if M-j M'i- By Popov's theorem on 

invariants [10] the Kronecker indices and the 3-parameters 3^j i=l,2,...,p 

constitute a complete set of independent invariants for (A,B) under all 

transformations

u M_1u (90)

In order to avoid the distinction between a- and 3-parameters in the 

definition of a canonical parameter space , first the 3“parameters areii
made zero by an input transformation, i.e. a modified system

x = A x  + B M u = A x + Bu

is considered with the "normalized input"

u = -Kx+ r

B and K are related to the original variables by

(91)

(92)
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B K =  B K  , B = B M  , K  = m “ 1K (93)

Now the ^-parameters of the pair (A,B) can be made zero by the choice

M

21 pl

' ipp-1

1

4
¿2J

3 
tEi

1
0 1

(94)

This can be shown by putting the last term in eq. (88) on the left hand side

A v 1= -[B, A B  ... A B]^,

Then with B = B M  = [b^ ... b ]—  — 1 —p

A  b. =— — l
P.-l

- [B,AB . .. A  1

A bi = ~ -1 ~ -1 ^i“1 -1-[BM , A B M  ... A B M ]a (95)

P*.
A 1bi = V 1-[B,A B ... A  B]ai#

A  comparison with eq. (88) shows that now the ^-parameters multiplying
M-i~ P'j[~

A b^ ... A b^_^ do not appear in eq. (95).

By Popov's theorem the ^-parameters remain zero under feedback,

i.e. the closed loop system with input _ r = M
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x = (A - B K)x + B r = (A - B K)x+B r = F x + B r (96)

« i~has no p-parameters and F b^ can be expressed as

V  ~ ~ V 1-F bjL = -[B,FB ... F B]£i. (97)

The n elements of p^, i=l,2,...,p, i.e. n x p  parameters will be used in the 

following as coordinates of a canonical parameter space in which desired

closed system properties can be specified without reference to the particular 

plant, with the only condition that the closed loop must have the same 

Kronecker indices u. as the open loop. In the single-input case p. = p, i.e. 

p^ consists of the n coefficients of the desired characteristic polynomial, 

in the multi-input case the n x p  elements of • • • £p will be called charac

teristic parameters. Note that

 ̂ îv ^ ~  Jr/v
[B, A B .. . A Bj = [B, F B  ... F B]

I KB K A B KA B

0 I KB

0 0 I . (98)
•

•
•

•
•

•

0 0 *• I

k~Both sides may be truncated at any column of A B, always the second factor on 

the right hand side is nonsingular and thus F^b^ is regular if and only if 

A^b^ is regular. Due to the particular form of M in eq. (94) the same 

relationship exists between A.kb^ and A.,

[B, A B  ... A] = [B,AB ... A]

M

0

0 0

M

M

(99)
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Thus in eq. (97) the regular vectors are in the same locations as in eq. (96),

i.e. the list of regular vectors is the same as in eq. (87) with A replaced 

by F = A - B K  and b^ replaced by b^. Then eq. (97) may be rewritten as

F
P nl1 M- -1 b,: £ : : f p 6 ] £i2—1 . —2 . . —p •

•

3 p.
( 100)

where p . * [p. . . • • p . . J ’ is a (j,.- vector. Now define the p x n  coefficientij ijo j
matrix

(101)

It generalizes j>* = [p ... p to the multi-input case. The generalization

of p* = [p ... p , 1] is the "characteristic matrix"o n-1

TTi 1 p12 0 ... p -|IP 0

P21
•
•

0 P22
•
•

1 P2p 0
•
•

(102)

0 ■̂ p2 0
£PP

•

1

Now eq. (100) for i=l,2...p may be written

(a p, ja -1
EZ L . F Pbp] = . . .  F 1 b L j b2

Li - 1 ~
, p b ]P* L —p —AA

(103)

which also can be expressed as
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M-, M-
:  b 2 . . .  : : . . . f  p b p ] f * ' =  o .  ( i o 4 >

In the single-input case the characteristic polynomial is obtained from eq.
IcT** 1c(104) by replacing the vector F in eq. (104) by X . In the same way in 

the multi-input case a "characteristic polynomial matrix" is defined as

2k = diag(Y^).^’, X^ = [l X ... X x]. (105)

It is related to the characteristic polynomial of F by

P(X) = det P, (106)

as was shown in [56]. The main advantage over a direct calculation of the

det(Xl-A + B K) with general elements k „  is that eq. (106) does not involve

A and B and is done only once for all systems with the same Kronecker indices.

The multilinear problem of solving eq. (106) for some characteristic coefficient

becomes a linear one if the n coefficients of one row of are expressed in

terms of the jx, i=l,2,...,n and the remaining p x (n-1) free parameters of the

other rows of P^. We are now able to formulate

Theorem 5: A-BK has the characteristic matrix P* if --------- -------

K = M P * E  (107)

where M is given by eq.

E

(94) and

te.-1 — i
• E. = i.• — i
E- P _ • * 1e.A— i—

e^ is the last row of the ^ x n  matrix in

(108)
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R"1 =
Si

i

M- -1
, R = ... A 1 b^ ; b2 • • 

• •

M* -1
A P b ]. ~P

Proof: Follows from [56],

Example 4.10:

5 - 1 2 0 1

IX» II -2 -2 6 x + 1 5

__4 -3 7 1 6

u = A x + B u

Find an output feedback

k n 0 k 1 3
u =

k 2 1 0 k 2 3

if it exists, which places poles at s^ =  - l , s 2 = » 2

maximum k. .3-J

det[bL b2 A b ^  0, i.e. ^  = 2, ^  = 1, 

For M we need the 3 parameter

à b2 = -P2lA b,_ -a1b1 - a2b2

it is

$2i ~ “5 andd M =
1 -5

0 1

The controllability vectors e| and e^ are obtained from

(109)

( 110)

the
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E =

• •

1 --1 “2]'1 =
■

el = 1
1

—2 0

t

-1 1 1 1
fe^A -1 0 1
1 * 2 jê A = -1 -2 5
t

-2 0 -1 1

-2- 6 -1 1

1

-1

The characteristic matrix has the form

It is related to the characteristic polynomial by

2 3p(s) =pQ+p^s + p2 S +s = det p = det

-1

1

= i \  n2 y

* P110 pm 1 P120 0
£a  =

P210 P211 0 P220 1

p110 + pllls+s P120

P210 + P211S 220

Use the coefficients of the second row as free parameters Y = 

6 = ~P211’ and e = ”p220*

Po Yp120“ ep110 

P1 = Ôpl 2 " eplll + p110 

P2 = Plll " e‘

+ s 

P2l0’

(111)

With eq. (107) the output feedback condition results in
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k12 0

k~ „ ■ * 4 % = 022

P110 " P120 2 

e -y = 1.

Substitute into eq. (Ill)

PQ (e-1)Pi2o " e(2 + Pi20^ "2e " P120

P1 = 6pl20 " ePlll + 2 + p 120 = 2 “ eplll+ ̂ 6+1^p120

P2 = Plll"e*

The particular choice P^2 q = 0 *-eaves 6 undetermined and po = -2e, p^=2-ep
2 3p2 = pm “e, and with P(s) = (s+1) (s+2) (s+3) = bflls+6s +s , e =-3, p1]L;L = 3, 

P110 = 2> Y = "4*
The remaining four feedback gains are

kll k13

k21 k23
= r,3]

-1 —
-5 P110"P111 "P110+Plll+5+P120

1 -y+6+6 y-6-e+l

1 -5 -2 6 -52 - 56 6 - 56

_0 1 10+6 -6 10 + 6 -6

6 is chosen as -5.8 in order to minimize max Ik. Then

( 112)

111*
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-23 0 -23

4.2 0 5.8

4.7.2. Robustness of Multivariable Systems

In principle all concepts for the design of robust control systems 

in X space carry over from the single-input to the multi-input case. However, 

the X space now has dimension p x n ,  such that graphical methods in several 

two-dimensional subspaces require many iterations and can become feasible only 

with a good software for graphical displays and interactive design. General 

results, which would give a clearer understanding of the multivariable X  space, 

are presently not available.

Changes of physical parameters can be tackled in the same way as 

in the single-input case. Sensor failures now result in p coefficients of 

one column of K  becoming zero. Actuator failures could not be handled at 

all with the single-input method. Here some insight into the geometry of the 

problem and possible problem formulations can be gained from eq. (107), as 

will be illustrated by 

Example 4.11:

1 1 1 1 u (k)
x(k+l) = x(k) + 1

0 1 1 2 —  _ _U2 (k!

(113)

The state feedback u = K x  may have three configurations 

a) nominal

k l l k 1 2

k 2 1

CMCM
^5



83

b) failure of actuator 1

0 0

11CM
«1

l 21

CMCM

c ) failure of actuator 2

K, = kn kl2
-1

0 0

Find K such that it places a double pole at z=0.4 and the eigenvalues in the 

two failed cases are in the smallest possible circle in the family of circles 

of Fig. 4.1.

In eq. (107) M = 1 and

K = P“E =

P(z) = det
pn  + z

21

--- — ,

PU  1 P12 0

T—1 1CM

2 1

P21 0 p22 1 -1  1

-1  0

' n + 2 'pi2 -pn + i +

-1
-P2i + p22*21 " P22

p12

?22 ^
= z + ( P 11 + P22)z + ( P i1P22 -P12P21)

In case a) P(a) - (z-0.4) — z -0.8z + 0.16. Use ar = -p2^, $ = -p22 as ^ree 

parameters, then p ^  = $-0.8 and p^2 = P(0)/ar, Eliminating a and 3 by k ^  and

k22 gives
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(k2l+2k22 + 1.4)2
kll(k21,k22) = ^ 1  + ̂ 2  + 1 2k2l " 4k22 " 1,6

(114)

kl 2 (k2i» k22^ = "kH ^k2 l ,k22^ " k21 “ 2k22 “ 3#2#

These two equations describe a two dimensional surface in the four dimensional 

X  space. All points on this surface give the desired pole placement.

The failed cases are single-input problems for which a circle in 

z-plane maps into a triangle in the subspaces of the remaining gains. The 

problem can then be described geometrically as follows: For a given circle

radius the two triangles are obtained. Now we are looking for a point in 

the surface (112) which has projections into the k^-k^-plane and the k2l-k22- 

plane, which lie in the respective triangles. To check whether such a solution 

exists we could find the regions in the surface (112), which have such pro

jections, and see whether the two regions overlap. It is more convenient 

however, to use one of the planes, say the k^-k^-plane, where the triangle 

is one of the regions and the other is obtained by reflecting the triangle 

in the k2l-k22-plane at the surface (112) into the k^-k^-plane. If there 

exists an intersection, then the radius of the z-plane circle is reduced until 

the set of admissible solutions shrinks to a point.

We begin with r = 0.5. The two triangles are shown in Fig. 4.9a and 

b. The vertices D,E,F are now mapped by eq. (Ill) into D'jE'jF' in the 

kH “kl2 ",plane« The sides of the figure D'E'F1 are not straight lines, since 

they have been reflected through a curved surface. However, it is easy to 

check that there exists a set of admissible solutions between F' and C, thus r 

may be reduced. Figure 4.9c shows the case r = 0.4, where no solution exists.
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Going to r = 0.41 as shown in Fig. 4.9d then results in the solution

K =
0.278

0.020

0.522

0.190

The following eigenvalue locations are obtained

nominal Zl,2 = 0.4

failure of actuator 1 Zl,2 = 0.8 on circle r_0.41
failure of actuator 2 *1,2 = 0.6 + 0.344j on T q ^

both failures Zl,2 = 1 open loop unstable

4.8. Conclusions

The design of control systems in the parameter space X. of state 

feedback gains has been studied. Conceptually this offers the following 

advantages:

1. Robustness with respect to large parameter variations can 

be achieved. It is possible to design the feedback such as 

to maximize the admissible variations in known directions.

2. Robustness with respect to sensor and actuator failures can 

be achieved. The feedback can be designed such that in the 

considered failure situations at least some emergency specifi 

cations are met or such that the deviation from the nominal 

behavior is minimized.

3. The feedback can be designed such that for the worst case 

initial conditions the maximal required control input

Iu(t)I is minimized and thus saturation can be avoided.
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Figure 4.9. Image of the circle Y .
a) and b) for r = 0.5 in two subspaces
c) r = 0.4
d) r = 0.41
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4. The feedback system can be designed for robustness with 

respect to short wordlength implementation or other 

inaccuracies of the feedback law.

5. Static output feedback or fixing some gains simplifies the 

analysis since it reduces the number of free parameters.

It will of course give less favorable results.

6. Dynamic feedback ¿an be tackled by the same methods. It is 

particularly desirable in situations with sensor failures.

These conceptual advantages are apparent in situations with only two essential 

parameters. Here it is general engineering practice to present and analyze 

results in diagrams, showing boundaries, regions and their overlap, etc. 

However, in most cases the boundary points have to be calculated point by
l

point in more or less involved computations. In this paper desirable dynamic 

properties of control systems are specified in terms of regions in the eigen

value (k) plane. A particularly simple pole placement algorithm is introduced 

and used for mapping boundaries from the X-plane to the X  space. The mapping 

of boundaries point by point becomes very simple. In fact all examples of 

this paper were done by pocket calculator. This makes it promising to develop 

software for computer-aided design with rapidly changing graphical displays 

of boundaries in various subspaces.

Due to the simplicity of the mapping it was possible to obtain a 

few general results on the shape of boundaries and stability regions in 

X  space. For the design of digital control systems a family of circular 

boundaries in the z-plane can be used to characterize desirable dynamic 

properties. Circles have particularly nice mapping properties and the convex
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hull of their image in the X  space is easily determined. For arbitrary order 

systems, it is useful as a necessary condition for the existence of various 

robust solutions. Further research will be necessary to obtain more general 

results on the shape of boundaries, sufficient conditions, etc. also for 

other than circular boundaries in X-plane. The development of good numerical 

algorithms will depend on such insights into the geometry of the solution sets.

It was shown that already in very simple examples this set may be disconnected.

A systematic search inside the convex hull of the X  space region may be 

necessary.

In its present stage the design in X  space is already a useful design 

tool. It may be used for example in conjunction with the root locus method, 

which visualizes the influence of one gain on the eigenvalue location. The 

present method visualizes the influence of two gains on the eigenvalue loca

tions. The use of this tool has been shown in this paper by the example of a 

crane. In Chapter 5, it will be used to design a dynamic controller for the 

short period longitudinal mode of an F4-E aircraft with canards, which is 

unstable in the subsonic flight conditions. A solution using two gyros and 

one accelerometer was found which meets the nominal specifications for the 

unfailed system or after a failure of any single sensor, and also meets the 

emergency specifications after failure of any two sensors, where these properties 

pertain to four very different flight conditions.
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CHAPTER 5

APPLICATION TO THE LONGITUDINAL CONTROL OF A FIGHTER AIRCRAFT

5.1. Introduction

The purpose of this chapter is to apply the parameter or K space 

design procedure described in Chapter 4 to a realistic design problem. The 

system to be considered is a third order model of the longitudinal axis of a 

McDonnell-Douglas F4-E fitted with horizontal canards.

5.2. System Description and Design Objectives

5.2.1. Model formulation

Airframe dynamics. The example chosen to illustrate M-space design 

is control of the longitudinal axis of a fighter aircraft. The complete 

equations of motion describing the dynamics of the airplane are nonlinear 

and too complex to be used in control law development. Standard procedure 

is to linearize these equations about typical flight conditions, and then use 

these linear system representations to design the control system. The 

linearization decouples the dynamical equations into two separate sets of 

equations called the longitudinal, and lateral-directional. Typically a 

separate control system is designed for each set of equations. For fighter 

aircraft two dominant modes describe the longitudinal rigid body motion. One 

of these modes, called the phugoid mode, is usually very slow. It is easily 

controlled by the pilot, and therefore is not included in the control law 

design. The other mode, called the short period mode, is the mode that most 

effects the handling qualities of the aircraft, and is the only airframe 

mode considered in this report.
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The state description of the short period mode depends on the 

individual aircraft and flight condition. The aircraft chosen for this paper 

was a special F4-E fitted with horizontal canards. Figure 5.1 shows the 

F4-E flight envelope and those flight conditions for which linearized 

aerodynamic data are available.

Mach Number

Figure 5.1. Flight envelope and operating points [57J,

a
A complete description of the aircraft including aero data is 

given in [57], One notable feature is that the uncontrolled short period 

mode is unstable for all subsonic flight conditions. Table 5,1a lists the 

uncontrolled short period eigenvalues for each of the four flight

conditions.
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Table 5.1a. Open Loop Short Period Eigenvalues

FC Mach Altitude Open Loop Short Period Eigenvalues

1 .5 5000’ -3.07 1.23

2 .85 5000T -4.90 1.78

3 .9 35000' -1.87 .56

4 1.5 35000’ i 00 1 +
 

C_
l. ■p- .3

Actuators. The two major control surfaces available for control 

of the short period mode are the elevator position (6^) and the canard 

position (6 ); these are shown in Figure 5,2. Simplified models for the 

canard and elevator actuators were used. The actuator state equation used was

<5 = -a6 + a6 (115)com

where 6 is the actuator position, a is the actuator eigenvalue (time constant 

or equivalent bandwidth) and <5com is the commanded actuator position.

Sensors. Typical sensors which are used to control the pitch axis 

are (for definitions see Figure 5.2):

1) Inertial sensors which measure pitch rate (q) and normal 

acceleration (Nz).

2) Air data sensors which measure angle of attack (a) and dynamic 

pressure,

3) Position sensors which measure the elevator and canard positions, 

Only the pitch rate and normal acceleration are assumed to be available 

for feedback. Air data sensors were not used due to their unreliability. 

Position sensors, although reliable, would not be useful without an estimate
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Ve velocity vector 
WE weight 
ae angle of attack 
0E ̂ pitch angle 
q=0E pitch rate
NzEnormal acceleration at sensori*)

Figure 5.2. Aircraft nomenclature.
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of the equilibrium (trim) surface position. This estimation was 

undesirable. A failed sensor will be one which in the output is uncorrelated 

with the input.

System state description. The aero data and equations of motion 

given in [57] were transformed to a state space description resulting in the 

following system representation for the airframe and actuators

—
3.« cl 0 3., a 0 02 3 4
a- a_ a_ q 0 0 66 7 8 + ecom
0 -a 0 6 a 0 6e e e ccomm —

0 0 -a 6 0 ac c c

'Nz' Co c.— 1 2 3 4
_ q _ 0 1 0 0

(116a)

(116b)

where a^-ag and c^-c^ depend on the flight condition and are listed in 

Appendix I.

This two-input representation was reduced to a single input problem

by considering the canard command to be proportional to the elevator command.

A study was done in [57] to determine this proportionality constant, Kc, for

minimum drag flight under a wide range of conditions. That minimum drag

value, K = -.7, was the value used in this paper. There is not much loss of

generality in this assumption of dependent inputs since the ratio of control

surface effectiveness (essentially aQ/a_, since a. and a. are small) betweeno / j 4
the canard and elevator does not change much as flight conditions change.

To study the effect of sensor failures it is easiest to have the 

system equations written in sensor coordinates. Equations (116) were
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transformed to make the normal acceleration a state variable. Transforming 

the system, using K = -. 7, and assuming ac = ae resulted in the following 

system description.

Nz all al2 al3 Nz Y
q =

a21 a22 a23 q + 0

6e 0 0 -a 6e a

with output

(117a)

(117b)

where 6 now represents the effective control position of the elevator and 

canard, and "a" represents the effective bandwidth of both actuators. This 

effective bandwidth was assumed to be 14 rad/sec. Appendix I gives a tabula

tion of the a.., b.. used.ij 1

5.2.2. Design Objectives and Design Specifications

Using normal acceleration and/or pitch rate feedback, the basic 

design objective is to design a continuous time, fixed gain controller which: 

1) meets certain nominal performance requirements at all four flight condi

tions when all sensors are available and 2) meets emergency performance 

requirements after sensor failure. The specific requirements to be met are:

1) the controlled short period eigenvalues must be in the range 

specified by military standards [58],

2) the remaining closed loop eigenvalues resulting from actuator and 

controller dynamics should be in a specified region,
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3) time responses of the so called output to pilot step commands 

should be acceptable in the sense of [57].

The region of allowable short period eigenvalue location is given in [58] 

as a requirement on the range of damping and natural frequency for the short 

period mode. For the short period mode described by

2 2 s + 2ç c o s + q) = osp sp sp (118)

the restricted range of r and 03sp sp

.35 < Ç" sp ~

03 < 0) < 0 3a sp

and for emergency conditions is

under normal operating conditions is

1.3 (119a)

* (H9b)

.15 < çsp (120a)

03 < 0 3c sp (120b)

where 03̂ , 03̂ , and o)̂  depend on flight condition.

Table 5.2 lists the frequency range for each flight condition and

Figure 5.3 shows the region defined by equations (119). Since the short

period damping can be greater than 1, a single real eigenvalue is permitted

outside the circle of radius w, or inside the circle of radius 03 , Asb a
discussed next, the single real eigenvalue region S > 03fe would overlap with 

the permissible region for non-short period eigenvalues and thus make a 

distinction between the two types of eigenvalues impossible. To prevent 

this overlap, the simplified region shown in Figure 5.3 will be used as the 

short period eigenvalue permissible region. Since all real pairs of eigen

values inside the simplified region result in a damping less than 1,3, all 

eigenvalues in the simplified region meet military specifications.



96

Table 5.2. Short Period Frequency Limits

Mach Altitude a) (rad/sec) a u), (rad/sec) b a) (rad/sec) c

.5 5000’ 2.02 7.23 1.53

.85 5000’ 3.50 12.6 2.65

.9 35000’ 2.19 7.86 1.65

1.5 35000’ 3.29 11.8 2.49

Figure 5.3, Allowable short period eigenvalue locations.

As described in [57] this aircraft has several lightly damped 

structural modes which were not modeled in this paper. The control bandwidth 

should be less than the lowest structural frequency, which is 85 rad/sec, so
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the upper limit on all eigenvalues was set at 70 rad/sec, This is a high 

limit, and in the design process an attempt will be made to lower this value. 

The requirements on the non-short period eigenvalues (requirement 2) will be 

that they lie in the region defined by

a), < a) < 70 rad/sec (121)b

with a minimum damping of ,35 (see Figure 5.4). In the emergency situations 

no distinction between eigenvalues will be made. Figure 5.5 shows the 

required region for all eigenvalues under emergency conditions,

Well placed eigenvalues do not guarantee good time responses. 

Requirement 3 will ensure well behaved transient response. The response of 

most interest will be the response. As discussed in [57], C* is a linear 

combination of normal accleration and pitch rate given by

= (Nzp + 12,43q)/Kc* (122)

where Nzp is the normal acceleration at the pilot's location (same as Nz 

for this plane) and the stationary value, Kc*, is used for normalization. The 

C* response to a pilot step command should fall in the region shown in 

Figure 5,6.

5.3, Design Using Static Output Feedback

5.3.1. Robustness with Respect to Changing Flight Conditions

The first design objective will be to design a controller which 

meets the nominal requirements at all flight conditions. We initially assume 

a controller structure using only static, or unfiltered, feedback of the two 

states; normal acceleration, and pitch rate. Figure 5,7 shows the system
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u> =70

Figure

Figure 5.5. Emergency eigenvalue constraint region.
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Figure 5.6, response envelope.

Figure 5.7. Structure with static output feedback.
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structure where equations describing the F4-E dynamics were given in 

Section 5.2, and the pre-filter used to shape the step responses is the 

same as in [57].

Computer programs using the algorithms of Chapter 4 were developed 

to perform the mapping of the eigenvalue constraints given in Section 5.2. 

Boundaries in the k^z, k^ plane were found for each flight condition. A 

typical boundary (for flight condition 2), is shown in Figure 5.8a, For 

gains in the region Rnom2 tlie closed loop eigenvalues will all be in the 

region rnom2 > which is shown in Figure 5.8b, Each section of the K-space 

boundary is described in Figure 5.8b.

The regions Rnomi_Rnom4 were found by mapping the eigenvalue

constraints for each flight condition (fnom2_^noin4  ̂* The intersection of

these regions, R , is shown in Figure 5.9. For any gain chosen in R the ° nom nom
ith flight condition will have closed loop eigenvalues in I\, i=l,2,3,4. 

Therefore, the requirement that the system be robust with respect to changing 

flight condition can be met by using static output feedback. Since Rnom does 

not intersect either axis, no robustness with respect to either sensor failure 

can be achieved by static output feedback.

5.3.2. Selection of a Gain in the Permissible Region

Any gain choice from R would meet the nominal eigenvalue 

requirements. Several alternative methods are available to aid in the 

selection of a specific design point. One method could be analysis of the 

eigenvalue locations corresponding to different points in K-space as described 

in [49]. Every point in the k^ ,  k^ plane represents a set of closed loop 

eigenvalues for each flight condition. Using the mapping algorithms of



101

^Nz
“ 0.30 “ 0.25 “ 0.20  “ 0.15  “ 0.10 “ 0.05  0.00

Figure 5.8a. The region Rnom2
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jœ

For
a'-b'
b'-c' 
c '-d' 
d'-e* 
e'-a'

on
the short period eigenvalues are on 
the short period eigenvalues are on 
the actuator eigenvalue is at d 
a short period eigenvalue is at e 
the actuator eigenvalue is at e

a-h
b-

s-plane

(o)2=3.5 )

(ç 2=.35)

(a2=-70)

(a2=-12.6)
(a2=-12.6)

Figure 5.8b. Region in s-plane and description of K-space boundary.
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le,,
- 0.25  - 0.20  - 0.15  - 0.10  - 0.05  0.00

Figure 5,9. The region Rnom
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Chapter 4 families of constant damping, constant frequency and single real 

root curves may be obtained. Figure 5.10 shows such families for flight 

condition 2.

Another method would be to decrease the allowable eigenvalue regions

and thereby decrease the size of R . Figure 5.11 shows the region
J nom nom

where the high frequency limit has been lowered from 70 to 50 rad/sec, the

minimum damping has been increased to .5, and the minimum short period

frequency has been increased by fifty percent for each flight condition. Any

gain chosen from R^^ would meet these tighter requirements at all four nom
flight conditions.

A further technique is to use gains which will require smaller 

control inputs. In [34] Ackermann shows for systems where the state variables 

have been normalized to their maximum values, the distance from the origin in 

K-space can be used as a measure of the maximum control needed. Where

| u  | = | k Tx  | < I l k IM Ix l l  , ( 1 2 3 )

Even though Nz and q have not been normalized to their maxima, this principle 

can easily be demonstrated. For gains g , g2, g^ of Figure 5,11, the <5̂ and 

C* responses to a step command for flight condition 1 are shown in Figure 5.12, 

As seen from the figure, the control (essentially 6^) is less for the smaller 

gains, as is the control rates.

Using the above methods as guides, point of Figures 5,8-5,10 

was selected as a trial design point. Using these trial gains, the step 

responses shown in Figures 5.13a,b were obtained. The responses are seen 

to be well within the required boundaries for all flight conditions,

Table 5.3 lists the closed loop eigenvalue locations using the gains of point
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Figure 5.10. Constant damping, single real root, and natural frequency 
curves for flight condition 2,
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- 0.25  - 0.20  - 0.15  - 0.10  - 0.05  0.00
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2  —

FC
1

n , ^  I j i— |— i— i— i— |—

c.

FC
2

n -
j /

1 I I i I I i— i—

<$e Crad)

*
Figure 5.13a, and 6^ responses for trial gains Q^.
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Q^. The notation (5 ,0̂ ) refers to the damping and natural frequency of the 

complex pair of eigenvalues. All eigenvalues are well within the limitations 

and point appears to be a good choice for the controller gains.

Table 5.3. Closed Loop Eigenvalues kNz = -,115 k^ = - , 8  (point Q^)

F.C. Mach Altitude Closed Loop Eigenvalues

1 .5 5000’ (.9 4, 4.68) -19.31

2 .85 5000' (.61, 9.18) -37,29

3 .9 35000’ (.79, 4,63) -17,78

4 1.5 35000’ (.5 5, 8.11) -27,04

5.3,3, Robustness with Respect to Sensor Failure

An additional method to help choose a final gain from R wouldr nom
be to consider only those gains which will meet the emergency specifications 

after sensor failure. To determine these gains the emergency eigenvalue 

regions were mapped into the K^, plane for each flight condition. The 

intersection of these four regions, R , is shown in Figure 5,14 along with 

the region R redrawn from Figure 5,9.

For the controller structure of Figure 5,7, failure of either 

sensor results in the corresponding gain going to zero. Since R does not 

intersect either axis, there is no gain choice which is robust with respect 

to failure of either sensor. Additional sensors or dynamic feedback are 

therefore needed to meet the requirement that the system meet the emergency 

eigenvalue requirements after sensor failure.
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For a controller with m identical sensors with summed outputs, a 

sensor failure reduces the total feedback gain by only a fraction ((m-l)/m). 

For the controller structure shown in Figure 5.15 (m=2), any k^z>,k chosen 

from the region R of Figure 5.16 will for all flight conditions:

1) meet the emergency requirements after failure of any single sensor;

2) meet the emergency requirements after the combined failure of an

accelerometer and gyro, and

3) meet the nominal eigenvalue requirements when no sensor has failed.

After an accelerometer failure the Nz feedback is havled. For design point 

Q^, shown again in Figure 5.16, this failure would result in point A.

Similarly a single gyro failure would result in point B. A combined failure

of an accelerometer and a gyro would result in point C,

5.4, Design Using Dynamic Output Feedback

5.4.1. Search for Filters

As shown in Section 5.3, a controller using static output feedback 

requires two sensors to meet the nominal specifications, and four sensors to 

meet the emergency specifications after failure of any single sensor. The use 

of dynamic feedback of the outputs may reduce the minimum number of sensors. 

For example, if an estimate of the normal acceleration was obtained from the 

gyro signal, the accelerometer may no longer be necessary, A preliminary 

problem is to find a candidate dynamic feedback structure.

At first it may seem all that need be done is to use a Luenberger 

observer to construct these estimates. Figure 5.17 shows how an observer 

might be implemented. Now, when the pitch gyro fails, and the dashed branch
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Figure 5.15. Output feedback with m=2.

Figure 5.16, The regions R and R ,
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Figure 5.17, Possible observer structure,

is no longer available, the estimate q still remains, There are two serious 

problems with this method. First, the system dynamics change dramatically 

with flight condition and finding a non-adaptive observer that gives reason

able estimates of q and Nz would be difficult, possibly impossible, to find.

As seen from the data in Appendix I the control effectiveness, essentially the 

open loop gain, changes by a factor of three with changing flight condition, 

and the open loop eigenvalues vary as shown in Table 5,1,

The second undesirable feature is when one sensor fails, the 

observer connected to it still is driven by the control u, Therefore the 

observer still has an effect on the closed loop characteristic equation. Even
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for adaptive observers which closely match the system, this effect would 

complicate the design since the separation principle would no longer hold 

after sensor failure. For these reasons observer structures were not 

considered.

In [48] G. Kreisselmeier discusses the use of inverse filters for 

robust control, which are applicable to minimum phase systems. Figure 5,18 

shows the structure of the controller.

%  = % (S2+ Zj_s + Z0) 
Nq = Kq (S + z2) D = S*+ a9S + *LS + cl,

Figure 5.18, Structure of the inverse filter,

If the filter elements NN and are chosen equal to and N^, the variables 

Nz, q would be estimates of Nz and q. For this case by choosing
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kl k3 '̂ Nz'̂ 2 (124)

k2 = k4 = V 2 (125)

the feedback is the same as that shown in Figure 5,15. Since N^ and change 

with flight condition a non-adaptive controller will not generate true 

estimates of Nz and q, but only signals which hopefully are closely enough 

related to Nz and q in magnitude and phase to help. If as flight condition 

changes, ^ / K q and the roots of N^ and N^ remain close, the inverse filter 

idea may succeed. Table 5,4 lists the critical values.

Table 5.4. Open Loop Zeros and Gain Ratio

Mach Altitude q-Zero Nz-Zeros V k q

.5 5000’ - ,884 -,542+j5,33 ,527

00 m 5000’ -1,57 -,929+j9.12 .536

.9 35000’ - ,637 -,392+j5,67 ,537

1.5 35000’ - .826 - ,481+j8,05 ,577

Averaged values - .98 0,586 j 7.04 ,543

The averaged values were used to construct two filters

A
=

Nz
l,84(s + ,98) 

s2 + 1.172s + 49.9

Nz = s2 + 1.172s + 49.9 
q 1.84(s+ .98)(s + 10)

Filter 1

Filter 2

where the pole at -10 was added to make Filter 2 realizable.
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The poles of Filter 1 are only slightly damped, and do not cancel 

well with the system zeros. When it was tried, highly oscillatory step 

responses resulted and this filter was discarded. When Filter 2 was imple

mented, reasonable step responses resulted using typical gains chosen with the 

aid of the results from subsection 5.3.1. This filter was retained for 

further investigations. The pole at -.98 is weakly controllable since 

essentially it is cancelled with the pitch rate zero. The system eigenvalue 

resulting from this pole will be exempt from the eigenvalue requirements gives 

in Section 5.2. The system time responses will give a measure as to the 

validity of this.

The system of Figure 5.19 was used to study different types of 

dynamic feedback of Nz. Several filters were tried. One that appeared 

promising was

Figure 5.19, Acceleration feedback only.
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/s.
JL = _ s _
Nz s + 15 (126)

As discussed in [59] Nz is a close approximation to a which, if used as a 

feedback signal, can increase the short period damping. For low frequencies 

this filter acts as a differentiator.

Figure 5.20 shows the structure of the controller to be investigated, 

which may be represented in state form as

Nz ail al2 a13 0 0 0 Nz bl
q a21 a22 a23 0 0 0 q 0

_d_ <5c 0 0 -14 0 0 0 6e +
14

dt W1 0 21.79 0 0 -9.9 0 W1 0

W2 0 -5.331 0 1 -10.98 0 W2 0

W3 1 0 0 0 0 -15 W3 0

1 0 0 0 0 0

0 1 0 0 0 0
u i /'-N H* k2 k3 k4> 0 0 0 0 1 0

X .

1 0 0 0 0 -15

u = Ax + bu (127a)

(127b)

5.4.2. Dynamic Feedback of Pitch Rate

To check if the design specifications can be met using only pitch

rate feedback, the system of Figure 5,20 was used with k^ and k^ both zero.

Each nominal (emergency) eigenvalue region was mapped into the k^, k^ plane.

The intersection of the four regions, R (R ), is shown in Figure 5.21.nomq emq
The nominal eigenvalue specifications can be met by choosing any gain set
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Figure 5,20, Structure of controller using dynamic output feedback,

from R . Similarly the emergency specifications can be met by use of any nomq
gains in R ° emq

Gyro failure now corresponds to a simultaneous reduction of k2 and 

k^. For a system using m parallel gyros with identical feedback gains, the 

failure of f gyros reduces both k^ and k^ by a factor (m-f)/m. For m= 2 and 

f=l, any gain in R21 of Figure 5.22 will meet the nominal specifications for 

the unfailed system and also meet the emergency specifications after failure 

of either gyro. Similarly for m=3, f = l  or 2 any gain in R32 will meet the 

nominal specifications without failure and still meet the emergency specifica

tions after any two sensor failures. This is an especially nice result since 

reliability criteria often stipulate that the control system be capable of
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Figure 5.21. The regions R and Remq nomq
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- 2.0 - 1.5 3 - 1.0 - 0.5 0.0
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— 2.Ö
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handling a failure of any two sensors. Specific eigenvalue locations and 

typical C* responses are shown in the last section of this chapter.

5.4.3. Dynamic Feedback of Normal Acceleration

The system of Figure 5.19 was studied using the filter of equation 

(126). The nominal eigenvalue regions were mapped into the Is. 9 plane.

There was no intersection of these regions. Thus, for the controller structure 

of Figure 5.20 the gyro is necessary. The intersection of the emergency 

regions RemNz is shown in Figure 5.23. Any gain chosen from RemNz will meet 

the emergency specifications at all flight conditions,

K, X 1 0

- 0.40 - 0.38  - 0.36 - 0.34  - 0.32 - 0.30
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5.4.4. Dynamic Feedback of Both Outputs

Now the total system of Figure 5.20 will be considered and the

complete regions in K-space will be four dimensional. First the system using

a single gyro and a single accelerometer will be considered.

For the system to be robust with respect to either sensor failure,

k„ and k0 should lie in the region R of Figure 5.24 (partially shown in 2 3 emq
Figure 5.21), and k^, k^ should lie in the region RemNz of Figure 5,23, Since 

graphical representations are limited to two dimensional subspaces of K-space, 

two of the four gains will have to be at least temporarily fixed. As k^ and 

k^ range throughout the region ^em^z the closed loop eigenvalues do not move 

much. It is therefore natural to select k^ and k^ as the gains to be fixed. 

They were fixed as

(kr  k4) = (” .034, -,1) (128)

designated Qg in Figure 5.23. There are two free gains to be determined, kg 

and k^. The four dimensional problem has been reduced to looking in the kg, kg 

plane for a solution.

As before, the nominal eigenvalue boundaries, T are mapped

into the kg, kg plane using the algorithms of Chapter 4, A typical mapping

is shown in Appendix XI, Figure 5.23 shows the intersection of all four

regions, labeled R . For any k„, kQ chosen from R of Figure 5.24 the

nominal eigenvalue requirements will be met at all flight conditions, Since

k,, k, were chosen from R _, of Figure 5,23, the emergency requirements are 17 4 emN z
met after gyro failure. If k0, k0 are also chosen from R the system will2 3 emq
also be robust with respect to accelerometer failure. All gains in the 

region R of Figure 5.24 meet the above requirements for k^ and k^ fixed as in 

equation (128),
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k3

Figure 5.24. The regions R, Rnom, and Remq.
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5.4.5. Dynamic Feedback Design Summary

The eigenvalue requirements for the nominal and emergency conditions 

can be met with one accelerometer and one gyro, or with two gyros. With the 

assumed filter structure the gyro is necessary. Step responses were obtained 

for several robust gain combinations. The gains chosen were based on the 

parameter plane, tightening constraints and minimal control magnitude 

techniques discusses in subsection 5.3.2. The responses behaved as antici

pated with the exception of some responses for flight condition 2. For this 

flight condition the pitch rate zero was the farthest from the "cancelling" 

pole in the Nz filter (see Table 5a). Figure 5.25 shows typical C* responses 

at flight condition 2 using:

1) gains from Chapter 4, k^z = -.115 = -.8,

2) gains Q2 k2> k^ = (-.034, -1,5, -1, -.1),

3) gains (0, -1.5, -1.0) (no accelerometer).

The filter pole at -.98 was exempted from the eigenvalue constraints under the 

assumption that it would have little effect on time response. As seen in 

Figure 5.25 the more acceleration feedback (and less use of Nz), the better 

this assumption is. An accelerometer will therefore be included in the trial 

design point.

To ensure the system is robust with respect to any two sensor 

failures, two gyros will also be included. The gains chosen were those repre

sented above by point Q2 shown in Figures 5.5-5,8, The final configuration 

is shown in Figure 5.26. Figures 5, a,b show the response to pilot step 

commands for the unfailed system. The C* responses are well within the 

required boundaries at all flight conditions. Table 5.5 lists the eigenvalue 

locations for the unfailed system and after all possible combinations of sensor
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'N

Figure 5.25. responses for flight condition 2.

PILOT COMMAND

S + 6

0— * F4-E

Nz

q

-.134 (S + 3.81)
(S + 15)

-1.02 (S + 8 . 37S + 2 0 .46 
(S + . 9 8 ) (S + 10)

Figure 5.26. Final controller configuration.
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0.233

- 3.233
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Figure 5.27a. and 6^ responses for trial gains .
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Nz(g* s)

S

3

o
/

kl “1 I I 1 j ! I ¡ I

q(rad/sec)

Figure 5.27b. Nz and q responses for trial gains Q^.
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Table 5.5. Eigenvalues for System with Gains Q
*
2

Flight No All Sensors One Gyro
Condition Failures Failed Failed

-.89 1.23 -.89
(.64, 4.85) -.98 (.52, 4.29)

1 (.78, 12.9) -10.0 (.89, 9.88)
-27.6 -14.0

-15.0
-31.76

-1.43 1.78 -1.35
(.84, 5.66) -.98 (.94, 6.28)

2 (.66, 15.5) -10.0 (.53, 10.3)
-48.13 -14.0

-15.0
-55.5

-.67 ,56 -.70
(.61, 4.98) -.98 (.49, 4.4)

3 (.79, 12.3) -10.0 (.9, 9.76)
-26.5 -14.0

-15.0
-30,1

-.88 -.98 -.91
(.77, 6.4) (.20, 4.4) (.91, 7.84)

4 (.66, 13.2) -10.0 (.45, ‘8,33)
-37.1 -14.0

-15.0
-42.5
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Table 5.5 (continued)

Flight
Condition

Accel. 
Failed

Accel. and 
Gyro Failed

Two Gyros 
Failed

-.87 -.84 -.98
(.65, 4.38) (.59, 3.07) (.80, 1.77)

1 -15.0 -15.0 -5.78
(.56, 18.1) (.82, 13.7) -10.0

-35.33

-1.62 -1.81 -.98
(.72, 4.62) (.66, 3.83) -3.54

2 -15.0 -15,0 (.27, 6,73)
(.35, 28.3) (.59, 17.8) -10.0

-61.43

-.62 .59 -.98
(.62, 4.46) (.51, 3.23) (.43, 2,34)

3 -15.0 -15.0 -6.44
(.60, 16.9) (.85, 13.2) -10.0

-33.27

-.86 -.89 -.98
(.68, 5.26) (.53, 5.56) (.16, 6.27)

4 -15.0 -15.0 -5.35
(.42, 22.3) (.69, 14.4) -10.0

-46.98

The notation (c,u> ) refers to the damping and natural 
frequency of a comple pair of eigenvalues.
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failure. All eigenvalues, of course, are in the required regions. Figures 

5.28a,b,c show C* responses for all possible sensor failures. In these 

figures the normalizing factor (Kc* of equation (122)) was taken to be the 

value of C* at 3 seconds, which is sufficiently close to the stationary value 

for the closed loop responses and finite for the unstable open loop responses.

5.5. Summary and Conclusions

A fixed gain controller has been designed for the short period mode 

of a F4-E aircraft which is destabilized by horizontal canards. The 

uncontrolled mode is unstable at all subsonic flight conditions and insuf

ficiently damped in supersonic flight. Therefore, the control system is 

necessary at all flight conditions in order to achieve handling qualities as 

specified by the military requirements. The problem of sensor failures is 

usually solved by use of redundant sensors and failure detection. In this 

paper controller schemes not requiring failure detection were studied. The 

control system was designed using graphical techniques based on the K-space 

methods of Chapter 4. The main feature of this graphical design method is the 

ability to determine the effect of two controller parameters on the system 

eigenvalues. First the unfailed system using one gyro and one accelerometer 

was studied. This is a third order system with the two free parameters being 

the two feedback gains. The set of admissible gains was determined for which 

the nominal requirements are met at all flight conditions. No gains from this 

set are robust with respect to either sensor failure. If both sensors are 

paralleled by an identical sensor, the system can be made robust with respect 

to any single sensor failure, corresponding to a fifty percent gain reduction.
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FC
3

0 0

Figure 5.28a.
*

N responses for the unfailed and open loop systems.
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Figure 5,28b.
* responses after failure of one sensor.
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Figure 5.28c.
*

'N responses after failure of two sensors.
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In order to reduce the number of sensors needed to three and to 

achieve robustness for double sensor failures, various dynamic feedback con

figurations were studied. In order to avoid the increased dimensionality of 

a general dynamic feedback configuration, preliminary studies were made to 

find good candidates for two filters, one for each input, such that after 

failure of either sensor there reamin two independent variables for feedback. 

Using the most promising configuration, it turned out that without gyros only 

the emergency specifications could be met. The gains for the accelerometer and 

its filter were thus fixed to guarantee this property. In the plane of the two 

remaining gains for the gyro and its filter, the set of admissible solutions 

for both the nominal and emergency specifications was determined. A solution 

using two paralleled gyros and one accelerometer was found which met the 

nominal specifications with no failure or a failure of any single sensor, and 

met the emergency specifications after failure of any two sensors. These 

robustness properties pertain to all flight conditions.

Like all graphical methods this design technique is very intuitive 

for two dimensional problems, but not as well suited for higher dimensional 

problems, where the dimension here refers to the number of controller para

meters being considered in a particular design step. To make the problem 

tractable, the designer has to break the problem into a series of two dimensional 

problems by fixing the additional parameters. While in this study the proper 

sequence was clear, for higher dimensional problems it will in general be more 

difficult. The multi-input and general dynamic feedback problems are particu

larly difficult because of the increased dimensionality. As seen from the 

results of this Chapter, however, K-space techniques are useful tools in the 

design of control systems.
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CHAPTER 6

AN OPTIMIZATION TECHNIQUE FOR ROBUST CONTROL SYSTEM DESIGN 

6.1. Introduction

This chapter formulates an alternative design technique for the 

control of systems which are subject to large, structured perturbations. The 

problem formulation is the same as that of Chapter 4. It is assumed that a 

finite number of operating points can be used to accurately characterize the 

perturbations. Design objectives and constraints are modeled as constraints 

on the locations of the closed loop eigenvalues in the complex plane. The 

objective is to choose a fixed gain control system which satisfies the 

constraints on the pole locations.

The approach of this chapter is to use a quadratic cost functional 

to represent trade-offs between possible design points. The problem is refor

mulated as an optimization problem over the free parameters of the control 

system. This optimization is then solved using an augmented Lagrangian 

approach.

The outline of this chapter is as follows. In Section 6.2, a precise 

mathematical formulation of the problem is given. Section 6.3 discusses the 

nonlinear programming method which was used to solve the problem. Section 6.4 

derives the gradients which are necessary to solve the problem. In Section

6.5, a second order numerical example is presented. The purpose of presenting 

this example is to discuss some of the problems involved in implementing this 

method. Finally, this approach to controller design is applied to the problem 

considered in Chapter 5 of designing a fixed gain controller for the linearized 

longitudinal flight dynamics of an F4 aircraft. The resulting design is compared 

to the corresponding design of Chapter 5.
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6.2. The Problem and Its Reformulation

The purpose of this section is to present a precise mathematical 

formulation of the problem discussed in the Introduction of this thesis and 

then to reformulate the problem in a form that is computationally easier to 

work with. As mentioned in the previous" section, this chapter deals with the 

problem of using output feedback to control a fixed structure system. The 

design problem is to choose the constant feedback gains which are best with 

respect to some cost function such that the closed loop system satisfies 

certain design specifications. It is assumed that these design specifications 

can be represented most naturally as regions in the complex plane where the 

eigenvalues of the closed loop system must be located. The system is also 

assumed to be linear time invariant.

The precise problem formulation is as follows:
oo

min J = V2E{/ [x^(t)Qx(t)+ u^(t)Ru(t)]dt} (129)
k£S o

subject to

x(t) = Ax(t) + Bu(t); x(tQ) = xq

E{x } = 0; E{x xT} = X o o o o

(130)

X(t) = Cx(t) (131)

u(t) = -Kx(t) (132)

g.a) <0 i = 1,... ,N (133)
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where x(t)e Rn » u(t)G Rm , and y(t)GRP . S is the space of permissible feed

back gains. The expectation of the integral is used so that the cost, J, is 

independent of any particular initial state of the system, but depends instead 

on an average initial condition of all the possible initial states. Q and R 

are nonnegative definite constant matrices chosen so that given some 

predetermined criteria, by minimizing J, one is improving the closed loop 

behavior of the system. For example, if Q is the zero matrix and R is the 

identity, J represents the total energy used to control the system. By 

minimizing J, one is minimizing the total energy used. The functions, g^(A), 

represent constraints on the location of the eigenvalues, _X, of the closed

loop system in the complex plane.

The problem (129)-(133) looks computationally difficult to solve;

however, it can be reformulated as follows:

subject to

where

min J = x/jtr{M(k)P} 
keS

g.(A) <  0 i=l,...,N

S = (k/(A-BKC) is asymptotically stable}

M(k) = Q + CTKTRKC

A(k) = A-BKC

X = E{x(0)xT (0)} o —  —

A(k)P + PAT (k) = -X .—  —  o

(134)

(135)

(136)

(137)

(138)

(139)

(140)

Here P is a constant positive definite matrix; k is a vector comprised of the 

elements of the matrix K; x(0) is the initial state of the system; and A(k) is
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the closed loop system for a given k. Given this formulation, the cost J is 

easily found. To solve for J directly from (129), one would first have to 

calculate x(t) for each k; whereas to solve (134) , one has to solve the Lyapunov 

equation (140) for each k and then perform a few simple matrix operations.

The derivation of (134)-(140) is a direct consequence of the results in [60].

Problem (134)-(140) is a mathematical representation of the problem 

(described in the introduction of this chapter) of choosing constant output 

feedback gains for a linear time invariant system subject to certain design 

criteria which are represented by a cost function and constraints on the 

locations of eigenvalues in the complex plane. The question of how to solve 

the problem (134)-(140) remains. Problem (134)-(140) is a nonlinear constrained 

minimization over a finite dimensional space. The next section will discuss 

methods of solving such a problem.

6.3. Nonlinear Programming Solution Procedure

There are several ways to solve a nonlinear problem of the form 

(134)-(140). As stated previously, the basic problem is

subject to

min J(k) 
kES ~

g.(k) < 0  i=l,...,N

(141)

(142)

where the exact form of the cost function is defined explicitly by equations

(134), (139), and (140) in Section 6.2. Two of the most common

methods of solving a problem of this type are penalty function and Lagrange 

multiplier methods [61]. Each of these methods has certain problems (to be 

described below) which are inherent to the method. However, by using a
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combination of both methods, these problems can be avoided and a better 

approximation to the solution for (141)-(142) can be obtained [62],

In its simplest form the Lagrange multiplier method solves the 

following problem [61]

max V(d) (143)

subject to

d. > 0 i= 1,... ,N (144)l
Nwhere dG R and

N
<̂ (d) = min J(k) + S d.g.(k)

to=s i = l  1  1  -
(145)

This problem is often easier to solve since the nonlinear constraints, g_^(k), 

have been replaced by simple linear ones. The problem (143)-(144) is the dual 

problem of problem (141)-(142). The duality theorem states that as long as 

(d) > -» for some positive d^'s and J(k) < 00 for some kGS, the solution to 

(143)-{144) is less than or equal to the solution to (141)-(142). When the 

solution to ( 143)-(144) is strictly less than the solution to (141)-(142), a 

duality gap exists [61], For convex functions with convex constraints, this 

difficulty does not occur. The solution to (143)-(144) is also the solution 

for (141)-(142).v However, for a general function, J (k) , a duality gap may 

exist so that the solution to ( 143)-(144) is a lower bound on the solution to 

(141)-(142), rather than the minimum [61].

On the other hand, exterior penalty functions solve the problem

[15]:

min J (k) + cH(k) (146)
kGsi

where c is some positive constant, is the region in Rm where all the
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constraints, (142), are satisfied, and H(k) is a functional with these

properties :

H(k) > 0 for all ke Rm (147)

H(k) is continuous (148)

H(k) = 0 <=> k€ . (149)

As long as k€ H(k) = 0, so problems (141)-(142) and (146) are identical. 

When k is outside the function J(k) + cH(k) is large. As c becomes large, 

the minimum of J(k)+ cH(k) approaches S . The most common penalty function

For this function, the value of H(k) is the sum of the squares of the 

distances by which each constraint is violated, so the penalty term increases 

rapidly when the distance k is outside S^. The advantage of this method is 

that problem (146) is an unconstrained minimization problem which is often 

easier to solve than problem (141)-(142) . The disadvantage of this approach 

is that to obtain a good approximation to problem (141)-(142), c must become 

large. However, as c approaches infinity, the matrix of second partial 

derivatives of J(k)+cH(k) (the Hessian) becomes increasingly ill 

conditioned. Many algorithms for unconstrained minimization depend on 

either the Hessian or an approximation of the Hessian to find the minimum.

If the Hessian is ill-conditioned, these algorithms will converge very slowly

is

i=l
(150)

[61].

By combining penalty function methods with Lagrange multiplier

methods, one can eliminate the duality gap and use a smaller value of c, thus
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improving the conditioning of the Hessian at the solution [62]. Using the 

penalty function H(k), in (150), consider the problem:

min J(k) + cH(k) (151)
k€S

subject to

g (k) <0 i = 1,.. . ,N. (152)

Given the properties of H(k), problem (151)-(152) is equivalent to (141)-(142). 

The dual of problem (151)-(152) is

subject to

where

max gQ(d)

d. >  0 i = 1,, . . ,Nl

g (d_) = inf{J(k) + cH(k) +
c kes

N
E d g (k)}. 1=1 1 1

(153)

(154)

(155)

Theorem 1 : There exists a ce R with 0 < c < 00 such that the solution to problem

(153) -(154) is also the solution to problem (151)-(152).

Proof : See Bertsekas [63].

Theorem 1 implies there is no duality gap for problems (151)-(152) and (153)-

(154) . Moreover, since the value of c needed to solve this problem exactly 

is finite, the structure of the Hessian is more favorable for solving the 

problem.

Bertsekas [64] discusses a variation of problems (151)-(152) and 

(153)-(159) and suggests a very straightforward way to solve the maximization 

over d.. He suggests solving the problem

max gc(jp (156)



143

subject to

d. >  0 i = 1,...,N (157)l
where

g(d,k) =» in£{J(k)+^r S {max[0,d. + c ' g. (k) ] }2-d2]}. (158)
kSS 1=1 1 1  1

For the case where the ith constraint is violated, the corresponding term in 

the summation is

digi(k) + c’/2 g?(k) (159)

which is identical to the corresponding term in (155) for c = c f/2 and H(k) as 

defined in (150). For the case where the ith constraint is satisfied, but

d. + c ’g.(k) > 0 (160)l l —

equation (159) also applies; and, when

d± + c’gi (k) < 0  (161)

the corresponding term in the summation is

1 H2 (162)2c’ i

Bertsekas has shown that the solution to (156)-(157) is equivalent to that of 

problem (141)-(147) for all values of c ’ greater than some lower bound c (c 

exists and is finite).

One can solve the problem (156)-(157) iteratively, viewing the 

iteration over d as a fixed stepsize gradient problem [64]. The partial

of gc(d>k) with respect to d^ is 

3g (d,k)
= max[-d/c’, g. (k)] i = l,...,N. od. 1 1 —

(163)
l

Hence the gradient of gc(d.»k) with respect to c[ is the vector of these 

partials. The appropriate update of d.j+^ is
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dJ+1 = ¿j + c fVgc (d,k). (164)

For J(k) and g_̂ (k) convex, Bertsekas has shown that his method has demon

strated global convergence for a wide range of step sizes. The main advan

tages of using this method is that it combines the advantages of both penalty 

function and Lagrange multiplier methods and that the iterative method to 

solve the maximization over d. is very simple.

There remains the problem of solving the minimization over k for a 

fixed d_. This problem can be solved using a variable metric algorithm [65]. At 

each iteration of the routine the user must supply the value of the function 

to be minimized and its gradient. From this information, the routine builds 

up an approximation to the inverse Hessian which improves as the routine 

gathers information from more points.

To solve for gc (d,k) in (158) at each iteration, one must solve 

for J(k) and g^k), i = l,...,N. For problem (134)-(140) from Section 2, J(k) 

can be solved using (134) and (140). The constraints g^(^(k)) are chosen by 

the designer and thus are also readily available. The gradients are also

needed at each iteration. Taking the partials of g (d,k) in (158) withc ---
respect to k,

3g (d,k) 3J(k) 3g.00
— iir----- Sk~ + max[0’ di+c/8i ® ]  i k —  • (165)

i i 1

Thus to solve problem (155), the gradient of the constraints and of the cost 

with respect to 1c must be provided. Section 6.4 discusses the computations 

required to solve for V^J(k) and V^g(k).
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6.4. Cost and Constraint Gradient Calculations

As described in Section 3 our approach to the solution of problem (134)-

(140) is to solve the equivalent problem (156)-(158) iteratively. To solve

the minimization over k, for a fixed d_, the gradient of J(k) with respect to

k and the gradient of gi(A_(k)) with respect to k must be computed. Using

linear operator theory, one can derive a fairly simple expression for the

gradient of J(k). Using eigenvalue sensitivity theory, one can derive an

expression for the gradients of the constraints with respect to k [66].

The gradient of J (k) with respect to K is as follows:

Theorem 2: VT7J(k) = (RKCP-BTEP) CT' K

where P and E are solutions of

ATE + EA + M(k) = 0 

AP + PAT + X = 0
(166)

o

and A and M(k) are defined in (138) and (137) respectively.

Proof: Follows directly from [60].

V J(k) is found by rearranging V J(k) (k is a vector of the elements of the k K
matrix K).

To compute the gradient of the constraints with respect to k, 

one must compute the gradient of the eigenvalues with respect to k. After 

finding the latter, one can use the rules of implicit differentiation to 

find the former. Consider equation (167).

w^(A-AI)v = 0 (167)

Twhere w is the left eigenvector of A and v is the right eigenvector
Tcorresponding to eigenvalue A. Since w and v are the eigenvectors of A, 

(167) is true. When the Frechet differential of a function F(k) exists, it 

is given by [67 ] :
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A 85F(k,Ak) = ^  F(k+£Ak)|£=C). (168)

The Frechet differential (168) can also be written in terms of an inner 

product as

where

SF(k,Ak) = <V F(k) ,Ak)

<VF(k),Ak> = tr{VF (k)Ak>.

(169)

(170)

Take the Frechet differential of both sides of (167)

6w^(A-AI)v + w^(A-AI)6v + w^(6A-6AI)v = 0. (171)

Again since w and v are eigenvectors, the first two terms are identically 

zero, thus

T T -w 6Av = w 5Av.

Since 6A is a scalar,

6Aw^v = w^6Av.

(172)

(173)

Since w v is also scalar

5A =
w T 6 A v

T
W V

(174)

T TNotice, however, that if w v= 0, equation (174) will not hold. If w v=0,
Tthen the left eigenvector, w , is perpendicular to the right eigenvector, v. 

This only happens when A has a Jordan block of dimension greater than one. 

Continuing, from definition (138) and (169)

SA(K,AK) = A(K+ eAK) | n d£ '£=U

—  [A-B(K+ £AK)C ] I n 
o £ £—U

= -BAKC. (175)
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Using definition (169)

6XCEC ,/!K) =< VX(k ), AK>

= tr{VAT (K)AK> (176)

Substituting (175) and (176) in (174):

rr WT ( -B A K C )v
tr{VA (k )Ak > = T

W V

= tr{-
w t (b a k )c z

T
W V

-}

TCv w B
- tr{- [ .] AK}.

w v
(177)

Since (177) must hold for an arbitrary AK,

V A1 (K ) = -
T i Cv w B

Tw v
or

VX(K) = -
T T Tb W c

Tw v

(178)

(179)

V, \(k) is fotmd by rearranging V A(K) (k is a vector comprised of the elements k--- k—*
of K).

Define A. in terms of two real variables, a. and to..l i i

Then

A . = a . + ju)..l l J l

3a. 3A.
—  = Reali— ) 

l l
3co. 3 A .
i l T  = I® agi“ a r y ( - ^ ) .

i 1

(180)

(181)

(182)

The constraint functions g^(A) from equation (135) are considered functions 

of the two real variables, a and u>. For the purposes of problem (134)-(140) 

each constraint will be a function of only one eigenvalue. If all the



148

eigenvalues must lie inside a particular boundary, then n of the constraints 

will be the equation for the boundary (one for each eigenvalue). Given this 

situation,

3k f  \ 9o j / \ 9k /

Since the regions in the complex plane are chosen by the designer, it will 

be assumed that the regions are chosen so that the partials with respect to 

a and oj exist. For the same reason, the functions g (a,oj) are known explicitly, 

and thus, so are the partials. Thus using equations (179)-(183), the gradient 

of the constraints with respect to the feedback gains, k, can be calculated.

In summary, both the gradients of the constraints with respect to 

k and the gradient of the cost J(k), as well as the values of the constraints 

and the cost, can be calculated given a point k. Using this information, one 

can find the solution to (134)-(140) by solving the equivalent problem (153)-(155) 

as described in Section 6.3. The next section will discuss some of the specific 

details and problems involved in implementing this method to solve the 

reformulated problem (134)-(140).

6.5. Second Order Example

The purpose of the numerical example of this section is to demon

strate how well the method developed in Section 6.2 to solve problem (129)-(134)

works on a simple second order example. The problem is as follows:
00

min J = V2 / u (t)u(t) dt (184)
kSS o

9gi(^i.Wj)
3oj .
J

(183)

subject to
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x(t) = Ax(t) + Bu(t) (185)

u (t) = -[k^ k2]x(t) (186)

S = (k/(A-Bk) is asymptotically stable} (187)

"-1 5] ~0"
A = B = (188)

.-5 -1J [1.

gi(a,o)) < 0 i=l,4 (189)

where a and go are the real and imaginary parts of the eigenvalues of the 

closed loop system. The constraints are (see Figure 6.1):

g1(cj,uj) = to -  2 . 6 a (190)

g 2 ( t f > u ) =  go +  2 . 6 a (191)

g3(cr,co) = 4.0804- a 2 - go2 (192)

g 4 ( c r , a > ) = a2 + go2  - 53.1441. (193)

Each of these four equations must be satisfied for both eigenvalues so there 

are actually eight constraints.

Examining a second order system with a single input is particularly 

convenient for demonstrating the behavior of this algorithm. First, for a

second order system one can derive explicit equations relating the feedback 

gains to the eigenvalues of the closed loop system. Second, equations

mapping the boundaries in the complex plane to boundaries in k-space (the 

space of feedback gains) can be obtained using the mapping method described in 

Chapter 4. For this second order system and reasonable boundaries, like those 

given in (190)-(193), the boundaries in k-space are not too complex (Figure 6,2), 

Since the minimization is actually over k in the k-plane, Figure 6.2 shows 

exactly what the constraints are in this space.



I

Figure 6.1. Second order example: constraint region in the complex plane.
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Figure 6.2. Second order example: constraint region in the K-nlane
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The closed loop characteristic equation for this system is

A2 + (2 + k2)A + (26 + 5k + k 2) = 0. (194)

Applying the quadratic formula to (194) yields

X1,X2 = -a+-5k2) ± .5(k2- 20^- 100) 2 . (195)

Taking the partials of A^ and A2with respect to k^ and k2,

1.2 = + 10 (k2 - 20kx - 100) '2 (196)

(197)

From (196) and (197), one can see that these partials have discontinuities 

precisely at the boundary where the closed loop system poles change from a 

complex pair to two real poles or vice versa. Not only are these partials 

discontinuous at this boundary, their magnitude approaches infinity as the 

poles approach this boundary. The equation of this boundary in k-space is

which corresponds to boundary 9 in Figure 6.2.

The other boundaries in Figure 6.2 correspond to the boundaries in 

the complex plane (Figure 6.1) as follows: the large circle (Figure 6.1) maps

into the triangle formed by 1, 2, and 3 (Figure 6.2), the small circle maps 

into the triangle formed by 4, 5, and 6,Jthe two lines into boundaries 7 and 

8. The region enclosed by the solid line in Figure 6.2 is the region in the 

k-plane where all the constraints (190)-(193) are satisfied. The reason for 

choosing these boundaries in the complex plane is that such boundaries do 

occur in real problems (e.g., the aircraft example in the next section) as

k2 - 20k - 100 = 0 (198)
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constraints on the locations of closed loop system poles. A nice feature of 

using circles for boundaries in the complex plane is that for second order 

systems circles map into triangles in the k-plane. Hence some of the 

boundaries in the k-plane are straight lines (Chapter 4).

The problem (184)-(189)is to find the minimum energy control subject 

to the indicated constraints. Since system (185) is stable, the minimum 

energy control without constraints corresponds to zero gain. With the feed

back gains set to zero, the poles of (185) are

XV X2 = " l - j5, (199)

With the given constraints (Figure 6.1) , the minimum energy feedback gains were 

found to be

k = [-.273 +1.68] (200)

which places the closed loop poles at

A-,A. = -1.84 + j 4.788. (201)1 2  -

This answer makes sense. From Figure 6.2, one can see that this 

point k (points b) is approximately the point inside the constraint region 

closest to the origin. From Figure 6.1, one can see that the closed loop 

eigenvalues (points a) are about as close to the open loop eigenvalues 

(points b) as possible given the constraints. The algorithm converged to 

the minimum k (200) for a wide range of initial guesses for k. Initial 

guesses for k which placed the closed loop poles outside the large circle 

and to the left of boundary 1 were the only ones for which the algorithm did 

not converge to the value of k given in (200).

The region in the complex plane for which the algorithm did not 

converge corresponds to the area in the k-plane (Figure 6.2) to the right of
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line 1 and just below curve 9. The fact that the algorithm could not converge 

from these points can be explained by the discontinuities in the partials of 

the eigenvalues with respect to k mentioned in (196)-(198). Consider point c 

(Figure 6.2) as a typical point in this region. It corresponds to a complex 

pole pair outside the large circle in Figure 6.1. Line 1 in the k-plane 

represents the boundary for a complex pole pair crossing this circle; thus, 

the negative of the gradient in the k-plane for these points points towards 

line 1 and nearly perpendicular to it. Moving in this direction should 

reduce the cost function (158). However notice that from point c, for 

example, movement in this direction will lead to guesses for k which fall 

above or on curve 9. A point on curve 9 corresponds to a double real root 

for which the partials of the eigenvalues with respect to k are infinite.

This will obviously cause problems. Notice also that for two real poles, 

the direction of decreasing cost is determined by boundary 2; whereas, for a 

complex pair,the direction of decreasing cost is determined by line 1. For all 

these points -points for which the routine would not converge to (200) - the 

minimization routine found points which approached boundary 9. However, the 

algorithm was not able to move across or along the boundary. In summary, 

the derivatives of the constraints with respect to the feedback gains are 

not continuous. This fact can lead to convergence problems. However, one 

can avoid these problems by choosing a better initial guess for k (and 

lower values for c).

This example was also used to study the behavior of the algorithm 

with respect to changes in the constant c' in (158). As discussed in the 

section on nonlinear programming, for a very large value of c’, the minimi-
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zation over k converges to a solution which is close to the solution to the

actual problem, in this case (184)-(189). For a smaller c ’, each iteration

over k stops farther from the real solution than with a larger c', but the

iterations over d. lead more quickly to the true solution of the problem. For

this problem, c f equal to 2000 seemed to work best. The minimization over k

led to a solution which was very close to the final solution of the algorithm.

The iterations over d_ merely served to bring the point a bit closer to the
-7 -3boundaries (within 10 , instead of 10 ). This was true even for smaller

values of c?, 20 and 200. The smaller values of c ’ led to more iterations 

over d., but fewer over k at each substep. For c’ equal to 2, the first 

iteration over k did converge to a solution which was different from the 

solution with c’ equal to 2000. However the iterations over d. led to the 

same final solution as with c ’ equal to 2000. In terms of total function 

evaluations, c ? equal to 2000 was the most efficient; moreover, the solutions 

for smaller values of cf were not significantly different from those with c’ 

equal to 2000.

To summarize the results for this example, this algorithm works 

provided a good initial guess for k and a reasonable value of c’ are used. 

Provided these two conditions are satisfied, the minimum energy feedback gains

for problem (184)-(189) are

k = [-.273 +1.68]. (202)

This gain places the closed loop system poles at

X1 ,X2 = ~1 *84 - J4 -788* (203)

The next two sections will present a more complex example and discuss some

results for that example.
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6.6. F-4E Example

The problem studied in this example is the same as that of Chapter 5, 

The system is a linearized model of the longitudinal motion of the F-4E 

Phantom. The model equations and design criteria are summarized here for 

clarity.

The system equations are:

Nz all a12 a13 Nz bi
d
dt q = i—i CM

oj

a22 a23 q + 0

6 0 0 -a 6 ae e
-

(204)

1 0 0
— —
Nz

y(t) = 0 1 0 q (205)

0 0 1 6
-

e

u(t) = - ky (t) . (206)

The actuator bandwidth, a was assumed to be 14 rad/s. The values a., and b„ij 1
are different for each flight condition and are given in Appendix I. The matrix 

k is to be determined.

One design problem for this airplane was to choose k such that the 

closed loop eigenvalues for each flight condition are in certain regions in 

the complex plane (Figure 6.3). Ideally one would like to find one set of 

gains which worked for all four flight conditions. The constraints on the 

short period eigenvalues are given by restrictions on the damping and the 

natural frequency of the short period mode. The characteristic equation for

these eigenvalues is
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Figure 6.3. Aircraft example: constraint region in the complex plane
under normal operating conditions.
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A^ + 2£ co A + (jô  * 0 sp sp sp

where £gp is the damping and is the natural frequency, 

operating conditions (i.e., no sensor failures), and 03gp 

to satisfy

(207)

Under normal 

are required

.35 < C < 1.3 (208)sp

Wa <  Wb (209)

where oô  and cô  depend on the flight condition (see Table 6.1). For the case

when one of the sensors fail, £ and w must satisfysp sp

.15 < Ç (210)sp

ai <  a) (211)C sp

where depends on the flight condition (Table 6.1). For the emergency 

situation, the actuator pole is also required to satisfy (210)-(211). For 

nonemergency situation, the actuator pole (A ) is required to satisfy
cL

the

wb < Aa < 70 rad/s. (212)

These regions in the complex plane are shown in Figures 6.3 and 6.4.

For this chapter, an additional design criterion was added. The 

feedback gains were to be chosen such that the minimum total control energy 

is used given the constraints on the locations of the closed-loop poles

described above. The appropriate cost function to minimize is
0°

min J = / u (t)u(t)dt (213)
kES o

where S is the set of feedback gains for which the closed loop system (204)- 

(206) is asymptotically stable. Taken together with appropriate equations 

for the constraints in Figures 6.3 and 64, equations (204)-(206) and (213) repre-



159

Figure 6.4, Constraint region in the complex plane: emergency conditions.
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sent a problem of the form (129)-(134) in Section 6.2. Thus the method of solution 

developed in the previous sections of this report can be applied. The 

results for this example are discussed in the next section.

Table 6.1. Frequency limits which determine boundaries 
in Figures 4 and 5

Flight
Condition #1

Flight
Condition #2

Flight
Condition #3

Flight
Condition #4

a) (rad/s) a 2.02 3.50 2.19 3.29

ul (rad/s)
D

7.23 12.6 7.86 11.8

co (rad/s) c 1.53 2.65 1.65- 2.49

6,7, Results and Discussion for Airplane Example

The design problem for the F4-E airplane is to find 

one set of constant feedback gains for ■ which the closed

loop system poles are in the appropriate region in the complex plane for each 

one of the four flight conditions under normal operating conditions. After 

finding such a solution, the next problem is to look for a set of gains that 

satisfies the above criteria and also is robust with respect to sensor 

failures.

First, each flight condition was studied separately to see if a 

fixed gain controller could be found to satisfy the constraints under normal 

operating conditions. As mentioned in Section 6.5, a good initial guess for
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the feedback gains is important for the algorithm to converge properly.

Since the problem is to find the constrained minimum for J in (213), 

one sensible starting point is the set of gains which correspond to the 

unconstrained minimum of J. One can find these gains simply enough by 

solving a Riccati equation for each set of system matrices [68]. These gains 

were used, and gains for a fixed gain controller were found for each flight 

condition. The next step was to find one set of gains which would work for 

all four flight conditions.

Such a set of gains was found both for the case when all three 

states (204) were available and for the case when only the first two were 

available. Chapter 5 considered the latter case. Rather than looking

for a particular set of gains , the procedure used was to map the 

constraints from the complex plane (Figure 6.3) into the space of feedback 

gains. The entire region of possible gains which satisfy the constraints 

(Figure 6.5) was found. Using the method described in this thesis, the 

minimum energy k using only two gains was found to be (see Table 6,2)

k = [-2.8281124x 10'2 -2.0652172xlo”1]. (214)

This point is marked in Figure 6.5 and is near the boundary of the enclosed 

region found by Franklin, at the point approximately nearest the origin.

Thus the results presented in this thesis are consistent with Franklin's.

For the case with three feedback gains, the minimum energy _k was found to be 

(see Table 6.5)

k = [-3 .8 4 9 8 26 9xio"2 -2.7574095x10“1 3.3295187x10_1] (215)

An important measure of system performance is the C* response discussed 

The C* is a linear combination of the normal accelerationin Chapter .5.
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Table 6.2. Minimum energy feedback gains: normal operating
condition solution (2 gains)

k- [-2.8281124x10 2 -2.0652172x10 1]

Flight 
Condition # Closed Loop Eigenvalues

1 -2.0483019, -2.0200008, -14.537826

2 -3.1624007 + j 5.2143045 , -18.493321

3 -1.589176+jl.7992842, -14.547498

4 -2.1992634 + j 5.8851873, -16.308839

Table 6.3. Minimum energy feedback gains: normal operating
condition solution (3 gains)

k = [-3.8498269X10“2 -2.7574095xl0_1 3.3295187xl0_1]

Flight 
Condition # Closed Loop Eigenvalues

1 -2.0194637+j3.3183791xl0"9, -20.227559

2 -3.3792113 + j 5.0261318, -25.502133

3 -1.5977817+jl.7690526, -20.060981

4 -2.2968881 + j5.7580029, -22.569046
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Figure 6.5. Region of possible gains which satisfy the constraints under 
normal operating conditions for all four flight conditions.
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and the pitch rate of the plane, given by

C* = (N +12.43q)/k* (216)N z c

where k is the stationary value of C* and is used for normalization. The c N
C* response to a step input should fall in the region shown in Figure 6.6.

Figure 6.7 shows this response for each of the four flight conditions. The 

first column consists of the responses for the design presented in this 

section with k as given in equation (215). Comparing these responses with 

Figure 6.6, one can see that they do lie within the required region. The 

second column contains the C* responses for the following gain matrix

k = [-.115 -.8] (217)

which is the design used in Chapter 5. These C* time responses appear to be 

faster and to satisfy the requirement given by Figure 6.6 better than those 

presented in this section. This is not surprising; the gains (217) were

chosen on the basis of the C* criterion. The criterion used to choose the 

gains for this thesis was the minimization of the control energy. Thus, 

slower C* responses should be expected.

More specifically, the design criterion used to choose the gains in 

equation (215) was the minimization of the control energy required to bring the 

system back to equilibrium from a disturbance. Figure 6.8 shows u(t) for each 

of the four flight conditions (the first column contains the ones for this 

section; the second for those of Chapter 4). From these figures, one can see that 

the controls for this section are considerably smaller than the controls which 

result from Chapter 5. However, the system is stabilized faster (but at the 

expense of actuator control) for the gain (217).



Time (seconds) FP-6712

C*N response envelope.Figure 6.6.
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Chapter 6, . Chapter 5

* responses of two designs.Figure 6.7.
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Chapter 6 Chapter 5

FP-6714

Figure 6.8. Control inputs for two designs.
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The feedback gains of Chapter 5 were chosen by looking at the time 

responses for several points and picking the best one. For this section, the 

gains (215) were chosen by using a cost function which represented the 

minimum energy control. By changing the cost function or the constraint 

boundaries in the complex plane, one could easily incorporate the C* response 

criterion into the design. One could also choose the cost and the boundaries 

so that the solution would be a compromise between the minimum energy control 

and a fast response. Moreover, the results from this design indicate where 

trade-offs can be made and how to make them. In short, using a cost function 

to choose a set of feedback gains may provide more insight than trial and 

error alone.

Chapter S1 also mapped the emergency regions in the complex

plane (Figure 6.4) into the gain space for the case with only two feedback 

gains. Unfortunately, the region for which all the constraints for both the 

normal and the emergency situations are satisfied does not intersect either 

axis in the gain space. For the problem with only the first two states 

available for feedback, this means no set of gains satisfying the*constraints 

is robust with respect to the failure of either sensor.

In light of the results of Chapter 5, the problem of a robust controller 

was considered for the case with three feedback gains. For flight condition 4, 

a fixed gain using only the first two states was found which satisfied all 

the constraints and was robust with respect to either the first, the second, 

or both sensors failing. Adding the third gain set equal to zero, yields a 

set of three gains which is completely robust. However, this result is not 

surprising since the open loop poles for flight condition 4 

already satisfy the emergency specifications . For
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the other three flight conditions considered individually, no gains could be 

found which were robust with respect to the first sensor failing. Thus none 

could be found for all the flight conditions taken together. When considered 

individually, a set of gains which is robust with respect to the failure of 

the second sensor was found for each flight condition. A set of gains which 

is robust with respect to the second sensor failing was also found when the 

first three flight conditions were considered together (see Table 6,4). 

Unfortunately, when all four flight conditions were considered, no common 

solution which was robust with respect to the second sensor could be found.

A solution which is robust with respect to the third sensor failing is just 

the solution given in Table 6.2 with a third gain equal to zero added. These 

results seem to indicate that a fixed gain controller is not adequate to 

satisfy the robustness requirements for this example.

While studying this example, some of the problems in implementing 

the algorithm for the second order example in Section 6.5 were also problems 

for this example. First, the gradient of the cost with respect to the 

feedback gains is discontinuous at a double real pole (see Section 6.4). For 

the minimum energy gains in Table 6.2, the eigenvalues of the first flight 

condition seem to be converging to a double real pole on the boundary of 

the constraints. Since the gradient is discontinuous at this point, it was 

necessary to try initial guesses for k close to the apparent solution but on 

both sides of the discontinuity to be sure the algorithm was not hanging up 

there. The algorithm converged back to the double pole from both directions 

indicating that that point was indeed the solution. Also, an intellegent 

initial guess for k was important in order to avoid being hung up at the
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Table 6.4. Minimum energy feedback gains which are robust with 
respect to the failure of the second sensor (for the 
first 3 flight conditions only)

k = [-5.0138477X10” 2 -4 .0115944x 1o "1 5.0676513x10 1 ]

Flight 
Condition #

Sensor #2 Closed Loop Eigenvalues

1
NF -2.7084034, -2.0196952, -23.109953

F -.72136579 + jl.3337152, -26.395321

2
NF -4.0968046+j5.1326, -29.668796

F -.77106637 ± j 5.0911232, -36.320273

3
NF -1.8964697 + j 1.7951444, -22.887455

F -.49872359+ j2.0622586, -25.682948

NF:
F:

Sensor #2 has not failed 
Sensor #2 has failed
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double root boundaries away from the solution. In that case, a pole placement 

which places the poles on the opposite side of the double root boundary could 

be done. Using those gains as a new starting point might allow the algorithm 

to converge to the real solution.

Another observation was that the value chosen for c’ in (158) affected 

the final solution returned by the algorithm. For large values of c!

(200-2000), the algorithm converged quickly to the boundary of the constraint 

region, but had trouble moving along the boundary to the minimum with 

iterations over (156)-(157). As explained in Section 6.3, this is due to the 

ill conditioning of the Hessian for large values of c’. For smaller values 

of cf, the minimization over k converged to a solution outside the boundary 

of the constraint region. The maximization over d̂ forced the solution to 

the boundary. For this particular example, choosing c' equal to a small 

number for the initial iteration over k and then increasing it gradually for 

subsequent iterations to enforce the constraints more quickly seemed to work 

well. The results in this section are for c’ equal to 1 for the initial 

iteration and doubled thereafter.

Summarizing the results of this section, the algorithm developed in 

this chapter was applied to the problem of designing a controller for the 

F4-E aircraft. A fixed gain controller was found which satisfied the 

design specifications under normal operating conditions. However, a fixed 

gain controller which was robust to either sensor failure was not possible.

This example also served to re-emphasize some of the inherent problems with 

this design techniquei the discontinuities of the gradient, the initial 

guess for k, and the choice of c ’.
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6.8. Conclusion and Summary

This chapter has dealt with one method of solving the problem of 

designing a fixed gain controller for a linear time invariant system when 

some of the design criteria are represented as constraints on the location of 

the closed loop system eigenvalues in the complex plane and others are repre

sented by a quadratic cost function which is to be minimized. First, the 

original problem (129)-(133) is reformulated to yield (134)-(140). In the 

form, the cost function is easier to calculate. Second, problem (134)-(140) is 

solved by an augmented Lagrangian method. The problem is a max-min problem.

A variable metric method is used to solve the minimization over k. A fixed 

step size method is used to solve the maximization over d̂ [64]. Third, 

expressions for the gradients needed to solve (153)-(155) are derived.

Two examples are studied: a simple second order numerical example

and a model of the longitudinal motion of a F4-E plane. Both examples serve 

to point out several problems with implementing the solution of (153)-(155). 

First, there are discontinuities in the gradients for the case when a complex 

pair of system poles change to a real pair or vice versa. If the algorithm 

gets hung up at such a point, a new starting point on the other side of the 

boundary may help. Second, the value of c' in (155) must be chosen appro

priately for a given problem. Too large a value of c f causes slow convergence 

of the algorithm. Too small a value yields a solution outside the boundary.

The best approach seems to be to choose c ’ small for the first iteration and 

increase it thereafter. Finally, a good initial guess for k is important in 

order for the algorithm to converge properly.
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There are advantages to this design method. First, it has the 

ability to incorporate diverse design criteria such as minimum energy 

control, rate of change of input, constraints on the location of poles in 

the complex plane, etc. Second, multi-input, multi-output systems can be 

considered. Third, it has the ability to handle larger systems than some 

of the other methods used to solve this type of problem. Finally, it provides 

insight into the effects of the various design constraints. It can be used 

to determine which of the design specifications can be satisfied and which

ones may be too stringent.
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CHAPTER 7

SUMMARY AND FUTURE RESEARCH

As Chapter 2 illustrates, the robust control problem statement 

encompasses a great variety of problems. However, the work can be classified 

into two general areas. The first models the plant perturbations as being 

largely unstructured. The design and analysis proceeds for the worst case 

situation and attempts to develop aposteriori bounds for the perturbation.

As a result, the designs and bounds are often conservative. The second area 

assumes that the perturbations can be modeled apriori. The control system 

is then developed for the class of plants described by the perturbation model 

This provides hope of designing less conservative (and likely more efficient) 

control systems. However, this problem appears to be more difficult and 

much less research has been conducted in this area.

The research presented in Chapters 4 through 6 of this report is 

directed at the second area described in the preceding paragraph. The 

parameter space design method of Chapter 4 provides great insight into the 

problem for the designer. Chapter 5 demonstrated that this method works well 

for single input, low order problems. The extension of this technique to 

higher order systems appears straightforward, with only technical problems 

to be overcome. The extension to multiple input systems will require more 

thought. One possible generalization is to use the multivariable pole 

placement equation [33] which exploits the characteristic polynomial matrix.

The optimization procedure of Chapter 6 also provides considerable 

insight for the designer. It also allows high order, multi-input systems 

to be considered. However, the computational procedure suffers from several
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technical problems. The most serious of these problems are the extreme 

sensitivity of closed loop eigenvalues at double real roots and the require

ment that an initial stabilizing guess be supplied. It is anticipated that 

additional computational experience with the algorithm and the designer’s 

insight into the problem can alleviate these difficulties.

In conclusion, it should be emphasized that it is unlikely that a 

single technique can be developed which is able to handle all problems. It 

is necessary to have several design tools available and to use the method 

best suited to the problem at hand. A major purpose of this report is to 

present methods that will extend the domain of problems which can be 

handled by control system engineers.
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APPENDIX I 

AERODYNAMIC DATA

Table 1.1 contains the values for a., c. defined in equations (116).i J
These data were obtained by transforming the aero data in [57] to be compatible 

with the state space representation of equations (116),

The data used in equations (117) are shown in Table 1.2

Table 1,1. Aero Data for Equations (3.2)
M = .5 M = .85 M = .9 M = 1.5

5000' 5000' 35000' 35000’

al - .8532 - 1.514 - .6314 - ,8527

a2 .9931 .9940 .9974 .9982

a3 - .08756 - ,1315 - .04332 - .04669

a4 0 0 0 - .02274

a5 4.641 11.25 1.488 -18.50

a6 - .9876 - 1.606 - .6680 - .8881

a7 -10.25 -26.15 - 8.104 -15.53

a8 4.246 14.46 4.590 8.860

ci 17.53 51.11 18.14 26.83

C2 - .5152 - .8560 - .3576 - .4879

C3 - 5.078 -12.95 - 4.018 - 7.842

C. 2.723 9.273 2.944 6.7144
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Table 1.2. Aero Data for Equations (3.3)

M = .5 M = .85 M = .9 M = 1.5

5000’ 5000' 35000’ 35000'

all - .9896 - 1.702 - .6607 .5162

a12 17.41 50.72 18.11 26.96

a13 96.15 263.5 84.34 178.9

a21 .2648 .2201 .08201 .6896

a22 - .8512 - 1.418 - .6587 - 1.225

a23 -11.39 - 31.99 -10.81 - 30.38

bn -97.78 -272.2 -85.09 -175.61
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APPENDIX II

A TYPICAL CONSTRAINT MAPPING

For flight condition 2 and the system of equations (127), the 

eigenvalue constraint regions shown in Figure II.1 will be mapped into K-space.

a = - 3 . 5  

g = - 1 2 . 6  

f=- 50

Figure II.1. Eigenvalue constraint region (not drawn to scale).

After k^, were arbitrarily fixed at (-.03,0), these constraints were 

mapped into the regions shown in Figures 11,2, Points a ’-gf of Figures 11,2 

are the images of points a-g of Figure 11,1, with points a ’,ff,g’ corre

sponding to double eigenvalues at a,f,g.

The boundaries partition K-space into regions which correspond to 

the number of eigenvalues in each region of Figure 11,1, labeled I, II, 111, 

The desired combination is:

one eigenvalue in region I, 

two eigenvalues in region II, 

three eigenvalues in region III,

Table II.1 lists how the eigenvalues are distributed among regions I, II, III 

for gains in the regions labeled A-M in Figure II.3.
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-40 -30 -20 ka -10 0 10

Figure II,2a, Boundaries in K-space,
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Figure II.2b. Boundaries in K-space (enlargement of A2.2a).
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Table II.1. Distribution of Eigenvalues

Region Number in I Number in II Number in III

A 1 2 3
B 3 0 3
C 5 0 1
D 3 2 1
E 4 1 1
F 2 1 3
G 2 2 2
H 4 2 0
I 2 2 2
J 3 1 2
K 4 0 2
L 1 3 2
M 1 4 1
N 1 1 4
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