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NEW PARALLEL SORTING SCHEMES

F. P. Preparata*, Senior Member IEEE 

University of Illinois at Urbana-Champaign

Abstract

In this paper we describe a family of parallel sorting algorithms 

for a multiprocessor system. These algorithms are enumeration sortings and 

comprise the following phases: (i) count acquisition: the keys are sub­

divided into subsets and for each key we determine the number of smaller 

keys (count) in every subset; (ii) rank determination: the rank of a key 

is the sum of the previously obtained counts; (iii) data rearrangement: 

each key is placed in the position specified by its rank. The basic 

novelty of the algorithms is the use of parallel merging to implement count 

acquisition. By using Valiant's merging scheme, we show that n keys can 

be sorted in parallel with n log^n processors in time C log2n + o(log2n); in 

addition, if memory fetch conflicts are not allowed, using a modified version 

Batcher's merging algorithm to implement phase (i),we show that n keys can

l+y
be sorted with n processors in time (C'/a) log2n + o(log2n), thereby match­

ing the performance of Hirschberg's algorithm, which, however, is not free 

of fetch conflicts.
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NEW PARALLEL SORTING SCHEMES 

F. P. Preparata

1. Introduction

The efficient implementation of comparison problems, such as merging, 

sorting, and selection, by means of multiprocessor computing systems has 

attracted considerable attention in recent years. One of the earliest funda­

mental results is due to K. E. Batcher [l], who proposed a sorting network

consisting of comparators and based on the principle of iterated merging; as

2
is well-known, such scheme sorts n keys with 0(n(logn) ) comparators in time

2 ( )
0((logn) ) . Batcher's network is readily interpreted, in a more general

framework, as a system of n/2 processors with access to a common data memory

of n cells: obviously, the network structure induces a nonadaptive schedule

of memory accesses. After the appearance of Batcher's paper, substantial work

2
was aimed at filling the gap between the upper-bound 0( (logn) ) on the number

of steps which is achievable by a network of comparators and the lower-bound

O(logn); the lack of success, however, convinced several workers to look for

more flexible forms of parallelism.

The first scheme shown to sort n keys in time O(logn) is due to

D. E. Muller and F. P. Preparata [2], but it requires a discouraging number of 

2
0(n ) processors. Subsequently, new results were obtained on parallel 

merging by F. Gavril [3]. L. G. Valiant [4] must be credited with 

addressing the fundamental question of the intrinsic parallelism of some

This work was supported in part by the National Science Foundation under 
Grant MCS76-17321 and in part by the Joint Services Electronics Program 
under Contract DAAB-07-72-C-0259.

) log means lo D cL



comparison problems and with the development of faster algorithms than were 

previously known. In particular, in [4] he described an algorithm for 

merging with processors two sorted sequences of n and m keys, respec­

tively, (n < m), in 21oglogn + 0(1) comparison steps; this algorithm can 

then be applied to sort n keys with n processors in 21ogn*loglogn 4- 0(logn) 

steps. His method assumes a computational model in which there is no penalty 

for memory-processor alignment and the overhead corresponding to the 

reassignment of sets of processors to subsequences to be merged, is ignored.

A new family of sorting algorithms has been recently discovered 

by D. Hirschberg [5]. Assuming as a computation model a parallel processing 

system of the SIMD type (single-instruction stream, multiple-data stream) 

with random access capabilities to a common memory, Hirschberg shows that 

n keys can be sorted in time 0(k logn) with n^+ ^ ^  processors, where k is 

an arbitrary integer > 2. These schemes are not free of memory fetch 

conflicts (simultaneous reading of the same location by more than one 

processor) and Hirschberg poses as an open question the possibility of 

achieving analogous performances without memory fetch conflicts.

In this paper we shall present two results, The first, discussed 

in Section 2, is an algorithm for sorting n keys in time 0(logn) 

with nlogn processors: this algorithm combines a number of

known techniques, and makes crucial use of Valiant's merging algorithm. The 

second result (Section 3) is a family of very simple sorting algorithms, 

which have the same running time as Hirschberg's, but use basically 

different techniques and are entirely free of memory fetch 

conflicts. As our computation model we adopt a system of several identical

2

(1) Throughout this paper "log" means "logarithm to the base 2."
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processors, each capable of random-accessing a common memory with no alignment 

penalty. Store, fetch, and arithmetic operations have unit costs, and fetch 

conflicts are disallowed when appropriate.

All of the algorithms described in this paper - as well as 

Hirschberg's [5] - are instances of enumeration sorting, in Knuth's termi­

nology ([6], p. 73). In these methods each key is compared with all the 

others and the number of smaller keys determines the given key's final 

position. Specifically, three distinct tasks are clearly identifiable in 

enumeration sorting algorithms:

(i) count acquisition. The set of keys is partitioned into subsets 

and for each key we determine the number of smaller keys in each 

subset (this informal description momentarily assumes that all 

keys are distinct) ;

(ii) rank computation. For each key the sum of the counts obtained 

in (i) gives the final position (rank) of that key in the 

sorted sequence;

(iii) data rearrangement. Each key is placed in its final position 

according to its rank.

Less informally, an enumeration sorting scheme has the following format, 

where we assume for simplicity that, for some given integer r, n = kr.

Data structures to be used are arrays of keys. By A[i:j] we denote a 

sequence A[i]A[i+l]...A[j].

Input: A[0:n-1], the array of the keys to be sorted, integer r 

Output: A[0:n-l], the array of the sorted keys.
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1. begin Define A^[0:r-l] *- A[ir:(i+l)r-l] , for i=0,...,k-l.

| {A. (h) |a  [h] <  A i[X] ) | for j < i

c f jM

|£a .(h )(a  [h] < A.[x]}| * for j > i  
\ j J L

[ U iM  |Ai[hJ <  AiM , h  <  1} U  U ±[h-] lA±[h] >  I}}

k-1 ....
3. rank(A. [i]) «- £ C,

1 j=0

4. A[rank(A^[i]) ] f-A^Cx] 

end

Note that count acquisition, rank computation, and data rearrangement are 

performed, respectively, in steps 2, 3, and 4. Also, the algorithm must 

insure that all ranks be distinct, which is a crucial condition for the data 

rearrangement task (otherwise memory store conflicts would occur). This 

clearly poses no problem when the keys are all distinct. In the opposite 

case, some convention must be adopted for the ordering of sets of identical 

keys. One such convention is that sorting be stable (see [6], p. 4), that is, 

the initial order of identical keys is preserved in the sorted array. Thus, 

all of our sorting schemes will be stable. This is reflected in the rules 

for the computation of the parameters in Step 2 of the above algorithm.

The simple algorithm proposed by Muller and Preparata in [2]

is a crude example of enumeration sorting, in which the sets A are chosen
l

to be singletons. With this choice, each key is compared with every other

2
key, thereby using 0(n ) processors; similarly, rank computation uses 0(n2) 

processors, since 0(n) processors are assigned to each key. The time bound 

O(logn) is due to Step 3 (counting in parallel the number of l's in a set 

of n binary digits), whereas Steps 2 and 4 run in constant time in our present 

model.
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In the more complex procedures to be later described, the operations 

of rank computation and data rearrangement are essentially carried out as 

in the basic scheme described above. The main difference occurs with regard 

to count acquisition. In the Muller-Preparata method the counts are acquired 

by comparing each key with every other. The comparison of two keys A[i] and

A.[j] could be viewed as merging A[i] and A [j ]. If rather than dealing with

single keys we now deal with sorted sequences of keys A^[0:r-1] and A.[0:r-l], 

where r > 1 and, say, j < i, then the number of keys in A^[0:r-l] which are 

no greater than A_^[£] (X=0, ...,r-1) as well as the number of keys in A^[0:r-ll 

which are less than A^[h] (h=0,...,r-l), can be obtained by merging the two 

sequences A^Ozr-l] and A^[0:r-l]. in fact, let B[0:2r-l] be the array obtained 

by merging the two sorted arrays A^tOrr-l] and A^Otr-l] with the ordering 

convention A^[s] <  A^Cs+l] (k=i,j) and b [ s ]  <  b [ s+1]. Suppose also that the 

merging be stable, that is, the order of identical keys in the concatenated 

array A^[0:r-llA.^0:r-l] is preserved in B[0:2r-l]. If B[q] = A ^ M ,  then 

there are (q-4) entries of A^[0:r-l] in B[0:q-l] which are no greater than 

A . U ] ;  similarly if B[q] = A^[h], then there are (q-h) entries of A^[0:r-l] 

in B[0:q-l] which are strictly less than A^[h]. This is the central idea 

of the algorithms to be described.

2. A fast parallel sorting algorithm

In this section we assume that in our computational model memory 

fetch conflicts are permitted. To provide the feature required by Valiant's 

merging algorithm, that a key be simultaneously compared with several other 

keys, we may assume that the processors have broadcast capabilities. The 

only overhead we shall neglect is the reassignment of processors to the 

operation of merging pairs of subsequences, as occurs in Valiant's method [4].
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5.

6.

7.

term

s[i;j;0:r-l] «- A^[0:r-l](i=0,...,k-l; j=i+l,...,k)

S[i;j;r:2r-l] -  [0:r-l](i=0,...,j -1; j=l,...,k)

Comment: This is a copying operation whose objective is to obtain

s[i; j ;0: 2r-l] = A^[0:r-l]A^[0:r-l] for all pairs (i,j) with i < j.

In our model, this operation could be done with maximal parallelism.

However, using only ^ 2 ^ ) r Processors> the (^2^)^r e ^ementary

copying operations are completed in two time units. For later

convenience we assume that the record associated with key A. [j&]
l

contains a LABEL consisting of the pair of integers (i,4). 

s[i; j ;0:2r-l] - MERGE (sCi; j ;0:r-l] , s[i; j ;r:2r-l])

(i=0,...,k-l; j=i+l,...,k)

Comment: This step uses Valiant's merging algorithm and runs in time 

C^loglogr + 0(1), for some constant C^, using Processors. The

original version of Valiant's merging algorithm can be readily 

modified, so that, whenever two keys are identical the indices of 

their respective subarrays are compared.

Let (x,4) = LABEL s[i;j;q]

If x=i then R[i;j;4] —  q-j£ else R[j;i;i] *- q-I 

(i=0,...,k-l; j=i+l,...,k; q=0,...,2r-l)

R[i;i;i.] ♦“ I (i=0,...,k; &= 0,...,r-l)

Comment: Steps 6 and 7 complete the count acquisition task. In 

fact after Step 7 the content of R[i;j;i] is C ^ ^  , in the 

terminology of Section 1. Step 6 can be executed in two time 

units using (^2 ^)r processors, whereas Step 7 uses (k+l)r 

processors and runs in one time unit.



k

8. rank(A. [i])*- 2 R.[i;j;jfc] (i=0,...,k; 4=0,...,r-l)

1 j=o
Comment: This step implements the rank computation. For any 

pair (i,J&) the sum can be computed with L(k+l)/2j processors 

in time flog(k+l)l —  loglogn. The total number of processors 

used is therefore nL(k+l)/2j.

9. A[rank(AiCi-])] *- A^[X] (i=0,...,k; 4=0,...,r-l) 

end

To complete the analysis of the algorithm, we observe that none 

of Steps 4-7 uses more than (^2^)r Processors* But

r M |±I> = u /  Tlognl J riognl ( rio| n1+1) <  n Jk ffill+ l
where the last inequality is due to the removal of the "floor” sign.

Also, Step 8 uses nl(k+l)/2j <  n( Tlognl+1)/2. Since, for all 4 

n ^ 4 ,n( Tlognl+1)/2 < [jilognJ, the inductive hypothesis on the number of 

processors is extended.

Finally, let T(n) denote the running time of the algorithm for 

n keys. Since r —  n/logn we obtain

T (n) = T (i|^) + C2loglogn + C3

for some constants C2 and C^. It is easily verified that a function of the 

form C2 (logn) + o(logn) is a solution of the above recurrence. It is worth 

noting that for the same number of processors, Valiant proposes a sorting 

scheme of the merge-sort type ([4], Corollary 8) which runs in time 

21ogn'loglogn - o(logn*loglogn).

3. Parallel sorting algorithms with no memory fetch conflicts

We shall now consider a family of algorithms for sorting n numbers

1-f-Cy
in parallel with n processors (0 < a <  1) in time (C'/cOlogn + o(logn),

8
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for some constant C 1. Each of these algorithms has the same performance 

as the corresponding algorithm by Hirschberg [5], although no memory 

fetch conflict occurs in this case. Again, we make the inductive hypothesis 

that for p < n, Algorithm S0RT2 uses p^+c* processors to sort p keys. The 

format of S0RT2 closely parallels that of SORTl, with a few crucial differences 

to be noted.

Algorithm S0RT2

begin

1. k Tn^l, r * - Ui/Tn^l J

2. Define arrays s[0:k;0:k;0:2r-l], R[0:k;0:k;0:r-l]

and A^[0:r-l] — A[ir:(i+l)r-l] (i=0,...,k-l),A^[0:n-kr-l] *- A[kr:n-l] for n>kr.

3. A ^ O :  r-l] - SORT2(Ai[Orr-l]) (i+0,... ,k-l) ^ [ 0 :  n-kr-l] - SORT 2 Ak [0:n-kr-l] 

Comment; This parallel recursive call of S0RT2 sorts k sets of

r keys each and, possibly, one set of n-kr < k keys. By the 

inductive hypothesis, at most kr^+Qf + (n-kr)^+a = N processors are 

used. Since n-kr < k, then N < kr^+C* + (n-kr)‘k^ = kr(ra -ka) + n*k°\
9  • j?

Also kr = fn0! • Iji/ fn^l J <  n, whence N < n(ra -ka+ka) —  n * n ^
2

1+ar-a . 1+Qi . . , . . ^  1 -oi
= n < n , where we have used the approximation r =* n

Steps 1-3 are analogous to the corresponding ones in SORTl; however, 

the copying operation implemented by Step 4 of SORTl must be 

considerably modified, as shown by the following Steps 4-6, to 

avoid fetch conflicts. Here again, A^ is extended to size r 

as in SORTl.

4. s[i;k;0:r-l] - A^Orr-l] (i=0,... ,k-l) 

s[0;j ;r:2r-l] «- A^.[0:r-l] (j=l,...,k)



for m *- 0 step 1 until flog(k+l)l - 2 do 

s[i;j-2m ;0:r-l] «- s[i;j;0:r-l]

(j=k-2m+l,...,k; i=0.... j-2m -l)

s[i+2m;j ;r:2r-l] «- s[i;j ;r:2r-l]

(i=0,...,2m -l; j=i+2m+l,...>k)

Let riog(k+l)l - 1 = v. 

s[i;j-2V;0:r-l] - s[i;j;0:r-l]

(j=2v+l,...,k; i=0,...,j-2v -l)

S[i+2v ;j;r:2r-l] -  s[i;j;r:2r-l]

(i=0,...,k-2V -l; j=i+2V+l,...,k)

Comment: Steps 4-6 jointly replicate each A^[0:r-l] the required number 

k of times. Step 4 is an initial copy; Step 5 consists of (logTk+fl -1) 

stages, each of which doubles the ranges of the indices; Step 6 accounts 

for the fact that k may not be a power-of 2 and completes filling the 

array S. Clearly this copying operation is implemented in 

logTk+ll + 1 =“ alogn + 1 time units. A straightforward analysis shows 

that the largest number of processors used in any of these stages is at 

most 5/16 of the total number ( ^ ^ r  of cells of S to be filled. It is 

also easily shown that (51 =“ (5/16) (na+l)na -n1_<* < n1+C* for any

n ^ 1 and oi > 0.

S[i;j ;0:2r-l] - MERGE (s[i; j ;0: r-l] ,s[i; j ;r: 2r-l])

(i=0,...,k-l; j=i+l,...,k).

Comment: This step uses a stable version of Batcher's merging algorithm [l], 

which is easily obtained by requiring that whenever two identical keys are 

encountered their array indices be compared (see Appendix). The 

following facts about Batcher's merging algorithm are well-known:

10
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(i) no fetch conflict occurs because at any stage (or, time unit)

(
k“hl 1 r Qf ot I

2 Jr ~ >-(n +l)n /2J.

1 — ot l+<y
n < n processors are used; (iii) merging is completed in 

logr =“ (l-cy)logn time units.

8. Steps 8, 9, 10, and 11 of this algorithm are respectively

identical to Steps 6, 7, 8, and 9 of SORTl and are therefore 

omitted. The latter are clearly free of memory fetch conflicts. The 

analysis of SORTl showed that at most m a x ^ ^ 2'*'^)r,nL(k+l)/2J^ 

processors were used in any of those steps. In the present case, 

we have already shown that (^2 ^)r < similarly we conclude

n L(k+1) /2J <  n(nQ+l) /2 < n1+a.

From the, performance viewpai
From the performance viewpoint, all steps of the algorithm require 

1+cy
at most n processors, as postulated. This extends the inductive hypothesis 

on the number of processors used by the algorithm. As to the running time T(n), 

we note the following: Steps 4-6 jointly require alogn + 1 time units;

Step 7 requires (l-a)logn time units; Step 10 requires alogn time units;

Steps 8, 9, and 11 run in constant time. Since Step 3 is a recursive call

1_Q/
of S0RT2 on sets of r -  n elements, we obtain for T(n) the recurrence 

equation

T (n) = T(n1_a) + (Cj^-Cpiogn +

for some constants C|, C^, and C^. It is easily verified that a function of 

the form [Cja+C^)/a]logn + o(logn) is a solution of this equation, whence 

T(n) ^  (C'/a)logn + o(logn).
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Appendix

A stable version of Batcher's merging algorithm.

The original version of Batcher's odd-even merging algorithm runs 

as follows (here, for simplicity, we assume that the common length of the 

sequences to be merged is a power of 2):

MERGE(A[0: 2k_1-l], A[2k-1; 2k "1])

1. A 1[j] — A[2j], A'[2k '1 + j] -  A[2j+1] (j=0,l,...,2k_1-l)

2. b [0: 2k_1-l] -M E R G E  (A'[0: 2k "2 -l], A'[2k-2: 2k ~1-l])

B [2k_1: 2k -l] -M E R G E  (A'[2k_1: 3.2k_2-l], A f[3.2k '2 : 2k -l])

3. A[2j-l] —  min(B[j], B[2k * + j-l]), A[2j] — max(B[j], B[2k  ̂+ j-l]

(j=l,...,2k_1-l)

This algorithm is not stable (see [6], p. 135, exercise 13), because in

compliance with the rules of the comparator module, whenever B[j] =

B[2k ' 'x + j-i] in Step 3, the algorithm assigns AC2j -1] —  B [j],

< X
A[2j] — b [2 + j-l]. Fortunately, however, with a simple modification, 

stability can be attained. Specifically, we associate with each key of the 

initial array A[0: 2k -l] a label, and set LABEL(A[j])—  j (notice that all 

labels are distinct). We then replace Step 3 above with the following step:

3f,. If b [j] = B[2k 1 + j-l] then A[2j-l] — key with smaller label

A[2j] — key with larger label 

else A[2j-l] -min(B[j], B[2k 1 + j-l]), A[2j] -max(B[j], B[2k 1 + j-l])

(j=l,...,2k -1-l) .

We now prove that the new version of the algorithm is stable.

Assume that in the original array A[0: 2k ^-l] the subarrays A[0: t^-l],

A[t^: s^-l], and A[s^: 2k ^-l] contain keys which are respectively less,

r k-1 k-1 -i
equal, and larger than some fixed value a; similarly for AL2 : 2 H-t^-lJ,



r k - 1  k - 1  "j p k - 1  k
Al_2 + t 2 + s2 ~1J » and AL2 + s^: 2 -lj. Assume inductively that

the merged sequences obtained in Step 2 are stably sorted and consider a

key A[p] for p€[t^,s^-l]. Assume at first p = 2j ; then, by Step 1,

k  ^ k  1
A'[j] = A[2j]. Moreover, there are f 12 /2~1 keys in A'[2 : 2 -l] strictly 

smaller than A[2j] ; whence A[2j] = B[j + l~12 /2H ] . According to Step 3 1 

B[j+ rt^/2~l J is compared with B[2k  ̂+ j-l + ft^/21]. Suppose t2  is even: 

then if (2j -1) 6 [t^s^-l], B[2k_1 + j-l + Tt2/2l ] = A[2j-l] and we compare 

(the labels of) A[2j] and A[2j-l]; otherwise, i.e., when 2j-1 = t^-1 or, 

equivalently, A[2j] = A[t^], the latter is compared with a key less than a. 

Suppose now that t2  is odd: then if (2j+l) G [t^,s^-l], we have 

B[2k  ̂+ j-l + Tt /2l] = A[2j+l] and we compare (the labels of) A[2j] and 

A[2jH-l]; otherwise A[2j] = A[s^-l] and A[s^-l] is compared with a key which 

is either larger or has a larger label. Clearly, in the given case, stability 

is ensured, and by analogous arguments we can treat all other cases.
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