

UNCLASSIFIED
.S E C U R IT Y C L A S S IF IC A T IO N OF T H IS P A G E (When D a ta Ente red)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. R E P O R T NUM B ER 2. G O V T ACCESSIO N NO. 3. R E C I P I E N T ’S C A T A L O G N UM BER

4. T I T L E (and S u b t i t le)

NEW PARALLEL SORTING SCHEMES

5. T Y P E O F R E P O R T & P E R IO D C O V E R E D

Technical Report

6. P E R F O R M IN G ORG. R E P O R T N UM B E R

R-782; UILU-ENG 77-2229
7. A U T H O R fs ;

F. P. Preparata

8. C O N T R A C T OR G R A N T NUMBERfs.)

MCS-76-17321

DAAB-07-72-C-0259

9. P E R F O R M IN G O R G A N IZ A T IO N N AM E AND ADDRESS
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. PROGRAM E L E M E N T , P R O J E C T , TASK
AREA & WORK U N IT NUMBERS

11. C O N T R O L L IN G O F F I C E NAME AND ADDRESS

Joint Services Electronics Program

12. R E P O R T D A T E

July, 1977
13. N UM B E R O F PAGES

15
14. M O N IT O R IN G AG E N CY NAME & ADDRESS (i f d i f fe re n t from C o n t ro l l in g O f f i c e) 15. S E C U R IT Y CLASS, (o f th is repor t)

15a. DECLASSI FI C A T IO N /D O W N GRADING
S C H E D U L E

16. D IS T R IB U T IO N S T A T E M E N T (o f t h i s Repo r t)

Approved for public release; distribution unlimited

17. D IS T R IB U T IO N S T A T E M E N T (o f the a b s t ra c t en te red in B lo c k 20, i f d i f fe re n t from Report)

18. S U P P L E M E N T A R Y NO TE S

19. K E Y WORDS (C on t in u e on reverse s ide i f n ec e s s a ry and id e n t i f y by b lo c k number)

Parallel Computation
Computational Complexity
Design of Algorithm
Sorting
Enumeration Sorting

20. A B S T R A C T (C on t in u e on reverse s ide i f n ece ssa ry and id e n t i f y by b lo c k number)

In this paper we describe a family of parallel sorting algorithms for a multi­
processor system. These algorithms are enumeration sorts and comprise the
following phases: (i) count acquisition: the keys are subdivided into subsets
and for each key we determine the number of smaller keys (count) in every
subset; (ii) rank determination: the rank of a key is the sum of the previously
obtained counts; (iii) data rearrangement: each key is placed in the position
specified by its rank. The basic novelty of the algorithms is the use of
parallel merging to implement count acquisition. By using Valiant’s merging

DD , j a n 7̂3 1473 E D IT IO N OF 1 NOV 65 IS O B S O L E T E _______ UNCLASSIFIED_________________
S E C U R IT Y C L A S S IF IC A T IO N OF TH IS P A G E (When D a ta En te red)

SECURITY CLASSIFICATION Q W THIS PA O EfW hn P e te E n te re d)

UNCLASSIFIED

20. ABSTRACT (continued)

scheme, we show that n keys can be sorted in parallel with nlog n
processors in time Clogn n + o(log n); in addition, if memory fetch
conflicts are not allowed, using a modified version of Batcher's

merging algorithm to implement phase (i) we show that n keys can be
1-L/v J

sorted with n processors in time (C’/a)log2n + o(log2n) thereby

matching the performacne of Hirschberg's algorithm, which, however
is not free of fetch conflicts. ’

UNCLASSIFIED

S E C U R IT Y C L A S S IF IC A T IO N O F TH IS PAGE(T*7i*n D ate E n te re d)

UILU-ENG 77-2229

NEW PARALLEL SORTING SCHEMES

by

F. P. Preparata

This work was supported in part by the National Science

Foundation under Grant NSF MCS-76-17321 and in part by the Joint

Services Electronics Program (U.S. Army, U.S. Navy and U.S. Air

Force) under Contract DAAB-07-72-C-0259.

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release. Distribution unlimited.

NEW PARALLEL SORTING SCHEMES

F. P. Preparata*, Senior Member IEEE

University of Illinois at Urbana-Champaign

Abstract

In this paper we describe a family of parallel sorting algorithms

for a multiprocessor system. These algorithms are enumeration sortings and

comprise the following phases: (i) count acquisition: the keys are sub­

divided into subsets and for each key we determine the number of smaller

keys (count) in every subset; (ii) rank determination: the rank of a key

is the sum of the previously obtained counts; (iii) data rearrangement:

each key is placed in the position specified by its rank. The basic

novelty of the algorithms is the use of parallel merging to implement count

acquisition. By using Valiant's merging scheme, we show that n keys can

be sorted in parallel with n log^n processors in time C log2n + o(log2n); in

addition, if memory fetch conflicts are not allowed, using a modified version

Batcher's merging algorithm to implement phase (i),we show that n keys can

l+y
be sorted with n processors in time (C'/a) log2n + o(log2n), thereby match­

ing the performance of Hirschberg's algorithm, which, however, is not free

of fetch conflicts.

*
Coordinated Science Laboratory, Department of Electrical Engineering, and
Department of Computer Science, University of Illinois, Urbana, IL. 61801

This work was supported in part by the National Science Foundation under
Grant MCS76-17321 and in part by the Joint Services Electronics Program
under Contract DAAB-07-72-C-0259.

NEW PARALLEL SORTING SCHEMES

F. P. Preparata

1. Introduction

The efficient implementation of comparison problems, such as merging,

sorting, and selection, by means of multiprocessor computing systems has

attracted considerable attention in recent years. One of the earliest funda­

mental results is due to K. E. Batcher [l], who proposed a sorting network

consisting of comparators and based on the principle of iterated merging; as

2
is well-known, such scheme sorts n keys with 0(n(logn)) comparators in time

2 ()
0((logn)) . Batcher's network is readily interpreted, in a more general

framework, as a system of n/2 processors with access to a common data memory

of n cells: obviously, the network structure induces a nonadaptive schedule

of memory accesses. After the appearance of Batcher's paper, substantial work

2
was aimed at filling the gap between the upper-bound 0((logn)) on the number

of steps which is achievable by a network of comparators and the lower-bound

O(logn); the lack of success, however, convinced several workers to look for

more flexible forms of parallelism.

The first scheme shown to sort n keys in time O(logn) is due to

D. E. Muller and F. P. Preparata [2], but it requires a discouraging number of

2
0(n) processors. Subsequently, new results were obtained on parallel

merging by F. Gavril [3]. L. G. Valiant [4] must be credited with

addressing the fundamental question of the intrinsic parallelism of some

This work was supported in part by the National Science Foundation under
Grant MCS76-17321 and in part by the Joint Services Electronics Program
under Contract DAAB-07-72-C-0259.

) log means lo D cL

comparison problems and with the development of faster algorithms than were

previously known. In particular, in [4] he described an algorithm for

merging with processors two sorted sequences of n and m keys, respec­

tively, (n < m), in 21oglogn + 0(1) comparison steps; this algorithm can

then be applied to sort n keys with n processors in 21ogn*loglogn 4- 0(logn)

steps. His method assumes a computational model in which there is no penalty

for memory-processor alignment and the overhead corresponding to the

reassignment of sets of processors to subsequences to be merged, is ignored.

A new family of sorting algorithms has been recently discovered

by D. Hirschberg [5]. Assuming as a computation model a parallel processing

system of the SIMD type (single-instruction stream, multiple-data stream)

with random access capabilities to a common memory, Hirschberg shows that

n keys can be sorted in time 0(k logn) with n^+ ^ ^ processors, where k is

an arbitrary integer > 2. These schemes are not free of memory fetch

conflicts (simultaneous reading of the same location by more than one

processor) and Hirschberg poses as an open question the possibility of

achieving analogous performances without memory fetch conflicts.

In this paper we shall present two results, The first, discussed

in Section 2, is an algorithm for sorting n keys in time 0(logn)

with nlogn processors: this algorithm combines a number of

known techniques, and makes crucial use of Valiant's merging algorithm. The

second result (Section 3) is a family of very simple sorting algorithms,

which have the same running time as Hirschberg's, but use basically

different techniques and are entirely free of memory fetch

conflicts. As our computation model we adopt a system of several identical

2

(1) Throughout this paper "log" means "logarithm to the base 2."

3

processors, each capable of random-accessing a common memory with no alignment

penalty. Store, fetch, and arithmetic operations have unit costs, and fetch

conflicts are disallowed when appropriate.

All of the algorithms described in this paper - as well as

Hirschberg's [5] - are instances of enumeration sorting, in Knuth's termi­

nology ([6], p. 73). In these methods each key is compared with all the

others and the number of smaller keys determines the given key's final

position. Specifically, three distinct tasks are clearly identifiable in

enumeration sorting algorithms:

(i) count acquisition. The set of keys is partitioned into subsets

and for each key we determine the number of smaller keys in each

subset (this informal description momentarily assumes that all

keys are distinct) ;

(ii) rank computation. For each key the sum of the counts obtained

in (i) gives the final position (rank) of that key in the

sorted sequence;

(iii) data rearrangement. Each key is placed in its final position

according to its rank.

Less informally, an enumeration sorting scheme has the following format,

where we assume for simplicity that, for some given integer r, n = kr.

Data structures to be used are arrays of keys. By A[i:j] we denote a

sequence A[i]A[i+l]...A[j].

Input: A[0:n-1], the array of the keys to be sorted, integer r

Output: A[0:n-l], the array of the sorted keys.

4

1. begin Define A^[0:r-l] *- A[ir:(i+l)r-l] , for i=0,...,k-l.

| {A. (h) |a [h] < A i[X]) | for j < i

c f jM

|£a .(h)(a [h] < A.[x]}| * for j > i
\ j J L

[U iM |Ai[hJ < AiM , h < 1} U U ±[h-] lA±[h] > I}}

k-1
3. rank(A. [i]) «- £ C,

1 j=0

4. A[rank(A^[i])] f-A^Cx]

end

Note that count acquisition, rank computation, and data rearrangement are

performed, respectively, in steps 2, 3, and 4. Also, the algorithm must

insure that all ranks be distinct, which is a crucial condition for the data

rearrangement task (otherwise memory store conflicts would occur). This

clearly poses no problem when the keys are all distinct. In the opposite

case, some convention must be adopted for the ordering of sets of identical

keys. One such convention is that sorting be stable (see [6], p. 4), that is,

the initial order of identical keys is preserved in the sorted array. Thus,

all of our sorting schemes will be stable. This is reflected in the rules

for the computation of the parameters in Step 2 of the above algorithm.

The simple algorithm proposed by Muller and Preparata in [2]

is a crude example of enumeration sorting, in which the sets A are chosen
l

to be singletons. With this choice, each key is compared with every other

2
key, thereby using 0(n) processors; similarly, rank computation uses 0(n2)

processors, since 0(n) processors are assigned to each key. The time bound

O(logn) is due to Step 3 (counting in parallel the number of l's in a set

of n binary digits), whereas Steps 2 and 4 run in constant time in our present

model.

5

In the more complex procedures to be later described, the operations

of rank computation and data rearrangement are essentially carried out as

in the basic scheme described above. The main difference occurs with regard

to count acquisition. In the Muller-Preparata method the counts are acquired

by comparing each key with every other. The comparison of two keys A[i] and

A.[j] could be viewed as merging A[i] and A [j]. If rather than dealing with

single keys we now deal with sorted sequences of keys A^[0:r-1] and A.[0:r-l],

where r > 1 and, say, j < i, then the number of keys in A^[0:r-l] which are

no greater than A_^[£] (X=0, ...,r-1) as well as the number of keys in A^[0:r-ll

which are less than A^[h] (h=0,...,r-l), can be obtained by merging the two

sequences A^Ozr-l] and A^[0:r-l]. in fact, let B[0:2r-l] be the array obtained

by merging the two sorted arrays A^tOrr-l] and A^Otr-l] with the ordering

convention A^[s] < A^Cs+l] (k=i,j) and b [s] < b [s+1]. Suppose also that the

merging be stable, that is, the order of identical keys in the concatenated

array A^[0:r-llA.^0:r-l] is preserved in B[0:2r-l]. If B[q] = A ^ M , then

there are (q-4) entries of A^[0:r-l] in B[0:q-l] which are no greater than

A . U] ; similarly if B[q] = A^[h], then there are (q-h) entries of A^[0:r-l]

in B[0:q-l] which are strictly less than A^[h]. This is the central idea

of the algorithms to be described.

2. A fast parallel sorting algorithm

In this section we assume that in our computational model memory

fetch conflicts are permitted. To provide the feature required by Valiant's

merging algorithm, that a key be simultaneously compared with several other

keys, we may assume that the processors have broadcast capabilities. The

only overhead we shall neglect is the reassignment of processors to the

operation of merging pairs of subsequences, as occurs in Valiant's method [4].

7

5.

6.

7.

term

s[i;j;0:r-l] «- A^[0:r-l](i=0,...,k-l; j=i+l,...,k)

S[i;j;r:2r-l] - [0:r-l](i=0,...,j -1; j=l,...,k)

Comment: This is a copying operation whose objective is to obtain

s[i; j ;0: 2r-l] = A^[0:r-l]A^[0:r-l] for all pairs (i,j) with i < j.

In our model, this operation could be done with maximal parallelism.

However, using only ^ 2 ^) r Processors> the (^2^)^r e ^ementary

copying operations are completed in two time units. For later

convenience we assume that the record associated with key A. [j&]
l

contains a LABEL consisting of the pair of integers (i,4).

s[i; j ;0:2r-l] - MERGE (sCi; j ;0:r-l] , s[i; j ;r:2r-l])

(i=0,...,k-l; j=i+l,...,k)

Comment: This step uses Valiant's merging algorithm and runs in time

C^loglogr + 0(1), for some constant C^, using Processors. The

original version of Valiant's merging algorithm can be readily

modified, so that, whenever two keys are identical the indices of

their respective subarrays are compared.

Let (x,4) = LABEL s[i;j;q]

If x=i then R[i;j;4] — q-j£ else R[j;i;i] *- q-I

(i=0,...,k-l; j=i+l,...,k; q=0,...,2r-l)

R[i;i;i.] ♦“ I (i=0,...,k; &= 0,...,r-l)

Comment: Steps 6 and 7 complete the count acquisition task. In

fact after Step 7 the content of R[i;j;i] is C ^ ^ , in the

terminology of Section 1. Step 6 can be executed in two time

units using (^2 ^)r processors, whereas Step 7 uses (k+l)r

processors and runs in one time unit.

k

8. rank(A. [i])*- 2 R.[i;j;jfc] (i=0,...,k; 4=0,...,r-l)

1 j=o
Comment: This step implements the rank computation. For any

pair (i,J&) the sum can be computed with L(k+l)/2j processors

in time flog(k+l)l — loglogn. The total number of processors

used is therefore nL(k+l)/2j.

9. A[rank(AiCi-])] *- A^[X] (i=0,...,k; 4=0,...,r-l)

end

To complete the analysis of the algorithm, we observe that none

of Steps 4-7 uses more than (^2^)r Processors* But

r M |±I> = u / Tlognl J riognl (rio| n1+1) < n Jk ffill+ l
where the last inequality is due to the removal of the "floor” sign.

Also, Step 8 uses nl(k+l)/2j < n(Tlognl+1)/2. Since, for all 4

n ^ 4 ,n(Tlognl+1)/2 < [jilognJ, the inductive hypothesis on the number of

processors is extended.

Finally, let T(n) denote the running time of the algorithm for

n keys. Since r — n/logn we obtain

T (n) = T (i|^) + C2loglogn + C3

for some constants C2 and C^. It is easily verified that a function of the

form C2 (logn) + o(logn) is a solution of the above recurrence. It is worth

noting that for the same number of processors, Valiant proposes a sorting

scheme of the merge-sort type ([4], Corollary 8) which runs in time

21ogn'loglogn - o(logn*loglogn).

3. Parallel sorting algorithms with no memory fetch conflicts

We shall now consider a family of algorithms for sorting n numbers

1-f-Cy
in parallel with n processors (0 < a < 1) in time (C'/cOlogn + o(logn),

8

9

for some constant C 1. Each of these algorithms has the same performance

as the corresponding algorithm by Hirschberg [5], although no memory

fetch conflict occurs in this case. Again, we make the inductive hypothesis

that for p < n, Algorithm S0RT2 uses p^+c* processors to sort p keys. The

format of S0RT2 closely parallels that of SORTl, with a few crucial differences

to be noted.

Algorithm S0RT2

begin

1. k Tn^l, r * - Ui/Tn^l J

2. Define arrays s[0:k;0:k;0:2r-l], R[0:k;0:k;0:r-l]

and A^[0:r-l] — A[ir:(i+l)r-l] (i=0,...,k-l),A^[0:n-kr-l] *- A[kr:n-l] for n>kr.

3. A ^ O : r-l] - SORT2(Ai[Orr-l]) (i+0,... ,k-l) ^ [0 : n-kr-l] - SORT 2 Ak [0:n-kr-l]

Comment; This parallel recursive call of S0RT2 sorts k sets of

r keys each and, possibly, one set of n-kr < k keys. By the

inductive hypothesis, at most kr^+Qf + (n-kr)^+a = N processors are

used. Since n-kr < k, then N < kr^+C* + (n-kr)‘k^ = kr(ra -ka) + n*k°\
9 • j?

Also kr = fn0! • Iji/ fn^l J < n, whence N < n(ra -ka+ka) — n * n ^
2

1+ar-a . 1+Qi . . , . . ^ 1 -oi
= n < n , where we have used the approximation r =* n

Steps 1-3 are analogous to the corresponding ones in SORTl; however,

the copying operation implemented by Step 4 of SORTl must be

considerably modified, as shown by the following Steps 4-6, to

avoid fetch conflicts. Here again, A^ is extended to size r

as in SORTl.

4. s[i;k;0:r-l] - A^Orr-l] (i=0,... ,k-l)

s[0;j ;r:2r-l] «- A^.[0:r-l] (j=l,...,k)

for m *- 0 step 1 until flog(k+l)l - 2 do

s[i;j-2m ;0:r-l] «- s[i;j;0:r-l]

(j=k-2m+l,...,k; i=0.... j-2m -l)

s[i+2m;j ;r:2r-l] «- s[i;j ;r:2r-l]

(i=0,...,2m -l; j=i+2m+l,...>k)

Let riog(k+l)l - 1 = v.

s[i;j-2V;0:r-l] - s[i;j;0:r-l]

(j=2v+l,...,k; i=0,...,j-2v -l)

S[i+2v ;j;r:2r-l] - s[i;j;r:2r-l]

(i=0,...,k-2V -l; j=i+2V+l,...,k)

Comment: Steps 4-6 jointly replicate each A^[0:r-l] the required number

k of times. Step 4 is an initial copy; Step 5 consists of (logTk+fl -1)

stages, each of which doubles the ranges of the indices; Step 6 accounts

for the fact that k may not be a power-of 2 and completes filling the

array S. Clearly this copying operation is implemented in

logTk+ll + 1 =“ alogn + 1 time units. A straightforward analysis shows

that the largest number of processors used in any of these stages is at

most 5/16 of the total number (^ ^ r of cells of S to be filled. It is

also easily shown that (51 =“ (5/16) (na+l)na -n1_<* < n1+C* for any

n ^ 1 and oi > 0.

S[i;j ;0:2r-l] - MERGE (s[i; j ;0: r-l] ,s[i; j ;r: 2r-l])

(i=0,...,k-l; j=i+l,...,k).

Comment: This step uses a stable version of Batcher's merging algorithm [l],

which is easily obtained by requiring that whenever two identical keys are

encountered their array indices be compared (see Appendix). The

following facts about Batcher's merging algorithm are well-known:

10

11

(i) no fetch conflict occurs because at any stage (or, time unit)

(
k“hl 1 r Qf ot I

2 Jr ~ >-(n +l)n /2J.

1 — ot l+<y
n < n processors are used; (iii) merging is completed in

logr =“ (l-cy)logn time units.

8. Steps 8, 9, 10, and 11 of this algorithm are respectively

identical to Steps 6, 7, 8, and 9 of SORTl and are therefore

omitted. The latter are clearly free of memory fetch conflicts. The

analysis of SORTl showed that at most m a x ^ ^ 2'*'^)r,nL(k+l)/2J^

processors were used in any of those steps. In the present case,

we have already shown that (^2 ^)r < similarly we conclude

n L(k+1) /2J < n(nQ+l) /2 < n1+a.

From the, performance viewpai
From the performance viewpoint, all steps of the algorithm require

1+cy
at most n processors, as postulated. This extends the inductive hypothesis

on the number of processors used by the algorithm. As to the running time T(n),

we note the following: Steps 4-6 jointly require alogn + 1 time units;

Step 7 requires (l-a)logn time units; Step 10 requires alogn time units;

Steps 8, 9, and 11 run in constant time. Since Step 3 is a recursive call

1_Q/
of S0RT2 on sets of r - n elements, we obtain for T(n) the recurrence

equation

T (n) = T(n1_a) + (Cj^-Cpiogn +

for some constants C|, C^, and C^. It is easily verified that a function of

the form [Cja+C^)/a]logn + o(logn) is a solution of this equation, whence

T(n) ^ (C'/a)logn + o(logn).

References

K. E. Batcher, "Sorting networks and their applications," Proc. AFIPS
Spring Joint Computer Conference, Vol. 32, pp. 307-314, April 1968.

D. E. Muller and F. P. Preparata, "Bounds to Complexities of Networks
for Sorting and for Switching," Journal of the ACM, Vol. 22, No. 2,
pp. 195-201, April 1975.

F. Gavril, "Merging with parallel processors," Comm. ACM, Vol. 18,
10, pp. 588-591, October 1975.

L. G. Valiant, "Parallelism in Comparison Problems," SIAM Journal of
Computing, Vol. 4, 3, pp. 348-355, September 1975.

D. S. Hirschberg, "Fast Parallel Sorting Algorithms," Tech. Rep.,
Department of Electr. Eng., Rice University, Houston, Texas,
January 1977.

D. E. Knuth, The Art of Computer Programming. Vol. Ill: Sorting and
Searching, Addison-Wesley, Reading, Mass., 1972.

13

Appendix

A stable version of Batcher's merging algorithm.

The original version of Batcher's odd-even merging algorithm runs

as follows (here, for simplicity, we assume that the common length of the

sequences to be merged is a power of 2):

MERGE(A[0: 2k_1-l], A[2k-1; 2k "1])

1. A 1[j] — A[2j], A'[2k '1 + j] - A[2j+1] (j=0,l,...,2k_1-l)

2. b [0: 2k_1-l] -M E R G E (A'[0: 2k "2 -l], A'[2k-2: 2k ~1-l])

B [2k_1: 2k -l] -M E R G E (A'[2k_1: 3.2k_2-l], A f[3.2k '2 : 2k -l])

3. A[2j-l] — min(B[j], B[2k * + j-l]), A[2j] — max(B[j], B[2k ̂+ j-l]

(j=l,...,2k_1-l)

This algorithm is not stable (see [6], p. 135, exercise 13), because in

compliance with the rules of the comparator module, whenever B[j] =

B[2k ' 'x + j-i] in Step 3, the algorithm assigns AC2j -1] — B [j],

< X
A[2j] — b [2 + j-l]. Fortunately, however, with a simple modification,

stability can be attained. Specifically, we associate with each key of the

initial array A[0: 2k -l] a label, and set LABEL(A[j])— j (notice that all

labels are distinct). We then replace Step 3 above with the following step:

3f,. If b [j] = B[2k 1 + j-l] then A[2j-l] — key with smaller label

A[2j] — key with larger label

else A[2j-l] -min(B[j], B[2k 1 + j-l]), A[2j] -max(B[j], B[2k 1 + j-l])

(j=l,...,2k -1-l) .

We now prove that the new version of the algorithm is stable.

Assume that in the original array A[0: 2k ^-l] the subarrays A[0: t^-l],

A[t^: s^-l], and A[s^: 2k ^-l] contain keys which are respectively less,

r k-1 k-1 -i
equal, and larger than some fixed value a; similarly for AL2 : 2 H-t^-lJ,

r k - 1 k - 1 "j p k - 1 k
Al_2 + t 2 + s2 ~1J » and AL2 + s^: 2 -lj. Assume inductively that

the merged sequences obtained in Step 2 are stably sorted and consider a

key A[p] for p€[t^,s^-l]. Assume at first p = 2j ; then, by Step 1,

k ^ k 1
A'[j] = A[2j]. Moreover, there are f 12 /2~1 keys in A'[2 : 2 -l] strictly

smaller than A[2j] ; whence A[2j] = B[j + l~12 /2H] . According to Step 3 1

B[j+ rt^/2~l J is compared with B[2k ̂+ j-l + ft^/21]. Suppose t2 is even:

then if (2j -1) 6 [t^s^-l], B[2k_1 + j-l + Tt2/2l] = A[2j-l] and we compare

(the labels of) A[2j] and A[2j-l]; otherwise, i.e., when 2j-1 = t^-1 or,

equivalently, A[2j] = A[t^], the latter is compared with a key less than a.

Suppose now that t2 is odd: then if (2j+l) G [t^,s^-l], we have

B[2k ̂+ j-l + Tt /2l] = A[2j+l] and we compare (the labels of) A[2j] and

A[2jH-l]; otherwise A[2j] = A[s^-l] and A[s^-l] is compared with a key which

is either larger or has a larger label. Clearly, in the given case, stability

is ensured, and by analogous arguments we can treat all other cases.

14

