
July 2012 UILU-ENG-12-2206

ADAPTING BRO INTO SCADA:
BUILDING SPECIFICATION-
BASED INTRUSION DETECTION
SYSTEM FOR DNP3 PROTOCOL

Hui Lin, Zbigniew Kalbarczyk, Ravishankar K. Iyer

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18
 298-102

REPORT DOCUMENTATION PAGE Form Approved
 OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
July 2012

3. REPORT TYPE AND DATES COVERED

 4. TITLE AND SUBTITLE
Adapting Bro into SCADA: Building Specification-based Intrusion Detection System for
DNP3 Protocol

5. FUNDING NUMBERS

DE-OE0000097

6. AUTHOR(S)
Hui Lin, Zbigniew Kalbarczyk, and Ravishankar K. Iyer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W.
Main St., Urbana, IL, 61801-2307

8. PERFORMING RGANIZATION
 REPORT NUMBER
UILU-ENG-12-2206

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Department of Energy, 1000 Independence Ave. SW, Washington, DC 20585
U.S. Department of Homeland Security, Washington, DC

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

 13. ABSTRACT (Maximum 200 words)

Modern SCADA systems are increasingly adopting Internet technology to control industry processes. With their security
vulnerabilities exposed to public networks, an attacker is able to penetrate into these control systems to put remote facilities in danger.
To detect such attacks, SCADA systems require an intrusion detection technique that can monitor network traffic based on proprietary
network protocols. To achieve this goal, we adapt Bro, a network traffic analyzer widely used for intrusion detection, for use with
SCADA systems. A built-in parser in Bro supports DNP3, a network protocol that is widely used in SCADA systems for electrical
power grids. By exploiting Bro’s intrusion detection features, we apply a specification-based technique to analyze the parsed traffic.
This built-in parser provides high visibility of network events in SCADA systems. Instead of exploiting an attack signature or a
statistical normal pattern, SCADA-specific semantics related to each event are analyzed. Such analyses are made in terms of defined
security policies which can be included at runtime. Our experiments are carried out in a laboratory-scale SCADA system environment
with well-formatted but malicious network traffic. The detection capability and performance of the Broadapted intrusion detection
system revealed in experiments show its potential applicability in the real SCADA system environment.

14. SUBJECT TERMS
Intrusion detection; Security specification; Critical infrastructure; Bro; SCADA

15. NUMBER OF PAGES
12

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

Adapting Bro into SCADA:
Building Specification-based Intrusion Detection

System for DNP3 Protocol
Hui Lin, Zbigniew Kalbarczyk, Ravishankar K. Iyer

Electrical and Computer Engineering Department
University of Illinois at Urbana Champaign

(hlin33, kalbarcz, rkiyer)@illinois.edu

Abstract

Modern SCADA systems are increasingly adopting Internet
technology to control industry processes. With their security
vulnerabilities exposed to public networks, an attacker is able
to penetrate into these control systems to put remote facilities
in danger. To detect such attacks, SCADA systems require an
intrusion detection technique that can monitor network traffic
based on proprietary network protocols.

To achieve this goal, we adapt Bro, a network traffic analyzer
widely used for intrusion detection, for use with SCADA sys-
tems. A built-in parser in Bro supports DNP3, a network protocol
that is widely used in SCADA systems for electrical power
grids. By exploiting Bro’s intrusion detection features, we apply
a specification-based technique to analyze the parsed traffic.
This built-in parser provides high visibility of network events
in SCADA systems. Instead of exploiting an attack signature or
a statistical normal pattern, SCADA-specific semantics related
to each event are analyzed. Such analyses are made in terms
of defined security policies which can be included at runtime.
Our experiments are carried out in a laboratory-scale SCADA
system environment with well-formatted but malicious network
traffic. The detection capability and performance of the Bro-
adapted intrusion detection system revealed in experiments show
its potential applicability in the real SCADA system environment.

I. INTRODUCTION

SCADA (Supervisory Control and Data Acquisition) systems
are distributed computer systems used for monitoring and con-
trolling manufacturing processes. Modern SCADA systems, such
as those for controlling electrical power grids, adopt general
Internet communication technology to improve control efficiency.
However, exposing control systems to public networks opens a
door for security threats from which such critical infrastructures
were previously isolated.

In contrast to regular enterprise systems, SCADA systems
have unique security objectives. Although the confidentiality of
system data is critical, SCADA systems are more concerned
with manufacturing process availability and integrity, which has
become a priority with the recent discovery of real and complex
attacks. [7], [18].

A. Challenges of Applying Traditional Intrusion Detection Sys-
tems

Traditional Intrusion Detection Systems (IDSs), either
signature-based or anomaly-based, cannot be directly applied
to SCADA systems. Lack of analysis on real attacks in con-
trol environments makes it impossible to apply signature-based
techniques. On the other hand, anomaly-based techniques, based
on trained normal patterns, suffer from two drawbacks: an
unbearable rate of false positives and inability to detect mali-
cious events, either accidentally or intentionally, following those
normal patterns.

Additionally, application of traditional IDSs is also challenging
because they always lack sufficient capabilities to investigate
network traffic based on unique proprietary protocols in SCADA
systems. This insufficiency prevents in-depth analysis on network
activities, which blinds traditional IDSs to SCADA-specific at-
tacks.

B. Proposed Contributions

We introduce a specification-based intrusion detection frame-
work [24] that provides high visibility of semantics carried by
proprietary network protocols. Specifically, we adapt Bro [1],
[23], a real-time network traffic analyzer, to integrate parsers
of proprietary network protocols used in SCADA systems for
electrical power grids, such as DNP3, a built-in parser that
collects SCADA network events. Instead of exploiting an attack
signature or a statistical pattern, the ID analyzes SCADA-specific
semantics related to each event. To provide good portability
and extensibility, analyses are run with defined security policies
implemented.

As proof-of-concept, several security policies are implemented
and integrated into our IDS framework to demonstrate how net-
work semantics are analyzed. Our contribution includes redefin-
ing signature-based and anomaly-based detection methods based
on such SCADA system semantics. Furthermore, an additional
policy is proposed based on DNP3 definitions to guarantee the
integrity and availability of control processes. In this policy,
SCADA system operations are differentiated by the type of
access made on remote facilities. Type-specific requirements are
subsequently defined for the transmitted information to guarantee
that an authorized operation is always performed.

The remainder of the paper is organized as follows. In section
II, we analyze security threats and present our assumptions in this
work. Section III describes in detail how the DNP3 analyzing
framework is built based on Bro. In section IV, we introduce
example security policies that analyze SCADA systems through
network semantics. Section V presents experimental setup and
the processing overhead due to the DNP3 analyzer. In section
VI, we implement the proposed security policies and use them
to analyze well-formatted but malicious network traffic. Related
works are introduced in section VII. We conclude and describe
future work in the final section.

II. SECURITY THREATS IN SCADA SYSTEMS

A. System Architecture of SCADA

SCADA systems are distributed systems used to control geo-
graphically dispersed facilities. Centralized data acquisition and
control on the remote facilities are critical to appropriate system
operation. Figure 1 presents components of the SCADA systems
that are commonly used in electrical power grids. Other industry
control systems, such as gas and oil pipelines, wastewater control
systems, share a similar communication structure [25].

The control center includes several human interface computers
and internet communication equipment. Its major responsibility
is to acquire measurement data from a remote site. Based on the
collected data, operators estimate remote devices state and issue
control commands. All these process information are logged
locally, such as in data historians.

The field site is a remote environment which contains propri-
etary field devices and primitive actuators and sensors. The major
responsibility of the field devices is to locally control and collect
measurement data from actuators and monitor sensors through a
fieldbus.

The control network is a long distance channel connecting the
control center and the field site, on which proprietary protocol
is used to transmit information. Many currently used proprietary
protocols, such as DNP3 and Modbus, are built over TCP/IP
protocols in order to transmit information on latest Internet
communication technology.

B. System Interpretation

In order to describe behavior in SCADA systems, we define
the term operation. In the context of this paper, an operation can
be regarded as a basic unit of function to modify the state of a
field site, such as devices outputs or configurations. The effect of
an operation, whether is malicious or not, depends on the initial

Fig. 1. General Layout of SCADA Systems used in Electrical Power Grids

Fig. 2. Abstract Example of Control over Two-Device Field Site

state of the field site before the operation and the content of the
operation.

Figure 2 presents an abstract example on how operations can
affect the state of a field site. In the example, we assume that the
field site has only two devices and at least one of them should
be in an open state to maintain some industry processes. The
state of the whole field site can be represented as combinations
of the open/close outputs of two devices. In this example, Close
Dev B is actually a malicious operation even though it may be
transmitted in the form of well-formatted network packets as it
puts the field site in a hazardous state (both devices are closed).

In a finer granularity level, each operation may consist of
several rounds of network communications. With collected se-
mantics from all network packets, it is possible to guarantee that
each operation is performed in an authorized manner.

C. DNP3: Distributed Network Protocol

SCADA systems adopt proprietary network protocols to trans-
mit measurement data and control commands. In the context
of this paper, a highly structured protocol, Distributed Network
Protocol (DNP3) is analyzed as a representative as it is widely
used in electrical power grids, water controls, and other industry
control systems [15].

DNP3 was initially built over serial lines. The protocol is
divided into three layers: application layer, transport layer and
data link layer. This hierarchy, however, cannot directly be
matched to their corresponding layers in the TCP/IP stack.
As a result, all three DNP3 layers are grouped together as a
single application layer fragment over the TCP layer (Figure III).
Because of this, DNP3 is currently also referred as DNP3 over
TCP. In this paper, we refer the DNP3 network packet as the
whole payload over TCP protocol. Our DNP3 parser works all
the way up to the DNP3s original application layer in which
SCADA systems semantics are located.

DNP3 supports five different types of data for remote devices:
analog input, binary input, counter input, control output and
analog output. A typical DNP3 request includes (1) function
code- specifying controls that are performed on a field site; and
(2) indices of field devices on which the control is performed.
To respond to a request, field devices issue a response message
carrying the requested measurement data or a state flag if an
error occurs. DNP3 also supports unsolicited responses, commu-
nication initiated by the field site without a request to indicate
significant events.

D. Threat Model

In this section, we present security threats faced by SCADA
systems. We discuss these threats component-by-component,
examining how an attacker can issue malicious operations to

Fig. 3. Support DNP3 Over TCP

evade detection by traditional protection mechanisms such as
firewall and anomaly detection.

Real attack incidents have revealed various penetration path-
ways into the control center have been discovered in real attack
incidents [26], [12], such as dial-in modems and wireless access
points (Figure 5 in [12]). Attackers who penetrate the control
center successfully can then issue well-formatted but malicious
operations that can put the field site into a hazardous state.
These operations can follow the same traffic pattern as normal
network packets, modifying only payload carrying commands or
measurements.

Historically, the control network has been another entry point
vulnerable to attack, as information is usually transmitted in plain
texts. Recently, several authentication and encryption protocols
that extend DNP3 have been designed to guarantee the integrity
and confidentiality of network traffic [15], [22]. Following this
design momentum, we assume that the network traffic cannot be
compromised during the transmission over the control network.

Field devices deployed in the field site are vulnerable to
rootkits or malware that can corrupt the devices, causing them
to hide the correct state of the field site and communicate with
the control center in a manner adopted by the attacker [18]. By
estimating the wrong state, the control center may also issue
wrong operations to the field site, generating unexpected or
disastrous consequences.

The last entry point of attacks is the primitive actuators and
sensors, which could be exploited to generate false or malicious
data measurements. Based on these data, the control center may
estimate a faulty state of the field site and thus issue wrong
operations [21]. But to successfully perform such attacks, an
adversarys physical access to the field site is usually required.
From [10], [20], we learn that this type of attack could be
avoided and detected as long as sufficient numbers of actuators
and sensors are properly protected.

In the context of this paper, we assume that we can trust (1)
the transmission of the control network; (2) measurement values
from primitive actuators and sensors located in the field site.
Our purpose is to protect cyber-attacks which could penetrate
into SCADA systems through the control center and the field
devices.

III. THE DNP3 ANALYZER: INTRUSION DETECTION
FRAMEWORK BASED ON BRO

A. Adapt Bros Network Analysis Framework in SCADA Systems

In this paper, we adapt Bro into SCADA to build an intrusion
detection system. Bro is a real-time network traffic analyzer
which is widely used in forensic analysis, intrusion detection
and other network-related analysis [21]. As shown in figure 4,
Bro is conceptually divided into protocol parsers (event engines),
event handler APIs, and policy modules interpreter.

Our work to adapt Bros features into SCADA systems is
also highlighted figure 4. We start it by building new parsers
of proprietary network protocols. This built-in parser collects
SCADA system specific events. The semantic information carried
by each event, such as issued commands or collected measure-
ment results, is delivered to the corresponding event handler
APIs. These APIs could be implemented by different policy

Fig. 4. Adapt Bros in SCADA Systems

modules to perform analyses on the SCADA-specific events. The
separation of events and policy make it convenient to specify
different processing methods under different context.

At this stage, parsers of both DNP3 and Modbus protocol are
integrated into Bro. Similar to DNP3, Modus protocol is also
used to establish communications between the control center
and the remote field site. DNP3 and Modbus protocol share
many representative features in terms of the structure of network
packets, data types. In this paper, we will focus our discussion
on DNP3. So for the rest of the paper, the DNP3 analyzer is
used to refer to our IDS framework with DNP3 parsers and
some example policy modules (explained later in detail) being
included.

B. DNP3 Parser

The parser’s primary responsibility is to translate network
byte streams into meaningful data fields according to a protocol
definition.

The main body of Bro is written in C++. However, we are
not directly developing the DNP3 parser in this complicated
high-level programming language. A compiler-assisted method
named as binpac is used to shorten the development period
and avoid logical errors. For instance, in our parser design, the
structures of data fields are commonly complex. As a result,
a field is recursively disassembled into smaller sub-fields until
it can be represented by basic data types such as integers or
bytes. Directly representing this structure and properly managing
memory allocations in C++ easily introduces bugs and logical
errors.

Figure 5 illustrates a design procedure using binpac. DNP3
definitions are first represented by the binpac script, which is
specifically designed to represent the hierarchical structure of a
network protocol. With the help of the binpac compiler, binpac
scripts are then automatically translated into C++ codes. The
resulting DNP3 parsers in C++ codes are finally integrated into
Bro with few additional lines of codes.

Fig. 5. Binpac Development Procedure

C. Event Handler APIs

Once the DNP3 parser finishes decoding, a network may occur
which contains certain data fields or even all fields in a network
packet. For example, a dnp3 crob event is generated by the
DNP3 parser once a command to control relay output is found
in the dnp3 request. The contents of the command are properly
parsed and collected by the corresponding API.

Event handler APIs are predefined interfaces between policy
modules and the DNP3 parsers. We provide a prototype for each
event handler API, including a name and its arguments list. These
APIs work in call-back mechanisms. The value of each argument
is updated by the parsers. If the body of an API is implemented
as part of a policy module, the protocol parser is intercepted with
the execution of all implemented event handlers.

The declaration of event handler APIs and their implementa-
tion are separated in order to facilitate adapting security policy
dynamically. Our design principle is to declare as many APIs
as possible to cover all application-level semantics from DNP3
network packets. Selective APIs are defined at runtime according
to a system’s ability to perform accurate and efficient detection.

D. Policy Modules

Through the event handler APIs, policy modules can access
parsed DNP3 semantic information. Each policy module is
implementing selective event handler APIs by the Bros specified
script language. This type-safe language includes normal arith-
metic and logic operations, conditional statements, loop state-
ments, and other functionalities that support intelligent analyses.
Scripts are then interpreted and executed to get analysis results.

Policy modules can be implemented according to both protocol
definitions and security specifications. As a result, some policy
modules may be used to validate whether the monitored network
packets conform to protocol definitions. Other policy modules,
however, can perform additional validations on network pack-
ets, such as sequence validations, in order to detect malicious
network behaviors. In the context of this paper, several example
policy modules are described in detail in Section XXX.

E. Deployment of Bro-based IDS

Figure 6 illustrates the common architecture that connects
SCADA systems and corporate environments. The detailed de-
scription of this architecture can be found in [17]. The architec-
ture is logically divided into four zones: external environments
(Zone 1); corporate environments (Zone 2); public accessible
control systems (Zone 3); and SCADA systems (Zone 4). Zones
are separated from one other by firewalls and demilitarized zones
(DMZs).

Traditional IDSs are deployed to monitor network activities at
critical points of corporate environments and public accessible
environments, such as entry points of firewalls and DMZs.
However, SCADA systems are left unmonitored in the original
design, as traditional IDSs are not able to analyze SCADA-
specific semantics from network traffic.

The proposed Bro-adapted IDS is used to monitor SCADA
systems located in security-blind areas. The Bro-adapted IDSs
can be deployed at entry points of control system LANs or
fieldbus networks to monitor all network traffic. This purpose

Fig. 6. IDS Deployment in Control and Corporate Systems

can be achieved by configuring hardware such as span ports or
mirroring ports in most commercial switches or routers. In some
situations, engineers are also able to connect human machine
interface (HMI) workstations or field devices internally for
configuration, such as via VPN or wireless connections. Whereas
this internal connection, which bypasses perimeter networks, can
be exploited as a backdoor, Bro-adapted IDS can also be directly
deployed on those machines in order to reduce such a risk.

F. Use Bros Extension in SCADA Systems

Since the Bro-adapted IDS, specifically the DNP3 analyzer
described in this paper, is built on Bro, many of Bros existing
features can be used to enhance analysis. Bro is a stateful tool
such that states of certain network packets can be stored in
its address space. Consequently, events from different network
packets can be easily correlated.

Another important feature is Bros capability to interact with
host systems. The Bro client communication library (broccoli)
can be used to write a client program that generates events Bro
can understand [32]. In one of our example policies, broccoli is
used to connect the DNP3 analyzer to some proprietary system
analysis software.

IV. EXAMPLE POLICY MODULES

In this section we present example policy modules which
are based on protocol definitions or security specifications.
By presenting these policy modules, we are not claiming that
they formally conform to DNP3 or provide complete intrusion
detection in SCADA systems. Our goal is to present several ex-
amples that demonstrate how SCADA system events are analyzed
through the DNP3 analysis framework.

A. Policy Module based on Protocol Definitions

The purpose of this policy module is to ensure that the
collected network packets are following protocol definitions. In
the context of this paper, the conformance to DNP3 is maintained
by intra-protocol and inter-packet validations. The policy module
processes semantic information collected by necessary event
handler APIs and generates run-time alerts once ill-formatted
network packets are detected.

1) Intra-Packet Validation: A network packet consists of dif-
ferent data fields, such as application packet header and function
code. A data field is served for a specific function for the whole
network packet. Protocol-level validation verifies value of each
data field.

For each single field, two aspects of information are verified.
The first aspect is the analysis of valid value ranges. For example,
DNP3 uses an 8-bit byte to represent a function code. However,
37 out of 256 possible values are treated as legal, and the
remaining values are reserved for future use.

The second aspect involves the dependencies between fields
within the same network packet. In DNP3, the structures of
certain data fields are not statically defined but could vary
according to the values in other fields such as function code,
object type, etc.

2) Inter-Packet Validation: In addition to defining rules for
the data fields within a network packet, DNP3 also defines rules
between packets. For example, a SELECT packet is used in
conjunction with OPERATE packet. The control center first sends
the SELECT packet to select the remote field devices. After
the SELECT is properly confirmed, the OPERATE packet is
issued to operate on the field devices which were exactly selected
before.

In order to perform this validation, our proposed IDS retains a
record of previously parsed network packets. While an incoming
packet is being parsed, a policy module relies on the both stored
and newly parsed values to validate their dependencies.

B. Policy Module based on Security Specifications

In many situations, even if the network packets pass the
intra-packet and inter-packet validation, the network traffic still
contains malicious packets. According to our threat model,
malware can be installed in the control center, so it is possible
to perform man-in-the-middle or replay attacks by modifying
specific application semantics in network packets. For instance,
if the control center is required to send a command to close a
breaker in order to avoid hazardous states in the field site, an
attacker can modify the command to open it by simply flipping
a single bit which represents open/close status.

We believe that these process-level attacks are more dangerous
than traditional denial-of-service attacks, as they neither generate
ill-format network packets nor produce anomaly network traffic
pattern. If application-level semantics are not carefully analyzed,
the attacker can easily evade detection.

With such semantic information available from the DNP3
analyzer, we can implement policy modules using methods
whose implementation would be complicated or impossible for
traditional IDSs. In the following sections, these semantic-driven
methods based on signatures, statistical normal patterns, or
system-specific specifications are illustrated.

1) Signature-based Detection: Unlike signatures in terms of
byte patterns found in network packets, we can use critical states
of a remote field site to define signatures. Take the power grid
environment as an example, number of circuit breakers and other
electrical instruments are used to control substations in remote
fields. Circuits breakers are usually not all opened or closed
as the power generated and consumed should be appropriately

balanced. So it is critical to prevent them from entering into
certain configuration which would put whole systems into danger.

This type of critical configurations would be predefined by sys-
tem operators as a signature. By learning application semantics
related to such configurations, the DNP3 analyzer can validate
such signature successfully.

C. Anomaly-based Detection

Although some critical configurations may be able to directly
describe the system state, system physical states are determined
by indirect state variables in most practical cases, because those
indirect state variables are usually too complex to be directly
measured.

For example, in the electrical power grid, system state is
uniquely defined by voltage phasors in each bus. However,
directly measuring the magnitude and angle of the voltage in
real time is impractical. As a result, other feasible measurements,
such as power injected or power consumed, are collected to
estimate the system state. This process, which is called state
estimation, is an important technique for analyzing the security of
power grids. State estimation results directly inform the operator
whether the monitored system is in a normal or abnormal state.
Traditionally, the control center in the electrical power grid
performs state estimation for all connected field sites. With the
introduction of computation capabilities to field sites, local states
estimation can also be performed to reduce the control center’s
workload.

As in the case of a electrical power grid environment, many
SCADA system environments adapt their system-specific tech-
niques to perform security analysis. These techniques usually
require large number of computations, which would be difficult
to implement in traditional IDSs. Due to this challenging require-
ment, we use broccoli (Bros client communication library) to
build a communication channel between the DNP3 analyzer and
proprietary SCADA system analysis software. In other words, the
DNP3 analyzer performs like a front-end of the analysis which
collects semantic information at run time and leaves the actual
information processing to the back-end software engine that is
common in SCADA systems.

1) Specification-based Detection: Specification-based meth-
ods allow system operators to define security policies based on
the system’s capabilities. In addition to alerting on critical system
states, alerts generated when security policies are violated would
provide more context information on how attacks penetrate into
systems.

In this section, we propose a recommended security policy
based on the understanding of DNP3. The purpose of this
security policy is to guarantee the integrity and availability
of field sites by validating each operation. Additional policies
concerned with specific system implementations can further be
integrated into the analyzer.
Definition of Security Policy

To better define the policy, we represent SCADA systems in
terms of objects, subjects, and operations in the context of DNP3.

By the definitions of DNP3, a request is initiated from the
control center to perform an operation on field sites. A DNP3
request usually contains a command indicating what operations

to perform and an index of target devices. The subject refers to an
operator in the control center and can be defined as a normal user
or administrator (root user). Administrators have higher privilege
than normal users.

The object refers to resources in the remote field site and
can be classified into two types: 1) actuators and sensors whose
integrity and availability can affect industry processes, and 2)field
devices responsible for local data acquisition and control over
actuators and sensors. Software and hardware configurations are
usually associated with the field devices.

Operations, the concept that we introduced in Section III.B, are
initiated by the subject to provide certain service to the object.
In this paper, we propose an original nomenclature to distinguish
operations according to the type of access an operation makes
to the field site. The terminology of access control policy in
operating system design classifies operations into three types:
read, write, and execute. The meanings of these terms are tuned
to fit into the context of SCADA systems. Read operations, for
example, are used to learn the state of field sites by collecting
measurements stored in the field devices as well as the actuators
and sensors. Write operations, such as configuration updates,
are issued to handle field devices. Finally, execute operations
are used to change the state of actuators and sensors such that
industry processes are properly maintained.

Our security policy is expressed as a set of specific rules
established for each operation type.

1. Read operations can be issued from normal users (non-
administrator users) and the collected data must maintain
its integrity.

2. Before issuing write operations from a control center to a
field site, an administrator (root) must authenticate himself
to log in into the control center and the issued network
packets must maintain its integrity before its execution in
the field site.

3 Before issuing execute operations from a control center
to a field site, an administrator (root) must authenticate
himself to log in into the control center and a read operation
which obeys rule 1 must be executed beforehand. The issued
command must maintain its integrity.

For the rread operation, it must be guaranteed that the data read
from the field site truly reflects its state. The write operation,
according to rule 2, should only be issued by an administrator
with a root password. Commands sending with the write opera-
tion must maintain its integrity. The threat is that attackers may
exploit the write operation to misconfigure the field devices or
even install rootkits/malware in them. For the execute operation,
a temporal dependency is defined that it must always follow
an appropriate read operation. The purpose of this rule is to
guarantee that a system administrator is always aware of the
current state of the field site (through the first issued read
operation) whenever an execute operation is issued.
Detection Mechanisms

To enforce the predefined security policy, intra- and inter-
operation rules must be maintained. For example, in rule 2
and rule 3, authentications and DNP3 network activities are
correlated to guarantee that the operation is trusted.

Both intra- and inter-operation rules are established as tempo-

ral dependencies between operation types. As the DNP3 analyzer
collects semantics information from network packets at runtime,
such as each operation’s type of access, temporal dependencies
can be validated by storing and comparing operation types
carried by network packets.

V. PERFORMANCE ANALYSIS ON DNP3 ANALYZER

In this section, we focus on experiments concerned with the
DNP3 parser, which is served as the foundation for further
security analysis in the DNP3 analyzer.

A. Setup of Experiment

All experiments (including security analysis in Section VIII)
are carried out in an laboratory-scale emulated SCADA system
consisting of proprietary hardware and software commonly found
in todays power grid environment. (Figure 7). The hardware
configuration includes a simulated control center and a remote
field site, which are configured into two different logical or
virtual local area networks by a connected switch. A control
center consists of a Windows XP workstation that communicates
with the field site to request measurement data or issue control
commands. The field site includes a SEL 3530 Real Time
Automation Controller (RTAC) [6] and a SEL 421 Protection
and Control Relay [5]. The relay connects to three electrical
buses to directly collect their runtime currents and voltages. The
RTAC device, which mediates between the control center and the
relay, forwards commands from the control center to the relay
and sends measurement data back from the relay to the control
center.

The software configuration consists of Communication Pro-
tocol Test Harness from Triangle MicroWork inc.[], installed
in the control workstation. This Windows application provides
a GUI interface for controlling real field devices such as the
RTAC and the relay. Several software simulated field devices
used in SCADA systems also come with this software package.
Experiments in this paper are made on both simulated and
real field devices, because simulated devices provide complex
functionality that is impractical to configure in a laboratory
environment, while real field devices provide realistic responses.

B. Breakdown of Parser Code

Table I lists the code size of each component in DNP3 parser in
terms of binpac script. The parsing module describes the code
block to decode network streams into meaningful data fields.
Complex user-defined data fields are usually recursively defined
by basic data types. The column of data type represents the size
of the codes to declare those data structures. The last part of
the code declares each Event Handler API that can be used by
policy modules.

Fig. 7. Laboratory Scale SCADA System Testbed

TABLE I
BREAKDOWN OF DNP3 PARSER CODE

Parsing Module Data Type Event Handler APIs
272 lines 551 lines 773 lines

The size of the parsing module, which is always executed,
is kept small. The event handler APIs contribute to a large
amount of codes. The purpose is to provide a sufficient number
of APIs to analyze the parsed information. Each event handler is
executed only when the API is implemented to perform specific
analysis. Consequently, a large number of declared APIs does
not necessarily reduce the performance overhead.

C. Policy Module based on DNP3 Definitions

A policy module is developed according to DNP3 definitions.
This policy module performs both intra- and inter-packet valida-
tion to guarantee that well-formed network packets are received.

TABLE II
EVENT HANDLERS DEFINED TO VALIDATE DNP3 PACKETS

Event Handler APIs Implementation
Complexity

dnp3 application request header 49 lines of scripts
dnp3 application response header 29 lines of scripts

dnp3 object header 278 lines of scripts
other 88 lines of scripts

Table II presents event handlers implemented to validate
monitored DNP3 network packets. When the DNP3 analyzer
generates one of these events, the corresponding analysis is
made in terms of Bros specified script. For example, in the
dnp3 application request header event handler, function code
field, which is one of its formal parameter, is validated whether
it is in the valid range or not.

This policy module is developed based on synthetic legal
traffic generated from Communication Protocol Test Harness to
the RTAC machine. This Protocol Test Harness is configured to
generate all its included operations. The policy module is refined
until no alerts are generated under legal network packets.

This policy module is tested further by running it against
synthetic illegal network traffic generated by injecting errors bit
by bit into the legal network traffic collected during the module
development. In order to emulate modifications made by the
attacker, CRC and checksum values are recalculated after bit
injection. As a result, the DNP3 analyzer can only detect syntax
errors by performing intra- and inter- packet validation.

TABLE III
DETECTION OF ILL-FORMATTED NETWORK PACKETS BY DNP3 ANALYZER

DNP3
Operation

Injected
Errors

Alerts from
DNP3 Analyzer

Alerts from
Wireshark

Read 1192 436 794
Write 4512 2874 3520

Execute 568 656 527
File Op 2528 2306 1877

Table III shows the detection results from both our DNP3 an-
alyzer and Wireshark, which also parses DNP3. Twenty different
types of requests supported by the test harness are issued. Both
the requests and the corresponding responses are collected. All
packets with error injected are replayed under the monitor of the
DNP3 analyzer.

Due to space limitations, different DNP3 packets are grouped
into four types according to nomenclature in Section V. Opera-
tions related to physical files (File Op) are considered separately
as a file usually consists of different type of operations.

Alerts from the DNP3 analyzer include syntax errors and intra-
and inter-packet errors. Alerts generated by Wireshark include all
possible warnings that can be found, such as malformed packets,
failed to decoding and other warnings.

As errors are injected bit by bit, the number of errors is directly
related to the length of the request. For both parsers, the number
of alerts is not equivalent to the number of detection, as several
alerts may correspond to the same error. In addition to the syntax
error and intra-packet validation, the DNP3 analyzer provides
inter-packet validation. For example, if a field indicating the
number of objects in the DNP3 response is corrupted, the DNP3
analyzer detects not only a syntax error but also an inconsistency
in terms of number of objects between the DNP3 request and
this response. For a single error, the DNP3 analyzer provides
different aspects of information. As a result, we can have more
alerts than the number of errors (detection of errors in execute
operation in Table III)

D. Parsing Overhead of Single Packet

In SCADA systems, once an operation is performed, it is
difficult to recover its effect. Quick detection is critical as it can
instantly be remedied. As a result, we present overhead generated
by the DNP3 parser over a single packet.

Figure 8 presents the DNP3 parser’s execution time normalized
to time overhead of Wireshark. We run Wireshark, Bro without
the DNP3 parser, and Bro with the DNP3 parser against network
packets of four different sizes. In general, the size of the DNP3
network packet is not as large as listed. The large network packet
can also degrade field device performance: for example, the
protocol test harness configures the largest size of DNP3 packet
as 1024 bytes by default.

With different design purposes and principles, Bro runs more
slowly than Wireshark, whose ultimate goal is parsing. Bro’s effi-
ciency in large scale computing environment has been discussed
in [16]. The real overhead which is due to the DNP3 parser,
including both parsing and execution of the mentioned protocol
validation module, is less than twenty percent.

With packet size changing in this range, neither Wireshark nor
Bro obviously result in different process overhead, as this size
is actually smaller than the general TCP payload.

Fig. 8. Detection Overhead of DNP3 Parser on Single Packet

VI. EVALUATION ON DIFFERENT SECURITY POLICIES

In this section, we focus on the security analysis of simu-
lated SCADA system environments. Several easy-to-implement
intrusions based on simple socket APIs have been developed
to change the state of the Rtac and the relay machine. The
security polices proposed in Section V are implemented by Bros
specified script language. The effectiveness and implementation
complexities of policies are tested against the developed attacks
as a proof-of-concept.

A. Implementation of Attacking Cases

In the simulated SCADA systems, we refer to an attack ma-
chine that injects errors into DNP3 network packets. The location
of the injection is the selected payload; thus carried commands
or measurements are compromised. The error-injected packets
are reconstructed as well-formatted ones with TCP headers and
IP headers and issued to the network.

We run our malicious codes in separate machines to better
manage them and avoid unnecessary compromises. The codes
themselves, however, simply require sock API, which can be
found in many commonly used OSs and can therefore be
integrated into the workstations used in SCADA systems. In
the following sections, we present implementations of different
sample security policies mentioned in Section V. Because imple-
mentations have been integrated, the DNP3 analyzer runs while
the attack machine performs malicious actions. Two possible
consequences are potential concerns in all our experiments: the
detection capability in terms of false positives and false negatives
and the chance that the DNP3 analyzer fails to analyze any
network packets.

B. Signature-based Policy

In order to validate the signature-based policy, we predefined
critical system states as signatures in terms of the relay machine’s
binary output values. The DNP3 analyzer is configured to analyze
the network traffic and estimate the relays state. By comparing
the estimated states to the signature at runtime, the analyzer
generates alerts.

The workstation in the control center is properly configured
to continuously issue commands to change the binary outputs of
a simulated SEL 3515 Software Relay included in the protocol
test harness [3], [2]. In DNP3, the operation to set/clear a binary
output can be represented by a mere two bytes in the application
layer, one indicating the index of a binary output and the other
an set/clear command. A software relay is chosen instead of the
physical one because few outputs are configured.

Within the assumed threat model, the control center can be
compromised or completely controlled by a vengeful former
employee. To simulate this attack scenario, the attack machine

Fig. 9. SCADA Systems Testbed with Attack Machine

performs replay attacks based on the monitored network traffic
(Figure 9). Errors are injected into bytes representing binary out-
puts. The attack machine randomly chooses the index of output,
changes the set/clear byte and issues the request again to the
network. With the CRC and checksum being properly modified,
the malicious but well-formatted DNP3 requests successfully
change binary outputs of the software relay into unexpected
values.

In the context of this experiment, we use a combination
of the five binary outputs to represent states of the software
relay. Three critical system states are predefined in terms of
such combinations. In order to perform such detections, two
event handler APIs dnp3 object header and dnp3 crob (CROB
is short for control relay output binary) are implemented. We
further define a state table accessed by both dnp3 object header
and dnp3 crob. This table contains five binary values used to
estimate the states of the software relay.

After the state table is initially assigned the relay states, the
analyzer monitors every DNP3 network packets. It generates
adnp3 object header event when a well-formed header of mea-
surement or command objects is found in a DNP3 request. The
implemented handler informs the DNP3 analyzer that a request is
found, what control commands are issued, and other connection
related information. In this context, DNP3 analyzer generates
dnp3 crob events once it finds objects to configure binary outputs
of the software relay. With the information collected from each
event, the analyzer updates the state table accordingly. If the table
values match the predefined critical states, alerts are generated.

Table 4 shows the complexity of the implementation, in terms
of Bros specified scripts, required to perform the signature-based
analysis. Both implementations to analyze dnp3 object header
and dnp crob events require not more than 100 lines of Bro
scripts. The others part in Table 4 indicates the amount of script
for accessary procedures, such as definitions of the state tables
and mechanisms of the log framework. With the small number
of scripts, the DNP3 analyzer can efficiently narrow down its
analysis to a specific aspect of the network, such as the relay
control binary outputs in this example.

TABLE IV
IMPLEMENTATION COMPLEXITY OF SIGNATURE-BASED POLICY

Event Handler APIs Implementation
Complexity

dnp3 object header 5 lines of scripts
dnp3 crob 78 lines of scripts

other 62 lines of scripts

To run the experiment, the attack machine replays the errors in-
jected DNP3 requests to the software relay. The latency between
each request is set as 1 second. The experiment is continuously
carried out for approximately 10 hours, generating a total of 9344
requests.

In order to determine whether detection is correct, we inten-
tionally issue a DNP3 read request right after each malicious
request. The read request polls out all inputs/outputs values from
the software relay, including binary outputs used as signatures
in this experiment. By comparing the system states from read
requests and alerts generated from the DNP3 Analyzer, actually
both zero false positive and false negatives are found. This is a

reasonable result as signature-based detection does not require
much intelligence during detection. The success of detection
largely depends on the choice of signatures. The drawback of this
policy is that even with all critical system states being detected,
some states of the software relay are still compromised, but not
leading system to critical contingencies.

On the other hand, to validate the chance that the DNP3
analyzer misses any network packets, we plan to reduce the
latency between each pair of malicious requests. However, we
have found that 1 second is the lowest frequency that can be
configured to the software relay. Lower frequency results in
dropped requests or infinite loops. However, this situation is not
found in the real hardware relay. In a later experiment directly
involving the physical relay, we issue malicious network packets
with much more intense frequency.

C. Anomaly-based Policy

In this experiment, the attack machine, integrated into the
control center, sends DNP3 requests to the physical relay. We
connect the DNP3 analyzer to a Matlab module performing state
estimation in order to analyze the system state after suspicious
operations (Figure 10). The Matlab module, available from the
Mathwork community [4], performs weight least square state
estimation [8] on IEEE 14-bus and 30-bus test systems. The
Matlab modules are installed in a different Ubuntu machine and
connected to the DNP3 analyzer through the Ethernet.

Bad measurement data detection mechanisms are not included
in the state estimation module, which lacks a threshold value that
is impractical to obtain in small-scale laboratory environment.
Consequently, instead of experimenting with detection capability,
we focus on the chance that the DNP3 analyzer fails to analyze
network packets as a result of additional online computations.

In order to build the communication channel between
the DNP3 analyzer and the state estimation module, we
have implemented event handlers of dnp3 response header,
state estimation recv and state estimation sent events in the
analyzer and a broccoli client program in the state estimation
machine based on the Bro client communication library. The
DNP3 analyzer generates dnp3 response header when a well-
formed DNP3 response is issued by the replay. We implement
this dnp3 response header event to send a message to the
broccoli client to start state estimation in a Matlab engine. After
finishing the computation, the broccoli client sends results back
to state estimation recv event which are then logged.

As shown from Table V, the DNP3 analyzer does not perform
much work, serving merely as a front-end measurement collector.
The module’s most complex component is the broccoli client,
which mediates between the DNP3 analyzer and the back-end
Matlab engine.

Fig. 10. SCADA System Testbed with State Estimation Module

After constructing the communication channel, we start the
attack machine in the workstation to send DNP3 requests to the
physical relay. As certain delay can be expected from the DNP3
analyzer, we insert latency between DNP3 requests. For each
latency value, a total of 20000 requests have been run.

TABLE V
IMPLEMENTATION COMPLEXITY OF ANOMALY-BASED POLICY

Event Handler APIs Implementation
Complexity

dnp3 response header 5 lines of scripts
state estimation recv 17 lines of scripts
state estimation sent 5 lines of scripts

other 128 lines of scripts
broccoli client 347 lines of scripts

Figure 11 (a,b) illustrates what is observed when state estima-
tion is made on 14-bus and 30-bus test systems. For both cases,
we start from latency values when all events can be monitored
by the DNP3 analyzer. As the latency is decreased, the DNP3
analyzer misses more and more events. During our experiments,
both the network communication and state estimation times for
each request are also collected and normalized to the values
collected when no events are missed.

(a)

(b)

Fig. 11. SCADA System Testbed with State Estimation Module

From Figure 11 (a), a pulse of event loss is found when latency
is reduced to 0.05 seconds from 0.06 seconds. Coming with this
pulse is the big increase of the state estimation time. This is
probably due to the fact that when one computation is still in
progress, it may be interrupted by another. Extra time is needed
from the Matlab engine to handle such exceptions. The other
factor is unpredictable network communication time, which relies
on the network condition. As a result, the DNP3 analyzer is also
found to lose one or two packets in rare situations even if the la-
tency is increased to as much as 0.15 seconds. This phenomenon
poses a noticeable threat if the DNP3 analyzer is connected to
proprietary software. In order to spare more time on the state
estimation, we can further define an additional security policy to

raise alerts when a request is sent too frequently. However, for
the time spent on the networks, an attacker can intentionally send
some flood traffic to degrade the network performance and issue
a malicious request. Unpredictable network conditions enable
malicious packets to evade detection even if they are sent with
long latency. To thoroughly eliminate this uncertainty, the DNP3
analyzer may be installed on the same machine as the proprietary
system analysis software.

D. Specification-based Policy

1) Validation on Execute (Write) Operation: This experiment
still follows the experimental setup presented in Figure 9. As
rules defined to restrict write operations are similar to execute
operations, the experiment focuses exclusively on the latter.
The authorized sequence order in the defined security policy
for performing an execute operation is 1) authentication of
the operator, 2) a read operation, and 3) a execute operation.
The attack machine uses localhost root SSH login to simulate
the authentication actions. A read operation and an execution
operation, consisting of SELECT and OPERATE DNP3 requests,
are subsequently issued. While the execution operation is always
performed, the authentication and the read operation are ran-
domly ignored to simulate the attackers unauthorized actions.

TABLE VI
IMPLEMENTATION COMPLEXITY OF VALIDATING EXECUTE OPERATION

Event Handler APIs Implementation
Complexity

dnp3 request header 31 lines of scripts
SSH::heuristic successful login Already defined

in Bro
state estimation sent 5 lines of scripts

other 56 lines of scripts

To perform such sequence validation, only the
dnp3 request header needs to be implemented (Table VI)
. The DNP3 analyzer generates such events whenever a well-
formed dnp3 request header is monitored. Another SSH event
which detects successful SSH login is directly used.

TABLE VII
EXPERIMENTAL RESULT TO VALIDATE EXECUTE OPERATION

Latency 0.059224 seconds
Number of Error Injected 269831

Mismatch Found 269831

To run the experiment, the control workstation continues
performing 360000 rounds of such series of operations for around
10 hours (Table VII). If either an authentication or a read
operation is not issued, the control workstation would record
an error occurrence. The DNP3 analyzer parses out the type of
operation from the network packets and validates the sequence
as defined in the policy. During this 10 hour period, zero false
positives or negatives are found.

This experiment is problematic in that the latency between
each round of operations is kept as 0.059224 seconds on aver-
age, because authentication events are monitored on a different
loopback Ethernet interface from the one monitoring the read and
execute operations. If the latency is too small, we find that events
from two Ethernet interfaces may not come in order as they are
generated. Since Bro does not provide low-level synchronization,

the policy module should be further refined in order to handle
such synchronization issues.

After the sequence validation, the untrusted field devices, i.e.
the RTAC machine in the testbed, can corrupt the integrity of
each operation. Validating the integrity of each operation follows
similar methods as does validating read measurement data. This
will be presented in the next section.

E. Validation on Read Operation

To reveal possible threats that can occur during read operation,
we perform a man-in-the-middle attack by compromising the
RTAC machine. To avoid unnecessary compromise, a separate
Evil RTAC machine replaces the original ones. This Evil RTAC
machine forwards DNP3 requests to the relay machine. While a
response is received from the Relay, this Evil RTAC randomly
injects errors into the measurements, i.e. analog inputs values in
this experiment, and sends it back to the control center.

Fig. 12. Man-in-the-Middle Attack in SCADA System Testbed
The DNP3 analyzer monitors all traffics among the control

workstation, Evil RTAC and the physical relay machine. In our
simulated SCADA system testbed, all these three devices are
physically connected to the same switch. As a result, the switch
can be configured to mirror traffic to DNP3 analyzer. In practice,
a field bus is used to connect the RTAC to a single or multiple
relay machines. The DNP3 analyzer can be attached to the
fieldbus to perform similar monitoring.

TABLE VIII
EXPERIMENTAL RESULT TO VALIDATE READ OPERATION

Latency 0.059224 seconds
Number of Error Injected 269831

Mismatch Found 269831

Table VIII shows that only dnp3 analog input32 woFlag
event handler needs to be implemented to perform such valida-
tion. The DNP3 analyzer generates this event when analog inputs
are carried in the response without attaching additional flag
values. Corresponding APIs may be implemented for other value
types in the relay machine. The DNP3 analyzer distinguishes
responses from the relay to the Evil RTAC from the one further
forwarded to the control workstation by device IP addresses.
After parsing values from both responses, comparisons made
on each analog input value can indicate whether the reading
measurements are compromised or not.

To run the experiment, the control workstation issues DNP3
read requests continuously for about 11 hours without any
latency inserted between each request. Within the configuration
of the workstation, the average latency measured between each
request is 0.004505 seconds. In other words, around 220 requests
are sent per second. This frequency is sufficient for most SCADA
system requirements. Each read request actually polls all the
measurements from the Relay machine in order to increase the
packet size. A total of 7742657 errors are injected into bytes

representing analog input values; the DNP3 analyzer generates
zero false positives and false negatives during this 11 hour period.

VII. RELATED WORK

A. Intrusion Detection in SCADA Systems

Anomaly-based detection technique is based on building a
baseline behavior in terms of statistical metrics during a systems
error-free operation period. An intrusion is detected whenever
a run-time audit trace deviates from the established baseline
behavior. This technique is first retrofitted to be used in SCADA
systems. In [28], [27], [11], network-related parameters, such
as IP address or port number, are adopted to construct normal
network traffic patterns. Suspicious events, such as scanning in
SCADA network, could also be detected. However, anomaly-
based detection techniques fail to detect malicious network
packets following the network traffic pattern, such as the attack
cases proposed in this paper.

Specification-based techniques detect intrusions by recording
deviations from logical system behavior. Such authorized be-
havior is defined by logical specifications, instead of an attack
signature or a statistical pattern. Work presented in [33] applies
this technique to advanced metering infrastructures. This work
focuses on the design of security policies and how to formally
verify them. Our work focuses on a framework that can be used
in most SCADA systems.

B. Semantics Analysis in SCADA Systems

Research work from [19], [9] relies on the semantics collected
from real critical infrastructure to estimate the attempt of control
commands that can put system in danger.

[14], [13] propose performing analysis on semantics from each
command by analyzing possible effects on remote field sites.
This approach is similar to our retuned signature-based policy.
As mentioned, detections simply based on certain critical system
states are not sufficient. Our framework provides much better
extensibility.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we adapt Bro to build a DNP3 analyzer as an
example to introduce a specification intrusion detection frame-
work into SCADA systems. With the help of a built-in DNP3
parser, the analyzer is able to generate real-time events observed
in a SCADA system network. A large number of event handler
APIs are declared to collect a sufficient amount of semantics to
investigate the network.

Based on the semantics, we re-implement signature- and
anomaly-based detection policies. Furthermore, a separate policy
is defined to provide different security requirements for each
operation type. All proposed security policies are implemented
and integrated into the DNP3 analyzer. With experiments includ-
ing self-built malicious software, the performance and detection
capabilities of the DNP3 analyzer are presented in similar
network environments similar to those of SCADA systems. More
importantly, the implementations of security policies are kept at
a simple level, proving good extensibility.

While the DNP3 analyzer is proved to be effective and efficient
in the simulated laboratory environment, future works with real

network traffic and environments are required. Currently, the
search for an industrial collaborator is in progress.

ACKNOWLEDGMENT

This material is based upon work supported by the Department
of Energy under Award Number DE-OE0000097. This report was
prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

REFERENCES

[1] Bro intrusion detection system. http://bro-ids.org/.
[2] Communication Protocol Test Harness. http://www.trianglemicroworks.

com/documents/Protocol Test Harness Fact Sheet.pdf.
[3] Legacy SEL-351S Protection and Breaker Control Relay. https://www.

selinc.com/LegacySEL-351S/.
[4] Power system state estimation using wls. http://www.mathworks.com/

matlabcentral/fileexchange/6101-power-system-state-estimation.
[5] SEL-421 Protection, Automation, and Control System. https://www.selinc.

com/SEL-3530/.
[6] SEL3530Real-Time Automation Controller (RTAC). https://www.selinc.

com/SEL-3530/.
[7] Vulnerability analysis of energy delivery control systems. Technical report,

Idaho National Laboratory, Sep 2011.
[8] A. Abur and A.G. Exposito. Power system state estimation: theory and

implementation, volume 24. CRC, 2004.
[9] J. Bigham, D. Gamez, and N. Lu. Safeguarding scada systems with anomaly

detection. Computer Network Security, pages 171–182, 2003.
[10] R.B. Bobba, K.M. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T.J.

Overbye. Detecting false data injection attacks on dc state estimation. In
Preprints of the First Workshop on Secure Control Systems, CPSWEEK
2010, 2010.

[11] L. Briesemeister, S. Cheung, U. Lindqvist, and A. Valdes. Detection, cor-
relation, and visualization of attacks against critical infrastructure systems.
In Privacy Security and Trust (PST), 2010 Eighth Annual International
Conference on, pages 15–22. IEEE, 2010.

[12] E. Byres, D. Leversage, and N. Kube. Security incidents and trends in
scada and process industries. The Industrial Ethernet Book, 39(2):12–20,
2007.

[13] A. Carcano, I. Fovino, M. Masera, and A. Trombetta. State-based network
intrusion detection systems for scada protocols: a proof of concept. Critical
Information Infrastructures Security, pages 138–150, 2010.

[14] A. Carcano, I.N. Fovino, and M. Masera. Modbus/dnp3 state-based
filtering system. In Industrial Electronics (ISIE), 2010 IEEE International
Symposium on, pages 231–236. IEEE, 2010.

[15] K. Curtis. A dnp3 protocol primer. DNP Users Group,(www. dnp.
org/files/dnp3 primer. pdf), 2000.

[16] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experi-
ences with high-volume network intrusion detection. In Proceedings of the
11th ACM conference on Computer and communications security, pages
2–11. ACM, 2004.

[17] M. Fabro and T. Nelson. Control systems cyber security: Defense-in-depth
strategies. Technical report, Technical report, Idaho National Laboratory
(INL), 2007. 2.2, 2007.

[18] Nicolas Falliere, Liam O Murchu, , and Eric Chien. W32. stuxnet dossier.
White paper, Symantec Corp., Security Response, 2011.

[19] Dina Hadziosmanovic, Damiano Bolzoni, Pieter Hartel, and Sandro Etalle.
Melissa: Towards automated detection of undesirable user actions in critical
infrastructures. In European Conference on Computer Network Defense,
EC2ND 2011, pages 41–48. IEEE Computer Society, 2011.

[20] O. Kosut, L. Jia, R.J. Thomas, and L. Tong. Malicious data attacks on
smart grid state estimation: Attack strategies and countermeasures. In Smart
Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, pages 220–225. IEEE, 2010.

[21] Y. Liu, P. Ning, and M.K. Reiter. False data injection attacks against
state estimation in electric power grids. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 21–32. ACM,
2009.

[22] M. Majdalawieh, F. Parisi-Presicce, and D. Wijesekera. Dnpsec: Distributed
network protocol version 3 (dnp3) security framework. Advances in
Computer, Information, and Systems Sciences, and Engineering, pages 227–
234, 2006.

[23] Vern Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23-24):2435 – 2463, 1999. ””.

[24] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou. Specification-based anomaly detection: a new approach for
detecting network intrusions. In Proceedings of the 9th ACM conference
on Computer and communications security, pages 265–274. ACM, 2002.

[25] Keith Stouffer, Joe Falco, and Karen Kent. Guide to supervisory control
and data acquisition (scada) and industrial control systems security. 2006.

[26] Robert J. Turk. Cyber incidents involving control systems. Idaho National
Engineering and Environmental Laboratory, 2005.

[27] Alfonso Valdes and Steven Cheung. Communication pattern anomaly
detection in process control systems. In Technologies for Homeland
Security, 2009. HST’09. IEEE Conference on, pages 22–29. IEEE, 2009.

[28] Alfonso Valdes and Steven Cheung. Intrusion monitoring in process control
systems. In System Sciences, 2009. HICSS’09. 42nd Hawaii International
Conference on, pages 1–7. IEEE, 2009.

	UILU-ENG-12-2206_REPORT DOCUMENTATION PAGE.pdf
	 Form Approved
	 OMB NO. 0704-0188

	REPORT DOCUMENTATION PAGE
	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
	2. REPORT DATE
	1. AGENCY USE ONLY (Leave blank)
	5. FUNDING NUMBERS
	 4. TITLE AND SUBTITLE
	6. AUTHOR(S)
	8. PERFORMING RGANIZATION
	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
	 REPORT NUMBER
	10. SPONSORING/MONITORING
	9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
	11. SUPPLEMENTARY NOTES
	12b. DISTRIBUTION CODE
	12a. DISTRIBUTION/AVAILABILITY STATEMENT
	13. ABSTRACT (Maximum 200 words)
	15. NUMBER OF PAGES
	14. SUBJECT TERMS
	16. PRICE CODE

