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SUMMARY

In this chapter we analyze the interaction between model simplification 

and strategy design in a multimodel context and for multiple agent stochastic 

decision problems with decentralized information. Under quasi-classical 

information patterns, and using singular perturbations approach, we establish 

asymptotic optimality of different multimodels which involve continuous and 

two types of sampled measurements. Our general analysis and discussion serve 

to enhance our understanding of the interrelationships between structual 

features of stochastic large scale systems, like time-scales and weak coupling, 

and strategy design.
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1. INTRODUCTION

The problem of efficient management and control of large scale 

systems has been extremely challenging to control engineers. There are 

essentially two main issues of concern: the modeling issue is complicated

due to the large dimension of the system, and the control design issue is 

complicated due to the presence of multiple decision makers having possibly 

different goals and possessing decentralized information. Efforts to under

stand the inherent complexities have led to the concept of nonclassical 

information patterns [1], This concept expresses a basic fact that a decision 

maker has neither qomplete nor instantaneous access to other decision makers * 

measurements and decisions. A related but perhaps more basic fact is 

expressed by the multimodeling concept [2]. This concept accounts for the 

many realistic situations when different decision makers have different infor

mation about the system structure and dynamics and therefore use different 

simplified models of the same large scale system. These models may differ in 

parameter values, signal uncertainties, and, more critically, in their basic 

structural properties.

A strong motivation for the multimodeling approach is found in 

multi-area power systems. The decision maker in one area uses a detailed 

model of his area only and some lower order "equivalent" of the rest of the 

system. The decision makers in other areas behave in a similar way and as 

a result each has his own view of the same large scale system. The main 

advantage of such an empirical decomposition is that it leads to distributed 

computations and less communication between the controllers because each 

decision maker would only require measurements of the variables appearing in 

his own reduced order model. Many crucial problems (instability, suboptimality,
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etc.) arise because the strategies designed with such inconsistent models are 

then applied to the actual system.

We investigate, 'in this chapter, the effect of multimodeling incon

sistencies on the design and implementation of multicontroller strategies 

under certain quasi-classical information patterns. The approach taken is 

perturbational. If the model inconsistencies are small, it is natural to 

expect that their effect on the designed strategies and on the actual system 

performance would be in some sense small. If this were not the case, the' 

designed strategies would not be applicable to realistic systems whose models 

are never exactly known. We consider this low sensitivity property a 

sine qua non condition for any control design and, in particular, for the 

design of large scale systems controlled from multiple control stations.

Another fundamental property of our perturbational approach is that 

it concentrates on modeling errors caused by reducing the model order. Such 

order reductions are achieved by separating the time scales, that is, by 

considering slow and fast phenomena separately. A typical situation is when 

the decision maker in one area neglects the fast phenomena in all other areas. 

In geographically dispersed systems this practice is based on the experimental 

observation that faster phenomena propagate to shorter distances than the 

slower phenomena. For example, in a multimachine transient the slower 

oscillatory modes are observed throughout the system, while faster inter

machine oscillations are of a more local character [3].

A tool for analyzing the change in model order is the so-called 

singular perturbation method which converts the change of model order into a 

small parameter perturbation [4]. This parameter multiplies the derivatives 

of the fast state variables and when it is set to zero the fast phenomena are
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neglected. The fast phenomena are treated separately in the fast time scale 

where the slow variables are "frozen" at their quasi-steady state values.

This two-time-scale approach is asymptotic, that is, exact in the limit as 

the ratio of speeds of the slow versus the fast dynamics tends to zero. When 

this ratio is small, approximations are obtained from reduced order models in 

separate time scales. This way the singular perturbation approach alleviates 

difficulties due to high dimensionality and ill-conditioning resulting from 

the interaction of slow and fast dynamic modes.

The chapter is organized as follows: In Section 2, we study the

fundamental problem of modeling and control of singularly perturbed systems 

driven by Wiener processes under various cases of continuous and sampled 

observations. An extension of the single parameter model, which realistically 

captures the multimodeling situation, is formulated in Section 3 using multi

parameter singular perturbations. In Section 4, we obtain multimodel solutions 

to Nash and team problems under certain quasi-classical information patterns, 

and establish their relationship with the solutions of the full problem. We 

summarize the results with some concluding remarks in Section 5.

To highlight the ideas, we have adopted an informal style for the 

presentation and discussion of the main results. More rigorous treatment can 

be found in quoted references.
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2. MODELING AND CONTROL OF STOCHASTIC SINGULARLY PERTURBED SYSTEMS

2.1» Well-Posedness of Different Models

The optimal control of stochastic singularly perturbed systems with 

white noise inputs leads to difficulties not present in deterministic problems. 

This is due to the idealized behavior of white noise which "fluctuates" faster 

than the fast dynamic variables. To illustrate the problem of optimally 

controlling a stochastic fast dynamic system, consider the following standard 

LQG formulation

system dynamics: edz = Az dt + Bu dt + Gdw (2.1a)

measurement process: dy = Cz dt + dv (2.1b)

T
cost function: J = E { z T z  + J  (z’Q z +  u'u)dt}. (2.2)

0

Here, e >0 is the small singular perturbation parameter; w(t) and v(t) are 

standard Wiener processes independent of each other, and all matrices are 

time-invariant, with T > 0, Q>0. We will further assume that A is a stable 

matrix, that is, ReA(A) <0.

The optimal control u* which minimizes the cost J is obtained in 

the usual manner by applying the separation principle, so that

u* ■ -B'Kz (2.3)

where K satisfies the Riccati equation

eK = -A’K - K A - Q  + KBB'K; K(T) - j T .  (2.4)

The vector z (t) denotes the optimal estimate of z(t) given the past observations, 

which for any given u(t) is the output of the Kalman filter
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edz = Az dt + Bu dt + PC * (dy-Cz dt) ; z(0)=E[z(0)] (2.5)

where ■— P(t) is the error covariance of z(t), satisfying

eP = AP + P A ’ + GG’ -PC'CP; P ( 0 ) =  eCov(z(0)), (2.6)

which does not depend on u(t). The resulting minimum value of the cost, J*, 

is given by

T
J* = ez' (0)K(0)z(0) + —  tr[P(T)T] + -  f tr[CPKPC’ +PQ]dt. (2.7)

e e o

Notice from (2.6) and (2.7) that Cov(z-z) = 0(— ) and J* = 0(— ). Hence as e + 0,
£ £

both the covariance of the estimation error and optimal cost diverge, even 

though the feedback gain of the optimal control law given by (2.3) remains 

finite (outside the end-point boundary-layer). This is because, in the limit 

as £->-0, the fast variables z themselves tend to white noise processes, thus 

losing their significance as physically meaningful dynamic variables. Hence 

the problem formulation given by (2.1) and (2.2) is ill-posed. More detailed 

analysis of this formulation in the filtering and control context may be 

found in [5,6].

One way to circumvent the difficulty encountered above is to appro

priately "scale" the white noise terms in the model. Let us now investigate 

ramifications of the following more general formulation:

The state dynamics description is replaced by

£dz = Az dt + Bu dt + eaGdw; ReX(A) <0 (2.8a)

and the measurement process is

dy = Cz dt + e^dv (2.8b)
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where a,6 are some positive constants to be chosen. The cost function J is 

the same as before.

Now the optimal control is given by

u* = -B?Kz (2.9)

where K(t) satisfies (2.4).

The optimal estimate z(t) is obtained from the Kalman filter

edz = Az dt + Bu dt + M(t) (dy-Cz dt) ; z(0) = E[z(0) ] (2.10)

where M(t) is the filter gain given as

M(t) = e1""2^PC* (2.11)

and P(t) is the error covariance of z(t), satisfying

eP = A P + P A ’+ - e1"26P C ,CP; P(0) = Cov(z(0)) . (2.12)

The minimum value of the cost, J*, is given by

T T
J* = ez'(0)K(0)z(0) + tr(P(T)T)+E1“26/ tr(CPKPC’)dt + / tr(PQ)dt. (2.13)

0 0

Let us now examine the behavior'of P(t), M(t), and J* for various values of 

a and 8, in the limit as e-*0. The limiting behavior of P(t) and J* is 

governed primarily by the parameter a, while the limiting behavior of M(t) 

is governed by both parameters a and 8. Notice that the behavior of K(t) is 

unaffected by the scaling.

A straightforward examination of (2.12) reveals that for a < P(t) 

diverges as e + 0, which implies from (2.13) that J* also diverges as e + 0.

[Note that 8 > 0  by hypothesis.] When P(t) diverges, the filter gain M(t) may 

or may not diverge as e + 0, depending on the value of 8. If $ > k, however,
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in addition to 0 < a < ̂ , M(t) always diverges as e + 0. This particular case 

(a <h, 3 > h) corresponds to the situation where the observations become noise- 

free in the limit as £-»-0, and therefore the filter gain becomes unbounded.

When a > h and 3 is any positive constant, it readily follows from 

(2.12) and (2.13) that P(t) and J* go to zero as e-*0. If at the same time 

3 < k, then M(t) also goes to zero as e + 0. This case (a > 3 < %) corresponds

to the situation when the observations become too noisy in the limit as 

e + 0, thus driving the filter gain to zero.

Hence the range of scaling (ot,8>0; a.th, leads to ill-posed

formulations. This implies that it is not possible to give a physically 

meaningful interpretation to the limiting solution. [Of course for any fixed 

£>0, the problem is well-defined.] The only meaningful formulation is obtained 

when a = 3= In this case P(t), M(t), and J* remain bounded and nonzero and 

yield a well-defined stochastic control problem in the limit as e + 0.

The above analysis has indicated that in order to obtain a well- 

defined stochastic control problem, the process and observation noise need to 

be scaled in an appropriate manner. To gain further insight, let us directly 

examine the limiting behavior of the stochastic process

edz = Az dt + /e Gdw; ReX(A) <0, GG' > 0. (2.14)

Clearly, without the scaling term, z(t) converges to white noise in the limit 

as £->-0. If, with the above scaling, z(t) converges to something which is 

physically meaningful, then this would provide a strong justification for 

the model (2.8), with a=k.

Solving for z(t) from (2.14) we obtain

z (t )  -  —  JteA(t-T)/eGdw(x)
JZo

(2.15)
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where we have assumed, without loss of generality, that z(0) =0, Now 

Cov(z(t)) = E{[—  / eA(t_Ti)/£Gdw(T )][—  J eA(t" 9 ] •}
*7 0 1 0 2

= I  rteA(t-T)/eGGleA ’(t-T)/edT 
e 0

= W £ (t) (2.16)

where W £(t) satisfies, for each e >0, the linear matrix differential equation

eW = AW + W A ' +  GG'.£ £ £

Since ReA(A) <0, we clearly have the limit (excluding boundary layers)

lim Cov(z(t)) = W (2.17)
£->0

where W is the positive definite (because GG’ >0) solution of the Lyapunov 

equation

AW + WA' + GG’ = 0. (2.18)

This implies that z(t) converges in distribution to a zero mean constant 

Gaussian random vector whose covariance W satisfies (2.18) [see also [7,8]].

The above convergence is indeed physically meaningful, and therefore we are 

justified in using (2.14) to model a fast stochastic dynamic system.

Physically, the above analysis has indicated that in order to 

meaningfully estimate and control a fast dynamic system, the influence of the 

random disturbances has to be ’’limited” in some sense.
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2,2. Singularly Perturbed Systems with Continuous Measurements

Let us now consider the full (with both slow and fast variables) 

stochastic singularly perturbed optimal control problem

dx = (A^x + A ^ z + B^u)dt + G^dw

0 aedz = (e A 2^x + A 22z + B2u)dt + e (2.19b)

(2.19a)

dyl = (c 11x + c 12z^dt + dvi (2.20a)

dy2 = (eVC21x + C22z)dt + eVdv2 (2.20b)

z'L^L^z + u fu)dt). (2.21)

The parameters a, $, v, 6 represent the relative size of the small parameters 

within the system, with respect to the small time constants of the fast

subsystem is essential, since otherwise for a > 0 the fast variables cannot be esti

mated meaningfully from the slow observation channel (signal-to-noise ratio tends 

to zero). The stochastic processes w(t), v^(t) and v2(t) are standard 

Wiener processes independent of each other and the Gaussian random vector 

[x(0),z(0)]. We also assume that ReX(A22) <0. The optimal solution to the 

problem posed by (2.19)— (2.21) can be obtained by invoking the separation 

principle:

subsystem. The inclusion of a separate observation channel y2 for the fast

u* = -[<BJK1 +BJK{2)x + (B^K2 + eB{K12)z] (2.22)

dx = (An x +  A1 2 z +  B1u * )d t +  [ P ^ J  +  e01 ^ P ^ C ^ d a  

edz = (e^A2 1 x +  A22Z +  B2U*)dt +  £a [ £ P |2 C |  +  ea" VP2C2]da

(2.23a)

(2.23b)
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where the innovations process a(t) is defined by

dy
da(t) = 1

- v , e dy,

C11 C12 

C21 £ V°22

dt

■ dyl _ —v
** A ’
X

e Vdy2 - f C l e c2]

----1
< N

____1

dt, (2.24)

The control gain matrices satisfy

-Kj - K ^  + e ^ j A j j + A j ^  + e ^ K j j  + LjLj- ( K ^ - t - K ^ p  (Bp^ + B^Kjp ;

K X(T) - rx (2.25a)

-£K12 = K tA 12 + K 12A22 + £AJxK 12 + £SA ^ K 2 + A { L 2 - (K12B2 + K ^ )  (B'K2 + eBjK12) ;

K 12(T) = ri2 (2.25b)

2«t
-£K2 = K 2A 22+ A ^ 2K2 + eKj2A 12 + eA^2K 12 + £ L 2L 2 ~ (K2B2 + eKi 2 ^  (B2K 2 + ;

K2 (T) = r2 . (2.25c)

The filter covariances satisfy

P, =
A llP l+PlA il+e A 12P 12+e P 12A i2+GlGî” P̂ lC l+e P 12C2 ^ ClP l+e C2P 12^

(2.26a)

a-v.

P x(0) = Cov(x(0))

eP
12 eAllP 12+e A 12P 2+P12A 22+e P lA 21+GlG2"(PlCi+e P12CP (eClP12

+sa“VC2P 2); P 12(0) = eaCov(x(0),z(0)) (2.26b)

eP„ = A 22P2+P2A 22+e A21P 12+ g P i2A 21+G2G2” ^ePÎ2Ci+6: P2CP  ̂ eClP 12

+ea_VC2P2); P2 (0)=eA ~*Cov(z(0)). (2.26c)l-2a.
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o x
The performance index will be finite if e Cov(z) is finite. But

Cov(z) = e2a *P . (2.27)

Hence, we require that

6 > (~-a) (2.28)

in order to have a finite cost. Furthermore, a well-defined formulation also 

requires that

The restriction a = v is crucial, otherwise, either the fast variables are not 

observed due to very noisy observations (a > v ) , or they are observed noiselessly 

(a < v) in the limit as e + 0. If a> ^ ,  the problem becomes deterministic as 

e->0, and if 3 > the coupling between x and z becomes negligible. The 

constraint 3 > a  insures that the state z is predominantly fast, and relaxing it 

causes no conceptual difficulties.

finite cost. In this case the fast variables are of no interest as far as 

the control is concerned, and serve only as a model for a wide-band disturbance 

to the slow variables. The important case is when a = v = %  and 6=3=0, since 

this results in a full weighting of the fast variable. For this problem, it 

can be shown that [9],

0 < a  = v £ 3 £ i2. (2.29)

Note that when a - 3  = v = 0, it is required that 6 = % to yield a

L ■ yy
0 < t < T (2.30)

where

(2.31)

(2.32)
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-K = K (A -B R-1N fL ) + (A -B R_1N*L ) 'K + L ’(I-N R_1N')L o o o o o o o  o o o o o o  o o o o o

-K B R ^ B ' K  ; o o o o o K (T) = r 
o

(2.33)

P = A P  + P  A f-(P C ’+G D')V_1(C P +D G') + G G f; P (0) = Cov(x(0)) (2.34)O O O  O O  O O  O O O O O O O  0 0 o v v v '

A = A .  , Brt 4-B -A19A"Jb ,# N - -L„AliB0, L = L. , R = N ’N o 11 o 1 12 22 2 o 2 22 2 o 1 o o o

Co = C r C2A 22A 21* D o 4 -C2A^2G2> G0 4 g 1* V o = I + DoD;

uf = ~B2^2Zf

edẑ . = (A00z^+B0up)dt+ P (,C(;0{dy0-C00zidt - /e[C01-C00A 0jA01 ]x^dt

+ C22A22B2Usdt}

(2.35)

(2.36)

(2.37)

K2A 22 + Ai2K2 + L2L2 - K2B2B2K2 “ 0 (2.38)

A22P2 + P2A22 + G2G2 “ P2C2C2P2 = (2.39)

Notice that ug and are obtained on solving a reduced-order slow control 

problem and an infinite-time fast control problem, respectively. These problems 

can be solved independently of each other. It is interesting to note that the 

fast filter is driven by the slow variables as well. Hence the implementation 

of the filters is not independent, but sequential in nature. The near

optimality result (2.30) is valid only for t€ (0,T), because the boundary- 

layer terms have been neglected.

2.3. Singularly Perturbed Systems with Sampled Measurements

So far we have examined the modeling and control aspects of

stochastic singularly perturbed systems when the measurement process is
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continuous in time. We shall now examine the same aspects when the measure

ment process consists of discrete samples. Two types of sampled observations 

will be considered. In the first case, sampled values of the state in addi

tive noise are observed, and in the second case sampled values of a continuous

time measurement process are observed. These types of observations play an 

important role in multi-agent decision problems as we shall see later.

It is a well-known fact that the open-loop dynamics of any system of 

the form (2.19) with a=%, 3=0, can be transformed into a block-diagonal form 

where the pure slow and fast variables are explicitly displayed [10]. Hence, 

without loss of generality, we shall assume that the system to be controlled is 

given by

dx = (A1x +  B 1u )d t  +  G^dw 

edz = (A2z -+ B 2u )d t  +  SZ  G2dw; ReX (A 2) < 0 .

The performance index will be given by

T
J = E{x(T)T x(T) +ez'(T)r z(T) + / (x’Q.x + z'Q,z + u'u)dt}.

0  1 L

We now consider two cases of sampled observations

2.3.1. Case 1: Noisy measurements of sampled values of state

The observations consist of sampled noisy measurements of the state. 

Specifically, the observations

(2.40a)

(2.40b)

(2.41)

y(j) = C x(t ) + C z(t.) + v(j) 
* J ^ J

are available at sampled time instant -t. where j = 0,1,...,N-1 and

+

, , -"uf6 sen®ral formulation would Include cross terms involving slow
and fast variables. Here we are avoiding this in order not to obscure the 
essentiais of the following analysis by notatlonal complexity. We should note 
though, that such a restriction leads to no conceptual loss of g e n e r a l i t y ’
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0 = tQ < < ••• < t^_^ - T. Let 0 = {0,1,...,N-1}. Then the random vectors

{v(j)j£ 0} are assumed to have independent Gaussian statistics with 

v(j) - N(0,R_.) , >0, j£0. Their statistics are also assumed to be indepen

dent of the Wiener process w(t) and the Gaussian vector [x(0),z(0)].

A near-optimal solution to the problem defihed by (2.40)— (2.42) 

can be shown to be given by

where

us (t) - -B*K1'F1(t,t^)xs (t^); t£[t.,t.+1), j€-0

-Kx = A ^ + K ^ + Q ^ K ^ B J K j ; K^T) = V,

^ ( t.t ) = ( A ^ B ^ j K ^ V ^ t . t j ) ;  'F1(tj ,tj) =  I

t€[t.,tj+1), j € 0

xg (t) = A 1x g (t)+B1ug (t) ; xg (0) = E[x(0) ] >

t £ [ t ^ ^ ^ , t ^ ) j  j  = 1 *2,. •. ,N \

xs(t.) = xg (t^.)+S1(j)[y(j)-C1xg(t^.)+C2A 21B2ug(t^)] >

Z = A.Z H  Al+G.G!; Z (0) = Cov[x(0) ] \s I s  s i  1 1  s

t£ [ t # t̂ ,) j

e ( t . )  = z (tT) - s .  ( j ) c . z  (tT) /
S j s  j '  1 J l s  j

s 1( j )  -  Es ( t " ) c j [ c 1z:s ( t j ) c j  + c 2Ef c ^ + R j]'1

A2Ef + EfA^ + G2G^ = 0

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
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uf(t) [tj * 3 ^ 9

A2K2 + K2A2 + Q2 "  K2B2B2K2 = 0

ei2 (t.tj) = ( A ^ B ' K ^ ^ C t . t j ) ;  't'2 (tj ,tj) “ 1

t £ [ t j'tj+l)s J £ 9

(2.51)

(2.52)

(2.53)

e£f (t) - A 2£f (t)+B2uf (t); zf (0) = E[z(0)]

t € [ t  ,t); 3 = 1,2.....N

( fcj )  = 2f ( t j )  + s 2( j ) [ y ( j ) - c 1i 3 ( t j ) - c 2zf ( t j )  + c 2A^1B2us (t^)]

(2.54)

s2 (j) = V 2 [Cl£S (V C l + C2EfC2 + R j ]
-1

(2.55)

It u* is the optimal solution to the problem (2.40)— (2.42), then it can be 

shown that

lim u* = un ; 0 < t < T 
e+0 0

lim (J(u*)-J(u )) = 0. 
£+0 °

(2.56)

2,3.2, Case 2: Sampled values of continuous noisy measurements

The measurement process is a continuous-time stochastic process 

described by

t
y(t) = / [C x ( s ) + C 9z(s) ]ds + q(t) (2.57)

0 Z

where q(t) is a standard Wiener process independent of w(t) and the Gaussian 

vector [x(0),z (0)].
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Let 0 = tQ < < • • • < t^_^ < t^ = T and 0 = {0,1,... ,N-1}. The measure

ment process is not observed on the entire time interval [0,T], but only its 

sampled values at time instants t^, t2»...»t^ are observed. Therefore, the

only observation in the subinterval [ t . , t , i s
J J + l

t .
j

y ( t . )  = /  [c x ( s )  +  C Lz(s)]d s  +  q ( t . )  
J 0 J

(2.58)

which is made at the beginning of that subinterval. In the time interval 

[0,t^),no observations are made and only the prior statistics of the random 

quantities are available.

Let

y ( j )  = y ( t . )  - y ( t j _ 1 )

t .
J

= J [C1x ( s ) + C 2z(s) ]ds + v(j) (2.59)

V i

where v(j) = q(t^.)-q(t_._p is a discrete-time Gaussian white noise process 

with mean zero and variance = (t_.-t_. j)I» Clearly the sigma-algebras 

generated by (y(t±),i=l,2,...,j } and {y(i) , i=l,2,...,j} are equivalent.

A near-optimal solution to the problem defined by (2.40), (2.41), 

(2.59) can be obtained as follows:

u = u + u r o s f (2.60)

where

u  it) =  - B 1' K 1 f , ( t , t . ) i o ( t , ) ;  t £  [t ,t ) ,
S 1 1 1 J S J J J + l

j e  e (2 .6 1 )

- K j  =  +  K j A ^  + Q 1 -  K j B j B J K ^  ; (T) = (2 .6 2 )

Y (t ,t ) =  ( A . - B . B i K . ) ? , =  I
1 J 1 1 1 1 1  3 l j j

t e t t J , t J + l ) *
j e  9 (2 .6 3 )
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(t) = A ^ C t ) + B lUs(t); i s (0) = E[x(0) ]

t € [ t  ^ t ) ;  j “ 1.2,... ,N

X ( t . )  
S J

t .
J

“ xs ( t J ) + S 1 ( j ) [ y ( j ) - f  [ C ^ W - C ^ ^ B ^ W J d r ]

C j - 1

Es * Al Es + EsAì + GlGì ; ES(0) = CovCxCQ)]

t e  [t._1,t ) ; j - 1 , 2 .... N

(tj) - Es (t-) - S 1(j)[/ C 1*s (r,tj_ 1)dr

3-1
t . t
J J+ / Cl J <̂s (r ,p )G1G’<i)’ (t ,p)dpdr]

f* t- JV i  r
t . 
J

t .
J

Rj = / V s ( P > V i ) d p  / * s (r>tj - l )Cidr
C3-i V l

t .
.3 P

t .
J

+ Í C x / (fs (p,r)G1Gj / ^(£,r)Cjdidrdp
t. . t. , r
j - l  J - l

t. t .
r3 r3+ / C2<J)f (p ,t^_1)dp Ef J

V i  V i
dr

t . t
r3 rP r3 i+ J C J <pf  (p,r)G9G' J <(> ($,,r)C'd£ dr dp + R.
t. , t. . r 1 z 3
J-l J-l

si(3> = ['t-s<tj*tj_1>ss(tj_i) I ♦;<r » tj _ i ) c idr
V i

J J
+ / »p)G G’ / <j>’ ( r ,p )C fdr dp] R~

t  3  3 1 1 p  s  1 3
J-l

- 1

(2.64)

(2.65)

(2 .66)

(2.67)
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♦ s ^ ’V  = ¥ s (t>tj); W V  = 1

t € [tj,tj+1)' J*€ 0
(2 .68)

e<j>f (t,t^) = A24>f ; <f>f (t_.,0 = I

t e  Ctj , t j + 1) '  j e Q

V f  + EfA 2 + G2G2 “ °

u (t)  = -b :k  f  ( t , t  )z ( t . ) ; t e [ t . , t . , . ) ,  e2 2 2 j f j j j+l'

(2.69)

(2.70)

(2.71)

A 2K2 + K2A 2 + Q 2 ’ K2B2B2K2 = 0 (2.72)

s^(t,t.) = (A2-B2B ’K2)^2 (t,tj); V V V  = I

t e [ t j ’tj+l) ’ j S d (2.73)

ezf (t) = A£zf (t)+B2uf (t) ; zf (0) =E[z(0)]

t G [tj-l,tj); j  ̂(2.74)

ZfCt j )  = zf ( t ^ ) + S 2( j ) t y ( j )  -  J  [C1x s (r)+C2zf  ( r ) - C2A21B2us ( r ) ] d r ]

" j - l

S2 ( j )  = [<i>f (t.. , t^._1)Z f  J < ^ (r , t  ^C^dr

V l
t. • t.
J 3 i

+ | <i»f (t ,p)G2G^ / <i>^(r,p)C^dr dp] R. .

c j - i  p

(2.75)

If u* is the optimal solution to the problem defined by (2.40), (2.41), (2.59),

then it can be shown that
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lim u* = u :  0 < t < T
s+0 o

)
lim(J(u*)-J(u )) = 0
e->0 °

/

(2o 76)

We should point out that the near-optimality of the composite control u in
o

both cases 1 and 2 is valid only in the open interval (0,T) because the 

boundary-layer terms have been neglected.

An important distinction between the above formulations involving 

discrete observations and the earlier formulation involving continuous obser

vations is that, in the discrete observations cases, there is no need to 

scale the measurement noise and it is not necessary to have a separate obser

vation channel for the fast variables. This is because the sampling interval 

is fixed and independent of e, and hence there is no interaction between the 

dynamics of the observation process and the input noise process.

Now that we understand the subtleties involved in the modeling and 

control of stochastic singularly perturbed systems under various observation 

patterns, the next step is to study multi-agent decision problems. But before 

we do this, we shall introduce, in the next section, the important concept of 

multimodeling of large scale systems within the framework of time-scales and 

singular perturbations. This concept plays a crucial role in the near-optimal 

design of multi-agent decision policies for stochastic singularly perturbed

systems.
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3. MULTIMODELING BY SINGULAR PERTURBATIONS

The need for model simplification with a reduction (or distribution) 

of computational effort is particularly acute for large scale systems involving 

hundreds or thousands of state variables, often at different geographical 

locations. Some form of decentralized modeling and control which exploits the 

weak interactions between subsystems is then required. While there are a 

number of approaches to the study of large scale systems [1], the success of 

any proposed decentralized scheme critically depends upon the choice of sub

systems [11].

A fundamental relationship between time-scales and weak-coupling 

has been developed for power systems, Markov chains, and other classes of 

large scale networks [12-15]. If the interactions of N "local" subsystems 

are treated as 0(e), and if each subsystem has an equilibrium manifold (null 

space), then the local subsystems are decoupled in the fast time scale. However, 

they strongly interact in a slow time scale and form an aggregate model whose 

dimension is equal to the number (N) of the local subsystems. The system 

is thus decomposed into N+l subsystems (N in the fast and one in the slow 

time scale).

To elucidate this relationship, consider the following class of 

interconnected subsystems

dx.
__l

dt

N
x. + £ A. .

1  3 - l

X  .
J

1-1,2,...VN (3.1)

where e^>0 and A ^  is a stable matrix with one zero eigenvalue. Assuming that 

x^(0) is not in the null space of A_„ , the first term dominates the second 

term on the right hand side of (3.1), and therefore the interconnections can be
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neglected initially. As the fast transients draw x_^(t) towards the equilibrium 

manifold (the null space of A ^ ) , the two terms on the right hand side of (3.1) 

become the same order of magnitude, and therefore from this time onwards the 

interconnections can no longer be neglected. Hence, the dynamic behavior of 

(3.1) can be characterized by two separate motions: an initial fast transient

within each isolated subsystem, followed by a slow motion around the equilibrium 

manifold obtained on neglecting the interconnections. Therefore, in the short 

term the subsystems can be treated in isolation, while in the longer term they 

become strongly-coupled.

We now introduce a transformation to make the slow and fast parts

of x^(t) explicit. Let

_d_
dt

X ,1

*2 =

• 
id

"
J 'N

-1
11

22

ANN

x.

X,

*N

0 A

21

12

0

IN

2N

\ l  \ 2  *•* °

x.

(3.2)

or

x = ($7 ''"A +A,)x, o 1 (3.3)

Define the left and right eigenvectors of Aq for the zero eigenvalue as

A T = 0, VA = 0,o o
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where

= 0, V±A±± = °* v±t± = 1; i * 1,2,... ,N

»

T = block diag[t1#t2,...,tN ]

V = block diag[v1,v2,...,v ].

We also define block-diagonal matrices W and S as follows

WT = 0, VS = 0, WS = I XT.n-N

Now, using the following transformation

x = Vx, x £  RN

z = Wx, z £ Rn-N

and its inverse

x = Tx + Sz,

the interconnected system (3.3) can be transformed into

x « VA^Tx + VA^Sz

fìz = ftWA.Tx + W(A + fiA. ) Sz 1 o l

For sufficiently small (3.7) can be approximated by the model

N A
x = VA,Tx + E A.z. 

i j=i j j

e.z. =w.A..s.z.; i=l,2,...,Nl i  l li l l

where

A. = 
J

v iA ij

V2A2j

VNANj

(3.4)

(3.5)

(3.6a)

(3.6b)

(3.7)

(3.8)
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Notice that the fast transients within the subsystems are decoupled, and 

they interact only through the slow core. A long term aggregate model is 

obtained by letting e ^ O ,  and is given by

x g  =  V A l T x s . ( 3 . 9 )

The previous analysis has shown that for a wide class of large scale 

systems, the notions of subsystems, their coupling and time scales are inter

related and lead to a multiparameter singularly perturbed model with a 

strongly-coupled slow ’’core" representing the long term system-wide behavior, 

and weakly-coupled fast subsystems representing the short-term local behavior.

With the presence of control and stochastic disturbance inputs, a 

generalization of (3.8) can be obtained as

N
dx = A xdt + E (A .z.dt + B .u.dt + G dw ) oo j= l  oj ]  oj J oj j (3.10a)

N
e.dz. = (A. x + A..z.+ E e . .A. . z . + B . .u.) dt + /e Tg , .dw.i l  io ii i j=1 ij ij j ii ±J iwii wi

i * 1,2,...,N (3.10b)

where (u^t); i=l,2,...,N} are the control inputs, and (w^t) ; i=l,2,...,N} 

are standard Wiener processes independent of each other. Each fast subsystem 

has its own singular perturbation parameter e^and is weakly-coupled to 

other fast subsystems through e . The fast subsystem i is affected by its 

own control input u^(t) and disturbance input w^(t). The slow subsystem, being 

the common "core",is affected, in general, by all the subsystem controls and 

disturbances.

In a situation like this, it is rational for a subsystem controller 

to neglect all other fast subsystems and to concentrate on its own subsystem,
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plus, of course, the slow interaction with others through the "core." For 

the i-th controller "to neglect all other subsystems" simply means to set 

all e-parameters equal to zero, except for e±, which is to be kept at its 

true value. The i-th controller’s simplified model is then

dx =
V  dt + A0izidt + BoiUidt + A  (BijUjdt + Gojdwj)+Goidwi (3.11a)j

j*1

where

e dz = A. x dt + A. .z.dt + B . .u,dt + ve~ G. .dw. 1 1  io 11 i ii i i ii i

A. = A - E A .a T!a . , B. . = B . - A A ^ B  . 
i °o oj 33 jo* ij oj oj

(3.11b)

We denote x* with a superscript rather than a subscript to stress 

the fact that x1 is not a component of x, but the i-th controller’s view of 

x. In reality, the model (3.11) is often all that i-th controller knows about 

the whole system. The k-th controller, on the other hand, has a different 

model of the same large scale system. This situation, called multimodeling, 

was first formulated and investigated in [2] in a deterministic setup (with 

no disturbance inputs).

In the next section we shall study the impact of multimodel assump

tions on the design of multi-agent control strategies in the presence of 

disturbance inputs and noisy observations.
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4. MULTI-AGENT DECISION PROBLEMS

We shall restrict our discussion in this section to the case of
%

two decision makers, as this will keep the notation simple and ease the 

exposition of the principle ideas. All the results that we shall present 

here extend to the case of more than two agents in a fairly straightforward 

fashion. Furthermore, we shall present and discuss only the main results; the 

proofs of the various propositions shall be omitted, but they can be found in 

the references cited.

It is well-known that a system of the form (3.10) can be transformed 

into a system with purely slow and fast variables [2]. Hence, without loss 

of generality, we shall consider multi-parameter singularly perturbed systems 

of the form

dzo

e .dz
l i

2
= A z dt + I (B .u.dt + G dw ) oo o j=1 oj j oj j

= (A. .z . + e . .A. .z.+B. ,u.)dt + /eT G..dw., li l l] 13 J li i l il l

(4.1a)

i,j - 1,2; i # j (4.1b)

with dimz.=n., i = 0,1,2, and dimu.=m., i=l,2. The initial conditions are
l i  l i

assumed to be Gaussian with

ECz.(O)] = z.o , E[z.(0) zj(0)] i,j — 0,1 ,2 . (4.2)

Furthermore, we shall restrict ourselves to the case (Re X(A^) <0, i=l,2}.

In a multimodel situation, decision maker i models only z and z.,
o  1 *

but neglects z.. Also, his observations are functions of z and z. alone.
3 o l

This situation with decentralized observations leads to problems involving 

nonclassical information patterns, for which no finite-dimensional solution
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exists in general. In order to obtain finite-dimensional solutions which 

can be implemented in practice, one needs to modify the information structure. 

In this section we shall study three problems with quasi-classical information 

patterns. The first problem is a Nash problem with continuous measurements 

where the information available to the decision makers is restricted to the 

state of a finite-dimensional compensator of a specified structure. The next 

two problems are team problems with sampled measurements, where the decision 

makers exchange information with a delay of one sample period. The two types 

of sampled measurements are those that we have considered earlier in Section 2.

4.1. Nash Game with Continuous Measurements

The decision makers make decentralized continuous measurements which 

are given by

dy . = C . z dt + dv . oi oi o oi

dyi± = C ^ z ^ t  + /eT dvi±; i=l,2 (4.3)

where dimy .=p . and dimy..=p... The processes v . (t) and v. . (t) are01 *01 711 *11 v OI ilV 7

standard Wiener processes, independent of each other and of the process noise

w i (t). Defining x' = [z^ z' z£], y^ = [y^ y^J.  vi = [v'0± v!^], and

w ’ = [wj w^]. The system of equations (4.1)— (4.3) can be written in a 

composite form as

2
dx = (A(e)x+ Z B.(e)u.)dt + G(e)dw 

i=l i i
(4.4)

dy. = C . (s)xdt + dv. ; i-1,2i l  l (4.5)

E[x(0) ] = x q> E[x(0)x' (0) ] = N (4.6)
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where dim x = n = n +n.+n_ and d i m y . = p . = p  ,+p... The matrices A(e) , B.(e), o l 2 l l oi il l

G(e), C^(e), and N are appropriately defined.

The information available to decision maker i at time t is given by

a±(t) = (x±(t), x q , N} (4.7)

where x^(t) is the state of the n-dimensional compensator

dx. = (F.x. +H.u.)dt + L. [dy.-C.x.dt]. (4.8)i i i i i i 'l i i

Let a^(t) denote the sigma-algebra generated by the information set a^(t).

Further, let denote the class of second-order stochastic processes

(u.(t), t>0} which are a . (t)-measurable. Then, a permissible strategy for
m .

decision maker i is a mapping vi : [0,T] x|R -*R 1, such that v^(«, c O e  H^. 

Denote the class of all such strategies for decision maker i by r .

For each (v.€.r.; i=l,2), the cost functionals for the two decisionl i

makers are given by

J.(v,,vJ = E { z f(T)T .z (T)+e.z!(T)r..z.(T) l 1 2 o oi o i l  il l

+ f (z'Q .z + zïQ. .z.+uïu.)dt|u. (t) » v. (t,a ), j-1,2}0^01 o 1^11 1 i  i '  1 j  j  j  J

i-1,2 (4.9a)

or, equivalently

J . (v.,v9) = E{x’(T)T (e)x(T) + / (x'Q x + u ’u )dt|u (t) = v (t,a. ) , j=l,2}2. I  ̂ 1 g l l l j  J J

i-1,2 (4.9b)

where the expectation is taken over the underlying statistics.

The decision makers are required to select the matrices F*, H*, L*;i l l

the initial conditions x*(0) and strategies v*[t,x^(t)] such that
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J.(v*,v*) < J.(v.,v*) Vv.er.; x i  3 "  i  i  j  l  l i,j = 1 ,2 ; i^ j (4.10)

The pair of inequalities above defines the Nash equilibrium point.

The optimal solution to the problem defined by (4.1)-(4.10) is 

obtained by extending the results of [16] to the nonzero-sum case, and is 

given by

v* = -BlK.x.;
X x x x *

i = 1 , 2 (4.11a)

V j V I + ( V V (Mo o - V 1]j i,j = l,2 ; i ^ j (4.11b)

Li ■ M iicr i- 1 . 2 (4.11c)

H* = B.;
X X i- 1 . 2 (4.lid)

x*(0 ) = xq ; i = 1 , 2 (4.lie)

where satisfies the coupled set of Riccati equations

K. = -K.A-A'K. - Q. + K.S.K. + K.S.K. + K.S.K.; K.(T) =T.l x i H i i x i j j j j x ’ x x

Si = BiBi ; i’j 5* 1»2 ; (4.12)

M(t) is a symmetric nonnegative definite matrix satisfying the Lyapunov 

equation

M = FM + FM' + BB'; M. . (0) = x x ’ +N, i = j = 0
xj o o

= N otherwise (4.13a)
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where

A'siK r s2K2 s ik i S2K2

a -f *-s 2k 2 F*-L*CX S2K2

A-F*-S iK i siK i F*-L*C

-G 0 0

-G L* 0

-G 0 L*L2 (4.13b)

The compensators are unbiased, in the sense that for all t€ [0,T),

E{x(t) |xjL(t)} = x ^ t ) ; i ® 1,2. (4.14)

Furthermore

E{[x(t)-x± (t)]x^(t)} = 0; i = 1,2. (4.15)

Thus, each component of the error x(t)-xi (t) is orthogonal to each component 

of x^t), and x^(t) may be regarded in some sense an estimate of x(t). Notice 

that the solution exhibits a unidirectional separation in estimation and control. 

Although the control gains are obtained independently, the optimal filter 

matrices and covariance M(t) depend on the control gains, resulting in a 

"dual effect1’ [17].

The optimal costs are given by

j.

J* = x ’K.(0)x +tr{M. .(0)K.(0) + f (K.S.K.M. . + K.S.K.M. l o i N / o u  l J l i i ii i j j j<

+ K.S.K.M .)dt}; i,j = 1,2; i^j. 3 3 i oj J J (4.16)

The linear strategy (4.11a) is the unique Nash strategy for this problem. 

Since the finite-dimensional estimators (4.8) are not Kalman filters, it is
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not clear, at the outset, what their limiting structure (as the small parameters

go to zero) looks like. Does the full-order estimator decompose into a number of

decoupled low-order estimators? Is it possible to obtain a near-equilibrium

solution from low-order subproblems?

It will be shown that, in the limit as the small parameters go to zero,

the full-order estimator (4.8) decomposes into an n -dimensional estimatoro

in the slow time scale which has a similar structure, and two n^- and n^- 

dimensional Kalman filters in the fast time scale. Furthermore, the near

equilibrium solution is in fact the multimodel solution, i.e., the solution

obtained when decision maker i neglects z., and models only z and z.. The
j o 1

multimodel assumption leads to the formulation of three low-order subproblems: 

two independent stochastic control problems, one for each decision maker, in 

the fast time scale, and a stochastic Nash game in the slow time scale.

The slow subproblem is obtained by- neglecting all the small para

meters in (4.1), and is given by

2 2
dz = (A z + Z B .u. )dt+ Z G .dw. (4.17)
OS OO OS Ol IS 01 1

C .Ol
0 dv . 

Ol
dy. = y is

0

z dt +os
— —  c a T!b .. 1 1  1 1  1 1

u. dt + is
dv. .-C . .A.^G. .dw. 1 1  1 1  li 1 1  1

= (C. z + D. u. )dt + dv. ; i- 1,2is os is is is (4.18)

E[z (0)] = z , E[z (0) z' (0)] = N . 
os OO os OS OO

(4.19)

Each decision maker is constrained to use only an n^-dimensional compensator

of the form
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dz. = (F. z. +H. u. )dt + L. [dy. -C. z. dt-D, u. dt],is is is is is is J is is is is is J

i= 1 ,2 . (4.20)

Let

a (t) = (z. (t), z , N } is is oo oo (4.21)

and a (t) denote the sigma-algebra generated by the information set a. (t). is is

Further, let denote the class of second-order stochastic processes

{u. (t), t>0} which are a. (t)-measurable. Define the slow strategy v. , as is is isn m .
the mapping v : [0,T] xR °-*R 1, such that v. (-,a. )£H. . Denote the class is is is is

of all such slow strategies for decision maker i by V . .
is

For each (v, £ F, ; i=l,2}, the slow cost functionals for the 
XS xs

decision makers are given by

J. (v, ,v ) = E{z 1 (T)T .z (T) + f (zf 0 .z +u| R. u. )dti s  I s  2s ns ' J no -m no io  IP  -if 'OS Ol OS OS *01 OS IS IS IS

|Uj8<t) " Vj(t.fllJs)- j = 1,2}î i= 1 , 2 (4.22)

where
i

R. = 1 + (a T^B. .) 'Q. (a T^B. .) . 
i s  X I  X I  1 11 11

The decision makers are required to select the matrices F* , H* , L*
is is is

the initial conditions z* (0), and strategies v* [t,z. (t)] such thatxs xs xs

J.(v* ,v* ) < J.(v. ,v* )
1 IS JS 1 IS JS

v v . er.
IS IS

i, j = 1.2, i ̂  j . (4.23)

The optimal solution to the slow subproblem defined by (4.17)-(4.23) is

given by

v* = -r T ^ '  .K. z . ;
IS IS 01 IS IS

i- 1 , 2 (4.24a)
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is A - B .R .XB ^ .K . [I + (M. - M..)(M - M .) 1]; i,j=l,2;OO oj JS OJ JS JO J1 oo 01 * ’
(4.24b)

* = [M .C'. j G .(C..A~]g . { I  + (C..a 7^G..)(C..a TJg ..)"} 1];
is 1 1  oi j 01 11 n  li n  ii n  n  li n '  J ’

1*1,2
(4.24c)

H. = B . ; 1=1,2 is oi

z .  ( 0 )  =  z  ; 1 = 1 ,2  is oo

(4.24d)

(4.24e)

where is the solution of the coupled set of Riccati equations

K. = - K. A - k' K. - Q . + K. S. K. + K. S. K. + K. S. K. ;
I S  I S  OO ■ OO I S  O I  I S  I S  I S  I S  JS  j s  JS j s  I S

-1.
(4.25)

K. (T) = T . , S. = B .R. B'. ; i,j=l,2; i?j
I S  O I  I S  O I  I S  01 J J

M(t) is a symmetric nonnegative definite matrix satisfying the Lyapunov 

equation

where

M = F M + MF" + B B' ; M. . (0)= z z' + N ; i=i=0
S S S S l j  J  o o  o o  o o  J

vN , otherwise N oo

(4.26a)

Aoo - S. K- Is Is -  S2 s K 2s S- K1 Is Is S2 s K 2 s

F = s Aoo
*

- F_ - S Is 2 s K 2s

* *
F 1 - L- C, Is Is Is S2 s K 2 s

Aoo
*

-  F 2 s  *  S CO 
1—

1coi—i S-, K. Is Is
* *

F« ~ C0 2s 2s 2s

- G
o

0 0

B =s - Go
*

- L- P. Is 1
*

L-Is 0

- Go
■k

"  L 2 s P 2
0

*
L 2 s

_

G = o [Gol Go 2 ]
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P. = 1

0 0
- 1

C. .A G. . 0il il

; i=l ,2 (4 » 26b)

The optimal costs are given by

T
Jis = ZonKis(0)Znn + tr{M (0)K (0) + /(K S K M + K. S. K. M.1S on TS nr> I l  I S  Q i s  i s  1S i l  1S JS j s  JO

+ K. S. K. M .)dt} ; i,j=l,2 ; i*j 
JS JS 1S OJ J * * J (4.27)

The fast subproblems, on the other hand, are formulated 'locally' at the 

subsystem level. These are stochastic control problems because the decision 

makers do not interact in the fast time scale:

eidzif - (Aiizif + Biiuif)dt + Giidwi 

dyiif = ciizifdt + dvii

(4.28)

(4.29)

E[z.f (0)] = ziQ , E[z.f (0) z'f (0)] = Ni±

T

Ji f = E{eizif(T)riizif(T) + /(zifGü zif + uifuif)dt

(4.30)

(4.31)

Notice that this fast subproblem is exactly the one we studied in

detail in Section 2. Its solution, as is given by

u.- = - BT.K.^z.- lf li if if (4.32)

where K_^ satisfies the Riccati equation

K .rA . + A;.K._ + Q.. - K._B..B;.K._ = 0 if il 1 1  if xn  if ii Ü  if (4.33)

and zif is the state of the Kalman filter
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e .dz . - = (A. .z . i if -- -1 1 . * + B. .u )dt + P.-CT. [dyif 1 1  if' if iiL y-\if C..z dt] ; li if

z if(0) ■ Zio

Pif is the error covariance of z ^  satisfying

(4.34)

PifA ii + AiiPif + GiiGii " PifCiiCiiPif ~ 0 »

and the optimal cost is given by

(4.35)

J f = T tr{P Q + C..P..K..P.-C:.} 
if if il il if if if ii (4.36)

The following proposition establishes the connection between the solutions of 

the slow and fast subproblems and the full-order problem. Its proof may be 

found in [7].

Proposition 4.1:

i) vi (t,xi (t))

ii)
* *

J. = J. +
1 IS

where

*
'if

e e2 e12 e21]

ii i

and is the nonnegative definite solution of the Lyapunov equation

a ..w. + w .a :. + g ..g :. = oii i i ii ii ii i=l ,2 (4.37)
□

Since the multimodel strategies need only decentralized ’state 

estimates,' each decision maker needs to construct only two filters of 

dimensions nQ and n ^  respectively, instead of constructing one filter of 

dimension nQ + n^ + n^ as required by the optimal solution. This would 

result in lower implementation costs.
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4.2. Team Problems with Sampled Measurements

We shall now consider problems wherein the measurement processes of 

the decision makers are not continuous on the entire time interval [0,T], but 

consist of sampled values observed at time instants t , t^,...,t^ where 

0 = tQ < < *«*< < tN = T. Let 0 denote the index set {0,1,...,N-1>,

and yi (j) denote the p^-dimensional observations made by decision maker - i at 

time instant t^, j£0. Thus the only measurement of decision maker - i in the 

subinterval [tj ,t ) is y± (j).

The quasi-classical information pattern that we shall consider here

is the so-called Mone-step-delay observation sharing pattern," wherein the

decision makers exchange their independent sampled observations with a delay

of one sampling interval. Hence, the information available to decision maker - i

in the time interval [t., t.M ) is
J 3+1

= iy±Ci), (4.38a)

where, ô_._̂  denotes the common information available to the decision makers 

in the same interval, i.e.;

= iy^j-1). y2 (j-l),-.,y1 (0), y2 (0)} . (4.38b)

Let denote the sigma-algebra generated by the information set
j N

ou, and denote the class of stochastic processes (u^Ct), t>0} whose 

restriction to the interval [t^,t^+1) is a^-measurable for all j€0. Then a

permissible strategy for decision maker - i is a mapping v.: [0,T] x H  P̂1+P2^N
m. 1i n

1R , such that (•,ou )Qî^. Denote the class of all such strategies for 

decision maker - i by For each {v €1^ ; i=l,2}, we define the quadratic

strictly convex cost function as
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2

i=l

T 2

(4.39a)

where {I\>0,Q^>0, i=0,l,2} and the expectation operation is taken over the 

underlying statistics.

Equivalently, in terms of the composite state vector x(t) of (4.4), 

the cost function can be written as

T

where r ( s )  and Q are appropriately defined in terms of the matrices appearing 

in (4.39a).

Here optimal and near-optimal strategies will be obtained for two cases of 

sampled observations, as delineated below.

4.2.1. Case 1: Noisy measurements of sampled values of state

J(vx,v2) = E {x" (T )r (e )x (T )  + ¡ ( x ' Q x  + u ^  + u2u2)dt |û  ( t ) = V.. (t,ou) , j =1,2} 

(4.39b)

A team optimal solution is a pair (v* , i=l,2} which satisfies

(4.40)

(4.41)

The random vectors (v^j);jee,i=l,2} are assumed to have independent Gaussian 

statistics {v^j) ~ N(0,V_) ,V_>0,jee,i=l,2}. Their statistics are also
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assumed to be independent of the Wiener processes (v^(t) ; i=l,2} and the 

initial state vector x (0).

The optimal team solution to the problem defined by (4.4), (4.6) 

(4.38)-(4.41) has been derived in [18], and is given by

v.ct,«.) = Pi (t)[yi(j) - C.i(j)] - B'S(t)iKt,tj)£(j) ; i=l,2

»tj+i) 5 3ee (4

where P-^Ct), ?2 (t) are piecewise continuous functions on [0,T] and satisfy 

the coupled set of linear integral equations

t
Pi (t) = BiSi (t) / *ii(t,t)B1 B'Li (t)dt - B'L (t) ; i«l,2

tg[V tj+i) ; jee
(4.

where

Lij(t) = + / <Kt,T)BkPk (T)dTCk ]ri (j) + K...(t:);
t . 
J

i,k=l,2 ; i^k ; t€[t^,t^+1> ; jee (4

K± .(t) = - (A - B.Bi;Si (t))^Kij(t) - S.(t)BkPk (t)CkZij ; i,k=l,2, i#c

o , te[t^,t^^] , jee (4

S(t) and S^(t) satisfy the Riccati equations

S = - A'S - SA - Q + S t B ^  + B^'jS ; S(T) = T (4,

S. = - A"S. - S.A - Q + S.B.BTS. ; S.(t.) = S(t.) l l l i i i i ’ i v j' v j '

.42a)

42b)

42c)

42d)

42e)

te (t^_x ,t^] , i=l,2 , j=N 1 (4.42f)
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<Kt,x) is the state transition matrix satisfying

¿Ct#T) = (A - B1 B£S - B2B£S)^(t,x) ; = I

♦ijCt.r) is the state transition matrix satisfying

^ i j ( t ,x )  = (A ” Bi B£si )^ i:j (t ,T) ; ^i j  ( t ,t ) = I ; t € [ t y t . +1) ,

i=l ,2 , j€0

<f>(t,x) is the state transition matrix satisfying

<i(t,T) = A<f>(t,x) ; (f>(x,x) = I

^ ( j )  = n ( t ”) = E [x(t^) |^j_^] ai*d n(t) satisfies  

2 *
n = An + E B v .(t,a.) ; n(0) = x \

i- 1  1 1 1 °

n(t ) = n(tj + M(j)[y(j) - cn(tj] J
J  J J

V 3) = z ( t j )C j [ c ±r ( t j ) c ^  + V ^ ] " 1 ; i= i ,2  , jS0

where Z(c") = E[(x(t ) -  n ( t ' ) ) ( x ( t  ) -  n(t7))' ] and £(t) satisfies 
J J J  J J

Z = AZ + ZA' + GG' ; ZCO) = N '

2(t ) = Z(t j  -  M(j)CZCtT)
J J J /

and

M(j) = E(t ~)<r [CZ(t7) (r  + V . ] " 1
J J J

(4.43a)

(4.43b)

(4.43c)

(4.44)

(4.45)

(4.46)

(4.47a)
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Vj = d la 8 < V V

y(j) = ty£(j) y2'(j)]' 

c = [C£ c £ ] '

Due to the presence of widely separated eigenvalues, the integro-differential 

equations (4.42)-(4.47) involved for computing the optimal solutions are 

numerically stiff. This renders the optimal solution computationally 

infeasible, specially when the order of the system is very large. Futhermore, 

when the small perturbation parameters are unknown, or when one decision maker 

does not have a knowledge of the fast dynamics of the other decision maker, 

it is not even possible to compute the optimal solution. Hence, there is a 

need to look for suboptimal solutions. The multimodel solution proposed 

below exploits the special structure of the system to yield a solution which 

does not require a knowledge of the small parameters, and allows the decision 

makers to model only their own fast dynamics. More importantly, as in the 

problem with continuous measurements, the multimodel solution is well-posed

in the sense that it is the limit of the optimal solution as the small 

parameters go to zero.

The multimodel solution is obtained on solving three low-order

problems: a slow team problem under the one-step-delay observation sharing

pattern, and two fast stochastic control problems, one for each decision 

maker.

The system model for the slow subproblem is given by (4.17), (4 .1 9) 

and the observations by

(4.47b)

(4.47c)

(4.47d)
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y. (j) = c.  z (t.) + v.(j)'is J 10 OS J 1 V J '

5 yi (j) ■ Ciizis(tj) ; jG9 » i = 1 ’ 2 (4.48)

The cost function is given by

T
J (vn ,v0 ) = E(z ■* (T) T z (T) + f(z' Q z + E u r R. u. )dt|u (t) s Is’ 2s osv o os osxo os is I S  is' 1 js

= v (t,a ) , j=l,2 } 
J * J

(4.49)

where

R. = I + (a T^B..)"Q.(AT^B..) is ii n y H1 V 1 1  n '

The optimal solution to the slow team problem defined by (4.17), (4.19), 

(4.48) and (4.49) is given by

-1 ,
Vis(t’ai> - Pis(t) [yis(j) “ Ci o * a < M  - ; i-1 , 2

; jee (4.50a)

where P^g (t), P2g(t) satisfy the coupled set of linear integral equations

t 1 1
P. (t) = R. B'.S. (t) / ip.. (t,x)B .R. B'.L.. ( x ) d T  - r T b M,.. (t) ; i=l,2 is is 0 1  is ; ijs 01  is Ol 1JS I S  01 1JS ’ *is 0 1  I S

^ W l )  8 Jee (4.50b)

where

Lijs(t) ■ Sis(t)f*sCt> V  + f*s (.t,T)Bok^ P ks(x)dTCko]Zls(j ) + Kijs(t)

j

i,k=l,2 ; i^k ; t€[t^,t^+1) ; j€0 (4.50c)
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¿ijS(t) - - (Aoo - BoiRi k i Sis(t^ i js(t> - Sis(t>Bo A s Pks(t>CkoZis<J> :

Ki j s = 0 ; i»k=l,2 ; i^k ; t€(t^ ,t +1] ; j€0 (4.50d)

S (t) and S (t) satisfy the Riccati equations s xs

S = - A' S - S A - Q + S [B 1 r 71 B ' 1 + B „ R ^ B ' l S  ; S (T) = T (4 50e)« oo s s oo xo s 1 ol Is ol o2 2s 02J s’ s v 7 os L o l  I s  o l  o2 2s 02 s ’ s

S. = -  A" S . -  S, A . -  Q +  S . B  .r T^'.S. : S. ( t  ) = S ( t  ) ,
I S  00 i s  i s  o l  x o I S  O l I S  O l i s  i s v j 7 S V j 7 *

; i=l,2 ; j=N,...,l (4.50f)

^ ( t , x )  i s  the s ta te  t r a n s i t i o n  m a tr ix  s a t i s f y i n g

i (t,x) = (A - Brt1R 7 V 1 So - B -R^B'-S (t,i) ; ip (t ,t )
s  oo o l  I s  o l  s o2 2s o2 s s  s

i s  the s t a te  t r a n s i t i o n  m a tr ix  s a t i s f y i n g

= I (4.51a)

Ì, . (t,x) = (A - B .R^B'.S. )ip.. (t.r) : ip. . (t ,t ) = I ijs oo oi is oi is7 ij s v ’ 7 * yijsv * 7

t€[t^,t^.+1) ; i-1 , 2  ; jee (4.51b)

( t ,t ) i s  the s t a te  t r a n s i t i o n  m a tr ix  s a t i s f y i n g

*s(t’T) = Aoo^s(t’T) ; V (t’t) = 1 (4.51c)

i G( j )  = n ( t . )  = E [z ( t . ) | 6 - ]  and n ( t )  s a t i s f i e s
o  o J O o  J J “*X S

ri = A n + £ B.v. (t,a.) ; n (0) = zs oo s . , Ol is ’ l7 ’ 's oo
1=1

te[t ,t ) ;

W  " V V  + M s (j)[ys (j) - cons ( t j- ) ]

(4.52)
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S s (j) = Z3(tj)Cio[CioZs(tj)Cio+ C iiWiCii + V " 1 ; 1-1.2; 360

where satisfies (4 .3 7).

(4.53)

Ss (tj) = E ^ zos^tj^ ” ng Ctj))(Zos(tj) “ ng (.tj))'] and Zg(t) satisfies

2
Z = A Z + Z A '  + Z G  .G'. ; Z (0) = N > s oo s s oo oi oi s oo

t^ttj-i’tj) 5 j=l,...,N l

W  ’ Zs(V  - Ms « )CoZs(V

and

(4.54)

2 . .
Ms(j) = + z cilwicJ;i + v ]

i=l J
(4.55a)

yS (j) = [yls(j) y2s (j)r (4.55b)

Co ■ [Cio S o ] ' (4.55c)

S i  = [cn  0] (4.55d)

c22 = [o c'2i' (4.55e)

The fast subproblem for decision maker - i is defined by the system equations 

(4.28), (4.30), the observations

yif(j) = ^ a z if(t j > + V J )

5 yi (j) - CioZos(V  - Ciizis(tj) ; j€0

and the cost function

(4.56)

T

Ji f = E iei S f (T)rizif(T) + ¿ (zifQizif + uifu if)dt} • (4.57)(4.57)
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Notice that we have studied this stochastic control problem earlier in Section 2 

Its solution, as ê -K), is given by

u if “ * ’ teitj -tj+i) ; jee

where satisfies the Riccati equation

AiiK if + KifAü  + Qt - KifBü BiiKif “ 0

^.f(t,t.) is the state transition matrix satisfying

EA f (t> V  = (Aii - s *if< V V  = i

te^tj ,tj+i) 5 jee

is the output of the filter

Ai A f  + Biiu*f ; ^ V i ’V  ; j=i,2,...,N 'iEizif

zi f (0)

zi f < V

z.
10

Zif(tj) + Mif(j) [y±f(j) - c±iz±f(̂tp ^

and

m f Cj) -  w . c r . [ c .  s ( t T ) c ;  + c . . w . c r .  +  v , .]i f  1 11 io  S J lo  11 i  11 ijJ
- 1

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

The following proposition establishes the near-optimality of the multimodel 

solution. Its proof may be found in [19].

Proposition 4.2:

i)
*

v.(t,a.) i i
& A

= v. (t,a.) + u.r (t)IS 1 ifv 7

ii) J(v1 ,v2)
= Js (vls’u2s) + .Z.1=1

□
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4.2.2. Case 2: Sampled values of continuous noisy measurements

At sampled time instant t ̂ , j£0-{O}, the decision makers observe

Note that in the time interval [t ,t,) no observations are made and theo 1

decision makers have access only to the prior statistics of the random 

quanities involved. Here, { ( t) ; i=l,2} are standard Wiener processes 

independent of each other. Furthermore, their statistics are also assumed 

to be independent of the Wiener processes (v^t) ; i=l,2} and the initial 

state vector x(o).

Let

y ± (J )  = y ±( J ) -  y i ( j - D

t .

= / C±x(T)dx + vi(j) ; 1*1,2 (4.64)

e3-l

where v.(j) = q.(t.) - q.(t.__,) is a discrete-time Gaussian white noise

process with zero mean and variance V. . = (t. - t. ,)I.
i j  J J - l

Let be given by (4.38) with y^(j) replaced by y^(j), and let 

denote the sigma-algebra generated by crL Then clearly, o^ and cr? are 

equivalent.

The optimal team solution to the problem defined by (4.4), (4.6), 

(4.38)-(4.40) and (4.64) can be obtained in a manner analogous to Case 1, 

and is given by [20]
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t .

J
±(t ,oti) = Pi ( t ) [ y i ( j )  - / C±n(x)dx] - B7S(t)^(t,t .)£(j) ; i=l,2

V l

t̂ [tJ*tJ+l) ; jG6 (4.65a)

where P^(t), ?2 (t) satisfy the coupled set of linear integral equations

Pi ( t )  = ' W 0  ( + l i ( t , T ) B i B 'L l j (T)dT -  B ' L ^ C t )  ; 1=1 ,2
t . 
J

where

(4.65b)

Lij(t) = S±(t)(Kt,tj)Si(j) + S.(t) / <Kt>x)BkPk (x)dT A.(j) + K . j (t) ;

t3

i,k=l,2 ; i^k ; t€[t^,t,+1) ; j^e (4.65c)

Kij(t) - - (A - BiBiSi (t))^Kij(t) - Si (t)BkPk (t)Ai(J) ; K (tj+1) = 0

i,k=l,2 ; i^k ; t€(t^,t.+1] ; j^e . (4.65d)

S(t) and Si(t) satisfy the Riccati equations (4.42e) and (4.42f), respectively. 

The state transition matrices ^(t,x), il^CtjX) and <i>(t,x) satisfy the 

equations (4.43).

£(j) = n(t^) = E[x(tj) |6 anc* n(t) satisfies

n = An + I B.v (t,a ) ; n(0) = x 
. , 1 1 1  oi=l

1 * 0  ; j=i,...,N 
J J t .

r3n(t ) = n(t ) + M(j) [y(j) - / Cn(x)dx]

cj-i

(4.66)
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^(j) and A^( j) are appropriate dimensional matrices defined by

t .
J

t . 
J

t .
J

IjO) = [*Ctj,tj_1 )SCtJ_1) / pc^dt + / ({.(tj ,r)GG' / <f> '(t
t. , t. .
J-l J-l

• C^dxdr]V~j ; 1=1,2 ; jS9

t . 
J

Aj/j) = (/ Ck(Kt,tj_1 )dtZ(t^_1) / <t>'(t,t )C'dt

* J - l
t . 
J

+ / C ^ t  ,r)GG' ,r ) C J d T d r ]  v l  ;

‘j-l

i,k=l,2 ; i#c ; j€Q

where

t . 
J

t .
J

Vij = / ci<K t , tj_1 )dtZ(tj_1) / ♦'(t,t._1 )C£dt + Vt

‘j-l ‘j-l
ij

t . t.
rJ Tr r3+ J  C  J cf)(T,r)GG" / (i)'(£,T)crd£dxdr ; i=l,2 ; j^e 

^ - 1  ^ - 1  T

£(t.) = E[(x(t ) - n(t.))(x(t.) - n(t.))"] and Z(t) satisfies 
J J j  J J

Z = AZ + ZA" + GG" ; Z(0) = N 

te [tj_1 #tj) ; j=l,...,N

K ‘j)

t . 
J

Z(t ) - M(j) [ / C<Kr,t ,)drZ(t )<|>"(t ,t )
J J- * "  J - * " J J

‘j-i

t . t .
A  r3 '+ / / C(f>(r,x)GG"<}>"(t. ,x)dxdr]
t. - r J
J-l

,r)

(4.67a)

(4.67b)

(4.67c)

(4.68)
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M(j) is given by

t . 
J

M(j) = [*(t ,t )E(t )/ <T(r,t ,)C'dr + / <Kt ,t )GG'/ <t>'(r,T)C'drdT]vT1 > 
J J J j .  J j- J _  J

j- 1  T

j e e

where

t .
_J

t .
J

V = / Ccj)(T,t )dxi:(t. ,)/ )C'dr + V
J f -  J J J

j-i 6 j-i
t. t .J r j

+ / C / <j>(T,r)GG'JV(^,T)Cr(UdTdr ; jEQ
Tt . i t. ,

J- 1  J- 1

Vj = diag(Vlj}V2j)

y(j) = Cy£(j) y£(j)3"

c = [C£ c']

(4.69a)

(4.69b)

(4.70a)

(4.70b)

(4.70c)

As in Case 1, the optimal team strategies are unique and linear in 

the information available to the decision makers, but the expressions involved 

are more complicated. Hence, the computational problem worsens, making the 

need for suboptimal solutions more acute. Again the appealing structure of 

the multimodel solution makes it an attractive alternative.

As in earlier problems, the multimodel solution is obtained on 

solving a lower order team problem in the slow time scale and two low order 

decentralized control problems in the fast time scale. The system model for 

the slow subproblem is given by (4.17), (4.19), the cost function by (4.49), 

and the observations by
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t .
1

yls(j) = t Ciozos(T)dT + V J)
V i

t . 
1

5 y±(j) - / ciizi s ^ dT ; i = 1 »2 > iG 0-{o} (4.71)

V l

The optimal team solution to this slow subproblem is given by

-1 ^
t . 
1

is (t,ai) = Pis(t)'yiS (j> - / Cions (T)dT] - Bi.BoiSs*.(t>tJ )es « ) ;
V l

i=l,2 ; tS[t ,t.+1) ; j£9 (4.72a)

where P^s(t), satisfy the coupled set of linear Integral equations

Pis(t) = RIsBo'iSis(t)/ 'f^«(t ’T>B^ R7=B;,L^ = (T)dT - ¡ C V , L , 4„(t) ;il s O l  I S  O l  I J S I S  Ol  I J S

i=l,2 ; t€[t_.,t^+1) ; jG0 (4.72b)

where

L ijs(t) = Sis(t)is (t’tj)Eis(J) + Sis(£)/ ♦•(t>t>BokBklPk.<T)dTAi«0 > + Kijs(t>t . 
J

i,k=l,2 ; i^k ; te[t^,t^+1) ; jG0 (4.72c)

.-1K.. (t) = -(A - B  .R.^B^.S. (t))" K.. (t) - S . (t)B , R, dP, (t)A (i) • ijs oo oi is oi isv "  ijsv ' isv ' okHcs ksv ' isVJ' ’

K^_(t. ,,) = 0 ; i,k=l,2 ; i#c ; t€(t ,t ] ; j<E0ijs j+1 j* j+1
(4.72d)

Ss (t) and Sis(t) satisfy the Riccati equations (4.50e) and (4.50f), respectively. 

The state transition matrices ^(.t.x), ^ . e (t,x) and 4>o(t,x) satisfy the 

equations (4.51). Furthermore,
ijs
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A —

SQ(j) = n (t.) = ECzi Ct.) |5 _] and n (t) satisfiesa * J OSs J J ~X S

H = A n + E B .v. (t.a.) : r\ (0) = z s oo s oi is' ’ r  ’ s '  oo

ce[ti-l’tj) ; j = 1 .... N
t . 
J

V V  = ns (tj) + M s0 ) [ y s (3) - / Cons(r)dr]

‘j- 1 J

2is(j) and (j) are appropriate dimensional matrices defined by

2
¡:is(j) - [*8 (t

i  >

J - l  ‘ j - l  1_1

t .
rJ — 1/ (j>g(x,r)C^odTdr]V_ i-1 , 2  ; j e e

t .
j

dtAis(j) - i f  V s (t’‘ j - l )dtZs(tj-l’/ 
‘j-l 0 ‘j-l

t. . t.
J  2 J  --1

+ J C, <t> (t.,r) E G .G'.Jq'CT,r)c: dxdr] V.. ; i k s' j ’ 7 oi oiJYsv ’ 10 J ii *t . ^ o 1 = 1 r J

i,k=l,2 ; i^k ; j£0

where

t .
J

%  = vij + lCio*s(t>tj-l)dtEs (tj-l)/ ^ (t’tj-l)Ciodt
j-l ‘j-l

t . 
J

+ I C . ^ if(t>t pdtw./ ♦ifCt.t, jJC^dt 

‘j-l ‘j-l

(4.73)

(4.74a)

(4.74b)
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J  r. 2 Lj
+ / / Cio<i>s(T ,r) Z G1nGlJK(Z»̂ Ĉ didTdr

t. -.t. ,
J-l J-l

. - 10 icr s 1=1 x 10

r 3  Tr  rj
+ / / cii(|,if(T*r)GiiG£i/^^f C£,T)C£idAdTdr ; i=l,2 ; jEQ

*1-1*1-! T

♦if(t,t ) is the state transition matrix satisfying

eA f (t> y  = - 1
te[tj,tj+1) ; i-1 , 2  ; jse . 

and W_̂  satisfies (4.37). Now,

E[(zos(y  - n.<tj » ( * o 8(tj ) - n8(tj ) ) ' 1 = v y

where E (t) satisfies s

E = A E + E A" + E G  .G'. ; E (0) = N s oo s s oo ^ oi oi sv oo

t^[t i»t ) ; j=l,...,N

t . 
J

v y  ■ v y  - v j )[/ y s(r'tj-i)drV ti-iH s'(tj ’tj-i)
£j -i

tj fcj 2
+ ^ /Co*sCr’T) 2 G«-?G«-f ̂ C t 4 ,T>dTdr]

*1-1*
. _ O l  01 S 11=1 J

(4.74c)

(4.74d)

(4.75)
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M (j) is given by

where

t . 
J

v j> = +;<r *tj.i>codr
V i

t .
J 2 J _ - l

+ / ♦s ( tJ -T^ E, GoiGi i / * ; ( r -T) ci drdT] ^  ;t . , 
J” 1

i=l

t . 
.3

jee

t . 
j

Vj = Vj + / W ^ t . ^ d t ^ t . ^ ) /

3-1 e3-i

tj r 2 tj
+ / / C * (x,r) Z 6 . G:>'(l,T)c;dtdTdr. . o s  . , l o  lO '  S O

"j-i'j-i 1= 1

l>Codt

2 Cj t .
3

+ Z [ f  c1 1 *lf(t,tj_1 )dtw1/ ♦£f (t.tj_ 1 )C£1dt

1 C3-1 fc3-i

t.
J r t . 

.3
+ / / Cl i 4>i£ (T,r)Gl i G£i /4i£f (Jl,T)C£i didTdr] ; jS9

t. ,t. ,
3-1 3-1

Vj is defined by (4.70a); CQ , C^, C22 are defined by (4.55c-e) and

ys (j) = [yls(j) y2s (j)]

(4.76a)

(4.76b)

(4.77)

The fast subproblem for decision maker - i is defined by the system equations 

(4.28), (4.30), the cost function (4.57) and the observations
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Ÿif(j) = / C±izif(T)dT + V± (j)

‘j-l

t .
3

= ÿ± (j) - / [ciozos(T) + ciizis(x)]dT ; j< (4.78)

V i

This control problem has been studied earlier in Section 2. Its solution,

as ê -K), is given by

uif ■ BiiKif4’if(t,tj)zif(tj) ’ £S^tj ,tj+l) ’ •iee (4.79)

where satisfies the Riccati equation (4.59) and ^if(t,t^.) satisfies 

(4.60).

is the output of the filter

*

eA f  = Aiiz\ f  + Biiulf s ;

and

Zif(0) = zio
t . 
3

zif(tj) + Mif(j)Cyifa )  - / ci;Lzif(T)dT]

■j-1

t . 
3

Mi f ( j )  = [ ♦ i f Ctj . t j . 1 )w1/ ♦£f Cr,tj . 1 )c£1dr

'3-1

t . t .

+ / ♦l f ( t j .T)Gi i G '1/ 4»'f ( r ,T )C ' i drdT]V

£j-l

(4.80)

(4.81)

A near-optimality result, analogous to Proposition 4.2, can be established in 

this case also by following the same lines:
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problems. Since each decision maker need not know the parameters associated 

with the fast subproblem of other decision makers, the multimodel solution 

is robust with respect to modeling errors; a very desirable feature in large 

scale system design.

Our results serve to demonstrate the richness in the modeling 

structure with multiparameter singular perturbations in the context of 

multimodeling problems. In each case, the limit of seemingly complex 

integro-differential equations associated with the optimal solution has a 

nice appealing structure when interpreted as a multimodel solution. Thus 

the multimodeling approach using singular perturbations is in some sense 

’robust’ with respect to a class of solution concepts and information patterns.
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