
REPORT R-819 AUGUST. 1978 UILU-ENG 78-2212

S  » COORDINATED SCIENCE LABORATORY

LEVELS OF REPRESENTATION 
OF PROGRAMS AND THE 
ARCHITECTURE OF UNIVERSAL 
HOST MACHINES

B. RAMAKRISHNA RAU

UNIVERSITY OF ILLINOIS -  URBANA, ILLINOIS



--------UNCLASSIFIED---------------- ... _ ___
. S E C U R IT Y  C L A S S I F I C A T I O N  OF T H IS  P A G E  (W h in  P i t a  E n t e r e d ) ______ , »

REPORT DOCUMENTATION! PAGE READ INSTRUCTIONS 
B E FO R E  COM PLETING FORM

1. R E P O R T  N U M B E R
í

2. G O V T  A C C E S S IO N  NO. 3. R E C I P I E N T ’S C A T A L O G  N U M B E R

4. T I T L E  (a n d  Subtitle ) 5. T Y P E  O F  R E P O R T  4 P E R I O D  C O V E R E D

LEVELS OF REPRESENTATION OF PROGRAMS AND THE Technical Report
ARCHITECTURE OF UNIVERSAL HOST MACHINES 6. P E R F O R M I N G  ORG. R E P O R T  N U M B E R

R-819; UILU-ENG 78-2212
7. A U T H O R * » 8. C O N T R A C T  O R  G R A N T  N U M B E R fa J

B. Ramakrishna Rau DAAB-07-72-C-0259

9. P E R F O R M I N G  O R G A N IZ A T IO N  N A M E  ANO  A O O R E S SCoordinated Science Laboratory
10. P R O G R A M  E L E M E N T ,  P R O J E C T ,  T A S K  

A R E A  4 W ORK U N IT  N U M B E R S

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

11. C O N T R O L L I N G  O F F I C E  N A M E  A N D  A O O R E S S 12. r e p o ' r t  D A T E

August, 1978
Joint Services Electronics Program 13. N U M B E R  O F  P A G E S52

14. M O N IT O R IN G  A G E N C Y  N A M E  4 A O O R E S S  ( If  d ifferent from C o n tro llin g  O ffice ) 15. S E C U R I T Y  C L A S S ,  (o f thla report)

UNCLASSIFIED
15«. D E C L A S S I F I C A T IO N / D O W N G R A D IN G  

S C H E D U L E

16. D I S T R IB U T IO N  S T A T E M E N T  (o f  th is  Report)

Approved for public release; distribution unlimited.

17. D I S T R IB U T IO N  S T A T E M E N T  (o l  Mie ab stra ct entered  In  B lo c k  20, If  d ifferent from Report)

18. S U P P L E M E N T A R Y  N O T E S

19. K E Y  WOROS (C o n t in u e  on re v e r ie  a ide  If  n eee eae ry  end  Id e n t ify  by b lo ck  num ber)

Universal Host Machines 
Emulation
High-Level Language Support

20. A B S T R A C T  (C o n t in u e  on reverae a ide  It neeeeae ry  and  Id entify  by b lo ck  number)

The issue of high level language support is treated in a systematic top- 
down manner. Program representations are categorized into three classes with 
respect to a host processor: high level representations, directly interpretable
representations and directly executable representations. The space of inter­
mediate languages for high level language support is explored and it is shown 
that whereas the ideal intermediate language from the point of view of executior 
time is directly executable one, the best candidate from the viewpoint of 
memory requirements is a heavily encoded directly interpretable representation.

DD 1 j a n M73 1473 E D IT IO N  O F  1 N O V  65 IS O B S O L E T E UNCLASSIFIED
S E C U R I T Y  C L A S S I F I C A T I O N  O F  T H IS  P A G E  (Whan D a te  En te red )



UNCLASSIFIED
S E C U R IT Y  C L A S S IF IC A T IO N  or T H IS  RAOEf1W»«i Dmtm Entmrmd)

20. ABSTRACT (continued)

The concept of dynamic translation is advanced as a means for achieving 
both goals simultaneously; the program is present in the memory in a 
compact static representation, but its working set is maintained in a 
dynamic representation which minimizes execution time. The architecture 
and organization of a universal host machine, incorporating this strategy, 
is outlined and the potential performance gains due to dynamic translation 
are studied.

S E C U R IT Y  C L A S S IF IC A T IO N  O F  t h i s  PAGE<TWi«n Dmtm Entmrmd)



UILU-ENG 78-2212

LEVELS OF REPRESENTATION OF PROGRAM AND THE 
ARCHITECTURE OF UNIVERSAL HOST MACHINES

by

B. Ramakrishna Rau

This work was supported in part by the Joint Services Electronics 
Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07- 
72-C-0259.

Reproduction in whole or in part is permitted for any purpose of 
the United States Government.

Approved for public release. Distribution unlimited.



Levels of Representation of Programs and the Architecture of

Universal Host Machines

by

B. Ramakrishna Rau 
Coordinated Science Laboratory 

University of Illinois 
Urbana, Illinois 61801

This work was supported by the Joint Services Electronics Program (U.S. 
Army, U.S. Navy, and U.S. Air Force) under Contract DAAB-07-72-C-0259.



Levels of Representation of Programs and the Architecture of

Universal Host Machines 

B. Ramakrishna Rau

Abstract

The issue of high level language support is treated in a systema­

tic top-down manner. Program representations are categorized into three 

classes with respect to a host processor: high level representations,

directly interpretable representations and directly executable representa­

tions. The space of intermediate languages for high level language support 

is explored and it is shown that whereas the ideal intermediate language 

from the point of view of execution time is a directly executable one, the 

best candidate from the viewpoint of memory requirements is a heavily 

encoded directly interpretable representation. The concept of dynamic 

translation is advanced as a means for achieving both goals simultaneously; 

the program is present in the memory in a compact static representation, 

but its working set is maintained in a dynamic representation which minimizes 
execution time. The architecture and organization of a universal host 
machine, incorporating this strategy, is outlined and the potential perfor­
mance gains due to dynamic translation are studied.



1

1. Introduction

1.1« Microprogramming and Interpretation

Microprogramming was originally conceived by Wilkes as a systematic 
means of implementing the control structure of a computer [1]. The micro­

program, which was embedded in a read-only memory, interpreted the instruction 

set visible to the programmer. In view of the permanence of the microprogram 

and its transparency to the user, the interpreted instruction set was, 

reasonably enough, thought of as representing the architecture of the machine.

With the advent of writeable control store, the situation has 

changed and, yet, the perspective has remained much the same. Writeable 

control store is viewed as a means of providing a "soft architecture," i.e., 
one that can be changed dynamically to match the needs of the moment which 

might, for instance, entail the support of a high level language. The 

emphasis still is on the interpreted instruction set. The concept of a 

"soft architecture" is a seductively appealing one on the face of it. How­

ever, when subjected to closer scrutiny its advantages are not quite as 

obvious. In fact, there is one very hard architecture, which is not the 

architecture best suited to the high level language but that of the micro- 
programmable machine. The claim that the insertion of an additional level 
(the "soft" architecture), which must be compiled into and then interpreted, 
will improve performance is counter-intuitive. It so happens that the claim 

is correct as evidenced by experience with the Burroughs B1700 [2,3] and the 

work of Hoevel [4]. That this should be so, remains unconvincing if explained 

via the concept of "soft" architectures.



2

Part of the problem is that although the central issue has changed, 

the perspective has not. An artificial line is drawn upon which sits the 

conventional machine language. On one side of this line is the domain of 

high level languages, compilers, interpreters and main memory. On the other 

side lie the microprograms, nanoprograms, emulators and a host of other 
micro- and nano- entities. All this terminology from the Wilkes’ concept of 

microprogramming tends to obfuscate the issue which may be phrased as 

follows: given a certain (open ended) set of high level languages, what is

the nature of the host hardware that is best suited to supporting them and 

what is the process by which programs, written in these high level languages, 
are supported?

If the set of high level languages is small and if they are 

similar, the architecture of the host is apt to be high level and closely 
matched to the high level languages. If, instead, the languages are greatly 

dissimilar, the host architecture may comprise the "union" of the architec­

tures associated with each language. Generally, this is an extravagant 

approach, but it has been used when the number of languages is small. A 

case in point is the IBM System/360 Model 65 which has the hardware and 

datapaths needed to interpret the System/360 instruction set plus additional 

instructions which aid in interpreting the 7090 instruction set. Conse­
quently, the host architecture is normally the "intersection" of the 
architectures tailored to the individual languages. This ensures the 
generality and flexibility of the host but also implies a somewhat primitive 

instruction set. A host of this type is termed a universal host machine.

A universal host machine does in fact look very much like a microprogrammable

machine, but it is better viewed as a special purpose architecture geared



3

toward the task of interpretation. By so doing, one is liberated from the 

constraints of horizontality, verticality, etc., and can select an architec­

ture with a more high level goal in mind. Decisions on the nature of the 

format of the instruction set should appear as the outputs of a design 

process that keeps the overall goal in mind rather than as initial con­

straints. In view of the above comments, the rest of this paper emphasizes 

a top-down approach to this issue and an attempt is made to avoid the 
jargon of microprogramming.

Given a host architecture and a high level language, one could 
either interpret the latter directly, compile it into the machine language 

or compile it into an intermediate language which is then interpreted.

Hoevel derives conditions under which the last alternative is superior to 

the other two [5]. These conditions are generally satisfied for the types 

of universal host architectures that exist or are under consideration.

Hoevel does not, however, consider the nature of this intermediate level.
This is treated in some detail by Hoevel and Flynn [6].

1.2. Overview

In this paper, an attempt is made to approach, in a systematic 

manner, the problem of high level language support. The basic assumptions 

are that, in the future, most programs will be written in a high level 

language, and that the number and variety of languages will not be constrained. 
In such an environment, the effectiveness of an architecture is judged not 

by the performance achieved with a particular language but by the performance 

over the spectrum of languages. Accordingly, the focus is on the architecture 
of universal host machines and the nature of the intermediate level language.



4

It is worthwhile to emphasize that the universal host machine is not offered 

as a faster way to interpret a single language such as the System/360. A 

specialized architecture will obviously perform better. The universal host 

machine is effective only if the objective is to support a large number of 
languages with equal facility.

Section 2 discusses the various levels of representation of programs. 

Three levels are isolated: high level representations, directly interpretable

representations and directly executable representations. Section 3 considers 
the space of intermediate representations into which a high level representa­

tion may be compiled. This space is shown to have two dimensions: semantic

level and the degree of encoding. It is shown that the ideal intermediate 

representation varies depending on whether importance is attached more to 

the speed of interpretation or to the compactness of the representation.

Section 4 introduces dynamic translation as a means of achieving the two 

goals simultaneously. The program is stored statically in the compact 
representation, but its working set is translated dynamically into the 

representation suitable for speedy interpretation. On the basis of the 
"principle of locality" it is possible for just a small fraction of the 

program to be in the-dynamic representation and yet find that the majority 

of instructions that are executed are in the dynamic representation. This 

dynamic representation of the working set is maintained in a dynamic trans­
lation buffer, the organization and management of which is outlined in 

Section 5. Section 6 discusses the architecture of a universal host machine 

incorporating a dynamic translation buffer. Finally, Section 7 attempts to 
evaluate the effectiveness of the dynamic translation buffer.



5

2. Levels of Representation of Programs

Central to the discussion of the various levels of representation 

of programs is the concept of binding. We follow Radin [7] in defining a 

program to be bound with respect to a given automaton if the automaton is 

able to execute this program correctly. If the automaton is unable to 

execute the program due to lack of information regarding the syntax and 

semantics of the program and data structures, then the program is unbound 

in those aspects with respect to the automaton. Binding is the process of 

supplying the missing information by augmenting or modifying the program so 

that the resulting program representation is bound with respect to the 

automaton.

2.1. Directly Executable Representations

In the context of high-level language support using a universal 

host machine, it is generally possible to define three levels of program 
representation. Assuming that the universal host machine is fully defined 

(i.e., we consider only "hard” architectures) we may immediately define the 
lowest level; a directly executable representation, (PER), is one which is 

bound with respect to the architecture of the universal host machine. This 

is a well defined level since it is possible to test whether a program 

representation falls into this category by attempting to execute it on the 
universal host machine. However, as will be seen subsequently, it is 

possible to specify more than one PER for a program.



6

2.2. High-Level Representations

At the other end of the spectrum is the high-level representation 

(HLR). A precise definition of a HLR is impossible, yet it is a fairly 
well-formed and intuitively meaningful concept. All programs written in 

’’high-level" languages are HLR's. A HLR is designed to be a natural medium 

for the expression of algorithms. The HLR is characterized by a fairly 

complex, often context-sensitive syntax involving hierarchical structures 

and recursive productions. This facilitates the task of the programmer who 

has available to him features such as block structure and infix notation, 

but these same features complicate the task of interpretation. Another 

important property of the HLR is that the mapping between the names of 

program objects (variables, labels and procedure names) and their type and 
value is often dynamic. In a language such as ALGOL, [8], the same name can 

be declared in different blocks and will be associated with a different value 

in each case. In APL, [9], the type (integer, real, scalar or vector) of 

the variable is determined by the last value assigned to it. The structure 

of most high-level languages implicitly assumes the existence of an associa­

tive memory; when the name of a variable is encountered, the name must be 

associated with the corresponding declaration statement which specifies the 

mapping to the type and value. Similarly, when an explicit transfer of 
control is to be performed, the statement corresponding to the given label 
or procedure name must be located before control can be transferred. In 

fact, associative memory is rarely available at the hardware level and it 

must then be simulated by performing time-consuming table searches. Lastly, 

high-level languages have built-in redundancy and long, inefficient symbolic 

names so as to enhance the intelligibility of the program. These features



7

are all present to aid the programmer in expressing his algorithm but they 

make the task of the interpreter far more complex. Consequently, the idea 

of building hardware which can directly interpret a HLR is generally 
unattractive.

2.3. Directly Interpretable Representations

The approach that is often taken is to compile the HLR into a form 

more suitable for interpretation. The objective of this translation step is 
to produce a representation of the original program which is more closely 

bound to the hardware upon which the program must eventually be interpreted. 

In particular, the need for an associative memory is removed by performing 

the associations once and for all during compilation, the mapping from names 

to type and value is staticized to the extent permitted by the HLR and the 

hierarchical form of expressions is unravelled so that the order in which 

the operands and operators appear is more suited to the interpretive process 
(e.g., Polish notation). The resulting representation is termed a directly 

interpretable representation (DIR). It is difficult to draw a sharp 

distinction between the class of HLR's and the class of DIR's. For our 

purposes, a DIR differs from an HLR in that it does not require an associa­

tive memory, it utilizes a simple, context-insensitive syntax and it does 

not require a preliminary scan (to set up symbol tables and resolve forward 

references) before the program can be interpreted. It is from this last 

property that DIR's derive their name. DIR's may also be viewed as program 

representations for which it is technologically reasonable to build a 
hardwired interpreter.

The class of DER's is a special subset of the class of DIR's. The 
HLR could be compiled directly into the machine language of the available



8

hardware. Since any computation that is to be performed must eventually be 

performed at this level anyway, it might be expected that this strategy 

would be optimal from the point of view of execution speed. Assuming, for 

the time being, that the host computer possesses directly addressable memory 

of a single speed (i.e., a one-level memory hierarchy) and that the amount 

of memory is unlimited, the strategy of compiling directly into the machine 
language is, in fact, optimal.



9

3. The Space of Intermediate Representations

3.1« One Dimension: The Semantic Level

In practice, the amount of memory is limited and it is desirable 

that the output of the compiler be compact so as to permit the execution of 

larger HLR programs. One might exploit the manner in which compilers 

generate code (by substituting similar sequences of machine code for all 

occurrences of the same terminal symbol) by replacing every such sequence by 

a procedure call to a routine that performs the same function. In other 

words, instead of generating a somewhat specific sequence of code in each 

instance, the compiler generates a procedure call to a generalized procedure 
along with the arguments for the call. Since code is not repeated, the 

program representation is substantially more compact. But a price is paid 

in execution time. Firstly, there is the added overhead which is the result 

of using a general procedure and having to pass parameters. Secondly, one 

must forgo any local optimization that the compiler might have performed 

upon the individual sequences by recognizing the context in which each 

occurred. Often, however, compilers are too naive to perform such optimiza­

tion particularly if the high-level language and machine language are 
greatly removed in their syntax and semantics. Under such circumstances, 
the optimization penalty resulting from modularizing the DER is minimized.

The resulting procedurally structured DER, (PSDER) , though still a DER, is 

a different level of representation. The sequence of procedure calls is 

semantically identical to a sequence of instructions in a language with more 

powerful operations. The PSDER is a level of abstraction that is conceptually 
removed from the machine language. The binding of this abstract level is



10

performed explicitly via the procedure calls and, consequently, the PSDER 

is directly executable. Nevertheless, it is semantically at a higher level 

than is the expanded machine language representation. Note that there are 

a number of members in the class of DER's - the expanded machine language 

representation and a number of PSDER1s of varying semantic level. Depending 
on the mismatch between the HLR and the machine language, the PSDER can 

lead to substantial memory savings without a proportionate degradation in 
execution speed.

The existence of a two-level memory hierarchy consisting of a 

small, fast first level memory along with a large and relatively slow second 

level argues more strongly for the use of a PSDER instead of an expanded 

machine language representation. The use of a PSDER partitions the program 
space into two parts - the part consisting of the PSDER procedure calls and 

the part consisting of the semantic procedures. Generally, each reference 

to the former part will generate a large number of references to the latter 

part. The latter part, consisting of the semantic procedures is the ideal 

candidate for placement in the fast memory level since it will be much 

smaller than the other part and be more likely to fit into the small memory. 

Since the majority of references are to this part, they will be accessed at 

the speed of the fast memory and the average access time will be reduced.

In contrast, if the expanded machine language representation is 
employed, the program will be much larger and it will not be possible to 

isolate a portion of the program that is small enough to fit in the first 

level of memory and which also corresponds to a major portion of all memory 

references. A strategy in which the fast memory level is used as a trans­

parent cache on the slow level would probably be more effective. Even with



11

such an organization, the high density of references to the semantic proce­

dures would make the PSDER more attractive. The existence of a two-level 

hierarchy, therefore, makes it beneficial, both in execution time as well as 

in space, to represent the program as a PSDER. This issue is treated in 

detail by Hoevel [5] who derives conditions under which the use of an inter­

mediate language is better, in time and space, than compiling directly into 

machine code or interpreting the high-level language directly.

3.2. Another Dimension: The Degree of Encoding

A further reduction in memory requirements can be achieved by 
compiling down into a DIR rather than into a DER. A DIR may be viewed as 

having evolved from a PSDER in the manner described below. In general, an 

instruction at any level of representation must provide three items of 

information: an algorithm for specifying and accessing each of the operands,

an algorithm that specifies the operation upon these operands and an algo­

rithm that specifies which instruction to execute next. Corresponding to a 

statement or part of a statement in a HLR would be a sequence of procedure 

calls to procedures which compute the memory addresses and fetch the operands 

to internal registers or stacks, a call to a functional procedure which 
operates upon the operands, possibly one or more calls to store results and, 

finally, perhaps a call to a procedure which would compute the address of 

the next PSDER instruction. In certain instances, the action of the operand 

accessing procedure or that of the functional procedure might be simple 

enough not to warrant a procedure call. Instead, a machine language instruc­

tion could be placed in-line with the other calls. Assuming a sufficiently 

wide variety of these procedures, it is possible to reflect the semantics



12

of a HLR by creating arbitrary "instructions1' at the PSDER level by stringing 

together the required calls (along with their arguments) in open-ended 

combinations.

Alternatively, one could select a relatively small set of permu­

tations of procedure calls which are deemed to be sufficient for the applica­
tion at hand. The representation could be made more compact by lumping 

together all. the procedure calls into one field followed by the arguments 

for all the calls. This newly created field would be a surrogate for the 

sequence of calls and would serve to specify which procedures should be 

executed and in what order. This field would be the equivalent of the opcode 

field in conventional machine instructions and what used to be the arguments 

of the calls are now equivalent to the operand fields of the conventional 

machine instruction. The size of the opcode field is determined by the 

number of distinct permutations of calls that were selected. Note that it 
is the number of permutations (not combinations) that matters since the 

correspondence between the procedures and arguments must be specified. 

Alternatively, the opcode field could merely specify the combination of 

procedure calls and a format field could specify the order in which the 

procedures are to be invoked. Without overly restricting this number it 

will generally be the case that the number of bits needed to specify the 

opcode field is much less than the number of bits needed for the corresponding 
machine language procedure call instructions which consist of a machine 

language opcode (specifying a procedure call) and a pointer to the procedure. 
Consequently, this representation is more compact than a PSDER.

However, the representation is no longer a DER. An instruction 

in this new representation does not belong to the machine language and



13

cannot be directly executed. Instead it is interpreted by an interpreter 

(expressed in a DER) which must fetch each instruction, isolate the opcode 

field, use this to determine the sequence of procedures which must be 

executed and activate them in the correct order. The consequent increase 

in the execution time is the price paid for the memory savings achieved by 

using a DIR. There is an additional and less obvious execution time penalty 

in using a DIR rather than a PSDER; by restricting the set of permutations 

of procedure calls which are coalesced into a permissible DIR instruction 

format, one reduces the flexibility of the representation and the ability 
to reflect the semantics of the HLR. This in turn forces the compiler to 

generate spurious instructions and movement of data. Elson and Rake [10] 

provide an example of the inefficiencies that can result when compiling 

from PL/1 to 360 machine language, as a consequence of the "distance" 

between the semantics of the two languages. Table 1 gives an example of a 

sequence of PSDER procedure calls which are combined to form a PDP-11 type 

of instruction and further compressed into a System/360 RX type of format.

The level of a PSDER can be raised by increasing the complexity 
and variety of the procedures until the PSDER is semantically very close to 

a HLR. In the case of a DIR one can, analogously, increase the complexity 

and variety of the opcodes, addressing modes and branch instructions. In 

addition, one can also increase the number of formats until the DIR approaches 
the PSDER in semantic flexibility.

A DIR, as we have noted, is an encoding of an equivalent PSDER.

The extent of the encoding provides a second dimension in the space of 

program representations (the first one being the semantic level). It has 
been demonstrated that the use of information theoretic coding techniques



14

can reduce dramatically the size of a program representation [11-13,3]. 

Wilner states that memory requirements can be reduced by 25 to 75 percent 

and Hehner claims program compaction by up to 75 percent.

The simplest form of encoding involves the use of fields which 
are packed together and allowed to span the boundaries of the units of 

memory access (e.g., words or bytes). Typically the size of each field is 

fixed and large enough to specify all possible alternatives. Some economy 

can be achieved by using contextual information when selecting field sizes; 

for instance, the scope rules of the HLR limit the number of variables that 

may be referenced, from within a given contour [14]. The operand specifica­

tion field needs only as many bits as are needed to select from amongst 

these variables. The field length is variable but fixed within any single 
contour. A more sophisticated encoding of the Huffman type [15] may be 

employed by measuring the frequency of occurrence of each operator and 

operand in the static representation of the program. Often occurring items 

are represented by fields of shorter length thus decreasing the average 

number of bits needed to represent an item. It is possible to restrict the 

permitted field lengths to a small number of selected lengths. This 

simplifies the decoding problem without sacrificing much by way of memory 

efficiency [3]. The idea of frequency based encoding may be generalized by 
considering the frequency of occurrence of pairs, triples, etc'., rather 
than single operators and operands [11-13]. Furthermore, contextual infor­

mation and frequency information may be employed simultaneously to construct 
a separate frequency based encoding for each contour.

With increasing degrees of encoding, the size of the program 

representation decreases and significant memory savings can be achieved.



15

However, the execution time can increase sharply. With packed, but other­

wise unencoded, fields, all that the interpreter for a DIR need do is to 

mask and extract the field. With a contextually encoded representation, 

the interpreter must keep track of the various field sizes as the contour 

changes and refer to the current field size before extracting the field. 

Decoding a frequency based encoding entails traversing a decoding tree 
guided by an examination of the encoded field. This also increases the 
amount of memory occupied by the interpreter. An encoding based on the 

frequency of pairs of fields would require a separate decode tree for each 

possible predecessor field. The same is true when context and frequency 

are both used; a separate decode tree is needed for each context. The use 

of sophisticated encoding strategies will normally require the use of DIR's 

rather than PSDER's since it is difficult to provide such facilities at the 
hardware level and yet retain the flexibility needed to adapt to varying 

frequency statistics. The variable length opcode field in the Burroughs 
B1700 is an example of frequency based encoding being applied at the machine 
language level [16].

3.3. Summary

Summing up the arguments put forward, we find that it is advisable 

to compile the HLR into some lower level representation which is more closely 

bound to the machine language in its syntax and semantics. In particular, 
the representation emitted by the compiler should not assume the existence 
of an associative memory to map names to values (names should be bound to 

memory addresses in a virtual machine as far as possible), the hierarchical 
or tree form of the HLR should have been translated to a sequential form



16

and HLR redundancies, such as symbolic names of unbounded length, should 

have been replaced by numerical tokens or, if possible, memory addresses.

The effect of the compilation step is to factor out large amounts of computa­
tion, which would otherwise have had to be performed repeatedly each time a 

statement in the HLR was interpreted, by performing it just once before the 
interpretation phase. At the lower end, the expanded machine language 

representation was found to be unsatisfactory when the HLR and machine 

language are widely different in their syntax and semantic capabilities.

(In Section 6.1 we see why this will generally be the case.) In such circum- ' 

stances, the use of a PSDER or DIR can lead to significant memory compaction 

which, in a two-level hierarchy, can also result in a reduction in the 

execution time. This is achieved by factoring out common code - a space- 

time dual of the effect of the compiler. Available, then, as an intermediate 
representation for compilation into and subsequent interpretation or execution 

is a range of representations from the flexibly formatted and highly encoded 

DIR's at the high end to the functionally modest PSDER1s at the low end.

For the same functional capability, there exists a trade-off between the 

compactness of a DIR and the execution speed of the PSDER.
The space of representations may be graphically represented as in 

Figure 1. The vertical dimension is a measure of the syntactic and semantic 

complexity of the representation. The horizontal dimension specifies the 
complexity of the encoding. A point in the space denotes a representation.
In general, the size of a program decreases with increasing distance of the 

representation from the origin, but the size of the interpreter and semantic 

routines increases although by a smaller extent. Assuming a two-level 

memory hierarchy, the interpretation time may be expected to decrease in



17

the vertical direction with increasing level. At the same time, the compile 
time will decrease since it, presumably, is easier to compile into a higher 

level intermediate level than it is to compile into one which is greatly 

removed from the HLR. As one moves to the right, both interpretation and 

compilation time may be expected to increase. The increase in compilation 

time is caused by having to compile first into an unencoded form followed 
by an encoding step.

If one is concerned only with the size of the intermediate repre­

sentation and the interpretation time, the former consideration would indicate 

the use of a highly encoded DIR of a level as high as can be tolerated from 
the point of view of interpreter size. The latter consideration would 

indicate the use of a PSDER, once again of as high a level as the size of 

the semantic routines will permit. The size of the semantic routines and 

interpreter is important since they must fit into the faster, smaller level 

if high speed interpretation is to be achieved. In the next section we 

shall present a method of simultaneously fulfilling these contradictory 

requirements of high speed interpretation and a compact intermediate 
representation of the program.



18

4. Dynamic Translation of Program Representations

A characterizing property of a compiler is that whatever binding 

it does persists over the entire period of execution of the program. The 

interpreter must complete whatever binding remains. However, this binding 
persists only over the period of execution of one instruction and must be 
repeated each time that instruction is executed. From the point of view of 

persistence of binding, the compiler and interpreter are at opposite 

extremes. We introduce the notion of a dynamic translator, the persistence 

of whose binding lies in between that of the compiler and the interpreter.

In other words, once the dynamic translator binds an instruction (totally 

or partially), it remains bound over a period of time that spans a certain 

number of successive executions of the instruction. Such a strategy assumes, 

of course, that the program is not self-modifying - an assumption that is 
generally valid when programs have been written in high-level languages.

One can conceive of a hierarchy of representations each with a 

different level of binding and degree of persistence: the source program

which exists until destroyed, the DIR which lasts until the source is 

modified, the link-edited version which exists for one execution of the 

program, possibly a number of lower levels, each increasingly bound and 

persisting for decreasing fractions of the program execution period and, 
finally, a completely bound representation which lasts for the duration of 
just one instruction execution. In addition to the fact that the more 
tightly bound representation exists for less time, it should be noted that 

smaller fractions of the program will be, at any one time, in the more 

tightly bound forms. Thus the source program always exists, but only the



19

procedures which are to be used during this run might be in link-edited 

form and only the instruction which currently is being executed is totally 
bound.

The significance of the dynamic translator is that it creates the 

possibility of simultaneously achieving high speed interpretation and a 

compact static intermediate representation. Since the binding performed by 

a dynamic translator persists over a number of executions of an instruction, 
the time spent in binding is spread out over those instructions, thereby 

reducing the' average time spent in binding per instruction executed. It is 

possible then to use a highly encoded DIR without increasing the interpreta­

tion time by very much if the binding is made to persist over a sufficient 

number of successive executions of the same instruction. This persistence 

of binding is effected by saving the bound representation of the instruction 

which will be less compact than the encoded DIR version. Attempting to retain 

this bound version for extended periods of time for a number of different 

instructions will entail the use of large amounts of memory. In fact, if* 
the bound version were never discarded, one would soon obtain and have to 

provide storage for a translated version of the entire program, thereby 

defeating the purpose of using an encoded DIR.

The effectiveness of the dynamic translator hinges on the ability 

to save the bound representation for just a short period of time which, 

nevertheless, spans a large number of executions of the instruction. The 

existence of loops and recursive calls would seem to make this possible.
In fact, the more general "principle of locality" states that over any 
interval of time, the vast majority of memory references are concentrated 

on a small subset of the address space. This principle has been empirically



20

validated over and again [17-19] and is the fundamental justification for 

the existence of cache memories [19-21] and virtual memories [22,23]. The 

fraction of the address space that is currently being referenced heavily is 

termed the working set [18]. The function of the dynamic translator is to 

maintain in the dynamic translation buffer (DTB) a representation of the 

instruction working set that is more tightly bound than the static repre­
sentation. If the size of the DTB is sufficiently large and if the contents 

of the DTB are selected carefully, it will be found that a large fraction of 

all instructions executed will be present in the DTB. This fraction is 

termed the hit ratio. When the hit ratio is close to unity, most instruc­

tions when executed will be found in the more tightly bound representation. 

The time penalty associated with binding will be experienced only rarely and 
will not be a major factor in determining the execution time. If, at the 

same time, the size of the DTB is small in comparison to the size of the 
loosely bound representation, the memory requirements will not have been 

increased substantially and the conflicting requirements of a compact 

representation and low execution time will be met simultaneously.

The concept of a DTB is close to that of the dynamic address 

translation mechanism provided with virtual memories. When addressing a 

virtual memory, the virtual address must be bound to a physical address.
This involves indirection through one or more segment and page tables on 

each memory reference. This overhead is reduced by retaining in an associa­
tive array the mapping between the virtual and physical addresses for the 

pages which have been referenced most recently. The DTB may be viewed as a 

cache on a virtual memory in which the program is stored in the more tightly 
bound representation.



21

When the dissimilarities between the representations corresponding 

to minimum execution time and minimum storage requirements, respectively, 

are great, it is possible that a number of levels of dynamic translation 

will be required. However, in the rest of this paper, we shall concern 

ourselves with only one level of dynamic translation. Typically, three 

different representations are of interest: the HLR in which the program
is written, the static (intermediate) representation into which it is 

compiled and the dynamic representation which is obtained by dynamically 

translating the static representation of the working set. Of these, only 

the latter two will be in the directly addressable memory during execution.

The use of dynamic translation permits the decoupling of the design 

decisions involved in selecting the intermediate representation. The 

static representation may be selected solely to minimize the size of the 

program. Ideally, it should be a high level, highly encoded DIR. The 
dynamic representation, on the other hand, should be selected to speed up 

execution and should, ideally,’ be a high level PSDER. However, the organiza­

tion and management of the DTB can place constraints upon the static and 

dynamic representations. These issues are discussed in the next section.



22

5« Organization of the Dynamic Translation Buffer 

5.1. Memory Management
One factor that strongly influences the choice of the static/ 

dynamic pair of representations is the size of the unit of allocation of 

space in the DTB. With an arbitrary choice of the static/dynamic pair, one 

static instruction could require an arbitrary amount of space in the DTB to 

store the corresponding dynamic version. This could arise if, for instance, 

the static representation permits a variety of formats with a widely varying 

number of operands. In such a case, the amount of space that would have to 

be allocated in the DTB could be different for each static instruction and 

the DTB would have to operate under a variable allocation policy. One 

problem with variable allocation policies is that the replacement policy is 

complicated since the choice of what is to be replaced in the DTB is 

influenced by the amount of space needed by the incoming information. 

Furthermore, the memory fragmentation [243 that results will require time- 

consuming garbage collection with most replacement policies. Such overheads 

could be intolerable at the level under consideration.

The use of a fixed allocation policy simplifies the replacement 
policy considerably but at the cost of constraining the static and dynamic 

representations. The amount of variability of the instruction formats of 
the static representation must be limited to ensure that the dynamic trans­

lation of a static instruction will fit into the unit of allocation. The 

dynamic representation in turn should be well matched semantically to the 

static representation to ensure that a static instruction when translated 

into its dynamic version will not need more space than the unit of allocation.



23

Assuming that the static representation is a DIR and that the dynamic one 
is a PSDER, they must be such that for each opcode or address mode in the 

DIR, a corresponding semantic routine exists in the PSDER so that a one-to- 

one correspondence exists between fields in the DIR instruction and procedure 
calls in the dynamic version.

An alternative is to permit a variable allocation with fixed size 

increments. When a translated DIR instruction requires more than the unit 

of allocation in the DTB, another memory block is allocated in .a secondary 
overflow area and is linked to the primary unit of allocation. If the 
frequency of occurrence of overflow is low, i.e., the primary unit of 

allocation is chosen judiciously, this scheme does not incur significant 

overhead and yet permits more flexibility in the choice of the static and 

dynamic representations. Garbage collection, too, is greatly simplified.

5.2. Organization

The organization of the DTB is, for the most part, similar to 

that of a conventional cache [19,21,25]. It consists of four memory arrays 

(Figure 2). The first two, the associative tag array and the address array, 
are jointly known as the associative address array, one half of which 

contains the address of the DIR instruction (the associative tag), while the 

other half contains the address at which the PSDER translation is to be 

found. The third array, the buffer array, contains the PSDER instructions. 
This array will normally occupy a predefined portion of the machine's directly 

addressable memory. Ideally, the DTB should be fully associative, i.e., a 

DIR-PSDER address pair may be placed anywhere in the associative address 

array. This permits the replacement policy complete flexibility in deciding



24

what should be replaced and results in a higher hit ratio. However, full 

associativity implies either that costly hardware be used to search the 

entire address array in parallel or that relatively slow sequential searches 

be performed. The compromise employed in most cache designs is to use set 

associativity [25], generally of degree 4. The DIR instruction address is 

hashed to select a unique set of four address array locations. These four 

are searched in parallel using the DIR address as the associative tag. If 

the required DIR-PSDER address mapping is« not present, one of these four 

locations must be used to store the mapping. The one selected for replace­

ment is that which was used least recently. The replacement array keeps 

track of the ordering of each set by recency of use. Set associativity of 

degree 4 has been found to be nearly as effective as full associativity [19].

In cache organizations the pointer into the buffer array is 
implicit, i.e., the address at which the match is found in the associative 

address array is used to calculate the required buffer array address. Thus 

the second array (containing PSDER addresses) is not physically present.

The presence of this array, and as part of the processor's directly address­

able memory, makes it possible to change the unit of allocation in the 

buffer to accommodate the needs of different HLR's. Variable allocation 

policies, too, are supported by this feature. The access time to the PSDER 

instructions might be increased (depending on the implementation) since two 
arrays must be accessed before the buffer address is obtained.



25

6. Architecture of the Universal Host Machine

The desirable architectural features of a universal host machine, 

(UHM), fall into two broad categories: those features that are generally

useful in the task of interpretation, and those that are specific to a UHM 

that incorporates a DTB. The former category has been discussed at length 

elsewhere [26]. We shall content ourselves in this paper with merely 

classifying these features into broad categories without dwelling on the 

implementational alternatives. Instead, we shall concentrate on the 
architectural implications of using a DTB.

6.1. General Features

Any language, be it a HLR or DIR, makes certain assumptions about 
the virtual machine to which it is bound:

1. the ability to parse or interpret the syntax of the language,

2. the nature of the memory space, i.e.,

a. the number of memory spaces, e.g., registers, control store and 
main memory,

b- the type of memory - associative in the case of HLR's and 
directly addressable for DIR*s,

3. the legal data structures, with respect to

a. resolution - the smallest item of information,
b. size - the relationship of other data structures to the unit 

of information,

c. structure - the aggregation of simpler data types to form more 
complex ones,



26

4. semantic capability, i.e.,

a. the permitted transformations upon the data structures,

b. the facilities for specifying named objects, e.g., subscripted 

variables, record fields in PL/1 and base plus displacement 

addressing in conventional machine level languages such as 
System 360,

c. procedural control structures such as subroutines, coroutines, 

EF-THEN-ELSE, DO WHILE, etc., constructs.

To cope with these assumptions, a UHM must have the following 

properties :

1. powerful shift and mask instructions which facilitate the extraction 
and examination of arbitrary bit strings,

2. instructions that aid in the table look-up that is needed to 
simulate an associative memory,

3. i) high memory resolution, i.e., the ability to view the memory

space as a bit string,

ii) residual specification of data structures to enable memory to 

be simultaneously viewed in a more structured fashion,

4. i) good functional resolution, i.e., primitive operations from

which functions of arbitrary complexity may be synthesized, 
ii) high parallelism so that performance may be preserved despite 

the existence of a primitive functional capability,

iii) structural resolution, viz., the ability to manipulate and 

reconfigure the data paths and interconnectivity of the 

functional units at a detailed level,

iv) residual control over those aspects of the datapath structure 
which are relatively static.



27

The functional operations provided in the universal host machine should 

include those that can be thought of as the "greatest common divisors" of 

the semantic capabilities that are encountered in all DIR's that the UHM 

may be called upon to interpret. Considering the diversity of existing and 

conceivable HLR's, the commonality of the corresponding DIR's will exist 

only at a rather low semantic level. Performance of the UHM may be retrieved 

by the provision of a number of primitive functional units which may function 

concurrently. A shortcoming of most UHM's is that data, in the course of a 

register-to-register transfer, undergoes just a couple of elementary trans­
formations (e.g., an add and a shift). The availability of a large number 

of busses and functional units and a powerful restructuring capability would 

permit the hardware to be configured, on a static or dynamic basis, to 

reflect the data flow graph of complex operators. As a result, more signifi­

cant transformations could be performed in one register-to-register trans­

action. Thus, whereas the compiler binds the HLR down towards the hardware, 

the ability to restructure the data flow topology binds the hardware up 

towards the DIR.
Primitive operations, a certain amount of parallelism and a 

limited restructuring capability are found in horizontally microprogrammable 

machines. Residual control over these abilities allows for shorter instruc­

tions without much sacrifice of power. Although elementary operations are 
necessary for the synthesis of arbitrary functions, this does not preclude 

the presence of very powerful features aimed specifically at the task of 

interpretation. Two examples have been noted above - powerful shift, mask 

and extract instructions and instructions which support table look-up. To 

be discussed next are architectural features built around the presence of a



28

dynamic translation buffer. We note that most of the features listed above 

as desirable are present to a greater or lesser extent in many recent 

microprogrammable processors [2,27-29]. Consequently, any one of these 

could, presumably, be used as the basic architecture which is to be enhanced 
by the addition of a DTB.

6.2. Features Specific to the Use of a DTB

The organization of a universal host machine incorporating a 
dynamic translation buffer is shown at the block level in Figure 3. If the 

portion within the broken lines is ignored, we have a conventional host 

machine possessing two levels of memory. The Instruction Unit 1 (IU1) 

executes programs expressed in a directly executable representation and 

specifies the contents of the control word which controls the configuration 

and activity of the UHM1 s datapaths and functional units. Typically, the 

interpreter would reside in the level 1 memory as a DER program. The 

instruction fetch unit (IFU) determines which DER instruction to fetch next 
and presents it to IU1 which thereupon generates the control word which 

comprises the control signals. The instruction set recognized by IU1 and 

the architecture of this portion of the UHM should reflect the desirable 
features listed above.

The IU1 corresponds to those instructions that are needed for the 
general task of interpretation. IU2, on the other hand, recognizes those 

instructions which are specific to the use of the DTB. The function of the 

PSDER version of a DIR instruction is to steer control to the appropriate 
semantic routines and to pass parameters. Consequently, the instruction set 

recognized by IU2 includes CALL, PUSH and POP instructions. The CALL 

instruction benefits greatly from the presence of a return address stack.



29

The PUSH and POP instructions which presuppose an operand stack are useful 

in passing parameters. The limited capacity of the DTB constrains the 

dynamic version of a DIR instruction to be as short as possible. Accordingly, 

the instruction set for IU2 must be of a short, vertical format. In 
contrast, since the instructions recognized by IU1 must exercise detailed 

control over the configuration of the data paths, they could be of a long, 
horizontal format.

The short format instructions come in different flavors to permit 
the operand specification to be immediate, direct or indirect. Thus, in 

interpreting a descriptor based DIR, the PUSH instruction would specify the 

address of the descriptor and the indirect mode, resulting in the operand 

being placed on the stack for the semantic routine. For a DIR in which the 

operand is specified by a base and displacement method, the contents of the 

base register would be placed on the stack by a PUSH using the direct mode 

and the displacement would be stacked by a PUSH using the immediate mode.

The address calculation routine would add the two and fetch the operand to 
the stack for the semantic routine to use.

The most important short format instruction is the INTERP instruc­

tion which exercises the DTB. The operand of this instruction is the 

address of a DIR instruction in the DIR address space. The INTERP instruc­
tion causes this address to be presented to the associative address array 
of the DTB. If it is a hit, the PSDER translation of the DIR instruction 

is present in the DTB and control is transferred to that sequence of PSDER 

instructions. The last instruction in this sequence is another INTERP 

instruction which transfers control to the PSDER version of the next DIR 

instruction which is to be executed. When the next DIR instruction is known



30

unconditionally (i.e., the sequential successor or the target of an uncondi­
tional branch) the operand of the INTERP instruction is supplied immediately. 

When the next DIR instruction address has to be computed, the result may be 

left on the operand stack for use by the INTERP instruction. The INTERP 

instruction, therefore, must come in two flavors depending on whether the 

operand is specified immediately or left on the stack. Overall, the short 

format instruction set is similar to a simple and conventional stack-oriented 

instruction set except, of course, for the INTERP instruction.

If the hit ratio in the DTB were unity, as it will be while the 
DIR program is in a tight loop, the execution of one sequence of PSDER 

instructions would lead directly to the execution of the next sequence. The 

UHM would then be spending all its time in performing computation related 

to the semantics of the DIR program instead of performing overhead tasks 

such as parsing, informatic theoretic decoding and binding which constitute 

computation that is not inherent in the algorithm of the DIR program but is 

the result of the mismatch between the representation of the program and the 
hardware.

Averaged over the entire execution of a program, the hit ratio 
will, of course, be less than unity. The sequence of actions that result 

when a miss occurs is as follows (Figure 4): the INTERP instruction presents

to the DTB a DIR address for which a match is not found in the associative 
address array. This causes a trap to the dynamic translation routine, the 

pointer to which is maintained in a dedicated register, DTRPOINT. Simul­

taneously, the replacement logic of the DTB chooses the location into which 

the PSDER translation is to be placed, stores the DIR address in the associa­
tive tag array and makes available to the dynamic translation routine the



31

pointer to the location in the DTB at which the PSDER translation is to be 

stored. The dynamic translator fetches the DIR instruction, decodes and 

parses it, generates the PSDER translation which it then stores in the DTB 

at the selected location. Lastly, it sets the ball rolling by transferring 

control to the first instruction in the PSDER translation. The dynamic 

translator does slightly more than a conventional interpreter in that it 

must generate the PSDER translation and store it in the DTB instead of 

merely transferring control to the semantic routines. In this respect, it 

has something in common with a compiler. However, since the mapping from 
DIR to PSDER is almost one-to-one, the added complexity is not significant 
and is easily masked by the number of times that the task of decoding and 
parsing is avoided.

The control word is specified by one or the other of the instruc­

tion units depending on which one currently possesses control. When IU2 

processes a CALL instruction to a semantic routine (which is expressed in 

long format instructions), control is handed over to IU1. The last instruc­

tion in the semantic routine causes a return to the dynamic translation of 

the DIR instruction and automatically returns control to IU2. IU2 only 
executes instructions fetched from the DTB. The IFU decides which instruc­

tion unit is to be active depending on whether the instruction it is 

fetching is from the DTB or elsewhere. Since the instructions executed by 
IU2 are relatively small in number (CALL, PUSH, POP and INTERP), the size 

of the opcode field in the short format instructions is minimized. Thus, 

by providing two instruction units, it is possible to have both the small, 

powerful short format instruction set needed to utilize the DTB effectively



32

as well as the larger and more general instruction set needed to perform the 
semantics of the DIR instruction.

The DTB is shown in Figure 3 as a separate resource, but the 

address array and the buffer array would, in fact, form part of either the 

level-1 or level-2 memories. The former alternative is preferable since 

the access time to the PSDER instructions would be low whereas with the 

latter alternative, only the decoding and parsing penalty would be saved. 

However, the increased access time could be partially compensated for by 

prefetching the entire unit of allocation in the DTB. The advantage of the 
latter alternative, of course, is that the required size of the level-1 

memory is decreased. Similarly, although the two instruction units are 

shown as separate resources, any common portions could be shared since the 
two are not concurrently active.

6.3. Comparison to Nanoprogramming

The concept and use of a DTB has certain apparent similarities 

to nanoprogramming since both utilize multiple levels of memory and 
representation. The Burroughs D machine [27] is closer in spirit to the type 
of architecture that we have discussed. This machine executes both long 

format and short format instructions (micro- and nano- instructions). The 

short format instructions either deposit literals into registers or act as 
a pointer to a single long format instruction which exercises detailed 

control over the hardware. Using our terminology, this is an example of a 

PSDER except that the procedures are degenerate ones, one instruction in 

length. The motivation behind this type of nanoprogramming is the same as 
that for a PSDER - program compaction and a reduction in the size of the 
fast memory level.



33

In contrast, nanoprogramming as it is used in the Nanodata QM-1 

[29] is an example of the use of a DIR. The microinstructions are not 

directly expandable and must be interpreted by procedures written in nano­

code. Once again, the reason for the use of such an architecture is to 

reduce the amount of memory required to store the interpreter for the DIR 
of the problem program.

Dynamic translation and nanoprogramming differ in three important 

respects. Firstly, the DTB holds (a portion of) a representation of the 

user's program whereas the microstore in a nanoprogrammable machine holds a 

representation of the interpreter for the DIR of the user's program. Thus, 

they address distinct, though similar, issues. Secondly, the contents of 

the DTB are dynamically varying. This is necessary since the size of a 

user program is, typically, too large to fit entirely into the DTB. An 

interpreter, on the other hand, is relatively small in size and can be 

fitted into the microstore of a nanoprogrammable machine. The most signifi­

cant difference, however, is the manner in which an instruction in the user 

program is dynamically translated as it is fetched to the DTB. No parallel 

exists in nanoprogrammable machines.



34

7. Performance Analysis of the Dynamic Translation Buffer

In this section, expressions will be derived for the average DIR 

instruction interpretation rate as a function of the parameters that affect 

the performance to the greatest extent. These parameters are:
Hardware dependent

- the level 1 access time 

“ the level 2 access time

Tp - the access time to a DTB or cache (nominally 2t )̂
Language dependent

d - average decode time per DIR instruction

g - average time to generate and store the PSDER version of a 

. DIR instruction (after decoding has been performed) 

x - average time to perform the semantics of a DIR instruction 

s^ - average number of level 1 memory references to access the 
PSDER version of one DIR instruction 

s^ ~ average number of level 2 memory references to access one 
DIR instruction 

Program behavior dependent

hc - the average hit ratio in a cache (of stated capacity) used 

to buffer DIR instructions
hQ - the average hit ratio in a DTB (of stated capacity).

Three cases are of particular interest; the performances of a 

conventional UHM and that of a UHM equipped with a DTB provide a measure of 

the benefit derived from a DTB. However, the comparison is not quite fair 

since a UHM with a DTB has more resources than a UHM without one. It is



35

necessary to compare the performance of the former with a UHM that has 

roughly the same resources but uses them differently. Therefore, the case 

of a UHM with an instruction cache on the level 2 memory will be studied.

For the sake of simplicity it will be assumed that the instruction fetch 

and decode are not overlapped and that no instruction prefetch is active. 

Overlap between operand fetch and other computation is permitted since it 

is all lumped into the parameter x and is common to all strategies.

1. Conventional UHM

T1 = s2t2 + d + x*

The average instruction interpretation time is composed of three components: 

the instruction fetch time, the time to decode it and the time spent in the 

semantic routines.

2. A UHM equipped with a DTB

T2 = S1TD + (1 “ V S2T2 + (1 " V  (d + + x*

In this case, the normal instruction fetch time is given by the first term, 

but, on the occurrence of a miss in the DTB, level 2 memory must be accessed 
for a DIR instruction (the second term). This DIR must be decoded and 

translated, which accounts for the third term.

3. A UHM equipped with a cache

T3 = hcs2TD + (1* hc)s2T2 + d + x-

The first two terms account for the average instruction fetch time. Every 

DIR instruction interpreted must be decoded. For the same capacity for the 

cache or DTB, hc will be closer to unity than will hQ since the DIR repre­
sentation is more compact.



Two important figures-of-merit for the DTB strategy are given by

F^ and where

i.e., the percentage degradation caused by 
using the DTB as an instruction cache

i.e., the percentage degradation caused by 

not using a DTB.

The evaluation of F^ and F^ is hampered by the lack of suitable statistics.

A number of the parameters are very dependent upon the type of program, the 

static and dynamic representations and the architecture of the host machine. 

The figures of merit would have to be evaluated for each specific case. We 

shall, however, calculate F^ and F^ for representative and plausible values 
of the parameters.

The unit of time is taken to be the access time of the level 1 

memory which is also assumed to be equal to one machine instruction execution 

time. Therefore, * 1. tq is assumed to be 2 X = 2 and is assumed 

to be 10x * 10. g is set equal to 1.5 x d and is taken to be 1 and

is chosen to be 3. Thus the dynamic representation of one DIR instruction
is assumed to be three times as long on the average as the DIR instruction.

A study of the literature on cache memories [19,21,30] indicates that a
choice of 0.9 for h^ is reasonable for a cache size of 4096 bytes. The 

effective DTB size is 4096/3 bytes since S-̂ = 3S^* A reasonable value for 

hp, then, is 0.8. Substituting these values into the above equations gives

T -  T

= 3t 2 X 100

and

T - T
1 2F. » -±=-—  X 100 

12



and

37

F
2

7,4+ 0.6d 
8 + 0.4d + x X 100

where d, the average number of instructions spent in decoding a DIR instruc­

tion, and x, the average time per DIR instruction spent in the semantic 
routines are yet to be specified.

The parameter d is very dependent upon the extent of encoding and 
the hardware features of the host machine. The provision of powerful field 

extraction instructions reduces d. However, the use of frequency based 

encoding increases the number of levels of decoding needed. For each field, 

for each level of decoding, at least two instructions are needed; the first 

one extracts the field (or a portion thereof) and increments the program 

counter by that amount, causing a CASE STATEMENT type of branch to a list 

of branch instructions. The selected branch instruction must then be exe­

cuted, thereby transferring control to either a semantic routine or to 

another routine which continues decoding at the next level. Thus even with 
a powerful host architecture, d could easily be equal to 10. For simpler 

host architectures, d might well be twice as large if not more. The para­

meter x can vary greatly depending on the nature of the DIR and the archi­
tecture of the host.

Tables 2 and 3 list F^ and F^ for various values of d and x. The 

figures demonstrate that the DTB does have the potential to improve perfor­

mance significantly. The actual values of F^ and F^ for any given situation 

must, of course, be evaluated for the specific values that the parameters 
assume in that particular case. In general, the figures-of-merit decrease 

as d decreases or as x increases. Thus the DTB is not particularly effective



38

if the task of decoding is trivial or if the time spent in the semantic 

routines is much greater than the time that would be spent in decoding.

This would be true, for instance, in machines with vector instructions which 
are heavily used.



39

8, Conclusion

The architecture and instruction set of a processor is determined 

by the class of languages that will be executed (interpreted) by it, either 

directly or following compilation. If this class is restricted, the applica­

tion of the processor is fairly specific and the instruction set will be at 

a high level and closely matched to the single or small number of high-level 

languages that are supported by the processor. The several examples of high- 

level machine designs fall into this category [31-36].

On the other hand, if the class of languages is large and vague, 

commonality of semantics will exist only at a very low level and the instruc­

tion set of the universal host machine will be primitive. Under such circum­

stances, the high-level language and the machine language are extremely 

dissimilar and it is more efficient, both in space and time, to interpose 

an intermediate level, a directly interpretable level, into which the pro­
gram is compiled and which is interpreted by an interpreter written in the 

machine language. An intermediate language is characterized by its position 

in a two-dimensional space of which one dimension is the semantic level of 

the language and the other dimension is the degree of encoding.

However, the choice of the intermediate language is complicated 

by the fact that it is possible to trade-off execution time against the size 
of the intermediate language program representation. The concept of dynamic 

translation was introduced to overcome this dilemma. The dynamic translator 
permits the program to be present in a compact, static representation but 

maintains the working set in a dynamic representation that lends itself to 

speedy execution. The dynamic translator dynamically translates instructions



40

from one representation to the other as they enter the working set. Expres­

sions were derived for two figures-of-merit of this scheme and they were 

evaluated for certain typical values of the relevant parameters, demonstra­

ting the potential performance benefits of this scheme.

The decoding overhead of a universal host machine may be reduced 
either by providing powerful hardware aids to the decoding process or by 

the use of a dynamic translation buffer which decreases the number of instruc­
tions that need be decoded. The former approach requires the addition of 

random logic whereas the latter approach relies on the use of memory. This 
fact is expected to influence the cost-effectiveness of the two schemes.

Future research will be aimed at gathering statistics which permit a more 

quantitative evaluation of the cost-performance of various combinations of 
intermediate representations and universal host machine architectures, with 
and without dynamic translation buffers.



41

Acknowledgments

The author would like to acknowledge Michael Schlansker for many 

profitable discussions which have lead to a number of improvements in this
paper.



42

References
1. M. V. Wilkes, "The best way to design an automatic calculating machine," 

Manchester Univ. Comput. Inaugur. Conf., 1951, p. 16.

2. W. T. Wilner, "Design of the B1700," AFIPS Conf. Proc., 1972 FJCC, 41, 
489-497, Montvale, NJ, AFIPS Press.

3. W. T. Wilner, "Burroughs B-1700 Memory Utilization," AFIPS Conf. Proc., 
1972 FJCC, 41, 579-586, Montvale, NJ, AFIPS Press.

4. L. W. Hoevel, "DELTRAN Principles of Operation: A Directly Executed
Language for FORTRAN-II," Tech. Note No. 108, Digital Systems Laboratory, 
Stanford Univ., Stanford, Calif., March 1977.

5. L. W. Hoevel, "'Ideal' directly executed languages: an analytic
argument for emulation," IEEE-TC, 23, 8, 1974, 759-767.

6. L. W. Hoevel and M. J. Flynn, "The Structure of Directly Executed 
Languages: A New Theory of Interpretive System Support," Digital 
Systems Lab. Tech. Rep. No. 130, Stanford Univ., March 1977.

7. G. Radin, "A note on the concept of binding," IBM Thomas J. Watson 
Res. Rep. No. RC 3287, Yorktown Heights, New York, March 1971.

8. P. Naur, (Ed.), "Revised report on the algorithmic language ALGOL 60," 
CACM 6, Jan. 1963, 1-17.

9. K. E. Iverson, "A Programming Language," Wiley, New York, 1962.

10. M. Elson and S. T. Rake, "Code-generation technique for large- 
language compilers," IBM Sys. Jour.. 9,3, 1970, 166-188.

11. C. C. Foster and R. Gonter, "Conditional Interpretation of Operation 
Codes," IEEE-TC, Jan. 1971, 108-111.

12. E. C. R. Hehner, "Computer design to minimize memory requirements," 
Computer, 9,8, Aug. 1976, 65-70.

13. E. C. R. Hehner, "Information Content of Programs and Operation 
Encoding," JACM, 24,2, Apr. 1977, 290-297.

14. J. B. Johnston, "The Contour Model of Block Structured Processes," 
Proceedings of the SDSPL (SIGPLAN Notices, Vol. 6) Feb. 1971, 55-82.

15. D. A. Huffman, "A method for the construction of minimum redundancy 
codes," I.R.E., 40,9, Sept. 1952, 1098-1101.



43

16. A. B. Salisbury, "Microprogrammable Computer Architectures," 
Elsevier Computer Science Library, New York, 1976.

17. B. S. Brawn and F. G. Gustavsen, "Program Behavior in a Paging 
Environment," AFIPS Proceedings, 33, FJCC, 1968, 1019-1032.

18. P. J. Denning, "The working set model for program behavior," CACM, 
11,5, May 1968, 323-333.

19. K. R. Kaplan and R. 0. Winder, "Cache-based Computer Systems," 
Computer, 6, 3, March 1973, 30-36.

20. D. H. Gibson, "Considerations in Block-Oriented Systems Design," 
Proc. SJCC, 1967, pp. 78-80.

21. R. M. Meade, "Design Approaches for Cache Memory Control," Computer 
Design, 10, January 1971, 87-93.

22. T. Kilburn, D. B. G. Edwards, M. J. Lanigan and F. H. Summer, "One- 
level Storage Systems," IRE Trans. Elec. Comp., 11,2, 1962, 223-235.

23. P. J. Denning, "Virtual Memory," Computing Surveys, 2,3, 1970, 153- 
189.

24. B. Randell, "A Note on Storage Fragmentation and Program Segmentation," 
CACM, 12,7, July 1969, 365-369.

25. C. J. Conti, "Concepts for Buffer Storage, "Computer Group News, 2,
March 1969, 9-13.

26. S. M. Fuller, V. R. Lesser, C. G. Bell and C. M. Kaman, "The Effects
of Emerging Technology and Emulation Requirements on Microprogramming," 
IEEE-TC, 25,10, Oct. 1976, 1000-1009.

27. E. W. Reigel, V. Faber and D. A. Fisher, "The interpreter - a micro- 
programmable building block system," AFIPS Conf. Proc., 1972 SJCC,
40, 705-723, Montvale, NJ, AFIPS Press.

28. H. W. Lawson and B. K. Smith, "Functional Characteristics of a Multi­
lingual Processor," IEEE-TC, 20, July 1971, 732-742.

29. Nanodata Corp., "QM-1 Hardware Level User's Manual," Second Edition,
August 1974.

30. W. D. Strecker, "Cache Memories for PDP-11 Family Computers," Third 
Annual Symposium on Computer Architecture, 1976, 155-158.

J. P. Anderson, "A computer for direct execution of algorithmic languages" 
Proc. EJCC, 1961, 184-193.

31.



44

32. Y. Chu, "Introducing the high-level language computer architecture," 
Tech. Rep. No. TR-227, Comput. Sei. Center, Univ. Maryland, College 
Park, Maryland, 1973.

33. H. M. Bloom, "Design and simulation of an ALGOL computer," Tech.
Rep. No. 70-118, Comput. Sei. Center, Univ. Maryland, College Park 
Maryland, 1970.

34. T. R. Bashkow, A. Sasson and A. Kronfeld, "System design of a 
FORTRAN machine," IEEE-TEC, Aug. 1971, 485-499.

35. M. Sugimoto, "PL/1 reducer and direct processor," Proc. ACM 1969 
519-538.

R. Rice and W. R. Smith, "SYMBOL - A major departure from classic 
software dominated von Neumann computing systems," Proc. SJCC 1971 
575-587.

36.



Decreasing
Decreasing
Decreasing
Increasing

Language
Representation Increasing execution time 

Decreasing program size 
Increasing compile time 
Increasing interpreter size

>
Intermediate
Level
Representations

J

Figure 1. The space of program representations



r
Associative Address Array 
--------  A-----------

Associative 
Tag Array

Address
Array

Replacement
Array

Set
selected 
by hashing 
DIR address

DIR address

Unit of 
Buffer Array 
allocation

Figure 2. Organization of the Dynamic Translation Buffer



r
I

Figure 3. Organization of the Universal Host Machine.



INTE RP
START

Figure 4 Flow diagram for the INTERP instruction



PSDER
sequence

PDP-11
format

System 360 
RX type of
format^

OPCODE REGI
I

REG2 DISPLACEMENT

Operand 1 
(Source)

Operand 2 
(Source and 
destination)

1. Address at which "register" contents are 
stored.

2. Operand address displacement specifications.
3. Address of a procedure that calculates the 

effective address.
4. Address of a functional procedure.
5. The address is implicitly the one calculated 

earlier by the address calculation routine.
6. Differs from the 360 RX format in that the 

index register field is missing for the 
second operand.

Table 1. Equivalence of a PSDER sequence to more compact, encoded formats.



5 10 15 20 25 30
d

10 37.65 29.09 23.7 20 17.3 15.24

20 59.05 47.69 40 34.44 30.24 26.96

30 73.6 61.33 52.57 46 40.89 36.8

Table 2. Percentage 
time due to

increase in 
using the

the average DIR instruction 
DTB as a cache on the level

interpretation 
2 memory.

X 5 10 15 20 25 30
d

10 78.82 60.91 49.63 41.88 36.22 31.90

20 92.38 74.62 62.58 53.89 47.32 42.17

30 101.6 84.67 72.57 63.5 56.44 50.8

Table 3 Percentage increase in the average DIR instruction interpretation 
time due to not using the DTB.


