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Abstract

A (0,1)-matrix A is said to have the consecutive ones property if 

its rows can be permuted so that the l's appear consequtively in each 

column. We present four NP-complete problems connected with some 

generalizations of this notion. These problems concern decomposing 

the columns of a matrix into two subsets having the consecutive ones 

property, decomposing the rows into three subsets having the consecutive 

ones property, finding a subset of rows of maximal size having the 

consecutive ones property, and finding a permutation of the rows such 

that the l's in any column are contained in a set of k consecutive rows, 

for a fixed "buffer size" k.
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1. INTRODUCTION

A (0,l)-matrix is said to have the consecutive ones property if its 

rows can be permuted so that the l's appear consecutively in each column. 

For instance, the matrix

1 "  1 0 1 1 1 0
2 0 1 0 0 1 1
3 1 0 1 0 1 0
4 0 0 1 1 0 0
5 1 1 0 0 1 0

has this property, since the following permutation of rows brings together 

all ones in any column:

The matrix

2 0 1 0 0 1 1
5 1 1 0 0 1 0
3 1 0 1 0 1 0
1 1 0 1 1 1 0
4 0 0 1 1 0 0

1 0 1

1 1 0

0 1 1

(and, of course, any matrix containing B as a submatrix) is an example of 

a matrix without the consecutive ones property.
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Matrices with the consecutive ones property have been introduced by 

Fulkerson and Gross [5] as a tool to investigate interval graphs. They 

received considerable attention when it turned out they could be applied 

to the design of efficient file organizations (see Ghosh [8], Lipski [12]). 

Still other applications, such as the so-called sequence dating in 

archeology, are discussed in the book of Roberts [17].

Let 7T\ be a family of subsets of a finite set X. 7i[ is said to be 
linear (see [12]) if there is a sequence

(1) X1’X2.... Xn

of elements of X such that

(i)

(ii)

It is obvious 

is linear iff

every x £ X occurs exactly once in the sequence, and 

every M 6 7!\ appears as a segment, i.e. a set of JMj 

consecutive terms of the sequence (]M| denotes the cardinality 

of M).

that a family^ = {M^,...,Mm} of subsets of X = [x^,...,xn] 

its incidence matrix A = [a. .], defined by

if x, £ M. i J

if x, 4 M, i ^ J

has the consecutive ones property.

Several characterizations of linear families (or, equivalently, of 

matrices with the consecutive ones property) are known, see e.g.

Tucker [19], Lipski [12], Nakano [15]. Efficient polynomial time 

algorithms to test for the linearity of a family of sets (and finding 

a suitable sequence (1), if there is one) have also been proposed, see
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e.g. Fulkerson and Gross [5], Lipski [12] and Booth and Lueker [3]. The 

algorithm of Booth and Lueker runs in linear time, more exactly, it 

requires 0(m + n + f) steps when applied to a family ̂  = [M^,...,Mm] of 

subsets of a set X, with |Xj = n, £ = f»

Since the generalizations of the consecutive ones property we are going 

to consider are mostly connected with file organization problems, it is 

useful to describe this connection in some detail. We may treat X as the 

set of records in a file, and identify any M £ 7f[ with a query, more exactly, 
with the set of records relevant to this query. If 71\ is linear then we 
can arrange the records without duplications in a linear storage in such a 

way that the response to each query can be retrieved as a set of consecutive 

records; consequently, our arrangement minimizes both the storage space 

and access time. Unfortunately, in most practical situations the class of 

linear families turns out to be too narrow to provide a basis for an 

efficient file organization. This fact rises the need to extend the class 

of linear families at a cost of decreasing the efficiency of the 

corresponding file organization.

One possibility is to relax condition (i) in the definition of a 

linear family, i.e., to allow repetitions in sequence (1). The problem 

of minimizing the number of repetitions can be formulated as a yes-no 

problem in the following way:

PROBLEM 1.

Given: A finite set X, a family 771 of subsets of X, and a
nonnegative integer k.

Question: Does there exist a sequence of elements of X of length

k such that every M 6 7)\ appears as a set of |m | 

consecutive terms of the sequence?
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Alternatively, we can drop condition (ii), i.e., allow each M € 7l\ to 
consist of several disjoint segments, called blocks. In such a case we 

are led to 

PROBLEM 2.

Given: A finite set X, a family 7)\ of subsets of X, and a
nonnegative integer k .

Question: Does there exist a sequence of elements of X, without

repetitions, such that the total number of blocks

corresponding to all M € Til does not exceed k?
Unfortunately, there is a strong evidence that no efficient algorithms 

to solve Problems 1, 2 exist, since both problems have been proved 

NP-complete by Kou [10] (see Aho et al. [1] for a discussion of 

NP-complete problems). Further examples of combinatorial problems related 

to the consecutive ones property include the following two problems proved 

NP-complete by Booth [2]:

PROBLEM 3.
Given: A (0,l)-matrix A and a nonnegative integer k.

Question: Is it possible to transform A into a matrix with the

consecutive ones property by replacing at most k 0's

PROBLEM 4.

by l's?

Given: A (0,1)-matrix A and a nonnegative integer k.

Question: Does there exist a subset of k columns of A which defines

a submatrix with the consecutive ones property?
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Still another problem is obtained if we consider the "two-dimensional"

(2D) file organization on drum-type storage proposed by Ghosh [9]. A

family 7)\ of subsets of a finite set X is said to be 2D linear if there
is a positive integer k and a sequence of pairwise disjoint

sets with X-U...UX, = X such that 1 k
(i) |M n X I <  1 for all M ^ 7J\, 1 <  i <  k, and

(ii) every M £ % is contained in the union X. U X . t1 U ... U X. • ,l l+I i+1M | -1
for a suitable i <  k.

(Each of the sets X^ corresponds to the set of records accessible to a set 

of recording heads of a drum-type storage at an instant of time; only one 

head is activated at any instant of time.)

PROBLEM 5.

Given; A family 7)\ of subsets of a finite set X.
Question; Is Tfl 2D linear?
This problem has also been proved NP-complete (see Lipski [13]).

In this paper we give four other problems related to the consecutive 

ones property. Three of them are listed below;

PROBLEM 6.

Given; A family 7i{ of subsets of a finite set X.
Question; Can 71\ be partitioned into two linear families?

For any family 7)\ of subsets of X, and any Y c  X we shall denote
7n|Y = [m  n y ; m  € m ).

It is easy to see that if 7/\ is linear then57?|Y is also linear, for any
Y c  X.
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PROBLEM 7.

Given: A family 7f[ of subsets of a finite set X.
Question: Does there exist a partition X = U X2 U X^ such that

the families 7/1 |x , i = 1,2,3 are linear? 
i

PROBLEM 8.

Given: A family 7/1 of subsets of a finite set X and a nonnegative
integer k.

Question: Does there exist a subset Y c  X such that |Y j ^ k and

7/1 |Y is linear?
The last problem we are going to consider concerns a file organization 

technique proposed recently by Tanaka et al. [18]. A family 7/1 of subsets 
of X will be called quasi-linear with buffer size k , if there exists a 

sequence of elements of X such that

(i) every x 6 X occurs exactly once in the sequence, and 

(ii) every M 6 7/\ is contained in a set of k consecutive terms 

of the sequence.

PROBLEM 9.

Given: A family 7f[ of subsets of a finite set X and a positive
integer k.

Question: Is 7/\ quasi-linear with upper size k?
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2. PROOFS OF THE RESULTS

It is clear that each of Problems 6-9 can be solved in polynomial time 

by a usual "guess-and-check" non-deterministic algorithm. In order to prove 

that our problems are NP-complete, it suffices to show a (deterministic) 

polynomial time transformation from a known NP-complete problem to each of 

them (see Aho et al. [1]).

Theorem 1: Problem 6 is NP-complete.

Proof: We shall show that Undirected Hamiltonian Path With Degree At Most

3 (UHP3) transforms to Problem 6. We recall the formulation of UHP3: Given

an undirected graph G with the degree of each vertex less or equal to 3, 

decide whether G contains a Hamiltonian path. This problem was proved NP- 

complete by Garey e£ al. [7] (actually, a circuit version is considered in 

[7], but the result can easily be extended to the path version).

Let G = (V,E) be an undirected graph with the set of vertices V, the 

set of edges E, such that the degree d(v) of any vertex v € X  is at most 3. 

(An edge e € E  joining vertices u,v£V is identified with the 2-element set 

{u,v}.) We extend our graph by adding 4-d(v) pending edges incident with 

vertex v, for any v£V. In the resulting graph, G* = (V*,E*) , every "old" 
vertex v € V  has degree 4, and every "new" vertex v£V*-V has degree 1.

Define % = E*U {v} .
Claim: G contains a Hamiltonian path iff % can be partitioned into two

linear subfamilies.

Suppose first that G contains a Hamiltonian path v^»v2 ,***vn (n = tv| ,
v . ^ v . for i ^j, and {v .,v .,.}€ E for 1 < i < n). Let v_,v , , € V*-V be l j J l l+l — 0 n+1
adjacent to v^ and v^, respectively. Define
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\  = ^ Vi,Vi+l̂  : °< U (v),
\  -

It is easy to see that 7/\ -  77\̂  U/^2 is a partition of 771 into two linear families 
The linearity of 77\̂  is obvious, and the linearity of 771̂ follows from the fact 
that the graph <V*,^2> is a collection of vertex-disjoint paths of length 2 

or 3 (see Fig. 1).

Conversely, suppose that there exists a partition/^ = ^ U J ^ 2, where ^  ,

/^2 are linear. Without loss of generality we may assume that V€$^. Every 

v € V  is incident with four different edges in E*, and it is clear that two of 

them must be in 771̂  and the other two in 71\̂ . Any sequence of elements of V* 

which realizes the linearity of 7l\̂  contains a subsequence of consecutive 
terms v^»***^ such that {v^,...,Vn] = V. Consequently, {v^,v 6 ^ ,

1 < i < n, which means that G contains a Hamiltonian path.

It is obvious that the family 77\ can be constructed in time bounded by a 
polynomial in the size of G. This completes the proof. □

We note that a similar result can be proved Tor partitioning 771 linear 
subfamilies, for any fixed k>2. The only change in the proof is that we add 

2k-d(v) (rather than 4-d(v)) pending edges incident with any v£V.
By the theorem just proved, we should not expect efficient algorithms 

for partitioning a given family of sets into the minimal possible number of 

linear subfamilies. This does not mean that the technique of decomposing 

into linear subfamilies cannot be of practical value. A very simple situation 

arises if we restrict any subfamily in the decomposition to consist of at 

most two subsets (of course, any family consisting of two subsets is linear). 

From the file organization point of view (storage space minimization) it is de 

sirable to find a decomposition/^ = {m ^,M2} U U...U{Mn such that
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Fig. 1. A graph G with a Hamiltonian path, and the corresponding partition 
of 77( into linear families.
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2k=ltM2k-l U M 2lJ 2i=llMil " 2k = J M2k-in M2k̂  is minimal, i.e.
n/2 is maximal, see Lipski and Marek [14] (we assume that n is 

even, since we may extend 77\ by adding a dummy subset Mn+-̂ = 0). An optimal 

decomposition of this type can be obtained in the following way. We con

struct a complete graph whose vertices correspond to (and are identified 

with) subsets in 7i\} and we associate the weight equal to |m H n | with any edge 

{m ,n} of this graph. It is easy to see that any optimal solution corresponds 

to a maximum weighted matching in our graph. Hence we may use the (polynomial 

time) maximum weighted matching algorithm of Edmonds [4] (see also Lawler [11]). 

Theorem 2 : Problem 7 is NP-complete.

Proof : The NP-complete problem which we shall transform to Problem 7 is

3-colorability (see Garey et al. [7]). We recall the formulation of 3-color- 

ability: Given an undirected graph G, decide whether its vertices can be

colored by using three colors in such a way that adjacent vertices are always 

assigned different colors. Let G = (V,E) be an undirected graph. We split 

every vertex v g V  into 5 copies v ^ , . . . , v ^  and we join u ^  with v ^  iff 

u and v are joined in G. It is clear that the resulting graph G* = (V*,E*), 

where

E* = { { u ^ \ v ^ }  : {u,v) € G A 1 < i, j < 5

is 3-colorable iff G is 3-colorable. Now we put X = V*, 7/1 = E*.
Claim: G is 3-colorable iff there is a partition X = X ^ U UX^ such that

7/l\ , i = 1,2,3 are linear.
' i

Assume first that there exists a proper coloration of the vertices of

G by three colors. For any v€V, extend the color of v to all copies

v ^ \ . . . , v ^ \  and define X^ to be the set of vertices of ith color in V*,

i = 1,2,3. Then every 7/\\ , i= 1,2,3 is trivially linear, since it is composed
' i

of subsets of cardinality at most 1.
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Conversely, suppose that there exists the required partition

X = X^UX^UX^, and assign the ith color to all vertices of G* which are

in X^, i = l,2,3. Let A - { u ^ \ . . . , u ^ } ,  B = {v ^ \ ... , v ^ }  , where

{u ,v }€E. We shall prove that A contains a "large" monochromatic subset,

consisting of at least three vertices. Indeed, if no such subset exists

then we may assume without loss of generality that two vertices in A are

assigned the first color, two vertices the second color, and one vertex

the third color. The distribution of colors in B must also be of the type

2 + 2  + 1, since otherwise one of the families 57?i would contain a subfamily
' i

of the form {{a,b}, {a,c}, {a,d}} (a€A, b,c,d€B), which is evidently non

linear. It follows that there are four vertices of the same color, a,b 6 A

and c,d€B, and consequently one of the families 7l\\ contains {{a,c}, {c,b},
' i

{b,d}, {d,a}}, a nonlinear subfamily. This contradiction proves the existence 

of a (trivially unique) large monochromatic subset of A, and more generally, 

of any subset { v ^ , . . . , v ^ } ,  v € V  such that v is not isolated in G. Of 

course, if {u,v}^E then the large monochromatic subsets of {u^\...,u^^} 

and { v ^  ,... ,v<5>} are of different colors. Now assign to every non-isolated 

v € V  the color of the large monochromatic subset of [ v ^ ,... , v ^ } , and the 

first color to all isolated vertices. This defines a proper 3-coloring of G, 

and the proof of the claim is completed.

Now the theorem follows from the evident fact that the transformation 

which constructs for a given G can be carried out in polynomial time. □  

An interesting open problem is whether a similar result holds for 

partitioning X into two, rather than three, subsets.

Theorem 3; Problem 8 is NP-complete.

Proof: We shall transform Vertex Cover (see [1]), to Problem 8. First let

us recall the formulation of Vertex Cover: Given an undirected graph
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G = (V,E) and a nonnegative integer k, decide whether there exists a set 

S (called a vertex cover) of at most k vertices with the property that 

every edge of G is incident with some vertex in S.

Consider an instance of Vertex Cover, i.e. an undirected graph G = (V,E),

and an integer k > 0. Let V = {V^>V3 »V5 »•••,V2n-l^> and let X = £V1*V2,V3** "  ,V2n-l^’
where v_,v.,••.,v_ _ are some new elements not in V. Define 2 4 2n-2

Si = fvijV2 J* * *,vi^» 1 < 1 < 2n-2,

J> = £S : 1 < i < 2n-2) U {x-S^. 1 < i < 2n-2} ,

711 = J  U E .

Claim: There is a vertex cover of cardinality at most k in G iff there is

a subset Y c  X such that | y | ^  2n-l-k and is linear.

Assume that S is a vertex cover in G, |s| > k, and put Y = X-S. Then

|Y| > 2n-l-k and /7?| ̂  is linear. Indeed, |Mp| Y| £ 1 for any M€E, and is

obviously linear, since J  is linear. Notice that J  keeps a fixed ordering

(up to reversal) on the elements of X, and keeps the same ordering on

the elements of Y. Suppose now that there is a subset Y C X  with jYJ > 2n-l-k

such that is linear. Assume that v^,v^£Y, i < j, and [v^,v^}€E. Then

it is easily seen that v^ # Y for i < p < j, and that we may replace v.̂  in

Y bv v 7ft\ , r i is linear. By applying these replacements
3 i+1 I (Y-ivii) U lvi+1i

repeatedly, we obtain a subset Y' C X  such that |y '| = |y | > 2n-l-k, ^ is

linear, and Y* does not contain any edge of G. Define S = (X-Y1) D V. Then

S is a vertex cover in G, and |s| < k. This proves the claim, and the whole

theorem, since our transformation can evidently be done in polynomial time. □

Before we prove that Problem 9 is NP-complete, we shall need some

definitions. Let G = (V,e ) be an undirected graph, and let f be a sequence

v, ,...,v containing each vertex v £ V  exactly once. We call every such I n
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sequence a layout of G, and we define its bandwidth as follows 

bandwidth (f) = [|i-j| : {v^v } € e ) .

The bandwidth of G is defined to be

Bandwidth (G) = min{bandwidth (f): f is a layout of g}.

Let A be the vertex adjacency matrix of G. It is easily seen that

Bandwidth (G) < k iff there is a permutation matrix P such that all ones 
Tin P AP lie within the "band" composed of the diagonal, the first k super

diagonals, and the first k subdiagonals. Let Bandwidth be the following 

problem; Given an undirected graph G and a nonnegative integer k, decide 

whether Bandwidth (G) < k. This problem has been proved NP-complete by

Papadimitriou [16] (see Garey £t al. [6] for related results).

Theorem 4 : Problem 9 is NP-complete.

Proof: It is a rather trivial fact that Bandwidth transforms to Problem 9.

Indeed, f is a layout of G = <V,e ) with bandwidth (f) < k iff f realizes the 

quasi-linearity with buffer size k + 1 of E. □

We also remark that it is a trivial consequence of a non-trivial algorithm 

of Garey et al. [6], that testing for the quasi-linearity with buffer size 3 

(and finding a suitable sequence, if there is one) can be done in linear time. 

Indeed, if jm | > 3 for some M t h e n  clearly/^ is not quasi-linear with 

buffer size 3. If | m | < 3 for all M t h e n  we replace every 3-element subset 

{a,b,c}€/^ by three subsets {a,b}, {b,c}, {a,c}, and we delete all subsets 

of cardinality less than 2. The resulting family E determines the set of 

edges of some graph G such that Bandwidth (G) < 2 iff Til is quasi-linear with 
buffer size 3. Now it is sufficient to apply the linear time algorithm of 

Garey et al. to test whether Bandwidth (G) < 2.
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Finally, we remark that most of the NP-completeness results described 

in this paper can be extended to cyclic (rather than linear) arrangements 

of the underlying set X, and even to more general structures considered in 

[12]. We leave it to the reader.
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