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I. INTRODUCTION

A continually rising demand for high performance computation has created a need for highly 

concurrent computer architectures. One architecture which has received significant attention is the 

tree topology [l, 2, 3, 4]. Tree architectures have an inherent ability to compute concurrently with 

typical communication times between the n processors being OClogn ). However, as the number of 

processor nodes and communication links increases, the probability of single or multiple failures 

within structured concurrent architectures becomes unacceptably large. Consequently, recent 

interest has arisen in designing the ability to reconfigure concurrent architectures with one or more 

faults. Reconfigurability, which is one aspect of fault tolerance, is especially significant in tightly 

coupled tree architectures where the failure of a single link or processor can result in the 

subsequent loss of all communication with processors in the subtree below the faulty element.

One of the initial reconfigurable binary tree proposal was made by Hayes, who developed a 

procedure for constructing ’optimal' 1-fault tolerant trees [5], which has since been extended by 

Kwan and Toida [6]. Raghavendra, Avizienis, and Ercegovac (RAE) [7], improved on these 

proposals by adding sufficient redundant lines in order to tolerate multiple failures. Link 

redundancy for binary trees in the RAE approach is as high as 200%, and VLSI layout may require 

0(/z logn ) area [8]. Hassan and Agarwal [8], recently presented a modular technique which 

allocates one spare to multilevel groups of processors. This scheme is conceptually similar to the 

RAE approach in that it dedicates every spare to one specific group of processors, but has the 

advantage of 0(n ) layout and modularity for multichip architectures. Another proposal for 

reconfiguration which is applicable to tree architectures has been proposed by Rosenberg [9, 10]. 

The approach requires a collinear layout with each node requiring access to a logn bus. 

Redundancy in terms of switching transistors is 0(logn ) for each node. The switching structure 

provides for efficient utilization of spare processors. However, fault tolerance for the 

communication lines and the switching transistors is not considered.
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One of the important objectives in designing for reconfiguration is efficient utilization of 

spares. If the architecture has k spare processors then the objective is to be able to tolerate any 

combination of k processor failures through reconfiguration. This should be accomplished with a 

reasonable increase in interconnect, manageable layout complexity for large numbers of processors, 

and a bounded number of pins per chip. In addition, failures in interconnect and switching 

structures should also be tolerable through reconfiguration.

A strategy for satisfying these objectives for binary tree architectures is presented in this 

paper. The approach places spare processors at the leaves of the tree and provides for considerable 

flexibility in reconfiguration through sharing of spares between adjacent subtrees. This strategy, 

which is referred to as Subtree Oriented Fault Tolerance (SOFT), utilizes a virtual displacement 

technique to reconfigure a spare processor into the tree. The capability of sharing spare processors 

between subtrees provides the SOFT approach with significantly higher reliability than previous 

techniques allowing for switch and link fault failures, where reliability is the probability that the 

tree is functional at a time t , given that it was fault free at time 0. In contrast to other proposals, 

SOFT is able to tolerate link and switch failures while reducing the number of redundant links 

between processors. For binary trees, the approach is shown to yield 0(n ) layout. The architecture 

can be partitioned on separate chips for arbitrarily large trees, while providing fault tolerance for 

both on and off-chip connections. Fault tolerance through performance degradation is also possible 

with a SOFT design, as well as application to N  -ary trees.

In Section II of this paper, the SOFT architecture is presented for binary trees. Considerations 

for implementing a SOFT binary tree are discussed, including the placement of spare processors and 

communication links. Section III provides a formal analysis of reconfigurability in SOFT binary 

trees in the presence of processor, switch, and link failures. In Section IV, comparisons between the 

reliability of SOFT and past reconfigurable designs are presented. Finally, Section V extends the 

SOFT concept to N  -ary trees.



3

II. THE SOFT DESIGN FOR BINARY TREES

The SOFT approach to reconfigurable tree architectures employs both spare processors at the 

leaves of the tree and additional links between processors to maintain a complete tree topology in 

the presence of multiple faulty processors and links. An example of SOFT architecture is 

illustrated in Figure 1. At levels high in the tree, failure of a node results in bypassing the node, 

thereby allowing information to flow directly between the faulty node’s father and one of its sons. 

Thus, the faulty node’s son assumes the tasks allocated to its failed father. Since the son is 

performing the tasks of its father, another processor must be found to assume the son's tasks. In a 

similar fashion, one of the son’s sons assumes its responsibilities. This ’logical displacement’ 

continues until a spare is configured in at the leaves. A detailed discussion and an example of SOFT 

reconfiguration are presented in Section III.

A . Term inology fo r  Binary Trees

All trees are said to have i +1 levels. The root is at level 0 and the leaves are on level i . The 

term ’upper levels' refers to levels 0 through i —1. The root is labeled 1, the left child of any node 

n is labeled 2n and the right child is labeled 2n +1. Two nodes are adjacent if they are connected 

by a nonredundant or redundant communication link. The father of a node n on level k ( f  n ) is 

the adjacent node on level k — 1. Similarly, the son of a node n is sonn . f t and sont represent the 

father and son nodes of link l , respectively. The brother of a node n ([bn ) is the single node having 

the same f n . bl refers to either node connected to a redundant link l . The left-most descendant of 

a subtree is the node which can be found by following only left descendants of the root of the 

subtree. Right-most descendants are defined similarly. The cousin of a node n (cousn ) is the 

left(right)-most node on the same level if n is the right(left)-most son of the root. For all other n , 

cousn is n —(+)1 if n is a left(right) son of its father. The ancestor of a node n on a level q (A?) 

is the single node on level q which contains n in its subtree.
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B . Allocation o f Redundant N odes and Links

The number of spare processors supported by the SOFT architecture is 2C, where c is an 

integer: O^c — 1. Algorithm 1 is an algorithm for positioning these spares. The redundant links

required by the SOFT architecture are allocated as described by Algorithm 2. The SOFT binary tree 

of Figure 1 was generated by Algorithms 1 and 2 with i =4 and c =2. A subtree with leaves 

x + k 2 'SST to x  +(& + l)2 '55r—1, where x is the left-most leaf of the root and 0 ^ £ < 2 C — 1, is 

referred to as a Spare SubTree, or SST. Each SST has an associated spare which is adjacent to its 

right-most leaf. The spare adjacent to an SST’s left-most leaf is referred to as its nonassociated 

spare. In contrast to X-tree or Hyper-tree structures [11,12, 13], the SOFT topology is not a half- 

ring structure in which each level contains cousin connections instead of the n to bn connections 

utilized by SOFT.

ALGORITHM 1: Placement of Spares.
Begin

h sr:==*~c • {height of spare subtree}
for k := 1 to 21 lsST do begin 

x  >  left-most leaf of root; 
n := x +k 2*55r—1
add spare and connect as right son to n ; {associated spare of SST k} 
connect spare to cousn ; 
end 

end.
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ALGORITHM 2: Placement of Redundant Links.
Procedure Brother_connect (n : node) 

begin
connect n to bn ;
if level(n ) < i {n is not a leaf} 

then begin
Brother__connect(Ze/£ son o f n ); 
Brother_connect(Ze/i son o f bn ); 
end 

else
if not(adjacent_to_spare(/i)) 

then connect n to cousn :
end

begin
Brother_connect {left son o f root );
end.

C. Redundancy Calculations

The calculations for percentage of spare redundancy are straightforward:

2C
2i+1—l '

% node redundancy =
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The number of redundant links is

redundant links =
*==¡-2

Z  28
g = 0

+ V  + 2C + 1

Thus, the percentage of redundancy for links is

% link redundancy = ----------------------
2*+1—1

For large i , this is approximately .5 + .25 + ( % redundancy of spares). Table 1 enumerates the 

possible percentage node redundancies for large i and the corresponding percentage of link 

redundancy.

D . Im plem enting SOFT Architectures

Implementing SOFT architectures involves the following assumptions.

A s s u m p t i o n  1: Input/output through the leaves is not required. □

This is not a deficiency in the SOFT philosophy but a convenience in describing the 

architecture. The assumption is not unreasonable since many of the algorithms appropriate for tree 

architectures do not require such I/O [1,2 ,4]. In fact, the classical H-tree layout cannot 

accommodate I/O through the leaves for large trees.

Table 1. SOFT Redundancy.

% Node % Link
Redundancy Redundancy

=25.0% =100%
=  12.5% =87.5%
=6.25% =81.25%

1
2i+1—1

=75%
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A s s u m p t i o n  2 : All processors in the tree are identical. □

The necessity of this assumption is clear in light of the manner in which reconfiguration 

proceeds. The assumption may be relaxed somewhat since each processor on level l will only be 

asked to serve as a replacement for a processor on level l — 1. Most well-known algorithms for tree 

architectures utilize identical processors [l, 2, 4].

1) Switching Scheme

The virtual processor displacement concept of SOFT reconfiguration can be implemented with 

the switching scheme of Figure 2. Since all switching due to reconfiguration is performed by these 

switches, design of the processing elements is independent of the reconfiguration scheme.

2) Multichip Trees

If an entire tree cannot fit onto a single chip or wafer, then the tree must be partitioned for 

chip allocation. The major consideration on dividing a tree into subpieces is imposed by pin 

limitations. Partitioning a SOFT tree is straightforward. From Figure 1, it can be seen that at most 

one additional link per chip is required for chips containing no leaf processors. At level i . more 

than one link must be added per chip. However, by observing that there are two redundant links 

per node at the leaves, which equates to the two father-to-son links of nodes at upper levels, it is 

evident that the number of pins per chip at the lower levels will be less for chips containing leaf

brother father

PE spare

leaf

a. upper level switching. b. leaf switching c. Spare switching.

Figure 2. SOFT switching in binary trees.
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processors. While the implication is that a SOFT tree will require at least two different kinds of 

chips, the same may be true for modular sparing approaches such as [7, 8], or even nonredundant 

trees if the tree has an odd number of levels.

3) VLSI Layout o f SOFT Trees

To efficiently lay out a SOFT binary tree in VLSI, an adjustment in the general architecture is 

made in order to employ a variation of the optimal O (n) H-tree layout [14,15] in which the 

leaves are not fully connected. VLSI layout for a tree of i ^4 follows the layout of Figure 3a. 

The location of spares depends upon the percentage of spares allocated to the tree. As in Algorithm 

1, the spares are located on the nonbrother redundant links. For trees with i >4 the layout 

algorithm presented below results in optimal area of 0(n ). The result of Algorithm 3 with i =7 is 

depicted in Figure 3b. The ellipses represent the 5-level subtrees constructed in the first ’for loop’ 

of the algorithm.

Figure 3. VLSI Layout of SOFT Architecture
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THEOREM 1: The SOFT layout, as described in Algorithm 3, for a binary tree of n leaves, has 

O(n) area.

PROOF: It is well known that the area of an H-tree is 0(n ) [15]. The layout can be thought of 

as having O (V/T ) rows and columns. The layout produced by Algorithm 3 (as in Figure 3) has at 

most one redundant link (additional row or column) parallel to each row or column of the O(n ) 

H-tree layout. Since each spare can be thought of as lying in a redundant link, the edge of the 

square corresponding to the layout of a SOFT tree is at most O (k \fn ). where k is a constant 

which, in the worst case is between 2 and 3. Since this is still O(VaT ), the area of the SOFT layout 

is 0(n ). □

The modification to the general SOFT approach necessary for VLSI layout has the following 

implications:

( l )  While the maximum number of spares is ==25%, the minimum is increased from an 

arbitrarily small percentage ( l  per tree) to ^3% (1 per 5 level subtree).

ALGORITHM 3: VLSI Layout o f  Trees w ith i> 4 . 
begin

for k := 1 to 2i-4 do
z(k) >  a 5-level SOFT tree constructed by Algorithms 1 and 2; 

for k := 1 to 2*-5 do
connect root(z(2*k)) to root(2*k-l)); 

construct main tree (m) as an i —5 level nonredundant binary tree: 
apply Algorithm 2 to m omitting all cousin connections: 
for k :== 1 to 2*-5

x  := left-most leaf of root: 
move to x +k —1 
connect z(2*k) as left son: 
connect z(2*k-l) as right son: 
end 

end.
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(2) Since the 5 level subtrees do not share any connections among spares, SSTs cannot ‘borrow’ 

spares from neighbors not within that subtree. This does not, however, affect the reliability 

analysis presented in Section IV, which shows significant reliability enhancement is gained 

with the SOFT strategy.
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III. FAULT TOLERANCE IN SOFT

Necessary and sufficient conditions are presented for reconfigurability in SOFT architectures. 

Reconfiguration for faulty processors is considered in Section A. followed by an analysis- of 

reconfiguration for link failures and switch failures in Section B. The fault model for PEs and 

links is functional in nature and includes any fault affecting the correct operation of the processor 

or the link under consideration. The fault model for switches consists of stuck-open or stuck- 

closed faults. Algorithms for dynamic reconfiguration are presented in Section C. Finally, static 

reconfiguration is discussed in Section D.

A . Tolerance o f Processor Failures

In Section 1, basic properties of SOFT reconfiguration are presented. Based on these properties, 

necessary and sufficient conditions for reconfigurability are derived in Section 2.

As discussed in Section II. failure of a node in an upper level results in a series of 

displacements until a spare is configured in. If a leaf node n fails and it is adjacent to its SST’s 

spare, n is simply bypassed and replaced by the spare. If n is replacing f n , n takes bn as one son 

and the spare as its other son. If n is not adjacent to the SST’s associated spare, it must be replaced 

by or take as its second son the non-brother leaf adjacent to it. an . If a son of is adjacent to a 

spare. /  ̂  may use that spare as a second son. otherwise it takes a leaf adjacent to one of its sons. 

This displacement continues along level i until a spare is configured in. By convention, if a failure 

occurs in an SST. it displaces toward its associated spare if possible. If there are two failures in the 

SST. it must configure in the nonassociated spare. If the nonassociated spare had been configured in 

to its associated SST, then this SST must take its nonassociated spare. This continues until an 

unused spare is configured in. In Figure 4, an example of reconfiguration with 4 faults and 4 spares 

is presented.

In analyzing the reliability of a reconfiguration scheme, it is necessary to determine both what 

fixed fault subsets (a set of processors in the tree designated as having failed) are reconfigurable
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Figure 4. Reconfiguration in an i=4, c=2 tree with 4 faults.

(i.e., static reconfiguration), and for an existing machine with failures, whether the failure of an 

additional specific processor can be tolerated (i.e., dynamic reconfiguration). For SOFT dynamic 

reconfiguration, the order in which faults occur does not affect the ability of the architecture to 

reconfigure. As a result, if it is known exactly what sets of faults can be reconfigured, then a fault 

which occurs at time t can be reconfigured if and only if the new fault subset is reconfigurable. 

Similarly, if it is known exactly what failures can be reconfigured given a set of faults, then all 

sets of reconfigurable faults can be inductively determined. Consequently, the reconfigurability 

analysis of this section is applicable to both scenarios.

1) Properties o f SOFT Reconfiguration

DEFINITION 1: Displacement is the logical movement of a node n to the physical position 
corresponding to f  n in order to replace f  n due to either the failure or displacement of / „  . At 
the leaves, displacement includes the logical movement of a leaf to the left or right in order to 
replace bn or cousn . Displacement through node n refers to the act of displacing n . □

DEFINITION 2: Double displacement refers to an attempt to displace a node twice. For ex­
ample, if n is displaced, it is assuming f n ’s tasks. If displacement were to occur through n 
again, n would assume gn 's tasks. □
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The following Lemmas present basic aspects of reconfigurability which enable derivation of 

the necessary and sufficient conditions presented in Section 2.

Lemma Is Double displacement occurs at upper levels if and only if displacement is attempted 

through a faulty node.

PROOF: Displacement only occurs in descendants of faulty nodes. The lemma is not concerned 

with displacement of leaves so no double displacement occurs due to unavailability of spares. For 

two displacements to intersect at one node (double displacement, by Definition 2), the displacement 

due to a failure higher in the tree must intersect a previously displaced node. But it is necessary to 

pass through a father in order to reach one of its descendants. □

Lemma 2x SOFT trees can not reconfigure using double displacement.

PROOF: By Definition 3. at upper levels some node n is assuming gn ’s tasks. But n is not 

adjacent to bfn. Thus communication with bfn would be lost, and it would not be possible to 

maintain the rigid tree topology if double displacement occurred. At level i , the father of the 

double displaced node would be adjacent to only one leaf processor. □

Lemma 3: At most one of n and bn can be displaced.

P r o o f :  Displacement of both would imply that either f n has been displaced twice, which is 

not possible by Lemma 2, or there is a displacement through f n and f n has failed, which is also 

impossible by Lemmas 1 and 2. □

Lemma 4: Two failures within an SST, or displacement of the root of the SST, and a failure 

within the SST. are reconfigurable if and only if both spares adjacent to the SST can be reconfigured 

in as sons of leaves in the SST.

P r o o f : Displacement of the root of the SST is the same as failure of the root of the SST in 

terms of reconfiguration below that level. Consequently, only failures within the SST need be 

considered. If only one adjacent spare can be configured into the SST, and there are two failures in 

the SST. then reconfiguration is not possible by Lemma 2. If both adjacent spares can be used, then
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reconfiguration through fault free nodes is clearly possible, i.e., a fault subset such as Figure 5a

In previous approaches, unreconfigurable multiple failures correspond to more than one fault

failures in the SOFT approach, regardless of the number and location of spares, correspond to 

faults which force double displacement. For example, consider the failure of a node n . 

Displacement must occur through a sonn . Consequently, the presence of a fault subset as depicted 

in Figure 5a is not reconfigurable. If left sonn has failed, then displacement must occur through 

right sonn which implies that one of right sonn *s sons must be fault free for reconfiguration to 

occur. The failure of left sonn can be thought of as forcing the reconfiguration into the subtree 

with right sonn as its root. Thus, Figures 5b and 5c are not reconfigurable since there is no path 

from the highest faulty node to the leaves through only good nodes.

In order to determine what fault scenarios are reconfigurable. spare sufficiency (55 ) is defined. 

55 is a boolean value associated with each node of the tree.

cannot exist with only two failures. □

2) Analysis o f Reconfigurability

in a group of nodes which have been allocated a single spare [7, 8]. Unreconfigurable multiple

Figure 5a. Figure 5b. Figure 5c.

Figure 5. Unreconfigurable faults at upper levels.
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Definition 3: The SS of a spare s is 1 if and only if s is fault free and not configured 
into the array, or, the nonassociated spare of the SST has SS of 1 and is not configured into the 
array as a son of s ’s associated SST, or s is faulty, and the SST for which s is not associated 
has SS of 1. The SS of a node within an SST is equal to the SS value of its associated spare.
The SS of a node n in a level above the SSTs is 1 if and only if SSileft sonn ) or 
SS 0right sonn ) is 1 and n is fault free, where SS (n ) denotes the spare sufficiency of n . □

In addition, the shiftability of a displaced node n , denoted as s (ji ), is formally defined as:

i  (n ) = ss a>„ )+ ' _1£  1 ss (* ,.)
q =level (n )—1 A?'

0 — i
good (A *)1 -1

l =level (n )—1
(1)

where good (n ) is 1 only if node n is fault free.

Theorem 2 describes reconfigurability at the SST level. Corollaries 1-3 provide necessary and 

sufficient conditions for reconfiguration of a failure anywhere in a SOFT tree. Theorem 3 describes 

the class of fault subsets which are reconfigurable in SOFT architectures.

Theorem 2: The failure of any node n within an SST whose root is not displaced is 

reconfigurable if and only if SS in ) is 1.

PROOF: From Definition 3, for a node in SST S to have SS of 1. either (A) its associated spare 

is available, or (B) the associated spare of S is faulty and its nonassociated SST has SS of 1, or (C) 

there exists an SST whose spare is available such that all SSTs ’left’ of S and ’right’ of the 

available spare have either faulty spares or spares configured in to their associated SSTs. If (A ) is 

true, then the failure is reconfigurable (see Lemma 4). If (A) is not true but (B) is true, then either 

reconfiguration is possible through the failed spare into its nonassociated SST, by the above analysis 

and Definition 3, or (C) is true. If (C) is true (but (A) and (B) are not true), then the 

nonassociated spare of S must be configured into S . If the SS of S is 1 then at most one fault has 

occurred in S prior to this failure, by Definition 3. Lemma 4 indicates that configuration of the 

nonassociated spare is possible. If the nonassociated spare was not being used, then the 

reconfiguration is finished. Otherwise, the nonassociated spare had been configured in as a son of its 

associated SST. If the nonassociated spare has failed then reconfiguration proceeds by bypassing the
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spare, as though the SST were larger (using the switches of Figure 2c). Since SS of this spare was 

1, reconfiguration can proceed toward its nonassociated spare, by the same analysis. This continues 

until the available spare is configured into the array. The algorithms of Section C guarantee that a 

nonassociated spare is configured in only if there is no configuration such that only associated 

spares are configured in. As a result, if a spare is configured in to its nonassociated SST, then 

further reconfiguration cannot proceed in this direction without double displacement, thus 

satisfying the necessary condition. □

COROLLARY 1: Failure of node n , above the SST level, is reconfigurable if and only if the node 

is undisplaced and SS ( ji ) is 1, or, the node is displaced and s in ) is 1.

P r o o f :  The proof considers the displaced and undisplaced conditions separately. If an 

undisplaced node n above the SST level fails, then it reconfigures toward the root of an SST. If 

SS(n) is 1 then there is a path through fault free nodes to an SST which has SS of 1, which 

follows from Definition 3. Since failure of the root of an SST and its displacement are equivalent 

below the SST level, this is reconfigurable by Theorem 2. If SS (n ) is 0 then either there is no path 

through fault free nodes to the SST level, in which case the failure is not reconfigurable by Lemmas 

1 and 2, or such a path exists only to the root of an SST with SS of 0 which is not reconfigurable by 

Theorem 2. If n is displaced, the failure of n is tolerable if the displacement can be moved into 

another sub-tree. When n fails, if bn can assume f n ‘s position, then n ’s displacement can be 

shifted into the bn sub-tree. By Lemma 3, bn can not already be displaced. As above, bn can 

assume its father’s logical position if and only if SS 0>n ) is 1. Shifting the displacement to bn is the 

only alternative if f  n is the failure creating n ’s displacement. If / „  has not failed, then an 

alternative is to shift the displacement into bfn. This can occur if and only if SSijbf ) is 1. 

Similarly, if neither f n nor f has failed, the displacement can be shifted to the brother of f  /n. 

Consequently, the displacement can be shifted to the brother of any ancestor, A , if and only if bA 

has SS of 1 (as above) and all ancestors of n which are on level below A  are fault free. □
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COROLLARY 2: Failure of a non-redundant node n within SST S can be tolerated if and only 

if either SS (n ) is 1, or the root of S , r , is displaced and s (r ) is 1.

PROOF: When a failure in an SST is detected, there are three possibilities for reconfiguration. If 

and only if SS ( ji ) is 1, reconfiguration can proceed toward either the associated or the 

nonassociated spare, from Theorem 2. If r has been displaced, then the third alternative is to shift 

r 's  displacement into another SST, and use S ’s associated spare to reconfigure for n ’s failure. From 

Corollary 1. this is possible if and only if s (r ) is 1. □

COROLLARY 3: The failure of a spare n is tolerable if and only if the failure of a non- 

redundant node in either the associated or unassociated SST is tolerable.

PROOF: If the spare is not configured into the array, then its failure is tolerable. A failure in 

either SST adjacent to the SST is also tolerable. If the spare has been configured into the array, then 

there are two possibilities for reconfiguration. The first is to undo the displacement causing the 

spare to be configured into the array. The second is to bypass the spare and use the neighboring 

SSTs other adjacent spare. To do the first, it is necessary and sufficient that the spare had been 

configured into its associated SST (if the spare is configured into its unassociated SST, then the 

displacement cannot be shifted out of that SST) and a failure within the SST is tolerable (this 

follows from Lemma 4 and Corollary 2). If the spare is to be bypassed, then it is necessary and 

sufficient that a failure in the neighboring SST be tolerable, also by Lemma 4 and Corollary 2. □

T h e o r e m  3: A SOFT tree is properly reconfigured if and only if each faulty node above the 

SST level has a path through fault-free nodes to the i th level (i.e., no subsets such as in Figure 5), 

and there are no more than a:  +1 faults or displacements of the root of an SST in any x adjacent 

SSTs, and there are at least x +1 spares in the tree.

P r o o f :  If there is no failure such that there is no path through fault-free nodes to the roots 

of the SSTs, then reconfiguration above the SSTs can proceed through fault free nodes into the roots 

of the SSTs (from Corollary 1). The question of reconfigurability then concerns only the 

availability of spares at the SST level. If there are x +1 faults in x  SSTs, there are exactly x  +1
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spares available. At most two failures or a failure and a displacement of the root can occur within 

an SST, otherwise the condition of the Corollary is violated for x —1. Lemma 4 indicates that any 

two failures within an SST can be tolerated as long as the nonassociated adjacent spare can be 

reconfigured in. Since there are x +1 spares available, the faulty PEs are reconfigurable. □

B. Tolerance o f Switch and Link Failures

In this section, a SOFT architecture is shown to be capable of tolerating functional failures in 

communication links and stuck-open and closed faults in the switches of Figure 2. The following 

abbreviations are used in describing each node: PFF denotes the processor of a node as being fault 

free, SFF represents the switches associated with a node as being fault free, and LFF indicates the 

links connected to a node are fault free.

1) Failure of Links

DEFINITION 4: A node of a tree is replaceable if and only if it is PFF, and, in the given 
fault scenario, the failure of that processor is reconfigurable. □

The difference between replaceability and SS is that replaceability assumes that there are no 

link/switch failures to prevent reconfiguration. Similarly, replaceability is substituted for spare 

sufficiency in the definition of shiftability, s (/i ).

DEFINITION 5: A nonredundant link l (link between n and f n ) is isolated if: A) f  t , 
left sonf l , and right sonfl are SFF and LFF (except for the failed link), and B) bsoril is replace­
able. □

Lemma 5: If a faulty nonredundant link is isolated, then the tree can be reconfigured around 

that link.

PROOF: The switching scheme of Figure 2 allows the faulty link to be removed from the tree 

if ¿ion, can be displaced. The restriction of Definition 5 (B) guarantees that bsoni can be displaced. 

Part A of Definition 5 guarantees that the switching around the failed link will allow this
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reconfiguration to occur. □

If no ancestor has failed, then the link failure is considered as a failure of / 1. If an ancestor 

has failed, then its displacement is shifted through /*  thereby freeing a spare in another SST for 

use in case of another failure.

Definition 6: A redundant link l , in an upper level, is isolated if: A) f  bl is PFF, SFF, 
and LFF, and both brothers are SFF, and B) s ( f bi) is 1. □

Lemma 6: If a redundant link, at upper levels, is isolated then its failure is reconfigurable.

Proof: The restrictions of the definition, and Corollary 2. guarantee that the displacement 

which necessitates the use of the redundant link can be shifted into another subtree. Thus, the 

faulty redundant link is no longer configured into the tree. □

Definition 7: A redundant link l in level i is isolated if either: A) the displacement is to 
the left (right) and the left (right) brother is replaceable, or B) the displacement is from above 
and f  bl is PFF, SFF and LFF, and s ( / 6j) is 1. □

Consequently, if /  bl has failed then the displacement is not shiftable.

Lemma 7: If any redundant link is isolated then its failure is reconfigurable.

Proof: At upper levels this is true by Lemma 6. At level i , Definition 7 applies. If the 

displacement is to the left or right (Definition 7A), and if that leaf is replaceable, the displacement 

which caused the use of this redundant link can be reversed to configure in a different spare. Thus, 

the redundant link once again becomes isolated from the tree. If the reconfiguration involving the 

redundant link is a result of a displacement of the father, then the displacement of the father must 

be shifted into another subtree, and reconfiguration in level i must be in the direction away from 

the faulty link, otherwise the faulty link will not be configured out of the tree (B). This is possible 

under the condition of part B of Definition 7 by Corollary 2. □
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Theorem 4: Isolated link failures can be tolerated in SOFT architectures.

PROOF: From Lemmas 5 and 7, all inter-processor isolated link failures can be tolerated. A 

fault in a link connected directly to a processor (i.e., links A and B in Figure 2a) can be modeled as 

a failure of the processor itself. In this case, the link fault is reconfigurable if the processor is 

replaceable. Failure of link C in Figure 2a only prevents displacement to the left if the PE has 

failed (displacement to the right is possible), or displacement to the right if the PE has not failed 

(displacement to the left is still possible). In Figure 2b, failure of link C prevents displacement of 

the node to the left or right if the node is not faulty, and to the left only if node has failed. □

2) Failure o f Switches

DEFINITION 8 : Any switch in a nonspare node is defined to be isolated if it is in a node 
which is PFF, SFF (except for the faulty switch), LFF, and the node is replaceable. Any switch 
in a spare node is defined to be isolated if the spare is SFF (except for the faulty switch), LFF, 
and the replaceability of the SSTs adjacent to the spare are 1. •* □

Theorem 5: If a switch is isolated, then its failure is reconfigurable.

Proof: By symmetry, the only switches which need to be considered are switches 1 - 5 in 

Figures 2a and 2b and the switches of 2c. Since the node is PFF, SFF, and LFF prior to the switch 

failure, the node can support any reconfiguration for which either the faulty switch is not 

necessary (stuck-open fault), or the switch should be closed, or the closing of the switch has no 

effect. The fact that the node is replaceable indicates that the failure of this node is tolerable. As a 

result, if the node is displaced it can be returned to the undisplaced state. This can be done at upper 

levels by shifting the displacement into another subtree. At the leaves, the reconfiguration is 

shiftable since the failure of this leaf is reconfigurable. Failure of the switches of Figures 2a and 

2b are tolerable by the following analysis:

(1) Switch 1: A stuck-open fault is reconfigurable as a failure of the processor. Reconfiguration of

stuck-closed is not required since the node is PFF.
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(2) Switches 2,3,4,5: Stuck-open fault is reconfigurable by placing the node in the undisplaced

state. Stuck-closed can also be properly configured in the undisplaced state.

In spare switching (Figure 2c), for the case of stuck-closed faults, the spare is not configured in 

unless it is needed. Consequently, stuck-closed faults have no effect. For stuck-open faults, if the 

spare is not configured in, then the replacebility in both SSTs is certainly 1, and failure of any 

switch is tolerable. If the spare is configured in, then a stuck-open fault is tolerable since either SST 

can reconfigure a different spare in, which means that there is a configuration which does not 

employ these switches. □

C. Reconfiguration Algorithm s

In the first section, the reconfiguration algorithms are presented assuming that the links and 

reconfiguration mechanism are fault-free. In Section 2, the algorithms presented in this section are 

extended to include link and switch fault tolerance. Finally, failure of the control mechanism is 

considered in Section 3.

1) Reconfiguration o f Node Failures.

The reconfiguration algorithm for high-level nodes is presented first. This corresponds to all 

processing elements above the SST level. If the SOFT tree has been allocated one spare per leaf, or 

=50% spares, then all nodes except for the leaves and spares follow this algorithm. Reconfiguration 

algorithms for SST nodes, leaves, and spares are presented next. The algorithms are appropriate for 

SSTs of arbitrary size.

The five basic configurations for upper level nodes are shown in Figure 6. Figure 6a shows the 

normal or starting configuration of all nodes. Figure 6b depicts a node which has been displaced. In 

this section, the configuration for a displaced node is the same, independent of which son is 

displaced. Determination of which son is displaced (and the subsequent switch settings) is done 

within the algorithms. Figure 6c shows a node whose brother has been displaced. By Lemma 3,
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a. b. c. d. e.

Figure 6. Switch configurations for upper level nodes.

only one of two brothers can be displaced at any one point in time. Figures 6d and 6e represent 

failed nodes whose brother is and is not displaced, respectively.

A simple technique for controlling the configuration of the switches is to associate three state 

variables with each node: good, disp, and fatherdisp. The variables are defined as follows:

good : True if and only if the node is functioning properly.

disp : True if and only if the node is displaced (see Definition 2).

fatherdisp : True if and only if the node's brother has been displaced.

The node’s configuration is based on Boolean expressions involving these three variables. Table 

2 gives the configurations from Figure 6 and the conditions under which each configuration occurs.

The control of the internal state variables requires some form of communication between 

nodes. For this purpose, three signals are defined: recon, brorecon, and unrecon.

recon : Recon is issued from a displaced or failed father to the son which is to assume the

identity of the father in the reconfigured array.

Table 2. Configuration versus Expression for High-level Nodes.
Figure Expression

6a. good ■disp •fatherdisp
6b. good •disp
6c. good •fatherdisp
6d. good •fatherdisp
6e. good -fatherdisp
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unrecon: Unrecon is issued from a son to its father and brother to indicate that the father

should no longer be displaced.

brorecon : Brorecon is issued from the brother or father of a node to indicate that its brother has

been displaced.

Additionally, a signal ( fa il) which is internal to the node is required which indicates that the 

failure of the node has just been detected.

Two global variables are used to govern the direction of reconfiguration: spare sufficiency (SS ) 

and path. SS in these algorithms is defined below, and is not identical to the SS defined in Section 

A, although the intuitive meanings are similar. SS and path are recursively defined as follows.

SS: SS of a leaf is 1 if and only if the processor is fault-free and its associated spare is

both fault-free and not configured into the array. SS of nodes in levels 0 to i — 1 are 1 

if and only if SS of the node’s left or right son is 1 and the node is fault-free.

path : The path of a leaf is one if the leaf is fault-free. The path of all other nodes is one if

and only if the node is fault-free and the path of its left or right son is one.

With these parameters, a reconfiguration algorithm for upper level nodes has been derived, 

and is presented as Algorithm 4. A subscript such as SSright denotes the spare sufficiency of the 

right son of a given node. The function of the algorithm is to wait for a signal and then respond 

(reconfigure) appropriately. Each of the five if statements corresponds to signals. For instance, if a 

node receives a recon signal, then it sets its own switches and issues a recon to one of its sons on 

the basis of its internal and global variables.

For Algorithms 4 and 5, the definitions of path and SS assign the leaves values on the basis of 

their internal variables, and the upper level nodes formulate their values for these variables by 

ORing their sons’ values. If SSTs have more than one node, then the root of the SST takes the place 

of leaves in those definitions. Thus, only nodes in levels above the SSTs follow Algorithm 4.
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ALGORITHM 4: 50% SPARING.

While true do 

if recon
then if good then *tree fails* 

set disp ; issue brorecon
if SS¡¿ft + SSfight'pOthiefy

then issue recon to left son 
else issue recon to right son

if brorecon
then set fatherdisp

if unrecon
then if signed is from brother 

then clear fatherdisp 
else clear disp 

if good
then issue unrecon 
else set fail

if fail •disp
then clear good ; clear disp ; issue unrecon

if fail •disp
then clear flood

if SS left +SS right •path ̂
then issue recon to left son 
else issue recon to right son

end.

Reconfiguration of nonleaf nodes within SSTs is similar to the reconfiguration just described. 

In Algorithm 4, reconfiguration proceeds in the direction of the left son where possible. For SST 

nodes, the opposite is the case. The path variable is redefined, and spare availability (SA ) takes the 

place of SS.

path: path for a leaf node is defined as one if and only if the leaf is fault-free and it is not

displaced (to the left, right, or up), path of all other SST nodes is high if the path of 

its left or right son is high and the node is fault-free.

SA : SA is high if and only if the SST’s associated spare is fault-free and not in use.

rootdisp : rootdisp is true if and only if the root of the SST has been displaced.

While both SA and rootdisp depend only on the status of one node, this does not imply that 

separate lines need to be run between the spare or the root and all nodes within the SST. 

Alternatively, the signals could be passed between nodes in the same manner as SS and path . The
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reconfiguration procedure for nonleaf SST nodes is presented in Algorithm 5.

The algorithm for leaf nodes is presented for the general case. The algorithm is appropriate for 

arbitrarily large SSTs. Simplifications exist for small SSTs (25 -  50% sparing). With 25-50% 

sparing, the leaf algorithm becomes similar to the SST algorithm.

The possible line configurations for leaf nodes are shown in Figure 7. Since the possible 

switch configurations are unique from those at upper levels, a new set of internal state variables is 

defined.

ALGORITHM 5: SST NODES.

While true do

if recon
then if good then ‘ tree fails* 

set disp ; issue brorecon 
if SA 4-pathleft+rootdisp

then issue recon to right son 
else issue recon to left son

if brorecon
then set fatherdisp

if unrecon
then if signal is from brother 

then clear fatherdisp 
else clear disp 

if good
then issue unrecon 
else set fail

if fail ■disp
then clear good ; clear disp ; issue unrecon

if fail •disp
then clear good

if SA +path Uft+rootdisp
then issue recon to right son 
else issue recon to left son

end.

a. b.

Figure 7. Switch configurations for leaf nodes.
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dispright- dispright indicates that the leaf is in the displaced state to the right, i. e., it is assuming

the identity of its right neighbor.

disp left- as above to the left.

When dispright and dispUft are both high, this indicates that the node is displaced to level i —1. 

good: as before.

The leaf node’s configuration is based on Boolean expressions of these three variables. Table 3 

enumerates the configurations of Figure 7 and the conditions for their use.

Similarly, the internode signals need to be redefined.

recondir : recondir is as recon, in the direction (left, right, or up) indicated by dir, i. e., recon up is

a request, from father to leaf, to displace the node in order to replace its father.

unrecon: unrecon has the same function; however, it is issued only by leaves which are right

sons and is sent to both the node's father and brother.

brorecon : as before.

fa il: as before.

Using these parameters, Algorithm 6, on page 28, was derived. As in the previous algorithms, 

signals corresponding to the if statements are input to the node, and the node’s configuration and 

output signals react on the basis of these.

Table 3. Configuration versus Expression for Leaf Nodes.
Figure Expression

7a.
7b.
7c.
7d.
7e.

diSp r ig h t  'disp ie f t

dispieft'disp r ig h t  

d^p ieft disp r ig h t

good 'dispr ig h t ’d i s p^ f t  

good -disp r ig h t 'disp le ft
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Figure 8 depicts the possible spare configurations, and Table 4 indicates the expressions which 

must be true for each configuration to be realized. Algorithm 7 presents the control strategy for 

spare reconfiguration (See p. 28.).

The reconfiguration algorithms require communication between adjacent nodes. This includes 

both updating values such as SS and path as well as issuing signals such as recon and unrecon. 

While separate lines could be allocated for these signals, it is also possible to allocate the data lines 

for these purposes.

A similar issue is whether to allocate separate hardware for reconfiguration or to implement 

the algorithms in soft/firmware. Implementing the algorithms in hardware is straightforward. To 

implement the algorithms (and diagnosis) in software, however, requires that a failed node never 

perform diagnosis or reconfiguration. This can be accomplished by having the father perform 

diagnosis and reconfiguration for both of its sons. Thus, the sons would have registers for their 

switch configurations and no other hardware to determine its switch configuration. When a node 

failure on level i has been discovered, the failing node's father, on level ¿ —1, reconfigures the 

node's switches and then performs reconfiguration for its new son on level i +1. This requires mild 

modification of the preceding algorithms, but is straightforward.



ALGORITHM 6: LEAF NODES.
While true do

if recon right _____
then if Knot ad jacent to spare J+displep 

then set disp right; issue recon right 
else issue unrecon ; clear disp lep

if brorecon
then if node is a left son

then if disp risht then issue recon ̂  
if good

then set disp left; clear disp right 
else clear disp right; clear disp Up 

else set dispright
if good then clear disp lep; clear disp ri ht

if recon
then if good •disp ¡¿g

then if node is a right son
then if disp right then issue recon right 
else issue recon 1̂

set disp right; set disp ¡¿p; issue brorecon 
else *tree fails*

if recon Up
then if dispright-dispUft

then clear disp right\ issue recon ¡¿p 
if good

then clear disp iep 
else set disp up

if disp right 'disp left+dispZft-disp right 'good 
then ’ tree fails* 

if disp Uft -d isp right
if node is a right son

then clear disp right; clear disp tep 
issue unrecon

______ else *tree fa ils*
if disp right ’disp Uft -good

then set disp ̂ p; issue recon ĵ p 
if unrecon (implies node is a left son) 

then if good
then clear disp ¿ep 
else set disp up 

if foil 'dispright-dispUft
then issue recon up', clear good 

if fail -disp¡¿p'disp fightthen *tree fails* 
if fail -dispUp-dispright 

if node is a right son
then issue unrecon; clear disp ¡¿p; clear good 
else *tree fails* 

if foil 'disp up-disprigM 
then if SA +rootctisp

then issue recon right ; set recon right; clear good 
else issue recon Up ; set recon Up; clear good

end.
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Table 4. Configuration versus Expression for Spare Nodes.
Figure Expression

8a. good 'disp right'disp left
8b. good 'disp ,-igto
8c. good •dispUft
8d. good

Figure 8. Switch configurations for spare processors.

ALGORITHM 7: SPARES.

While true do

if recon ri ht 
then if good

then set disp right 
else issue recon right 

if recon lê
then set disp

if disp righl+good
then issue recon clear disp right

if fail -disp ¿¿fi
then issue recon clear good 

if fail -disp right 
then clear good

if SA right+rootdispright 
then issue recon right 
else issue recon clear disp right

end.

2) Reconfiguration for Link and Switch Failures

As with processing elements, the fault model employed for links and switches is a functional 

fault model. Stuck-at faults and shorting of lines have been considered. The fault model for 

switches consists of stuck-open and stuck-closed. Such a fault model applies to faulty input at the 

switch control as well as to failure of the switch.

In Figures 6b, 6d, and 6e, a displaced or bypassed node is shown as configuring the switches 

such that the son or bypass data are passed on to both sons. Naturally, this is unacceptable if link
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fault tolerance is to be provided (although it allows the three internal state variables to be set 

mnemonically). Instead, the switches must be set based on the direction of reconfiguration. Thus, 

the number of possible switch configurations grows from five to eight. Three internal state 

variables are. therefore, still sufficient. A switching scheme which allows for tolerance of link 

failures was presented in Figure 2. The corresponding modifications to Algorithms 4 and 5 consist 

only of setting the internal state variables to distinguish the direction of reconfiguration.

Reconfiguration around a failed link l can be implemented by:

1. Clear path and SS of the son of the link.

2. Set fail of father of the link.

If an ancestor of f t has failed, then the corresponding displacement can be shifted through f t , 

thereby avoiding the use of an extra spare. Assuming link failures occur with relatively low 

probability, however, this may not be worth the overhead. Although both the brother and father 

links of a node cannot fail without the tree failing, it should be noted that even if these two lines 

are shorted together the tree can still function. In this case, setting fail of the son/brother of the 

shorted links results in correct reconfiguration.

Failure of a redundant link implies that it is either in use or attempted use. Reconfiguration 

for failure of a redundant link can be implemented as follows:

1. Clear path and SS of both nodes adjacent to the link.

2. Set fail of the displaced node.

If the spare which is configured in to replace the node is needed, then an imrecon signal will travel 

from the leaves up to the node whose brother link has failed. At this point, the node can be 

reconfigured back into the array.

Failure of the lines within the nodes must also be considered. Failure of lines such as A and B 

of Figure 2a can clearly be modeled as failure of the PE itself. Failure of C is handled in the
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following manner:

1. Clear pathright.

2. Set fail of the PE.

These modifications apply to the switching scheme of upper level nodes. The modifications for 

leaves and spares are similar but with less complexity due to their simpler switching structure.

In the stuck model of switch failure, the simplest way to deal with a stuck-open fault of a 

switch is to handle it as a break in the internode line. For the case of stuck-closed faults, the only 

time a stuck-closed fault requires an alternate reconfiguration strategy is when the switch is closed 

but the current switch configuration requires the switch to be open. Taking advantage of 

symmetry, switches 1 through 5 of Figure 2a will be considered. If switch 1 is stuck-closed, this is 

only an issue if the PE has failed. This implies that the line to the left son is no longer reliable. 

Thus, the steps to tolerate this failure are the same as the link failure. If switch 2 is stuck-closed, 

then it, too, can be modeled as a failure of the line to the left son. Significantly, this is only an issue 

if displacement to the left or brorecon is attempted. Similarly, switch 3 being stuck-closed can be 

handled by considering the PE to have failed displacing through the right son (set path^  and 

SSUft to zero). Switch 4 being stuck-closed can be handled by treating the PE as faulty. Similarly, 

switch 5 can be handled by considering the PE to have failed. Similar results have been obtained 

for leaf switching.

3) Reconfiguration for Control Failures

The final area of switch and link failure to be considered concerns failure in the 

reconfiguration control hardware. If a soft/firmware approach is used, this is not as much of an 

issue, since only good processors perform the reconfiguration algorithms. The assumption that 

switch and link failure is isolated in its incidence is extended to control failure as well. For 

instance, if a node's good variable is stuck-at-one, then there is little that can be done if the node 

fails. This corresponds to an undetected fault, which cannot be tolerated.
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The fault model employed for control failure is also a functional fault model. It considers the 

case where a value or signal is one or zero when it should not be. The technique for handling good 

stuck-at-zero is self-evident.

If disp is stuck-at-one then the response should be to clear good. If disp is stuck-at-zero, 

then its path and SS should be set to zero. If fatherdisp is stuck high, then this can be modeled as 

failure of the father. If it is stuck-at-zero, then the path and SS of its brother should be set to zero.

If a global variable is zero when it should be one, then reconfiguration will not proceed in that 

direction. This is not significant, since the worst situation is the node failing, in which case 

reconfiguration cannot proceed in that direction anyway. If a variable is stuck-at-one then, under 

the assumption that switch and link failure are isolated in occurrence, the second variable is valid, 

i.e., if SS is stuck-at-one then, if reconfiguration cannot proceed in this direction, path will still be 

zero. Consequently, both SS and path must be checked before selecting a son for displacement.

Finally, reconfiguration for signal failures (e.g.. recon , brorecon ,...) are considered. Since each 

(upper level) node has two recon signals, one to each son. if one recon is stuck low, then 

reconfiguration simply cannot proceed in that direction (i.e.. SS and path are zero). If a recon is 

stuck high, then the node should be set as faulty. Thus, the recon signal can be ignored after that. 

Similarly, if unrecon is stuck high, then the node can be set faulty, further unrecon signals then 

being invalid. If unrecon is stuck low, then the node can be set faulty, thereby assuring that the 

unrecon need never be used. If brorecon is stuck low, then path and SS of the node must be set to 

zero. If it is stuck high, then this can be modeled as a failure of the father, with reconfiguration 

proceeding in the direction of the node.

D . Analysis fo r  Static Reconfiguration

The algorithms presented in Section C are appropriate for dynamic reconfiguration of failures. 

Static reconfiguration, where a tree has a fixed subset of nodes which are faulty, requires 

reconfiguration and analysis of reconfigurability for the entire structure given a subset of faulty
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nodes. An algorithm has been developed which determines if an input fault subset is 

reconfigurable. The algorithm has been implemented in Pascal.

Input to the algorithm is as follows. First, the faulty nodes in levels above and including the 

root of the SSTs are specified. Next, the associated spare of each SST is specified as being faulty or 

fault-free. Finally, the number of nonspare faults in each SST is input to the algorithm.

Nine Boolean variables are assocated with each node at and above the level of the roots of the 

SSTs. The algorithm begins by determining the reconfigurability of the tree at the SST level alone. 

This is done by initializing the Boolean values for the root of each SST, on the basis of the status of 

the SST’s root, and the number of faults within the SST. These values are then altered based on 

the Boolean values of the node’s neighbors (brothers and cousins) on the same level. If the tree has 

not been determined to be unreconfigurable. then the nodes on the level above the SST level are 

considered. The Boolean values of any node above the SST level are set on the basis of its son’s 

Boolean values. These values are then altered on the basis of the Boolean values of the other nodes 

on the same level.

Since the reconfigurability of the tree can be determined at each level, based only on the 

Boolean values from the level below, and the status of nodes on that level, the algorithm runs in 

time directly proportional to the number of nodes above the Spare SubTree level. Since the size of 

the tree above the SSTs equals the number of spares less one, the algorithm is 0(n ) for a fixed 

percentage of spares, where n is the number of nodes in the tree. For a fixed number of spares, the 

algorithm runs in order constant time. If the tree has been determined to be reconfigurable, then a 

proper reconfiguration for the tree can be determined on the basis of the Boolean values associated

with each node.



34

IV. RELIABILITY ANALYSIS

In this section it is shown that the reliability of a SOFT binary tree, even with the restrictions 

imposed by VLSI layout, is always superior to a tree implemented using the class of approaches 

employed by [7, 8]. This is demonstrated by first establishing an upper bound on the reliability of 

the previous approaches, independent of the actual implementation, i.e.. their optimal reliability, 

and comparing it to a lower bound for SOFT trees. Exact reliability calculations of some specific 

SOFT implementations are also derived and compared.

A . Reliability o f Other Approaches

It is assumed that the i +1 level tree is allocated k spares. A Modular Sparing Approach 

(MSA) to fault tolerance in binary trees is any approach to reconfigurable design which partitions a 

tree into k groups of processors and allocates each group of processors one spare to be used 

exclusively by that group. The work of Raghavendra. et al. (RAE) and Hassan and Agarwal (M - 

trees) can both be classified as MSA. Significantly, SOFT trees are not included in this category. It 

should be noted that the strategy of Rosenberg [9] is not MSA. However, Rosenberg’s strategy does 

not allow for interconnect or switch failure. With an MSA. each module must be functioning in 

order for the tree to be functioning. Thus, the reliability can be expressed as the product of the 

reliability of all of the modules. In general this is:

^ « = n x . (2)
m =1

where Rm is the reliability of the mth module. Although some MSA schemes may tolerate 

interconnect failure, the following reliability analysis considers only processor failures, for sake of 

simplicity. Since the spare can be configured into the module in case of any single failure, the 

reliability of each module can be expressed as:

RmoduU = R* + q R * -K l-R )
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where R is the reliability of each individual processor and q is the number of processors in the 

module, including the spare. The reliability for all processors is assumed to be equal and 

exponentially distributed (i.e., R —e ^ X  Although this assumption is not accurate for many 

environments, it does provide an initial point of comparison and is a common assumption in 

reliability analysis [7, 8,16]. For simplicity, the failure rate of spares, fi, is assumed to be equal to 

the failure rate of nonredundant processors. \. In the following discussion, it is assumed that the 

trees can be divided evenly into modules of size q , although the theorem does not rely on this 

assumption.

Theorem 6: Optimal reliability in an MSA tree corresponds to when the tree is divided into 

modules of equal size: q =(2‘ +1— 1 + k )/k .

PROOF: Consider a tree with equal module size. The following inequality indicates that every 

time a single node is moved from a module of size q to another module of size q , thereby creating 

modules of size q +1 and q —1, R ^  decreases:

L R f+ ^ -K l-iO ]2 > [iZi^+Cg+DiZid-ieMUZff^+Cg-D^i-ad-iZ)]

Additionally, the following inequality indicates that moving nodes from modules of smaller size 

into modules of larger size will decrease reliability:

[Ri+e+dq +c )£ * -* ~K 1 -R  )][R*"*+ (? - k  )R*~k~ K l-R  )] >

[R r +*+i+(g +c + i)R  r +« ( I - *  )][R i ~k ~l+{q - k  -1 )R  r "* " 2( 1 ~R  )]

for any O^c , and O^k <q . □

It has been shown that the reliability versus spares curve of M-trees is greater than that of 

RAE [8]. The reason for this is that the RAE scheme allocates an entire spare to the root, whereas 

M-trees can ’spread' the spare out into level 1 (or more) nodes. At lower levels, however, the 

number of nonredundant nodes per spare are the same. Consequently, as i and/or k increases, the 

reliabilities of both schemes converge. In contrast, the next section demonstrates that the SOFT
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approach always results in superior reliability over MSA designs.

B . Reliability o f SOFT Trees

The reliability of a redundant system composed of nodes with equal reliability R , which is 

not subject to degraded performance, can be thought of as a polynomial of degree (2*+1— 1 + k ) 

where there are (2,+1— 1 + k ) nodes in the system. The polynomial can be expressed as:

=aaR o'+1- »+* )+a iJ?<2'+1- 1+* >-1(1-5 )+ • • • 5 <2'+I- 1+1 y-J (1-5 y  + • • •

where R is the reliability of individual components, and aij is the number of ways in which j  

reconfigurable faults can occur in the tree (.otj =0 for j  >&). For comparison of a, an oij from a 

SOFT reliability equation is denoted as aJs, whereas, <xJm is associated with the optimal MSA 

reliability.

In order to analyze SOFT reliability, it is necessary to calculate the number of possible 

processor locations for the j th faulty processor to occur given that j —1 faults have already been 

successfully reconfigured. This is dependent on the specific SOFT implementation, however, using 

the following identity, a lower bound on the number of possible locations for the j th fault is 

derived in Theorem 7.

Number of nodes per SST (including the spare)
2»+t

k

If a given SOFT or MSA tree contains j  —1 specific faults, and the tree has not failed, then the 

location of the faulty processors (fault subset) is referred to as an a j . ,  or a ,_ i scenario, 

respectively. In SOFT, if j  —1 faults have been reconfigured, this implies that the associated spares 

./” 1 SSTs are configured in (or failed), and k —j  +1 SSTs have associated spares which are not

used.
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Theorem 7: (k - j  +1) is a lower bound on the number of reconfigurable faults

from an scenario. •

Proof: In each of the k —j  +1 SSTs which has its associated spare unused, at least 2* +i 
k

positions for the j th fault exist, which can be reconfigured. If in ctj-i the father of one of the

k —j  +1 SSTs has not yet failed, then the failure of the father can be tolerated and 1 can be added 

2 i +i
to —_  as the number of locations for k — j  +1 of the SSTs. If the father has failed, however, then

it must have been reconfigured into a neighboring SST, which means that a fault in that neighboring 

SST can be tolerated and the / ssr’s reconfiguration shifted into the SST with the free spare. The 

lower bound, therefore, remains valid. If two of the k —j  +1 SSTs are adjacent to the same father, 

then father has been counted twice in the lower bound. If the father, /  , has not yet failed, 

however, then the failure of f  f is also tolerable, and by the same analysis, the lower bound 

remains valid. □

Theorem 8: The reliability of a SOFT tree is always greater than the reliability of an 

equivalent MSA tree for k (the number of spares) >  1.

PROOF: If it can be shown that for at least one j , <xJs > aJu, and aJs ^ aJm for all other j  , then 

^sy*soFT> ŝysMsA (assuming that the reliability of individual processors is the same for both 

architectures). Since <*<>„, =<*0j =1 and a lm =oqt =(2* +1-  1 + k ), R ^  with k =0 or k =1 is identical

for both schemes. Consider, however. a2- MSA can tolerate only one failure per module. As a 

result:

«2m =
(2i+1— 1 + * ) '  

2 - k
( 2*+1— 1 + k ) / k  

2

n
kl(n-k  )!

where



and:

38

«2,
(2*+1— 1 + * )  

2 - k
2 i+1/k 

2

Now consider aj . Since a2j it will be shown by contradiction that otj >oiJm given that

aj - i s >ocj - i m- From the definition of a, it is evident that if at least one fault

configuration corresponding to a successful reconfiguration of j — 1 faults in MSA (denoted as a 

fault configuration in a  j ) must have more possible locations for successful reconfiguration of

the } th fault than the possible locations for the j th fault in an a j - i s configuration.

Derivation of the number of ’choices’ for the j th fault to occur for each otj in optimal MSA 

trees is straightforward and is less than the lower bound of Theorem 7.

places for j  per &j-\m — (k —j  +1) (2i+1- l  + k )
□

Due to the analytical complexity of a global reconfiguration strategy and the variety of 

possible SOFT implementations, a closed form expression for reliability has not been found for 

arbitrary size trees with arbitrary numbers of spares. However, the analysis presented in Section 

III is sufficient to determine the reliability of any specific SOFT tree. The following section presents 

some exact reliability calculations for example SOFT implementations.

C. Reliability Exam ples

The reliabilities of four level trees, implemented by M-tree, RAE, and SOFT as a function of 

the number of spares, for R = e ~ u , t*.5. and t-1.0. are shown in Table 5. It should be noted that 

the SOFT reliability is superior even when the modular schemes are allocated more spares. The 

data for t*1.0 is graphically displayed in Figure 9. In Table 6 and Figure 10, the reliabilities versus 

time curves of a tree with no redundancy, duplicated four level trees, and four level trees with 

four spares employing an optimal MSA, a SOFT approach, and a tree with optimal reliability are 

presented. A scheme with optimal reliability guarantees reconfiguration for any number of faults
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Table 5. Reliability for a four-level tree by number of spares.

number 
of spares

RRAE Rm - ,M  —tree,

0.50

0.9504
0.9281
0.9033

0.9350

0.8499
0.8179

Ropt —MSA R soft

0.9512
0.9350
0.9248
0.8811
0.8179

0.9974
0.9528
0.8179

1.00

8
5
4
2
1

0.8274
0.7655
0.7073

0.7832

0.6194
0.5416

0.8298
0.7832
0.7563
0.6553
0.5416

0.9665
0.7841
0.5416

Reliability

Figure 9. Reliabilities of four-level trees at t=1.0.

less than or equal to the number of spares. Table 6 includes calculations for an RAE tree with 4 

spares and an M-tree with 5 spares. The M-tree approach was allocated five spares due to its 

inability to support four.
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D . Increasing SOFT Reliability

There are several possibilities for enhancing the reliability of a SOFT architecture. If a 

designer is not concerned with VLSI layout issues or is willing to pay 0(n logn ) area, the SOFT 

tree can be implemented such that the leaves are fully connected and the full sharing of inter-SST 

spares is practical. As an alternative, sharing of spares between the i =4 leaf subtrees is possible 

using the procedure of Horowitz and Zorat [ l l ] .  A second option is the addition of redundant lines

Table 6. Reliability for X=.l

t
■p-cvno red.

0 spares
Dup Rrae 

4 spares
—tree

5 spares
%MSA -opt
4 spares

Rsoft 
4 spares

R-OFr 
4 spares

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 0.687 0.902 0.972 0.982 0.979 1.000 1.000
0.50 0.472 0.721 0.903 0.935 0.925 0.997 0.998
0.75 0.325 0.544 0.810 0.866 0.847 0.987 0.990
1.00 0.223 0.396 0.707 0.783 0.756 0.965 0.971
1.25 0.153 0.283 0.604 0.694 0.661 0.927 0.936
1.50 0.105 0.200 0.505 0.604 0.566 0.873 0.886
1.75 0.072 0.140 0.417 0.517 0.447 0.807 0.822
2.00 0.050 0.097 0.339 0.437 0.396 0.731 0.747

Reliability

Figure 10. Reliability versus time for a four-level tree and four spares.
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between leaves which are adjacent to the same spare. This allows reconfiguration of SSTs with 

numerous faults, assuming that the spares are available in neighboring SSTs. The cost of adding 

these lines is an additional k lines (where k is the number of spares). Finally, for applications 

such as yield enhancement, where processor yield may be quite low. ^50% sparing is possible. In 

SOFT implementations with 50% sparing, spare and link placement is the same as in Algorithms 1 

and 2, with the exception that each spare is associated with a single leaf and there are no cousin 

connections between leaves.

E . SOFT Perform ance Degradation

The SOFT approach, as with the RAE technique, allows for graceful degradation in 

performance. No redundant spares are allocated for graceful degradation, however redundant lines 

are located as described by Algorithm 2. For SOFT architectures a spare at the root is unnecessary, 

in contrast to previous graceful degradation approaches [7]. Since failures are passed to the leaves, 

the only nodes which must assume the functions of their brothers are the leaves. Also, as noted 

before, the redundancy in terms of links is reduced and the reliability is enhanced. The only 

failures which disable the tree are long runs of failures along the leaves and a failure of a node for 

which no path of good nodes into the leaves exist, i.e., the class of failures depicted in Figure 5.
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V . SOFT N -A R Y  TREES

iV-ary trees, in which each nonleaf node has N  sons, are more suitable for certain tasks than 

classical binary trees. For example, 4-ary (quad) tree architectures have been proposed for 

implementing several classes of artificial intelligence related algorithms [17]. The following brief 

discussion summarizes how the SOFT approach is applicable to N  -ary trees.

A . Construction, o f Reconfigurable N -a ry Trees

1 ) Location of Redundant Lines

A  link allocation approach which is applicable to arbitrarily large N  is to restrict 

reconfiguration to displacement of the outside two children of each non-leaf node. Redundant 

links to each of a node’s brothers are added only to the two outside brothers. The link redundancy

2 N  —3at upper levels is approximately — —— %, which is 0 (1) instead of 0(N  ).

2) Location of Redundant Processors

Allocation of up to one associated spare per group of N  brothers is allowed. The spares are 

placed between SSTs with connections from a spare to both its associated SST and a neighboring 

SST. Redundancy is therefore:

% link redundancy =  3 + 1+iVC

% node redundancy =

where N c is the number of spares allocated to the tree, with l ^ c  —1.
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B . Reconfiguration

Reconfiguration is fundamentally the same as in binary trees. A sample 
reconfiguration for four failures in a 5-ary tree is illustrated in Figure 11.

Figure 11. Reconfiguration in a 5-ary tree.
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VL CONCLUSIONS

A unique approach to the design of reconfigurable tree architectures has been presented. The 

design allocates spares at the leaves of trees and allows sharing of spares between subtrees. The 

architecture has 0(n ) VLSI layout for binary trees and is directly extensible to N  -ary trees. A 

lower bound on reliability for a SOFT tree was shown to be more reliable than all modular sparing 

approaches, with significantly less redundancy. The SOFT architecture is the only known approach 

to reconfigurable trees which tolerates both link and switch failures. The virtual displacement 

concept with sharing of spares between clusters of processors is also applicable to other concurrent 

architectures. The design strategy presented in this paper makes tree architectures attractive for 

environments where high reliability is required.
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