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II. Summary of Research Accomplishments

The research program was focused on investigating new methods of 

analysis, synthesis, and optimization of control systems particularly those 

which contain uncertain parameters and disturbance inputs. The objective was 

to develop methods to improve the performance of control systems by counter

acting the effects of these random parameters and disturbance inputs. Several 

new methods which contribute to this objective were proposed and developed 

under this program. Among these new approaches are strategies for sensitivity 

adaptive feedback with estimation redistribution, sensitivity reducing 

compensators using observers, stochastic adaptive control of systems containing 

random parameters, control of singularly perturbed stochastic systems, 

trajectory optimization of singularly perturbed systems, time-scale decom

position in regulator design, and high gain feedback systems and variable 

structure systems.

The results obtained during the five-year period are fully documented 

in 38 journal articles, 30 conference papers presented at various international 

congresses and national meetings, and 18 technical reports of the Laboratory. 

Some of these results were briefly summarized in four Interim Scientific 

Reports submitted annually during the grant period. We briefly sketch below 

the major accomplishments with emphasis on results not reported previously.
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A. Sensitivity Adaptive Feedback with Estimation Redistribution

We have developed an entirely new approach to the synthesis of a 

dynamic controller for systems containing unknown random parameters. For a 

given total cost of estimation, we allocate the individual costs according to 

the accuracy required to achieve a control objective. Greater accuracy of 

estimation generally implies greater cost. Moreover, parameters to which the 

state of the system are more sensitive require more accurate estimation than 

those whose effect on the state is less significant. We represent the total 

estimation cost by a quadratic form of the sensitivity functions, where the 

weighting matrix in the quadratic form is to be chosen so as to achieve an 

allocation of estimation effort which is optimal with respect to the primary 

objective function. The general problem is to choose the control and the 

sensitivity weighting matrix which minimize an objective function subject to 

a fixed budget for total estimation cost. The optimization is such that the 

parameters which affect the trajectory sensitivities the most are estimated 

with the most accuracy, and those which have only a small effect on the 

trajectory sensitivities are allocated smaller estimation accuracies. The 

specific procedure results in an open loop optimal feedback control which has 

dual effect. We call this strategy Sensitivity Adaptive Feedback with Estimation 

Redistribution (SAFER) control. Details are given in [A31,B23,B30,C8].

B. Sensitivity Reducing Compensators Using Observers

A desirable property of any control design is that it be insensitive 

to small variations in the parameters of the controlled plant. The mathematical 

model can only approximate the physical problem so that the assumed values of 

parameters for the design may be different from the actual parameter values
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upon implementation. Also, most systems suffer from some forms of unmeasurable 

or unpredictable variations due to the degeneration of physical components 

and adverse environmental effects. The potential benefits of using state feed

back to improve sensitivity can be evaluated by comparing the sensitivity of 

the closed-loop design to a nominally equivalent open-loop control. The 

development of these concepts led to the definition of the comparison sensiti

vity operator which directly relates the open-loop and closed-loop sensitivities, 

and a sensitivity reduction criterion giving sufficient conditions for a 

particular feedback control law to guarantee sensitivity reduction in comparison 

to the open-loop control. We reported these results several years ago under 

previous AFOSR grants.

Necessary and sufficient conditions for satisfaction of this comparison 

sensitivity reduction criterion was derived for full state feedback control 

law [A38] by Kreindler, and more recently for output feedback controls using 

dynamic compensators [A38] by Naeije and Bosgra. In both instances sensitivity 

reduction is directly related to some optimal control. Implementing a full state 

feedback law using an observer to estimate the unmeasured states, where the 

state feedback gains satisfy the state sensitivity reduction design, will not 

in general satisfy the output sensitivity reduction criterion.

We have developed an extension of Naeije and Bosgra to the particular 

case of output feedback systems which use state observers to implement dynamic 

compensation of the plant. A comprehensive design procedure has been developed 

and its application through the use of an interactive software implementation 

has been carried out for a simple aircraft control example [A38,C18].

The design procedure using observers is an improvement over the design 

with arbitrary compensator dynamics for the following reasons. First, the
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design of the observer is well known and by placing the poles of the observer 

the designer is selecting poles of the overall feedback system. Second, the 

dynamic order of the reduced order observer is less than the maximal bound on 

the dynamic order of the compensator designed by the methods of Naeije and 

Bosgra. Finally, the use of observers leads to a useful interpretation of the 

sensitivity weighting matrix [A38]. Related sensitivity studies are given in 

[C12,C17].

C. Stochastic Adaptive Control of Systems Containing Random Parameters

We have developed a procedure for controller design for discrete

time stochastic systems containing random parameters. The structure of the 

dynamic estimator-controller is fixed but its parameters are adjustable to 

optimize the control objective. A performance index that is quadratic in both 

the state and the control over N periods is considered. This performance index 

is minimized with respect to the feedback control gain matrix, the estimation 

dynamics matrix, and the filter gain matrix. It is important to note that 

both the parameter estimation and the state estimation are performed so that 

a control objective is satisfied, in contrast with other approaches reported 

in the literature in which the parameters are estimated with a particular 

objective different from the objective of the control. The performance index 

is a mathematical expectation taken over the distribution in the noise 

disturbances, the initial state, and the parameter uncertainty. Minimization of 

this expectation has the interpretation of reducing the sensitivity of the 

standard criterion function with respect to fluctuations in parameter values.

The procedure is described in [A22,B18,B25,C8].
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We have also developed a new method of designing nonlinear control 

systems containing random parameters. An open-loop component establishes a 

satisfactory nominal trajectory, and a feedback component augments the control 

to minimize trajectory dispersion due to the random parameter changes. The 

optimization problem is similar to that for a deterministic regulator problem 

with incomplete state feedback. The feedback component can be expressed as 

the usual feedback if there is no parameter deviation from the nominal values 

plus a feedback term which is recognized as a conditional estimate of the 

parameter deviation. Thus the parameter estimation arises naturally from the 

control formulation. Details are given in IA4]. Related sensitivity results 

where random plant parameters are considered are given in [Al,All,Bl,B5].

D. Control of Singularly Perturbed Stochastic Systems

Properties of singularly perturbed systems with white noise input 

have been investigated and the optimal filter problem is solved in two time 

scales. The two filters yield estimates of slow-mode and fast mode states [A21]. 

The stochastic control problem is then formulated for linear singularly 

perturbed systems [A26,B22]. The meaning of fast variables is not always clear 

due to the white noise model used in the system representation. The problem 

has since been reformulated to allow the fast modes to serve as a model for 

well-defined variables in the stretched time-scale, with non-negligible 

contribution to the slow modes of the system. The new formulation is made 

possible by the introduction of additional scaling in different powers of the 

singular perturbation parameter appearing in several parts of the stochastic 

model and also in the quadratic performance index. Relative values of the
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powers have been obtained to yield meaningful fast and slow variables. Details 

are given in [A34].

E. Trajectory Optimization of Singularly Perturbed Systems

A large number of systems to be controlled, such as aircraft, missiles 

etc., can be realistically modeled as singularly perturbed systems, that is 

systems involving fast and slow dynamic phenomena. Calculation and implemen

tation of optimal trajectories for such systems are hindered by difficult 

numerically "stiff" two point boundary value problems which often have to be 

solved in real time. In the singular perturbation method we have developed, 

the difficulties with the two-time-scale behavior of singularly perturbed 

systems are converted into a conceptual and computational advantage. The method 

permits separable trajectory optimization of a reduced order model representing 

the slow phenomena, and two ''boundary layer regulators" controlling fast 

maneuvers at the trajectory ends.

We have established that the controllability properties of a 

singularly perturbed system are determined by the controllability properties 

of the slow and the fast subsystems. Then the time optimal control has been 

approximated by a "slow" and a "fast" control. The slow and the fast 

switchings are calculated separately, in their own time scales thus avoiding 

"stiffness" difficulties and reducing the order of the state and the adjoint 

equations [A6,A7,A27]. An iterative method for time-optimal control problems 

has been developed [A25,B16,B21,C7,C13].
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F. Time-Scale Decomposition in Regulator Design

Singular perturbation methodology surveyed in [A20] has been 

developed for complete decomposition in the design of regulators for systems 

with fast and slow modes. In [A23,B19,C6] the linear regulator problem is 

solved using a two-stage design. A fundamental property of this new design is 

its insensitivity with respect to singular perturbation parameters. For a 

second order near optimum performance these parameters need not be known, 

while a first order approximation is still achievable when neither the 

parameters, nor the exact model of the fast subsystem are known. Among potential 

applications of this procedure are recent control problems in advanced 

helicopter design with widespread interacting modes.

Time-scale decomposition has been developed for the design of a class
' . ' ~  ' J ' ■

of nonlinear systems which are linear in the fast variables [A33,B20,C14]. A 

guaranteed region of asymptotic stability for the nonlinear model has been 

determined [A30]. Furthermore a near-optimum two time scale design has been 

developed in [A35,C16] applicable to some essentially nonlinear systems.

G. High Gain Feedback Systems and Variable Structure Systems

High gain feedback has been a classical tool for reduction of effects 

of disturbances, parameter variations and distortions. Although limited to 

single input-single output feedback systems, early investigations of 

structures permitting high gains, rules for root locus asymptotes and results 

on sensitivity and return difference have greatly deepened the intuition of 

control engineers in the 1950’s. Recent developments in multivariable system 

theory have revived the interest in high gain feedback systems. Works on 

disturbance rejection, and parameter uncertainty either purposely introduce
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high gain feedback in the problem statement or they implicitly appear in the 

resulting feedback structures. Feedback implementations of linear optimal 

controls when only small penalties are made on the control variables result in 

loops with high gain.

Another class of feedback controls capable of reducing parameter 

sensitivities and rejecting disturbances is the so-called variable structure 

control. Basically, it is a feedback control discontinuous on some switching 

surface defined on the state space.

We have investigated the analysis and synthesis of these two classes 

of multivariable feedback systems, namely, high gain feedback systems and 

variable structure systems, subject to parameter variations and disturbances. 

When only some of the states variables are accessible in a high gain feedback 

system we introduce the idea of incorporating high gain feedback loops in 

observers. By allowing high gain feedback in the observer structure, the 

observation error dynamics enjoy the same insensitivity property inherent in 

high gain feedback systems. In place of high gain state feedback, the "high 

gain" observer states are fed back through the main high gain feedback loops.

We investigated the behavior of this "two-high-gain-loops" feedback system.

A practical alternative to examining the sensitivity of all the states of 

high gain feedback systems is to investigate only the sensitivity of the 

variables which are critical to performance degradation or have to meet 

certain design specifications. We call these variables, the regulated 

variables. We discover that there remain some degrees of freedom in the design 

of the high gain feedback matrices which can be utilized to enhance the insen

sitivity of high gain feedback systems. The number of degrees of freedom
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depends on the number of control variables, available measurements, disturbance 

inputs and regulated variables. A procedure is developed for the design of 

the feedback matrices which exercises the available degrees of freedom.

We have established a relationship between high gain feedback systems 

and VSS. We find that in sliding mode, VSS enjoy the same insensitivity 

property as high gain feedback systems. This motivated us to develop observers 

with variable structure feedback as well as high gain observers. We then 

examined the behavior of variable structure feedback systems with variable 

structure observers. The same degrees of freedom in the design of variable 

structure feedback is discovered as in high gain systems.

We addressed an important consideration in application: the robustness

property of these classes of feedback systems with respect to model reduction.

As a step in this direction, we considered the most common model reduction in 

practice, the neglection of actuator and sensor dynamics. This robustness 

property differentiates VSS and high gain feedback systems. As a reward for 

the added complexity, VSS are more robust with respect to the neglected small 

time constants. This is due to the fact that variable structure control does 

not force the motion to be fast. The design procedures are applied to the 

control of the longitudinal motions of an aircraft. For details see [A36,C15].
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