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ABSTRACT

This report is an extended and revised version of a paper appearing in the Proceedings of the 
National Conference on Artificial Intelligence, August 1986.

A domain independent technique for generalizing a broad class of explanations is described. 
This method is compared and contrasted with other approaches to generalizing explanations, 
including an abstract version of the algorithm used in the STRIPS system and the EBG technique 
recently developed by Mitchell, Keller, and Kedar-Cabelli. We have tested this generalization tech
nique on a number of examples in different domains, and present detailed descriptions of these.



A Domain Independent Explanation-Based Generalizer

1. Introduction

If one considers many of the different Explanation-Based Learning (EBL) systems under con
struction [Mitchell83, Mitchell85, Mooney85, 0 ’Rorke84. Winston83], certain commonalities 
become evident in the generalization phase of the learning process. Such systems work by first con
structing an explanation for an example being processed. Next, this explanation is generalized. 
This latter process can be characterized in a domain independent way.

Recent work on the generalization phase of EBL is underway at Rutgers [Mitchell86] and here 
at the University of Illinois [DeJong86]. In this paper, we present a technique called Explanation 

eneralization using Global Substitution (EGGS) which we believe provides a natural way for con
ducting this generalization. This method is quite similar to both the EBG technique introduced in 
[Mitchell86] and to the MACROP learning process used in STRIPS [Fikes72]. Consequently, the 
generalization technique used in STRIPS and the regression technique used in EBG are outlined and 
contrasted with EGGS. Lastly, a number of examples to which EGGS has been applied are 
presented with their resulting generalizations.

2. Explanations, Explanation Structures, and Generalized Explanations
In different domains, various types of explanations are appropriate. In [Mitchell86], an 

explanation is defined as a logical proof which demonstrates how an example meets a set of 
sufficient conditions defining a particular concept. This type of explanation is very appropriate for 
learning classic concept definitions, such as learning a structural specification of a cup. an example 
introduced in [Winston83] and discussed in [Mitchell86]. However, when learning general plans in 
a problem solving domain (as in STRIPS [Fikes72] or GENESIS [Mooney85]), it is more appropriate 
to consider an explanation to be a set of causally connected actions which demonstrate how a goal 
state was achieved.

Consequently, in this paper, we will take a very broad definition of the term explanation and 
consider it to be a connected set of units, where a unit is set of related patterns. A unit for an 
inference rule has patterns for its antecedents and its consequent, while a unit for an action or 
operator has patterns for effects, preconditions, etc.. Connections between units in an explanation, 
such as the consequent of one inference rule matching the antecedent of another, or the effect of one 
action matching the precondition of another action, are represented as equalities between patterns in 
the respective units. The goal is a distinguished pattern in the explanation which represents the 
final conclusion in an inference chain or the final desired state in a plan. In correspondence with the 
terminology in [Mitchell86], an explanation structure is defined as an explanation with each instan
tiated unit replaced by its general patterns (with unique variables). For instance, consider the cup 
example from [Winston83]. Given facts like the following:

Light(Objl)
PartOf(Handlel ,Objl)
Handle(Handlel)

and the following inference rules:
Stable(?x) A Liftable(?x) A OpenVessel(?x) — Cup(?x)
Bottom(?y) A PartOf(?y,?x) A Flat(?v) — Stable(?x)
Graspable(?x) A Light(?x) — Liftable(?x)
Handle(?v) A PartOf(?y.?x) — Graspable(?x)
Concavitv(?y) A PartOf(?y,?x) A UpwardPointing(?v) -  OpenVessel(?x)

a proof tree (explanation) can be constructed for the goal Cup(Objl) as shown in Figure 1. The 
explanation structure for this proof is shown in Figure 2. The edges between patterns in a unit are 
assumed to be directed so that an explanation forms a directed acyclic graph (DAG). These directed 
edges define certain patterns in a unit as the support for other patterns in the unit. For example, 
the support for the consequent of an inference rule is its antecedents and the support for the effects 
of an action are its preconditions.

- 1 -
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Cup(Objl)

Stable(Objl)
III

Stable(Objl)

Liftable(Objl)
III

Liftable(Objl)

OpenVessel(Objl)
III

Open V essel( Ob j 1)

Flat(Bl)Bottom(Bl)
II

Bottom(Bl) , Flat(Bl)

PartOf(Bl.Objl)
II

PartOf(Bl ,Objl)

Graspable(Objl) 
ill

Graspable(Objl)

Concavitv(Cl)
II

Concavity(Cl)

UpwardPointing(Cl)
II

UpwardPointing(Cl)

PartOf(Cl.Objl)
II

PartOf(Cl.Objl)
Light(Objl)

II
Light(Objl)

Handle(Hl)
II

Handle(Hl)

PartOf(Hl.Objl)
II

PartOf(Hl.Objl)

Figure 1: Explanation for Cup(Objl)
Triple edges indicate equalities between unit patterns. 
Double edges indicate equalities to initial assertions.

The task of explanation-based generalization is to take an explanation and its associated expla
nation structure and generate a generalized explanation, which is the most general version which 
still maintains the structural validity of the original explanation. This means that substitutions 
must be applied to the patterns in the explanation structure so that it is constrained in such a way 
that equated patterns unify directly without requiring any substitutions. The generalized explana
tion of the cup example is shown in figure 3. This generalized explanation can then be used to 
extract the following general definition of a cup:

Bottom(?v 1) A PartOf(?yl ,?xl) A Flat(?v 1) A Handle(?y2) A PartOf(?y2.?xl)
A Light!?x 1) A Concavitv(?v3) A PartOf(?v3,?xl) A UpwardPointing(?y3) — Cup(?xl)

In problem solving domains, the generalized explanation represents a general plan schema or 
MACROP for achieving a particular class of goals.

3. Explanation Generalizing Algorithms
Several algorithms have been developed for generalizing various types of explanations. The 

STRIPS system [Fikes72] incorporated a method for generalizing blocks-world plans into 
MACROPS. The EBG method [Mitchell86] uses a modified version of goal-regression [Waldinger77] 
to generalize proofs of concept membership. Concurrently with Mitchell et. al s development of 
EBG, we developed a method [DeJong86] (which we now call EGGS) which generalizes the broad 
class of explanations defined in the previous section. However, the general techniques used bv the
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(Cup ?xl)

(Graspable ?x4)

(Handle ?y2) (PartOf ?y2 ?x4)

Figure 2: Explanation Structure for the Cup Example
Triple edges indicate equalities between unit patterns.

Cup(?xl)

Graspable(?xl )

Handle(?'y2) PartOf (?y2 ,?xl)

Figure 3: Generalized Explanation for the Cup Example
Triple edges indicate equalities between unit patterns.
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other two methods can be abstracted to apply to the class of explanations defined above. Conse
quently. this section is devoted to presenting and comparing algorithmic descriptions of all three 
methods as applied to this class of explanations. All of the algorithms rely on unification pattern 
matching and we will use the unification notation described in [Nilsson80]. The MGU (most gen
eral unifier) of two patterns is defined as the most general substitution which will make the two 
patterns identical. The expression p0, where p is a pattern and 0 is a substitution, denotes the pat
tern resulting from applying 6 to p. The expression yO, where both y  and 0 are substitutions, 
denotes the substitution resulting from the composition of y  and 0.

3.1. STRIPS MACROP Learning
The first work on generalizing explanations was the learning of robot plans in STRIPS 

[Fikes72]. STRIPS worked in a blocks world domain and after its problem solving component 
generated a plan for achieving a particular state, it generalized the plan into a problem solving 
schema (a MACROP) which could be used to efficiently solve similar problems in the future. Work 
on the STRIPS system was the first to point out that generalizing a causally connected set of actions 
or inferences could not be done by simply replacing each constant by a variable. This method hap
pens to work on the cup example given above. The proper generalized explanation can be obtained 
by replacing Objl by ?xl, B1 by ?yl, HI by ?y2, and Cl by ?y3. However, in general, such a 
simplistic approach can result in a structure which is either more general or more specific than 
what is actually supported by the system’s domain knowledge.

The following examples are given in [Fikes72] to illustrate that simply replacing constants 
with variables can result in improper generalizations. The following operators are used in these 
examples:

GoThru(?d,?rl,?r2): Go through door ?d from room ?rl to room ?r2.
PushThru(?b,?d,?rl,?r2): Push box ?b through door ?d from room ?rl to room ?r2. 
SpecialPush(?b): Specific operator for pushing box ?b from Room2 to Rooml.

Given the plan:
GoThru(Doorl .Rooml ,Room2)
Spec ialPush( Box 1)

simply replacing constants by variables results in the plan:
GoThru(?d,?rl,?r2)
SpecialPush(?b)

This plan is too general since SpecialPush is only applicable when starting in Room2, so having a 
variable ?r2 as the destination of the GoThru is too general and ?r2 should be replaced bv Room2. 
Given the plan:

GoThru(Doorl.Rooml .Room2)
PushThruCBoxl .Doorl ,Room2,Rooml)

simply replacing constants by variables results in the plan:
GoThru(?d,?rl ,?r2)
PushThru(?b,?d.?r2,?rl)

This plan is too specific since the operators themselves do not demand that the room in wh h the 
robot begins ( r l)  be the same room into which the box is pushed. The correct generalization : 

GoThru(?d,?rl ,?r2)
PushThru(?b.?d,?r2,?r3)

The exact process STRIPS uses to avoid these problems and correctly generalize an example is 
dependent on its particular representations and inferencing techniques: however, the basic tech
nique is easily captured using the representations discussed in section 2. How STRIPS problems are 
represented with interconnecting units will be clarified with an example in section 4.8. However,

-4-
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assuming they are represented in this fashion, a description of the explanation generalizing algo
rithm is shown in Table 1. It should be noted that the generalization process in STRIPS was con
structed specifically for generalizing robot plans represented in triangle tables and using resolution 
to prove preconditions. There was no attempt to present a general learning method based on gen
eralizing explanations in any domain. However, the algorithm in Table 1 is a straight-forward gen
eralization of the basic process used in STRIPS. The basic technique is to unify each pair of match
ing patterns in the explanation structure and apply each resulting substitution to all of the patterns 
in the explanation structure. After all of the unifications and substitutions have been made, the 
result is the generalized explanation since each pattern has been replaced by the most general pat
tern which allows all of the equality matches in the explanation to be satisfied.

3.2. EBG

Mitchell. Keller, and Kedar-Cabelli [Mitchell86] outline a technique for generalizing a logical 
proof that a particular example satisfies the definition of a concept. An example of such a proof is 
the one in Figure 1 explaining how a particular object satisfies the functional requirements of a cup. 
Lnlike the STRIPS MACROP learning method, EBG is meant to be a general method for learning by 
generalizing explanations of why an example is a member of a concept. The EBG algorithm is based 
on regression [Waldinger77] and involves back-propagating constraints from the goal pattern 
through the explanation back to the leaves of the explanation structure. However, as initially 
pointed out in [DeJong86], it fails to obtain the appropriately generalized goal pattern in certain 
situations (see the example in section 4.7). As indicated in [DeJong86] and as originally specified in 
[Mahadevan85], the proper goal concept can be obtained by starting with the generalized 
antecedents obtained from regression and rederiving the proof. This propagates constraints for
ward from the generalized antecedents to the final generalized goal concept. Hence, the correct EBG 
algorithm involves both a back-propagate and a forward-propagate step as shown in the abstract 
algorithm in Table 2. The original specification of this corrected version of EBG (outlined in 
[DeJong86] and given explicitly in [Mooney86]) involved first back-propagation and then forward- 
propagation. Problems with particular examples (see section 4.7) have since indicated the need for 
performing the forward-propagation step first to collect constraints at the root of the explanation 
before constraints are back-propagated to the leaves. In any case, as with the STRIPS algorithm, 
the eventual result of the EBG algorithm is the generalized explanation since each pattern has been 
replaced by the most general pattern which allows all of the equality matches in the explanation to 
be satisfied.

3.3. EGGS

Finally, there is the EGGS algorithm which we developed to generalize explanations of the 
very abstract form defined and used in this paper. The algorithm is quite similar to the abstract 
STRIPS algorithm and is shown in Table 3. The difference between EGGS and the abstract STRIPS 
algorithm is that instead of applying the substitutions throughout the explanation at each step, all 
the substitutions are composed into one substitution y. After all the unifications have been done.

for each equality between pa t te rns  p. and p in the explana tion  s t ru c tu re  do
let 9 be the MGU of p and  p 

11 1 j
for each pa t te rn  p k in the explana tion  s t ru c tu re  do 

replace pk with pk0

Table 1: STRIPS Explanation Generalization Algorithm

-5-
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let g be the goal pattern in the explanation structure 
ForwardPropagate(g)
BackPropagate(g)

procedure ForwardPropagate(p)
for each pattern p. supporting p do 

if  p. is equated to some pattern 
then

let e be the pattern equated to p.
ForwardPropagate( e)
let 9 be the MGU of p. and e
replace p. w ith p.0
replace p w ith  pO

procedure BackPropagate(p)
for each pattern p supporting p do 

if  p. is equated to some pattern 
then

let e be the pattern equated to p. 
let 9 be the MGU of e and p. 
replace e w ith e0 
for each pattern p. supporting e do 

replace p. w ith  p.9 
BackPropagat e(e)

Table 2: EBG Explanation Generalization Algorithm

let y be the null substitution {}
for each equality between patterns p. and p̂  in the explanation structure do 

let 9 be the MGU of p.y and p y 
let y be y9

for each pattern pk in the explanation structure do 
replace pk w ith pky

Table 3i EGGS Explanation Generalization Algorithm

one sweep through the explanation applying the accumulated substitution y results in the general
ized explanation. Table 4 demonstrates this technique as applied to the cup example above. It 
shows how y changes as it is composed with the substitutions resulting from each equality. 
Applying the final substitution y  to the explanation structure in Figure 2 results in the generalized 
explanation in Figure 3.

3.4. Comparison of Explanation Generalization Algorithms
It is reasonably clear that all of the above algorithms compute the same desired generalized 

explanation. They all perform a set of unifications and substitutions to constrain the explanation 
structure into one in which which equated patterns unify directly without requiring any substitu
tions. The difference between them lies in the number of unifications and substitutions required 
and the order in which they are performed.

- 6 -
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Table 4: EGGS Applied To the Cup Example
Equality 9 y

Stable(?xl) =  Stable(?x2) {?x1/7x2} {?x1/7x2}
Liftable(?xl) =  Liftable(?x3) {?x1/7x3} {7xl/?x2.?xl/7x3}
Graspable(?x3) =  Graspable(?x4) {?xl/?x4} {7xl/?x2,7xl/?x3, 7xl/?x4}
OpenVessel(?xl) =  OpenVessel(?x5) {?x1/7x5} {7xl/?x2,?x1/7x3, ?x1/7x4, 7xl/?x5}

Assuming there are e equalities and p patterns in an explanation (p > 2e), the STRIPS method 
requires e unifications each resulting in p applications of a substitution (i.e. ep substitutions). The 
EBG method does a unification for each equality in both the back-propagating and forward- 
propagating steps for a total of 2e unifications. Two substitutions are done for each unification in 
ForwardPropagate (2e substitutions) and each pattern in the explanation structure requires a sub
stitution in BackPropagate (p substitutions) for a total of 2e+p substitutions. Finally. EGGS 
requires e unifications and 3e substitutions (two substitutions with y  for each equality plus one 
substitution per equality for the composition) to build the global substitution (y) and p substitu
tions to apply y  to the explanation structure. Consequently, EGGS requires e unifications and 3e+p 
substitutions.

Therefore, in the limit, both EBG and EGGS perform fewer substitutions than STRIPS. How
ever, EBG requires twice as many unifications as either STRIPS or EBG, and EGGS requires e more 
substitutions than EBG. However, these figures are not very informative with regard to overall 
computational complexity since the complexity of each unification or substitution depends on the 
nature of the patterns and substitutions involved. Consequently, these figures are not absolute 
complexity results, but only rough indications of overall complexity.

As described in [O Rorke85], generalizing explanations can be viewed as a process of posting 
and propagating constraints. Neither the abstract STRIPS algorithm nor EGGS impose any order on 
the posting of constraints (equalities between patterns) and both simultaneously propagate con
straints in all directions. EBG, on the other hand, imposes an unnecessary ordering on the posting 
and propagation of constraints. First it propagates constraints forward to the goal and then back
wards to the leaves of the explanation. We believe this adds undo complexity to the generalizing 
algorithm as is obvious from comparing the algorithmic descriptions in Tables 1-3.

A final advantage which we believe the EGGS method has is that it can be integrated with the 
explanation building process. Every time a rule or action is added to an explanation under con
struction, the substitution resulting from unifying its patterns with other patterns in the existing 
explanation structure can be composed with the current global substitution y  to obtain the updated 
y. When the explanation is fully constructed, the generalized form can be immediately obtained by 
simply applying the accumulated global substitution to the final explanation structure. Although 
the process of integrating the explanation construction and generalization processes does not result 
in increased efficiency, we believe it has a certain aesthetic appeal. Neither the STRIPS nor EBG 
methods allow this sort of integration of processes since they require the existence of the complete 
explanation before generalizing.

3.5. Pruning Explanation Structures
Oiten, the explanation structure for a particular example is too specific to support a reason

ably uselul generalization. In these cases, the operationality criterion [Mitchell86] is met bv nodes 
higher in the explanation tree than the leaves and it is advisable to prune units from the explana
tion structure which are more specific than required for operationality. If this pruning is done 
prior to generalization (using any of the above generalizing algorithms), it will result in a more 
abstract generalized explanation which is applicable to a broader range of examples. For example, 
ii the rule lor inferring Graspable is removed from the explanation structure shown in Figure 2,
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the following more general (but less operational) definition of Cup is acquired:
Bottom(?yl) A PartOf(?yl.?xl) A Flat(?yl) A Graspable(?xl) A Light(?xl)
A Concavity(?y3) A PartOf(?y3.?xl) A UpwardPointing(?y3) -  Cup(?xl)

More appropriate examples of pruning will be given later in the paper.
If EGGS generalization is integrated with explanation construction as described above, the glo

bal substitution (y) is computed before the explanation is complete and hence before appropriate 
pruning can normally be determined. Therefore, pruning requires that the unifications for the 
removed equalities be retracted from y before applying it to the final explanation structure. 
Retracting unifications from a substitution is an involved process. Consequently, if pruning is 
required, integrating explanation construction and generalization results in undoing previous com
putation and is probably not a good idea.

4. Application of EGGS to Several Domains
The EGGS technique, which has been fully implemented, has generalized explanations in 

several domains. This set of examples currently includes narrative understanding [Mooney85], 
generating physical descriptions of objects from functional information [Winston83], designing 
logic circuits [Mahadevan85, Mitchell85], solving integration problems [Mitchell83, \litchell86], 
solving equations [Silver83], proving theorems in mathematical logic [0 ’Rorke84], the Safe-To- 
Stack problem from [Mitchell86], the suicide example from [DeJong86], and STRIPS robot planning 
LFikes72j.

The Cup example was discussed in detail in section 2. In this section, we describe the applica
tion of EGGS to the remaining examples.

4.1. LEAP example

The LEAP system [Mitchell85] is a learning apprentice in VLSI design which observes the 
behavior of a circuit designer. It attempts to learn in an explanation-based fashion from circuit 
examples it observes. Given the task of implementing a circuit which computes the logical func-

(a V b) A (c V d)
a circuit designer creates a circuit consisting of three NOR gates like that shown in Figure 4. The 
system attempts to verify that the given circuit actually computes the desired function. The expla
nation proving that the circuit computes a function which is equivalent to the desired function is 
shown in Figure 5. Since equated patterns are always identical in specific and generalized explana
tions. only one of each pair of equated patterns will be shown in this and future figures. In this 
example, the domain knowledge available to the svstem includes:

Remove Double Negation: Equiv(?x,?y) — Equiv(-.(-(?x)),?y)

tion:

Figure 4: LEAP Training Example

- 8 -
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Equiv(->(-«(aVb)V->(c\/d)),(aVb)A(cVd))

t
Equiv(->(-«(aVb))A-i(-.(c\/d)),(aVb)A(cVd))

Equiv(-*(-’(aVb)),aVb)
I

Equiv(aVb.aVb)

Equiv(->(-i(cVd)),cVd)
t

Equiv(cVd.cVd)

Figure 5: LEAP Example — Specific Explanation

DeMorgan’s Law: Equiv((-»?xA-.?y),?a) -*• Equiv(-t(?xV?y),?a)
Substitution of Equals: Equiv(?x,?a) A Equiv(?y,?b) — Equiv(?xA?y.?aA?b)
Definition Of Equivalence: Equiv(?x,?x)
The generalized form of this proof is shown in Figure 6. The general fact learned from this exam
ple is:

Equiv(->(->?aV-«?b), ?aA?b)
Had the constants a, b, c and d simply been replaced by variables, the result would have been 
overly specific. As a result of the explanation-based approach, the resulting generalization is not 
sensitive to the fact that the first stage of the circuit involved two NOR gates. For example, the 
generalization would support using two NAND gates and a NOR gate to AND four inputs together.

4.2. MA Example

Another explanation-based learning system in the domain of logic is MA [0’Rorke84] which 
learns proof schemata from sample natural deduction proofs. When the system cannot complete a 
proof for a particular theorem, a teacher steps in and completes the proof. MA then generalizes the 
teacher s proof in an explanation-based manner to generate a proof schema which can be used to

Equiv(->(-'(?al)V-i(?bl )),?alA?bl )
t

Equiv(->(-,(?al))A-i( —»(?b 1 )),?alA?bl )

Equiv(-»(-t(?al )),?al )
t

Equiv(?al,?al)

Equiv(-i(-i(?bl)).?bl)
t

Equiv(?bl,?bl)

Figure 6: LEAP Example — Generalized Explanation
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solve future problems. Consider the example discussed in [O Rorke84] of proving a particular case 
of the law of excluded middle: Deducible(NIL.PV-iP) ( i.e. PV-»P can be deduced from the empty set 
of assumptions). A natural deduction proof of this example is shown in Figure 7. The following 
rules of natural deduction [Manna74] are employed in this proof:

Assumption Axiom: Deducible((?x . ?y),?x)
Or Introduction: Deducible(?x.?y) -» Deducible(?x.?yV?z)
Or Introduction: Deducible(?x,?y) -* Deducible(?x,?zV?y)
Elimination Of Assumption: Deducible((?x . ?y),?z) A Deducible((-’?x . ?y).?z) -» Deducible(?y,?z)

Deducible(?x,?y) means that the wff ?y is deducible from the list of assumptions (wffs) ?x. LISP 
dot notation is used to represent lists of assumptions. The generalized proof EGGS generates for 
this example is shown in Figure 8. From a specific instance of proving PV-»P from no assumptions, 
a general proof is learned for proving the disjunction of any wif and its negation from any set of 
assumptions.

4.3. LEX2 Example

LEX2 [Mitchell83] is an explanation-based learning system in the domain of integration prob
lem solving. Lnlike the other systems addressed in this paper which learn new inference rules or 
plans, LEX learns search control knowledge. Specifically, it learns heuristics for when to apply par
ticular integration operators by determining, in an explanation-based manner, why the application 
of a particular operator led to the solution of a specific problem. However. MACROPS for solving 
Particular types of integration problems can also be learned in an explanation-based manner, and 
the conditions which allowed each operator to lead to the solution are easily extracted from the 
general MACROP. For example, consider solving the following problem discussed in [Mitchell86]: 
f  7x dx. This problem can be formulated as logical inference using the following inference rules: 

Integer(?r) A ? r ^ - l  -» Solution(/?x?rd?x, ?x7r+1/(?r+ l))

Dedueible(NIL,PV-P)

DeducibleUPkPV-’P)

Í
Deducible((--P),P\/-’P)

Deducible((P),P) t
Deduci ble((--P),-'P)

Figure 7: MA Example — Specific Explanation

Ded uci ble(?y 17,?y 1 6V->?y 16)

Deducible((?yl6 . ?y 17),?yl6V-?y 16)

f
Deducible((->?y 16 . ?y 17),?y 16V->?y 16)

Deducible((?y 1 6 . 7yl7),?y l6)
t

Dedueible((->?y 1 6 . ?y 17),-*?y 16)

Figure 8: MA Example — Generalized Explanation
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Constant(?c) A Solution(/ ? fd?x, ?z) — SolutionC/? c*?fd?x, ?c*?z)
The expression Solution(?x,?y) means ?y is the solution to the problem ?x. The proof for the solu
tion to the given problem is shown in Figure 9, and the generalized proof is shown in Figure 10. 
The general rule learned from this example is:

Constant(?cl) A Integer(?rl) A ? r l ^ - l  Solution(/?cl*?xl?rld?xl, ?cl*(?xl?rl+1/(?rl+ l)))

This rule can then be used to immediately solve similar problems like: /5 x 3dx. The conditions 
which allowed the first operator to lead to a solution are also implicitly represented in this rule. 
The problem must match the form in the conclusion: / ? cl*?xl7rld?xl and satisfy the antecedents of 
the rule. Constant(?cl), Integer(?rl), and ? r l^ - l .  In a problem with more steps, the " success con
ditions for other operators in the solution can be obtaining by pruning (i.e. removing from the 
explanation structure) the steps for all the previous operators in the solution prior to generalizing 
the explanation structure.

Unlike the process for learning integration problem solving described in [Mitchell86], this 
method obtains both a general rule and heuristic conditions from a single explanation using a single 
generalizing (constraint propagating) mechanism. The method described in [Mitchell86] learns only 
search heuristics and uses the EBG method as well as a separate regression step using rules of the 
domain theory to regress operators through problem states. However, the above method requires a 
specialized technique for extracting the search heuristics from the generalized proof.

4.4. Rewrite Rule Versions of LEAP and LEX2 Examples
Like many mathematical problems, the LEAP and LEX2 examples can be more concisely 

represented and solved using rewrite rules [Bundy83] instead of logical deduction. Chains of

SolutionC/7*x2dx, 7*(x2+1/(2+l)))

Constant^ 1) SolutionC/x2dx, x2+1/(2+ l))

Figure 9: LEX 2 Example -- Specific Explanation

SolutionC /?cl*?x l’rld?x 1 ,?cl *(?xl?rl* V(?rl+1)))

Constante Ycl ) SolutionC/?xl’rId?xl, ?x 1 °rl~1/(?rl-t-l))

Figure 10: LEX2 Example — Generalized Explanation
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rewrite rule applications can be represented as explanations in which each rewritten expression is a 
pattern in the explanation. For example, consider solving the LEAP example above by rewriting 
the expression -»(“»(aVb)V-i(cVd)) to (aVb)A(cVd) using the following rewrite rules:

-,-’?x -+ ?x
->(?x V ?y) -* -i?x A -i?y

The explanation, explanation structure, and generalized explanation for this example are shown in 
Figures 11. 12, and 13 respectively. Notice that if a rule rewrites only a subterm of an expression, 
dummy variables are added to the pattern in the explanation structure to fill out the expression so 
it can be unified with the previous expression. The new rewrite rule which is learned from the 
LEAP example is:

-•(-•?f4V-»?x3) —♦ ?f4A?x3

The LEX2 example of solving the integral: f i x 2 can also be done using rewrite rules. The fol
lowing two rules are used in this example:

/ ( ? c*?f)d?x -  ?c*/?f?d?x if ->OccursIn(?x,?c)
/? x  rd?x —► ?x r"rl/(?r+ l) if ? r ^ - l  A Integer(?r)

The i f  conditions attached to the rewrite rules are additional conditions which must be met for the 
rule to apply. The specific and generalized explanations for the rewrite version of this problem are 
shown in Figures 14 and 15 respectively. The new rewrite rule learned from this version is:

/ ( ? f3*(?x2?rl))d?x2 -  ?f3*((?x2?rl+1)/(?rl+ l)) if -OccursIn(?x2,?f3) A ? r l^ - l  A Integer(?rl)

4.5. Equation Solving Example
EGGS has also been tested in the domain of solving algebraic equations. The LP system 

[Silver83] learns from single equation solutions in an explanation-based manner: however, it learns 
very abstract strategies” which are not guaranteed to solve problems to which they can be 
applied. EGGS learns more specific rewrite rules which are guaranteed to solve a particular class of 
problems.

The background knowledge used in this domain is also most conveniently given in terms of 
rewrite rules. The following set of rules can be used to solve the equation: log (x+1) + log (x -l) = c 
(from [Bundy83]).

-,(-’(aVb)V-i(cVd))

V
a Vb))A-<(-i(cVd))

V
(aVb)A-i(-^(cVd))

lI
(a Vb )A( cVd)

Figure 11: LEAP Rewrite — Specific Explanation
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(not (or ?xl ?yl))

Y
(and (not ?xl) (not ?yl))

ill
(?fl (not (not ?x2)) . ?f2)

T
(?f1 ?x2 . ?f2)

III
(?f3 ?f4 (not (not ?x3)) . ?f5)

y
(?f3 ?f4 7x3 . ?f5)

Figure 12: LEAP Rewrite — Explanation Structure

-’(-•(?f4)V->(?x3))

Y
-t(-'(?f4))A-i(-.(?x3))

Y
?f4A-i(-i(?x3))

y
?f4A?x3

Figure 13: LEAP Rewrite — Generalized Explanation
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/ (  7*(x2))dx -’OccursIn(xJ)

7*((x2+1)/(2+l))

Figure 14: LEX2 Rewrite Example — Specific Explanation

/(?f3*(?x2?rl))d?x2 -•OccursIn(?x2,?f3)

Figure 15: LEX 2 Rewrite Example — Generalized Explanation

loS?b'?u=^v 7u=?b?v if OccursIn(x,?u) A -OccursIn(x,?v)
?u-?v=?z -  ?u=?z+?v if OccursIn(x,?u) A -OccursIn(x,?v)
?u“=?v -» ?u=sqrt(?v) if OccursIn(x,?u) A -*OccursIn(x,?v))
(?u+?v)*(?u-?v) —► (?u“)-(?v2) if OccursIn(x,?u)
l°8?w?u+l°§?w?v l°§9W(?u*?v) if OccursIn(x,?u) A OccursIn(x,?v) A ->OccursIn(x,?w)

The Occursin conditions constitute control information which assure that the application of a rule 
is a step towards the solution. This control information forms a part of the explanation and is 
learned along with the body of the new compiled rewrite rule. These conditions are proven deduc
tively using the following inference rules:

OccursIn(?x.?x)
OccursIn(?x,?v) —» OccursIn(?x,(?v . ?z))
OccursIn(?x,?z) — OccursIn(?x,(?v . ?z))
Atom(?y) A -*Eq(?x,?y) —1» ->OccursIn(?x,?y)
-OccursIn(?x,?y) A -OccursIn(?x.?z) — ->ÔccursIn(?x,(9y . ?z))

L nfortunately. the graph of the explanation for the solution to this problem is too large to be 
included in the paper, however, below are traces of the rewrite rules applied in the specific and gen
eral cases:

Specific Solution: 
loge(x+l)+loge(x-l)=c 
loge((x+l)*(x-l))=c 
(x+1 )*(x-l )=ec 
(x2)-( l2)=ec
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x2=(ec)+ (l2)
x=sqrt((ec)+ (l2))

General solution:
log?bi(x+?v3)+1og,bi(x-?v3)=?v2
log7bl((x+?v3)*(x-?v3))=?v2
(x+?v3)*(x-?v3)=?bl?v2
(x2)-(?v32)=?bl7v2
x2=(?bl?v2)+(?v32)
x=sqrt((?bl?v2)+(?v32))

New Rule:
log,bi(x+?v3)+log?bl(x-?v3)=?v2 -  x=sqrt((?bl?v2)+(?v32))

if Atom(?bl) A iEq(x.?bl) A Atom(?v2) A -Eq(x,?v2) A Atom(?v3) A -Eq(x,?v3)
However, maintaining the exact structure of the proofs for the conditions has required ?bl, ?v2, 
and ?v3 to be atoms as they were in the example. That is, in the example, we proved that ?bl (the 
base of the logarithm) did not contain x because it was an Atom which was not Eq to x. By prun
ing the explanation structure a little, we can gain generality without sacrificing much operational
ly .  That is, by removing the final steps used to prove the conditions before generalizing we can 
obtain the following more general rule:

log7bl(?u3+?v3)+log7bl(?u3-?v3)=?v2 -  ?u3=sqrt((?bl?v2)+(?v32)) 
if ->OccursIn(x,?bl) A OccursIn(x,?v2) A -OccursIn(x,?v3) A OccursIn(x,?u3)

This rule is at the appropriate level of generality to cover a relatively large class of problems. For 
example, this rule can now be used to solve the following example in one step.

lo83*e(x+2*a) + l°g3.e(x-2*a)=c+d 
x=sqrt((3*e )c+d+( 2*a )2)

4.6. Safe-To-Stack Example

The Safe-To-Stack example was introduced in [Mitchell86] to illustrate the EBG explanation- 
based generalization method. It involves learning an operational rule for when it is safe to stack 
something on an endtable. The specific example involves the following facts:

Isa(Objl,Box)
Isa(Obj2 .Endtable)
Color(Objl ,Red)
Volume(Objl ,1)
Densitv(objl ,.l)

The following domain rules are used to prove that Objl can be safely stacked on Obj2:
Volume(?x,?v) A Density(?x,?d) — Weighl(?x.?v*?d)
Weight(?x,?w) A Weight(?y.?u) A Less(?w.?u) -► Lighter(?x.?y)
Isa(°x,Endtable) —* Weight(?x,5)

The specific proof for this problem is shown in Figure 16 and the generalized proof is shown in Fig
ure 17. The general rule learned from this example is:

Volume!?xl,?vl) A Densitv(?xl,?dl) A Isa(?yl.Endtable) A Less(vl*dl,5) — Safe-To-Stack(?xl,?y 1
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Saf eToStack(Objl,Obj2)

t
Lighter(Objl,Obj2)

Weight(Obj2,5) Less(l*.l,5)
t

Volume(Objl,l) D ensity(O bjl,.l) Isa(Obj2,EndTable)

Figure 16: Safe-To-Stack Example — Specific Explanation

Saf eT oStack(?x 1 ,?y 1)

f
Light er(?x 1 ,?y 1)

Volum e(?xl,?vl) Density(?xl,?dl) Isa(?yl,EndTable)

Figure 17: Safe-To-Stack Example -- Generalized Explanation

4.7. Suicide Example

The Suicide example was introduced in [DeJong86] to illustrate some problems with the origi
nal specification of the EBG algorithm given in [Mitchell86]. It involves inferring that an individual 
will commit suicide if he is depressed and buys a gun. The specific facts of the problem are:

Depressed(John)
B uvU ohn.O bjl)
IsaiObjl ,Gun)

The domain rules are:
Depressed! ?x) — Despize(?x,?x)
Despize(?x.?v) Hate(?x,?v)
Hate(?x.?y) A Possess(?x,?z) A Isa(?z.Gun) — Kill(?x,?y)
Buy(?x,?v) -* Possess(?x,?v)

The proof that John will commit suicide is shown in figure 18 and the general proof that anvone 
who is depressed and buys a gun will commit suicide is shown in Figure 19. The general rule 
learned from the generalized explanation is:

Depressed(?yl) A Buv(?vl,?cl) A Isa(?cl.Gun) — Kill(?y 1 ,?y 1)
This simple example was originally constructed to indicate the necessity of the forward- 
propagation step in EBG. If the forward-propagation step is not performed, the proper description 
of the goal concept supported by the explanation is never determined (i.e. the constraint that the

W eight(O bjl,l*.l)
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Kill(JohnJohn)

Isa( Ob j 1, W eapon )
A

PossessC John.Objl ) 
A

Hate(John.John)
A1

Isa(Objl.Gun)
1

Buy( John.Objl)
T

DespizeC John John)

t
Depressed(John)

Figure 18: Suicide Example — Specific Explanation

Kill(?yl,?yl)

Isa(?cl, Weapon)
A

PossessC ?yl,?cl) 
A

Hate(?yl,?y 1) 
A

1
Isa(?cl,Gun)

1
Buy(?yl,?cl) DespizeC ?yl,?yl) 

A

Depressed(?yl)

Figure 19: Suicide Example — Generalized Explanation

killer be the same as the person killed is never imposed) and EBG constructs the following errone
ous rule:

Depressed(?y) A Buy(?x,?c) A Isa(?c,Gun) — Kill(?x.?y)
This rule states that someone who buys a gun kills all depressed people. In addition, if the back- 
propagation step is performed first before forward-propagation, as originally suggested in 
[DeJong86, Mooney86j. the constraint that the killer be the same as the person killed is imposed on 
the goal concept but not on the Buy branch of the explanation, and the following erroneous rule is 
learned:

Depressed(?y) A Buv(?x,?c) A Isa(?c,Gun) — Kill(?y.?y)
This rule states that if someone buys a gun all depressed people will kill themselves. Since EGGS 
propagates constraints uniformly in all directions, these problem are never encountered in our 
approach.

4.8. STRIPS Example

The STRIPS example [Fikes72], as discussed earlier, involves a situation as shown, in Figure 
20. The example involves a robot, located in room 1, moving to room 2 through door 1, picking up 
a box, and moving back to room 1 with the box. An explanation is constructed for the example 
using the following domain knowledge:
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R o o m l R o o m 2

o O Jori 1 1
R o b o t B o x

D o o r 2

R o o m 3

Figure 20: STRIPS: World Picture

STRIPS Actions
Action Preconditions Effects

GoThru(?a,?d.?rl ,?r2) InRoom(?a,?rl) 
Connects(?d ,?r 1 ,?r2 )

InRoom(?a,?r2)

PushThru(?a,?o.?d.?rl ,?r2) InRoom(?a,?rl) 
InRoom(?o,?rl) 
Connects(?d,?rl ,?r2 ;

InRoom(?a,?r2)
InRoom(?o,?r2)

An inference rule used in this example is:
Connects(?d,?rl,?r2) -» Connects(?d,?r2,?rl)

The specific explanation for this plan is shown in Figure 21. The resulting generalization, shown in 
Figure 22, doesn t constrain the final destination room of the robot to be the same as its room of 
origin. The generalized plan, shown below, would support having the robot move the box to room 
3 rather than back to room 1.

Learned MACROP
Action Preconditions Effects

MoveBox(?a2 ,?bl .7x21 ,?dl ,?x27.?d2.?y27) InRoom(?a2,?x21 ) 
InRoom(?bl ,7x27) 
Connects(?dl ,7x21,7x27) 
Connects(?d2 ,v27 ,?x2 7 )

InRoom(?a2,?y27) 
InRoom(?bl ,?y27)

4.9. GENESIS Example

The arson example from the GENESIS system[Mooney85] is a more complicated one in which 
domain specific generalization rules are used to augment the normal EGGS procedure. The specific 
explanation structure shown in Figure 23 is constructed from the following story which is 
presented to the narrative understanding svstem:

Stan owned a warehouse. Fie insured it against fire for $100,000. Stan burned the ware
house. He called Prudential and told them it was burnt. Prudential paid him $100,000.

This story is translated into the following assertions:
Possess(Pl ,W1 )
Isa(Pl .Person)
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InRoom(Box.Rooml) InRoom(Robot.Rooml )

PushThruCRobot,Box.Door 1 ,Room2 .Room 1 )

InRoom(Robot,Room2) InRoom(Box,Room2)

GoThruCRobot.Doorl .Rooml ,Room2)

InRoom(Robot.Rooml) Connects(Doorl,Rooml.Room2)

Figure 21: STRIPS Example — Specific Explanation

ConnectsC Door 1 ,Room2 .Room 1 )

InRoom(?bl,?y27) InRoom(?a2,?y27)

PushThru(?a2 ,?b 1 ,?d2,7x2 7 ,?y 2 7 )

InRoom(?a2,?x27) InRoom(?bl ,7x27) 

GoThruC ?a2 ,?d 1.7x21,7x2 7 )

Connects(?d2,?x27,?y27)

Connects(?d2,?y27,?x27) 

InRoom(?a2,7x21 ) ConnectsC ?d 1.7x21.7x2 7 )

Figure 22: STRIPS — Generalized Explanation

Name(Pl.Stan)
Isa( W 1 .Warehouse)
InsureObjectCPI .Burnt.W1 ,M 1 ,C1 )
IsaCMl .Money)
A mo u n t ( M1,100000,Do 11 ars )
IsaCCl .InsuranceCo)
XameCCl .Prudential)
Burnì PI ,W1 )
Telephone! PI .Cl .Burnt(W l))
IndemnifyCCl .Ml ,P1,Burnt.W1 )
The domain knowledge available to the system includes the following inferences and the 
knowledge about actions represented in Table 5.

Isa(7x,Warehouse) — Isa(?x.Building)
Isa(7x,Building) —* Isa(7x,Inanimate)
Isa(?x.Person) -> Isa(?x.Character)
Isa(?x,InsuranceCo) — Isa(?x.Company)
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Isa(?x.Company)-*• Isa(?x.Character)
Telephone(?x,?y.?z) —► Communicate(?x.?y,?z)

The explanation is that, since Stan s goal was to get money, he insured an unburnt warehouse he 
owned with Prudential. He then proceeded to burn down the flammable warehouse and to tele
phone Prudential to tell them about it. Since Prudential believed the warehouse was burnt, the 
building was insured with them, and they had the requisite money to reimburse Stan, they paid 
him the indemnity. Certain facts in the story, such as the name of the insurance company, are 
found not to be part of the explanation for how Stan acquired the money.

Table 5: GENESIS Actions for Arson
Action Preconditions Effects
Burn(?a,?o) Flammable(?o)

Not(Burnt(?o))
Burnt(?o)
Believe(?a,Burnt(?o))

Communicate(?a,?o,?i) Believe(?a,?i) Believe(?o.?i)

InsureOb ject( ?a ,?s ,?o ,?v ,?c ) Possessi?a.?o) 
Not(?s(?o))

Insured(?s,?o ,?a ,?v ,?c)

Indemnify(?a,?o,?t,?s,?i) Possessi ?a,?o) 
Insured(?s,?i,?t,?o,?a) 
BelieveC ?a ,?s( ?o ) )

Possessi ?t,?o)

Possess(Cl.Ml)

Isa(Ml, Money)
/

Isa( PI,Character)

Possessi Pi,Ml)
1

Iniiemnify(Cl.Ml.Pl.Burnt.Wl)

, , . Believe(Cl,Burnt(Wl))Iij«urep(B«rnt,Wl,Pl,Ml,Cl) |
f Commtinicate(Pl.Cl,Burnt(Wl))

Believe(Pl,Bumt(Wl))

Isa(U 1 .Inanim ate ) 
♦

Isa iU l,B u ild in g)
A

IsaiM l .U arehouse)

Isa(Pl,Person)

N am eiPl ,Stan)

Flam m ableiU  l )

Isa(Cl .Company) Not(Burnt( M l ))

Amou n t( M 1.100000, Dollars ) N am eiC l. Prudential)

Figure 23: GENESIS Example -  Specific Explanation
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The generalized explanation can be seen in Figure 24. In addition to the normal EGGS general
ization process, hierarchical class inferences (ISA inferences) have been pruned to arrive at an 
appropriate generalization. The rule is to prune any facts supporting only ISA inferences. For 
instance, in this example, including the fact that the object burned was a warehouse would make 
the resulting generalization overly specific and less useful in understanding future narratives. 
However, it was important to include warehouse in the specific explanation in order to infer that it 
could be burned. Since the fact that the object was a warehouse only supports the fact that it is a 
building, this fact is removed from the generalized explanation. Likewise, the fact that the object is 
a building is also pruned. The fact that the object is an inanimate object cannot be pruned because 
it is a precondition for burn, insure-object, and indemnify. Consequently, it becomes part of the 
generalized structure. Also, in the generalized explanation, patterns with the same generalized 
specification have been combined.

5. Conclusion
In an attempt to formulate a general framework for explanation-based generalization, we 

have developed a representation and an algorithm which we believe are well suited for learning in a 
wide variety of domains. The representation of explanations defined in this paper has allowed easy 
representation of a wide variety of examples from various domains. The EGGS algorithm is an 
efficient and concise algorithm which we have used to generalize each of these examples with the 
same generalizing system. Future research issues include techniques for improving generality, such 
as the pruning of hierarchical class inferences discussed in section 4.3, and methods for dealing 
with imperfect and intractable domain theories and other problems outlined in [Mitchell86].
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C3 SBG5 q I

Possessi ?a2 ,?v 1 )

t
In<lemnify(?cl,?vl,?a2,Burnt,?o2)

Possessi ?c l,?v 1 )

Isa(?vl,M oney)

Isa(7c l .InsuranceCo)
Isa(?a2. Person)

Believe(?cl,Burnt(?o2))

1
Communieate(?a2.?cl,Burnt(?o2))

Isa(?o2, Inanim ate) N'ot(Burnt(?o2))

Believe(?a2,Burnt(?o2))

Bnrnt(?o2) 

Burn(?a2.?o2)

- n
Flam m able(7o2)

Figure 24: GENESIS Example -- Generalized Explanation
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