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ABSTRACT

A brief summary of results obtained primarily during the second year 

(August 21, 1981 to August 20, 1982) under Contract N00014-80-C-0802 sponsored 

by the Naval Research Laboratory is presented. This report complements an 

earlier report which summarized the first year of research under this contract. 

The research covered several aspects of random access, routing and transmission 

scheduling and it also included some performance analysis of slow-frequency- 

hopped spread-spectrum multiple-access in a fading environment. The results 
obtained are applicable to the Navy’s intra-task-force mobile radio network.
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SUMMARY OF RESEARCH

This report briefly summarizes progress made during the past year.

The emphasis is on results which are applicable to the Navy’s proposed intra- 

task-force (ITF) communication network. One goal of our research was to 

study basic random access strategies. An important feature was to consider 

buffered stations and to allow the packet arrival rates at the different 

stations to independently fluctuate. The rate fluctuation leads to more 

"bursty” traffic than the usual Poisson or Bernoulli arrival models. Much 

to our surprise, even for rather bursty models, the time division multiple 
access (TDMA) strategy produces delays which are not much larger than the 

ideal (but unrealizable) perfect scheduling strategy. (See Appendix D for 

analysis and numerical results.)

As a result, we shifted more attention to considering how a network 

wide TDMA strategy might be implemented using spread-spectrum signaling. We 

sought a strategy which incorporates the multiple-access capability of spread- 

spectrum signaling. The result, reported in [11] (see Appendix A), is a 

procedure for controlling multiple access interference in a scheduled spread- 

spectrum network. The procedure is compatible with existing link activation 

scheduling algorithms which are not designed to control such interference.

Another research goal was to determine how several frequency bands 

with different attenuations should be used. This problem is addressed in

[13] and in Appendix B. One of our main conclusions is that network through
put can be significantly increased if the transmission range used to transmit 

a packet depends on the packet’s ultimate destination. The implication of 

this for the Navy's ITF network is that a single network operating on all



frequency bands should be implemented so that a typical packet can be trans

mitted in different frequency bands at different stages along its route (see 

Appendix B).

Error probability bounds are given in [14] and [4] for a coded slow- 

frequency-hopped system subject to a Rayleigh fading channel. In Appendix C 

additional numerical results are given. These results are for a larger number 

of frequency slots which is of interest in the Navy’s proposed ITF network. 

Also given are upper bounds on the error probability for Rician fading 

channels.

The need for effective routing procedures to avoid local regions of 
high traffic in a bandwidth limited radio network is indicated in Appendix B. 

In this direction, new efficient optimal dynamic routing procedures for 

communication networks are given in [12] (portions contained in Appendix E). 

These procedures appear to be the first optimal dynamic routing procedures 

which are computationally feasible for large networks. One of the algorithms 
is suitable for decentralized implementation.
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BALANCED SCHEDULING IN A PACKET SYNCHRONIZED 
SPREAD SPECTRUM NETWORK

by
/

Bruce Hajek 

ABSTRACT

A simple method is presented for controlling secondary multiple access 

interference in a packet synchronized spread spectrum network with scheduled 

transmissions. The method can be incorporated into existing scheduling 

algorithms which have been designed to avoid primary multiple access inter

ference. Certain transmission schedules called uniformly most balanced 

schedules are shown to exist which are optimal simultaneously under a 

variety of criteria. It is shown that such schedules can be found by an 

easily decentralized local improvement algorithm, and a preliminary per
formance analysis is given.

This work was supported by the Naval Research Lab under contract 
U. S. NAVY N00014-80-C-0802.

Submitted for presentation at INFOCOM, April 1983.
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I. INTRODUCTION

A viable access strategy for a mobile radio network is to attain 

network-wide synchronization with resolution small compared to packet 

transmission times and to govern packet transmission times with a schedule. 

A schedule designates which stations are to transmit packets and which 

stations are to receive the packets during each time slot. A schedule is 

periodic of period M if the same transmitter-receiver pairs are designated 

every M time slots. Such a schedule need only be specified for a frame 
which consists of M consecutive time slots.

We can associate a directed graph to the network at a given time 

instant. The nodes of the graph represent stations in the network and the 

links represent ordered pairs of stations. We say that link Z is activated 
in a slot if during the slot the first station in the pair of stations 

represented by Z transmits a packet intended for the second station in 

the pair. A periodic transmission schedule can be represented by a vector

f_= (f (k)) where for each link Z and each slot k with 1 < k £ M, f (k) is
 ̂ Z

equal to one if link Z is activated during slot k of each frame and f^(k) 
is equal to zero if not.

For a narrowband channel it may be desirable to schedule transmissions 

so that during any given time slot each transmitted packet is the only 

packet which can be heard at the receiver intended for the packet, thus 

preventing collisions entirely. This has been called spatial TDMA [7].

For spread spectrum systems it is possible for multiple disjoint 
ordered pairs of stations all within communication range of each other to 

successfully complete packet transmissions simultaneously. To be definite, 
we assume that the spread spectrum codes or hopping pattern assignments
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are receiver oriented. For such systems we can identify two types of 
conflicts - primary and secondary.

A primary conflict occurs if two or more transmitters simultaneously 

send packets to the same receiver. If a primary conflict occurs then 

none (or perhaps one if the system has a capture capability) of the con

flicting transmissions are successful and at least one packet does not get 

through. We also say a primary conflict occurs if a single transmitter is 

scheduled to simultaneously transmit two packets.

A secondary conflict occurs at a receiver if packet transmissions 
which are not intended for the receiver are heard at the receiver in addi

tion to a transmission which is intended for the receiver. For typical 

spread spectrum systems it is not critical that the level of secondary 

conflicts be zero, although it should be kept to an acceptably low level.

In [1] a decentralized algorithm called the Link Activation Algorithm 

was described which generates a periodic transmission schedule that avoids 
primary conflicts. This algorithm can be generalized so that for a given 

vector G_ = (G^) called a link demand vector the algorithm generates a periodic 

transmission schedule such that link £ is activated times during each 

frame. The Link Activation Algorithm produces a schedule to avoid primary 
conflicts but by itself does not attempt to choose a schedule which also 

yields an acceptable level of secondary conflicts. The main issue we 

address in this paper is how to improve scheduling algorithms to minimize 

the level of secondary conflicts as well as to completely avoid primary 
conflicts.

The solution we suggest is the following. First, replace the demand 
vector (? by a larger demand vector <G’ (i.e. G^ > G^ for each link £ and we
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write £' > £) as the input to the Link Activation Algorithm. For example, 

let = G£ + 1 for £ with G£ t 0, or set G^ = 2G£ for all £. The algo

rithm will then produce a schedule which we denote by C = (C^(k)) and which 

we call a skeleton schedule. Then £, as well as any transmission schedule 

£  with f_ < £, will avoid primary conflicts. The second part of our suggested 

solution is to choose a particular schedule £, from among all schedules f 

with £  £ £  and which satisfy the link demand requirements £, in order to 

minimize the adverse effects of secondary conflicts.

This procedure is motivated by the fact that once £  has been selected, 

£  can be readily varied while still preventing primary conflicts. For 

example, £  can be chosen in the following way. For a given link £ there 

are G^ time slots per frame during which link £ could be activated. These 

slots are designated by the skeleton schedule £. By monitoring the level 

of secondary conflicts at the receiver, the pair of stations corresponding 
to link £ can choose the best G slots from among these G 1 possibilities.

In a practical network we envision that a transmission schedule will 

be used which is only quasi-periodic (i.e., periodic over time intervals 
on the order of several frames in duration). This would be implemented by 

updating the link activation vector £  in response to changing network top

ology and traffic demands. The schedule updating and the initialization of 

the schedule would all be done in a decentralized way. Each station in 

the network need only know a small part of the schedule. The overall trans
mission control scheme is pictured in Figure 1.

In this paper we investigate a criterion and a method for choosing f 
given a skeleton schedule £  and link demand G. We do not here consider 

details about how £  and £  are generated. In fact, our results in the next
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two sections do not depend on how Gr and are generated and our performance 

analysis model given in Section 4 assumes that £  is generated at random in 

a specified manner. Our results support the thesis that the use of a 

skeleton schedule can decouple the problem of secondary conflict control 

from the problems of primary conflict control, routing, etc.

We assume for analysis purposes that all stations are within range of 
each other. This assumption is discussed in the next section. We find in 

the next section that there exist schedules which are optimal simultaneously 

for a large number of different optimality criteria. We call such schedules 

"uniformly most balanced" and in Section 3 we show that such schedules can 
be readily found by an easily decentralized local improvement algorithm.

An outline for performance analysis and some preliminary progress are 
presented in Section 4.

II. UNIFORMLY MOST BALANCED TRANSMISSION SCHEDULES

To simplify our analysis of secondary conflicts we specialize to the 
situation when all stations are within range of each other. Then our analysis 

can be viewed as a worst case analysis- or as an approximate analysis of a 

local region in a network. Then, roughly speaking, the problem of choosing 

a transmission schedule £  given link demand requirements G_ and a skeleton 
schedule C becomes:

"Optimize" X = (X^, X^ V
over (£, X)
subject to I f^(k) = X^ ( 2 . 1 )

M
2 f«(k) = G 

k=l * £ ( 2 . 2 )
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^(k) 6 {0,1}
f^Ck) < C£(k)

(2.3)
(2.4)

Note that is the number of transmissions in a slot. An interpret
ation of equations (2.1) through (2.4) which will be quite useful later 

is as flows on a certain single-source single-destination graph as pictured 

in Figure 2.1. The node set of the graph consists of a source node s, a 
destination node, d, nodes {a.: 1 < £ ^ L }  and nodes {b, : 1 £ k £ M}. There

is a link leading from S to each node a , a link leading from each node a„ Z

to each node b^, and a link from each node b^ to the destination node d.

Then f (k) and C (k) represent the flow and capacity of link (a ,b ) for36 36 il k
each z and k, G^ represents the flow on link (s, a^) , and represents 

the flow on link (b^» d). The choice of a schedule £_ given a link demand 

G_ and skeleton schedule jC is thus a special case of a flow assignment (i.e., 
routing) problem.

In a real system the performance of a schedule f_ depends in a complex 

way on packet error probabilities as a function of the level of secondary 

conflicts, the routing strategy, delay-throughput requirements, etc. 

Therefore an important problem is to find a tractable yet meaningful 

interpretation for the word "optimize" in the above problem formulation.

For example, let $ be a convex function on the nonnegative integers.
It may be desirable for f_ to be a solution to the minimization problem 
1? defined by

M
(P) min I $ 0 0  

k=l k

over _f, X subject to Eqs. (2.1) - (2.4).
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The mean number of transmissions per slot m(X) is constrained by- 
equation (2.1) to be

m® 5G*
l

and does not depend of _f. The sample variance of the number of transmissions 
per slot is

1 ^ 2  2 V(X)=rr Z XT - m(X)Z
M k=l K

and the mean number of transmissions which occur during the same slot as a 
transmission chosen at random is

m1(X) = m(X) + V(X)/m(X)

Thus, both V(X) and m^(X) are minimized when f is a solution to problem P 
2for $(x) = x .

In another example, if $(x) = 1 for x = 0 and $(x) = 0 for x > 1 
then the solution f_ to problem P^ minimizes the number of slots with no 
transmissions.

It is not clear what the best choice for $ would be, but fortunately, 
it doesn’t matter as we show next.

Proposition 2.1. There exists a (not necessarily unique) pair (I , X ) 

which solves problem P simultaneously for all convex functions $.

A schedule f_ satisfying the conditions of Proposition 2.1 will be 

called uniformly most balanced (for the link demand G and skeleton schedule 

£) . Although uniformly most balanced schedules may often be desired in
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practice, that is not always the case. For example, suppose that m(X) = 2 

but that the channel is narrow band. Then for a perfectly balanced schedule 

with two transmissions per slot, no transmission gets through. However, 

for the highly unbalanced schedule with one transmission in each of the first 
M-l slots and the rest of the transmissions in the Mth slot, a packet is 

successfully transmitted during all but one slot.

Generally speaking, achieving a balanced schedule is probably appro

priate whenever the mean level of secondary interference is acceptable.

If the mean level is unacceptably high then an unbalanced schedule, for 

which occasionally the secondary interference is lower than the mean, may 

be acceptable. Accordingly, balanced schedules should be quite generally 

desirable if the mean level of secondary interference is appropriately 

controlled. These considerations lead us to the following modification of 
the concept of most balanced schedule.

Given a convex function 
defined by

$, consider the minimization problem Pg

<V min
M
I

k=l $(V
over _f, X subject to E f£(k) = ^

1 M
Z f0(k) S G 

k=l * Z

f£(k) 6 {0,1} 

f£(k) < C£(k)

(2.5)

Problem Pg is equivalent to problem P except there is an inequality in 

the second constraint in (2.5) instead of an equality. Thus, the resulting
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solution schedule f_ may not satisfy the given link demand G.

Proposition 2.2. For each integer b > 0 there exists a (not necessarily 
b bunique) pair (f ,X ) which solves problem simultaneously for all convex 

functions $ such that $(x) is minimized at x = b. For each k it holds that

*£*b-
A schedule satisfying the conditions of Proposition 2.2 for a fixed 

integer b will be called a uniformly most balanced schedule about traffic 

level b. If we choose $(x) = max(b - x, 0), then we see that such a schedule 
maximizes

M
I

k=l

which is the throughput for a channel that can support up to b transmissions 

per slot and for which all packets are lost when more than b transmissions 
occur in a slot.

III. A LOCAL IMPROVEMENT ALGORITHM FOR ACHIEVING UNIFORMLY MOST BALANCED 
SCHEDULES

Given a link demand vector G and skeleton schedule let F denote 

the set of transmission schedules _f which satisfy the constraints (4.2) - 

(4.4). In the previous section we showed that F contains schedules which 

are uniformly most balanced. We show in this section that such schedules 

can be arrived at in a simple decentralized way. The procedure is simply 

the heuristic schedule selection method suggested in Section 1 applied 

under our simplifying assumption that all stations are within range of each
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other and under the assumption that stations can detect which of two given 
slots have more transmissions.

Given schedules f_ and f_' in F we say that f_ is at least as balanced 
as V  if for any convex function $

M M
2 *(\) ^ E *(X/) (3.1)

k=l K k«l k

where X and X ’ correspond to _f and V by equation (2.1). We say that f_

is strictly more balanced than V if strict inequality holds in relation
(3.1) whenever $ is a strictly convex function.

A simple way to modify a schedule f in F to obtain another schedule

£  in F is to change one slot assignment for one link. More precisely, if
for some link Z and some slots k and i it holds that o o o

f* (V  = f* <V  = 0 and ct = 1o o o
then we can define a new schedule £  in F by

g / k)

'1 ~ f„(k) if Z = Z and (k = k or k = j ) 
Z o o Jo

<

‘f^(k) otherwise.

We say that is obtained from f_ by an elementary transition. By Jensen’s
inequality the new schedule j* is as balanced (respectively, strictly more

balanced) than jE if and only if X, > X. + 1 (respectively, X, ^ X. +2)
o J o o ^o

where X is the vector associated with _f by equation (2.1).

An easily decentralized way to search for a uniformly most balanced

schedule is to obtain a sequence of schedules so that each successive schedule
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is more balanced and is obtained from the previous schedule by an elementary 

transition. The question arises as to whether or not a most balanced 

schedule is always eventually obtained. As we show the answer is yes if 

one does not insist that each successive schedule in the sequence be strictly 
more balanced.

Consider Fig. 3.1 for example. If the link using slot 2 shifted to 

use slot 1 (this preserves the distribution of X) and then if the other 

link which could use slot 2 shifted to slot 2 from slot 3 then a more balanced 

schedule is achieved. However, no single elementary transition leads to a 
more balanced schedule.

In general, unless f_ is uniformly most balanced, we can show that f 

can be modified by a sequence of elementary transitions so that each succes

sive schedule produced is as balanced as the previous one and eventually a 

strictly more balanced schedule is obtained. We express a probabilistic 
statement of this fact as a proposition.

Proposition 3.1. Consider the Markov process with finite state space F 
with generator matrix Q defined by

Q(f.

'1 if j* is in F, is obtained from f_ by an 
elementary transition, and is at least as 

< balanced as f

v 0 for other j* not equal to f_

Then the balance of the state is nondecreasing along each sample path with 

probability one and the set of ergodic states of the chain consists of the 
set of uniformly most balanced schedules.
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IV. PERFORMANCE ANALYSIS OR "HOW BALANCED ARE UNIFORMLY MOST BALANCED 
SCHEDULES?"

A given schedule defines a probability distribution £  which is the 

distribution of the number of transmissions in a typical slot. It is defined 
by

where X is defined by equation (2.1). Now for any link demand vector £  

and skeleton schedule £  there exist uniformly most balanced schedules f 

and they each give rise to the same distribution £. Thus, £  and £  together 

determine £. Broadly speaking, we want to analyze £  when £  and C are in

some sense "typical", and we do this by letting them be random.

To simplify our analysis, we suppose that each link is to be activated

exactly once per frame (i.e., = 1 for all £). We also suppose that £

assigns two distinct slots to each link. Thus, if L denotes the number of 
links, there are

such possible skeleton schedules £. We assume that £  is random and equal 

to each of these possibilities with equal probability. So far, exact 

analysis of £  for M and L large appears intractable, so our aim so far has 

been to obtain exact asymptotic results as M and L tend to infinity with 

L = aM for some fixed constant a which denotes the mean number of trans

missions per slot. Some preliminary results are presented in Figs. 4.1 

through 4.3. The asymptotic analysis results rely on a branching process 
argument. Details will be presented elsewhere.

Pn = ^  °f slots k with X^ = n)/M
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The last row of Fig. 4.2 has the following interpretation. If M 

links are each independently assigned two out of M slots by a skeleton 

schedule and if M is very large, then under a most balanced transmission 

schedule about 16% of the slots will have no transmissions, 68% will have 

one, 16% will have none, and perhaps surprisingly, a negligible fraction of 

slots will have three or more transmissions. From Figure 4.3 we observe 
that 0.5 is a critical value of a since if and only if a exceeds 0.5 will 

a nontrivial proportion (as M -*• ~) of slots be used by two or more links 
for activation.

For values of a larger than one we have only been able to compute 

pQ (as M -> °°) . We conjecture that (as M -► ®) p^ = 0 for n larger than 

[a] + 3. This is because we believe (and this belief is supported by 

Figures 4.1 through 4.3) that uniformly most balanced schedules quite 

effectively reduce peak (over a frame) interference levels to be near the 

mean interference level. These issues pose interesting problems for 
further investigation.
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Fig. 1.1. Routing and link activation using a skeleton schedule



Fig. 2.1. Interpretation of a link activation schedule as a directed flow



Fig- 3.1. Link schedule for which two but not one elementary transition 

suffice to produce a more balanced schedule

f



M po pi P2 P3

2 .5 .5 0 0
4 .5 .5 0 0
6 .50074 .49852 .00074 0
8 .50124 .49752 .00124 0

10 .50081 .49838 .00081 2.43 x 10”7
4« .5 .5 0 0

Distribution jd induced by uniformly most balanced schedules for 

random skeleton schedule with two slot choices per link and 
M = 2L (a - .5).

Fig. 4.1.



M P1 P2 p3

2 0 1 0 0
3 .0370 .9259 .0370 0
4 .0682 .8636 .0682 0
5

+ 00 .1619 .6762 .1619 0

Fig. 4.2. Distribution £  induced by uniformly most balanced schedules for 

random skeleton schedule with two slot choices per link and 
M = L (a = 1.0).



Fig. 4.3. Distribution jd vs a in the limit as M tends to infinity for 

random skeleton schedule with two slot choices per link and
L = ma.



APPENDIX B September 1982

ADAPTIVE TRANSMISSION STRATEGIES AND 

ROUTING IN MOBILE RADIO NETWORKS

by Bruce Hajek

Local throughput in a mobile radio network is roughly defined as the 

rate at which packets are propagated in specified directions in local network 

regions. A key factor determining local throughput in an ALOKA or spatial 

TDMA network with randomly spaced stations is the transmission radius used 

by the stations. We demonstrate that allowing the transmission radius to 

depend on the desired direction of propagation can significantly increase 

local throughput. Practical implications are discussed for the Navy's ITF 

Network.

The local throughput capabilities of a radio network can be effectively 

used only if adequate routing strategies are employed. This is illustrated 

by an example based on a symmetric demand assumption for stations uniformly

distributed over a disc.
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I. OPTIMAL FIXED RADIUS SELECTION

Suppose that the population of n stations is uniformly distributed

within a circle of radius R. If n is large then in small regions the stations

are distributed like a Poisson point process with intensity X satisfying 
2n = ttR X. Assuming that the traffic demand is symmetric (i.e., uniformly 

distributed over all n(n-l) directed pairs of distinct stations) the mean 

distance between the source and destination of a packet is (see [2], or see 

[1] which is a chapter from [2])

128
45tt (*?

The network throughput in packet-hops for the ALOHA random access protocol 

can be approximated by
n

A Xe c

where A is the area covered by a transmission and A denotes the mean of A . c c c
(If the transmission radius is always a constant r then AQ is not random and

2 —is equal to Trr .) Thus, if L denotes the mean forward progress per successful 

transmission, the network end-to-end throughput in packets per time slot is

Y - L /=*■Xe
128 (  n
45tt V Xtt

= (n/Æ) (.72017) Æ (1.1)
where

n = L/A, ( 1 . 2 )

Since by equation (1.1) the end-to-end throughput is proportional to 
q we call n the efficiency of the transmission radius policy. The constant
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r\ is perhaps more meaningful than y since it does not depend on the network's 

global geometry and is thus a "local" measure.

In [2] it was assumed that the transmission radius r is the same for 

all transmissions. The fixed radius r was chosen to maximize the efficiency 

p over all positive values. It was found that the optimum value of r is 

such that XA^ * 5.89 - that is, the optimum fixed transmission radius is 

such that the mean number of stations within range of a given station is 

about six. This choice of transmission radius leads to efficiency

opt,fixed r = .135 X (1.3)

Using (1.1), this leads to the optimal network throughput .0976 /n reported 
in [2].

We are quick to remark that much of this analysis is heavily laden 

with approximations. For example, there is a problem in defining mean 

forward progress when no station is within range of the transmitter. (We 

avoid that particular problem in the next section.) See [2] for further 
discussion.

II. OPTIMAL ADAPTIVE TRANSMISSION RADIUS

Suppose that transmitters can vary their transmission radius with time 

(rather than using a fixed - although optimized - radius as in [2]), possibly 

as a function of the location of the other stations. How might the efficiency 
be improved?

First, we note that once a transmitter has identified an intended 
receiver for a packet transmission, it should use a transmission radius 

just large enough to reach that station. It remains to see which of the

other stations should be the intended receiver.
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Suppose a transmitter located at (0,0) must transmit a packet which is 

ultimately destined for a station with coordinates (z,0) where z is large.

If a transmitter at (x,y) is chosen to receive the packet (and to then relay 

it on) the efficiency for that transmission would be

/ x A xn(x,y) = ---«----«-
ir(x + y )

Clearly the adaptive transmission radius rule which maximizes n (defined in

(1 .2)) is to use the radius just large enough to reach the station whose 

coordinates (x,y) maximize n(x,y) over all the stations. This rule is 

illustrated in Figures 1 and 2. Geometrically, one "scans" the region within 

a circle centered on the positive x axis which passes through (0,0). The 

diameter of the circle continuously increases until some station is contained 

in the region. That station becomes the intended receiver and the transmis

sion radius used is the distance to that receiver. We will now compute the 

efficiency of this rule. All our analysis is under the assumption that n 

is so large that the distribution of stations located near the fixed station 
can be assumed to be Poisson with intensity X per unit area.

Let be the area of the region which is scanned. Then

P[Ag ^ c] = P[no stations are in a given circle which has area c]

= e-Xc (2.1)

Hence, A is exponentially distributed and A = X s s
of the region scanned is equal to 2 (A /tt) 2 we have thats

Since the diameter L

'TT 9

fL (0 = ~2~ exp(-Xir£ /4) for Z > 0
and

(2 .2)
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Given that L = l ,  the coordinates (X,Y) of the designated receiver is 
a solution to

or

2x lx

t 2(x - ^  + y

(2.3)

For fixed x we compute from equation (2.3) that

dy _ _x_ 
dx 2y

x
2 (£x - x ) 2

Now given that a region contains exactly one point of a Poisson point 

process with constant intensity, the point is uniformly distributed over 

the region. Applying this fact to the shaded region in Figure 3 yields that

'l  d l f

where c^ is chosen so that the conditional density integrates to one for l  

fixed. To find c^ we note that

r l  

> 0

dA _s
d l

Therefore

f | (x [ it) = ----— ----r for 0 ^ x < l
1 tr£(U-x)x)^

From this we can compute that

( l  9 2
e [x |l = l] = I ----— ----- dx = j - l

Jo ttJI((£-x)x ) 2

(2.4)

(2.5)
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Now using (2.2) and (2.5) we compute that

X = e [e [x |l ] ] « L - X **, (2 .6)

Furthermore, the area of the region within transmission range is

so that

A = ir (X2 + Y2) = ttLX c

A = tt E[LX]

= TT E[LE[X|L]]

^  E[L2] = 3 E[~~] = 3As = 3X-1 (2.7)

From (2.6) and (2.7) we compute that the efficiency of the rule is

~7~ X
opt 3X-1 = .25 X'

Comparing with equation (1.3) we see that by optimally adapting the trans

mission radius as a function of ultimate packet destination and other 

station locations, the efficiency can be increased by about 85%.

Equation (2.7) suggests that the optimal adaptive transmission radius 
policy we have chosen is such that on average, three stations will be in 

transmission range. (In analogy to [2], one might say that 3 is a magic 

number.) However, since the transmission range is random and is dependent 

on the station locations, the distribution of stations within transmission 
range is not conditionally Poisson. In fact, with probability one there is 

exactly one station within (actually, on the boundary of) the region scanned. 
The conditional distribution of stations in the unscanned region is Poisson,

however.
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Using (2.4) and the fact that X 

and 0 are independent and

f (Q) = 2-,cos..,ij-) £0 V ' it

L cos 0 we easily derive that L

1  < 0 < 1  
2 2

(2 .8)

Now for fixed 9 the area of the region which is scanned but which is not 

within range of the transmission can be shown to equal

A = £2 (sin(20) - 20 cos(20))/4

and using (2 .8) the mean of this area is found (after elementary computa

tions) to be

Now the mean area of the region which is scanned and within the transmission 

range is X  ̂- A, and so the mean area of the unscanned portion of the region 

within transmission range is 2X  ̂+ A (see Fig. 4). Thus, the mean number 

of stations within transmission range, including the designated receiver, is

1 + (2 + AX) = 3.18

(One might say that 3.18 is a magic number.) It would be interesting (and 

it appears difficult) to find a dynamic transmission radius rule which 

minimizes the mean forward progress divided by the mean number of stations 
in transmission range, other than the intended receiver.
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III. PRACTICAL CONCLUSIONS

It may not be feasible for stations to continuously vary their range 

from transmission to transmission. However, even if each station has only 

two available ranges, the same principles apply and thus using a destination 

dependent transmission range can increase throughput. Moreover, our study 

was motivated by the fact that in some situations the transmissions from a 

single station might be forced to have variable ranges. This situation is 

expected for the Navy’s ITF Network due to the large variation in propagation 

characteristics over distinct frequency bands. It is important to emphasize 

that the variable ranges imposed by the environment can only be effectively 

exploited if packets can be transmitted at different frequencies for different 

hops along its path. That is, our results argue against the concept of 

independently running several networks, each in a different frequency band - 

rather they argue for a single network using all frequency bands simultaneously.

Another practical consideration is that it would most likely not be 

efficient (if even possible) for stations to execute the scanning procedure 
we suggested in order to determine the preferred receiver for a given ultimate 

destination. However, if a (yet to be developed) routing strategy is used 

which effectively incorporates station interdistance measurements, then we 

believe that routes will automatically be chosen which are roughly consistent 

with those determined by our rule. In this light, our calculations suggest 
that under effective routing strategies, the multiple access interference 

will be less (or else the throughput larger) than that predicted by [2].
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IV. GLOBAL NETWORK PERFORMANCE

The efficiency n we defined in Section I can be thought of as a measure 

of local throughput capacity. The formula (1.1) relates it to a global 

performance measure (end-to-end throughput) for a specific network topology 

and traffic demand. As noted in [2], in simulations, the end-to-end through

put was only a small fraction of that predicted by (1.1). In this section 

we indicate why indeed one should expect that the actual end-to-end throughput 

should be only one third that predicted by equation (1 .1) as long as a minimum 

hop routing rule is used.
Consider a continuum of stations uniformly distributed over a disc of 

radius one. Suppose that the traffic demand is uniform so that the amount 

of traffic originating within one region and destined for another is propor

tional to the product of the areas of the regions. We wish to compute the 

spatial traffic distribution, assuming that line-of-sight routing is used.

Refer to Figure 5 and fix a point at distance r from the origin, and 

let 0 denote the angle between the radial line and another line through the 

point. Now the amount of traffic passing through a small neighborhood of 

the point and traveling at an angle between 9 and 9 + d0 is proportional to 

the product of the areas*of regions a and b indicated. Therefore the traffic 

density profile is

p(r) = (const.) A  2W 1 2,
("2 X ) ("2 y ) d6

2But for each 0, xy = 1 - r so that

P (r) = 1 (1 - r2)IT (4.1)

where the constant 2/it was chosen so that
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r rJo Jo
p (r) r dr d0 = 1

From (4.1) we compute that

Peak traffic density (set r = 0) _ 2/tt
Spatial average of traffic density 1/tt ^

Since maximum throughput is limited by the peak traffic density and since 

formula (1 .1) is based on mean traffic density, we thus see that if line-of- 

sight routing (which is essentially dictated if n is large and minimum hop 

routing is used for the network considered in earlier sections) is used 

then the network throughput will be one third that predicted by (1.1). The 

high peak to average density ratio indicates the need for effective routing 

strategies which are not restricted to minimum hop routes.

/
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Figure 1

Figure 2

Figure 3

Locus of {(x,y) : — - = -£■} for & fixed.
x + y

Illustration of selection rule - the preferred next receiver 
is circled.

. (X,Y) is uniformly distributed over shaded region given that
l  < L < l + d l.
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Figure 4. From left to right, the region unscanned and in transmission 
range, the region scanned and within range, and the region 
scanned and out of range are pictured and are labeled with their 
mean areas.

Figure 5. Traffic from region a passing to region b passes through a 
neighborhood of the point at distance r from the center of 
the disc. The angle of travel is roughly 9.



APPENDIX C by M. B. Pursley

PERFORMANCE OF A CODED SLOW-FREQUENCY-HOPPED 

SYSTEM WITH FADING

In Table 2 of [1] some preliminary results are given on the performance 

of Reed-Solomon (RS) coded slow-frequency-hopped (SFH) spread-spectrum 

multiple-access communications in a nonselective Rayleigh fading environment. 

The parameter values employed in that table were chosen for illustrative 

purposes only. In Table 1 we present numerical results for parameter values 

of interest in the Navy’s proposed intra-task-force communications network.

The key parameters are the number q of frequency slots, the number K of 

active transmitters, and the number N^ of bits per dwell interval. All of 
the data reported here is for q = 1 0 0, and the modulation is binary noncoher

ent FSK. The values of K are 1, 5, and 10. Although we evaluated error rates 

for K = 2 0 , the error rates are not given here because they are too large to 

be of interest (in excess of 0.15 for all values of the bit-energy-to-noise 
density ratio).

The method that we have employed to generate the data given in Table 1

can be generalized to permit the evaluation of the bit error probability for

RS-coded SFH systems with Rician fading channels. In Table 2 we present a
2comparison of bit error rates for three values of y , the Rician channel para-

2meter defined in [3]. The case y = 0 is just the additive white Gaussian
2noise channel, and y — 00 gives the Rayleigh fading channel. A comparison of

2error rates for Rician fading channels with y = 0, 0.1, and « is given in 

Table 2.
The probabilities that are listed in Tables 1 and 2 are upper bounds 

on the bit error probability for the RS coded SFH system. This upper bound
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is based on the method reported in Appendix A of [3] (see especially pp. 

15-17). The bound is very robust in the sense that it is valid for arbitrary 

relative power levels and time delays. It turns out the bound is also fairly 

tight in many cases as can be seen from Table 3 where we present results on 

an approximation to the bit error probability. The approximation method is 
an extension of a method for uncoded systems reported in [3 ].

In the process of obtaining numerical results for the RS-coded SFH spread 

spectrum systems, we discovered that for low bit energy to noise density the 

bit error probabilities for noncoherent FSK are larger for the AWGN channel 

than for the Rayleigh fading channel. This phenomenon shows up in Table 2

for 5 /Nn = 4 dB. A further investigation revealed that for the (255,127)b 0
RS code, the Rayleigh channel gives better error rates than the AWGN channel 

for values of cS^/Ng less than 6.81 dB. For values of ^ / N q greater than 
6.82 dB, the AWGN channel gives superior performance as expected. This 

phenomenon is apparently due to the tail of the Rayleigh density function: 
large values of the Rayleigh distributed amplitude give a better byte error 

probability than the constant amplitude of the AWGN. At low bit energy to 

noise density ratios, these large values of the amplitude are required to 

obtain a low error rate. At present it appears that this phenomenon is of 

little practical interest, because we have observed it at high error rates 

only (in excess of 0.3).
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Table 1. Upper bounds on the bit error probability for RS-coded SFH 
systems with nonselective Rayleigh fading (q= 100).

(a) (31,15) RS code with = 5.

V N 0 (d } K = 1

4
10

16
22

28

0.41E + 00 
0.22E + 00 
0.47E - 02 
0.38E - 02 
0.34E - 11

0.41E + 00 
0.24E + 00 
0.33E - 01 
0.10E - 02 
0.15E - 03

K = 10

0.42E + 00 
0.27E + 00 
0.10E + 00 
0.25E - 01 
0.13E - 01

(b) (255,127) RS

V N 0 <d >
4
10

16
22

28

code with = 8 .

K = 1 K
0.44E + 00 0.45E
0.26E + 00 0.27E
0.20E - 03 0.47E
0.62E - 28 0.10E
0.00E + 00 0.97E

= 5  K = 10

+ 00 0.45E + 00
+ 00 0.30E + 00
- 01 0.16E + 00
- 08 0.52E - 02
- 15 0.15E - 03

Table 2. Upper bounds on the bit error probability for RS coded SFH 
systems with nonselective Rician Fading (q = 100, K = 5,
(255, 127) RS code, - 8 ).

0 <d ) y2 = 0 2Y = 0*1
2y =00

4 0.46E + 00 0.46E + 00 0.44E + 00
10 0.17E + 00 0.20E + 00 0.27E + 00
16 0.12E - 17 0.33E - 14 0.47E - 01
22 0.11E - 17 0.13E - 17 0.10E - 08
28 0.11E - 17 0.11E - 17 0.97E - 15
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Table 3. Bit error probabilities for RS-coded SFH systems with nonselective 
Rayleigh fading (q = 100, K = 5).

(a) (31,15) RS code with = 5

V N 0 <d > Approximation Upper Bound
4 0.41 0.42 (E + 00)

10 0.24 0.24 (E + 00)
16 0.30 0.33 (E - 01)
22 0.77 1.02 (E - 03)
28 0.10 0.15 (E - 03)

(255,127) RS code with N. = 8 b

TJo Approximation Upper Bound
4 0.44 0.45 (E + 00)

10 0.27 0.27 (E + 00)
16 0.42 0.47 (E - 01)
22 0.44 1.04 (E - 09)
28 0.24 0.97 (E - 15)
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APPENDIX D by B . Haj ek

WAITING TIME FOR PERFECT SCHEDULING 

WITH INDEPENDENTLY FLUCTUATING ARRIVAL RATES,

IN DISCRETE TIME

A topic of investigation during the past year has been the 

investigation of random access procedures for a group of stations with 

on-going access needs, rather than with one-time access needs. We have 

developed several principles which are still under investigation. It has 

become apparent that the proper selection of a random access policy is 

critically dependent on the statistics of the user demands. Following 

is a report on our investigation of models for user demands.
In general, random access techniques are needed when several stations 

attempt to use a common channel but have little knowledge about the instan

taneous availability of the channel and the identity of the other stations. 

If the group of active stations remains fixed over a sufficiently long 

period, then even with small feedback rates the stations can eventually 

learn to effectively cooperate with each other. In that case, the random 
access aspect of the problem is only relevant for a transient "locking 

period."
It is thus apparent that random access capability becomes a critical 

factor only when the population of active stations is changing relatively 

fast compared to the rate at which stations can learn the system state.
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For example, the usual infinite population model is appropriate for studying 
random-access techniques since each station transmits only one packet and 

then remains silent thereafter (thus by the time other stations learn of 

its identity, the information is useless). In an effort to obtain more 

realistic models, some authors consider a finite number of buffered sta

tions with Poisson arrivals. However, the schemes evaluated to date for 

such models outperform TDMA only for extremely low traffic rates, and often 

do significantly worse. The reason for this, we propose, is that a Poisson 

arrival process does not reflect a bursty source of packets at a station. 

This has led us to use a variation of Poisson arrival processes in which 

the arrival rate is time varying. As reported previously [2], we have 

analyzed the TDMA policy for such arrival models. Below we outline an 

evaluation method for perfect scheduling. The method is based on non-linear 

matrix iteration. The analysis of these two basic schemes provides a bench

mark for evaluating other proposed random access strategies.

The Single Station Model

Each station generates packets to be transmitted and stores the 

packets in a buffer of unlimited capacity until transmission. Each station 

(more precisely, the packet-generating mechanism at each station) is assumed 

to be in state zero or state one. A station in state i (where i is zero or 

one) at the beginning of a time slot generates a packet during the slot 

with probability Typically > g-̂  so that state one represents an
active state.

The state of each station is modeled by a two-state Markov chain with 
transition probability matrix
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It is assumed that the event of a state transition during a slot and the

event of a packet generation during a slot are conditionally independent

given the state at the beginning of the slot. The invariant distribution 
~  — 1for P is (a + b) (h,a) so that the mean arrival rate is

c - (a + b) 1 (bJQ + ao^)
For comparison of numerical results, it is desirable to reparameterize 

the matrix P so that one parameter represents the rate at which the genera

tion probability fluctuates. To this end, we let

"? = exp(vQ)

where 1$ is the transition rate matrix (or generator matrix)

-w -or a
Q = Q „aej

Then the discrete time chain with transition matrix P can be viewed as a 

continuous time chain with generator Q which is sampled every v time units. 

An alternative equivalent expression for P is P = I + yQ where y and v are

related by i
y = (Oi + 3) 11-exp (-W (a + P))J.

As v ranges over H + , y ranges over the interval [0,(a + p) *]. Note that 
v (1 /ot + 1/3 )”*■*■ represents the rate at which the continuous time process 

completes its two step cycles.
Other reparameterizations of P are also possible. It might be noted 

that no such reparameterization will make the discrete-time model for packet 

generation completely equivalent to a continuous time model with a modulated 

Poission arrival process since we allow only one packet arrival per slot per

station.
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Perfect Scheduling with m Stations.

Suppose that each of m stations independently generates packets accord

ing to independent discrete-time doubly-stochastic point processes modulated 

by two-state Markov processes, with common parameters a, b, <7q and as 

described above. A perfect scheduling multiple-access policy is a scheme 

whereby exactly one of the stations successfully transmits a packet during 

each slot for which at least one station has a packet to transmit at the 

beginning of the slot. Of course, this does not completely characterize the 
policy. For an example, the stations might be assigned a priority and then

the highest priority non-empty station would always transmit. In general, 
a complete Markov (or state space) description of the system would include 

a list of the states of each of the m stations, a list of the number of 

packets at each station, and possibly some state information involving the 
policy.

However, the average queueing delay can be computed using a simpler 

model as follows. Let denote the number of stations in state one at time t, 
and let L̂_ denote the number of packets in the system, summed over all m 

stations. Then (0t,Lt) is a discrete time Markov chain on [ (i,n) : 0 ^ i ^ m,

n ^ 0] whose transition probability matrix can be written in the block form 
(only non-zero blocks are indicated):

P(0) P(l) P(2) 0 0 m P(m)
P(0) P(l) P(2) 0 0 0 P (m )

p = P(0) P(l) P(2) • • • P(m)
• P(0) P(l) P(2) ...

ii

where the (nri-1) x (nH-1) submatrices are defined by
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P(k)±J = P£k arrivals in slot [t,t+l), 6 t+1 * .1 J ©t a i]

If L denotes the expected value of Lt under the invariant distribution for 
P, then N, the average number of packets at each station (averaged over all m 
stations) is given by

The matrix P is a block matrix of M / g A  type (for discrete time). By spe

cializing and adapting the techniques summarized in NEUTS (1980) we can give 
a numerically tractable way to compute L.

Outline of Computation of L.

Step 1. Compute and store P(k) for 0 £ k £ m.

Step 2. Find the transition probability matrix G satisfying

G = £ P(k)Gk. 
k=0

This can be done by matrix iteration where successive iterates are obtained 

by substituting the previous interate into the right hand side, using initial 
value 0. (For each iteration, the right side can be computed efficiently by 

computing G in the loop used to compute the sum.)

Step 3. Determine the probability vector r with rG = r. (By iteration.) 
Step 4. Compute

l - i(i-pf1 ira> + 2_̂z
where

p = i% is the system utilization.

yQ= (1-p) r is the invariant distribution of (L ,0 ) restricted to the 
states where q = 0 .

n = the invariant distribution of P* (defined below).
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Z - [ I - P* + II] P where II

M*1

mo\
(m-l)<T0 + <Jl  

(m-2 )cr 0 +  2c 1

mcr

TT
TT

rr

is the mean arrival vector given Q^.

TT(1) = TTy,2 - 2 p + 2rr A (ys>1 )P*ZA ) e. e 35
and

M-2

^ ( 0 )

1*2 (“ )

/ r
€ m m+l

where ^  (!) = i ^  (l-ff^+^-i)^ (1-^)+
(io*1 + (m-i)(7o)(l-(i<3>1 + (m-i)cro))

Let us elaborate on Step 1. By the statistical assumptions, Q andt+1
N t + 1 are conditionally independent given Q^, so that

P(k) = A(s( k ) ) p '

where
*

P ij P [ 0 t+ 1  J le t " 13

and A(£(k)) denotes the diagonal matrix whose diagonal entries are given 
by the column vector ¿(k) which is defined by

«±0O = P[k arrivals in (t,t+l) [ 9 = i].

mComputation of p = P[9t+1 = j| efc = i] O s i ,  i s  

Write P±< 0 s i £ m for the m+l rows of the (m+l)x(m+l) matrix P*.
Then

* 1  -  (£o)(m-1)* * (%) 1*
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where

g0 = (1-a, a, 09 0 ... 0) € ]Rm+1

gĵ  = (b, 1-b, 0 , 0 , ... 0) € IRm+1

and the following notation is used: For two vectors f and g_ in lRnH"1’,
denotes the m+1 row vector h defined by

= E gk-i for 0 £ k £ m,
i®0

i*and g is obtained by the i-fold product g*£* (Organization:
k*for u=0 and for u=l, compute (g^) for 0 £ k £ m recursively by

(s^D * = O^Su k * s°* = ôo = (1. 0, . . .  0) e m- 1

Computation of s.(k) = p{k new packets arrive et-i}

Write m+1Lte s_̂  — (ŝ  (0) , • ••, s^ (m) ) € ]R . Then
= (m-i)* *fi*

—1 — 0 — 1

where

J[q “ °Q> •••» 0) ^ IR.m+1

(l“̂j-> cr̂ > **** ^ IRm+1

(Storage: Let S =

§0 
— 1

S-m

ç IR(n+l)x (m+1 )

Note that the computation of S and P* is identical.)

First,
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Numerical Results

The method for analyzing perfect scheduling outlined above was imple

mented on a DEC-10 computer. The most time consuming step was to solve the 

nonlinear equation for G by iteration. For M = 4 stations very little 
computation was required whereas for M = 10 the required computation time 

became substantial.

In Figure 1 we have graphed N for both the perfect scheduling and TDMA 
protocols as a function of y for M = 4. The method reported in [2] was 

used to obtain the curve for TDMA. We choose parameter values Gq = .2 and 

= .75 and the relative rates of transition were chosen so that p = .96.

Note that during periods when one or more stations are in the active state 
the mean packet arrival rate exceeds one.

Perhaps the most striking feature of Figure 1 is that as y decreases to 

zero (indicating that stations switch between active and inactive states more 

slowly) the difference in N for TDMA compared to perfect scheduling remains 

almost constant (it actually slightly increases). Contrary to what we had 

originally anticipated, TDMA performs quite well (when compared to the best 

possible - perfect scheduling) even for our quite bursty traffic model.

Of course the delay for TDMA does become large as y tends to zero - 

our observation is merely that the delay for perfect scheduling becomes 

nearly as large. It does not appear, therefore, that significant improvements 

in delay can be achieved over TDMA by other implementable access schemes. 

Rather, the approach of scheduling transmissions in a "spatial TDMA" fashion 

may be quite effective even for bursty traffic.
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OPTIMAL DYNAMIC ROUTING IN COMMUNICATION NETWORKS WITH CONTINUOUS TRAFFIC *
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ABSTRACT

New characterizations of optimal state-dependent routing strategies are 
obtained for the continuous traffic network model proposed by A. Segall for 
linear cost with unity weighting at each node and for constant inputs. The 
concept of flow relaxation is introduced and is used to transform the optimal 
routing problem into an initial flow optimization problem with convex cost and 
linear constraints.

Three algorithms are given for open-loop computation of the optimal 
initial flow. The first is a simple iterative algorithm based on gradient 
descent with bending and it is well suited for decentralized computation. The 
second algorithm reduces the problem to a series of max-flow problems and it 
computes the exact optimal initial flow in 0 (In |4) computations where |n | is 
the number of nodes in the network. The third algorithm is based on a search 
for successive bottlenecks in the network.
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1. INTRODUCTION

An optimal dynamic routing strategy for a model which, includes random 

queueing delays and the discrete nature of packets would certainly be too 
complex to implement for reasonably large systems. However, if the traffic to 

be distributed is measured in continuous rather than discrete variables, and 

if a deterministic pure flow model is used to describe the links, then there 

is some hope of computing optimal dynamic routing strategies. Such a model 

was introduced by Segall [16] and should be accurate when the number of 
packets in the network is large compared to the number of nodes.

This paper is organized as follows. The dynamic routing problem is 

formulated in Section 2 following Segall [16] . In Section 3 the concept of 

flow relaxation is introduced and an algorithm for its efficient computation 
is described. In Section 4 the problem of finding an optimal time-dependent 
control is transformed via flow relaxation into a vector optimization problem 

with convex cost and simple linear equality and inequality constraints. As a 

corollary, new characterizations are obtained for arbitrary optimal controls.

Three algorithms are provided in Sections 5-7, respectively, for solving 

the vector optimization problem. The algorithm in Section 5 is a 

decentralized iterative algorithm, while the algorithm in Section 6, called 
OPTFLO, is a "combinatorial" algorithm. OPTFLO reduces the problem to a 

series of max-flow problems and it computes the exact optimal vector in at 

most 0(IN 14) computations. Often even fewer computations are required.

The algorithms given in Sections 5 and 6 are quite different from each 
other although each appears to be numerically efficient and able to handle 

larger networks than previously known algorithms. The third algorithm given 

in Section 7 reduces the vector optimization problem to a search for
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"bottlenecks" in tlxe network. This third algorithm is not yet computationally 

competitive with the other two, but it is included for conceptual purposes.

The optimal routing problem we consider in this paper is dynamic in the 

sense that the optimal control depends on the state of the network [16]. 

Since the state evolution (given the control) is deterministic, optimal 
controls can be implemented in closed-loop or in open-loop form.

Closed-loop implementation requires that an optimal control value be 

found for each state (i.e., a feedback control policy is needed). This 

problem is extensively studied in the remarkable series of u papers 

[4],[5],[10]-[12],[16] of A. Segall and his co-workers. Their main approach 

is to apply the theory of necessary conditions for state-constrained optimal 

control problems. The resulting methods are based on the backwards evolution 
of state and dual variables. (The connection between this approach and ours 

is summarized in a remark at the end of Section 4.) Through ingenious use of 

max-flow algorithms, Jodorkovsky and Segall [4],[5]. are able to compute 
closed-loop control laws for small to moderate size networks (with about four 

to seven nodes) . However, it appears that both the computational requirement 

and the buffer requirement for storage of the feedback policy itself grow 
exponentially with the size of the network, and therefore the method is 

impractical for large networks. (Since computation of closed-loop policies 

can be made off-line, the buffer requirement is the most critical limitation.)

Thus, we are led in this paper to seek open-loop solutions whereby the 
optimal control is computed (usually in real time) as a function of the given 

initial state. Since the optimal control is sought for only a single initial 
state it is hoped that the computation time (which is a critical parameter for 
open-loop implementation) will be much smaller than that required for
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closed-loop solutions. We believe that the algorithms presented in this paper 
bear this out.

An interesting algorithm for solving the open-loop problem is given in 

Shats and Segall [18]. Our algorithm OPTFLO is more efficient primarily for 

two reasons. First, although both the algorithm of Shats and Segall and 

OPTFLO are recursive, only OPTFLO divides the original problem into 

independent (i.e., decoupled) subproblems during each iteration. Secondly, 

OPTFLO takes advantage of existing special-purpose algorithms for solving 
max-flow problems whereas the algorithm.given by Shats and Segall requires the 

solutions of linear programming problems which are solved by (less efficient) 
general linear-programming methods.

Yet another approach to the open-loop dynamic routing problem is to begin 
by considering a discrete-time formulation. Then if the network is 

time-expanded [2, pp. 145-146] into a new network which contains a duplicate 

of the original network for each unit of time, then (the discrete-time version 
of) the problem P we consider in this paper is equivalent to a certain static 

weighted minimal cost flow problem (which is a special type of linear 
programming problem). However, the well-known technique of "building up" 
optimal solutions for such static problems [2, Sect. III.3] is much less 

efficient for the particular minimal cost problem than is the discrete-time 

version of our algorithm OPTFLO. Indeed, the technique of [2, Sect. III.3] 

requires the solution of at least one max-flow problem per time step whereas 
OPTFLO often requires many fewer since it exploits the fact that an optimal 

control will often be constant over many consecutive time intervals.
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An important feature of any closed-loop or open-loop solution to the 

dynamic routing problem is its degree of suitability for decentralized 

implementation. The algorithm given in Section 4 appears to be the first 

optimal dynamic routing algorithm which is readily implemented in a
decentralized way.
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2. PROBLEM FORMULATION

A single destination network 71 is a 4-tuple (N,L,C,d) where (N,L) is a 

finite directed graph with a set N of nodes and a set L of links where L c  N x 

N, d is a distinguished node in N called the destination, and Ç = (C^: & € L)
is a capacity assignment vector so that 2. 0 for each link £. The notation 
!A| will be used to denote the number of elements in a set A. A link leading 

from node i to node j will often be denoted by (i,j). Define E(i) to be the 
collection of nodes k such that (i,k) is a link and I(i) to be the collection of 

nodes k such that (k,i) is a link. For each node i in N, x^(t) is a real 

value which denotes the amount of traffic at node i at time t (measured in 

bits, packets, vehicles or messages, for example)*

A demand for the network is a pair (x(0) ,r) where x^O) for i in N 
denotes the (nonnegative) initial amount of traffic at node i and r^ for i in 

N denotes the (nonnegative) rate at which traffic enters node i from outside 

the network. By convention, xd(t) = rd = 0 for all t 1 0. Given a control u 
= (u^(t): i £ L, t 2 0), where u^(t) denotes the instantaneous flow on link £ 

at time t, the state equation of the network is

i(t) = Z
€ I(i) uki(t) " E

€ E(i) Uij(t) for i £ d

This state equation can be written in vector notation as

x(t) = r + B u (2.1)

where B is the IN1 x |L| matrix such that the column corresponding to link 

(i»j) consists of a -1 at row i (if i^d) and a +1 at row j (if j^d) and 

zeros elsewhere. It is convenient to define = 0 for pairs of nodes 
i,j such that a link (i,j) does not exist.
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Throughout this paper when sets of nodes are used as subscripts the 
summation convention is implied. Thus, by definition.

and

xA<t) E it(t) 
i € A

i € A

CAB “ Z Z Cii •i € A j 6 B 1J
and the state equations can be written as

XA (t) “ rA + uN-A,A(t) " UA,N-A(t) for A C  N"d *

Note that in this last equation we have abused notation by writing d when we 

really mean the set {d} with the single element d.

A state trajectory (x(t): t > 0) is well-defined by (the integrated

version of) the state equation (2.1) for any demand (x(0),x) and any control u 
in the set

*U - (u: u is a measurable function on 3R+ and 0 <. u _< Ç}

where 0 is the vector of all zeros and vector inequalities such as 0 < u Ç 

are to be interpreted coordinate-wise. A control u in 1( is termed admissible 

for the demand (x(0),r) if the corresponding state trajectory statisfies the 

constraint x(t) >.0 for all t > 0. For such a control u the number

D(u) = f xN(t)dt 
o

is the total waiting time in the network incurred by all traffic. Given a
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network V. and demand (x(0) ,r), the problem we consider is to find an 
admissible control u* which minimizes D(u) over all admissible controls u. 
This will be called problem P and we write

(P) min{D(u) : u€*l( , u is admissible}

and we let D denote the minimum delay. Since the input rates r^ are not time 
varying, if the total delay is finite for some control then it is possible to 

empty each of the nodes in finite time. Thus, the problem we consider might 
be termed an "optimal evacuation" problem.
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