
REPORT T-20 AUGUST.1975

5 3 COORDINATED SCIENCE LABORATORY

ALGEBRAIC NAND-NOR
LOGIC DESIGN
AN EXPOSITION

FRANZ E. HOHN

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

ALGEBRAIC NAND-NOR LOGIC DESIGN
AN EXPOSITION

by
Franz E . Hohn

Department of Mathematics
University of Illinois at Urbana-Champaign

iii

ACKNOWLEDGMENT

I wish to thank Professors G. Metze and E. S. Davidson for

encouraging me to prepare this report from my class notes, and Mr. B. Kumar

for a careful reading of the original manuscript.

iv

TABLE OF CONTENTS

Section Page

1. INTRODUCTION.. 1

2. NOTATION AND DEFINITIONS .. 5

3. NAND AND NOR EXPRESSIONS FROM MAPS 9

4. THE BASIC FACTORING RULES 12

5. IMPLEMENTATION WITH MIXED LOGIC 18

6. THE LAWS OF REDUNDANCY .. 23

7. THE HYBRID ASSOCIATIVE LAWS 29

8. SOME MORE EXAMPLES .. 30

9. NAND-NOR ALGEBRA: THE BASIC LAWS 35

10. THE PRINCIPLE OF DUALITY FOR NAND AND NOR 39

11. ABSORPTION LAWS AND RELATED IDENTITIES 40

12. NORMAL FORMS FOR SWITCHING FUNCTIONS 44

13. CONCLUSION .. 47

14. EXERCISES 48

1
/

1. INTRODUCTION

The two-input NAND function and the two-input NOR function are

commonly and conveniently denoted by such symbols as the stroke:

a | b = ab = a + b (NAND)

and the arrow:
alb = a +b = ab (NOR).

It is then routine to transform a given Boolean expression into a form

employing only two-input NANDs or NORs or a mixture of these by using, in

addition to the definitions, the relations

and

a = a|a, a +b = a|b,

a = ala, ab = alb.

To illustrate, one way of transforming the exclusive-OR is this:

a © b = ab + ab = ab|ab

= (a|b)|(alb)

= (a| <b|b)) | ((a| a) | b).

This requires five NAND-gates, but four will suffice. We have

a| (b|b) = a + b

= a + ab

= a|ab

= a|(a|b).

/

2

If we interchange a and b in this formula and use the fact that the stroke

operation is commutative, we obtain the equivalent identity

(a I a) | b = (a | b) | b .

Substituting from these two identities into the previous expression for a©b,

we obtain

a © b = (a| (a |b)) | ((a| b) | b),

a form which requires only four NAND-gates because of the repetition of the

function (a|b).

Dually, the both-or-neither (equivalence) function a b + a b = a Ob

is given by

a O b = (al (alb))J> ((alb)lb).

(b)

Figure 1.1. (a) EXCLUSIVE-OR circuit
(b) EQUIVALENCE circuit

3

This particular treatment of a familiar example suggests that

identities involving NAND and NOR functions can be useful for the direct

transformation of switching functions expressed in terms of these functions

without appeal to their AND-OR-NOT equivalents. This is indeed the case,

but the development of such identities requires a suitable notation for

multiple-input NAND and NOR functions. The stroke type of symbolism does

not generalize properly and repeated overbars or primes to denote negation

become awkward to read and to manipulate. Since we will be concerned with

functions of arbitrarily many arguments, a natural procedure is to use

functional notation for the development of the algebra of these functions.

Throughout this development of multiple-input NAND and NOR

algebra, we shall appeal freely to the definitions and to corresponding

relations expressed in terms of AND, OR, and NOT. However, it is important

to remember that a major objective in developing such an algebra is to make

possible avoidance of unnecessary transformations of this kind.

An alternative, postulational development of NAND-NOR algebra that

does not appeal at all to the operations AND, OR, and NOT has also been

developed. Such an approach is both interesting and mathematically

instructive, but from a practical point of view, it is more efficient to

allow appropriate interplay between the two systems.

Another approach to NAND-NOR logic design is the map method given

by G. Maley and J. Earle in The Logic Design of Transistor Digital Computers.

Englewood Cliffs, N. J., Prentice-Hall, 1963. A number of examples in the

present exposition use functions employed by Maley and Earle in their

4

examples. These are appropriately referenced so the reader can compare the

two procedures if he wishes.

5

2. NOTATION AND DEFINITIONS

As we have noted, there is no standard functional notation for the

generalized NAND and NOR functions. In what follows, we shall use M to

denote the NAND function and m to denote the NOR function. These designa

tions draw attention to the maxterm character of NAND and the minterm

character of NOR, respectively. The basic definitions are these: For all

switching functions f^,f2,...,fk of n variables, and for all possible integers k,

M(f) - f
(2.1a) _________

M(f1,f2,...,fk) = f1f2 ---fk = f1 +f2 + **- +fk

and
mCfp = fx,

(2.1b) _______________
m (f1,f2,.*#,fk) = fl + f 2 + " # +fk “ flf2 * *fk *

Note that M(p), where p is a minterm, is a maxterm and that m(s),

where s is a maxterm, is a minterm.

Since the terms of a sum and the factors of a product may be

permuted arbitrarily, it follows from these definitions that each of the

operations NAND and NOR is commutative in the sense that its arguments may

be permuted arbitrarily.

From the definitions we have at once the OR-to-NAND and AND-to-NOR

transformation laws:

(2.2a) fl + f 2 + ' " +£k =
and

(2.2b) fl V " fk = m (^1>?2 V -

6

In words, a sum is the NAND of the complements of its terms and a product is

the NOR of the complements of its factors.

The formulas (2.2) have important special cases. If

X = (x1,x2,...,x m)n'
and if

f (x) = f 1 + f 2 + --* + f k,

where the f^ are products of switching functions of x^,x2>.

products of literals):

.,xn (often

we have, by (2.1a),

fi SilSi2 * * *8ir.* i

f. = M(g. , ,g.0,•..,g.)l ll i2 lr.l

so (2.2a) becomes the familiar sum-of-products to NAND transformation:

(2.3a) S11S12 *' + § 21S22 ' ’ *S2r2 + * “ +Sklgk2 ' ’ ,gkrk

~ m C m (g - ^ ^ > g - ^ 2 » * * * 5 ® l i r ^ ^ (§ 2 9 § 2 2 9 * * * * ^ 2 r ^ * * * * *’lr1 ~~ ““ “‘2
M(8kl,Sk2,**‘,Skr1 ^

For example, using these observations, we can write at once,

x1x2 +x2x3 + x 3x1 = M[M(x1,x2),M(x2,x3),M(x3,x1)].

Similarly, if

f (x) = f 1f 2 . . . f k ,

where the f^ are sums of switching functions of x^,x2>...,xn (often sums of

literals):

7

fi 8il + Si2 + “ ’ + 8ir. ’1

then by (2.1b) we have

so (2.2b) becomes the familiar product-of-sums to NOR transformation:

(2.3b) (gll + S 12 + “ ' + 8 lr1 ̂(g21 + § 22 + * “ + 82r2^ * ' (gkl +Sk2 + ' *

m[m(g^ *®l2,,#*,8lr) (§ 2]_* § 2 2 ***** ̂ 2r ̂* * * * *

* +8kr) krk

m (gkl,Sk25' “ ,8kr. ^ k
For example, by (2.3b) we have at once

x1(x2 + x 3) (x2 + x 3) = m[m(x1),m(x2 ,x3),m(x2,x3)] .

It is useful to define, in analogy to the E and tt notations for

sums and products,

and
i21(fi) "* ^ ^ 1 »^2 * * * * * ̂ k^

i=l (fi.) * * * ,fk)'

With the aid of this notation, the cumbersome identities (2.3) may be

rewritten thus:

k ri k ^
. V - - i 8ii) = M (. M (g..)) i=l j=l i=l j=l 1J

k ri k r •
i-1 (.Sigi1> = .mi (S-M)) *1-1 J=1 1=1 j=l 1J

From the definitions we have at once the following four identities

which hold for all switching functions f^,f2>...,f^ and for all positive

(2.3a)'
and

(2.3b)'

8

integers k:

(2.4a) M(0,fx ,...,fk) = 1

(2.4b) m(l,fisf2> • • • >

and

(2.5a)

(2.5b)

These identities are frequently useful in the derivation of others.

Throughout this paper, NAND-NOR formulas appear in pairs differing

only in that M and m, and 0 and 1, are interchanged throughout. Each

formula of such a pair will be called the dual of the other. If AND and OR

are also used, they too must be interchanged throughout.

9

3. NAND AND NOR EXPRESSIONS PROM MAPS

Consider the function defined by the map

x

0 1 0 1

0 1 1 1

x.

from which we have the minimal forms

and
f(X) = x2x3 + x 2x3 + | x|x^

f (X) = (x2 + x 3) (Xj^+x2 + x 3)

These can be transformed into M and m forms respectively by (2.3), the

now being literals. On the other hand, since exactly the same literals

appear in the M and m forms as appear in the minimal sum-of-products and

product-of-sums forms respectively, the M and m expansions can be, and

should be, written directly from the map. In the case of the present

example, by inspection of the map we would write at once

[m (x 1,x 2)̂
f(X) = M|M(x2 ,x3),M(x2>x 3),

and
f(X) = m[m(x2,x3),m(x1,x2 ,x3)].

The results obtained in this way from maps of functions (or by

transformation of the results of any of the several minimization procedures)

may then be further transformed by appropriate NAND-NOR identities until the

10

most useful end results are obtained. This will be illustrated in following

sections.

The NAND and NOR representations of f obtained in this way are

necessarily minimal two-stage representations of f. Indeed, if there were

a shorter two-stage representation, it would lead immediately to a shorter

sum-of-products or product-of-sums representation of f.

As another example, consider the function defined by the map of

Figure 3.1. Here the minimal two-stage NAND and NOR representations are

Figure 3.1

and

f(X) = M[M(x1,x2),M(x1,x3),M(x1,x4),M(x2,x3)]

f (X) = m[m(x1,x2),m(x1,x3),m(x2,x3,x4)].

The corresponding minimal disjunctive and conjunctive forms may be

factored, among other ways, as follows:

f (X) = x1(x2 + x3 +x4) 4- x2x3

f (X) = + x 2x 3)(x 2 + x 3 + x4)
and

11

and

Applying the appropriate transformation rules, we have then

f(X) - h [m {x 1,M(x 2,x 3,x4)},M(x 2,x 3)]

f(X) * m[m{x1,m(x2,x3)},m(x2,x3,x4)].

One would expect to be able to effect a transformation of the

initially written M and m forms to these factored forms without first

reverting to AND-OR-NOT expressions. A set of factoring rules that will

accomplish this is given in the next section.

J

12

4. THE BASIC FACTORING RULES

The rules given in this section will be derived by first trans

forming M and m expressions to AND-OR-NOT equivalents, rearranging these,

and then transforming back to NAND and NOR expressions by the rules of

Section 2.

A frequently encountered type of M-expression in which factoring

is possible is the following:

f(X) = M[M(f,g1),M(f,g2),...)M(f,gk),h1,h2,...,h].

We have at once, by the rules of Section 2,

f (X) = fg1 +fg2 + * • * + f Sk + h;L + h 2 + • • • +h^

so
f(X) = f (g-ĵ + g 2 + • • • +8^) + h1 + h 2 + • • • + h q

= Kiu{f9K(Ev I2 > >hi>h2 > • • • >hql •

Let us use h* and h+ to denote respectively "any non-negative

integral number of arbitrary arguments" and "any positive integral number

of arguments" h^. That is,h’' may be an empty set of arguments, but h+ may
JL - f -not. Moreover, whenever h or h is repeated in a given identity, it stands

for the same set of arguments at each appearance. Then the preceding

computations imply the identity

(4.1a) M[M(f,g1),M(f,g2),... .MCfjg^.h*]

- MM f , M(g1>g2 , . . . , g k) } , h *] .

In exactly dual fashion, we obtain

13

(4.1b) m[m(f ,g1),m(f ,g2),... ,m(f »g^ ,h*]

= mCm{f,m(g1,g2,...,^s)),h*].

The computations assume that h* is non-empty. The reader should

show that (4.1a) and (4.1b) hold even if h* is empty, that is, even if no

arguments h are present.

Note that the reductions effected in the second example of the

preceding section could have been effected by applying these two factoring

rules.

The two preceding rules generalize to the following, which may be

proved in precisely the same way:

(4.2a) m Cm (ì ̂ , f2 j • • • j f 9 §12) »

> ̂ 29 * * *9 * ®2l * ̂ 229 * * *9 ̂ 2r ̂* * * *9

M(f1,f2,...,fr ,gkl,gk2,...,gk),h]

—• mCm (ì^jf2, » « •, f̂ .,m{m (g^^,g^2,...,ĝ ̂) >^(§2iJ§22* * * * *̂ 2r ^

,M(skljSk2,' " ,Skr1 ^) ,h*-' k

The corresponding m-relation (4.2b) is obtained by replacing M by m through
out in (4.2a).

Letting g* denote an arbitrary positive number of arguments

^il,®i2* * * * ,sir and us*-n§ k* as before, the cumbersome identity (4.2a) i
can be rewritten thus:

(4.2a) ’ M[M(f+,g+),M(f+)g2),... ,M(f+,g£),h*]
= M[M(f+,M{M(g^),M(g2>,... ,M(g£)]),h*] ,

and similarly for its dual.

14

It is important to note how the factorings (4.2) affect fan-in

and fan-out : The fan-out of each f^ is reduced from k to 1 while fan-in

for the final NAND-gate (written first in the formula) is reduced by k-1.

As a further illustration of these rules for factoring, we design

a full adder using only 2-input NAND-gates. The adder is defined by the

table and maps of Figure 4.1.

c . in

Figure 4.1. Definition of Full Adder

From the maps, we have at once the minimal two-stage expressions for s and

c _ ’ out

s = M[M(a,b,cin),M(a,b,cin),M(a,b,cin),M(a,b,cin)]

and
Cout = MtM(a,b),M(a,cin),M(b,cin)].

By the commutativity of M and the factoring rule (4.2a), we have

15

s = M[M(cin,M{M(a,b),M(a,b)}),M(cln>M{(a,b)1M(a)b)])]

and
cout = M[M{cin,M(a,b)},M(a,b)].

These factorings were chosen to permit sharing of the outputs M(a,b) and M(a,b).

Assuming that complements of inputs are available, the corresponding

circuit diagram is as shown in Figure 4.2. Note that only two-input gates are

employed. Other implementations of the full adder will appear in later

sections.

Figure 4.2. NAND Full Adder (23 inputs, 12 gates, 4 stages)

16

As a second example, consider the following function, a variation

of an example of Maley and Earle (p. 127):

f (A,B,C,D) = (A + B) (A +C) (A +D) (B + C + D).

Here we have immediately, by (4.1b),

f(A,B,C,D) - m[m{A,m(B,C,D)],m(B,C,D)].

The corresponding circuit appears in Figure 4.3.

A

B

C

D
B

C

D

f

F P -4 3 0 9

Figure 4.3. A NOR Circuit

Expanding the product-of-sums form of f judiciously, we have

f (A, B,C,D) = A (B+C+D) + BCD

so, alternatively,

f (A, B,C,D) = M[M{A,M(B,C,D)},M(B,C,D)].

An interesting fact is that the M-expression for f could have been

obtained from the m-expression for f simply by replacing m by M throughout.

17

The explanation for this is the fact that the equation

(A + BCD) (B +C + D) - A(B +C + D) + BCD

is self dual.

In general, let f(X;M) denote a purely NAND function of the x^ and

their complements and let f(X;m) denote the same expression with M replaced

by m throughout. Also let f(X;AND,OR,NOT) denote the AND-OR-NOT translation

of f(X,M) and let f(Xj OR, AND, NOT) denote the same expression with AND and OR

interchanged throughout. Then because of the rules for transforming NAND

and NOR expressions into AND-OR-NOT expressions and vice versa,

f(X;M) * f(X;m) iff f(X;AND,OR,NOT) = f(X;OR,AND,NOT).

For example, because

ab • be • ca = a+b + b*fc + (c-fa),

we have

M(M(a,b),M(b,c),M(c,a)) = m(m(a,b),m(b,c),m(c,a)).

18

5. IMPLEMENTATION WITH MIXED LOGIC

Often a mixture of NAND, NOR, AND, and OR elements is algebraically

natural and in certain cases leads to representations that permit the use of

specialized types of integrated circuits. We give some examples.

Example 5.1; Consider the function

f (A,B,C) = (A + B) (A +C) (A +D) (B +C +D) = (A+ BCD) (BC+D),

the second form of which yields

f (A,B,C) = m[m(A, BCD) ,m(BC,D)]

- m[m{A,m(B,CD)} ,m(BC,D)]

= m[m{A,m(B,M(C,D))} ,m{M(B,C),D}] .

The circuit diagram is shown in Figure 5.1,

Figure 5.1. A NAND-NGR Circuit.

19

The point of the example is that by mixing NANDs and NQRs we

readily obtain an implementation of f that requires no complemented inputs.

Moreover, this implementation is more economical than is a purely NAND

implementation (Maley and Earle, p. 127).

Example 5.2: If complements of inputs are not available, the implementation of

f (X) = (xx +x2 + x 3) (x4 + x 5 + x 6)

may be accomplished as a mixed logic circuit, thus:

f (X) = m[x1x2x3,m{x4 ,M(x5,x6)}] .

See Figure 5.2, in which AND is implemented as NAJND-NOT.

f(X)

F P -4 3 1 1

Figure 5.2. A NAND-NOR-AND Circuit.

Example 5.3: Consider the function

f (A,B,C) = (A + B + C) (A + BC + BC) .

20

If complements are available, we write at once

f(A,B,C) - m[m(A,B,C),m{A,m(B,C),m(B,C)}] .

The corresponding circuit requires five NOR-gates with a total of twelve

inputs.

If complements are not available, a NOR-AND implementation is

appropriate:

f (A,B,C) = (A + (B + C)) (A + BC + B C)

= m[A* B +C,m{A,BC,m(B,C)}]

= m[A-m(B,C),m{A,BC,m(B,C))],

The circuit is given in Figure 5.3.

If we rewrite f(A,B,C) in the form

f (A,B,C) = A B C + A(B +C) + BC,

21

so
f(A,B,C) = M[A+(B+C),M(A,B+C),M(B,C)],

we obtain the NAND-OR implementation of Figure 5.4.

Figure 5.4. A NAND-OR Circuit.

Other implementations of this function appear in Maley and Earle,

page 122. The several treatments of this one function illustrate the great

flexibility inherent in NAND-NOR algebra.

Example. 5.4: Consider again the sum function of a full adder:

s = a b c + abc + a b c + abc.

Assume complements not available. We have

s = a+b * c + a+c • b + b-f-c • a + abc

22

s = M[M{m(a,b),c},M{m(a,c),b},M{m(b,c),a},M(a,b,c)].

The circuit is shown in Figure 5.5f

Figure 5.5. Sum Digit for Full Adder (19 inputs, 8 gates, 3 stages).

The same function s was generated in Section 4 with 18 inputs, 9

two-input NAND-gates and 4 stages, assuming complements to be available.

The two-stage implementation

s = M[M(a,b,c) ,M(a,b,F) ,M(a,b,c) ,M(a,b,c)]

requires only 16 inputs and 5 multiple-input gates, assuming complements

to be available.

Another implementation of s will be given in Section 6.

23

6. THE LAWS OF REDUNDANCY

Of particular value in the transformation of NAND and NOR

expressions for design purposes are the readily derived laws of redundancy;

(6.1a) M(f,g,h*) = M[f,M(f,g),h*],

(6.2a) M[f,M(f,g1,g2,.. , ,gk),h*] = M[f ,M(g19g2,... .g^ ,h*] ,

(6.3a) MCf,m(f,g1,g2,...,gfc),h*] = M[f,m(g1,g2 ,...,gk),h*],

and their duals, obtained by interchanging M and m throughout. Indeed, by

(2.4) and (2.5), for all combinations of values of the variables at which f

assumes the value 0, both members of each identity assume the value 1. For

all combinations of values of the variables at which f assumes the value 1,

both members of (6.1a) reduce to M[g,h*], both members of (6.2a) reduce to

»§2 j••* j
mCiii (g-ĵ j §2, •. ., ĝ) j h 3 •

In view of the arguments h* present in these identities and the

commutative nature of the M and m operators, the identities may be applied

repeatedly to a given expression for the removal or insertion of redundant

arguments.

As an illustration of the usefulness of (6.1a), note that

a © b = ab+aF = M[M(a,b) ,M(a,b)]

= M[M{M(a,b),b},M{a,M(a,b)}]

which yields the usual four NAND-element circuit for a ® b (Figure 1.1).

The dual identity (6.1b) is used to obtain the corresponding circuit for

g^),h*J, and both members of (6.3a) reduce toM[M(g1

a O b .

24

Consider again the problem of implementing a full adder with NAND

elements. We rewrite the expression

s = a F c . + abc. + abc. + abc.in in in in

for the sum digit as follows :

s = abc. + abc. + (a + b) (a + b)c. .in in N ' in

This yields the NAND expression

s = M[M(a,b,cin),M(a,b,cin),M{M(a,ïï),M(a,b),cin}]

By repeated use of the law of redundancy (6.1a), the preceding expansion may

be altered so as to remove the complements, thus:

s = M[M{a,M(a,b),M(a,cin)} ,M{b,M(a,b),M(b,cin)} ,

M[M{a,M(a,b)},M{b,M(a,b)],cin3].

Now, by inserting a redundant argument M(a,b) into M(a,cin) in the

first major argument and into M(b,cin) in the second major argument, and

then inserting a redundant c^n into each of the first two arguments of the

third major argument, we get extensive repetition of the subfunctions:

s = M[M{a,M(a,b) ,M[a,cin,M(a,b)]3 ,

M{b,M(a,b),M[b,c ,M(a,b)]},

M{M[a,cin>M(a,b)],M[b,cin>M(a>b)]>cln3].

Because of the repetition of subfunctions, this rather formidable

appearing expression actually corresponds to a simple and advantageous

25

circuit (Figure 6.1). The same circuit is obtained by Maley and Earle by

a sequence of operations with maps.

Figure 6.1. Sum Digit of Full Adder.

A major advantage of the preceding circuit appears when we
implement the carry-out digit:

cout = ab + ac. + be.in m
or

Cout * M M̂ (a >b)>M (a*cin)»M (b »cin)^*

Inserting a redundant argument M(a,b) into each of the last two

major arguments, we have

Cout = M M̂ (a >b)>M£a >cin>M (a >b)}>Mtb >cin,M(a,b)}],

all three arguments of which have been generated in the expression for s

whose circuit diagram appears in Figure 6.1, at the points labeled 1, 2, and 3,

26

respectively. The circuit for c t thus requires only a single additional

NAND-gate (Figure 6.2).

1 2 3

Figure 6.2. Carry-Out Digit of Full Adder.

The full adder implemented in this fashion requires a total of 23

inputs, none complemented, only 8 gates, and 5 stages.

As these examples suggest, the laws of redundancy are powerful

tools for the transformation of M and m functions in ways that permit the

sharing of hardware and the reduction of gate requirements.

The initial factoring of the AND-OR-NOT expression for s was not

really essential, for we have the identity

(6.4a) M[M{M(f1,f2),M(f1,f2)},h*]

= M[M(f1,r2),M(f1,f2),h*],

which could have accomplished the same result. This identity may be proved

with the aid of (2.4) and (2.5), just as we proved (6.1a), (6.2a), and

(6.3a). Details are left to the reader. Note how this identity, like each

of the factoring rules, affects the number of stages, that is, the depth of

a list of nested parentheses.

27

To apply (6.4a) to the NAND representation of s, we first use

(4.2a) to factor c^n in the expression for s:

s = M[M(a,b,cin),M(a,b,cin),M{M[M(a,b),M(a,b)],cin}].

Then (6.4a) gives

s = M[M(ä,b,cin),M(a,b,cin),M{M(a,b),M(ä,b),cin}],

after which the law of redundancy is applied as before.

As another example of the use of redundancy, consider the even

parity function of three variables x,y,z:

S0 2(x,y,z) = x y z + x y z + x y z + x y z

= (xy+xy)z + (x+y)(x+y)z

= M M x y +xy,z) ,M{x +y,x +y,z}].

Now substitute for xy +xy the expression

m [m { (x,y),y},M{M(x,y),x)]

and transform x + y and x + y into NAND functions. This yields

s0j2(x >y>z) = M[M(M{M(x,y),y],M{M(x,y),x}],z),
M(M{M(x,y),y},M{M(x,y),x],z)].

Now, in the first major subargument, insert a redundant z into

the minor subargument immediately preceding z and in the second major

subargument, combine both minor arguments immediately preceding z with ~z in

redundant fashion thus obtaining a common subargument

g = M(M{M(x,y),y] ,M[M(x,y),x} ,z)

in each of the two major arguments so

28

SQ 2 (x,y,z) = M[M{g,z} ,M(M{M(x,y),y} ,M{M(x,y),x} ,g)] .

These last two expressions define the five-stage circuit of Figure 6.3.

Sô U.y.z)

Figure 6.3. Even Parity Function

A map of SQ 2̂ (x,y,z

x '

shows that

x y z + x y z + x y z + x y z = (x+y+z)(x+y+z)(x+y+z)(x+y+:z).

Since this is a self-dual identity, the NANDs may all be replaced by NORs

in the circuit of Figure 6.3 without altering the output.

) y

1 1

1 1

V___ _ ____
z

29

7. THE HYBRID ASSOCIATIVE LAWS

The operations M and m are not associative, that is, ordinarily

M[f1,M(f2,f3)] # M[M(f1(£2),f3]

and

as expansion of the several members will reveal. However, some association

of arguments is permissible according to the hybrid associative laws, which

the reader should prove:

(7.1a) n[fv i2i . ..,fk ,g*l = M C m C f ^ f ^ ... ,fk),g*]

and dually. As many of these associations as are feasible may be effected.

These laws are sometimes useful for removing unwanted complements

and for building duplicate arguments. A simple example is this:

a b c d + a b c d = M[M{m(a,b) ,c,d} ,M{a,b,m(c,d)}] .

/

30

8. SOME MORE EXAMPLES

NAND-NOR algebra does not eliminate the need for clever Boolean

algebra. The two are complementary and should be used together as

effectively as possible.

Example 8.1: From the map

0 1 0 1

■
1 1 0 ■ I
0 0 0 0 1y
1 1 0 l

we have

f(X) = (x1 + x 2 + x 3 +x4)*x1x2 *x3x4

= m[m(x1,x2,x3,x4),x1x2,x3x4]

which permits use of a standard AOI chip with expander (Figure 8.1).

Figure 8.1

31

Example 8.2; Suppose it is desired to implement S2 (a,b,c,d) using

exclusive-ORs and NANDs. One could manipulate the algebraic expression,

but it is much better to draw the map twice:

H-----
L ____ /— *

l-l_l i
1
1 1 i___ ‘1J + -/

/Y~+ — \ i
l

i
1__

L _ _ LO
m ^

----»i
■--- f

1— .—

c
-K-

) b

The intersections of the exclusive-OR regions show that S

S2 (a,b,c,d) = (a®b)(c©d) + (a@c)(b@d)

= M[M(a © b,c © d) ,M(a© c,b © d)] .

Example 8.3: Consider the symmetric function

f (A,B,C) = A B + A C + B C + A B C ,

BFrom the map

—
1 0 1 0

*c 0 1 1 1

we see that

f(A,B,C) = m[m(A,B,C),m(A,B,C),m(A,B,C)]

which by the laws of redundancy becomes

32

f (A,B,C) = m[m{A,B,m(A,B,C)} ,m{A,C,m(A,B,C)] ,m{B,C,m(A,B,C)}] ,

so the construction of duplicate arguments also removes all appearances of

complemented variables (Figure 8.2).

From the function as originally given, we have

f (A, B,C) = M[M(A,B),M(A,C),M(B,C),M(A,B,C)].

By the laws of redundancy we have then

f(A,B,C) = M[M(A,B),M(A,C),M(B,C),M{M(A,B),M(A,B,C)}].

Since M(A,B,C) = A B C = £ BC = m(A,B,C), this becomes

33

f (A, B,C) =* m [m (A,B) ,M(A,C) ,M(B,C) ,m {m (A, B) ,m(A,B,C)}] .

The circuit is shown in Figure 8.3.

Figure 8.3

This representation has one more gate than the preceding one has, but the

number of inputs is the same.

One can also note from the map that

f(A,B,C) = (A + B+C)(A + B+C)(A + B+C)

= (ABC + B + C) (A + E b C' + C)(A + B + A B C)

from which we have again the m-expansion of f which is represented in

Figure 8.2. The point here is that the rules of NAND-NOR algebra sometimes

suggest useful transformations that might be overlooked if one depended only

on AND-OR-NOT manipulations (and vice versa, of course).

34

Example 8.4: Consider the symmetric function

S^(a,b,c,d) = a b e d + a b e d + a b e d + a b e d

= M[M(a,b,c,d),M(a,b,c,d) ,M(a,b,c,cT) ,M(a,b,c,d)] .

We can apply the hybrid associative law (7.1a) to obtain

S^(a,b,c,d) = M[M{m(a,b,c),d},M{m(a,b,d),c),

M{m(a,c,d),b},M{m(b,c,d),a]1.

Alternatively, we could write

S^(a,b,c,d) = a +b +c*d + a + b + d * c + a + c +d*b + b + c + d * a .

Then the basic transformation laws yield the same NAND-NOR expression for

Sx (a,b,c,d).

35

9. NAND-NOR ALGEBRA: THE BASIC LAWS

The operations NAND and NOR are governed by a set of identities

which are closely related to the basic laws of Boolean algebra but which,

because of the cumulative effect of repeated complementations, show

interesting contrasts with AND-OR-NOT identities.

We now examine the basic NAND-NOR identities systematically.

Those we have used in prior sections will be included at appropriate places

in this list. Many of these identities will be used only rarely if AND-OR-NOT

and NAND-NOR manipulations are used jointly in the natural way.

Throughout, the functions f, g, h referred to are arbitrary

switching functions, expressed in any form, of a common set of variables.

Because of the way in which NAND and NOR are defined in terms of

of the cummutative operations AND and OR, we have at once the commutative

laws: If i^ji^,..., i^ is any permutation of l,2,...,k, we have

(9.1a)

(9.1b)

M(f, ,f,, . . .,f.) = M(f. ,f),

v = m< vfi V*1 2 k

The operations M and m are not associative; that is, ordinarily

M t f ^ M ^ , ^)] t m Cm ^ , ^) , ^]

and
mCf^jmif^, f^)] ^ mCmCf^fg),^] .

These inequalities are readily checked by transformation of their

members to AND-OR-NOT form. One would expect these results since, in each

case, f^ is subjected to one complementation on the left and to two on the

36

right. The counting of cumulative complementations is often useful in

detecting errors or inequalities. However, as (6.4a) shows, when functions

appear repeatedly, one can be misled by this device.

When more than one operation is involved, certain regroupings are

possible, however. These are summarized in the hybrid associative laws:

(9.2a) M(f1,f2 ,...,fk ,h*) =

(9.2b) m(f1,f2,...,^c,h*) = m(f1+f2+ •••+fk ,h*),

which are immediate from the definitions of M and m and which may also be

w r i t t e n

(9.3a) M (f 1 ,f2 ,...,fk ,h*) = M l m (£ 1 9 f 2 9 y . h *] ,

(9.3b) m (£ l 9 f 2 , .. . ,fk »h*) = m [M (f 1 ,f2 ,. . . . \) , h *] .

Because of the commutative nature of M and m, these properties

may be applied repeatedly and to whatever blocks of arguments are of interest.

Thus if

{i1,i2,...,i ;i x,ir 2,...,i ; . . . ;ir +1*ir
1 1 1 2 P P

is any partition of {l,2,...,k}, then

(9.4a) M(f1,f2,... ,fk ,g*) = M C m ^ 9...9f±),m(fi),
rl rl+1

,...,m(f. ,...,f.)>g 1•
r +1 kP

As always, the corresponding identity (9.4b) is obtained by interchanging M

and m throughout in (9.4a).

37

The hybrid associative laws are useful for exploiting already

available inputs, for controlling fan-in and fan-out, and for eliminating

complements when that is desirable. The proof, by translation to AND-OR-NOT

form, is left to the reader.

The operations M and m are also not distributive; that is,

ordinarily M does not distribute across m:

M(f;L,m(f2,f3)) i m(M(f1,f2),M(f1,f3))

and m does not distribute across M:

m(f1,M(f2 ,f3)) ^ M(m(f1,f2),m(f1,f3)).

Note that in each case f^ is complemented once on the left and twice on the

right.

In NAND-NOR algebra, the factoring laws (4.1) and (4.2) play the

role usually played by distributive, laws in the factoring process. For

completeness, we include these laws in the current list. We have

(9.5a) M[M(f,g1),M(f,g2),... ,M(f,gp),h*]

= M[M{f,M(glsg2,... ,gp)3 ,h*]

and its generalization

(9.6a) M[M(f+,g^) ,M(f+,g+),... ,M(f+ , g£) ,h*3

= M[M(f+ ,M{M(g2),M(g2),... ,M(g£)}),h*] .

The laws (9.5b) and (9.6b) are written in the usual way.

By the laws of idempotency for AND and OR and by the definitions

(2.1), we have the laws of idempotency for NAND and NOR:

38

(9.7a) M(f,f,g*) = M(f,g*),

(9.7b) m(f,f,g*) = m(f,g*).

Similarly, we have immediately, from the definitions of M and m,

the laws of operation with 0 and 1;

(9.8a) M(0,g*) = 1,

(9.8b) m(l,g*) - 0,

in which 0 and 1 are controlling inputs and

(9.9a) M(l,f+) = M(f+),

(9.9b) m(0,f+) = m(f+),

in which 0 and 1 are redundant inputs.

As our proofs of (6.1), (6.2), and (6.3) indicate, the rules (9.8)

and (9.9) are particularly useful in the proof of other identities.

The laws of complementarity are also immediate from the definitions

of the NAND and NOR functions:

(9.10a) M (f,f,g*) = 1,

(9.10b) m (f , f , g *) = 0.

Let us denote M(f^, f ^ ,. ..,f^.) by M (f ^ ,f ^ ,. .., f^) an d simi l a r l y for m

Then, again directly from the definitions of M and m, we have DeMorgan's laws

for NAND and NOR:

(9.11a) M (f ̂ , f 2 j • • •»f) — ® f f 2 > • * * ») »

(9.11b) m(f ̂ , f£ j *. •, fĵ) M(f ̂ > f2 > • • • > •(9.11b)

In words, the complement of a NAND is the NOR of the separate complements

and the complement of a NOR is the NAND of the separate complements.

39

The law of involution takes the forms

(9.12a) M(M(f)) = f,

(9.12b) m(m(f)) = f,

which are not essentially different since, when only one argument is involved,

M and m are by definition the same function, namely, the complement. We

have therefore also the mixed laws

(9.13a) m(M(f)) = f

(9.13b) M(m(f)) = f.

10. THE PRINCIPLE OF DUALITY FOR NAND AND NOR

The lists of pairs of identities in preceding sections reflect

the principle of duality for NAND and NOR: Given any identity involving

only the operations M and m and the constant functions 0 and 1, another

valid identity is obtained by interchanging the symbols M and m and inter

changing 0 and 1 throughout the given identity. This rule of duality for

NAND-NOR algebra is a consequence of the fact that the definitions of M and

m are dual in AND and OR.

40

11. ABSORPTION LAWS AND RELATED IDENTITIES

The absorption laws of Boolean algebra suggest consideration of

M(f,m(f,g)), M(f,m(f,g)), and the corresponding expressions with M and m

interchanged. As following identities show, familiar patterns of Boolean

algebra are altered by the complementing aspects of M and m. We list only

one law of each dual pair. Proofs are simply translations of AND-OR-NOT

expressions to NAND-NOR form or are applications of (9.8) and (9.9), and

are omitted for the most part.

We have first, in their simplest forms, the reduction laws,

(11.1a) M(f,m(f,g)) = 1,

the laws of redundancy,

(11.2a) M(f,m(f,g)) = M(f,m(g)) = M(f,g),

and

(11.3a) M(f,M(£,g)) = M(f,M(g)) = M(f,g),

and the absorption laws.

(11.4a) M(f,M(f,g)) = M(f) = f.

It is not hard to derive the generalized laws of redundancy, which

we have already employed in Section 6:

(11.5a) M[f,M(f,g+),h*] = M[f,M(g+),h*]

and

(11.6a) M[f,m(f,g+)] = M[f ,m(g+) ,h*] .

41

A special case of (11.5) permits removal of undesired complements

when certain NAND-gate outputs are already available:

(11.7a) M[f,g,h*] = M[f,M(f,g),h*].

Similarly, a special case of (11.6) permits introduction of

complements :

(IX.8a) M[f,g,h*] = M[f,m(f,g),h*].

Recall that the removal of undesired complements may also be

accomplished by the hybrid associative laws (9.3).

The absorption laws may first be extended thus :

(11.9a) M[f,M(f,g*),h*] = M(f,h*).

These are special cases of the generalized absorption laws:

(11.10a) M[M(f+),M(f+ ,g*),h*] = M[M(f+),h*] .

One may, of course, apply (11.5)-(11.10) repeatedly to the same

expression, depending on the nature of the arguments g*, h .

The laws of consensus, namely

f g + fh + gh — f g + fh

and its dual translate directly into

(11.11a) M[M(f,g),M(f,h),M(g,h)] = M[M(f ,g) ,M(f ,h)]

and its dual.

Finally, we note several identities related to the Boolean

reductions

fg + fg = g , (f-^)(f+g) = g,

42

which translate into the NAND-NOR identities

(11.12a) M[M(f,g),M(f,g)] = g = MÜM(g)]

and its dual.

A first extension of these is

(11.13a) M[M(f,g),M(f,g),h*] = M[M(g),h*]

and its dual, which in turn suggest the generalized laws of condensation;

(11.14a) M[M(f,g+),M(f,g+),h*] = M[M(g+),h*]

and its dual. Whether f assumes the value 0 or the value 1, the left member

reduces to the right. Note that the argument h* indicates the possibility

of combining further pairs of terms by the same principle.

The next two identities follow easily from the laws (11.14) and

(9.10):

(11.15a) M[M(f,g),M(£,g),M(£,g),M(f,g)] = 1,

(11.15b) m[m(f,g),m(f,g),m(f,g),m(£,g)] = 0.

Let f^jf^,...,^ be arbitrary switching functions of n variables
and let

Also let
F (f 2 » f 2 9 • * • * •

el e2 ek
Fi = <fl >f2 >

where
f? = f. and f1 = f.
J J 3 J

and where
"^decimal êle2** ,ek^binary'

and where

Then the identities (11.15) generalize to

(11.16a)
2^ 1
M [m (f .)3 = 1, i=0 1

(11.16b)
2^-1
m Cm(F.)] = 0, i=0 1

special cases of which are

(11.17a)
2n-l
M Cm (p .)] = 1,
i=0 1

(11.17b)
on_i
m [m(s.)] = 0,
i=0 1

where the p. and the s. are the minterms and maxterms of x..,x_,..i 1 1 2’
respectively (see the next section).

The reader should provide proofs of (11.16) and (11.17)

44

12. NORMA.L FORMS FOR SWITCHING FUNCTIONS

We consider finally the matter of normal forms of switching

functions of n variables, for which purpose we need the following definitions

x = x, x = x, 0 = 1 , 0 = 0, 1 = 0, 1 =1,

and, for i = 0,1,2,...,2n-l,

^dec
= (e _e0 . . . e) , . ,

1 2 n ' b i n ’

e. e_ e

Pi
l 1 n = Xn X. • * *x

1 2 n
(i t h m interm),

e- e~ e"n
s .
l

i , z ,= x 1 + x2 + • • • + xn (i t h maxterm) .

For example, if n = 6,

33dec " <100001>bin’ 18dec “ <010010>bin>

1 0 0 0 0 1 -------
p33 = X1X2X3X4X5X6 - X1X2X3X4X5 V

1 , 0 , 1 , 1 , 0 , 1 . - . .
18 1 2 3 4 5 6 1 2 3 4 5 6

We also define, for every switching function f (x^,x2>...,xn), and

for i = 0,l,2,...,2n-l,

f(i) = f(e1,e2,...,en)

where, as before, ij = êie2 * * *en^bin* (Although the two functions
denoted here by "f" are really not the same since they have different

domains, the notation is useful and should cause no confusion.)

From these definitions it follows at once that, for

i,j = 0,1,2,...,2n-3,

45

p.(i) = 6 . s.(i) = 6.J ij J iJ
where, for the Boolean 0 and 1,

6.. = 1 if i = j but 6.. = 0 if i ̂ j . ij ij

In this notation, the disjunctive and conjunctive normal forms for

f are, respectively,

(12.1a)

and

(12.1b)

2n-l
f(X) = E f(i)p, 1=0 1

2n-l
f(X) = i20 (f(i)+s.).

From these expansions, with the aid of formulas (2.3), we now have

the NAND and NOR normal forms of f(X):

2n-l
(12.2a) f(X) = Mi=0
and

2n-l(12.2b) f(X) = m i=0
Now

(12.3a) Mip^ = M(x11,x22 ,.. .,xnn) = x^1 +x22 + • • • + x ^ = si

and

(12.3b) m(si) = m(x11,x22,... ,xnn) = x^1 • •-x^ = p ^

Thus M(p^) is in fact a maxterm and m(s^) is in fact a minterm and this

explains the M, m notation.

Let i^,i2,...,i^ be the indices of the minterms actually present

in f(X) and let j^jj2 V*»*>jq be the indices of the maxterms actually present

in f (X) . Then k+q = 2n , {i^i , ... »i^lnf j1# j2>..., j } = 0, and, again by

46

(2.3), the identities (12.2) may be replaced by

(12.4a)

and

f(X) - M(M(p.) jM(p.),...,M(p))
11 12 Lk

(12.4b) f(X) = m(m(s),m(s),...,m(s)).
J1 J2 Jq

®1
Since the literals appearing in M ^) = M(x^ ,x2 ,...,x r) are

precisely the same as those of p. in the disjunctive normal form of f(X) and
e"i e2 en

the literals appearing in m ^) = m(x^ ,x^ ,...,x q) are precisely the same

as those of s^ in the conjunctive normal form of f, one can write the NAND

and NOR normal forms immediately from a truth table for f. For example,

from Table 12.1, we have the M-normal form

Table 12.1

i xi X2 x3 f(i)
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

f (X) = M[M(x1,x2,x3),M(x1,x2,x3),M(x1,x2,x3),M(x1,x2,x3),M(x1,x2,x3)]

and the m-normal form

f(X) = m[m(x1,x2,x3),m(x1,x2,x3),m(x1,x2,x3)].

47

From (9.8) and (9.9) we have the identities

M(0,pi) = 1, M(l,pi) = M(pt)

and
m(l,si) = 0, m(0,si) = m(si)

which,with (9.8) and (9.9), make possible the direct reduction of the

identities (12.2) to the identities (12.4).

13. CONCLUSION

The functional notation for NAND and NOR and the laws governing

these operations permit the economical design of logic circuits employing

gates of these two kinds or these and other compatible gates. Fan-in and

fan-out can be controlled if desired and, unlike map methods, the procedures

are readily applicable even when the number of variables is large. Although

it is possible to work exclusively with the laws of NAND-NOR algebra, this

algebra is most effectively used in conjunction with the usual switching

algebra.

48

14. EXERCISES

1. Prove that (a) M(f1 # ,...,fk) “ M (f! V ' * fi»fi4lfi+2* V V

(b) M[m(i",c),m(b,c)] = M(a,b,c).

2. Simplify m[m(f,g),m(f,g),m(f,g)], using only the rules of NAND-NOR

algebra.

3. By transforming each member to AND-OR-NOT form, prove that

m [m {m (Â,B),c } ,m {A,D,M(A,C)Î ,M(A,D)]

= m [m (A,C),M(B,C),M(A,D,C)].

4. Use the law of redundancy to remove all complements from

M[a,b,M(c,d)].

5. Use NAND-NOR algebra only to prove that

m [m (x 1,x 2),m {m (x 1,x 3),x 2]] = x2 .

6. Under what conditions on the variables a, b, c is it true that

(a) M[a,M(b,c)] = M[M(a,b),c],

(b) m[M(a,b),M(b,c),M(c,a)] = M[m(a,b),m(b,c),m(c,a)] ?

7. Simplify the circuit of Figure 14.1 using NAND-NOR algebra so far as

possible :

49

Figure 14.1

8. What function is implemented by the circuit of Figure 14.2?

50

9. Find minimum-gate, NAND-circuit implementations of each of the following

functions, assuming complements of inputs are available:

(a) f1(A,B,C) = A B + A C + A C ,

(b) f2 (x1,x2,x3) « + x 2x3,

(c) f3 (xx,x2,x3,x4) = xxx2 + xxx3 + x2x3 + x2x4 ,

(d) S3 (x 1,x 2,x 3,x4),

(e) g (A,B,C,D) = (A+B) (B-tC) (C+D) (D-fA),

(f) h(a,b,c) *» ab+bc+ac.

10. Find minimum-gate, NOR-circuit implementations of each of the following

functions, assuming complements of inputs are available:

(a) f^ (A,B,C) = (A+B) (A+C) (B+C),

(b) f2 (x1,x2,x3) = (x1-hE'3)(x2-tx3),

(c) f3 (a,b) = a b + a b ,

(d) g(x1,x2,x3,x4) = (x1H^2)(x24x3)(x3*tx4)(x4+x1),

(e) h (A,B,C) = ABC + ABC + ABC + ABC,

(f) S3 (x 1,x 2,^3 ,x4).

11. For each of the functions of Exercises 9 and 10 find the minimum-gate

NAND-NOR circuit, assuming complements of inputs are not available.

12. Use the table and maps of Section 4 to design a NOR-gate full adder

with a minimum number of gates. The ideas of Section 6 may be helpful

here.

13. Every identity

fl +f2 + * " +fp = 8lS2” -8q

defines a NAND-to-NOR (and a NOR-to-NAJND) transformation. Illustrate

with several examples.

Obtain the most economical circuit, using arbitrary chips, for the
function defined by this map:

Use the hybrid associative law to obtain the minimum-gate NAND-NQR

implementation of S^CA^ jC jD) assuming fan-in and fan-out are both

restricted to 3 or less and assuming complements are not available.

Reduce ... ,?k >} ,h*] to a two-stage

expression.

Show that the inputs to the circuit of Figure 14.3 may be permuted
arbitrarily.

i t > i
£ > 3 >

Figure 14.3
FP-4325

52

18. Under what conditions is

M(f ^, £ 2 > • • • »fj^) * M (g ^ > > • • • >8j^) *

19. Redesign the circuit of Figure 14.4

(a) as a 3-level NAND circuit,

(b) as a 3-level NAND-NOR circuit,

assuming complements of inputs are not available and using no more gates

than five in either case.

Figure 14.4

