
REPORT T-18 JUNE,1975

HI*COORDINATED SCIENCE LABORATORY

COMPUTER-AIDED
DECISION-M AKING FOR
FLIGHT OPERATIONS
TECHNICAL REPORT NUMBER 2

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

COMPUTER-AIDED DECISION-MAKING FOR FLIGHT OPERATIONS

Technical Report Number
Covering the Period January 1

to December 31, 1974

Principal Investigator: R. T

Contributors : P. Davis
K. Enstrom
P. Fitzhenry
C. Jacobus
W. Rouse
M. Selander
S. Weissman
T. Woo

1974

Chien

This work is supported by the Avionics Laboratory
U. S. Air Force Systems Command, Wright-Patterson
Air Force Base under Contract AF F33615-73-C-1238

TABLE OF CONTENTS

Page

1. SUMMARY................ 1

1.1. Introduction.... 1
1.2. The Aircraft Model................... 2
1.3. Computer Aided Decision Making for Flight

Operations................ 3
1.4. Other Developments.............................. 5
1.5. Future Plans..................................... 6

2. A PROTOTYPE COMPUTER-AIDED DECISION-MAKING SYSTEM
FOR FLIGHT OPERATIONS.................................. 8

2.1. Aircraft Models.................................. 8
2.1.1. Specifications.... 9
2.1.2. Flight Equations................... 11
2.1.3. Implications and Limitations............ 13
2.1.4. Vertical Situation Display (VSD)

Simulation.............................. 14
2.1.5. Subsystem Simulation.................... 16

2.2. The CADM Program................................ 23
2.2.1. Introduction................ 23
2.2.2. Problem Formulation..................... 25
2.2.3. Control Structure....................... 27
2.2.4. Failure Detection....................... 30
2.2.5. Failure Correction...................... 32
2.2.6. Monitoring Programs..................... 35
2.2.7. Conclusion.............................. 37

2.3. The PILOT/CADM Interface........................ 38
2.3.1. Displays and Controls................... 38
2.3.2. Task Allocation and Conflict

Resolution................. 43

3. FURTHER TECHNICAL DISCUSSION.......................... 52

3.1. Communications................................... 52
3.1.1. Why Communications...................... 52
3.1.2. The Implementation...................... 53
3.1.3. Future Work............... 54

3.2. The PDP-10 to PDP-11 Communication Link........ 55

TABLE OF CONTENTS (continued)

Page

3.3. PDP-11 System Software......................... 68
3.3.1. Introduction.................... 68
3.3.2. 124K Memory Utilization................ 68
3.3.3. Input/Output Modularity and Debugging.. 71
3.3.4. Medium Zero Program.................... 72
3.3.5. Multitasking and Real Time Trapping.... 72

3.4. Flight Equations............................... 74

4. ADVANCED CONCEPTS..................................... 78

4.1. Planning and Execution in Incompletely
Specified Environments...... 78
4.1.1. Introduction................... 78
4.1.2. Related Research....................... 81
4.1.3. Planning in an Incompletely Specified

and/or Dynamic Domain........... 84
4.1.4. Conclusions............................ 95

4.2. Man-Computer Systems....................... 98
4.2.1. Introduction...... 98
4.2.2. Displays and Controls........... 98
4.2.3. Task Allocation and Conflict

Resolution............................. 99

5. FUTURE PLANS.. 105

1

1. SUMMARY

1.1. Introduction

The goal of this project is to construct a prototype system which

demonstrates the feasibility of computer-aided decision-making in flight

operations. The project consists of four phases as follows:

Phase 1. Analysis of Flight Operation and Identification of Tasks

Phase 2. Computer-Aided Decision-Making with Simple Tasks

Phase 3. Computer-Aided Decision-Making with Complex Tasks

Phase 4. Computer-Aided Decision-Making Demonstration with an
Actual Aircraft Simulator

The work reported here represents progress under Phase 2 of this

project. This covers the period January 1, 1974 to December 31, 1974. The

technical objective of Phase 2 is to achieve the goal of constructing a

simple system for the purposes of demonstrating the feasibility of computer-

aided decision-making in the realm of simple tasks. This system was completed

on schedule and a successful demonstration was given on February 6, 1975 at

the Coordinated Science Laboratory. The purpose of this report is to document

the progress achieved in some detail for later reference. During the course

of this work a great deal was learned regarding problem-solving technique for

computer-aided decision-making, communication problems between various programs

in a large software system, and man-machine interface considerations. These

insights will undoubtedly prove to be invaluable to any person or team who

is interested in the development of large scale software systems in general,

and to people interested in automation in particular. Based on this belief

2

we have included in this report not only results and achievments but also an

indepth analysis of the related areas of investigation.

1.2. The Aircraft Model

In order to create a realistic environment for the development and

testing of CADM software we have constructed on integrated software model

functionally similar to the twin-jet aircraft and its operating enrironment.

The model operates in real time and consists of three major programs -- the

Subsystem Simulation, the Aerodynamic Simulation, and the Vertical Situation

Display Driver.

The Aerodynamics Simulation is a digital simulation of an aircraft

with four degrees of freedom. The program simulates all aircraft motions

except yaw and side force. It is integrated with the aircraft Subsystem

Simulation and the Vertical Situation Display program. Inputs to the Aero

dynamic Simulation come from the control stick, throttles, and subsystem

simulation. The aircraft simulated is a single seat, twin-jet engine,

variable geometry fighter much like that proposed in the IIPACS documents.

Details of the aircraft characteristics are given in Sections 2.1 and 3.1.

Bank, pitch, heading, altitude, airspeed, command altitude, and

other states established by the Aerodynamic program in engineering units

are input to the Vertical Situation Display (VSD) program.

The general task area for the demonstration of simple tasks for

CADM was degraded mode operations. This task required a model with several

constraints. The model had to simulate hardware readily identified with

aircraft systems. The chosen hardware had to be capable of failure modes.

3

Both the pilot and CADM had to be able to control the components of the

model. The resultant model was named the Subsystem Simulation.

The aircraft Subsystem Simulation model consists of two fuel tanks,

four valves, two tank drain pumps, one intertank pump, two engine pumps, two

thrust levers, and two engines. The valve and plumbing network allows either

fuel tank to feed either or both engines. In addition, the software produces

sensor outputs and failure characteristics.
Simulated failures are generated by a Gremlin program. Pumps and

valves can be jammed into any current state. The fuel tanks can be empty,

partially filled or full, and affect the center of gravity (C.G.) of the

aircraft. The engines produce thrust proportional to fuel flow subject to

the following Gremlin induced failures: engine destruction with no thrust

regardless of fuel flow; engine fire with reduced thrust available; and

flame out with no thrust.
The combined effect of the Subsystem Simulation, the Aerodynamic

Simulation and the VSD simulation is only a first order approximation to what

really is found in a modern twin-jet aircraft system, but even this crude

approximation can be a challenge for pilot and CADM software. If the Gremlin

and a side task are in full effect the pilot is more than occupied and is

in need of assistance, the environment demonstrated the crucial need for

thought in the design of man-machine interface (cooperative intelligence)

software and an efficient data management system.

1.3. Computer-Aid Decision-Making For Flight Operations

The purpose of this project is to develop the conceptual framework

4

of a computer-aided system to relieve the pilot from high workload in flight

operations. This objective is achieved by designing a system with programmed

intelligence to assist the pilot in various tasks such as fuel management,

weapon delivery, communications, navigation, and degraded mode operations.

The emphasis during Phase 2 is in degraded mode operations. This emphasis

was chosen because of a number of reasons. First, such a system provides the

pilot with an increased level of confidence. Such a system also incorporates

many of the necessary ingredients for other areas of study, namely, the

processing of sensory data from various components in an aircraft, the

identification of tasks, and the execution of tasks. Because of the inherent

combinatorial complexity it is not possible to approach it in an exhaustive

way. In order to achieve the desired capability, artificial intelligence

techniques are applied. Among the techniques used are pattern-directed

invocation of procedures, demons and self-generated special purpose

procedures. Using these techniques a system is successfully implemented

with a flexible control structure which is capable of performing the functions

of 1) the detection of failures, 2) the correction of failures and 3) the

monitoring of the effects of the correction procedure to determine its degree

of success.

The detailed characteristics of a failure depends heavily on the

context. The correction procedure employed takes into account contextual

information, pilot presence and degree of degradation.

The control structure is designed to possess the following

factors:

1) That "most critical" failure is attended first;

5

2) correction should be attempted in such a way as to minimize

conflicts of purposes as well as needed equipment;

3) that CADM be capable of recognizing pilot actions and intentions,

and to act in concert with them.

CADM maintains a list of all failures that is presently being

corrected. It also monitors progress closely.

The system is flexible enough to operate in a dynamic, real-time

environment. It is capable of correcting multiple failures. It tries to

minimize CADM internal conflects and conflicts with the pilot. Internal

conflicts are resolved using a flexible priority structure. The program

is able to decide what failures have occurred, order the failures according

to a easily modifiable priority scheme, and select a correction measure with

respect to the available resources.

This system incorporates a flexible, multi-level control structure

capable of handling a large class of problems requiring decision making. New

error correction and detection procedures for new failure types can easily

be added to the system by a programmer or CADM itself.

1.4. Other Developments

Although the successful demonstration in Phase 2 is primarily a

demonstration of the system's capability of decision-making in degraded

mode operations, a number of other advancement have been achieved. These

achievements are instrumental to our success and they are quite useful in

any large system where the communication between a large number of computer

programs become essential.

The success of the system, in real time, depends upon the timely

transfer of data and information between the subsystem and the CADM program.

The exhibition of the solution depends on the timely transfer of the status

to the display program. These are but two isolated examples of the very high

degree of interaction necessary for the coordinated intelligent behavior of

the system. The successful implementation of our system and its speedy

decision-making performance is a direct result of our ingenious organization

of the overall system and the solution of the communication problem between

programs. We believe these technique are of direct usefulness to other systems

of similar magnitude.

1.5. Future Plans

During Phase 2 we have successfully demonstrated fundamental

promises of an intelligent system with decision-making capabilities for

degraded mode operations. The work planned for Phase 3 will be an extension

both in depth and in scope.

The present failure models will be expanded to include dynamic

ordering so that actions will be context sensitive. The degree of interaction

between CADM and the pilot will be expanded. A more powerful control struc

ture will be installed to improve decision-making ability in the light of

uncertainty.

In addition, we will seriously investigate the addition of a suitable

navigation system so that a variety of new and challenging problems can be

tackled.

CADM as a problem-solver will expand its data-base and perform

7

logical (not probabilistic) deduction and decision making including some adap

tive features for acquiring knowledge from experience.

CADM will be expected to perform with imprecise, imperfect, and

possibly conflicting data. We will also enhance the symbiotic relationship

between the pilot and CADM.

8

2. A PROTOTYPE COMPUTER-AIDED DECISION-MAKING
SYSTEM FOR FLIGHT OPERATIONS

2.1. Aircraft Models

The CADM project required construction of an integrated software

model functionally similar to the twin-jet aircraft and its operating environ

ment. The model had to be capable of operation in real time and function in the

laboratory for the developers of the CADM software and hardware. The model

had to be simple enough that extraneous effort was not expended on its

construction, yet not so simple that it was not a realistic reflection of

the parameters that a CADM program needs to manipulate in actual aircraft.

The ultimate restraint of staying within the capabilities of the computer

operating system and transmission bandwidths available to our group also was

a basis for many decisions on building the software.

Creating a real time model meant linear approximations were used

whenever possible and extraneous details were omitted. Trade-offs had to

be made between the programming language, the ease of using it and the

efficiency of its operation. The components of our aircraft model were

chosen such that the model could have a failure with a recognizable piece

of hardware clearly at fault. In some cases further hardware was made

available for backup or fixing a problem so that the decision maker had

some alternative actions.

Three major programs — the Subsystem Simulation, the Aerodynamic

Simulation, and the Vertical Situation Display driver -- establish the

accepted reality of the environment of the entire simulation against which

all other models are judged: other simulations may internalize models of

9

what the environment is doing and will do, but only in conjunction with the

basic background environment in these three major programs.

The programming environment assumed by these modeling programs is

shown in Figure 1. The Gremlin is a program which takes directions from a

human observer on what hardware items are to fail. Master Monitor is the

interface program between the subject pilot and the simulated aircraft

systems. CADM is the title of the program which performs the computer aided

decision making for the pilot. The Pilot Model is the program which monitors

the pilot's behavioral activities, such as joystick movement or thrust lever

movement, to aid CADM in understanding what the pilot is doing. The Controls

and Display are the programs which handle the VSD, thrust levers, and joystick.

The shared data base is the central buss for passing information between the

different programs which are required in the entire simulation. It consists

of a list of integers whose order and meaning were agreed upon by the various

programmers in the group before writing their software.

The simulation was built as if many more than the two actual

processors were available. This was possible because of the time sharing

capabilities of the PDP-10 and the universal access to the central shared

data base, Aerodynamic Simulation.

2.1.1. Specifications

The Aerodynamic Simulation is a digital simulation of an aircraft

with four degrees of freedom. The program simulates all aircraft motions

except yaw and side force. It is integrated with the aircraft Subsystem

Simulation and the Vertical Situation Display program. Inputs to the

Aerodynamic Simulation come from the control stick, throttle, and the

10

Figure 1

11

Subsystem Simulation.

The aircraft being simulated is a single seat, twin jet engine,

variable geometry fighter much like that proposed in the IIPACS documents.

The engines are of the 10,000 pound thrust class. Wing sweep is set at 25

degrees and aircraft speed is restricted to a range of 0.2 mach to 0.8 mach.

Altitude is limited to flight levels below 10,000 feet. The aircraft is

restrained from pitch angles greater than + or - 80 degrees. The bank angle

is also restricted to angles of less than 80 degrees. These restraints are

applied so that the linear equations of motion may be used. Since we wish

only to investigate the cruise flight regime these restraints do not impede

the utility of the simulation.

2.1.2. Flight Equations

Aircraft flight is governed by a series of dynamic equations

derived from Newton's laws of motion. These equations are set in a reference

frame that in the case of this simulation, is fixed to the aircraft. In this

so-called "body axis" frame, the x axis is along the aircraft centerline

running from the tail to the nose. The origin of the frame is at the center

of gravity of the aircraft with the positive direction being out the nose.

The y axis runs through the wings and is positive out the right wing. The

z axis is positive up and is perpendicular to the xy plane. This frame is

shown in Figure 2.

The center of gravity is the point where the aircraft is balanced.

The aircraft is considered to maneuver around this point and it is the center

of all moments. The center of gravity is the location of the aircraft's

mass in point-mass analyses. When the controls (ailerons, throttles,

12

^Ooy

Figure 2

13

elevator) are activated, they create moments around the various axes. These

moments cause the aircraft to maneuver around the C.G. and the aircraft will

continue in this dynamic maneuver until the controls are centered. When the

controls are centered, the aircraft, if it is stable, will tend to stay in

the attitude it has assumed, since all the forces and moments will be balanced;

thrust equals drag and lift equals weight, etc. Only the activation of the

controls can change the attitude of the aircraft. Outside factors, such as

turbulence can cause the aircraft to be disturbed from this equilibrium

position by causing an imbalance in the forces on the aircraft and appro

priate control movements must be made to rebalance the aircraft.

The sum of the forces and moments on the aircraft give the equa

tions of motion, which when analyzed for the various components, give seven

equations with 1 independent variable and 13 dependent variables. Solving

these equations for the variables gives the appropriate data for display and

motion in an aircraft simulator. The specific equations used are available

in Section 3.1 of this report.

2.1.3. Implications and Limitations

The linear equations of flight used in the Aerodynamic Simulation

allow sufficient flexibility to simulate a fairly wide range of flight

conditions in the cruise flight regime. The program is an approximation

of the linear equations, yet offers advantages over a more exact duplication

of those equations. The program has a good representation of an aircraft in

flight while neglecting many of the small or unimportant aerodynamic effects

that are present in the complete equations. Thus the program is simple to

code, easy to use, and can be easily modified to include any effects that

14

we may later wish to include.

The elimination of yaw, side forces, and side velocities restricts

somewhat the utility of the simulation. The reduction in the fidelity of the

simulation caused by the elimination is small in comparison to the reduction

in complexity of both the code and the attendant hardware (rudder pedals,

more instruments in the cockpit). For the uses we intend, i.e. cruse flight

maneuvers, yaw and side forces are not considered to be important enough

variables to warrant their inclusion in the simulation. If at some later

point more complex maneuvers or other flight regimes are to be considered,

the simulation can be modified to include the above variables, with a cor

responding increase in complexity and computation time.

2.1.4. Vertical Situation Display (VSD) Simulation

Bank, pitch, heading, altitude, airspeed, command attitude, and

other states established by the Aerodynamic program in engineering units

are input to the Vertical Situation Display (VSD) program, which is written

in BLISS-11. The VSD program recasts these data into line and alphanumeric

commands for a CRT display such that the subject pilot views a display

similar to a VSD. Figure 3 is a diagram of the VSD.

The program starts by building the static elements of the VSD.

These are the airplane symbol, heading pointer altimeter skeleton, rate

of climb skeleton. The static elements are stored in a buffer and thereafter
are read only by the CRT drawing routines.

The dynamic elements are built in a separate buffering system. One

buffer is built then passed on to the CRT drawing routines for display. While

the CRT drawing routines are refreshing the CRT, the VSD program builds the

15

Figure 3

16

next dynamic display in another buffer. When this buffer is completed it is

passed on to the CRT drawing routines.

The old buffer is reclaimed and the next dynamic display is built

in it. This double buffering system operates continuously until the program

is terminated by the operator. The dynamic section calls a data acquisition

subroutine to get the required dynamic parameters for positioning the dynamic

elements on the CRT. The joystick and thrust levers values are read and

scaled.

The shared data base is brought in. This brings in measured thrust

and center of gravity information. The Aerodynamic Simulation is called and

returns the new pitch, roll, speed, rate of climb, altitude, and heading

information.

Now the dynamic section starts building one of its double buffers.

The compass bar is positioned under the pointer, the rate of climb bar is

scaled to the appropriate length and direction, the altimeter pointer is

positioned, the airspeed is printed out, the command symbol and attitude

indicator are positioned. The just built buffer is then exchanged for the

current display buffer and the top of the dynamic display program is again

started.

2.1.5. Subsystem Simulation

The general task area for the simple demonstration of CADM was

degraded mode operations. This task required a model with several constraints.

The model had to simulate hardware readily identified with aircraft systems.

The chosen hardware in the model had to be capable of failure modes. Both

the pilot and CADM had to be able to control the components of the model.

1.7

Lastly, the model had to be simple enough that it would not exceed the avail

able computing resources. The resultant model was named the Subsystem Simula

tion. For ease of programming, the computer language used was FORTRAN with

some assembly language subroutines.

The aircraft Subsystem Simulation model consists of two fuel tanks,

four valves, two tank drain pumps, an intertank pump, two engine pumps, two

thrust levers, and two engines. The interconnection of this hypothetical

hardware is shown in Figure 4. The valve and plumbing network allows either

fuel tank to feed either or both engines. In addition, this software sub

system produces sensor outputs and failure characteristics.

The Gremlin program generates the failure status of aircraft at

any given time and stuffs this into the shared data base. The Subsystem

Simulation inputs this failure status information from the shared data base

and incorporates it into the model. Pumps and valves can be jammed in any

current state. The fuel tanks can be empty, partially filled, or full and

affect the center of gravity (C.G.) of the aircraft. The engines produce

thrust proportional to fuel flow subject to the following Gremlin induced

failures: engine destruction with no thrust regardless of fuel flow; engine

fire with reduced thrust available; and flame out with no thrust regardless

of fuel flow.

A variety of sensors outputs are available to the other simulation

programs:

1. Fuel available in two tanks.

2. Fuel flow to two engines.

3. Measured thrust from each engine.

Figure 4

19

4. Measured temperature in each engine.

5. Measure vibration modulation of each engine.

A main program controls flow of the Subsystem Simulation program

by cycling through a series of calls to sub-programs responsible for emulating

the various components of the subsystem. A table which summarizes the

activities of the Subsystem Simulation is available in Figure 5. First the

entire shared data base is read and any failures specified by Gremlin are

acknowledged by setting internal flags as to the state of valves, pumps, and

engines. Control settings specified by CADM or Master Monitor are implemented,

if not prevented by Gremlin. For example, the CADM program may ask that a

fuel drain pump be turned on. Regardless of whether the pumps previous state

was on or off, the pump state will be set "on" if Gremlin has not specified

that that pump is jammed. If Gremlin has jammed the pump then the pump

state cannot be changed from its previous state.

The fuel flow in the plumbing network is a function of four

variables. These are as follows:

1. Availability of fuel.

2. State of valves in the plumbing network.

3. State of fuel pumps.

4. Amount of demand thrust.

The subsystem fuel simulation determines what the current plumbing network

will allow in fuel flow because of valve states. There are 156 possible

routes for fuel flow in the network. A route for fuel is feasible if the

fuel is available in the source tank or tanks, if the pump to force the fuel

is on, and if the valve controlling the fuel line is open.

20

PHASE FU N C TIO N PARAM ETER

IN P U T S S T A T E S P U M P S
VA LVES
E N G IN E S

C O M M A N D S P IL O T
C ADM

C O N S T R A IN T S G R E M L IN

C A L C U L A T E S F U E L S Y S T E M D IR E C T IO N
Q U A N T IT Y

E N G IN E S Y S T E M O P E R A T IO N
S E N S O R DATA

IN F L U E N C E G R E M L IN

O U T P U T S E N G IN E S Y S T E M T E M P E R A T U R E
V IB R A T IO N
T H R U S T

F U E L S Y S T E M FL O W
Q U A N T IT Y
LO C A T IO N

Figure 5

21

For the intertank fuel line, the direction of flow is determined by

the state of the intertank pump. The rate of flow is either zero or the maximum

rate allowed by the intertank pump. The state of the pump is under control of

the Gremlin, CADM software, the pilot via Master Monitor, or the Subsystem Simu

lation program itself when the auto tank leveling function is enabled.

The drain fuel lines have only one direction of flow, which is out

bound from the appropriate source tank. The state of the pump is determined

by Gremlin, CADM software, and the pilot. The flow rate is the maximum allowed
by the drain pumps.

The engine fuel lines direction of flow is from source tanks to the

engines. The state of the valves and pumps are determined by the Gremlin,

the pilot, and the CADM software. The rate of fuel flow through an engine

pump is zero or that rate specified by the demand thrust from the pilot's

thrust lever. The fuel rate through the plumbing is zero or the rate

required by the engine pumps. If two pipes have fuel flow into the same

pump, each pipe carries half the fuel load.

The engine simulations are the next subprograms called with the

preceding work setting up the fuel flow to each engine. The amount of

actual thrust produced by each engine, called measured thrust, is equal to

the demand thrust if the following prerequisites for normal engine opera
tions are met:

1. Engine state not destroyed.

2. Engine state not fire

3. Fuel flow to the engine not zero

22

If the fuel flow is zero, or the engine state is destroyed, the

measured thrust is zero. A destroyed engine state is nonrecoverable. A flame-

out, no ignition in the engine, caused by fuel starvation is recoverable. The

procedure for recovery is to re-establish the fuel flow to the engine and

perform an engine start function. Either the pilot or the CADM software may

issue an engine start. The Subsystem Simulation responds by attempting

reignition of the engine and resetting the engine start function.

The engine destroyed state is set by Gremlin. The fuel flow to the

engine is established by the previously described Subsystem Software. This

means that fuel starvation can occur from pilot or CADM software blunders,

as well as from deliberate failure settings from the Gremlin.

The measured thrust will be half the demand thrust if the engine

state is fire. The engine fire state is set by the Gremlin and is reset by

turning off the fuel flow to the engine. The engine is now in a flameout

state. To obtain thrust again start fuel flow back into the engine and issue

an engine start function. In this simulation there is no penalty for attempting

an engine start after a fire. A general clean up of state flags is performed

and the specific items in the shared data base for which the Subsystem

Simulation is responsible are updated. Example items are engine temperature,

vibration, and fuel flow. The end of the cycle has been reached and the top
of the cycle is again started.

The combined effect of the Subsystem Simulation, the Aerodynamic

simulation, and the VSD simulation is only a first order approximation to

what really is found in a modern twin jet aircraft system, but even this

approximation can be a challenge for pilot and CADM software. If the Gremlin

23

and a side task are in full effect the pilot is more than occupied and in need

of assistance in manipulating this first order approximation of aircraft reality.

The environment demonstrates the crucial need for thought in design of man-

machine interface (cooperative intelligence) software and an efficient data

handling system. The modeling programs also provide a concrete vehicle for

discussion of what really comprise aircraft systems and what the limitations

of the equipment in these systems are.

When serious problems occur, there may be no alternatives for the

pilot — many significant failures are not correctable. Some, like having

one empty fuel tank, can be "fixed," but for the most part in-air repairs

are not possible. But with the aid of a CADM system, small failures can be

isolated and prevented from escalating; the pilot can be alerted that some

capability has been lost; and future planning for both pilots and CADM

systems can take these failures into account early in the flight.

2.2. The CADM Program

2.2.1. Introduction

The Computer Aided Decision Making (CADM) program is intended to

aid the pilot of the future by relieving him from routine monitoring and low

level task executions. This objective is achieved by designing a computer

system with "soft" intelligence — the kind of intelligence that exhibits

flexibility and accommodation for different operating environments.

The problems involved in developing a CADM to assist in various

flight operations such as fuel management, weapon delivery, communications,

navigation, and degraded mode operations were considered. As the project

24

progressed, the emphasis fell on the investigation and implementation of new

techniques for degraded mode operations. This choice satisfies the project

goal in many ways. First, such a system with decision making capabilities

will provide the pilot with an increased level of confidence and an added

capability to successfully carry out his mission. Secondly, degraded mode

operations incorporate many of the desirable ingredients for other areas of

study in computer aided decision making. Examples include the processing of

sensory data from various components in an aircraft, the identification of

tasks which CADM should carry out, and the execution of these tasks. Finally,

the problem domain, because of its complexity and novelty, serves as an

excellent research vehicle for developing new automation techniques for

advanced aircraft.

However, because of this complexity, it would be very difficult to

implement such a system using conventional techniques. The failures could

occur at any time and arbitrary combinations of failures are common. It is

not feasible to anticipate all of the possible combinations of failures and

their proper corrections. In order to achieve the desired capability, artifi-

intelligence techniques are applied. Among the techniques used are pattern

directed invocation of procedures, demons and self-generated special purpose

procedures. Using these techniques allows the implementation of a system

with a flexible control structure in which new types of failures, detection

and correction procedures can be easily added.

The problem of degraded mode operations can be broken down into

several stages -- the detection of failures, correction of failures and

monitoring the effects of the correction procedure to determine its success.

25

The major considerations in implementing these stages are the following.

What are the effective detection and correction procedures for failures?

If a failure cannot be corrected, how can a graceful degradation be achieved?

In other words, what is the procedure for reallocating the available resources

so that the failure has the least effect on an aircraft as a whole? Conse

quently what detection and correction procedures are appropriate in a degraded

mode? These are the issues which must be resolved. Equally important is the

symbiotic relationship between the CADM program and the pilot. Our program

aids the pilot in a relatively "quiet" manner within its domain of capacity.

An interaction occurs when high level instruction from the pilot is needed.

2.2.2. Problem Formulation

The detail characteristics of a failure depends largely on the

context, i.e. the mode of operation of an aircraft. A particular combina

tion of sensor readings may indicate a failure in an aircraft component under

one mode of operation, while the same set of readings may be interpreted as

"normal" under a different situation. For example, in a non-degraded situation

a zero flow of fuel into an engine is considered as the consequence of a

failure in either the fuel pumps or the valves. On the other hand, in a

degraded mode such as one engine down or destroyed, a non-zero flow of fuel

into the downed engine would represent a failure in the valves and/or the

pumps. The method in which a failure is corrected is dependent upon the

degree of degradation. As degradation occurs, some of the most "efficient"

apparatus may become damaged or unavailable. Alternate methods of correction

must be employed.

When detecting failures, it is not feasible to consider all the

26

possible combinations of sensor readings. For this implementation, it was

not desired to employ any sort of a priori probability assignments to failures.

The aim was for a system which would automatically generate and execute a set

of relevant detection procedures in a flexible manner.

Along with correcting isolated failures, it is necessary to consider

cases in which failures occur simultaneously or within a short time period. If

a system handles failures on a first-come-first-serve basis, it is possible

that correcting a failure will delay the correction of a more serious failure.

CADM should recognize that the corrective procedure for a failure may be related

to the procedure for others. Of particular concern is the case in which the

corrective procedure for one failure conflicts with another. For example,

a failure may require that a certain control be set in one state, and the

corrective procedure for another failure may require the same control to be

set in another state. There must be some mechanism for resolving such conflicts

as well as deciding the most effective order of correction.

The pilot, as the information manager, should be informed of, yet

not overloaded by, the status information. And he should have control over

the results of the decision making programs at all times. In other words,

the CADM programs should not be competing with the pilot for the control

settings, but aid him in the background. If, for any reason, a conflict

exists between what the pilot does and CADM's corrective procedures, it must v

be resolved in a flexible way. CADM must be aware of the pilot's actions

and be able to interpret their effects on the applicability of all corrective

procedures.

27

2.2.3. Control Structure

The CADM must be able to operate in varying environments. The

environments may change because the airplane configuration can be altered.

Different types of failures would mean that different corrective procedures

would be necessary. To accomplish this, the control structure was implemented

in a manner which allows easy introduction of new failure types and corrective

procedures.

This same flexibility allows CADM to alter its own correction

procedures and failure detection criteria. This means that CADM can change

its action for different degrees and types of degradation. As new types of

failures such as jams are determined, corrective procedures dependent on

the malfunctioning apparatus could be altered or removed.

Among the performance criteria which influenced the design of the

control structure were:

1) It was desired that the "most important" failures be attended to

first. This necessitated the inclusion of a priority structure.

2) Without interfering with (1), an attempt should be made to correct

errors in such a manner that internal conflict is minimized. When

correcting two simultaneous failures, an attempt should be made to

apply procedures which use different apparatus. This implies the

need for a protection mechanism to indicate and reserve equipment

needs for the corrections.

3) The corrections generated by CADM should be methods which involve

the least conflict with any pilot actions. CADM tries to complement

the pilot's actions rather than to compete with him for use of the

28

available equipment.

4) As a consequence of (3), CADM must be able to recognize pilot

actions and determine how these actions affect failures which

have been corrected and are being monitored, as well as those

that are presently being corrected.

This CADM control structure is shown in Figure 6.. This program is

written in MACLISP to operate on the PDP-10 computer.

When an error is detected by CADM, the program must maintain informa

tion such as who is responsible for correcting the error and how the correction

is being accomplished. This information is stored on the lists as shown in

Figure 1. ERROR-LIST contains all of the errors which CADM has detected but

has not acted upon. These errors will be ordered from highest to lowest

priority.

ACTIVE-LIST is a list of all the failures that CADM is presently

correcting. Included on this list are the methods being employed to correct

each failure. CADM takes the view that just because action was taken (by

turning switches) which was expected to correct a failure, it cannot assume

that the failure has been corrected. CADM monitors the progress of the cor

rection procedure until a success or failure is determined.

DEMON-MESSAGE *s entries indicate whether the existing error

correcting procedures have succeeded or failed. The top level of CADM is

able to use this information to aid in developing its future plans.

PILOT-LIST contains information concerning errors which CADM

has not been able to correct. These include errors which cannot be

corrected due to irreconcilable CADM-pilot conflicts or because the

29

^ Pi lot List

f A,D

Top Level
CADM

D

(A c t i v e X

i d !U

I____

iP__.
D(

A,D
__

Demon
Message

Monitoring Detection
Demon Demon

k

Correction
Routines

(Error-Type S pec ific)

A /
v A ^ D /

lÆ I N ___ X 7
A,D

Key_i
------► "A" Invokes Subroutines"B"

A— ■►B "a" Can Read Data "B"
"A" Can Update Data "B" by Adding
"A" Can Update Data "B" by Deleting

FS-4269

Figure 6

I

30

degree of degradation renders all of CADM's possible techniques unsuitable.

The general flow of control is independent of a specific error or

error-type. When CADM inputs new data from the common CADM database, two

types of information are input: sensor readings and current valve setting.

CADM's detection procedures (which will be described in the next section) are

used to report if any failures were detected as well as if any pilot actions

have interfered with existing corrections. In the latter case, the correction

procedure which was being used will be suspended and further analysis will be

performed. In the former case, CADM checks to insure that the detected error

is not already being dealt with by the pilot or CADM itself.

New errors cause correction routines to be invoked. A successful

correction routine will alter equipment and valve settings while implementing

the correction. Any conflicts with the pilot and/or CADM will be resolved

at this time. When the correction routines implement a possibly successful

approach, monitoring routines are established to insure that the procedure

is indeed successful. Detailed discussion of the correction routines and

monitoring programs will be covered in following sections. After a procedure

has been implemented and is being monitored, CADM is free to correct other

errors which it has already detected or to return to the common database

for new data. New corrections, however, cannot use apparatus for corrections

in progress without generating a conflict which must be resolved in the new

error's favor.

2.2.4. Failure Detection

CADM operates in a simple aircraft domain with 20 sensor readings

and 12 pump and valve settings. It is not practical to build a decision tree

that incorporates all the possible combinations for all the failures. Operating

31

in a more complicated airplane model would necessitate a great deal of rewriting

to include new sensor combinations. Much of the flexibility is lost if the

detection apparatus is in the form of a big flow chart.

What is desired is a method of keying on important sensor readings and

examining for failures when the readings change. It is also necessary to be

able to introduce detection procedures representing new types of failures as

well as altered criteria for failures, easily and in a straight-forward manner.

In order to accomplish this, CADM's detection procedures are pattern-invoked.

Each procedure has a pattern associated with it. A pattern is a template, a

list composed of constants and variables. This means that a program can be

called not only by name, but also when a datum matching the program's pattern

is entered into the internal CADM database. Datum representing a sensory input

can directly invoke a program. This program is referred to as a DETECTION DEMON.

Because of this, sensor reading data do not have to be checked needlessly.

Another advantage is that such pattern-invoked programs are easy to add into

the program base without disturbing the calling sequences and branching of

the logic that alieady exist.

The DETECTION DEMONS are of the form:

(name [pattern] [body])

where [pattern] takes the forms of the sensor reading data containing variables

representing new sensor values. [body] is a decision procedure which define

the criteria for detecting the error. The following is a simple example of

such a pattern invoked detection program. It is used to detect flame-out on

an engine.

32

(FLAME-OUT (?SIDE VIBR (RESTRICT ? FLAME-OUT)) 1
(AND
(PRESENT (=?SIDE TEMP (RESTRICT ? FLAME-OUT-TEMP))) 2
(NOT (IN (LIST FIRE (LIST ?SIDE)) ACTIVE-LIST)) 3
(PUSH (LIST TIME FLAME-OUT (LIST ?SIDE))

ERROR-LIST)) 4

In Line 1, a DETECTION-DEMON is defined to detect a flame-out. The

body can be invoked whenever a datum list is entered into the database which

has as its first element a side. In the present airplane model, ?side, a

variable, would be bound to either LEFT or RIGHT. The second element of

the datum must be the constant VIBR. The third element must be a numerical

value which is restricted to the defined vibration range for a flame-out.

Examples of data which would invoke this demon are: (LEFT VIBR 20), (RIGHT

VIBR 24), (RIGHT VIBR 0). Line 2 checks for the temperature of the ?SIDE

engine. The temperature must be in the flame-out range. Line 3 checks to

make sure that the low temperature is not caused by a previous correction

of a fire on the ?SIDE engine, which would have caused a lower temperature.

This correction would appear in the ACTIVE-LIST. In line 4 the program adds

to the ERROR-LIST that a flame-out has been detected.

The same type of DETECTION-DEMON structure is used to observe any

pilot changes in valve or pump settings. If changes are found to have

occurred, CADM can assess their relevence to failures being corrected and

take appropriate action, such as suspending the correction.

2.2.5. Failure Correction

CADM examines the ERROR-LIST containing all of the recently

detected errors in order to eliminate errors which are already being

corrected. The entries are re-ordered so that the highest priority error

33

will be corrected first. CADM maintains a list of all of the error types

that it recognizes along with their relative priorities. This list of priori

ties can be altered by the program when new information indicates that the

priorities should be changed. Whenever CADM corrects a failure, the first

entry on the ERROR-LIST is examined and the relevant corrective routines

are invoked. At this point CADM cannot know which procedure will eventually

be applied to correct the failure. It only is aware that a class of correction

procedures exists. These procedures are collected into an outline, called a

CPROG, for each error type. This outline is used to determine in which order

the individual procedures are examined. An example of a corrective procedure

is:

(DEFUN FLAME-OUT (X)
(CPROG STEP1 (FLAME-OUT-RESTART)

STEP2 (FLAME-OUT-PUMP-RESTART)
STEP3 (FLAME-OUT-FORWARD-RESTART)
STEP4 (FLAME-OUT-REAR-RESTART)
STEP5 (FLAME-OUT-WRAP-UP)))

Each step in the outline represents a possible approach to correcting the

problem. CADM goes through the possibilities in order searching for one which

it judges to be appropriate. A correction procedure is generally comprised of

three sections. First, does the state of the world represent the proper environ

ment? In each procedure CADM wants to alter the settings for valves and pumps,

but it also requires that certain valves or pumps be previously on or off. If

these requirements are not met, the procedure is deemed to be unsuitable and

the next procedure is examined.

Second, CADM must determine if it is free to alter the desired valves

or pumps. It does this by checking to see if there are any restrictions on

the required apparatus. The present CADM recongizes three types of restriction:

34

jam, pilot conflicts and internal CADM conflicts. In the case of a jam,

altering a switch will serve no purpose, so the procedure is deemed to be

inapplicable. CADM attempts to correct as many failures as it can without

conflict. If a conflict is discovered, the conflicting procedure is saved,

and another procedure is examined. CADM will try to resolve the conflict only

if there are no non-conflict solutions.

Third, when a procedure is found which CADM wishes to apply, the

valve and/or pumps are reset. In order to insure that the repair has pro

gressed successfully, a program that monitors the correction must be constructed.

This will be discussed in the following section.

If after examining all of the possible procedures, a non-conflict

solution is not found, CADM returns to those in which a conflict was found

and tries to resolve the conflict. The first conflicts checked are those

with on-going, internally generated corrections. CADM uses the same priority

structure used to order ERROR-LIST to determine which error should have control

over the conflicting apparatus. If the new error has a lower priority than

the existing one, the conflict will be resolved in favor of the solution in

progress. If the opposite is true, the older correction (with a lower

priority) will be temporarily suspended so that the new solution can be

implemented. Subsequently, a new solution, not involving conflicts will be

attempted.

The last type of conflict which is resolved is the pilot-CADM

conflict. This is because the CADM philosophy is to lessen the pilot work

load rather than to increase it. In this implementation a pilot conflict

is generated when the pilot changes a relevant switch within a given time

35

period (in this case, within the last minute). Presently CADM does not try

to interpret pilot actions, it only recognizes that these actions occur.

Future implementations will try to understand the pilot’s goals and reasons.

(See section on Man-Machine Interaction) In order to resolve this type of

conflict, CADM asks the pilot whether it is permissible to alter a pilot

controlled setting. An affirmative answer resolves the conflict in CADM's

favor. A negative reply causes CADM to search for another solution. If

CADM cannot correct an error it reports FAILURE if no conflicts were

encountered, CONFLICT if only pilot conflicts were encountered, or nothing

if only internal conflicts were present. In the last case, a correction will

be attempted again when the conflict is removed.

Each of the procedures can also return a recommendation of what

the next procedure should be examined. So, if a procedure determines that

not only is it inapplicable, but also that the next two procedures to be

investigated are also not relevant, a recommendation can be made to skip

over them.

2.2.6. Monitoring Programs

When a failure is being corrected, it is not realistic to have

the CADM assume that just because certain switch settings have been altered,

that the error no longer exists. Rather, CADM should wait to insure that

the expected response to the action occurs. However, it is not practical

for CADM to stand idle during this waiting time. To avoid this, monitoring

procedures are constructed for each correction of a failure at the time of

correction. Each monitoring program is of the form:

36

(IF [SUCCESS-PREDICATE]
THEN [SUCCESS-PROGRAM]

IF [SUCCEEDING-PREDICATE]
THEN [SUCCEEDING-PROGRAM]

ELSE [FAILURE-PROGRAM]

SUCCESS-PREDICATE is the test for complete success. When this predicate is

satisfied, the system knows that the error has successfully been corrected.

SUCCESS-PROGRAM is the program to be executed when the correction succeeds.

This program releases reserved equipment, activates routines which update the

internal lists, and could be used to allow any desired procedure to be invoked.

Consider the case in which there is a fuel imbalance. The SUCCESS-PREDICATE

would specify that when the levels in both tanks are equal, the correction

has succeeded. The SUCCESS-PROGRAM to be carried out after a complete success

is NORMALIZE which in effect brings the control settings back to the state

before the correction. If the inter-tank pump has to be turned on, it is

turned off. If certain valves were turned off to force more fuel consumption

from one tank, they are turned back on. SUCCEEDING-PREDICATE and SUCCEEDING-

PROGRAM are similar items for the succeeding case. Normally, some bookkeeping

is done while the correction in progress is succeeding. FAIL-PROGRAM is the

program to execute when the correction does not succeed.

These detection procedures are to be invoked after a certain amount

of time has elapsed. This can be accomplished by allowing the monitoring

procedure to be invoked by new values of time. The pattern invoked mechanism

which was employed during detection of failures is also used here. A demon

known as a MONITORING-DEMON is created. The pattern contains a time variable.

The body contains the monitoring procedure and information to restrict the

times when it can be invoked and reinvoked. When a MONITORING-DEMON has

37

served its purpose (either a success or failure has been observed), it is

removed from the system.

After the MONITORING-DEMON has been created, the ACTIVE-LIST is

updated to include the present failure, how the failure is being corrected

and the name of the MONITORING-DEMON which is monitoring the correction.

2.2.7. Conclusion

A system has been implemented to aid the pilot in the detection

and correction of failures in aircraft with respect to the problems found in

degraded mode operations.

The program is capable of detecting and correcting a class of

failures in an aircraft, such as engine flame out, engine fire, and fuel

imbalance, based on the model of a twin-jet aircraft described elsewhere in

this report.

The control structure must be flexible and the system must be able

to operate in a dynamic, real time environment. The system has the capability

to correct multiple failures. It tries to minimize CADM internal conflicts

and conflicts between the pilot and CADM. Internal conflicts can be resolved

using a flexible priority structure. The program is able to decide what failures

have occurred, order the failure according to a easily modifiable priority

scheme, select a correction measure, with respect to the available resource,

and generate special purpose monitoring programs for the correction.

This implementation incorporates a flexible, multi-level control

structure capable of handling a large class of problems requiring decision

making. New error correction and detection procedures for new failure types

can easily be introduced into the system by a programmer or CADM itself.

38

This implementation demonstrates how the application of artificial

intelligence techniques such as demons and pattern-invoked procedures allow

the construction of a flexible system. Further developments in artificial

intelligence, especially solution of those problems found in realistic, real

time environments would permit the implementation of CADM systems which would

be very difficult to construct using conventional programming techniques.

2.3. The PILOT/CADM Interface

In this section, we consider interfacing the PILOT with CADM. There

are two main issues. The first is the choice of displays and controls while

the second is task allocation and the resolution of conflicts between the

PILOT and CADM.

2.3.1. Displays and Controls

During this phase of the CADM project, we have concentrated on

computer-aided failure detection and correction. Thus, we want to consider

displays specifically for that purpose. Hughes' Master Monitor Display (MMD)

[Hughes, 1974] is for display of failure detection information. Since their

design was based on a thorough human factors study, we need not duplicate

their work in determining the appropriate display parameters. However,

several extensions of MMD are necessary for our purposes.

Since our studies of CADM are not yet being carried out in an

actual aircraft, the numerous dials, gages, knobs, switches, etc. are not

available for the pilot to observe sensor information and input control

decisions. Thus, we have extended MMD to include a "sensors" display and

a "controls" display as well as the "failure monitor" display. These

39

displays are illustrated in Figures 7, 8, and 9.

The sensors display gives the PILOT both quantitative and qualita

tive information. The actual values of thrust, fuel flow, etc. are available

if needed, while the low, normal, and high information allows the PILOT to

make a quick check of status without having the focus long enough to perceive

the actual value.

The green, yellow, and red notation appears on all of the displays.

When one of these indicators is "ON", CADM perceives the system to be performing

satisfactorily without CADM assistance. Green indicates that CADM is performing

some task(s), but expects no difficulty in accomplishing them. Yellow indicates

that CADM is performing some task(s) and does not feel it can accomplish them,

but can perform some holding action until the PILOT can divert his attention

to the task. Red indicates that CADM is in trouble and needs the PILOT'S

assistance immediately.

The controls display shows the PILOT the current settings of his

controls (except for thrust and control sticks). To change the state of a

control, he presses the key with the appropriate number. At the moment, a

standard keyboard is being used for such input, but we would not advocate such

a device for operational implementation.

The failure monitor display shows the pilot the status of the possible

failures in his aircraft. Correction as well as detection information is

displayed. /

All of these displays would have to be expanded and perhaps made

hierarchical if an actual aircraft were being considered. In a real aircraft

there are too many sensors, controls, and possible failures to put each set

40

Sensor Readings
• Engines Low Normal

Left
Thrust 9 0 0
Flow 100
Temp
Vibration 2 0

Right
Thrust 9 0 0
Flow 1 0 0
Temp 1 2 0 0
V ibra tion 2 0

• Fuel '

Forward Tank
Q uantity 6 0 0

Rear Tank
Quantity 6 0 0

Green Yellow Red

High

1900

F S -4249

Figure 7

I
1

1

1 Control Settings
41

■
• Pumps Open Close Failed

1

1

Engines
1. Left
2. Right

1

Tanks
3. Forward Drain ****

1
4. Rear Drain
5. Between

F-R ****

1

I
• Valves

Left Engine
6 . Forward Tank * * * * *

i
i

7. RearTank
Right Engine

8. Forward Tank
9. RearTank

i • Restart
11. Left Engine ****

1
22. Right Engine ****■

i
i
i
i
i

Green **** Yellow Red

Figure 8

FS-4250

Failure M onitor

Engines Detected Correcting Failure Conflict
Left

Fire
Flameout -**■**
Destroy

Right
Fire
Flameout * * * *
Destroy

Fuel Pumps
Engine

Left
Right

Tanks
Forward Drain
Rear Drain
Between

Valves
Left Engine

Forward Tank
Rear Tank

Right Engine
Forward Tank
Rear Tank

* * * *
* * * *

* * * *

* * * *

* * - # *

Green Yellow * * * * Red
FS-4251

Figure 9

43

on a single display. Even with the current limited size of these sets of

information, a hierarchy could be used to display schematics and checklists

perhaps in a manner similar to Hughes' MMD. However, we should stress CADM's

decision making abilities which result in the pilot not having to resort to

such low level information very often.

2.3.2. Task Allocation and Conflict Resolution

In a later discussion on the general topic of human interaction

with an intelligent computer (see Section 4.2), the concept of competitive*
and cooperative intelligence are considered. The basic idea of cooperative

intelligence is that responsibility should be allocated so that the pilot and

CADM do not needlessly compete and possibly produce jointly counterproductive

decisions.

The suggested approach to the design of a cooperatively intelligent

system is to have CADM monitor the PILOT, as well as the aircraft, and to

adapt its procedures to the pilot's actions and perceptions. Since it is not

reasonable to have CADM directly ask the pilot what he is doing, we need some

method of inferring the pilot's perceptions and predicting his actions. In

this section, we discuss a first-cut at such a method.

Before discussing the issues involved and the approach being

considered, we should pause to emphasize that we are not advocating complete

elimination of direct PILOT-CADM dialogue. It may be necessary and desirable

for the pilot and CADM to converse directly on major issues. However, if the

pilot and CADM must directly discuss the myriad of minor issues that may

arise, pilot workload may increase beyond what it was without CADM.

Continuing with the discussion of an approach to monitoring the

44

PILOT, we should first briefly review the PILOT'S role in the demonstration

system developed during this phase of the project. The PILOT has two basic

tasks. The first is two-dimensional pursuit tracking of the command bar on

the VSO. The second task is monitoring his subsystems for possible failures

and initiating corrective actions when he deems them necessary. In the second

task, he has CADM as an aid. However, this does not mean that he can ignore

his subsystems since CADM may not be able to solve a particular problem or,
in fact, could fail itself.

Because CADM is not infallible, the PILOT may decide to take his

own corrective actions, or, quite possibly, the PILOT will instinctively

react to a failure and forget CADM exists. Also, the PILOT may simply make

a mistake and initiate what, out of context, would appear to be a corrective

procedure. In all these situations, CADM should adapt itself to the PILOT
and thus avoid competition with the PILOT.

To indirectly determine what the PILOT is doing, four sources of

information are available. These include sensor readings, control settings

on the MMD keyboard, joystick and thrust stick outputs, and CADM's failure

perceptions. We want to integrate all of this information and infer the

PILOT'S perceptions and classify them into three categories.

1. The PILOT has not detected any failures,

2. The PILOT has detected a specific error (perhaps
unconciously), but is not attempting to correct it, and

3. The PILOT has detected a specific error and is attempting
to correct it.

Sensor readings, control settings and when the PILOT last changed

45

them, thrust stick outputs, and CADM's perceptions of failures are readily

available. However, these all relate to the PILOT'S task of interacting

with CADM to monitor the aircraft's subsystems. The joystick outputs relate

to the PILOT'S task of controlling the aircraft. It would seem that the

performance on this control task would be related to the workload placed on

the PILOT by the detection and correction task.

We might use RMS tracking error as a measure of control task per

formance, but such a measure is very sensitive to the input commands. In

other words, variations in RMS tracking errors may be due to turbulence or

the PILOT changing course. Instead of using tracking errors, we have chosen

to "fit" a model to the PILOT-aircraft system and use the parameters resulting

from this fitting process as measures of performance.

Before discussing a specific model, we should consider some of the

basic issues involved. An overriding constraint on the approach is that the

model parameters must be identified in real time. Thus, the model must be

simple. However, the PILOT'S tasks are complicated. For example, he often

takes his hand off the joystick completely to momentarily devote his atten

tion elsewhere. Long samples might smooth over this intermittency, but

would also smooth over some interesting time varying attributes of the model

parameters. To use short samples, we have to heuristically discard data

when the joystick is producing no output.

Besides these technical issues, we are faced with the problem

that there is no agreement in the literature about what models and parameters

are appropriate measures of performance. However, it is not within the scope

46

or mandate of this project to resolve this issue. Thus, we will work with

an existing model to study the feasibility of real-time identification of

its parameters and usage of those parameters as measures of performance.

The natural choice is McRuer's simple crossover model [McRuer,

1969]. This two-parameter model has been used successfully to describe the

performance of well-trained subjects in one-dimensional compensatory tracking

tasks. For our two-dimensional pursuit tracking task, we will assume that

the model can be applied to each axis (pitch and bank) independently. Since

the pitch and bank axes of the aircraft (see Section 2.1) are actually coupled,

the independence assumption is not really justified. However, until we can

prove the feasibility of real time identification of a two-parameter non

linear model, we will avoid any elaborations of the model.

A block diagram of this approximate PILOT-aircraft system is shown

in Figure 4. The desired pitch and bank angles come from the VSD, the output

is the actual pitch and bank angles which are also shown on the VSD.

The discrete equations for the crossover model shown below are

fit to the pilot-airplane system by measuring tracking errors and actual

pitch and bank. At this point, the pilot's reaction time, is assumed to be

constant and equal to .2 seconds. Thus the gains, and are the only outputs

of the fitting process. Eventually the PILOT'S time delay will not be

assumed to be constant, and will also be an output parameter of the

identification process.

eA(t) = 9A(t"A't) + Ke At eE(t‘T)

0A (t) “ 0A (t-At) + K0 At 0E(t-T)

47

Man-Machine System Diagram
of Model Used by HUMN 10

Desired
Pitch
or Bank

¿O Error of
Pitch
or Bank

Pilot
Joy Stick

Values
A irc ra ft Actual ^

P itch
or Bank

FS-4252

Figure 10

48

0^ = The Actual Airplane Bank

0A = The Actual Airplane Pitch

0 ■ Bank Error (Desired Bank-Actual Bank)£j

0g * Pitch Error (Desired Pitch-Actual Pitch)

K = Bank Gain0
K = Pitch Gain
0

T = A Time Constant Representing Pilot Delay

t = Time

At = A Delta Time

At this point, the modeling of the PILOT in real time requires the

use of two (2) computer programs, one is located in the PDP-11 with the dis

play programs. Here, PILOT output is rapidly sampled and stored. At

prescribed intervals, the data is transferred to the second program, HUMN-10,

in the PDP-10. Then, the data is analyzed to obtain gain values for the pitch

and bank axes. The eventual implementation of the high speed interface

should allow a single program to perform these tasks. By controlling the

input data, the PILOT output gains should lie within a specified range when

he is devoting his full attention to tracking the desired pitch and bank

angles. If the PILOT'S attention is divided among tracking and failure

detection or correction, his tracking performance will degrade and should

be reflected by the model gains.

By using the model gain information along with the sensor readings,

control settings, and CADM's perceptions, the PILOT'S perceptions are predicted.

49

CADM can utilize these predictions when deciding on a course of action.

A statement concerning the pilot’s perceptions is only made after

CADM has indicated that a specific failure has occurred. It would be

extremely difficult to make a prediction without this information, since

PILOT use of a specific control might be a response for a number of failure

correction procedures. An example and flow diagram follows, describing the

logic used in this phase to make predictions of the PILOT'S perceptions.(Fig. 11)

To consider a specific example, assume that the right engine is

on fire and the PILOT is initially unaware of the problem. After CADM detects

the failure, HUMN-10 will check to see if the model gain outputs are abnormal

or if the PILOT has applied any of the possible correction procedures. If

not, the program replies that the PILOT has not detected the fire. Then,

as the aircraft begins to lose power, he will probably concentrate his

efforts on determining the problem source, causing his tracking performance

to degrade. If this occurs within a preset time period after the failure,

HUMN-10 replies that the PILOT has detected a failure, but has not begun

correction procedures. After the PILOT has located the cause, he may use

a number of correction procedures. He may (1) reduce his right thrust stick,

(2) turn off the right fuel pump, or (3) close the valve(s) from the front

and/or rear tank to the right engine. After any of these actions aret
performed by the PILOT, again within a preset time period, HUMN-10 states

that the PILOT has attempted to correct the fire. Finally, after CADM

determines the failure to be corrected, HUMN-10 resets its perceptions. If

CADM is working properly, and the PILOT does not detect the problem

50
HUMNIO Flow Diagram

FS-4254

Figure 11

51

immediately, he may never be aware of the problem, as CADM could correct it

before it is detected by the PILOT. Of course, this depends on the severity

of the failure and it is unlikely that an engine fire, or at least the
i

consequences, would go unnoticed by the pilot.

Although the monitoring method described above is rather elementary,

its implementation will provide an indication of the feasibility of the

general approach. Especially, we will be able to assess the constraints

real-time processing imposes upon the system. Possible extensions include

the use of more sophisticated PILOT models and statistical hypothesis

testing.

Another possible use of the model parameters is to aid CADM in

detecting failures. The PILOT may be compensating for a failure, yet not

realize it exists. CADM could use this information, reflected as changes

in model parameters, as part of its sensor data patterns.

REFERENCES

[1] McRuer, D. and D. H. Weir, "Theory of Manual Vehicular Controls,"
IEEE Transactions on Man-Machine Systems, Vol. MMS-10, No. 4, pp. 257-
291, 1969.

[2] Hughes Aircraft Co., Master Monitor Display Study, Hughes Aircraft
Report No. P73-464, January 1974.

52

3. FURTHER TECHNICAL DISCUSSION

3.1. Communications

One major impediment in the development of this demonstration has

been the problem of establishing a simple and efficient means of inter

process and inter-processor communication. In this section, we will discuss

the need for such communication, how it is currently being accomplished, and

our future plans.

3.1.1. Why Communications

The need for inter-processor communication is obvious, since the

graphics and part of the aircraft simulation is on a PDP-11 and the CADM and

remainder of the simulation is on a PDP-10.

Not so obvious is the need for interprocess communication. The

use of languages is one of the primary reasons. Some languages are better

suited for certain tasks than others. For example, for problems in "reasoning"

involving rather abstract symbol manipulation, LISP and is descendents are

most convenient for prototype system development. BLISS is well suited for

string manipulation and data management tasks. Finally, FORTRAN is well

suited to "number-crunching" tasks. It is thus necessary for a number of

programs, written in different languages to communicate. While this could

have been accomplished by using a set of assembly language subroutines to

provide the common linkage, this was not done for two reasons.

First, with a substantial number of people doing programming, it

is very desirable if each person can run and debug his module largely

independent of the other modules. This would be difficult to do if the

53

system were one program.

Second, FORTRAN and LISP contain no provision for multitasking.

Since an aircraft contains several systems which operate simultaneously, it

is necessary that any effective simulation of an aircraft simulate this

parallelism. When not using languages with multitasking facilities built

in, it is most convenient to achieve pseudo-parallelism by running each task

as a separate job and letting the monitor's time-slicing provide the parallelism.

3.1.2. The Implementation

At the time of the last demonstration, communication between jobs

was accomplished by a common data base located on a disk file. Since two

FORTRAN jobs could not access this file without irrecoverable I/O errors, it

was necessary to provide another job, MANAGER, and several more disk files,

one for each job, such that access to the data base was controlled by MANAGER.

The continuous opening and closing of so many disk files caused the system to

run extremely slowly and in addition, beat the disk around an unacceptable

amount.

The system has been modified to use a new version of MANAGER. The

new MANAGER, written in BLISS, makes use of new monitor feature to pass data

through core from one job to another rather than through a disk file.

MANAGER keeps a copy of the master data base in its own user space.

Each job can pass messages to MANAGER requesting changes to the master data

base, or requesting copies of any segment of that data base. The process is

as follows:

First, the user job initializes itself by making a call to an

assembly language subroutine which returns a unique identifier for the MANAGER

54

and initially setting up a communication link to MANAGER. When the job wants

to change something in the data base, it changes the first three words in a

work area to codes which MANAGER will understand and translate into action.

It then copies the desired changes into the remaining words of the work area

(the work area can be up to 512 words long). A call to another assembly

language subroutine then creates a page in the user's address space, copies

the work area into that page, and passes that page to MANAGER by Swapping

page maps.

Reading from MANAGER is by a similar process. The user again s$ts

up a work area, this time only three words long. He passes those three words

to MANAGER using the same subroutine call, and then waits for a response and

the new data base.

This mode of access to the global data base requires about 50 ms

per transactions.

Communication between the PDP10 and PDP11 is currently accomplished

via a FORTRAN program which reads the 2400 baud tty line between the two

computers and communicates with MANAGER using page passing. The PDP-11 side

is run using the stand-alone system developed at CSL.

3.1.3. Future Work

We will incorporate the Master Monitor Display (MMD) and the PDP-10

to PDP-11 communications program (AFCOM) into MANAGER, since all three can

conveniently be written in BLISS and by putting them into one program, we can

cut down on the number of jobs which must communicate with manager using

page passing, and consequently increase the speed.

We also plan to incorporate the PDP-11 side of the system into a

55

job running under the M&M operating system which is currently under development

and nearing usability.

3.2. The PDP-10 to PDP-11 Communication Link

In any multi-processor system the final performance and reliability

of that system is dependent on the flexibility and integrity of the inter

process communication links that can be established.

The Coordinated Science Laboratory CADM Project uses a system

composed of two physical processors, a PDP-10 timeshared processor and a

PDP-11 stand alone minicomputer. Several processes reside in the PDP-10.

They include the high level decision maker, demon, and processes that update

simulation parameters. On the PDP-10 interprocess communication is controlled

by a mangement process and makes use of the new inter-job communication

facilities available in the 601 montior. The PDP-11 supports a single

process. This process is the aircraft simulator and is responsible for

maintaining the video display, the joystick input control, and the flight

dynamics.

In this section of the report we will be concerned with hardware

aspect of the inter-processor communication link between the PDP-11 and the

PDP-10. We will also examine some of the low level software required to

control the hardware.

This communication link consists of two parts. The first part

is a 2400 baud full duplex teletype link between the two machines. The

hardware required for this line consists of a DL-11 asynchronous line

module that is connected to the PDP-11 unibus and a port out of the DC-10

56

teletype controller already on the 1/0-bus of tho PDP-10. The PDP-10 thus

"sees" the PDP-11 as an interactive user terminal, one of many already connected

to the timesharing system. Similarly the PDP-11 "sees" the PDP-10 as an inter

active terminal attached to its unibus. The second part of the communication

link consists of a 7 megabaud communication channel, here after referred to

as the channel, between the 1/0-bus on the PDP-10 and the unibus on the PDP-11.

This channel will be used to send large blocks of data from one machine to the

other.

The 2400 baud tty line, while it is considerably slower than the

7 megabaud channel, plays a key role in maintaining the flexibility of the

communication link between the two processors. The tty line allows a process

on one machine to communicate with the monitor of the other machine, typically

the process on the PDP-11 will give commands, or request information from the

601 monitor on the PDP-10. Thus a process on the PDP-11 can select, via the

monitor, which PDP-10 process it is going to communicate with, or more

importantly, if that process does not exist, the PDP-11 process may create

the process on the PDP-10 by issuing a "run" command to the 601 monitor.

The ability to run a job of the PDP-10 is a property of the tty lines and

could only be accomplished via the 7 megabaud channel only with considerable

difficulty. It could be done with an extensive patch to the 601 monitor,

which would increase its size appreciably, or by having a special process

on the PDP-10 to cater to the channel. This extra process would take up

space in the job tables. It would have to be functionally another copy of

the tty handler in the 601 monitor. To sum things up, the 2400 baud tty line

has two major functions. During the operation of bootstrapping the system

together, the tty line has the power to easily spawn processes on the PDP-10

side, if they do not already exist. It also has the power to destroy processes

when they are no longer needed. The tty line is also instrumental in the

57
allocation of the 7 megabaud channel to different processes on the PDP-10.

The 7 megabaud channel was built to provide the capability of moving

large blocks of data from one machine to the other in a minimal amount of time.

Under optimal conditions the speed with which the channel can move data from

the core of one machine to the core of the other, is determined by the maximum

rate that the PDP-10 processor can service requests on the I/O bus. This

rate is 200,000 36-bit words per second. Thus it is possibly to perform an

entire core load on the PDP-11 with its 120K of 16-bit words in .4 seconds

using a format that generates 2 PDP-11 words from a single PDP-10 word.

The channel hardware physically consists of two racks of printed

circuit cards, one mounted in each machine. The two racks are connected by

40 coaxial lines, 16 for data, 16 for control, and 8 spare.

If a significant event occurs, the channel hardware informs each

processor by setting the appropriate bit in their respective channel status

words. If the appropriate interrupt enable bit is also set, which is the

case for normal operation, then an interrupt will occur on that processor.

From now on we will assume that all the interrupt bits are set. The channel

design philosophy emphasize seven major points: (1) to achieve high data

transfer rates the channel makes use of the direct memory access "DMA"

capabilities of both machines. On the PDP-11 side the channel hardware

becomes master of the unibus and reads from, and writes to the memory,

which is just another device on the unibus, without interrupting the program

executing on the PDP-11 processor. Thus the program on the PDP-11 is slowed

down only by the competition between the channel and the CPU for the unibus

cycles. At worst this would slow the program down by about 307o, On the

PDP-10 side the channel hardware makes use of the new KI-10 "data type"

58

interrupts to force the PDP-10 processor to execute a partial I/O instruction

to transfer a word of data between the channel on the I/O bus and the memory.

This of course, transparent to the execution of PDP-10 programs, however it

is also transparent to the monitor as well. In other words no monitor

interrupt routine is required for this type of data transfer. One of the

major advantages of using this new KI-10 interrupt is that data is loaded

into mapped memory rather than into absolute memory addresses.

(2) For reliability, all data transmissions use full handshaking

synchronization. If the PDP-11 is sending data to the PDP-10 for example,

then the PDP-11 will not send another data word until the PDP-10 has read

the first data word. In other words both machines can service the channel as

slowly as they like without jeopardizing the reliability of the data. This

synchronization is accomplished using two "done" bits, one for each machine.

The exact sequence of events to transfer a data word from machine X to

machine Y is as follows: 1) the done bit on machine X goes high, this causes

a DMA interrupt, 2) a word is retrieved from the memory of machine X and

placed in the channel, 3) machine Y receives the data word, 4) machine X

clears its done bit and sets the done bit on machine Y. This causes an

interrupt on machine Y, 5) Y now removes the data word from the channel and

places it into its memory, 6) Y clears its done bit and sets the done bit

on machine X, and the cycle repeats.

(3) The channel is a simplex bidirectional communication link.

Thus a data block can be transferred in only one direction at a time. The

simplex implementation was chosen over a full duplex realization because

it requires half the hardware. The problem of finding the direction of data

59

flow in the next communication is determined by the channel arbitration

logic. Each processor may, by setting a bit, make a request to use the

channel to write to the other machine. If both processors make such requests

simultaneously then the use of the channel is granted by the arbitration logic

to one processor or the other.

(4) All communication over the channel is done by mutual consent.

In other words both processors must agree by setting their respective "device

active" bits to a data transfer before it can occur. It is impossible for

one processor to force a data transfer upon the other via the channel hardware

only. This feature protects the PDP-10 timesharing system from an erroneous

or poorly debugged program on the PDP-11 causing a transfer that might corrupt

the PDP-10's memory. Similarly it protects users on the PDP-11 from PDP-10

users who might attempt to access the PDP-11 remotely without checking if this

action might cause some conflict.

(5) Every attempt has been made to make each half of the channel

operationally symmetric. Thus the same sequence of events that would invoke

a read block operation on the PDP-11, for example, would perform similarly

on the PDP-10, although the bits involved may be in different locations in

the respective status words. This concept fits well with design philosophies

3), 4). In addition, it makes the channel easier to program and easier to

use since a description of how the channel words need only be given for the

PDP-11 side, say, the operational description for the PDP-10 side being

identical.

(6) Upon a request from the PDP-11, the channel also has the

capability of bootstrapping the PDP-11 from the PDP-10. To make a bootstrap

60

request the PDP-11 processor executes the fourth status word of the channel.

At this location is the instruction "CLR-(PC)n which when executed out of

read only memory is a one instruction infinite loop. When the channel hard

ware senses the execution of this instruction at this particular location the

"PDP-11 bootstrap request" bit is set on the PDP-10 side. This causes an

interrupt on the PDP-10 side. In addition, the PDP-11 side of the channel

hardware is primed to receive an arbitrarily long block of data from the

PDP-10 starting at memory location zero, and in a predefined format. After

the PDP-10 has sent the bootstrap program to the PDP-11 the PDP-10 sets a

write only bit on its side and the "CLR-(PC)" instruction, which the PDP-11

has been executing repeatedly up till now, is changed by one bit to the

instruction "CLR PC" which causes the location counter to jump to location

zero and start execution of the newly loaded bootstrap program. Since only

one bit is changed in the "CLR-(PC)" instruction it need not be synchronized

to the execution cycle of the PDP-11 CPU. If 2 bits had to be changed, say

from 00 to 11, then there would be the problem of the CPU executing the

instruction at just the wrong instant, like when the bits were 01 or 10.

(7) The difference in word size, is perhaps the main obstacle

in designing an efficient communication channel between the PDP-10 and the

PDP-11. The PDP-11 has a 16-bit word while the PDP-10 has 36 bits per word.

In any ZZZZ processor communication link it is desirable for a processor to

send and receive full words of data. Most programs normally expect data to

come in full word chunks. Unfortunately, the first single bidirectional

mapping that would pair full 16-bit words to full 36-bit words would map

9 PDP-11 words to 4 PDP-10 words. Such a mapping is useless since considerable

61

effort would be required to unpack the data bits into a useful form. For

this reason it was necessary to use two bidirectional mapping schemes. This

is accomplished by a section of the channel hardware called the mapping unit.

In the first scheme (16-bit mode) full PDP-11 words are mapped to and from

the low order 16 bits of the 2 halfwords of a single PDP-10 word. The first

PDP-11 word is constructed out of the low order halfword, bits 20 through 35.

The second PDP-11 word is constructed from bits 2 through 17. Bits 0,1,18,19

of the PDP-10 word are normally thrown away, however they are available to

unorthodox programs as the high order 4 bits of a third PDP-rll word. Thus

using this first scheme the PDP-11 can send and receive full words of data.

This mapping scheme is useful for transferring PDP-11 load modules and other

"core image" data. It is used in all the low level software handshaking

between the two machines, and in general is the best compromise in data

formatting between the two processors.

In the second mapping scheme (12-bit mode) a full 36-bit PDP-10

word is mapped to and from the low order 12 bits of 3 PDP-11 words. Bits

15 through 12 of each PDP-11 word are discarded. Bits 0 through 11 of the

first PDP-11 word are mapped to bits 35 through 24 of the PDP-10 word. The

second PDP-11 word is mapped to bits 23 through 12, and the third is mapped

to bits 11 through 0. Note that conventions for numbering the bits on the

PDP-10 are opposite of those for the PDP-11. On a PDP-11 bit 15 is the most

significant bit of a word, whereas on the PDP-10 bit 0 is most significant.

This format was designed for the transfer of video display files, six bit

ASCII, and "PDP-10 image" files that contain 36 bit words. 0n$ of the

intentions here is to use the PIP program on the PDP-10 system without

62

modification to transfer files to the PDP-11.

All of the mappings are bidirectional. Thus while bits must be

thrown away when the data is compressed, I.E, 16-bit mode PDP-10 to PDP-11,

something must be done to fill these bits when the data expands, I.E. 16-bit

mode PDP-11 to PDP-10. There are three possibilities, all of which are

provided by the channel hardware. The extra bits can be filled with zeros,

ones, or the sign can be extended.

The mapping unit can also throw words away. It is possible, for

example, in the 12-bit mode to construct only two PDP-11 words out of one

PDP-10 word. This would be done by skipping the third PDP-11 word. Similarly

for one word to one word mapping in both modes.

Whenever a communication link maps one word of data on machine X

to multiple words of data on machine Y, a boundary problem exists. If a data

word is automatically read from the memory of machine X, expanded, and loaded

into K consecutive memory locations in machine Y, by the hardware of the

communication link, then it would be impossible fro machine Y to have

buffers of size N filled exactly with data unless N is an integer multiple

of K. Using the 12-bit mode K = 3 and N * 256, which is standard for DEC's

DOS (Disc Operating System) it would be impossible to completely fill the

buffer. The buffer would have to be filled either one short of two words

over. Both of these alternatives are unacceptable. In order to avoid this

problem the communication channel has two internal conditions bits that

indicate how many PDP-11 words will be formed out of the first PDP-10 word.

In the above example, the initial condition bits would be set up so that one

PDP-11 word would be constructed out of the first PDP-10 word. This is done

63

by throwing away first two out of three PDP-11 words and the remaining 85

PDP-10 words would each form three PDP-11 words, to fill exactly, the 256

word buffer.

These two bits along with the mode bit define the state of the

mapping unit. Since these bits are not affected by an interrupt caused by

the channel hardware, it is possible, when one machine receives a "buffer

full" interrupt to redirect the channel hardware t;o continue to load data at

a different core location even though other machine has not finished with

its buffer. Thus the PDP-11, as well as the PDP-10, can switch data buffers

in the middle of a data transfer transparently to the other side without loss

of continuity.

The channel hardware has the capability of accessing in sequentially

increasing or sequentially decreasing order, the memory of each machine. Not

only does this allow for the reformatting of data in an array, but in fact,

one of the more useful modes is to access the memory of both machines back

wards. This is the only way that 12-bit data in a form amenable to the PDP-10

byte instructions can be transferred to the PDP-11 in sequentially ascending

memory address locations. This being a useful format for data processing

on the PDP-11.

A word should be said about the software concerned with the operation

of the communication channel. After being assigned the use of the channel

by their respective monitors, programs on the PDP-10 and PDP-11 may communicate

in one of three ways. 1) The PDP-10 program will issue write block command

and the PDP-11 program will reciprocate by issuing a read block command.

2) Reversing the roles, the PDP-11 program will issue the write block command

64

and the PDP-10 program will reciprocate. 3) They may both issue read and

write block commands. The read and write block commands are received by

their respective monitors and passed to a software package within the monitor

called the channel driver. The channel driver is responsible for establishing

communication with a similar package on the other side, and executing the

low level dialog with the other driver before the actual data can be sent.

The driver must also be prepared to handle any error conditions that might

arise. The PDP-10 driver may also provide the bootstrapping service for the

PDP-11.

A driver will typically attempt to establish communications with

the other driver, the first time it is called by the monitor. To establish

communications the driver must pet a "device active" bit. Only after both

"device active" bits are set will the channel become active. This event is

indicated in the channel status words of each machine, and can cause respective

interrupts if the appropriate interrupt enable bit is set. Since the channel

is simplex only one driver can talk at a time, the other must listen. Due

to the symmetry of the implementation, both drivers will typically want to

talk at the same time. This conflict is resolved by the channel arbitration

logic. Each driver must place a "request to transmit" command to the channel

arbitration logic. If the other driver has not made a similar request then

the first driver is granted the right to use the simplex channel to transmit

information to the other driver. If both drivers make the request simul

taneously then the transmit rights are given to one driver or the other and

not both. The decision of the arbitration is indicated by bits in the

channel status words, and a respective transmit and receive interrupts are

65

caused. After a driver is finished transmitting it clears its "request to

transmit" bit and waits for a reply.

These short transmission typically one or two PDP-10 words volley

back and forth until the two drivers decide, which direction the data blocks

will go first, what format the data will be in i.e. 16 or 12 bit mode, and

the number of data words in the block. After the arbitration logic grants

the use of the channel to the transmitter of the data block, each side receives

the appropriate transmit/receive interrupt. At this point rather than sending

over one or two words explicitly, each side loads an address and word count

register and sets a DMA enable bit. When both DMA enable bits are set, the

data block is transferred automatically form one machine to the other without

further intervention by the software. As each data word is read/written to

the memory of each machine the respective word count and address registers

are incremented/decremented. It should be noted that the address and word

count refer to the words on that machine. Thus if the mapping is set up

such that one PDP-10 word is mapped to three PDP-11 words then for each time

the PDP-10 word count register is incremented the PDP-11 word count register

will be incremented by three. The DMA transfer is stopped when either of

the word count registers equal zero. Normally they will both hit zero at the

same time. If not the machine with the word count equal to zero can reset

the word count and the data transfer will continue without loss of continuity.

After the machine transmitting the data block is finished, it releases its

transmitting rights thus interrupting the other side, and this event is

used to indicate that the transfer is complete. It should be noted that

normally both of these interrupts occur at the same time. If something

v

66

has gone wrong, however, they will not be coincident. To conclude the

transaction the data receiver will return another short message indicating

to the data transmitter that all the data was received correctly.

Before the driver returns to the monitor for the last time it should

clear its "device active" bit and thus indicate to the other driver that it

may no longer exist in core. The "device active" bits are cleared by a

"reset" instruction on both machines, or by power up conditions. In general,

nothing can happen unless both "device active" bits are set.

The process of bootstrapping the PDP-11 is identical to the descrip

tion for loading a data block, except that everything is done automatically

by the channel hardware on the PDP-11 side rather than by software. Unlike

the software the hardware is incapable of handling error conditions that may

occur during the bootstrapping operation. If the PDP-11 is bootstrapped in

this manner, it is the only time that the PDP-11 is at the mercy of the PDP-10.

At any other time, if sufficiently comprehensive error handling routines exist

in the PDP-11 channel driving software, it is impossible for the PDP-10 to

take over control of the PDP-11. Of course if the PDP-11 software is coopera

tive then anything is possible. It is this property, that the PDP-11 is a

slave only when it wants to be, that forbids there being multiple possibly

incompatible masters for one slave. The result in such a case is chaos.

Both the PDP-11 and the PDP-10 are capable of supporting their

own monitors and operating independently of each other. The communication

channel was designed to maintain this property and thus it is impossible to

"take over control" of one processor from the other via the channel hardware

only. The major part of this security is provided by the fact that each

67

the DMA transfer of data on its side. The other aspect of security, is that

the channel hardware prevents one processor from "hanging" the other. In

other words it is impossible for one processor to prevent the other from

doing any useful work. This type of interference can take on several forms.

If during a data transfer either side hangs up the hook by clearing the "device

active" bit or by releasing transmission privileges then the other side is

informed of this event with an interrupt and the appropriate status bit set.

Basically if any change occurs in the state of the channel hardware then,

if it is appropriate to do so, the other side is informed with an interrupt

and a bit set in one of the status words indicating what condition caused

the interrupt. If for some reason one side has gone into an infinite loop

and is continually causing interrupts, faster than the other side can service

them (an interrupt is serviced when tthe bit indicating the interrupt type

in the status word is cleared) then a loss of information interrupt occurs.

At this point the appropriate thing for the processor to do is to completely

recycle the channel hardware as though it had just been started up. Each

side of the channel has one DMA enable bit and two interrupt enable bits.

The first enables the word count equals zero condition. The other enables

all of the change of state interrupts. A change of state interrupt occurs

whenever a significant change occurs in the state of the channel hardware

i.e. when the channel becomes active for one side or the other gains transmit

privileges or the other side becomes inactive, or a loss of information

occurs. The explicit state of the channel can also be read by both side.

However, this information is less important.

68

In conclusion, it is perhaps only fair to note that the construction

of the communication channel has not been without its growing pains. Most

note worthy of these is the original design of the high speed coax transmitter/

receiver cards, which developed internal oscillations, probably due to

capacitive cross coupling between circuits. It is now recognized that the

channel hardware was overdesigned in several respects, most notably speed.

It turns out that almost all the programs that use the channel are computaton

bound. Due to the care in documentation taken during the design stage the

debugging of the channel has been reasonably straight forward. The channel

has now been in limited operation for the last two months now, quite to the
satisfaction of those users concerned.

3.3. PDP-11 System Software

3.3.1. Introduction

To aid in software development and provide ease of operation the

M and M system has been written. This monitor while being specifically

designed for the PDP-11 system at CSL has many features that could possibly

recommend it to a wider user group. A general description of the system's

facilities will follow.

The M and M system is designed to run on a PDP-11/40 with memory

management option, a system console, a booting device (preferably dectape or

disk), and at least 48K of main memory. The system itself in the current

configuration requires 28K and part of a 4K buffer area (the rest will be
o

used for user request ED buffers).

3.3.2. 124K Memory Utilization

The M and M (Much Memory) system has been designed primarily to

69

make use of a hardware system with much more memory than is easily accessed

by a single user partition. Whenever possible system data structures have

been built in memory partitions that differ for the user's (either in the

kernal memory space or in transient pages). Also several monitor calls

have been provided to allow user controlled access of extended memory

(memory beyond the user's 32K address space).

At this point it would be profitable to briefly discuss the

PDP-11 paging hardware so that the methods employed in system paging will

be more clearly understood.

The PDP-11/40 memory management option consists of 16 page

descriptor registers (PDRS), 16 page address registers (PARS), and 2 status

registers (SSRO and SSR2). Of the 16 PDRS 8 are used for user addressing

(UPD0-UPD7) and 8 are for kernels addressing (XPD0-XP07). Similarly 8 of

the PARS are for user space (UPA0-UPA7) and 8 are for kernel space (XPAO-

XPA7).

The user or kernel addressing spaces are divided into 8 4K word

segments. Each of these is described by a PAR-PDR pair. The first 4K

(addresses 000000-017777) is referred to by PARO-PDRO. The next (020000-

037777) by PAR1-PDR1 and so on.

When a virtual address (16-bit) is generated by effective address

calculation, the top 3 bits are used to access one of the 8 PAR-PDR pairs in

the user or kernel maps. The PDR tells the length of the page allocated in

that 4K block of addresses, the segment access code, and the direction of

expansion. This information is used to determine if the effective address

is obtainable. If not a page fault trap occurs with information concerning

70

the fault returned in SSRO and SSR2. The PAR is used if the page is properly

accessed as a base for calculation of an 18-bit unibus address. The low order

6 bits of the effective address are sent straight through to the unibus address

lines thus selecting a byte or word in a 32 word block. The next 7 bits are

added to the selected PAR to obtain the high 12 bits of the unibus address.

The processor status (PS) is used to select the proper page map

set to use in memory addressing. If the high order 2 bits (bits 15-14) are

11 the user maps are used for all instructions excrpt MTPI and MFPI (move

to/from previous instruction space). If they are 00 the kernel maps are

used. MTPI and MFPI are used to access core locations in the address space

where traps originated from. As such these instructions fetch all address

operands from the address space selected by the high order 2 bits of the

PS and fetch (or write) data operands from (to) the address space selected

by bits 13-12 of the PS (00=kernel, ll=user). These bits are set by each

interrupt transaction so in the case of the various trap instructions (EMT,

trap, IOT, BPT) The address space from which the trap was fetched is set.

To change the user addressing space totally (as done during a

time slice) all user PARS and PDRS must be saved in a control block and
replaced with new values using the move instruction.

The M and M system uses the paging hardware in 3 basic ways. First,

much of the monitor itself is not always paged. Different system modules are

paged into core by request through user issued monitor calls (EMT instructions).

Second, a set of monitor calls are provided to allow user tasks to request

particular 4K segments to be mapped by name or by segment number (0-31),

31=device register addresses.- The M and M system allocates all core using

71

4K multiples for ease in use of the memory mangement hardware. Third,

users may elect to write applications that contain several concurrently

running processes. Each process may be allocated independent or overlapping

core segments (and therefore address spaces).

3.3.3. Input/Output Modularity and Debugging

There are two major categories of input/output equipment attached

to the PDP-11 hardware system. These are the tty-like devices and the "DMA"-

like devices. "DMA" is used to indicate non-tty rather than actual DMA(direct

memory access). All DMA devices are also "DMA" and for software purposes

both are the same (in that they both require driver modules). DMA will be

used to refer to both from now forward.

All tty-like devices are serviced through a re-entrant handler

embedded in the system file-structure programs. The DMA-like devices each

are serviced by independent device driver programs. The driver provides

the software interface from the device hardware to the DMA device independent

file handlers. To extend monitor I/O service to new classes of devices

(currently RK11 disks, CSL communications channel, and dectape are supported),

new device drivers need only be written.

The system file structure programs provide device independence

for sequential input/output among all devices (tty-like and DMA). Only

DMA devices may support direct access and multiple channel I/O (more than

one input and output channel open at once). Sequential files use monitor

controlled buffer areas created in extended memory and accessed on input/

output calls using an external page (a page reserved in the kernel address

space for various operations in extended core).

72

A debugging package is provided for system and user task debugging.

This set of routines provides trace back information after failures, trace

and breakpoint facilities, core manipulation facilities, and system status

checking. All operations of the debugging modules are designed for minimum

interaction with the routines being debugged.

All communications to the system is accomplished by the EMT trap

instruction. This instruction causes an interrupt sequence which enters

the system EMT handler. From there the appropriate system module is paged

into addressable memory and transferred to. On return the system maps are

restored.

3.3.4. Medium Zero Program

This system program is used to initialize direct access media for

M and M system file structured input/output. The initialization parameters

are obtained from the appropriate device block in the monitor (using the

device characteristics EMT).

For directory structured devices this program performs a bad

block analysis and then writes a medium directory with bad blocks flagged.

3.3.5. Multitasking and Real Time Trapping

One user address space is initialized at monitor start up time.

This space is used to run the first (root) user task. This task can then

start other tasks and start system time slicing.

The algorithm used to choose the next task when context switching

is quite simple. Any task not in wait state flagged active is a candidate.

The one actually chosen will be the one having the highest run priority

(set at task start time). If several tasks have the same priority a

73

round robin scheme is used to choose the next to run. That is, the same

task will not run twice in a row.

Context swapping consists of changing user maps, user registers,

user information in the kernel (such as project-programmer number, map saves,

etc.), and kernel stacks. Each user task is allocated a job table entry for

holding the various task specific information and a system stack. During

an entire user's time slice his system stack is used for all transactions

(including interrupts).

Timesharing (context swapping) may voluntarily be turned off by

any user task (thereby freezing that task in the user maps). Also on any

fault condition timesharing is frozen. If the fault may be recovered by

the operator and the system is continued timesharing is also continued. If

the fault is terminal the system will have to be reinitialized following any

debugging interogation by the operator.

User tasks may request that segments be mapped into kernel

address space for extremely fast interrupt processing. If slower speed

response is tolerable the user may set up an interrupt routine in his own

area. On interrupt (or timer calls) the user's routine will be paged into

the user address space and transferred to. This allows highly flexible

real-time interrupt processing in any user task.

74

3.4. Flight Equations

The following is a presentation of the equations used in the aero

dynamic simulation. An explanation of the terms involved follows the pre

sentation. The order of presentation is not necessarily the correct order

for programming the equations.

1. LIFT COEFFICIENT:
CL=CLA*ALPH+CLDE*DELE+CLAD*ALDOT+CLQ*(Q*CBAR)1(2.0*V)-CLO

2. DRAG COEFFICIENT:
CD=CDO+(CL*CL)/(PI*EO*AR)+CDDE*DELE

3. LONGITUDINAL FORCE COEFFICIENT:
CX =CL*SALPH-CD*CALPH

4. VERTICAL FORCE COEFFICIENT:
CZ=-CL*CALPH-CD*SALPH

5. PITCHING MOMENT COEFFICIENT:
CM=€MO+CMA*ALPH+CMDE*DELE+CMQ*Q*CBAR/
(2.0*V)+CL*(CG -CGREF) +CMAD*ALDOT

6. ROLLING MOMENT COEFFICIENT:
CSL=CSLDA*DELA+CSLP*P*B/(2.0*V)

7. AERODYNAMIC FORCES AND MOMENTS
(L=ROLLING MOMENT, M=PITCHING MOMENT):

XAERO=CX*QI*S
ZAERO=CZ*QI*S
LAERO=CSL*QI*S*B
MAERO=CM*QI*S*B
ACCELERATION:

8. ALONG X AXIS:
UDOT=W*Qf(XAERO+XTRST)/MASS-GZ*(-STHET)

9. ALONG Z AXIS:
WDOT=U*Q+ZAERO/MASS-GZ*CPHI*CTHET

10 OF PITCH RATE:
THDOT=Q*CPHI

75

11. OF ROLL RATE:
PHDOT=P

The aircraft rates are integrals of the above accelerations with the

following additions.

1. ROLLING RATE:
PD0T=LAER0/M0INX

2. PITCHING RATE:
0D0T=MAER0/M0INY

The pitching and rolling moments are the integrals of the above rates.

This incomplete treatment of the equations of flight is rounded out with the

fo1lowing equations•

1. AIRCRAFT VELOCITY:
V=SQRT(U*U+W*W)

2. RATE OF CLIMB:
R0C=W

The altitude is a function of some initial altitude and the integral

of the rate of climb. The heading is a function of roll angle.

EXPLANATION OF TERMS:

1. CIA LIFT CURVE SLOPE PER RADIAN
2. ALPH ANGLE OF ATTACK RADIAN
3. CLDE ELEVATOR LIFT CURVE SLOPE PER RADIAN
4. DELE ELEVATOR DEFLECTION RADIANS
5. ALDOT ANGLE OF ATTACK RATE RAD/SEC
6 CLAD ANGLE OF ATTACK RATE LIFT CURVE SLOPE PER RADIAN

76

7. CSLQ PITCHING MOMENT PITCH RATE DERIVATIVE PER RADIAN

8. Q ANGULAR RATE ABOUT THE Y AXIS RAD/SEC

9. CBAR MEAN AERODYNAMIC CHORD FEET
10. CLO LIFT COEFFICIENT AT NO ELEVATOR

DEFLECTION —

11. CDO MINIMUM DRAG COEFFICIENT —

12. CD I INDUCED DRAG COEFFICIENT —

13. CDDE ELEVATOR DEFLECTION DRAG PER RADIAN

14. CMA PITCHING MOMENT COEFFICIENT SLOPE PER RADIAN

15. CMQ PITCHING MOMENT RATE DERIVATIVE PER RADIAN

16. CMO PITCHING MOMENT COEFFICIENT AT
ZERO LIFT —

17. CMDE ELEVATOR DEFLECTION PITCHING MOMENT
COEFFICIENT PER RADIAN

18. CMAD ANGLE OF ATTACK RATE PITCHING MOMENT
DERIVATIVE PER RADIAN

19. CG CENTER OF GRAVITY:LOCATION % CHORD
20. CGREF AERO DATA REFERENCE % CHORD

21. CSLDA AILERON DEFLECTION ROLLING MOMENT
DERIVATIVE PER RADIAN

22. DELA AILERON DEFLECTION RADIANS

23. CSLP ROLLING MOMENT ROLL RATE DERIVATIVE PER RADIAN

24. P ANGULAR RATE ABOUT THE X AXIS RAD/SEC
25. B WING SPAN FEET

26. XTRSTL THRUST,LEFT ENGINE POUNDS,FORCE

27. XTRSTR THRUST,RIGHT ENGINE POUNDS,FORCE

28. MASS AIRCRAFT MASS SLUGS

77

29. XTRST TOTAL THRUST, BOTH ENGINES POUNDS,FORCE
30. QI DYNAMIC PRESSURE POUNDS PER

SQUARE FOOT
31. S WING AREA SQUARE FEET
32. GZ ACCELERATION OF GRAVITY FEET/SEC/SEC
33. W VELOCITY ALONG Z AXIS FEET/SEC
34. u VELOCITY ALONG X AXIS FEET/SEC
35. PHI BANK ANGLE RADIANS
36. MOINX MOMENT OF INERTIA ABOUT X AXIS SLUG-SQUARE FEET
37. MOINY MOMENT OF INERTIA ABOUT Y AXIS SLUG-SQUARE FEET
38. THETA PITCH ANGLE RADIANS
39. ()DOT DERIVATIVE OF () —

40. C() COSINE OF () —

41. S() SINE OF () —

42. SQRT SQUARE ROOT —

43. AR ASPECT RATIO —

44. EO OSWALD'S EFFICIENCY FACTOR

78

4. ADVANCED CONCEPTS

4.1. Planning and Execution in Incompletely Specified Environments

4.1.1. Introduction

In conventional computer applications, data is input and manip-

lated according to predefined plans specified by the programmer. Programs

are written to provide solutions to problems for which algorithms are

known. While the numerical data may be changed easily, altering the goal

of the program may require extensive modification. This type of approach

may be unacceptable in systems where the exact problem specification

is not known at the time of programming.

In order to create programs which can solve a wider variety

of problems, much time has been spent constructing systems which attempt

to make the computer "understand" the subjects with which it is dealing.

Many of the systems are planners, i.e., programs which take a goal as an

input and generate a plan which can be executed, at which time the given

task will have been satisfied.

Most of the existing high level planners such as STRIPS[4] and

PLANNER[6,14] will report a success only when a detailed plan has been

developed. These planners have primarily been applied to simple domains

in which all relevant aspects concerning the state of the world are

known to the planner. In these domains, nothing can change without the

execution of a system initiated action.

Many of the planning systems are based upon the idea that a

problem may be divided into a series of subgoals (or preconditions).

79

Any one of a number of techniques or operators can be employed in order to

try to satisfy the subgoal. A sequence of correct operators would determine

the solution. However, much of the deduction may depend upon the presence

of certain data in the database. If this data were not known at the time

of planning, then an entire section could fail. In many cases information

may be missing because of incomplete modeling of the world due to the domains

complexity. But in other cases, the overall concept may have been modeled,

but the specific piece of datum may not be "known" to the planner, much as

a person may not know what is going on in the next room.

In order to increase the complexity of the problems and domains that

can be accommodated, it is necessary to extend the capabilities of the deduc

tion languages and systems in the following areas:

The deduction mechanism must have the capability to construct plans

in a dynamic environment. By dynamic, it is meant that movements of objects

or changes in the world can occur without being merely consequences of system

actions. In this type of situation, it may be futile to formulate a detailed

plan based upon specific data when a dynamic alteration of this data may totally

invalidate the remainder of the plan. Planning for all of the possible

alternatives would, in most cases, be unfeasible due to the large number

of future states possible. One alternative would be to have a planner

which would "know" that it exists in the real world. The planner would

have the ability to vary the complexity of the plans generated according to

the situation. This would lead to a case where there would be no necessary

distinction between the planning and execution phases. In certain

cases, the plans which would be generated would be of a more

80

general nature, reflecting an outline of the important steps and tasks to

be done. As the execution progresses, new information would be received

and added to the database. This would allow more details of the plan to

be computed as execution continued.

A deductive mechanism should be able to operate in an environment

in which there is a lack of information. This would correspond to the

real world situation where a human being has to make an intelligent

evaluation when some of the facts are missing. This capability has to

be attained before the dynamic planning and execution can occur. This is

because while it may be recognized that a certain aspect of the world may

be expected to exhibit dynamic action, it may not be known what the value

would be when needed. Planning may have to continue without the definite

information. The planner must have the ability to gather new information.

Among the possible ways in which this could be accomplished are: have the

system develop a question or allow the mechanism to seek out information

by inspecting the environment using any sensory equipment available.

If it is realized that while certain possibly relevant information is not

known during the periods of initial planning, it may be possible to plan if it.

is realized that the information is to become available at some future time.

In this case, it may be necessary to analyze certain possible future states

of the world. For this, there must be a mechanism for storing global

knowledge and models concerning this unknown information. It may also be

desirable to incorporate probabilities and costs into the deductive and

decision making procedures.

81

l

l

l

I
l
1

I

I

I

la
ia
ia
i

i
i
i

4.1.2. Related Research

Research concerning the application of general deduction

mechanisms to real world problems which are dynamic in nature and/or are

incompletely specified have been extremely limited. It appears that

many of the existing systems are incapable of being extended to handle

these types of problems without extensive modifications.

PLANNER[6,14] allows strategies and relationships to be expressed

as procedures called theorems. These theorems are executed in order

to try to satisfy the problem which consists of a series of goals.

The control stucture is based upon a depth first search or backtracking.

It appears that it would be difficult to express the idea that certain

facts may not be known at a given time. PLANNER understands only one type

of failure, that being when a goal cannot be satisfied. If, however,

a goal is not satisfied not because it is "wrong" but because some of the

necessary data are missing, then a different type of failure has occurred,

a type which PLANNER cannot understand. When dealing with this "unspecified

information", it is necessary to maintain several alternatives from which

one may be chosen. Storing this type of information is very difficult

in PLANNER.

When evaluating a theorem, PLANNER treats each of its steps or

subgoals as equal. During the planning, all of these subgoals are of equal

importance. If one fails, the theorem fails. But, it appears that in

reality, subgoals have different levels of importance. This means that

more time should be spent in order to satisfy a key subgoal than a relatively

minor one. PLANNER'S depth first control structure would not allow the

82

consideration of all major subgoals first.

Many of the philosophies in PLANNER are also contained in QA4[10].

The context mechanism which is available in QA4 would allow the storage

of alternative plans resulting from different possible values of unspecified

information. QA4's limited effectiveness, as with PLANNER, arises from

the backtracking philosophy which is embedded in both the systems. The

introduction of new types of failures makes backtracking an undesirable

search technique. As in PLANNER, the inflexibility of the recommendation

lists means that once a sequence of theorems is formed, it cannot be

altered or edited. This appears to be inappropriate when desiring to alter

control as new information is determined.

C0NN1VER's[7,13] main advantages over PLANNER and QA4 are freedom

from compulsory backtracking, the inclusion of a context mechanism, and

flexible possibilities lists. The possibilities list, which specifies

the next procedure to be tried, can be inspected or edited at any time.

The control structure is based upon the frame concept[1] which allows a

total deduction environment to be maintained and continued. This allows

great flexibility in specifying how a theorem is to be evaluated. Despite

its advantages, it appears that C0NN1VER has not yet been applied in

systems which require the integration of planning and execution, such as

those dealing with dynamic situations in uncertain environments.

Much of the work which has been done concerning the problems

found in executing and planning have been outgrowths and extensions of the

STRIPS[2,3,4,5] system. STRIPS is used to generate a plan which could be

solved through the application of a sequence of operators. An operator can

83

be executed when all of its preconditions have been satisfied. The PLANNEX[6]

system takes a complete STRIPS plan and monitors its execution. Using this

system, actions may be deleted from the plan if it is determined that their

consequences are not needed. It can also recognize if necessary initial

conditions are absent, which would lead to a replan mode. It is also possible

to take solutions which have been generated and generalize them. These

MACR0PS[5] are saved and can be used to satisfy future tasks or subtasks.

STRIPS only succeeds when a complete plan has been generated. The presence of

unspecified information would in most cases lead to a failure. STRIPS would

respond to this type of failure by searching for an alternate plan.

Recent results have demonstrated that STRIPS-like systems can be

made more efficient by employing a hierarchical approach[9,11,12]. These

systems have been constructed using the principle that preconditions of an

operator are of varying importance and some should be examined and satisfied

before others. By trying to satisfy the preconditions which are most basic

or are harder to achieve first, irrelevant operators can be eliminated sooner.

The preconditions are assigned a criticality or rank. The higher valued pre

conditions represent the tasks which must be satisfied first. So in

ABSTRIPS[11], which plans in a robot and block domain the precondition that an

object be a block has a higher rank than the precondition that the block is in

a room. Both have a higher rank than a precondition which demands that a

robot or manipulator is also in the room. When a problem specification is

received, the criticality is set to a maximum value (which would contain all

predicates representing unchangable information). Preconditions with criti

cality below this value are initially ignored. A plan is constructed using

whatever techniques are appropriate to the system and domain. The plans

84

produced will satisfy all of the final conditions, but the operators specified

will only be satisfied through their most critical preconditions. As the

criticality is lowered, new preconditions are introduced for the already

specified operators. As these preconditions are satisfied, new operators are

introduced forming a more detailed plan. When the criticality has been set

to its lowest value and all preconditions have been satisfied, a complete,

detailed plan will have been constructed. While this type of planning has

proven to be more efficient that STRIPS, of more interest are the types of

plans which are generated. Some of the high-criticality plans have many of the

desired attributes of a partial plan outline. The plans do not contain every

necessary detail, but rather only the major steps which must occur. These

approaches have not been used to satisfy problems in domains which are dynamic

or incompletely specified. In [8] Minsky describes a framework for a represen

tation of knowledge which would permit the inclusion of situation dependent

default values. The scope of the world model which is considered at any

time is a function of the present environment.

4.1.3. Planning in an Incompletely Specified
and/or Dynamic Domain

Systems which are to operate in an incompletely specified, real world

environment must of necessity operate differently than the existing planners.

There must be a realization that knowledge concerning some of the relevant

portions of the world may be unavailable during some of the stages of planning.

This may be because the unknown portion of the world is outside of the system's

monitoring capability and/or may be changing as time progresses. Because of

this, the planner must realize that in many cases it is not feasible, if not

futile, to insist upon construction of a completely detailed plan before the

initiation of execution. The system must have the knowledge that missing

85

information may be obtained in various ways, such as through observation

or questioning. The system may have to plan around some of the missing

information by making reasonable assumptions.

When a problem is specified to a planning or execution system,

it may be done in several ways. The most common method is to specify

aspects of the world which must exist after the plan has been executed.

This is generally accomplished by specifying a goal state. It may also

be desirable to specify possible intermediate states which may have to be

satisfied in a certain order. Most of the existing planners place little

emphasis on how the goal state is to be achieved. There is little or no

concern about whether the plan which has been generated is optimal or

near-optimal according to any criteria. However, in more realistic

situations, people strive for a more efficient plan even though their

analysis may not include a formal statement of what is best. A planner

should also be able to accept a statement of what criteria should be used.

In these types of problem specifications, there are really only

three general methods which can be used to insure that a portion of the

goal is satisfied. First, the goal could already be true in the world

and represented in the system's world model. Second, the goal could be

true in the world model but not explicitly represented in the system's

model and it could be deduced that the goal is a logical consequence of

available information in the model. Third, it may be that the goal is not

true in either the model or the world but it is possible to perform actions

which will alter the world in such a manner that the goal will be satisfied.

The existing general purpose planners satisfy goals using these general

86

techniques.

But all of the situations above are predicated on the concept

that all relevant information is directly known or could be deduced. But

these are clearly not realistic assumptions. The world model which the

system maintains could be deficient in many ways. Some information

could be missing due to the necessary simplifications which must occur

when modeling a complicated domain. However, if some aspect of the world

were expected to be important for planning, it would surely be represented.

And some of the information could be missing because it is just not

known, no matter how relevant it may be. The latter case is of major

interest because this type of unspecification occurs in realistic problems

when a portion of the world is beyond monitoring capability or when dynamic

situations alter previously known values.

One major problem is how to recognize this type of missing

information, which will be referred to as "unknown" information. When

a precondition to an operator is encountered, it is imperative to know

whether it belongs to a previously mentioned category or is unknown

information. No matter how complete the model, certain information may

be absent if the system is solely responsible for collecting and storing

the information. But by using semantic knowledge about the world, it may

be possible to determine something about how to satisfy the preconditions.

The initial attempt to satisfy a precondition involves examining the

database in order to see if the precondition is satisfied because it is

already true. As soon as it is determined that the needed fact is not in

the database, the system checks to determine if the concept is unspecified.

87

In many cases it is possible to determine that a precondition is not

satisfied by inspecting the database for contradictory information. If this

is the case, then the system can conclude that the information is specified

and that some action is needed. Sometimes, however, sufficient information

is not available to make the determination and the system may have to

postpone the decision. Initially, research concerning unknown information

will be confined to predicates whose restrictions are limited. In these

cases the alternate values and contradictions can be expressed in a fairly

straightforward manner.

When the database is being referenced, it is not enough to find

a specific fact represented. The dynamic properties of the domain have

to be considered. Some of the attributes may change dynamically in a

random or predetermined manner. This would affect the confidence in the

truth or falsity of a fact.

In order to ascertain the value for an item of unknown information,

it is necessary to activate some type of input. This may include any sensory

device available, such as a camera for observation. It may also take the

form of a response to a question. In any case, the system must know the

appropriate methods available. It must also be aware of when types of

information can be obtained.

As has been stated, a planned solution to a task is a sequence

of actions whose execution would alter the world from an initial state

to a goal state. The proper actions are determined by evaluating operators.

The form of the operators is shown in Figure 12. The operators represent

allowable actions in a domain. They are STRIPS-like in representation but

88

(TO task

(ACTION action)

(PRECONDITIONS

(critica litypl (conditionl))

(critica lityp2 (condition2))

(criticalitypn (conditionn)))

(DELETION

(criticalitydl (deletionl))

(criticalityd2 (deletion2))

(criticalitydi (deletioni)))

(ADDITION

(criticalityal (additionl))

(critica litya2 (addition2))

(criticalityaj (additionj)))

Figure 12

89

have direct counterparts in PLANNER and CONNIVER. Each operator has a set

of preconditions which must be satisfied before the action can be executed

(either real-time or during planning). The operators have ADDITION and

DELETION lists. These represent the aspects of the world which are

expected to be altered when the action is executed. These are only used

to update the system's world model. The system is responsible for making

any observations necessary to insure that the changes in the world correspond

to the expected changes.

Each of the preconditions, additions and deletions has a number

associated with it. This is the criticality of a predicate. There is

an upper limit for the criticality in a domain. This is for concepts which

cannot be altered by any system action. The concepts represented by

predicates with lower criticalities can be changed. The criticalities

roughly represent the order in which the preconditions must be satisfied.

If there are two preconditions with different criticalities, the one with the

highest criticality is satisfied first; the lower precondition will be

satisfiable in some manner.

So, when considering an operator, the criticality is set to some

value. Any precondition with criticality below this is not considered

at that time. If all of the pertinent preconditions have been satisfied

when the criticality is 'n', it is said that the operator is satisfied

through criticality n. If all of the operators in a plan are satisfied

through criticality 1, the a complete, detailed plan should have been

generated.

A significant research area concerns how to satisfy the prerequisites

and the development of a control structure which would facilitate the

90

efficient construction of intelligent plans. The conventional methods

for satisfying the prerequisites have been described above. Research is

being conducted concerning the possibility of considering a prerequisite

to be satisfied by "assumption" at certain levels of criticality and

stages of planning. In these cases, a precondition may be assumed to be

satisfied (or satisfiable) at an early planning stage. The system must

be aware of the assumptions being made and have reasons for these actions.

To date, several classes of assumptions and their reasons have been

formulated. The most basic is a low-criticality precondition. In most

cases it is possible to assume that a precondition with a criticality

below some cutoff can be satisfied. This is because this type of pre

condition was to be constructed as an easily done detail. The criticality

cutoff could be determined by the stage of planning, the domain used as

well as the system’s knowledge of what tasks could always be accomplished.

Another type of assumption is called a logical assumption.

This type of assumption originally would occur when unknown information

was involved. The various possible values would have been examined.

If, for each case it was determined that the precondition could be satisfied,

the precondition would be assumed to be logically satisfiable. The infor

mation derived from searching all of the possibilities should some how

be saved so that an assumption could be made if the proper conditions are
met.

In many cases a precondition can be assumed to be satisfiable

if certain relationships exist between the precondition of the operator

being evaluated and the precondition of any operator used to satisfy the

91

original precondition. This is called a dominance assumption. An operator,
0P1, is defined to dominate another operator, 0P2, if all of 0P2's pre

conditions are among the preconditions of 0P1 with the same relationship

restricting any variables for which values have not been determined. Now,

if a precondition of 0P1 may be possibly satisfied by the application of

0P2, then the precondition may be assumed to be satisfiable by dominance.

In the previous two cases, the assumptions which could be made

are very dependent upon the planning environment which exists when a

precondition is encountered. Hopefully, this will lead to a system which

has a better knowledge of what it is trying to accomplish at any given

time as well as a knowledge of situation methods of dealing with the

preconditions.

The last type of assumption which has thus far been considered

has been called a linkage assumption. This type of assumption arises

because the lack of knowledge concerning the exact order of execution of a

plan satisfying part of a top level goal will cause unknown information to

exist. In this case the information is known in the real world but: may be

altered during planning of another plan. In many cases the overall goal

will be divided into subplans, each of which is developed independently.

The exact order in which the plans will be executed may not be known at

the time of planning. When trying to satisfy certain preconditions, a

planner may examine the real-world database (as opposed to a local, planning

database). But information found in the real world database may be altered

by other subplans by the time the subplan is actually executed. The system

must have knowledge of whether database entries are expected to change.

92

For those that are expected to change, the appropriate assumption may be that

the precondition will be satisfiable during the execution phase.

The last type of assumption mentioned is basically restricted to

attributes which are expected to change. There are some types of information

which are not expected to change (even though they may). In these cases,

the system may use values found in the latest real world model. But these

should be noted in the plan being produced.

Another problem concerns when the system should initiate execution.

This also involves the question of how detailed should the planning be.

In theory, the execution could be initiated during any stage of planning.

However, a more realistic approach would have the execution begin when a

"reasonable" plan has been developed. In some cases the initial course of

action may be so well defined (or may be the only alternative) that the

system may decide to start execution before the initial planning has terminated.

Observations, which are a type of execution, could be performed at any time

during planning or execution if the proper conditions occur in the real world.

After the plan outlines satisfying portions of the top level goals

have been generated, it is necessary to link them into a coherent plan

outline. To do this, an order of execution must be determined and intermediate

connecting programs must be developed. The subplans are classed according

to the criticalities of the tasks which are satisfied. An attempt is

made to link the highly rated subplans to the initial world. When a "shortest"

linkage is found to a subplan, this subplan is assumed to be executed next.

Linkage is attempted between the remaining subplans and the world model of

93

the most recently assumed executed subplan. This continues until all of

the subplans have been linked.

Among the major problems which still must be considered for effective

linking include: how to distinguish between the case when two subplans of

different criticalities have the same initial environment condition and

should be executed consecutively and the case when the lower criticality

subplan must be executed with subplans of its own criticality to avoid

making other subplans undoable; what types of searches are necessary to

promote the most "efficient" linkage for the entire plan. Surely a most

efficient first linkage is not enough.

It would be very desirable to have the system be aware not only of

what part of the plan it is executing but also the knowledge needs and

preconditions of other subplans. In the present formalation, an attempt

is being made to obtain this type of performance. When observations are

needed and the necessary environment does not exist, the required environment

would be stored so that should the opportunity arise, the observations

could be made. Certain aspects of the world could be protected as pre

conditions for future subplans, top-level goals as well as any currently

active operators. If a subplan tries to undo another subplan's initial

assumptions, the planner being constructed will be warned of this.

In some cases, while a plan is being executed and during an

observation, some previously unknown information is acquired. This new

information may lead the system to re-evaluate the manner in which the overall

goal is to be satisfied. This may involve satisfying a subgoal with a

different operator and/or altering the order in which subplans are executed.

94

For this type of performance to occur, the system must be aware of some of

the important possible cases: new information leading to alternate plans,

and new information leading to short cuts.

When trying to satisfy a goal, the system may be considering

several possible approaches. A situation which can occur is that after

planning has been successful through a certain criticality, a failure

due to unknown information is encountered. In the previous cases discussed,

it was possible to "assume" that the precondition could be satisfied,

but this is not always the case. If the unknown precondition is found to

be satisfied, the system should be able to pause and consider the new

information. If a new subplan were found which was expected to be superior,

the linkages may have to be reformulated. In most cases, it is not expected

that this would alter the composition of other subplans. When the subplan

is being reformulated, other unknown failures may still be encountered

which may dissuade the system from pursuing these paths.

The possibility of a short-cut also may occur when a failure due

to unknown information is encountered during planning. In this case,

the operator which was being considered when the failure occurred is later

found to be potentially useful in the finally constructed plan. To deter

mine this, the system examines the failure and subplan produced and asks

the questions: 1) Is the operator which was being examined when the

failure occurred still potentially useful in that the change the action

would have yielded was realized in some manner later on in the plan (or more

precisely, did planning continue until a subplan to realize the action goal

was obtained)? 2) If the failed precondition were assumed to be true,

95

would all of the operator's preconditions be satisfied or satisfiable to a

certain criticality?

If these conditions are met, then the plan should be altered to

indicate that if the precondition is found to be true, an alternate

shorter subplan could replace part of the plan without affecting any

of the other linkages or subplans. It is hoped that this type of planning

will not only make the system more responsive to new information which is

received, but will also allow the system to demonstrate a better under

standing of what it is trying to do at all levels of planning and execution-,

In some of the situations being considered, the cost of performing

an action and probabilities of the possible values of the unknown informa

tion have been included as unspecified parameters. It is sometimes possible

to judge the superiority of one plan over another with only this information.

4.1.4. Conclusions

Systems which are to be able to plan and execute solutions to real

world problems must be able to plan in incompletely specified environments.

The system should have the knowledge that certain relevant information

may not be known at all stages of planning. The system should be able to

form a plan outline indicating the "major" steps. For various situations,

it should be able to assume that certain tasks are satisfiable, deferring

planning until a time just before execution. The system should have the

ability to initiate execution beforeplanning has terminated. As new

information is received, the plan and/or flow of execution should be modifiable.

I

96

When planning for CADM, the system should be cognizant of the

overall mission outline. Using knowledge of pilot and system capabilities,

the plan which is constructed should be compatible with the mission

objective.

REFERENCES

1. Bobrow, D-, and Wegbreit, B., "A Model for Control Structures for
Artificial Intelligence Programming Languages," Third International
Conference on Artificial Intelligence, Stanford, California,
August, 1973.

2. Fikes, R., "Failure Tests and Goals in Plans," Artificial Intelligence
Group Technical Note 53, Stanford Research Institute, March, 1971.

3. Fikes, R., "Monitored Execution of Robot Plans Produced by STRIPS,"
Artificial Intelligence Technical Note 55, Stanford Research Institute,
April, 1971.

4. Fikes, R., and N. Nilsson, "STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving," Artificial Intelligence, Vol. 2,
Nos. 3/4, 1971.

5. Fikes, R., Hart, P. and Nilsson, N., "Learning and Executing Generalized
Robot Plans," Artificial Intelligence, Vol. 3, No. 4, 1972.

6. Hewitt, C., "Description and Theoretical Analysis (Using Schemata) of
PLANNER: A Language for Proving Theorems and Manipulating Models in
a Robot," Ph.D. Thesis, Department of Mathematics, Institute of
Technology, 1972.

7. McDermott, D., and Sussman, G., "The CONNIVER Reference Manual,"
Artificial Intelligence Memo No. 259, Massachusetts Institute of
Technology, May, 1972.

8. Minsky, M., "FRAME-SYSTEMS: A Framework for Representation of Knowledge,"
to be published, November, 1973.

9. Nilsson, N., "A Hierarchical Robot Planning and Execution System,"
Stanford Research Institute Report Project 1187, April, 1973.

10. Rulifson, J., Derksen, J., and Waldinger, R., "QA4: A Procedural
Calculus for Intuitive Reasoning," Artificial Intelligence Technical
Note 73, Stanford Research Institute, November, 1972.

97

11. Sacerdoti, E., "Planning in a Hierarchy of Abstraction Space," Third
International Joint Conference on Artificial Intelligence, August, 1973.

12. Siklossy, L., and Dreussi, J., "An Efficient Robot Planner Which
Generates Its Own Procedures," Third International Joint Conference on
Artificial Intelligence, August, 1973.

13. Sussman, G., "Why Conniving is Better Than Planning," FJCC, 1972.

14. Sussman, G., Winograd, T., and Charniak, E., "MICRO-PLANNER Reference
Manual," Artificial Intelligence Memo 203A, Massachusetts Institute
of Technology, December, 1971.

98

4.2. Man-Computer Systems

4.2.1. Introduction

The design of man-computer systems presents an array of traditional

problems as well as new problems that become especially significant when the

computer system has some "intelligence". We have more experience with the

traditional problems and some definitive answers exist. However, there is

little research upon which to base solutions to the new problems. In this

section of this report, we will discuss approaches to both types of problems.

4.2.2. Displays and Controls

Traditional display and control considerations are what to display,

how to display it, and what form inputs should take. The question of what to

display could easily be answered if we knew what information the pilot needed

to make his decisions (Williams, 1947). Unfortunately, we have not completely

answered this question in the almost 30 years since Williams' report. The

result is that designers tend to give the decision maker (DM) any piece of

information they think he might use. This can result in an information glut,

increased workload, and degraded performance.

Based on a recent survey (Rouse, 1975), we can make some general

design recommendations for displays and controls for man-computer systems.

Display parameters of importance include luminance, contrast, regeneration

rate, character size and generation method, interpolation schemes, and displays

for quantitative information.

The preferred values for luminance, contrast, and regeneration rate

are 50 ML, 94%, and 50 HZ, respectively. Characters should subtend 15 minutes

of arc and dot matrices should be at least 10 in height with a height to width

ratio of 7:5 to 3:2. Linear interpolation for the display of discrete

99

information can bias the statistical properties of the information which

can in turn degrade DM's performance. Higher order interpolations seem to

lessen this difficulty except they are much more difficult to generate in

real time. For static reading of quantitative information, digital displays

(counters) are preferred while for dynamic reading, hybrid displays (counters
and dials) are appropriate.

The question of how to display information is also affected by

the status quo in the sense that one could not expect pilots, or any other

DM, to learn a completely new set of conventions, jargon, etc. Thus, display

choices must allow for smooth transfer of training.

„ While the inputs required from DM are fairly well defined by the

task, the form of the inputs is reasonably free to innovation. (Again,

with the transfer of training constraint.) However, many of the numerous

input devices available to the self-paced, non-moving DM are not practical

for a DM who is the operator of a highly dynamic vehicle in a forced-pace

situation.

There are numerous input devices for man-computer interaction.

However, devices such as keyboard, light pen, rand tablet, and the SRI mouse

are inappropriate since the keyboard is awkward and its data input rate is

low. Light pens and styluses are easily misplaced. The mouse could easily

lose its orientation in a dynamic environment. . Joysticks, trackballs, and

small keyboards (E.G., "touchtone") are more appropriate for the operator

of a vehicle, pilots are familiar with joysticks. The 4 X 3 keyboard was

used on Apollo. Thus there are precedents for these devices.

4.2.3. Task Allocation and Conflict Resolution

Perhaps the most crucial issue in the area of man-computer interaction

100

is the allocation of tasks and responsibility between DM and the computer.

While we have a general feeling for what each should do (Licklider, 1960),

reducing these principles to practice is often very difficult. Part of this

difficulty stems from the computer not being able to perform many of the

tasks that one would like to allocate to it. However, artificial intelligence

(AI) may, in the future, produce systems capable of such performance.

The allocation of tasks between DM and AI presents three basic

difficulties. While one might consider giving AI any task that it could

perform acceptably, this may be inappropriate. DM should be given a task

or sequence of actions that has some coherency (if only for motivational

reasons). In addition, there is a possibility of underloading the DM

which results in vigilance problems and degraded performance. Thus, if the

human is to be part of the system, maintaining his overall performance

may require that he be allocated some tasks that he performs at a level

inferior to that of the computer.

Another issue that must be considered is DM’s confidence in AI.

If DM is to willingly give some decision making responsibility to AI, he

must be confident that AI is competent and operational (has not failed).

Thus, DM needs some feedback on what AI is doing. However, DM does not want

to know the details since it is unlikely that DM has the time to consider

such additional information. (Or, why is the computer being used in the

first place?)

Further difficulties stem from what we will call ’’competitive

intelligence". With the feasibility of DM and AI sharing responsibility

for tasks, the possibility emerges that DM and AI may not agree on what to

101

do. In a self-paced task, this would not be too difficult to arbitrate since

DM and AI could pause for a moment and debate the relative merits of each

other's approach. Most likely, DM would be left with the final decision of

whose approach to adopt. However, in a forced-pace, highly dynamic situation,

there is no time for debate. A competitively-intelligent system might result

in a much higher workload for DM since he would have to continually monitor

AI. In some situations, competitive intelligence might lead to system instability.

The solution is to design a "cooperatively intelligent" system.

Now we will consider the above ideas in more detail and suggest how

we might solve the problems posed by these difficulties.

An initial consideration is the characterization of the decision

making abilities of AI. The real world is not as neat and regular as the

Laboratory and it is unrealistic to think that AI will out-perform DM in any

robust set of tasks. AI has yet to perform many, if any, comprehensive human

information processing and decision making tasks (Miller, 1974). Yet, AI

need not perform a task better than DM to justify allocating responsibility

for that task to AI. If DMhasmany tasks to perform, he may not be able to

devote sufficient time to each task to achieve acceptable overall performance.

If AI could perform tolerably well in some of the tasks, DM would be free to

concentrate on a smaller set of tasks.

What tasks should AI perform? An initial and naive approach is

to allocate to AI any task or subtask that it can perform at an acceptable

level. This can present severe difficulties if DM and AI perform subtasks

of the same task or highly intersecting tasks. The problem is that the

actions which DM and AI initiate may be jointly counterproductive. In some

102

situations, they may be working against each other and not realize it. Or,

they may realize it, but see no alternative. This phenomenon is competitive

intelligence. As a perhaps unrealistic example, consider a situation where

a pilot decides to dump fuel to solve an aircraft imbalance problem while

AI decides to re-route fuel to solve the same problem. The result would be

a loss of fuel without correcting the imbalance problem, not to mention the

wasted attention of the pilot and AI.

A solution to the competitive intelligence problem might be to

allocate to DM and AI sets of tasks that have little intersection (across

decision makers). This may be appropriate in some situations, but it is

difficult to construct sets of tasks with completely independent consequences.

For example, a highly integrated system like an aircraft results in sets of

tasks with many interdependencies.

If tasks are to intersect, DM and AI must know what each other is

doing. DM could memorize all of AI's decision making procedures and thus

be able to react appropriately to AI's decisions. However, this would

probably result in increased workload and certainly more training. An

alternative is to have AI know (or learn) DM's procedures and adapt its

actions to DM's so as to maximize system performance. This type of system

would exhibit cooperative intelligence.

Reconsidering allocation of tasks, DM and AI should each be given

coherent sets of tasks with as little intersection across decision maker

responsibility as possible. AI should respond in its tasks according to

both the system state and what the DM is doing. This sounds rather neat

yet two other issues need to be discussed before we look at the ramifications

103

of these ideas for CADM.

While an AI system like that described above might remove some of

DM's processing load, it will not necessarily do so, since there is a non-zero

probability that AI will "hang-up" or experience a hardware failure, DM still

must monitor AI. If this probability is high, DM might actually spend more

time monitoring AI than he would have spent if he had performed the tasks

himself. A solution to this problem might be to let AI monitor itself. In

other words, AI should be able to determine when it knows what it is doing,

when it is having difficulty, and when it cannot handle a problem normally

assigned to it. (Naturally, this approach assumes that AI has sufficient

intelligence to know how intelligent it is.)

This is the principle upon which we based the green, yellow and

red indicators noted in an earlier section. With these indicators, the

pilot need not be concerned with the details of what AI is doing and only

need divert his attention if some difficulty arises. While this approach

partially handles the problem of DM knowing how AI is doing, it does depend

on putting self-monitoring capability in AI and on the pilot being confident

in AI.

A last issue to consider is dynamic allocation of tasks. When AI

experiences difficulty or DM is facing an increased workload situation, they

may want to shift responsibility for some tasks. In the first situation,

when AI is having trouble, the difficulty is in smoothing transitions of

responsibility. How do you give to DM all the information that AI has been

using but DM has not been considering? The second situation where DM wants

to shift some responsibility to AI is less difficult since AI would have

104

been keeping track of what DM was doing. However, defining exactly what DM

wants AI to do may be somewhat difficult unless there are only a rather

restrictive set of alternatives. Dynamic task allocation has not been

considered in much detail during this phase of the CADM project. It will

be discussed later in this report as a possible avenue of future work.

REFERENCES

1. Licklider, J. C. R., "Man-Computer Symbiosis", IEEE Transactions on Human
Factors in Electronics, Vol. HFE-1, No. 1, pp. 4-11, 1960.

2. Miller, G. A., "Needed: A Better theory of cognitive organization", IEEE
Transactions in Systems, Man and Cybernetics, Vol. SMC-4, No. 1, pp. 95-
97, 1974.

3. Rouse, W. B., "Design of Man-Computer Interfaces for On-Line Interactive
Systems", Proceedings of the IEEE, Special Issue on Interactive Computing,
Vol. 63, No. 6, June 1975, in press.

4. Williams, A. C., Jr., "Preliminary Analysis of Information Required by
Pilot's for Instrument Flight", unpublished report, 1947, reprinted in
Aviation Research Monographs, Vol. 1, No. 1, pp. 1-17, 1971.

105

5. FUTURE PLANS

At this point, after successfully demonstrating a fundamental

capability to apply the concepts of Artificial Intelligence to the detection

and correction of single and multiple failures in a simplified airplane

system, we plot the course for our future research efforts. The choices

of directions were many and may have taken any of several diverse paths.

But in designing a suggested approach for Phase 3, an effective and expedient

balance has been maintained between the development of new ideas and physical

demonstration of their feasibility.

Basically our distinct choices were whether to concentrate on

filling out our present system to discover and demonstrate its ultimate

capability, or whether to launch out into more long range problems that

challence the state-of-the-art in Artificial Intelligence. Because of the

assumed desirability of performing both research and demonstration, a coherent

selection of tasks from each group have been chosen to be accomplished. Of

the many available tasks, we have chosen to focus on those which exhibit or

improve CADM flexibility and ability to accommodate different operating

environments. The key criteria in attaining these goals are the degrees to

which we are able to integrate an advanced CADM and appropriate pilot-CADM

interaction so that true cooperative intelligence emerges.

Numerous first order extensions to our airplane failure model have

been considered. For instance, we propose to expand our present airplane

system to incorporate sensitivity to mission profile changes. This is

discussed more fully in the proposed navigati on system task below. The

106

impact on our present CADM failure model is a required dynamic reordering

(according to whether the plane is landing, taking off, cruising, etc.)

of our presently static hierarchy of failures, both as to criticality and

to order of steps within the failure correction program. Additionally, we

propose to investigate and expand the degrees of pilot-CADM interaction

our present system allows. The slow interface between the operating programs

and the current data base in our present model may be obscuring a potentially

rich and interesting area. For instance, the "ultimate degraded mode", i.e.,

partical or complete CADM failure requiring (hopefully intelligent) transfer

of some or all tasks to the pilot might offer some formidable problems. So

also might the re-assumption of some tasks by CADM if repair or restructuring

of CADM during the mission is accomplished.

Additionally, we propose to add a navigation system to our model

so that a wider variety of more interesting and realistic problems may be

attacked. The present airplane dynamic model seems sufficient for our

tasks and we anticipate no further attempts to complicate it. Rather, we

propose to expand the demonstration to include activities, situations, and

data originating outside the aircraft. We propose a navigation task that

requires the airplane to travel from one point on an xy plane to another

with limited aircraft resources and with external obstructions such as

weather storms, fixed ground obstacles, and other moving aircraft. The

navigation task allows us to introduce an uncertainty factor as well as to

increase the complexity of the data base. The current simulation lacks this

aspect of the real world. At present all failures have known penalities

and all alternative actions have known benefits. Not only is it important

107

to have uncertainty in the simulation, but also it is necessary to bring in

the concept of mission goals. The success or failure of a CADM system in

actual flight operations will be measured by whether or not it helps to

achieve these mission goals. These goals go beyond the "keep the airplane

flying" concept we currently use. There are, in fact, several constraining

facts of flight which a decision maker must take into account (ROSCOE-MAN

AS A PRECIOUS RESOURCE:-). These include:

-the performance characteristics and present

condition of the aircraft;

-the presence and flight paths of traffic in

the vicinity;

-the weather both local and enroute;

-the geography and topography of the terrain over

which and against which the flight is made;

-any characteristics of the crew that would impose

limits on the flight; and

-the body of rules that governs flight in that

particular airspace.

A navigation task will provide a vehicle for presenting these constraining

facts of flight to the pilot-CADM system.

A necessary prerequisite for a viable simulation at Aviation Research

Laboratory will be a higher bandwidth communication link between ARL and CSL

computers than now exists. A synchronous 9600 baud telephone line connection

will be built for this purpose. This will require support hardware and

108

software on the CSL PDP-11 as well as some time on the CSL PDP-11. The current

phase will see the installation of the equipments and writing of the necessary

software for this link.

In the effort to complete our degraded mode operation analysis,

making CADM a learning machine that attempts to discover why its choices of

action were not successful, one that has some self model so that elementary

automatic programming and debugging is done seems fruitful for investigation.

This is a logical first step in discovering a weapon system that refines its

judgements and improves with age and experience, in much the same way a pilot

does. For example, the ability to abandon a slow failure correction procedure

and opt for a faster one that suddenly becomes available is fundamental to

efficiency and intelligence. This is relevent where any one of a number of

multiple failures may be occupying (and then releasing for use by other

failures) software failure correction procedures. Along similar lines, CADM

as a problem solver that expands its data base and performs logical deduction

and decision making will be investigated. For instance, during an attempt

to correct a failure, CADM may discover that a usually effective correction

procedure suddenly has no effect. CADM should then hypothesize that all air

system components required by this procedure are inoperative and create a list

of these components. CADM should then drop from or retain on the list

components successfully or unsuccessfully used by other correction procedures

until the defective component has been identified. Additionally, though it

is not clear at this point that adaptive failure correction, i.e., trying to

decide before beginning correction which procedure is likely to be more

efficient, is more intelligent or faster than hierarchical list processing

109

CADM now does, this also appears to be a fertile area of investigation.

We also propose that the advanced Phase 3 CADM be able to operate

effectively with some incomplete and possibly conflicting data. For instance,

in addition to the weather and traffic uncertainties previously discussed,

we plan to expand our airplane system to allow sensor failure and redundant

sensor conflict. CADM will then be extended to cope with the situation.

Of utmost necessity during Phase 3 is the enhancement of the

symbiotic relationship between the pilot and CADM. We propose to concentrate

on four main efforts. First, the data displays and techniques necessary for

effective interface will be investigated. The MASTER MONITOR DISPLAY may be

enhanced to allow the pilot to request more detailed information about the

aircraft. This additional information may be presented in the form of

annotated schematics perhaps in a manner similar to Hughes (Hughes, 1974).

Also we want to allow some form of direct pilot-CADM communication.

The second main effort will be that of proving the feasibility

of using a model to predict pilot perceptions. This will probably require

more than a single parameter per axis. It would seem that variations in

the crossover model time delay would give additional information about the

pilot's allocation of attention. Thus, these parameters (one for each axis)

will be identified instead of assuming them fixed. We also plan to look at

various identification algorithms and consider sample size, time, and

accuracy tradeoffs.

A third effort will consider dynamic task allocation. This will

include investigation of the human's ability to make such allocation

decisions as well as how masses of information can be transferred with

110

I

I

I
1
1
I
I
I
I

1

i

I

l
i
I
I
i

i
i

the responsibility for a task. Also of interest is CADM's ability to make

allocation decisions and thereby lessen the pilot's decision making load.

The fourth major effort is the rigorous experimental evaluation

of program intelligence to the pilot. Subjects will perform various flight

maneuvers with and without CADM detecting and correcting failures. With

these experiments, we will be able to determine whether or not CADM signifi

cantly affects the overall system performance and how the effects are related

to the difficulty of the pilot's task.

In conclusion, our Phase 3 research effort will focus on four key

attributes: flexibility, interaction, the ability to take advantage of past

experience, and compatibility with present and future Phase 4 goals. The

proposed navigation task will provide an efficient transition to Phase 4,

which requires a system demonstration using facilities at the Aviation

Research Laboratory (ARL). The ARL, through ongoing research has developed

physical resources and a capability for research on navigation problems. By

orienting the CADM task toward this general area, we can take advantage of

equipments and software that already exist. The flexibility is dictated by

the multi-mission multi-profile aircraft that will operate during the 1980's.

Interaction is necessary for pilot confidence and for efficiency in dynamic

task allocation. Ability to change parameters, procedures, or structure

based on prior failures and successes seems basic to intelligence, whether

real or artificial. Our thrust will be to provide an expanded airplane

subsystem, an advanced CADM capable of operating in environments containing
t

some uncertainty, and an expanded and improved pilot-CADM interface.

