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Abstract. To deal with large amounts of data while offering high avail-
ability, throughput and low latency, cloud computing systems rely on
distributed, partitioned, and replicated data stores. Such cloud storage
systems are complex software artifacts that are very hard to design and
analyze. We argue that formal specification and model checking analysis
should significantly improve their design and validation. In particular, we
propose rewriting logic and its accompanying Maude tools as a suitable
framework for formally specifying and analyzing both the correctness and
the performance of cloud storage systems. This chapter largely focuses on
how we have used rewriting logic to model and analyze industrial cloud
storage systems such as Google’s Megastore, Apache Cassandra, Apache
ZooKeeper, and RAMP. We also touch on the use of formal methods at
Amazon Web Services.

1 Introduction

Cloud computing relies on software systems that store large amounts of data
correctly and efficiently. These cloud systems are expected to achieve high per-
formance, defined as high availability and throughput, and low latency. Such
performance needs to be assured even in the presence of congestion in parts of
the network, system or network faults, and scheduled hardware and software up-
grades. To achieve this, the data must be replicated across both servers within
a site, and across geo-distributed sites. To achieve the expected scalability and
elasticity of cloud systems, the data may need to be partitioned. However, the
CAP theorem [11] states that it is impossible to have both high availability and
strong consistency (correctness) in replicated data stores in today’s Internet.
Different storage systems therefore offer different tradeoffs between the levels of
availability and of consistency that they provide. For example, weak notions of
consistency of multiple replicas, such as “eventual consistency,” are acceptable
for applications, such as social networks and search, where availability and effi-
ciency are key requirements, but where one can tolerate that different replicas
store somewhat different versions of the data. Other cloud applications, including
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online commerce and medical information systems, require stronger consistency
guarantees.

The key challenge addressed in this chapter is:

How can cloud storage systems be designed with high assurance that they
satisfy desired correctness, performance, and quality-of-service require-
ments?

1.1 State of the Art

Standard system development and validation techniques are not well suited for
addressing the above challenge. Designing cloud storage systems is hard, as the
design must take into account wide-area asynchronous communication, concur-
rency, and fault tolerance. Experimentation with modifications and extensions
of an existing system is often impeded by the lack of a precise description at
a suitable level of abstraction and by the need to understand and modify large
code bases (if available) to test the new design ideas. Furthermore, test-driven
system development [32]—where a suite of tests for the planned features are
written before development starts, and is used both to give the developer quick
feedback during development, and as a set of regression tests when new features
are added—has traditionally been considered to be unfeasible for ensuring fault
tolerance in complex distributed systems due to the lack of tool support for
testing large numbers of different scenarios.

It is also very difficult or impossible to obtain high assurance that the cloud
storage system satisfies given correctness and performance requirements using
traditional validation methods. Real implementations are costly and error-prone
to implement and modify for experimentation purposes. Simulation tool im-
plementations require building an additional artifact that cannot be used for
much else. Although system executions and simulations can give an idea of the
performance of a design, they cannot give any (quantified) assurance on the
performance measures. Furthermore, such implementations cannot verify con-
sistency guarantees: even if we executed the system and analyzed the read/write
operations log for consistency violations, that would only cover certain scenarios
and cannot guarantee the absence of subtle bugs. In addition, nontrivial fault-
tolerant storage systems are too complex for “hand proofs” of key properties
based on an informal system description. Even if attempted, such proofs can be
error-prone, informal, and usually rely on implicit assumptions.

The inadequacy of current design and verification methods for cloud storage
systems in industry has also been pointed out by engineers at Amazon in [34]
(see also Section 6). For example, they conclude that “the standard verifica-
tion techniques in industry are necessary but not sufficient. We routinely use
deep design reviews, code reviews, static code analysis, stress testing, and fault-
injection testing but still find that subtle bugs can hide in complex concurrent
fault-tolerant systems.”



1.2 Vision: Formal Methods for Cloud Storage Systems

Our vision is to use formal methods to design cloud storage systems and to pro-
vide high levels of assurance that their designs satisfy given correctness and per-
formance requirements. In a formally-based system design and analysis method-
ology, a mathematical model S describes the system design at the appropriate
level of abstraction. This system specification S should be complemented by
a formal property specification P that describes mathematically (and therefore
precisely) the requirements that the system S should satisfy. Being a mathemat-
ical object, the model S can be subjected to mathematical reasoning (preferably
fully automated or at least machine-assisted) to guarantee that the design sat-
isfies the properties P . If the mathematical description S is executable, then it
can be immediately simulated; there is no need to generate an extra artifact for
testing and verification. An executable model can also be subjected to various
kinds of model checking analyses that automatically explore all possible system
behaviors from a given initial system configuration. From a system developer’s
perspective, such model checking can be seen as a powerful debugging and testing
method that can automatically find subtle “corner case” bugs and that automat-
ically executes a comprehensive “test suite” for complex fault-tolerant systems.
We advocate the use of formal methods throughout the design process to quickly
and easily explore many design options and to validate designs as early as possi-
ble, since errors are increasingly costly the later in the development process they
are discovered. Of course, one can also do a postmortem formal analysis of an
existing system by defining a formal model of it in order to analyze the system
formally; we show the usefulness of such postmortem analysis in Section 2.

Performance is as important as correctness for storage systems. Some for-
mal frameworks provide probabilistic or statistical model checking that can give
performance assurances with a given confidence level.

What properties should a formal framework have in order to be suitable for
developing and analyzing cloud storage systems in an industrial setting? In the
paper [33], Chris Newcombe of Amazon Web Services, the world’s largest cloud
computing provider, who has used formal methods during the development of key
components of Amazon’s cloud computing infrastructure, lists key requirements
for formal methods to be used in the development of such cloud computing
systems in industry. These requirements can be summarizes as follows:

1. Expressive languages and powerful tools that can handle very large and com-
plex distributed systems. Complex distributed systems at different levels of
abstraction must be expressible without tedious workarounds of key concepts
(such as, e.g., time and different forms of communication). This requirement
also includes the ability to express and verify complex liveness properties.
In addition to automatic methods that help users diagnose bugs, it is also
desirable to be able to machine-check proofs of the most critical parts.

2. The method must be easy to learn, apply, and remember, and its tools must
be easy to use. The method should have clean simple syntax and semantics,
should avoid esoteric concepts, and should use just a few simple language



constructs. The author also recommends against distorting the language to
make it more accessible, as the effect would be to obscure what is really
going on.

3. A single method should be effective for a wide range of problems, and should
quickly give useful results with minimal training and reasonable effort. A
single method should be useful for many kinds of problems and systems,
including data modeling and concurrent algorithms.

4. Modeling and analyzing performance, since performance is almost as impor-
tant as correctness in industry.

1.3 The Rewriting Logic Framework

Satisfying the above requirements is a tall order. We suggest the use of rewriting
logic [29] and its associated Maude tool [12], and their extensions, as a suitable
framework for formally specifying and analyzing cloud storage systems.

In rewriting logic, data types are defined by algebraic equational specifica-
tions. That is, we declare sorts and function symbols; some function symbols are
constructors used to define the values of the data type; the others denote de-
fined functions functions that are defined in a functional programming style using
equations. Transitions are defined by rewrite rules of the form t −→ t′ if cond ,
where t and t′ are terms (possibly containing variables) representing local state
patterns, and cond is a condition. Rewriting logic is particularly suitable for spec-
ifying distributed systems in an object-oriented way, in which case the states are
multisets of objects and messages (traveling between the objects), and where an
object o of class C with attributes att1 to attn, having values val1 to valn, is
represented by a term < o : C | att1 : val1, ..., attn : valn >. A rewrite
rule

rl [l] : m(O,w)
< O : C | a1 : x, a2 : O’, a3 : z >

=>
< O : C | a1 : x + w, a2 : O’, a3 : z >
m’(O’,x) .

then defines a family of transitions in which a message m, with parameters O and
w, is read and consumed by an object O of class C, the attribute a1 of the object
O is changed to x + w, and a new message m’(O’,x) is generated.

Maude [12] is a specification language and high-performance simulation and
model checking tool for rewriting logic. Simulations—which simulate single runs
of the system—provide a first quick initial feedback of the design. Maude reach-
ability analysis—which checks whether a certain (un)desired state pattern can
be reached from the initial state—and linear temporal logic (LTL) model check-
ing—which checks whether all possible behaviors from the initial state satisfy a
given LTL formula—can be used to analyze all possible behaviors from a given
initial configuration.



The Maude tool ecosystem also includes Real-Time Maude [35], which ex-
tends Maude to real-time systems, and probabilistic rewrite theories [3], a speci-
fication formalism for specifying distributed systems with probabilistic features.
A fully probabilistic subset of such theories can be subjected to statistical model
checking analysis using the PVeStA tool [4]. Statistical model checking [42] per-
forms randomized simulations until a probabilistic query can be answered (or
the value of an expression be estimated) with the desired statistical confidence.

Rewriting logic and Maude address the above requirements as follows:

1. Rewriting logic is an expressive logic in which a wide range of complex
concurrent systems, with different forms of communication and at various
levels of abstractions, can be modeled in a natural way. In addition, its
real-time extension supports the modeling of real-time systems. The Maude
tools have been applied to a range of industrial and state-of-the-art academic
systems (see, e.g., [30,38]). Complex system requirements, including safety
and liveness properties, can be specified in Maude using linear temporal
logic, which seems to be the most intuitive and easy-to-understand advanced
property specification language for system designers [47]. We can also define
functions on states to express nontrivial reachability properties.

2. Equations and rewrite rules: these intuitive notions are all that have to be
learned. In addition, object-oriented programming is a well-known program-
ming paradigm, which means that Maude’s simple model of concurrent ob-
jects should be attractive to designers. We have experienced in other projects
that system developers find object-oriented Maude specifications easier to
read and understand than their own use case descriptions [36], and that stu-
dents with no previous formal methods background can easily model and
analyze complex distributed systems in Maude (e.g., [24]). The Maude tools
provide automatic (“push-button”) reachability and temporal logic model
checking analysis, and simulation for rapid prototyping.

3. As mentioned, this simple and intuitive formalism has been applied to a
wide range of systems, and to all aspects of those systems. For example,
data types are modeled as equational specification and dynamic behavior is
modeled by rewrite rules. Maude simulations and model checking are easy
to use and provide useful feedback automatically: Maude’s search and LTL
model checking provides a counterexample trace if the desired property does
not hold.

4. We show in [37] that randomized Real-Time Maude simulations (of wire-
less sensor networks) can give performance estimates as good as those of
domain-specific simulation tools. More importantly, we can analyze perfor-
mance measures and provide performance estimations with given confidence
levels using probabilistic rewrite theories and statistical model checking; e.g.:
“I can claim with 90% confidence that at least 75% of the transactions satisfy
the property P .” For performance estimation for cloud storage systems see
Sections 2–3 and 5.

To summarize, a formal executable specification in Maude or one of its extensions
allows us to define a single artifact that is, simultaneously, a mathematically



precise high-level description of the system design and an executable system
model that can be used for rapid prototyping, extensive testing, correctness
analysis, and performance estimation.

1.4 Summary: Using Formal Methods on Cloud Storage Systems

In this chapter, we summarize some of the work performed at the Assured
Cloud Computing Center at the University of Illinois at Urbana-Champaign
using Maude and its extensions to formally specify and analyze the correctness
and performance of several important industrial cloud storage systems and a
state-of-the-art academic one. In particular, we describe the following contribu-
tions:

(i) Apache Cassandra [19] is a popular open-source industrial key-value
data store that only guarantees eventual consistency. We were interested
in: (i) evaluating a proposed variation of Cassandra, and (ii) analyzing un-
der what circumstances—and how often in practice—Cassandra also pro-
vides stronger consistency guarantees, such as read-your-writes or strong
consistency. After studying Cassandra’s 345,000 lines of code, we first de-
veloped a 1,000-line Maude specification, that captured the main design
choices. Standard model checking allowed us to analyze under what con-
ditions Cassandra guarantees strong consistency. By modifying a single
function in our Maude model we obtained a model of our proposed opti-
mization. We subjected both of our models to statistical model checking
using PVeStA; this analysis indicated that the proposed optimization did
not improve Cassandra’s performance. But how reliable are such formal
performance estimates? To investigate this question, we modified the Cas-
sandra code to obtain an implementation of the alternative design, and
executed both the original Cassandra code and the new system on rep-
resentative workloads. These experiments showed that PVeStA statistical
model checking provides reliable performance estimates. To the best of our
knowledge this was the first time that, for key-value stores, model check-
ing results were checked against a real system deployment, especially on
performance-related metrics.

(ii) Megastore [8] is a key part of Google’s celebrated cloud infrastructure.
Megastore’s trade-off between consistency and efficiency is to guarantee
consistency only for transactions that access a single entity group. It is
obviously interesting to study such a successful cloud storage system. Fur-
thermore, one of us had an idea on how to extend Megastore so that it
would also guarantee strong consistency for certain transactions accessing
multiple entity groups without sacrificing performance. The first challenge
was to develop a detailed formal model of Megastore from the short high-
level description in [8]. We used Maude simulation and model checking
throughout the formalization of this complex system until we obtained a
model that satisfied all desired properties. This model also provided the
first reasonable detailed public description of Megastore. We then devel-
oped a formal model of our extension, and estimated the performance of



both systems using randomized simulations in Real-Time Maude; these
simulations indicated that Megastore and our extension had about the
same performance. (Note that such ad hoc randomized simulations do not
give a precise level of confidence in the performance estimates.)

(iii) RAMP [7] is a state-of-the-art academic partitioned data store that pro-
vides efficient lightweight transactions that guarantee the simple “read
atomicity” consistency property. The paper [7] gives hand proofs of cor-
rectness properties and proposes a number of variations of RAMP without
giving details. We used Maude to: (i) check whether RAMP indeed sat-
isfies the guaranteed properties, and (ii) develop detailed specifications of
the different variations of RAMP and check which properties they satisfy.

(iv) ZooKeeper [20] is a fault-tolerant distributed key/value data store that
provides reliable distributed coordination. In [43] we investigate whether
a useful group key management service can be built using ZooKeeper.
PVeStA statistical model checking showed that such a ZooKeeper-based
service handles faults better than a traditional centralized group key man-
agement service, and that it scales to a large number of clients while main-
taining low latencies.

To the best of our knowledge, the above-mentioned work at the Assured Cloud
Computing Center represents the first published papers on the use of formal
methods to model and analyze such a wide swathe of industrial cloud storage
systems. Our results are encouraging, but is the use of formal methods feasible
in an industrial setting? The recent paper [34] from Amazon tells a story very
similar to ours, and formal methods are now a key ingredient in the system devel-
opment process at Amazon. The Amazon experience is summarized in Section 6,
which also discusses the formal framework used at Amazon.

The rest of this chapter is organized as follows: Sections 2 to 5 summarize
our work on Cassandra, Megastore, RAMP, and ZooKeeper, respectively, while
Section 6 gives an overview of the use of formal methods at Amazon. Section 7
discusses related work, and Section 8 gives some concluding remarks.

2 Apache Cassandra

Apache Cassandra [19] is a popular open-source key-value data store originally
developed at Facebook.5 According to the DB-Engines Ranking [1], Cassan-
dra has advanced into the top 10 most popular database engines among 315
systems, and is currently used by, e.g., Amadeus, Apple, IBM, Netflix, Face-
book/Instagram, GitHub, and Twitter.

Cassandra only guarantees eventual consistency (if no more writes happen,
then eventually all reads will see the last value written). However, it might be
possible that Cassandra offers stronger consistency guarantees in certain cases.

5 A key-value store can be seen as a transactional data store where transactions are
single read or write operations.



It is therefore interesting to analyze both the circumstances under which Cassan-
dra offers stronger consistency guarantees, and how often stronger consistency
properties hold in practice.

The task of accurately predicting when consistency properties hold is non-
trivial. To begin with, building a large-scale distributed key-value store is a
challenging task. A key-value store usually consists of a large number of compo-
nents (e.g., membership management, consistent hashing, and so on), and each
component is given by source code that embodies many complex design deci-
sions. If a developer wishes to improve the performance of a system (e.g., to
improve consistency guarantees, or reduce operation latency) by implementing
an alternative design choice for a component, then the only option available
was to make changes to huge source code bases (Apache Cassandra has about
345,000 lines of code). Not only does this require many man-months of effort;
it also comes with a high risk of introducing new bugs, requires understanding
a huge code base before making changes, and is not repeatable. Developers can
only afford to explore very few design alternatives, which may in the end fail to
lead to a better design.

To be able to reason about Cassandra experiment with alternative design
choices and understand their effects on the consistency guarantees and the per-
formance of the system, we have developed in Maude both a formal nondeter-
ministic model [28] and a formal probabilistic model [27] of Cassandra, as well
as a model of an alternative Cassandra-like design [27]. To the best of our knowl-
edge, these were the first formal models of Cassandra ever created. Our Maude
models include main components of Cassandra such as data partitioning strate-
gies, consistency levels, and timestamp policies for ordering multiple versions of
data. Each Maude model consists of about 1000 lines of Maude code with 20
rewrite rules. We use the nondeterministic model to answer qualitative consis-
tency queries about Cassandra (e.g., whether a key-value store read operation is
strongly (resp. weakly) consistent); and we use the probabilistic model to answer
quantitative questions like: how often are these stronger consistency properties
satisfied in practice?

Apache Cassandra is a distributed, scalable, and highly available NoSQL
database design. It is distributed over collaborative servers that appear as a
single instance to the end client. Data items are dynamically assigned to several
servers in the cluster (called the ring), and each server (called a replica) is
responsible for different ranges of the data stored as key-value pairs. Each key-
value pair is stored at multiple replicas to support fault-tolerance. In Cassandra
a client can perform read or write operations to query or update data. When
a client requests a read/write operation to a cluster, the server connected to
the client acts as a coordinator and forwards the request to all replicas that
hold copies of the requested key. According to the specified consistency level in
the operation, after collecting sufficient responses from replicas, the coordinator
will reply to the client with a value. Cassandra supports tunable consistency
levels, with ONE, QUORUM and ALL being the three major ones, meaning that the
coordinator will reply with the most recent value (namely, the value with the



highest timestamp) to the client after hearing from one replica, a majority of
the replicas, or all replicas, respectively.

We show below one rewrite rule to illustrate our specification style. This
rewrite rule describes how the coordinator S reacts upon receiving a read reply
message {T, S <- ReadReplySS(ID,KV,CL,A)} from a replica at global time
T, with KV the returned key-value pair of the form (key,value,timestamp), ID
and A the read operation’s and the client’s identifiers, respectively; and CL the
read’s consistency level. The coordinator S adds KV to its local buffer (which
stores the replies from the replicas) by add(ID,KV,BF). If the coordinator S now
has collected the required number of responses (according to the desired consis-
tency level CL for the operation), which is determined by the function cl?, then
the coordinator returns to A the highest timestamped value, determined by the
function tb, by sending the message [D, A <- ReadReplyCS(ID,tb(BF’))]
to A. This outgoing message is equipped with a message delay D nondeterminis-
tically selected from the delay set delays, where DS describes the other delays in
the set. If the coordinator has not yet received the required number of responses,
then no message is sent. (Below, none denotes the empty multiset of objects and
messages).

crl [on-rec-rrep-coord-nondet] :
{T, S <- ReadReplySS(ID,KV,CL,A)}
< S : Server | buffer: BF, delays: (D,DS), AS >

=>
< S : Server | buffer: BF’, delays: (D,DS), AS >
(if cl?(CL,BF’) then

[D, A <- ReadReplyCS(ID,tb(BF’))]
else none fi)

if BF’ := add(ID,KV,BF) .

We analyze strong consistency (where each read returns the value of the last
write that occurred before that read), and eventual consistency using experi-
mental scenarios with one or multiple clients. The purpose of our experiments is
to answer the following question: does strong/eventual consistency depend on:

– with one client, the combination of consistency levels of consecutive requests?
– with multiple clients, also on the latency between consecutive requests?

Our model checking results show that strong consistency holds in some sce-
narios, and that eventual consistency holds in all scenarios regardless of the con-
sistency level combinations. Although Cassandra is expected to violate strong
consistency under certain conditions, previously there was no formal way of dis-
covering under which conditions such violations could occur.

Table 1 shows the results of model checking strong/eventual consistency with
one client, with ‘×’ denoting a violation. Three out of nine combinations of
consistency levels violate strong consistency, where at least one of the read and
the write operations has a consistency level of ONE.

The results of model checking strong consistency with two clients is shown
in Table 2. We experiment with different relations between the set of possible



Table 1: Results of checking strong consistency (left) and eventual consistency
(right) with one client.
PPPPPPPWrite1

Read2 ONE QUORUM ALL

ONE × × X
QUORUM × X X
ALL X X X

PPPPPPPWrite1
Write2 ONE QUORUM ALL

ONE X X X
QUORUM X X X
ALL X X X

message delays for the coordinator (D1 and D2, with D1< D2) and the latencies
(L1, L2, and L3, with L1< L2< L3) between consecutive requests. We observe
that satisfaction of strong consistency depends on the time between requests.
For eventual consistency, no violation occurs, regardless of the consistency level
and time between requests.

Table 2: Results of checking strong consistency (top) and eventual consistency
(bottom) with two clients; the delay set for the coordinator to nondeterministi-
cally select a message delay from is {D1,D2} with D1< D2.

Strong

```````````Latency
Consistency Lv.

ONE QUORUM ALL

L1 (L1<D1) × × ×
L2 (D1<L2<D2) × × ×
L3 (D2<L3) X X X

Eventual

```````````Latency
Consistency Lv.

ONE QUORUM ALL

L1 (L1<D1) X X X
L2 (D1<L2<D2) X X X
L3 (D2<L3) X X X

We then wanted to experiment with a possible optimization of the Cassandra
design in which the values of the keys are considered instead of their timestamps
when deciding which value should be returned upon a read operation. Our goal
was to see whether that would provide better consistency or at least lower oper-
ation latency. Having a formal specification of Cassandra, we were able to easily
specify this possible optimization by just modifying the function tb.

To estimate how often Cassandra satisfies stronger consistency in practice,
and to compare the original Cassandra design with our proposed optimiza-
tion, we transformed our nondeterministic specification into a fully probabilistic
rewrite theory that can be subjected to statistical model checking using the
PVeStA tool [4]. The main idea behind turning a nondeterministic model into
a fully probabilistic model is to let the message delays be sampled from a dense
probabilistic distribution. Density implies that the probability that two messages



arrive at the same time, and hence that two events happen at the same time, is
zero.

To illustrate this transformation from a nondeterministic model to a proba-
bilistic one, we show below the probabilistic rewrite rule obtained by transform-
ing the above rewrite rule. In the transformed rule, the message delay D of the
generated ReadReply message is now probabilistically chosen according to the
parameterized probability distribution function distr(...), which in our model
was selected to be a lognormal distribution:

crl [on-rec-rrep-coord-prob] :
{T, S <- ReadReplySS(ID,KV,CL,A)}
< S : Server | buffer: BF, AS >

=>
< S : Server | buffer: BF’, AS >
(if cl?(CL,BF’) then
[D , A <- ReadReplyCS(ID,tb(BF’))]
else none fi)

if BF’ := add(ID,KV,BF)
with probability D := distr(...) .

We quantitatively analyzed the following five consistency guarantees in Cas-
sandra and in our alternative design:

– Strong consistency (SC) ensures that each read returns the value of the last
write that occurred before that read.

– Read your writes (RYW) guarantees that the effects of all writes performed
by a client are visible to that client’s subsequent reads.

– Monotonic reads (MR) ensure that a client observes a key-value store in-
creasingly up to date over time.

– Consistent prefix (CP) guarantees that a client will observe an ordered se-
quence of writes starting with the first write to the system.

– Causal consistency (CC) guarantees that effects are observed only after their
causes: reads will not see a write unless its dependencies are also seen.

Our PVeStA analysis indicated that Cassandra frequently achieves much
higher consistency (up to strong consistency) than the promised eventual con-
sistency, especially with QUORUM and ALL reads, in which cases the probability of
achieving strong consistency starts to approach 1 even with fairly short latencies
(see the left plot in Fig. 1).

Another interesting observation comes from the PVeStA analysis of consis-
tent prefix. By fixing the consistency level of writes (see the three left-hand side
plots in Fig. 2 for ONE/QUORUM/ALL write), we can see how the consistency level
of reads affect consistent prefix over issuing latency. Surprisingly, it appears that
lower reads can achieve higher consistent prefix consistency.

Our analysis shows that our alternative design does not outperform the orig-
inal Cassandra design in terms of the consistency models we considered, except
for consistent prefix, even though the alternative design’s behavior is quite close
to that of the original one in most cases.



Fig. 1: PVeStA-based estimation (left) and actual measures running Cassandra
(right) of the probability of satisfying strong consistency (SC) as a function of
the time between a read request and the latest previous write request. TA stands
for time-agnostic strategy, our proposed alternative design, while TB stands for
timestamp-based strategy, the original Cassandra design.

To investigate whether such PVeStA-based analysis really provides realistic
performance estimates, we also executed the real Cassandra system on represen-
tative workloads (see the right hand side plots in Figs. 1 and 2). Both the model
predictions and the implementation-based evaluations reached the same conclu-
sion. We could show that results derived from model checking agree reasonably
well with experimental reality. We showed that this agreement holds true for
various consistency models, even if changes are introduced on how timestamps
are used in responding to queries. For more details on our quantitative analysis
of Cassandra and of the alternative design we considered, we refer the reader to
the journal paper [26], which substantially extends our conference paper [27].

3 Formalizing, Analyzing, and Extending Google’s
Megastore

Megastore [8] is a distributed data store developed and widely applied at Google.
It is a key component of Google’s celebrated cloud computing infrastructure, and
is used internally at Google for Gmail, Google+, Android Market, and Google
AppEngine. It is one of a few industrial replicated data stores that provide both
data replication, fault tolerance, and support for transactions with some data
consistency guarantees. By 2011, Megastore handled 3 billion write and 20 billion
read transactions per day [8].

In Megastore, data are divided into different entity groups (such as, e.g., “Pe-
ter’s email” or “books on rewriting logic”). Google Megastore’s tradeoff among
high availability, concurrency, and consistency is that data consistency is only
guaranteed for transactions that access a single entity group. There are no guar-
antees if a transaction reads multiple entity groups.



Fig. 2: Probabilities of satisfying consistent prefix (CP) by statistical model
checking (left) and by real deployment run (right). TA stands for Time-agnostic
Strategy, our proposed alternative design, while TB for Timestamp-based Strat-
egy, the original Cassandra design.



One of us, Jon Grov, a researcher on transactional systems with no back-
ground in formal methods, had some ideas about how to add consistency also
for certain transactions that access multiple entity groups, without significant
performance penalty. Grov was therefore interested in experimenting with his
ideas to extend Megastore, to analyze the correctness of his extension, and to
compare its performance with that of Megastore.

There was, however, a problem: there was no detailed description of Megas-
tore, or publicly available code for this industrial system that could be used for
experimentation. The only publicly available description of Megastore was a brief
overview paper [8]. To fully understand Megastore (more precisely, the Megas-
tore algorithm/approach), two of us, Grov and Ölveczky, first had to develop our
own sufficiently detailed executable specification of Megastore from the descrip-
tion in [8]. This specification could then be used to estimate the performance
of Megastore, which could then be compared with the estimated performance of
our extension. We employed Real-Time Maude simulations and, in particular,
LTL model checking throughout our development effort.

Specifying Megastore. Our specification of Megastore [15] is the first pub-
licly available formalization and reasonably detailed description of Megastore.
It contains 56 rewrite rules, of which 37 deal with fault tolerance features. An
important point is that even if we had had access to Megastore’s code base, un-
derstanding and extending it would likely have been much more time-consuming
than developing our own 56-rule description and simulation model in Real-Time
Maude.

To show an example of the specification style, the following shows one (of
the smallest) of the 56 rewrite rules:

rl [bufferWriteOperation] :
< SID : Site | localTransactions : LOCALTRANS

< TID : Transaction | operations : write(KEY, VAL) :: OL, writes : WRITEOPS,
status : idle > >

=>
< SID : Site | localTransactions : LOCALTRANS

< TID : Transaction | operations : OL, writes : WRITEOPS :: write(KEY, VAL) > >.

In this rule, the Site object SID has a number of transaction objects to execute
in its localTransactions attribute; one of them is the transaction TID (the
variable LOCALTRANS ranges over multisets of objects, and therefore captures
all the other objects in the site’s transaction set). The next operation that the
transaction TID should execute is the write operation write(KEY, VAL), which
represents writing the value VAL to the key KEY. The effect of applying this
rewrite rule is that the write operation is removed from the transaction’s list of
operations to perform, and is added to its write set writes.

The second rewrite rule we show concern the validation phase. In Megastore,
a replicated transaction log is maintained for each entity group. When a trans-
action t is ready to commit, its coordinating site s prepares a new log entry for
each entity group written by t, does some leader election part of Paxos, and (if



the leader election phase is successful) multicasts the new proposed log entry to
the other replicating sites. Each recipient of this message must then verify that
it has not already granted an accept for the new log position. If so, the recipient
replies with an accept message to the originating site.

The following rule shows the part when the replicating site THIS receives the
multicasted message acceptAllReq with the proposed new log entry (TID’ LP
SID OL) for entity group EG from the coordinator THIS. The site THIS verifies
that it has not already granted an accept for that log position. (Since messages
could be delayed for a long time, it checks both the transaction log and received
proposals). If there are no such conflicts, the site responds with an accept mes-
sage acceptAllRsp(...), and stores its accept in its proposals attribute. The
record (TID’ LP SID OL) represents the candidate log entry, which contains the
transaction identifier TID’, the log position LP, the proposed leader site SID, and
the list of update operations OL:

crl [rcvAcceptAllReq] :
(msg acceptAllReq(TID, EG, (TID’ LP SID OL), PROPNUM) from SENDER to THIS)
< THIS : Site |

entityGroups : EGROUPS
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL > >

=>
< THIS : Site |

entityGroups : EGROUPS
< EG : EntityGroup |

proposals : accepted(SENDER, (TID’ LP SID OL), PROPNUM) ;
removeProposal(LP, PROPSET) > >

dly(msg acceptAllRsp(TID, EG, LP, PROPNUM) from THIS to SENDER, T)
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET))

/\ T ; TS := possibleMessageDelays(THIS, SENDER) .

Our model assumes that possibleMessageDelays(s1, s2) gives the set d1 ; d2
; · · · ; dn of possible messaging delays between sites s1 and s2, where the union
operator _;_ is associative and commutative. The matching equation

T ; TS := possibleMessageDelays(THIS, SENDER)

then nondeterministically assigns to the variable T (of sort Time) any delay di
from the set possibleMessageDelays(THIS, SENDER) of possible delays, and
uses this value as the messaging delay when sending the message

dly(msg acceptAllRsp(TID, EG, LP, PROPNUM) from THIS to SENDER, T).

Analyzing Megastore. We wanted to analyze both the correctness and the
performance of our model of Megastore throughout its development, to catch
functional errors and performance bottlenecks quickly. For our analysis, we gen-
erated two additional models from the main model described above, as follows:

1. Our model of Megastore is a real-time model. However, this means that any
exhaustive model checking analysis of our model only analyzes those be-
haviors that are possible within the given timing parameters (for messaging



delays, etc.). To exhaustively analyze all possible system behaviors irrespec-
tive of particular timing parameters, we generated an untimed model from
our real-time model by just ignoring messaging delays in our specification.
For example, in this specification, the above rewrite rule becomes (where the
parts represented by ‘...’ are as before):

crl [rcvAcceptAllReq] :
(msg acceptAllReq(...) from SENDER to THIS)
< THIS : Site | entityGroups : EGROUPS < EG : EntityGroup | ... > >

=>
< THIS : Site | entityGroups : EGROUPS < EG : EntityGroup | ... > >
(msg acceptAllRsp(TID, EG, LP, PROPNUM) from THIS to SENDER)

if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET)) .

2. For performance estimation purposes we also defined a real-time model in
which certain parameters, such as the messaging delays between two nodes,
are selected probabilistically according to a given probability distribution.
For example, we used the following probability distribution for the network
delays (in milliseconds):

30% 30% 30% 10%
London ↔ Paris 10 15 20 50
London ↔ New York 30 35 40 100
Paris ↔ New York 30 35 40 100

An important difference between our Megastore work and the Cassandra ef-
fort described in Section 2 is that in the Cassandra work we used (fully) prob-
abilistic rewrite theories and the dedicated statistical model checker PVeStA
for the probabilistic analysis. In contrast, our Megastore work stayed within
Real-Time Maude and simulated the selection of a value from a distribution
by using an ever-changing seed and Maude’s built-in function random. In
this “lightweight” probabilistic real-time model, we maintain the value n of
the seed in an object < seed : Seed | value : n > in the state, and
the above rewrite rule is transformed to

crl [rcvAcceptAllReq] :
(msg acceptAllReq(...) from SENDER to THIS)
< THIS : Site | entityGroups : EGROUPS < EG : EntityGroup | ... > >
< seed : Seed | value : N >

=>
< THIS : Site | entityGroups : EGROUPS < EG : EntityGroup | ... > >
< seed : Seed | value : N + 1 >
dly (msg acceptAllRsp(...) from THIS to SENDER,

selectFromDistribution(delayDistribution(THIS, SENDER), random(N)) )
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET)) .

where selectFromDistribution “picks” the appropriate delay value from
the distribution delayDistribution(THIS, SENDER) using the random num-
ber random(N). While such lightweight probabilistic performance analysis
using Real-Time Maude has previously been shown to give performance es-
timates on par with those of dedicated domain-specific simulation tools, e.g.,



for wireless sensor networks [37], such analysis cannot provide a (quantified)
level of confidence in the estimates; for that we need statistical model check-
ing.

Performance Estimation. For performance estimation, we also added a trans-
action generator that generates transaction requests at random times, with an
adjustable average rate measured in transactions per second, and used the above
probability distribution for the network delays.

The key performance metrics to analyze are the average transaction latency,
and the number of committed/aborted transactions. We also added a fault in-
jector that randomly injects short outages in the sites, with mean time to failure
10 seconds, and mean time to repair 2 seconds for each site. The results from
the randomized simulations of our probabilistic real-time model for 200 seconds,
with an average of 2.5 transactions generated per second, in this fairly challeng-
ing setting, are given in the following table:6

Site Avg. latency (ms) Commits Aborts
London 218 109 38
New York 336 129 16
Paris 331 116 21

These latency figures are consistent with Megastore itself [8]: “Most users see av-
erage write latencies of 100–400 milliseconds, depending on the distance between
datacenters, the size of the data being written, and the number of full replicas.”

Model Checking Analysis. For model checking analysis—which exhaustively ana-
lyzes all possible system behaviors from a given initial system configuration—we
added to the state a serialization graph, which is updated whenever a transaction
commits. The combination of properties we analyzed was that: (i) the serializa-
tion graph never contains cycles; and that eventually (ii) all transactions have
finished executing; and (iii) all entity groups and all transaction logs are equal
(or invalid). Model checking these properties in combination can be done by
giving the following Real-Time Maude command:

Maude> (mc initMegastore |=u
([] isSerializable)

/\ (<> [] (allTransFinished /\ entityGroupsEqualOrInvalid
/\ transLogsEqualOrInvalid)).)

This commands returns true if the temporal logic formula (the last three lines in
the command) holds from the initial state initMegastore, and a counterexample
showing a behavior that does satisfy the formula in case the formula does not
hold for all behaviors.
6 Because of site failures, not all the generated 500 transactions were committed or
aborted; however, our analysis shows that all 500 transactions are validated when
there are no site failures. See [15] for details.



We used model checking throughout the development of our model, and dis-
covered many unexpected corner cases. To give an idea of the size of the con-
figurations that can be model checked, we summarize below the execution time
of the above model checking command for different system parameters, where
{n1, . . . , nk} means that the corresponding value was selected nondeterministi-
cally from the set. All the model checking commands that finished executing
returned true. DNF means that the execution was aborted after 4 hours.

Msg. delay #Trans Trans. start time #Fail. Fail. time Run (sec)
{20, 100} 4 {19, 80} and {50, 200} 0 - 1367
{20, 100} 3 {10, 50, 200} 1 60 1164
{20, 40} 3 20, 30, and {10, 50} 2 {40, 80} 872
{20, 40} 4 20, 20, 60, and 110 2 70 and {10, 130} 241
{20, 40} 4 20, 20, 60, and 110 2 {30, 80} DNF

{10, 30, 80},and
{30, 60, 120} 3 20, 30, 40 1 {30, 80} DNF
{10, 30, 80},and
{30, 60, 120} 3 20, 30, 40 1 60 DNF

As mentioned, we also model checked an untimed model (of the non-fault-
tolerant part of Megastore) that covers all possible behaviors from an initial sys-
tem configuration irrespective of timing parameters. The disadvantage of such
untimed model checking is that we can only analyze smaller systems: model
checking the untimed system proved unfeasible even for four transactions. Fur-
thermore, failure detection and fault tolerance features rely heavily on timing,
which means that the untimed model is not suitable for modeling and analyzing
the fault-tolerant version of Megastore.

Megastore-CGC. As mentioned, Jon Grov had some ideas on how to extend
Megastore to also provide consistency for transactions that access multiple entity
groups, while maintaining Megastore’s performance and strong fault tolerance
features. He observed that, in Megastore, a site replicating a set of entity groups
participates in all updates of these entity groups, and should therefore be able
to maintain an ordering on those updates. The idea behind our extension, called
Megastore-CGC, is that by making this ordering explicit, such an “ordering site”
can validate transactions [16].

Since Megastore-CGC exploits the implicit ordering of updates during Mega-
store commits, it piggybacks ordering and validation onto Megastore’s commit
protocol. Megastore-CGC therefore does not require additional messages for val-
idation and commit, and should maintain Megastore’s performance and strong
fault tolerance. A failover protocol deals with failures of the ordering sites.

We again used both simulations (to discover performance bottlenecks) and
Maude model checking extensively during the development of Megastore-CGC,
whose formalization contains 72 rewrite rules. The following table compares the
performance of Megastore and Megastore-CGC in a setting without failures,
where sites London and New York also handle transactions accessing multiple
entity groups. Notice that Megastore-CGC will abort some transactions that



access multiple entity groups (“validation aborts”) that Megastore does not care
about:

Megastore Megastore-CGC
Commits Aborts Avg.latency Commits Aborts Validation aborts Avg.latency

Paris 652 152 126 660 144 0 123
London 704 100 118 674 115 15 118
New York 640 172 151 631 171 10 150

Designing and validating a sophisticated protocol like Megastore-CGC is very
challenging. Maude’s intuitive and expressive formalism allowed a domain ex-
pert to define both a precise, formal description and an executable prototype in
a single artifact. We found that anticipating all possible behaviors of Megastore-
CGC is impossible. A similar observation was made by Google’s Megastore
team, which implemented a pseudo-random test framework, and state that “the
tests have found many surprising problems” [8]. Compared to such a testing
framework, Real-Time Maude model checking analyzes not only a set of pseudo-
random behaviors, but all possible behaviors from an initial system configura-
tion. Furthermore, we believe that Maude provides a more effective and low-
overhead approach to testing than that of a real testing environment.

In a test-driven development method, a suite of tests for the planned fea-
tures are written before development starts. This set of tests is then used both
to give the developer quick feedback during development, and as a set of regres-
sion tests when new features are added. However, test-driven development has
traditionally been considered to be unfeasible when targeting fault tolerance in
complex concurrent systems, due to the lack of tool support for testing a large
number of different scenarios. Our experience with Megastore-CGC showed that
with Maude a test-driven approach is possible also in such systems, since many
complex scenarios can be quickly tested by model checking.

Simulating and model checking this prototype automatically provided quick
feedback about both the performance and the correctness of different design
choices, even for very complex scenarios. Model checking was especially helpful,
both to verify properties and to find subtle “corner case” design errors that were
not found during extensive simulations.

4 RAMP Transaction Systems

Read-Atomic Multi-Partition (RAMP) transactions were proposed by Peter Bailis
et al. [7] to offer light-weight multi-partition transactions that guarantee one of
the fundamental consistency levels, namely, read atomicity : either all updates
or no updates of a transaction are visible to other transactions. To guarantee
that either all partitions perform a transaction successfully or none do, RAMP
performs two-phase writes by using the two-phase commit protocol (2PC): In
the prepare phase, each timestamped write is sent to its partition, which adds
the write to its local database. In the commit phase, each partition updates an
index that contains the highest-timestamped committed version of each item.



The paper [7] presents a pseudo-code description of the RAMP algorithms
and “hand proofs” of key properties. It also mentions a number of optimizations
and variations of RAMP, but without providing any details or correctness argu-
ments. There was therefore a clear need for formally specifying and analyzing
RAMP and its proposed extensions. Providing correctness in the protocol and
its extensions is a critical step towards making RAMP a production-capable
system.

We have therefore formalized RAMP and its variations in Maude. We have
modeled and analyzed the effect of the following RAMP building blocks: fast
commit, one-phase write, and 2PC.

To show an example of the specification, the following rewrite rule illustrates
what happens when a client O receives a prepared message for the current write
ID from a partition O’: it deletes ID from the set NS of pending prepared mes-
sages for writes; and if the resulting set NS’ is empty, meaning that all prepared
messages have been received, the client starts committing the transaction using
the function startCommit, which generates a commit message for each write:

crl [receive-prepared] :
msg prepared(ID) from O’ to O
< O : Client | pendingPrep : NS, pendingOps : OI, sqn : SQN >

=>
< O : Client | pendingPrep : NS’ >
(if NS’ == empty then startCommit(OI,SQN,O) else none fi)

if NS’ := delete(ID,NS) .

We used reachability analysis to analyze whether RAMP and its variants
satisfy all the following properties (from [7]) that RAMP transactions should
satisfy:

– Read atomic isolation: either all updates or no updates of a transaction are
visible to other transactions.

– Companions present : if a version is committed, then each of the version’s
sibling versions are present on their respective partitions.

– Synchronization independence: one client’s transactions cannot cause an-
other client’s one to block, and if a client can contact the partition respon-
sible for each item in its transaction, then the transaction will eventually
commit (or abort of its own volition).

– Read your writes: a client’s writes are visible to her subsequent reads.

We analyzed those properties for our seven versions of RAMP, for all initial
configurations with four operations and two clients, as well as for a number of
configurations with six operations. Our model checking results agree with the
proved and conjectured results in [7], i.e., all versions satisfy the above properties,
except that:

– RAMP without 2PC does not satisfy read atomicity, “companions present”
and read-your-writes; and

– RAMP with one-phase writes does not satisfy read-your-writes.



5 Group Key Management via ZooKeeper

Group key management is the management of cryptographic keys so that mul-
tiple authorized entities can securely communicate with each other. A central
group key controller can fulfill this need by: (a) authenticating/admitting au-
thorized users into the group, and (b) generating a group key and distributing
it to authorized group members [49]. The group key needs to be updated pe-
riodically to ensure the secrecy of the group key, and whenever a new member
joins or leaves the group to preserve backward secrecy and forward secrecy re-
spectively. In particular, the group has some secure mechanism to designate a
key encrypting key (KEK) which the group controller then uses to securely dis-
tribute group key updates. In settings with a centralized group controller, its
failure can impact both group dynamics and periodic key updates, leaving the
group key vulnerable. If the failure occurs during a key update, then the group
might be left in an inconsistent state where both the updated and old keys are
still in use. This is especially significant when designing a cloud-based group key
management service, since such a service will likely manage many groups. 7

In [43] we investigated whether a fault-tolerant cloud-based group key man-
agement service could be built by leveraging existing coordination services com-
monly available in cloud infrastructures and if so, how to design such a sys-
tem. In particular, we: (a) designed a group key management service built using
Zookeeper [20], a reliable distributed coordination service supporting Internet-
scale distributed applications, (b) developed a rewriting logic model of our design
in Maude [12], based on [17], where key generation is handled by a centralized
key management server and key distribution is offloaded to a ZooKeeper cluster
and where the group controller stores its state in ZooKeeper to enable quick
recovery from failure, and (c) analyzed our model using the PVeStA [4] statis-
tical model checking tool. The analysis centered on two key questions: (1) can
a ZooKeeper-based group key management service handle faults more reliably
than a traditional centralized group key manager, and (2) can it scale to a large
number of concurrent clients with a low enough latency to be useful?

Zookeeper Background. ZooKeeper is used by many distributed applications such
as Apache Hadoop MapReduce, and Apache HBase, and by many companies
including Yahoo and Zynga in their infrastructures. From a bird’s eye view, the
ZooKeeper system consists of two kinds of entities: servers and clients. All of
the servers together form a distributed and fault-tolerant key/value store which
the clients may read data from or write data to. In ZooKeeper terminology,
each key/value pair is called a znode, and these znodes are then organized in a
tree structure similar to that of a standard filesystem. In order to achieve fault-
tolerance, ZooKeeper requires that a majority of servers acknowledge and log
each write to disk before it is committed. Since in order to operate, ZooKeeper
requires a majority of servers to be alive and aware of each other, updates will

7 Please refer to [40] for a survey of group key management schemes.



not be lost. A detailed description of ZooKeeper design and features can be
found in [20] and in ZooKeeper documentation.8

ZooKeeper provides a set of guarantees that are useful for key management
applications. Updates to ZooKeeper state are atomic, and once committed they
will persist until they are overwritten. Thus, a client will have a consistent view
of the system regardless of which server it connects to and is guaranteed to be
up-to-date within a certain time-bound. For our purposes, this means updates,
once committed, will not be lost. Furthermore, ZooKeeper provides an event-
driven notification mechanism through watches. A client that sets a watch on a
znode which will be notified whenever the znode is changed or deleted. Watches
can enable us, for example, to easily propagate key change events to interested
clients.

System Design. In our design, if a user wishes to join/leave a group, she will
contact the group controller who will: (a) perform the necessary authentication
and authorization checks, (b) if the user is authorized, add/remove the user
to/from the group, (c) update the group membership state in the ZooKeeper
service, (d) generate and update the group key in the ZooKeeper service, and
(e) provide any new users with the updated group key and necessary information
to connect to ZooKeeper and obtain future key updates.

The system state is stored in ZooKeeper as follows: each secure group and
authorized user is assigned a unique znode storing an encrypted key. Whenever
a user joins a group, the znode corresponding to that user is added as a child
of the znode representing the group. The znode corresponding to the group also
stores the current group key encrypted by the KEK. During periodic group key
updates, the old group key is overwritten by the new group key (encrypted by
the same KEK). However, when an authorized user joins or leaves a group,
the group controller generates a new KEK and distributes it using the client’s
pairwise keys. Specifically, the group controller updates the value stored at each
user’s assigned znode with the new KEK encrypted by the client’s the pairwise
key. Since each group member sets a watch on the znode corresponding to itself
and its group, it will be notified whenever the group key or the KEK changes.

Thus, the group controller uses the ZooKeeper service to maintain group
information and to distribute and update cryptographic keys. Since the group
controller’s operational state is already saved within the ZooKeeper service (e.g.
group member znodes it has updated, last key update time, etc.) if the controller
were to fail a back-up controller could take over with minimal downtime.

Maude Model. The distributed system state in our model is a multiset structure,
populated by objects, messages, and the scheduler. Messages are state fragments
passed from one object to another marked with a timestamp, an address, and a
payload. The scheduler’s purpose is to deliver messages to an object at the time
indicated by the message’s timestamp and to provide a total ordering of messages
in case some have identical timestamps. ZooKeeper system state is modeled

8 http://zookeeper.apache.org/doc/trunk/

http://zookeeper.apache.org/doc/trunk/


by three classes of objects: the ZooKeeper service, servers, and clients. The
group key management system also consists of three different classes of objects:
the group key service, managers, and clients. All these objects are designed to
operate according to the system design discussed above, but we must be careful
to clarify a few details.

To simplify the model, we abstracted away many complex—but externally
invisible—details of ZooKeeper. We also say a few words about failure modes. We
assume that both ZooKeeper servers and group key managers may fail. When
a ZooKeeper server fails, it will no longer respond to any messages. After a
variable repair timeout, the server will come back online. When any connected
clients discover the failure, they will attempt to migrate to another randomly
chosen server. Similarly, when a key manager fails, any client waiting on that key
manager will time out and try again. A key manager buffers clients’ requests and
answers them in order. Before answering each request, it saves information about
the requested operation to ZooKeeper. If a manager dies, the succeeding manager
loads the stored state from ZooKeeper and completes any pending operations
before responding to new requests. So that our model would accurately reflect
the performance of a real ZooKeeper cluster, we chose parameters that agree
with the data gathered in [20]. In particular, we set the total latency of a read
or write request to ZooKeeper to under 2ms on average (which corresponds to a
ZooKeeper system under full load as in [20]). Note that this average time only
occurs in practice if there is no server failure; our model permits servers to fail.
We also assume that all of the ZooKeeper servers are located in the same data
center, which is the recommended way to deploy a ZooKeeper cluster.

Here we show an example Maude rewrite rule from our specification.

crl [ZKSERVER-PROCESS] :
< A : ZKServer | leader: L, live: true, txid: Z, store: S,

clients: C, requests: R, updates: U, AS >
{T, A <- process}

=>
< A : ZKServer | leader: L, live: true, txid: Z’, store: S’,

clients: C, requests: null, updates: null, AS >
M M’

if (Z’,S’,M) := commit(C,U,S) /\ M’ := process(L,R,S’) .

This rule, specified in Maude, illustrates how a live ZooKeeper server object pro-
cesses a batch of updates (service internal messages) and requests from clients
during a processing cycle. The condition of this rule invokes two auxiliary func-
tions, commit and process, which repeatedly commit key updates and process
requests from connected clients. When this rule completes, the server will have
a new transaction id and key/value store, an empty update and request list,
and a set of messages to be sent M M’ where M are notifications to interested
clients that keys were updated and M’ are client requests forwarded onto to the
ZooKeeper leader.

Analysis and Discussion. Our analysis consisted of two experiments. Both were
run hundreds of times via PVeStA and average results were collected. The first



experiment was designed to test whether saving snapshots of the group key man-
ager’s state in the ZooKeeper store could increase the overall reliability of the
system. In the experiment, we set the failure rate for the key manager to 50% per
experiment, the time to failover from one server to another to 5 seconds, and the
experiment duration to 50 seconds. We then compared the average key manager
availability (i.e., the time it is available to distribute keys to clients) between
a single key manager and two key managers where they share a common state
saved in the ZooKeeper store. In former case case, the average availability was
32.3 seconds whereas in the latter case it was 42.31 seconds. This represents an
availability improvement from 65% to 85%. Of course, we expect a system with
replicated state to be more reliable as there is no longer a single point of failure.
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Our second experiment was designed to examine whether using ZooKeeper
to distribute shared keys is efficient and scalable enough for real-world use. The
experiment measured the variations in: (a) the percentage of keys successfully
received by group members, and (b) the key distribution latency, as increasing
numbers of clients joined a group per second. The percentage of keys successfully
received is defined as the total number of keys expected to be received by any
client over its lifetime versus the amount actually received; and distribution
latency is the average time measured from when a key is generated by the key
manager until that key is received by a client. We sampled these parameters at
client join rates of once every 4, 2, 1, 0.5, 0.25, and 0.125 second(s). We kept the
same duration as in the first experiment, but picked failure probabilities such
that system will have 99.99% availability and specified link latency between
the ZooKeeper service and ZooKeeper clients to vary according to a uniform
distribution on the interval from .05 to .25 seconds.

We present our results in Figure 3 and Figure 4, where the blue line cor-
responds to our initial experiments while the red line corresponds to a slightly
modified model where we added a 2 second wait time between key updates
from the key manager. While our initial experiments show that naively using
ZooKeeper as a key distribution agent works well, at high client join rates, the
key reception rate seems to level out around 96%. This occurs because ZooKeeper
can apply key updates internally more quickly then clients can download them;
after all, the ZooKeeper servers enjoy a high-speed intra-cloud connection. By
adding extra latency between key updates, the ZooKeeper servers are forced to
wait enough time for the correct keys to propagate to clients. As shown in Fig-



ure 2, this change achieves a 99% key reception in all cases. On the other hand,
key distribution latency remained relatively constant, at around half a second,
regardless of the join rate because ZooKeeper can distribute keys at a much
higher rate than a key manager can update them [20]. Of course, the artificial
latency added in the second round of experiments has a cost; it increases the
time required for a client to join or leave the group by the additional wait time.

In essence, our analysis confirmed that a scalable and fault-tolerant key-
management service can indeed be built using ZooKeeper, settling various doubts
raised about the effectiveness of ZooKeeper for key management by an earlier,
but considerably less-detailed, model and analysis [13]. This result is not partic-
ularly surprising, especially considering that many man-hours would be needed
to optimize an actual system. More interestingly, the analysis also showed that
system designs may suffer from performance bottlenecks not readily apparent in
the original description—highlighting the power of formal modeling and analysis
as a method to explore the design space.

6 How Amazon Web Services Uses Formal Methods

The previous sections have made the case for the use of formal methods in gen-
eral, and rewriting logic and Maude in particular, during the design and devel-
opment of cloud computing storage systems. The reported work was conducted
in academic settings. How about industry?

In 2015, engineers at Amazon Web Services (AWS) published a paper entitled
“How Amazon Web Services Uses Formal Methods” [34]. AWS is probably the
world’s largest provider of cloud computing services, with more than a million
customers and almost $10 billion in revenue in 2015, and is now more prof-
itable than Amazon’s North American retail business [45]. Key components of
its cloud computing infrastructure include the DynamoDB highly available repli-
cated database and the Simple Storage System (S3), which stores more than two
trillion objects and handles more than 1.1 million requests per second [34].

The developers at AWS have used formal specification and model checking
extensively since 2011. This section summarizes their use of formal methods and
their reported experiences.

Use of Formal Methods. The AWS developers used the approach that we advo-
cate in this chapter: the use of an intuitive, expressive, and executable (sort of)
specification language together with model checking for automatic push-button
exploration of all possible behaviors

More precisely, they used Leslie Lamport’s specification formalism TLA+ [21],
and its associated model checker TLC. The language is based on set theory,
and has the usual logic and temporal logic operators. In TLA+ a transition
T is defined as a logical axiom relating the “current value” of a variable x
with the next value x′ of the variable. For example, a transition T that in-
creases the value of x by one and the value of sum with x can be defined as
T == x′ = x + 1 ∧ sum ′ = sum + x. The model checker TLC can analyze
invariants and generate random behaviors.



Formal methods were applied on different components of S3, DynamoDB,
and other components, and a number of subtle bugs were found.

Outcomes and Experiences. The experience of the AWS engineers was remark-
ably similar to that generally advocated by the formal methods community. The
quotations below are all from [34].

Model checking finds “corner case” bugs that would be hard to find with standard
industrial methods:

– “We have found that standard verification techniques in industry are nec-
essary but not sufficient. We routinely use deep design reviews, static code
analysis, stress testing, and fault-injection testing but still find that subtle
bugs can hide in complex fault-tolerant systems.”

– “T.R. learned TLA+ and wrote a detailed specification of [components of
DynamoDB] in a couple of weeks. [...] the model checker found a bug that
could lead to losing data if a particular sequence of failures and recovery
steps would be interleaved with other processing. This was a very subtle
bug; the shortest error trace exhibiting the bug included 35 high-level steps.
[...] The bug had passed unnoticed through extensive design reviews, code
reviews, and testing.”

A formal specification is a valuable precise description of an algorithm:

– “There are at least two major benefits to writing precise design: the author
is forced to think more clearly, helping eliminating “hand waving,” and tools
can be applied to check for errors in the design, even while it is being written.
In contrast, conventional design documents consist of prose, static diagrams,
and perhaps pseudo-code in an ad hoc untestable language.”

– “Talk and design documents can be ambiguous or incomplete, and the ex-
ecutable code is much too large to absorb quickly and might not precisely
reflect the intended design. In contrast, a formal specification is precise,
short, and can be explored and experimented on with tools.”

– “We had been able to capture the essence of a design in a few hundred lines
of precise description.”

Formal methods are surprisingly feasible for mainstream software development
and give good return on investment:

– “In industry, formal methods have a reputation for requiring a huge amount
of training and effort to verify a tiny piece of relatively straightforward code,
so the return on investment is justified only in safety-critical domains (such
as medical systems and avionics). Our experience with TLA+ shows this
perception to be wrong. [...] Amazon engineers have used TLA+ on 10 large
complex real-world systems. In each, TLA+ has added significant value. [...]
Amazon now has seven teams using TLA+, with encouragement from senior
management and technical leadership. Engineers from entry level to principal
have been able to learn TLA+ from scratch and get useful results in two to
three weeks.”



– “Using TLA+ in place of traditional proof writing would thus likely have
improved time to market, in addition to achieving greater confidence in the
system’s correctness.”

Quick and easy to experiment with different design choices:

– “We have been able to make innovative performance optimizations [...] we
would not have dared to do without having model-checked those changes. A
precise, testable description of a system becomes a what-if tool for designs.”

The paper’s conclusions include the following:

“Formal methods are a big success at AWS, helping us to prevent sub-
tle but serious bugs from reaching production, bugs we would not have
found using other techniques. They have helped us devise aggressive op-
timizations to complex algorithms without sacrificing quality. [...] seven
Amazon teams have used TLA+, all finding value in doing so [...] Using
TLA+ will improve both time-to-market and quality of our systems. Ex-
ecutive management actively encourages teams to write TLA+ specs for
new features and other significant design changes. In annual planning,
managers now allocate engineering time to TLA+.”

Limitations. The authors point out that there are two main classes of problems
with large distributed systems: bugs and performance degradation when some
components slow down, leading to unacceptable response times from a user’s per-
spective. While TLA+ was effective to find bugs, it had one significant limitation
in that it was not, or could not be, used to analyze performance degradation.

Why TLA+? We have advocated using the Maude framework for the specifica-
tion and analysis of cloud computing storage systems. What are the differences
between Maude and its toolset and TLA+ and its model checker? And why did
the Amazon engineers use TLA+ instead of, e.g., Maude?

On the specification side, Maude supports hierarchical system states, object-
oriented specifications, with dynamic object creation deletion, subclasses, and so
on, as well as the ability to specify any computable data type as an equational
specification. These features do not seem to be supported by TLA+. Maude
also has a clear separation between the system specification and the property
specification, whereas TLA+ uses the same language for both parts. Hence, the
fact that a system S satisfies its property P can be written in TLA+ as the
logical implication S → P .

Perhaps the most important difference is that real-time systems can be mod-
eled and analyzed in Real-Time Maude, and that probabilistic rewrite theories
can be statistically model checked using PVeStA, whereas TLA+ seems to lack
support for the specification and analysis of real-time and probabilistic systems.
(Lamport argues that special treatment of real-time systems is not needed: just
add a system variable clock that denotes the current time [2].) The lack of sup-
port for real-time and probabilistic analysis probably explains why the TLA+



engineers could only use TLA+ and TLC for correctness analysis but not for
performance analysis, whereas we have shown that the Maude framework can
be used for both aspects.

So, why did the Amazon engineers choose TLA+? The main reason seems
to be that TLA+ was developed by one of the most prominent researcher in
distributed systems, Leslie Lamport, whose algorithms (like the many versions
of Paxos) are key components in today’s cloud computing systems:

“C.N. eventually stumbled on a language [...] when he found a TLA+
specification in the appendix of a paper on a canonical algorithm in our
problem domain—the Paxos consensus algorithm. The fact that TLA+
was created by the designer of such a widely used algorithm gave us
confidence that TLA+ would work for real-world systems.”

Indeed, it seems that they did not explore too many formal frameworks:

“When we found [that] TLA+ met those requirements, we stopped eval-
uating methods.”

7 Related Work

Regarding related work on Cassandra, on the model-based performance estima-
tion side, Osman and Piazzola use queueing Petri nets (an extension of colored
stochastic Petri nets) to study the performance of a single Cassandra node on
realistic workloads. They also compare their model-based predictions with ac-
tual running times of Cassandra. The main difference between our work and this
and other work on model-based performance estimation [14,9] is that we do both
functional correctness analysis and model-based performance estimation.

We discuss the use of formal methods at Amazon [34,33] in Section 6, and
note that their approach is very similar to ours, except that they do not use
their models also for performance estimation. In the same vein, the designers of
the TAPIR transaction protocol targeting large-scale distributed storage systems
have specified and model checked correctness properties of their system design
using TLA+ [52,51].

Instead of developing and analyzing high-level formal models to quickly ana-
lyze different design choices and finding bugs early, other approaches [22,50] use
distributed model checkers to model check the implementation of cloud systems
such as Cassandra and ZooKeeper, as well as the BerkeleyDB database and a
replication protocol implementation. This method can discover implementation
bugs as well as protocol-level bugs.

Verifying both protocols and code is the goal of the IronFleet framework at
Microsoft Research [18]. Their methodology combines TLA+ analysis to reason
about protocol-level concurrency (while ignoring implementation complexities)
and Floyd-Hoare-style imperative verification to reason about implementation
complexities (while ignoring concurrency). Their verification methodology in-
cludes a wide range of methods and tools, including SMT solving, and requires



“considerable assistance from the developer” to perform the proofs, as well as
writing the code in a new verification-friendly language instead of a standard
implementation language. To illustrate their method’s applicability, they built
and proved the correctness of a Paxos-based replicated-state-machine library
and a sharded key-value store.

Whereas most of the work discussed in this chapter employs model check-
ing, the Verdi framework [48] focuses on specifying, implementing and verify-
ing distributed systems using the higher-order theorem prover Coq. The Verdi
framework provides libraries and a toolchain for writing distributed systems (in
Coq) and verifying them. The Verdi methodology has been used to mechani-
cally check correctness proofs for the Raft consensus algorithm [39], a back-up
replication system, and a key-value data store. Much like our approach, their
executable Coq “implementations” can be seen as executable high-level formal
models/specifications, an approach that eliminates the “formality gap between
the model and the implementation.” The key difference is that Verdi relies on the-
orem proving, which requires nontrivial user interaction, whereas model check-
ing is automatic. Model checking and theorem proving are somewhat orthogonal
analysis methods. On the one hand, model checking only verifies the system for
single initial configurations, whereas theorem proving can prove the model cor-
rect for all initial configurations. On the other hand, model checking can find
subtle bugs automatically, whereas theorem proving is not a good method for
finding bugs. (Failure of a proof attempt does not imply that there is a bug in
the system, only that the particular proof attempt did not work.)

Coq is also used in the Chapar framework which aims to verify the causal
consistency property for key-value store implementations [23].

Finally, in [10], Bouajjani et al. study the problem of verifying the eventual
consistency property (guaranteed by, e.g., Cassandra) for optimistic replication
systems (ORSs) in general. They show that verifying eventual consistency for
such systems can be reduced to an LTL model checking problem. For this pur-
pose, they formalize both the eventual consistency property and, in particular,
ORSs, and characterize the classes of ORSs for which the problem of verifying
eventual consistency is decidable.

8 Concluding Remarks

We have proposed rewriting logic, with its extensions and tools, as a suitable
framework for formally specifying and analyzing both the correctness and the
performance of cloud storage systems. Rewriting logic is a simple and intuitive
yet expressive formalism for specifying distributed systems in an object-oriented
way. The Maude tool supports both simulation for rapid prototyping and auto-
matic “push-button” model checking exploration of all possible behaviors from
a given initial system configuration. Such model checking can be seen as an
exhaustive search for “corner case” bugs, or as a way to automatically execute
a more comprehensive “test suite” than is possible in standard test-driven sys-
tem development. Furthermore, PVeStA-based statistical model checking can



provide assurance about quantitative properties measuring various performance
and quality of service behavior of a design with a given confidence level, and
Real-Time Maude supports model checking analysis of real-time distributed sys-
tems.

We have used Maude and Real-Time Maude to develop quite detailed formal
models of a range of industrial cloud storage systems (Apache Cassandra, Mega-
store, and Zookeeper) and an academic one (RAMP), and have also designed
and formalized significant extensions of these systems (a variant of Cassandra,
Megastore-CGC, a key management system on top of ZooKeeper, and variations
of RAMP) and have provided assurance that they satisfy desired correctness
properties; we have also analyzed their performance. Furthermore, in the case of
Cassandra, we compared the performance estimates provided by PVeStA anal-
ysis with the performance actually observed when running the real Cassandra
code on representative workloads; they differed only by 10-15%.

We have also summarized the experience of developers at Amazon Web Ser-
vices, who have successfully used formal specification and model checking with
TLA+ and TLC during the design of critical cloud computing services such
as the DynamoDB database and the Simple Storage System. Their experience
showed that formal methods: (i) can feasibly be mastered quickly by engineers,
(ii) reduce time-to-market and improves product quality; (ii) are cost-effective;
and (iv) discover bugs not discovered during traditional system development.
Their main complaint was that they could not use formal methods analyze the
performance of a design (since TLA+ lacks the support for analyzing real-time
and probabilistic systems).

We believe that the Maude formalism should be at least as easy to master as
TLA+ (as our experience with Megastore indicates), and might be even more
convenient; furthermore, as shown in this chapter, the Maude tools can also be
used to analyze the performance of a system.

8.1 The Future

Much work remains ahead. To begin with, one current limitation is that explicit-
state model checking explores the behaviors starting from a single initial system
configuration, and hence—since this can only be done for a finite number of
states—it cannot be used to verify that an algorithm is correct for all possible
initial system configurations, which can be infinite.

A first approach to obtain a more complete coverage is illustrated by [15,25],
where we have extended coverage by model checking all initial system configu-
rations up to n operations, m replicas, and so on. However, naïvely generating
initial states can yield a large number of symmetric initial states; greater cov-
erage and symmetry reduction methods should therefore be explored. A second,
more powerful approach is to use symbolic model checking techniques, where a
possibly infinite number of initial states is described symbolically by formulas
in a theory whose satisfiability is decidable by an SMT solver. In the Maude
context, this form of symbolic model checking is supported by rewriting modulo



SMT [41], which has already been applied to various distributed real-time sys-
tems, and by narrowing-based symbolic model checking [5,6]. An obvious next
step is to verify properties of cloud storage systems for possibly infinite sets of
initial states using this kind of symbolic model checking. A third approach is to
take to heart the complementary nature of model checking and theorem proving,
so that these methods do help each other when used in combination, as explained
below.

In the approach we have presented, design exploration based on formal ex-
ecutable specification comes first. Once a promising design has been identified,
fairly exhaustive model checking debugging and verification of such a design can
be carried out using: (i) LTL explicit-state model checking; (ii) statistical model
checking of quantitative properties; and (iii) symbolic model checking from pos-
sibly infinite sets of initial configurations for greater assurance. Since all these
methods are automatic, this is relatively easy to do based on the system’s for-
mal executable specification with rewrite rules. Only after we are fairly sure
that we have obtained a good design and have eliminated many subtle errors
by these automatic methods, does it become cost-effective to attempt a more
labor-intensive deductive verification through theorem proving of properties not
yet fully verified. Indeed, some properties may already have been fully verified
in an automatic way by symbolic model checking, so that only some additional
properties not expressible within the symbolic model checking framework need
to be verified deductively. Two compelling reasons for such deductive verification
are: (i) the safety-critical nature of a system or a system component; and (iii)
the high reusability of a component or algorithm, such as, for example, Paxos
or Raft, so that the deductive verification effort becomes amortized over many
uses.

In the context of rewriting logic verification, a simple logic to deductively
verify reachability properties of a distributed system specified as a rewrite theory
has been recently developed, namely, constructor-based reachability logic [44],
which itself extends and applies to rewrite theories the original reachability logic
in [46]. In fact, a number of distributed algorithms have already been proved
correct in [44]; and we plan to soon extend and apply the Maude reachability
logic tool to verify specific properties of cloud storage systems.

Of course, high reusability of designs is not just a good thing for amortizing
verification efforts: it is a good thing in all respects. By breaking distributed
system designs into modular, well-understood, and highly reusable components
that come with strong correctness guarantees, as advocated by the notion of
formal pattern in [31], unprecedented levels of assurance and of software quality
could be achieved for cloud storage systems in the near future. It is for this reason
that, from the beginning of our research on the application of formal methods to
gain high assurance for cloud-based systems, we have tried to understand cloud
systems designs as suitable compositions of more basic components providing
key functionality in the form of generic distributed algorithms. This is still work
in progress. Our medium-term goal is to develop a library of generic components
formally specified and verified in Maude as formal patterns in the above sense.



Out of these generic components, different system designs for key-value stores,
and for cloud storage systems supporting transactions could then be naturally
and easily obtained as suitable compositions.
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