
Extending Parikh’s Theorem to Weighted and
Probabilistic Context-Free Grammars

Vijay Bhattiprolu1?, Spencer Gordon2, and Mahesh Viswanathan2??

1 Carnegie Mellon University, Pittsburgh PA 15213, USA,
vpb@cs.cmu.edu

2 University of Illinois at Urbana-Champaign, Urbana 61801, USA,
{slgordo2,vmahesh}@illinois.edu

Abstract. We prove an analog of Parikh’s theorem for weighted context-free
grammars over commutative, idempotent semirings, and exhibit a stochastic
context-free grammar with behavior that cannot be realized by any stochastic
right-linear context-free grammar. Finally, we show that every unary stochastic
context-free grammar with polynomially-bounded ambiguity has an equivalent
stochastic right-linear context-free grammar.

1 Introduction

Two words u, v over an alphabet Σ are said to be Parikh equivalent, if for each a ∈ Σ,
the number of occurrences of a in u and v are the same. The Parikh image of a
language L, is the set of Parikh equivalence classes of words in L. One of the most
celebrated results in automata theory, Parikh’s theorem [26], states that for any
context-free language L, there is a regular language L′ such that the Parikh images of
L and L′ are the same. For example, the context-free language {an bn | n≥ 0} has the
same Parikh image as the regular language (ab)∗; both the Parikh images only consist
of those equivalence classes where the numbers of as is equal to the number of bs.
An important and immediate consequence of this result is that every context-free
language over the unary alphabet is in fact regular. Parikh’s theorem has found many
applications — in automata theory to prove non-context-freeness of languages [12],
decision problems for membership, universality and inclusions involving context-
free languages and semi-linear sets [16,17,18,10]; in verification of subclasses and
extensions of counter machines [19,14,36,10,7,32,13,34,22]; automata and logics
over unranked trees with counting [2,33]; PAC-learning [22].

Weighted automata [31,9] are a generalization of classical automata (finite
or otherwise) in which each transition has an associated weight from a semiring.
Recall that a semiring is an algebra with two operations ⊕ and ⊗ such that ⊕ is
a commutative monoid operation, ⊗ is a monoid operation, ⊗ distributes over ⊕,
and the identity of ⊕ is an anhilator for ⊗. Unlike classical automata that compute
Boolean-valued functions over words, weighted automata compute more general
functions over words — the weight of an accepting computation is the product of

? This work was started while this author was at the University of Illinois, Urbana-Champaign.
?? Partially suported by NSF CNS 1314485.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the weights of its transitions, and the weight of a word is the sum of the weights
of all its accepting computations. Since the seminal paper of Schützerberger [31],
weighted automata have inspired a wealth of extensions and further research (see [9]
for a recent handbook compilation). Weighted automata have found applications in
verification [8,4,5,23], reasoning about competitive ratio of online algorithms [1],
digital image compression [6,15,20,21], in speech-to-text processing [24,25,3], and
data flow analysis [30,29]. A special case of weighted automata are probabilistic
automata [28,27] that model randomized algorithms and stochastic uncertainties in
the system environment.

In this paper, we investigate whether Parikh’s theorem can be generalized to the
weighted case. In particular we investigate if for any weighted context-free grammar
G there is a weighted right-linear grammar G′ such that for any Parikh equivalence
class C , the sum of the weights of words in C under G and G′ is the same. It is easy
to see that if the weight domain is not commutative (i.e., ⊗ is not a commutative
operation) then Parikh’s theorem does not hold. Thus we focus our attention on
commutative weight domains.

Our first result concerns weight domains that are additionally idempotent, which
means that⊕ is an idempotent operation. A classical example of such a semiring is the
min-plus or tropical semiring over the natural numbers where min is the “addition”
operation, and + is the “product” operation. We show that Parikh’s theorem does
indeed hold for weighted automata over commutative, idempotent semirings.

Next, we show that our assumption about idempotence of semirings is necessary.
In particular, we give an example of a stochastic context-free grammar G over the
unary alphabet such that the function computed by G cannot be realized by any
stochastic right linear grammar.

Our last result concerns unary grammars that are polynomially ambiguous. Recall
that a grammar is polynomially ambiguous if there is a polynomial p such that on
any word of length n in the language, the number of derivation trees for the word
is bounded by p(n). We prove that Parikh’s theorem extends for such grammars.
Specifically, we show that, over the unary alphabet, any probability function realized
by a stochastic context-free grammar can also be realized by a right-linear grammar.
Though we present this result in the context of stochastic grammars, the proof applies
to any polynomially ambiguous weighted context-free grammar over a semiring that
is commutative, but not necessarily idempotent.

The rest of the paper is organized as follows. We introduce the basic models and
notation in Section 2. The Parikh’s theorem for weighted automata over commutative,
idempotent semirings is presented in Section 3. In Section 4, we present an example
unary stochastic context-free grammar, and show that there is no stochastic right-
linear grammar that is equivalent to it. Section 5 contains our proof for Parikh’s
theorem for polynomially ambiguous grammars. Eventhough this proof is presented
in the context of stochastic grammars, it is easy to see that it extends to any weighted
context free grammar over a commutative (but not necessarily idempotent) semiring.
Finally, we present our conclusions and directions for future work in Section 6.

2 Preliminaries

Strings. Let us fix a finite string/word w ∈ Σ∗ over Σ. For a subset Γ ⊆ Σ, w�Γ will
denote the string over Γ obtained by removing the symbols not in Γ from w. The
Parikh map, or Parikh image, of w ∈ Σ∗, denoted by Pk(w), is a mapping from Σ to
N, such that for a ∈ Σ, Pk(w)(a) is the number of occurrences of a in w. The Parikh
equivalence class of w, [w]Pk = {w′ | Pk(w′) = Pk(w)}, is the set of all words with
the same Parikh image as w. We can extend the Parikh map to languages L ⊆ Σ∗,
defining Pk(L)¬ {Pk(w) | w ∈ L}.

Context Free Grammars. We will consider context free grammars in Greibach Normal
Form. Formally (in this paper) a context-free grammar is G= (V,Σ, P,S), where V
and Σ are disjoint sets of variables (or non-terminals) and terminals, respectively;
S ∈ V is the start symbol; and P ⊆ V×ΣV∗ is a finite set of productions where each
production is of the form A→ aβ with a ∈ Σ and β ∈ V∗. Without loss of generality,
we assume that every production in the grammar is used in some derivation from
S to a string in Σ∗. A sentence is a string in (Σ ∪ V)∗. A right-linear grammar is
a context-free grammar where the productions have at most one non-terminal on
the right-hand side, i.e., P ⊆ V × (Σ({ε} ∪ V)). It is well known that a language is
generated by a right-linear grammar if and only if it is regular.

We will find it convenient to partition the variables of a grammar into those that
have exactly one derivation tree and those that have more than one. Formally, the
set of single-derivation variables X ⊆ V is the smallest set containing all variables A
with exactly one production of the form A→ a (with a ∈ Σ) and having the property
that if a variable A has exactly one production of the form A→ aα where a ∈ Σ and
α ∈ X∗ then A∈ X. The remaining variables, i.e. Y = V \ X, are multiple-derivation
variables.

Prioritized leftmost derivations. In this paper we will consider special derivation
sequences of a context-free grammar that expand the leftmost variable while giving
priority to single-derivation variables. We call these prioritized leftmost (PLM)
derivations, and we define them precisely next.

Definition 1. Consider a context-free grammar G = (V,Σ, P, S), where the non-terminals
V have been partitioned into the set of single-derivation variables X and multiple-
derivation variables Y. We say that αAβ rewrites in a single prioritized leftmost deriva-
tion step to αγβ (denoted as αAβ ⇒plm αγβ) iff ∃π ∈ P,π = (A → γ) such that
either

1. A∈ X, α ∈ (Σ∪ Y)∗, and β ∈ V∗, or
2. A∈ Y, α ∈ Σ∗, and β ∈ (Σ∪ Y)∗

In other words, either A is the leftmost single-derivation variable in αAβ , or A is the
leftmost multiple-derivation variable and αAβ has no single-derivation variables. If

α⇒plm β by application of π, we’ll write α
π
=⇒plm β . Note that if α⇒plm β there is

always a unique π such that α
π
=⇒plm β .

A prioritized leftmost (PLM) derivation is a sequence ψ = α1, . . . ,αn such that
α1⇒plm α2⇒plm · · · ⇒plm αn. The set of all PLM derivations is denoted Derplm(G).

The language generated by G is L(G) ¬
n

α ∈ Σ∗
�

�

� S⇒∗plm α
o

where ⇒∗plm is the

reflexive and transitive closure of⇒plm. Finally, the parse of a word w ∈ (Σ∪ V)∗,
denoted parseG(w), is the set of all PLM derivations yielding w:

parseG(w) ¬
�

α1, . . . ,αn ∈ Derplm(G)
�

� α1 = S andαn = w
	

.

Example 1. We present a simple example to illustrate the definitions. Consider the
grammar G = ({S, B} , {a,b} , P,S) where P consists of the following productions:
π1 = S→ aSB, π2 = S→ aB, and π3 = B→ b. The set of single-derivation variables
is {B} and the set of multiple-derivation variables is {S}. An example of a prioritized
leftmost derivation is

S
π1
=⇒plm aSB

π3
=⇒plm aSb

π2
=⇒plm aaBb

π3
=⇒plm aabb

The language generated by this grammar is {anbn | n≥ 1}.

Derivation trees. The set of all derivation trees for G will be denoted as ∆G. For a
derivation tree τ, a node n in τ, and a path p from the root in τ, `(τ), `(n) and `(p)
will denote the label of the root, the node n, and the node reached by path p in τ,
respectively. For any node n in a tree τ and path p from the root, we denote the
subtree rooted at n by τ(n), and the subtree rooted at the node reached by path p
by τ(p). The frontier of a tree τ, denoted Fr(τ) is the sentence `(n1)`(n2) . . .`(nk)
where n1, . . . , nk are the leaves of τ in left-to-right order.

For any variable A ∈ V, ∆G(A) ¬ {τ ∈∆G | `(τ) = A} is the subset of deriva-
tion trees rooted at A. A tree τ for which Fr(τ) ∈ Σ∗ is called a complete
derivation tree, and the set of all complete derivation trees rooted at A is
∆ΣG(A) ¬ {τ ∈∆G(A) | Fr(τ) ∈ Σ∗}. The set of all complete derivation trees is
∆ΣG ¬ {τ ∈∆G | Fr(τ) ∈ Σ∗}. A tree τ ∈ ∆G(A) is said to be an A-pumping tree
if Fr(τ)�V = A. The set of A-pumping trees is ∆p

G(A) ¬ {τ ∈∆G(A) | Fr(τ)�V = A}.
The set of all pumping trees is given by ∆p

G = {τ ∈∆G | Fr(τ)�V ∈ V}.

Remark 1. In a context-free grammar (where all productions are “useful”), every
single-derivation variable is the root of exactly one complete derivation tree, and
every multiple-derivation variable is the root of at least two complete derivation
trees.

Tree Notation. We will use the following notation on derivation trees. Let τ ∈∆G, n
be a node in τ, and p be a path from the root in τ. The leftmost child of the node
reached by path p, will be the one reached by the path p · 0 with the other children
corresponding to the paths p · 1, p · 2, etc. For τ1 ∈ ∆G(`(n)) (τ1 ∈ ∆G(`(p))),
τ[n 7→ τ1] (τ[p 7→ τ1]) denotes the derivation tree obtained by replacing τ(n)
(τ(p)) by the tree τ1. We denote by remp(τ) the tree obtained by replacing τ(p) by
the root of τ(p), i.e., by “removing” all the children of p. Finally, for a rule A→ aα
with α= A1A2 · · ·Ak, and trees τi ∈∆G(Ai), Aaα(τ1,τ2, . . .τk) denotes the tree with
root labeled A and children a,τ1, . . .τk from left-to-right. Thus, Aa denotes the tree
with root labeled A and one child labeled a.

Cuts. Observe that, for any string α ∈ (V∪Σ)∗, there is a bijection between derivation
trees τ with Fr(τ) = α and PLM derivations in parseG(α). A set of nodes separating
the root of τ from all of the leaves in τ is a cut of τ. Now consider the unique PLM
derivation Ψ corresponding to τ. Every sentence in Ψ corresponds to a cut C in τ.
We call any such C a prioritized leftmost (PLM) cut of τ. For a set of trees T and a
variable A∈ V, the Parikh supremum of variable A in T , denoted by supPk(A, T), is
the maximum number of occurrences of A in any PLM cut of any tree τ ∈ T . Observe
that any PLM derivation sequence corresponding to a tree τ in T can have at most
supPk(A, T) occurrences of the variable A in any sentence.

Ambiguity. We will say that a set of trees Γ is ambiguous if there are two distinct trees
τ1,τ2 such that Fr(τ1) = Fr(τ2); if Γ is not ambiguous, we say it is unambiguous.
The ambiguity function µG : N→ N for a grammar G is a function mapping every
natural number n to the maximal number of PLM derivations which a word of length
n may have. Formally, µG(n) = maxw∈L(G),|w|=n

�

�parseG(w)
�

�. A grammar is said to
have exponential ambiguity if its ambiguity function is in 2Θ(n), and it is said to
have polynomially-bounded ambiguity, or to be polynomially ambiguous, if its am-
biguity function is in O(nd) for some d ∈ N0. Any grammar G has either exponential
ambiguity or polynomially-bounded ambiguity [35]. The following characterization
of polynomial ambiguity was proved in [35].

Theorem 1 ([35]). A context-free grammar G has polynomially-bounded ambiguity if
and only if ∆p

G is unambiguous.

We conclude the preliminaries by recalling a classical result due to Parikh [26].

Theorem 2 (Parikh’s Theorem [26]). For every context-free grammar G, there is a
right-linear context-free grammar G′ such that Pk(L(G)) = Pk(L(G′)).

2.1 Weighted and Stochastic Context-Free Grammars

Weighted context-free grammars define a function that associates a value in a semiring
with each string. Stochastic context-free grammars are special weighted context-free
grammars that associate probabilities with strings. We recall these classical definitions
in this section. We begin by defining a semiring.

Semiring. A semiring is a structure D= (D,⊕,⊗, 0D, 1D) where (D,⊕, 0D) is a com-
mutative monoid with identity 0D, (D \ {0D} ,⊗, 1D) is a monoid with identity 1D, ⊗
distributes over ⊕ (i.e., (a⊕ b)⊗ c = (a⊗ c)⊕(b⊗ c) and a⊗(b⊕ c) = (a⊗ b)⊕(a⊗ c),
for every a, b, c ∈ D), and 0D is an annhilator for ⊗ (i.e., a⊗0D = 0D⊗a = 0 for every
a ∈ D). We abuse notation and use D to denote the semiring and the underlying set
where the meaning is clear from context. We define D0 = D\{0D}. When considering
an abstract semiring D, we’ll write 0D and 1D for 0D and 1D respectively. An idem-
potent semiring satisfies the additional requirement that for all a ∈ D, a ⊕ a = a.
A commutative semiring is one where ⊗ is commutative, i.e., (D \ {0D} ,⊗, 1D) is a
commutative monoid as well.

Example 2. Classical examples of a semiring are the tropical semiring and the proba-
bility semiring. The tropical or min-plus semiring is (N∪{∞} ,min,+,∞, 0), where
∞ is taken to be larger than everything in N. It is commutative and idempotent as
min(a, a) = a for any a. The probability semiring is ([0, 1],+,×, 0, 1), where [0, 1] is
the set of reals between 0 and 1. It is commutative as × is commutative. However,
since the addition of two numbers is not idempotent, the probability semiring is not
idempotent.

Weighted context-free grammars. A weighted context-free grammar is a pair (G,W)
where G = (V,Σ, P, S) is a context-free grammar, and W : P→ D assigns a weight from
D to each production in P, for some semiring D. (Note that W may assign 0D to some

productions in P.) The weight of a PLM derivation ψ = α1

π1
=⇒plm α2

π2
=⇒plm · · ·

πn−1
==⇒plm

αn of G, is given by W(ψ)¬ ⊗n−1
i=1 W(πi). For w ∈ Σ∗, W(w)¬ ⊕ψ∈parseG(w)W(ψ); we

assume that if parseG(w) = ; (i.e., w 6∈ L(G)) then W(w) = 0D. The semantics of a
weighted grammar (G,W), denoted ¹GºW : Σ∗→ D, is the function mapping each
word to its weight in G, i.e., ¹GºW (w)¬W(w).

Example 3. Let G be the grammar described in Example 1. Consider a weight function
W that assigns weights from the tropical semiring, with the weight of every production
π ∈ P being equal to 1. Then the semantics of (G,W) is given as ¹GºW (an bn) = 2n
and ¹GºW (w) = 0, when w 6∈ L(G).

Definition 2. The Parikh image of a weighted context-free grammar (G, W), written
as Pk¹GºW is function defined as

Pk¹GºW (w)¬
⊕

w′∈[w]Pk

¹GºW (w
′)

Stochastic Context-free Grammars. A stochastic context-free grammar is a weighted
context-free grammar (G= (V,Σ, P, S),W)where the weight domain is the probability
semiring ([0,1],+,×, 0, 1), and for any A∈ V and a ∈ Σ, we have

∑

α∈V ∗:(A→aα)∈P

W(A→ aα) ∈ [0,1] .

3 A Parikh’s Theorem for Weighted CFGs

The main result of this section is that for any weighted context-free grammar over
an idempotent, commutative semiring (like the tropical semiring), there is a Parikh
equivalent weighted right-linear context-free grammar. Thus, this observation extends
the classical result to weighted CFGs over idempotent semirings.

Theorem 3 (Weighted Parikh’s Theorem). For every weighted context-free grammar
(G,W) over an idempotent, commutative semiring, there exists a Parikh-equivalent
weighted right-linear grammar (G∗, W∗), that is, we have

Pk¹GºW = Pk¹G∗ºW∗ .

Proof. The full proof for this result is presented in Section A in the Appendix. Here
we present the broad ideas.

Let G = (V,Σ, P, S) be a context-free grammar and let W : P → D be a weight
function over a commutative, idempotent weight domain D. Consider the following
homomorphism h : P∗→ Σ∗ defined as h(π) = a, where π= A→ aα ∈ P.

We begin by first constructing a weighted context-free grammar (G1,W1) over
the alphabet P, whose image under h gives us G. Formally, G1 = (V, P,P1, S) has
as productions P1 = {A→ πα | ∃a ∈ Σ. π= A→ aα ∈ P}. In addition, take W1 to
be W1(A → πα) = W(π). It is easy to see that h(L(G1)) = L(G) by construction.
Moreover, given W1 and W, we can conclude ¹GºW (w) =

⊕

ω∈P∗:h(ω)=w ¹G1ºW1
(ω).

By Parikh’s theorem (Theorem 2), there is a right-linear grammar G2 =
(V2, P, P2, S2) such that Pk(L(G2)) = Pk(L(G1)). Define the weight function W2 as
W2(A→ πB) =W(π) to give us the weighted CFG (G2,W2). Using the fact that ⊗ is
commutative, and ⊕ is idempotent, we can prove that Pk¹G1ºW1

= Pk¹G2ºW2
; the

full proof is in Section A.
Finally, we consider the context free grammar G3 obtained by “applying

the homomorphism h” to G2. Formally, G3 = (V2,Σ, P3, S2), where P3 =
{A→ h(π)B | A→ πB ∈ P2}. The weight function W3 is defined in such a way that
weight of A → aB is the sum of the weights of all productions A → πB, where
h(π) = a, i.e.,

W3(A→ aB) =
⊕

π:h(π)=a

W2(A→ πB).

(G3,W3) and (G2,W2) share the same relationship as (G, W) and (G1, W1). That is,
we have h(L(G2)) = L(G3) and ¹G3ºW3

(w) =
⊕

ω∈P∗:h(ω)=w ¹G2ºW2
(ω).

The weighted CFG (G3,W3) is the desired weighted grammar, i.e., Pk¹G3ºW3
=

Pk¹GºW; the full proof is in Section A. ut

Corollary 1. If (G, W) is a weighted context-free grammar over an idempotent, com-
mutative weight domain and a unary alphabet, then there exists a weighted right-linear
context-free grammar (G′,W′) such that ¹G′ºW′ = ¹GºW.

Example 4. Starting with the weighted grammar (G,W) from Example 3, the con-
struction used in the proof of Theorem 3 would have P1 containing the following
productions: S → π1SB, S → π2B, B → π3. The language of this grammar is
L(G1) =

�

πn
1π2π

n+1
3

�

� n≥ 0
	

.
One candidate for G2 would have as productions S → π1J , S → π2K , J →

π3S, and K → π3. The language is L(G2) = {(π1π3)nπ2π3 | n≥ 0}.
In that case (G3, W3) would have productions and weights as follows:

W3(S→ aJ) = 1 W3(S→ aK) = 1

W3(J → bS) = 1 W3(K → b) = 1

The language of the underlying grammar would be L(G3) = {(ab)nab | n≥ 0}, and

¹G3ºW3
(w) =

¨

2k if w= (ab)k for some k ≥ 1

0 otherwise

4 A Counterexample to Parikh’s Theorem for Stochastic
Grammars

Theorem 3 crucially relies on the semiring being idempotent. In this section, we
show that Theorem 3 fails to generalize if we drop the requirement of idempotence.
We give an example of a stochastic context-free grammar over the unary alphabet
that is not equivalent to any stochastic right-linear grammar. Before presenting the
example stochastic context-free grammar and proving the inexpressivity result, we
recall some classical observations about unary stochastic right linear grammars.

4.1 Properties of Unary Stochastic Right-linear Grammars

Stochastic right-linear grammars satisfy pumping lemma type properties. Here we
recall such an observation for unary stochastic right-linear grammars.

Theorem 4 (Pumping Lemma). Let (G= (V, {a} , P, S),W) be a stochastic right-
linear grammar over the unary alphabet. There is a number k, and real numbers
c0, c1, . . . ck with c0 + c1 + · · ·+ ck = 1 such that for every ` ∈ N

¹GºW (a
`+k+1) =

k
∑

i=0

ci ¹GºW (a
`+i)

Proof. The result is a consequence of the Cayley-Hamilton theorem and the fact that
1 is an eigen value of stochastic matrices. We skip the proof as it is a specialization of
Theorem 2.8 in Chapter II.C in [27]. ut

Let (G, W) be a unary weighted context-free grammar. The generating function of
such a grammar is P(x) =

∑∞
k=0 ¹GºW (ak)x k. We conclude this section by observing

that if G is right-linear, then its generating function must be a rational function,
i.e., P(x) is an algebraic fraction where both the numerator and denominator are
polynomials.

Theorem 5. Let (G,W) be a stochastic right-linear grammar over the unary alphabet.
Then the generating function P(x) =

∑∞
k=0 ¹GºW (ak)x k is a rational function.

Proof. Observe that Theorem 4 says that the sequence 〈¹GºW (an)〉n∈N satisfies a lin-
ear homogeneous recurrence with constant coefficients. Thus, its generating function
must be rational. ut

4.2 The Counterexample

We now present a unary weighted CFG and show that there is no weighted
right-linear CFG that is equivalent to it. Consider the grammar G∗ =
({S} , {a} , {(S→ a), (S→ aSS)} , S). Let p be some number in (0,1). The weight
function W∗ is defined as follows: W∗(S→ a) = 1− p, and W∗(S→ aSS) = p. Taking
cn to be the nth Catalan number, we can see that ¹G∗ºW∗ (a

2k+1) = ck pk(1− p)k+1;

this is because the probability of any PLM derivation for a2k+1 is pk(1− p)k+1 and
there are ck elements in parseG∗(a

2k+1). Taking bk = ¹G∗ºW∗ (a
k), we have

bk =

¨

c(k−1)/2p(k−1)/2(1− p)(k−1)/2+1 if k is odd

0 otherwise

Recall that the generating function for the Catalan numbers, C(z) =
∑

k≥0 ckzk, is

given by C(z) = 1−
p

1−4z
2z . Based on the above observations, the generating function

for the grammar (G∗,W∗), P(z) =
∑

k≥0 bkzk can be written as follows.

P(z) =
∑

k≥0

bkzk =
∑

k≥0

b2k+1z2k+1

= z
∑

k≥0

b2k+1

�

z2
�k
= z

∑

k≥0

ck pk(1− p)k+1
�

z2
�k

= z(1− p)
∑

k≥0

ck

�

z2p(1− p)
�k

= z(1− p)C(z2p(1− p))

= z(1− p)
1−

p

1− 4z2p(1− p)
2z2p(1− p)

=
1

2zp

�

1−
Æ

1− 4z2p(1− p)
�

Having identified an expression for the generating function for (G∗, W∗), we are
ready to prove that there is no Parikh equivalent right-linear grammar for (G∗,W∗).
First notice that if a weighted grammar (G, W) is over the unary alphabet, then
¹GºW = Pk¹GºW. Therefore, to establish the result of this section, it suffices to prove
the statement that there is no right-linear grammar that is equivalent to (G∗, W∗);
this is the content of the next theorem.

Theorem 6. There is no stochastic right-linear grammar (G,W) such that ¹GºW =
¹G∗ºW∗ .

Proof. Given Theorem 5, it suffices to prove that the generating function P(z) for
(G∗, W∗) is not rational. Taking Q(z) =

p

1− 4z2p(1− p), we see that P(z) =
1

2zp (1−Q(z)). Given this relationship, we can conclude that if P(z) is rational func-
tion, then so is Q(z). Thus, our goal will be to prove that Q(z) is not a rational
function.

Assume for contradiction that Q(z) is rational. Then Q(z) = f (z)/g(z) where f
and g are both polynomials with greatest common divisor having degree 0. Then
Q2(z) = f 2(z)/g2(z) and Q2(z)g2(z) =

�

1− 4z2p(1− p)
�

g2(z) = f 2(z). Thus, Q2(z)
must divide f 2(z). We observe that Q2(z) = (1− 2z

p

p(1− p))(1+ 2z
p

p(1− p)) is
square-free so Q2(z) must divide f (z), and f (z) =Q2(z)h(z) for some polynomial h.
Substituting for f (z) in Q2(z)g2(z) = f 2(z) and rearranging we obtain Q2(z)g2(z) =
(Q2(z))2h2(z) =⇒ g2(z) =Q2(z)h2(z), and by the same argument as above, Q2(z)

divides g(z). Thus, Q2(z) divides both f (z) and g(z). Since Q2(z) is not a degree 0
polynomial, we contradict the assumption that the greatest common divisor of f and
g has degree 0. ut

5 Parikh’s Theorem for Unary Polynomially Ambiguous
Stochastic Grammars

The weighted stochastic context-free grammar (G∗, W∗) in Section 4.2 is exponentially
ambiguous; the ambiguity function µG∗ is bounded by the Catalan numbers. Expo-
nential ambiguity turns out to be critical to construct such counterexamples. In this
section, we prove that any unary stochastic context-free grammar with polynomial
ambiguity is equivalent to a unary stochastic right-linear grammar. The proof of this
result relies on an observation that in any PLM cut in a complete derivation tree of a
unary polynomially ambiguous grammar, the number of occurences of any variable is
bounded by a constant dependent on the grammar. The unary alphabet assumption
is crucial in obtaining such a bound (Lemma 3). In the next two subsections we
present a proof of this observation by first bounding the number of occurrences in
cuts of pumping trees and then using it to bound it in complete derivation trees. In
Section 5.3, we then present the construction of the right-linear grammar. Though we
present this result in the context of stochastic grammars, it applies to any weighted
CFG over a commutative (but not necessarily idempotent) semiring.

In the rest of this section, let us fix a unary, polynomially ambiguous, context-free
grammar G= (V, {a} , P, S) and a stochastic weight function Pr (for probability). We
assume that the set of variables V is partitioned into single-derivation variables X and
multiple-derivation variables Y. As we have done throughout this paper, we assume
that every production in G is “useful”, that is, is used in some complete derivation
tree whose root is labeled S. Finally we will assume that m is the maximum length
of the right-hand side of any production in P.

5.1 Parikh Suprema in Pumping trees

In this section we will bound the number of times a variable can appear in any
PLM cut of a pumping tree in G. We begin by observing some simple properties
about single-derivation variables X and multiple-derivation variables Y. Since every
production in the grammar is useful, we can conclude that there is a unique complete
derivation tree with root A if A∈ X, and that there are at least two complete derivation
trees with root A if A∈ Y, i.e., |∆ΣG(A)| = 1 if A∈ X, and |∆ΣG(A)| > 1 if A∈ Y. Next,
for A∈ X, the unique τ ∈∆ΣG(A) has the following properties: (a) no node is labeled
by a variable in Y; (b) each variable in X labels at most one node along any path in
τ. Property (b) holds because if A∈ X has a derivation A⇒∗plm αAβ , then A cannot
have any complete derivation tree and it would be useless. This also means that any
pumping tree τ ∈∆p

G must have `(τ) ∈ Y. These properties allow us to bound the
size of the unique complete derivation for variable A∈ X.

Lemma 1. For any A∈ X, the unique tree τ ∈∆ΣG(A) has size at most m|X|.

Proof. Since only variables in X can appear as labels in τ and no variable appears
more than once in any path, the height of τ is ≤ |X|. Finally, since any node has at
most m children, we get the bound on the size of τ. ut

Next we prove that Lemma 1 allows one to bound the number of times any
single-derivation variable appears in any PLM cut of a pumping tree.

Lemma 2. For any A∈ Y and B ∈ X, supPk(B,∆p
G(A))≤ m|X|+1.

Proof. Let τ ∈ ∆p
G(A) be an arbitrary A-pumping tree, where A ∈ Y. Let C be an

arbitrary PLM cut of τ. We will prove a slightly stronger statement; we will show
that the total number of single-derivation variables in C is ≤ m|X|+1. This will bound
the Parikh supremum for any single-derivation variable.

Without loss of generality, assume that C has at least one node with label in X.
Amongst all nodes in C that are labeled by a variable in X, let n be the node that is
closest to the root, and if there are multiple such nodes, take n to be the leftmost
one. From the definition of PLM cuts, the following property holds for C and n: (a)
any node to right of n in C that is labeled by a variable in X must be a sibling of n,
and (b) all nodes to the left of n in C labeled by variables of X must be descendents
of some left sibling (say n1) of n that is also labeled by a variable in X. Thus, the
number of nodes to the right of n (including n) in C labeled by X is at most m, and,
by Lemma 1, the number of nodes to the left of n in C labeled by X is at most m|X|.
Putting these together, the total number of nodes in C labeled by some variable in X
is at most m+m|X| ≤ m|X|+1. ut

Lemma 3. For any A∈ V, and B ∈ Y, supPk(B,∆p
G(A))≤ 2.

Proof. Let τ be a A-pumping tree, for some variable A. Note that A must be a multiple-
derivation variable because of property (b) before Lemma 1. Let C be any PLM cut of
τ. Since τ is an A-pumping tree it must contain A in its frontier. Then there must be
some node n in C such that the subtree τ(n) contains A in its frontier. Let C = `(n).
Observe that C is a multiple-derivation variable because a node labeled A∈ Y is a
descendent. Thus, there are two complete derivation trees τC

1 ,τC
2 with roots labeled

C (Remark 1).
We’ll first show that there cannot be more than two occurrences of nodes labeled

C in C. Assume towards the contrary that there are at least three nodes n1, n2, n3 in
C with `(n1) = `(n2) = `(n3) = C . Without loss of generality, assume n1, n2, and n3
are in left-to-right order in τ and n ∈ {n1, n2, n3}. Since n1, n2, n3 belong to a cut,
they are not related by the ancestor/descendent relationship.

Let τ1 be the tree τ[n1 7→ τC
1 , n2 7→ τC

2 , n3 7→ τ(n)], and let τ2 be the tree
τ[n1 7→ τC

2 , n2 7→ τC
1 , n3 7→ τ(n)]. By construction, τ1 and τ2 are both A-pumping

trees with Fr(τ1) = Fr(τ2) and τ1 6= τ2. However, since G is polynomially ambiguous,
by Theorem 1, the set of pumping trees is unambiguous, giving us the desired
contradiction.

Next, we show that there cannot be more than two nodes labeled B ∈ Y in
C, where B 6= C . Assume that there are at least three nodes n1, n2, n3 in C with
`(n1) = `(n2) = `(n3) = B. Again assume n1, n2, and n3 are in left-to-right order in

τ. Further, since B ∈ Y, there are two complete derivation trees τB
1 and τB

2 with root
labeled B (Remark 1).

Observe that at least two nodes of {n1, n2, n3} must lie to one side of n in τ.
Without loss of generality we may assume that n1 and n2 are those nodes. Let τ1 be
the tree τ[n1 7→ τB

1 , n2 7→ τB
2], and let τ2 be the tree τ[n1 7→ τB

2 , n2 7→ τB
1]. Clearly,

τ1,τ2 are A-pumping trees with Fr(τ1) = Fr(τ2), and τ1 6= τ2. ut

5.2 Parikh Suprema in Complete Derivation Trees

We will now use the results in Section 5.1 to bound the Parikh supremum of any
variable in a complete derivation tree of G. The key property we will exploit is the
fact that any complete derivation tree can be written as the “composition” of a small
number of pumping trees (see Figure 1) such that any PLM cut is the union of cuts
in each of these pumping trees. The bounds on Parikh suprema will then follow from
the observations in Section 5.1.

We begin with some convenient notation. For a τ ∈∆G, let longestpath(τ) denote
the longest path from the root of τ to a node labeled `(τ). If there are multiple
such paths, longestpath(τ) is the lexicographically-first path among them. Note that
longestpath(τ) can be ε if the root is the only node with label `(τ) in τ. Let depth(τ)
denote the length of the longest path from root to leaf in τ.

We now describe two procedures compress and decompress. Let us fix a
complete derivation tree τ. The procedure compress returns a data structure of
pumping trees. These pumping trees are small in number and τ is the “composition”
of these pumping trees. Let n be the lowest node in τ that has the same label as the
root. compress identifies the pumping tree obtained by removing the children of n,
and recursively compresses the subtrees rooted at the children of n. Note that if n is
the same as the root, then the pumping tree identified by compress will just be the
tree with one node.

compress(τ):
If τ= Aa for some A∈ V, return τ
p← longestpath(τ)
Let A, a and α be such that τ(p) = Aaα(τ(p · 1), . . . ,τ(p · k))
τpump← remp(τ)
Return [τpump, A→ aα,compress(τ(p · 1)), . . . ,compress(τ(p · k))]

The tree τ is the “composition” of pumping trees in the data structure returned
by compress. We describe this “composition operation” itself by an algorithm
decompress.

decompress(τc):
If τc = Aa for some A∈ V, return τc

Let τc be of the form [τpump, A→ aα,τ1
c , . . . ,τk

c]
τ′← Aaα(decompress(τ1

c), . . . ,decompress(τk
c))

Return τpump[longestpath(τpump) 7→ τ′]

The following lemma characterizing the relationship between compress and
decompress is easy to see.

S

B

B

B

C

C

a

a

a

a
B

S

a B
S

a

a

a

a

a

B
a

⌧1

⌧2

S

B Ba

⌧1

⌧2 B

a

B

a

Fig. 1. A complete derivation tree for the grammar in Example 5 on the left and the compressed
tree data structure with removed pumping trees on the right.

Lemma 4. For any complete derivation tree τ, τ= decompress(compress(τ)).

Example 5. Consider a grammar ({S, B, C} , {a} , P, S) with productions

S→ aSB|aBB|aB, B→ aBC |a, C → a.

Consider the complete derivation tree shown on the left in Figure 1. The output of
compress will be

[τ1, S→ aBB, [τ2, B→ a], Ba]

We will now show that the data structure returned by compress has a con-
stant number of pumping trees. Consider a call of compress(τ), where p is the
longestpath(τ). The key property that we exploit is the fact that the label `(τ) does
not appear in the subtrees rooted at the children of p.

Lemma 5. For any complete derivation tree τ, the number of trees in the data structure
returned by compress(τ) is at most m|V|.

Proof. Let p = longestpath(τ), and let τ(p · 0),τ(p · 1), . . . ,τ(p · k) be the children
of τ(p). As observed before, the label `(τ) does not appear in the subtrees τ(p · i).
Thus, the depth of the recursion in compress is bounded by |V|. Finally, observing
that k ≤ m, we get the desired bound. ut

We are now ready to prove the main result of this section — bound on the Parikh
supremum of any variable in a complete derivation tree.

Lemma 6. For any variable A, supPk(A,∆ΣG)≤ m|X|+|V|+1

Proof. By Lemma 5, we know that the number of trees in compress(τ) is at most
m|V|. Consider any PLM cut C of τ. Any node in C belongs to at most one tree in
compress(τ). Further for any τ1 ∈ compress(τ), C restricted to τ1 is a PLM cut
of τ1. Thus, C can be seen as the union of at most m|V| PLM cuts in pumping trees.
By Lemma 2 and Lemma 3, the Parikh supremum of any variable in any of these
pumping trees is at most m|X|+1. Putting these observations together, gives us the
desired bound. ut

5.3 Right-Linear SCFG for Polynomially Ambiguous SCFGs

For this section, let us fix k = m|V|+|X|+1. By Lemma 6, in any PLM derivation of G, any
variable appears at most k times at any step. Since k is a constant, the right-linear
grammar can simulate every PLM derivation of G by explicitly keeping track of only
k copies of any variable. This idea is very similar to the one used in [11]. We now
give the formal definition of the right-linear grammar based on this intuition.

For a sentence α ∈ (Σ ∪ V)∗, we define `f (α) ¬ α�Σα�Xα�Y. The stochastic
right-linear grammar (G1 = (V1, {a} , P1, S1), Pr1) is formally defined as follows.

1. V1 = {〈α〉 | α ∈ X∗Y∗ such that for each A∈ V. Pk(α)(A)≤ k}. Thus, the vari-
ables of G1 are sequences of single-derivation variables followed by multiple-
derivation variables from G in which each variable appears at most k times.

2. S1 = 〈S〉
3. For any production π= (A→ aβ) ∈ P and sentence α ∈ V∗ we define a produc-

tion
πα = (〈Aα〉 → a 〈`f (βα)〉)

corresponding to applying the production π as a PLM step from the sentence Aα.
The set P1 is defined as

P1 = {πα | π= (A→ aβ) ∈ P ∧ 〈Aα〉 , 〈βα〉 ∈ V1}

4. Finally Pr1 is defined as Pr1(πα) = Pr(π) for all πα ∈ P1.

We first observe that (G1, Pr1) is a stochastic CFG. The proof is in Section B.

Proposition 1. (G1, Pr1) is a stochastic CFG.

(G1, Pr1) is equivalent to (G,Pr). Its proof is in Section C.

Theorem 7. For any unary, stochastic grammar (G, Pr) of polynomial ambiguity, there
is a stochastic right-linear grammar (G1, Pr1) such that ¹GºPr = ¹G1ºPr1

.

6 Conclusions

In this paper we investigated whether Parikh’s theorem generalizes to weighted
automata. We proved that it does indeed when the weighted context-free grammar
is over a commutative, idempotent semiring. We showed that idempotence of the
weight domain is necessary by demonstrating that Parikh’s theorem does not extend

to unary, stochastic grammars. However, we proved that if the context-free grammar
is polynomially ambiguous, then idempotence of the weight domain is not required
for Parikh’s theorem to hold.

Our proof for Parikh’s theorem for commutative and idempotent semirings extends
(as is) to pushdown automata (as opposed to context-free grammars). However, the
same does not apply to our result for unary, polynomially ambiguous grammars over
non-idempotent rings. Our current proof subtly relies on the “one state” property
of context-free grammars. It would be interesting to see how to generalize these
ideas to the case of pushdown automata. Finally, stochastic context-free grammars
have a (weaker) semantics as language acceptors — the grammar accepts a word
if its weight is > 1

2 . Our results imply that every unary language accepted by a
polynomially ambiguous, stochastic context-free grammar is also accepted by a
probabilistic automata (with probability > 1

2). It is open if this also holds when the
grammar is exponentially ambiguous; our counterexample in this paper only shows
that there is no probabilistic automaton that satisfies the stronger requirement that
words are accepted with the same probability.

References

1. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with weighted
automata. ACM Transactions on Algorithms 6(2) (2010)

2. Beeri, C., Milo, T.: Schemas for integration and translation of structured and semi-
structured data. In: Proceedings of the International Conference on Database Theory. pp.
296–313 (1999)

3. Buchsbaum, A., Giancarlo, R., Westbrook, J.: On the determinization of weighted finite
automata. SIAM Journal on Computing 30(5), 1502–1531 (2000)

4. Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. In: Proceedings of the
Annual Conference of the European Association for Computer Science Logic. pp. 385–400
(2008)

5. Chatterjee, K., Doyen, L., Henzinger, T.: Alternating weighted automata. In: Proceedings of
the International Symposium on Fundamentals of Computation Theory. pp. 3–13 (2009)

6. Culik, K., Kari, J.: Image compression using weighted finite automata. Computer and
Graphics 17, 305–313 (1993)

7. Dang, Z., Ibarra, O., Bultan, T., Kremmerer, R., Su, J.: Binary reachability analysis of
discrete pushdown timed automata. In: Proceedings of the International Conference on
Computer Aided Verification. pp. 69–84 (2000)

8. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Proceedings of the
International Colloquium on Automata, Languages and Programming. pp. 513–525 (2005)

9. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer (2009)
10. Esparza, J.: Petri nets, Commutative context-free grammars, and Basic Parallel Processes.

Fundamenta Informaticae 31(1), 13–25 (1997)
11. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple and direct

automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)
12. Goldstine, J.: A simplified proof of Parikh’s theorem. Discrete Mathematics 19, 235–239

(1977)
13. Göller, S., Mayr, R., To, A.: On the computational complexity of verifying one-counter

processes. In: Proceedings of the IEEE Symposium on Logic in Computer Science. pp.
235–244 (2009)

14. Gurari, E., Ibarra, O.: The complexity of decision problems for finite-turn multi-counter
machines. Journal of Computer and System Sciences 22, 220–229 (1981)

15. Hafner, U.: Low bit-rate image and video coding with weighted finite automata. Ph.D.
thesis, Universität Würzburg (1999)

16. Huynh, D.: The complexity of semilinear sets. In: Proceedings of the International Collo-
quium on Automata, Languages and Programming. pp. 324–337 (1980)

17. Huynh, D.: Deciding the ineuivalence of context-free grammars with 1-letter terminal
alphabet is σp

2 -complete. Theoretical Computer Science 33, 305–326 (1984)
18. Huynh, D.: Complexity of equivalence problems for commutative grammars. Information

and Control 66(1), 103–121 (1985)
19. Ibarra, O.: Reversal-bounded multi-counter machines and their decision problems. Journal

of the ACM 25, 116–133 (1978)
20. Jiang, Z., Litow, B., de Vel, O.: Similarity enrichment in image compression through

weighted finite automata. In: Proceedings of the International Computing and Combina-
torics Conference. pp. 447–456 (2000)

21. Katritzke, F.: Refinements of data compression using weighted finite automata. Ph.D.
thesis, Universität Siegen (2001)

22. Kopczyński, E., To, A.: Parikh images of grammars: Complexity and Applications. In:
Proceedings of the IEEE Symposium on Logic in Computer Science. pp. 80–89 (2010)

23. Kuperberg, D.: Linear temporal logic for regular cost functions. In: Proceedings of the
Symposium on Theoretical Aspects of Computer Science. pp. 627–636 (2011)

24. Mohri, M.: Finite-state transducers in language and speech processing. Computational
Linguistics 23, 269–311 (1997)

25. Mohri, M., Pereira, F., Riley, M.: The design principles of weighted finite-state transducer
library. Theoretical Computer Science 231, 17–32 (1997)

26. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
27. Paz, A.: Introduction to Probabilistic Automata. Academic Press (1971)
28. Rabin, M.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
29. Reps, T., Lal, A., Kidd, N.: Program analysis using weighted pushdown systems. In: Pro-

ceedings of the International Conference on Foundations of Software Technology and
Theoretical Computer Science. pp. 23–51 (2007)

30. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their applica-
tion to interprocedural dataflow analysis. Science of Computer Programming 58(1-2),
206–263 (2005)

31. Schützenberger, M.: On the definition of a family of automata. Information and Control
4, 245–270 (1961)

32. Sen, K., Viswanathan, M.: Model checking mutli-threaded programs with asynchronous
atomic methods. In: Proceedings of the International Conference on Computer Aided
Verification. pp. 300–314 (2006)

33. Siedl, H., Schwentick, T., Muscholl, A.: Counting in trees. Texts in Logic and Games 2,
575–612 (2007)

34. To, A., Libkin, L.: Algorithmic meta-theorems for decidable LTL model checking over
infinite state systems. In: Proceedings of the International Conference on the Foundations
of Software Science and Computation Structures. pp. 221–236 (2010)

35. Wich, K.: Exponential ambiguity of context-free grammars. In: Developments in Language
Theory, Foundations, Applications, and Perspectives, Aachen, Germany, 6-9 July 1999. pp.
125–138 (1999)

36. Yen, H.: On reachability equivalence for BPP-nets. Theoretical Computer Science 179,
301–317 (1996)

A Proof of Theorem 3

Let G = (V,Σ, P,S) be a context-free grammar and let W : P → D be a weight
function over a commutative, idempotent weight domain D. Consider the following
homomorphism h : P∗→ Σ∗ defined as h(π) = a, where π= A→ aα ∈ P.

We begin by first constructing a weighted context-free grammar (G1,W1) over
the alphabet P, whose image under h gives us G. Formally, G1 = (V, P,P1, S) has
as productions P1 = {A→ πα | ∃a ∈ Σ. π= A→ aα ∈ P}. In addition, take W1 to
be W1(A → πα) = W(π). It is easy to see that h(L(G1)) = L(G) by construction.
Moreover, given W1 and W, we can conclude

¹GºW (w) =
⊕

ω∈P∗:h(ω)=w

¹G1ºW1
(ω) (1)

Next, observe that the weight of a derivation in G1 is determined by the terminal
symbols. Further, since ⊕ is idempotent, we have for any ω= π1π2 · · ·πn ∈ L(G1),

W1(ω) =W(π1)⊗W(π2)⊗ · · · ⊗W(πn) (2)

By Parikh’s theorem (Theorem 2), there is a right-linear grammar G2 =
(V2, P, P2, S2) such that Pk(L(G2)) = Pk(L(G1)). Define the weight function W2 as
W2(A→ πB) =W(π) to give us the weighted CFG (G2,W2). Like G1, the weight of a
derivation in G2 is determined by the terminal symbols. Together with idempotence
of ⊕, we get, for ω= π1π2 · · ·πn ∈ L(G2),

W2(ω) =W(π1)⊗W(π2)⊗ · · · ⊗W(πn) (3)

Putting together Equation 2, Equation 3, commutativity of ⊗, and the fact that
Pk(L(G2)) = Pk(L(G1)), we get

Pk¹G1ºW1
= Pk¹G2ºW2

. (4)

Finally, we consider the context free grammar G3 obtained by “applying
the homomorphism h” to G2. Formally, G3 = (V2,Σ, P3, S2), where P3 =
{A→ h(π)B | A→ πB ∈ P2}. The weight function W3 is defined in such a way that
weight of A → aB is the sum of the weights of all productions A → πB, where
h(π) = a, i.e.,

W3(A→ aB) =
⊕

π:h(π)=a

W2(A→ πB).

(G3,W3) and (G2,W2) share the same relationship as (G, W) and (G1, W1). That is,
we have h(L(G2)) = L(G3) and

¹G3ºW3
(w) =

⊕

ω∈P∗:h(ω)=w

¹G2ºW2
(ω) (5)

The weighted CFG (G3, W3) is the desired weighted grammar. We complete the
proof by showing Pk¹G3ºW3

= Pk¹GºW through the following reasoning.

Pk¹G3ºW3
(w) =

⊕

w′∈[w]Pk

¹G3ºW3
(w′)

=
⊕

w′∈[w]Pk

�

⊕

ω∈P∗:h(ω)=w′
¹G2ºW2

(ω)

�

by Equation 5

=
⊕

ω∈P∗:h(ω)=w

�

⊕

ω′∈[ω]Pk

¹G2ºW2
(ω′)

�

commutativity of ⊕

=
⊕

ω∈P∗:h(ω)=w

Pk¹G2ºW2
(ω)

=
⊕

ω∈P∗:h(ω)=w

Pk¹G1ºW1
(ω) by Equation 4

=
⊕

ω∈P∗:h(ω)=w

�

⊕

ω′∈[ω]Pk

¹G1ºW1
(ω′)

�

=
⊕

w′∈[w]Pk

�

⊕

ω∈P∗:h(ω)=w′
¹G1ºW1

(ω)

�

commutativity of ⊕

=
⊕

w′∈[w]Pk

¹GºW (w) by Equation 1

= Pk¹GºW (w).

B Proof of Proposition 1

For any 〈Aα〉 ∈ V1 and a ∈ Σ we have
∑

β∈V∗:(〈Aα〉→a〈β〉)∈P1

Pr1(〈Aα〉 → a 〈β〉) =
∑

γ∈V∗:(〈Aα〉→a〈`f (γα)〉)∈P1

Pr1(〈Aα〉 → a 〈`f (γα)〉)

=
∑

γ∈V∗(A→aγ)∈P

Pr1 ((A→ aγ)α)

=
∑

γ∈V∗(A→aγ)∈P

Pr(A→ aγ)

∈ [0,1] .

C Proof of Theorem 7

Before presenting the proof, we highlight the relationship between G and G1.

Lemma 7. For any PLM derivation α0

π1
=⇒plm α1

π2
=⇒plm · · ·

πn
=⇒plm αn in G and for all

i ∈ {0,1, . . . , n},

Pr(α0

π1
=⇒plm α1

π2
=⇒plm · · ·

πi
=⇒plm αi) = Pr1(`f (α0)

π
`f (α0)�V
1
====⇒plm `f (α1)

π
`f (α1)�V
2
====⇒plm · · ·

π
`f (αi−1)�V
i
=====⇒plm `f (αi))

Lemma 7 can be proved by induction on the length of the PLM derivation. Using
this lemma, we can finally prove that ¹GºPr = ¹G1ºPr1

.
Construct the stochastic right-linear grammar (G1, Pr1) as described in Section 5.3.

For a derivation Ψ = α0

π1
=⇒plm α1

π2
=⇒plm · · ·

πn
=⇒plm αn of G, let f(Ψ) = `f (α0)

π
`f (α0)�V
1
====⇒plm

`f (α1)
π
`f (α1)�V
2
====⇒plm · · ·

π
`f (αn−1)�V
n
=====⇒plm `f (αn) as in Lemma 7. Now, for any w ∈ {a}∗, we

have

¹GºPr (w) =
∑

Ψ∈parseG(w)

Pr(Ψ)

=
∑

Ψ∈parseG(w)

Pr1(f(Ψ))

=
∑

ψ∈parseG1
(w)

Pr1(ψ)

= ¹G1ºPr1
(w).

	Extending Parikh's Theorem to Weighted and Probabilistic Context-Free Grammars

