
A Formal Framework for Mobile Ad hoc
Networks in Real-Time Maude

Si Liu1, Peter Csaba Ölveczky2, and José Meseguer1

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. Mobile ad hoc networks (MANETs) are increasingly popular
and deployed in a wide range of environments. However, it is challenging
to formally analyze a MANET, both because there are few reasonably
accurate formal models of mobility, and because the large state space
caused by the movements of the nodes renders straight-forward model
checking hard. In particular, the combination of wireless communication
and node movement is subtle and does not seem to have been adequately
addressed in previous formal methods work. This paper presents a for-
mal executable and parameterized modeling framework for MANETs in
Real-Time Maude that integrates several mobility models and wireless
communication. We illustrate the use of our modeling framework with the
Ad hoc On-Demand Distance Vector (AODV) routing protocol, which
allows us to analyze this protocol under different mobility models.

1 Introduction

A mobile ad hoc network (MANET) is a self-configuring network of mobile de-
vices (laptops, smart phones, sensors, etc.) that communicate wirelessly and co-
operate to provide the necessary network functionality. Since MANETs can form
ad hoc networks without fixed infrastructure, they are supposed to have a wide
applicability, for example for providing ad hoc networks for cooperating “smart”
cars, for emergency responders during accidents, during natural disasters which
may disable fixed infrastructure, in battlefield areas, and so on.

Although many such applications are safety-critical and need formal analysis
to ensure their correctness, the formal modeling and analysis of MANETs present
a number of challenges that include:

1. The need to model node movement realistically.
2. Modeling communication. There is a subtle interaction between wireless com-

munication, which typically is restricted to distances of between 10 and 100
meters, and node mobility. For example, nodes may move into or out of the
sender’s transmission range during the communication delay; furthermore,
the sender may itself move during the communication. Modeling communi-
cation in MANETs is therefore challenging for formal languages, which are
usually based on fixed communication primitives.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Liu, P.C. Ölveczky, and J. Meseguer

3. Since the communication topology of the network depends on the locations
of the nodes, such locations must be taken into account in the model. How-
ever, this leads to very large state spaces, which makes direct model checking
analysis unfeasible: if there are m nodes and n locations, there are nm differ-
ent nodes/locations states. A 10 × 10 grid with four nodes would therefore
lead to 100 million states just to capture all nodes and their locations.

As explained in Section 7, we are not aware of any formal model that provides
a reasonably detailed model of both mobility and communication in MANETs.
Given its expressiveness and flexibility to define models of communication, Real-
Time Maude [23] seems to be a promising language for formally modeling MANETs.
In this paper we provide, to the best of knowledge, the first reasonably precise
formal modeling framework for MANETs. In particular, we formalize

– the most popular models for node mobility, and

– geographically bounded wireless communication, which takes into account
the interplay between communication delay and mobility,

in Real-Time Maude. Furthermore, we use object-oriented techniques to make
it easy to compose our framework with a model of a MANETs protocol.

Concerning Challenge 3 above, in this paper we do not develop abstraction
techniques for node mobility. Instead, to be able to perform model checking anal-
ysis, our model is parametric in aspects such as the possible velocities and direc-
tions a node can choose. However, even if a node moves slowly, it may still cover
the entire area (and hence contribute to an unmanageable state space) given
enough time. Another key feature of Real-Time Maude that makes some mean-
ingful model checking analysis of MANETs possible is therefore time-bounded
model checking, which allows us to analyze scenarios only up to a certain du-
ration (during which the nodes may not reach most locations). Abstracting the
state space caused by node mobility and the need to keep track of node locations
is the sine qua non for serious model checking of MANETs. The point is that
this paper lays the necessary foundations for developing such abstractions by
providing a first reasonably detailed formal model of location-aware MANETs.

One of the main tasks of a MANET is to maintain an (ad hoc) network, which
means that the network must figure out how to route messages between nodes.
In this paper we illustrate the use of our MANETs framework by modeling and
analyzing the widely used Ad hoc On-Demand Distance Vector [25] (AODV)
routing protocol for MANETs developed by the IETF MANET working group.

The rest of this paper is organized as follows. Section 2 gives a background to
Real-Time Maude. Section 3 briefly introduces MANETs. Section 4 presents our
Real-Time Maude modeling framework for MANETs. Section 5 shows how our
framework can be used to model the AODV protocol, and Section 6 explains how
that model of AODV can be model checked using Real-Time Maude. Finally,
Section 7 discusses related work and Section 8 gives some concluding remarks.

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 3

2 Real-Time Maude

Real-Time Maude [23] is a language and tool that extends Maude [6] to sup-
port the formal specification and analysis of real-time systems. The specification
formalism emphasizes ease and generality of specification, and is particularly
suitable for modeling distributed real-time systems in an object-oriented style.
Real-Time Maude specifications are executable, and the tool provides a variety
of formal analysis methods, including simulation, reachability analysis, and LTL
and timed CTL model checking.

Specification. A Real-Time Maude module specifies a real-time rewrite the-
ory [23] (Σ,E ∪A, IR,TR), where:

– Σ is an algebraic signature; that is, a set of declarations of sorts, subsorts,
and function symbols.

– (Σ,E∪A) is a membership equational logic theory [2], with E a set of possibly
conditional equations, and A a set of equational axioms such as associativ-
ity, commutativity, and identity, so that equational deduction is performed
modulo the axioms A. (Σ,E ∪ A) specifies the system’s state space as an
algebraic data type.

– IR is a set of labeled conditional rewrite rules specifying the system’s local
transitions, each of which has the form1 [l] : t −→ t′ if

∧m
j=1 cond j , where

each cond j is either an equality uj = vj (uj and vj have the same normal
form) or a rewrite tj −→ t′j (tj rewrites to t′j in zero or more steps), and l is
a label. Such a rule specifies an instantaneous transition from an instance of
t to the corresponding instance of t′, provided the condition holds.

– TR is a set of tick rules l : {t}
τ−→ {t′} if cond that advance time in the

entire state t by τ time units.

We refer to [6] for the syntax of Real-Time Maude. We briefly summarize the
syntax of Real-Time Maude and refer to [6] for more details. Operators are intro-
duced with the op keyword: op f : s1 . . . sn -> s. They can have user-definable
syntax, with underbars ‘_’ marking the argument positions. Some operators can
have equational attributes, such as assoc, comm, and id, stating, for example,
that the operator is associative and commutative and has a certain identity ele-
ment. Such attributes are used by the Maude engine to match terms modulo the
declared axioms. An operator can also be declared to be a constructor (ctor)
that defines the carrier of a sort. Equations and rewrite rules are introduced
with, respectively, keywords eq, or ceq for conditional equations, and rl and
crl. The mathematical variables in such statements are declared with the key-
words var and vars, or can be introduced on the fly in a statement without
being declared previously, in which case they have the form var:sort. An equa-
tion f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can be applied

1 An equational condition ui = vi can also be a matching equation, written ui:= vi,
which instantiates the variables in ui to the values that make ui = vi hold, if any.

4 S. Liu, P.C. Ölveczky, and J. Meseguer

to a subterm f(. . .) only if no other equation with left-hand side f(u1, . . . , un)
can be applied.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An object of class C in a given
state is represented as a term <O : C | att1 : val1, ..., attn : valn > of sort Object,
where O, of sort Oid, is the object’s identifier, and where val1 to valn are the
current values of the attributes att1 to attn. A message is a term of sort Msg.

The state of an object-oriented specification is a term of sort Configuration,
and is a multiset of objects and messages. Multiset union is denoted by an
associative and commutative juxtaposition operator, so that rewriting is multiset
rewriting. For example, the rewrite rule

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z >

dly(m’(O’,x), z) .

defines a family of transitions in which a message m, with parameters O and w,
is read and consumed by an object O of class C, the attribute a1 of object O

is changed to x + w, and a new message dly(m’(O’,x),z) is generated; this
message will become the “ripe” message m’(O’,x) after z time units. Attributes
whose values do not change and do not affect the next state of other attributes
or messages, such as a3, need not be mentioned in a rule. Attributes that are
unchanged, such as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis. Real-Time Maude’s timed fair rewrite command simulates
one of the many possible system behaviors from the initial state by rewriting
the initial state up to a certain duration. The timed search command

(tsearch [n] t =>* pattern such that cond in time <= timeLimit .)

uses a breadth-first strategy to search for (at most n) states that are reachable
from the initial state t within a time timeLimit , match the search pattern, and
satisfy the search condition.

Real-Time Maude’s linear temporal logic model checker analyzes whether
each behavior satisfies a temporal logic formula. State propositions are operators
of sort Prop, and their semantics is defined by equations of the form

ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines prop to hold in all states t where t
|= prop evaluates to true. A temporal logic formula is constructed by state
propositions and temporal logic operators such as True, False, ~ (negation),
/\, \/, -> (implication), [] (“always”), <> (“eventually”), and U (“until”). Real-
Time Maude provides both unbounded and time-bounded LTL model checking.
The time-bounded model checking command

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 5

(mc t |=t formula in time <= timeLimit .)

checks whether the temporal logic formula formula holds in all behaviors up to
duration timeLimit starting from the initial state t.

3 Mobility and Communication Delay in MANETs

This section gives an overview of the main mobility models used by researchers
on protocol evaluations, and of the per-hop delay in wireless communication.

3.1 Mobility Models

A number of different mobility patterns have been proposed to model node mobil-
ity in realistic scenarios. Such models of mobility include entity mobility models,
where a node’s movement is independent of the movements of the other nodes,
and group mobility models, where the nodes’ movements depend on each other.
In this paper we focus on entity mobility models.

Fig. 1. Motion paths of a mobile node in three mobility models, where a bullet • depicts
a pause in the movement.

The following main entity mobility models [3] are illustrated in Fig. 1:

– Random Walk: Each node moves in “rounds” of fixed durations. A node
moves in the same direction and with the same speed throughout one “round”.
At the end of each round, the new speed and the new direction of a node are
randomly chosen, and a new moving round starts.

– Random Waypoint: Each node initially pauses for a fixed duration. When
a pause ends, a node randomly chooses a new destination and a new speed,
and then travels to that destination at the chosen speed. After arriving, the
node again pauses before a new moving round starts.

– Random Direction: Each mobile node chooses a random direction, along
which it travels until reaching the border of the sensing area. When a node
arrives at the border, the node pauses for a given time, and then randomly
selects a new direction and starts to move in that direction.

6 S. Liu, P.C. Ölveczky, and J. Meseguer

3.2 Communication Delay

To understand how node movement affects wireless communication, it is neces-
sary to understand the nature of messaging delays in wireless communication.
In a typical wireless transmit/receive process, the per-hop delay, i.e., the com-
munication delay from a transmitter to a receiver, consists of the following five
parts [27]:

Delay Factor Description
Sender Processing Delay The duration elapsed on the sender side from the

moment a message timestamp is taken to the point
the message is buffered in the device.

Media Access Delay The duration for a message to stay in the radio
device buffer; e.g., in a CSMA system, this is the
delay waiting for a clear channel to transmit.

Transmit Delay The duration for a radio device to transmit a mes-
sage over a radio link.

Radio Propagation Delay The duration for a message to propagate through
the air to a receiver.

Receiver Processing Delay The duration spent on the receiver side to pass the
received message from the device buffer to the ap-
plication module.

We can typically abstract from the radio propagation delay, since the transmis-
sion range in MANETs usually ranges from 10 to 100 meters, while the radio
propagation speed is approximately 3×108 meters per second. The media access
delay is an uncertainty, depending on the MAC overhead, such as collisions and
waiting time.

4 Formalizing MANET Mobility and Communication in
Real-Time Maude

This section presents a modeling framework for MANETs with nodes that com-
municate wirelessly. The combination of wireless communication and mobility is
challenging, because both the sender and the potential receivers may be moving
during the communication delay, and could, for example, enter or exit the area
within the transmission range of the sender during the delay. Section 4.2 shows
how mobile nodes can be specified in Real-Time Maude, Section 4.3 explains
how the time behavior of MANETs can be defined in a way that allows us to
easily compose our MANETs model with MANET protocols, and Section 4.4
shows how wireless communication for MANETs can be formalized.

4.1 Some Basic Data Types

We assume a sort Location for the set of locations, a sort Speed for the different
velocities with which a node can move, a set Direction for the different direc-

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 7

tions that a node can choose, and sorts SpeedRange, DirRange, and DestRange

denoting sets of, respectively, Speed, Direction, and Location elements.
Although our framework is parametric in these domains, in this paper we

assume for simplicity that nodes move in a two-dimensional square with length
areaSize. A location is therefore represented as a pair x.y of rational numbers:2

op _._ : Rat Rat ~> Location [ctor] .

cmb X . Y : Location

if 0 <= X and X <= areaSize /\ 0 <= Y and Y <= areaSize .

We do not further specify the different powersets, whose elements could be
unions of dense intervals or of single points, or both. Since the nodes may need
to nondeterministically select a new speed, a new next destination, and/or a new
next direction, we assume for generality’s sake that there is an operator choose
that can select any value in the respective set nondeterministically:

op choose : SpeedRange -> Choice [ctor] .

op choose : DestinationRange -> Choice [ctor] .

op choose : DirRange -> Choice [ctor] .

op [_] : Speed -> Choice [ctor] .

op [_] : Location -> Choice [ctor] .

op [_] : Direction -> Choice [ctor] .

We assume that an element e can be chosen from a set S if and only if there is
a rewrite (in zero or more steps) choose(S) => [e]. For example, if we have a
discrete set of possible next directions d1 ; d2 ; ...; dn, where the set union
operator _;_ is declared to be associative and commutative, we can specify that
any value from the set can be selected, by giving the following rewrite rule:

var D : Direction . var DR : DirRange .

rl [chooseDir] : choose(D ; DR) => [D] .

4.2 Modeling Mobile Nodes

We model a MANET in an object-oriented style, where a mobile node is modeled
as an object instance of some subclass of the following base class Node:

class Node | currentLocation : Location .

The attribute currentLocation denotes the node’s current location. Any node
that is not mobile is an object of the subclass StationaryNode that does not
add any attribute to the base class:

class StationaryNode .

subclass StationaryNode < Node .

2 We do not show most variable declarations, but follow the Maude convention that
variables are written in capital letters.

8 S. Liu, P.C. Ölveczky, and J. Meseguer

A mobile node is modeled as an object of a subclass of the class MobileNode:

class MobileNode | speed : Speed, direction : Direction, timer : TimeInf .

subclass MobileNode < Node .

where speed and direction denote, respectively, the node’s current speed and
its current movement direction. The timer attribute is used to ensure that a
node changes its movement (or lack thereof) in a timely manner; that is, timer
denotes the time remaining until some discrete event must take place.

We are now ready to define the different mobility models.

Random Walk. A node moving according to the random walk model is continu-
ously moving, in time intervals of length movingTime. At the end of an interval,
the node nondeterministically chooses a new speed and a new direction for its
next interval. Such a node is modeled by an object of the RWNode subclass:

class RWNode | speedRange : SpeedRange, dirRange : DirRange .

subclass RWNode < MobileNode .

where speedRange and dirRange denote the set of possible next speeds and
directions, respectively. The timer attribute inherited from its superclass denotes
the time remaining of its current move interval. The instantaneous behavior of
the mobility part of such a node can be modeled by the following rule. In this
rule, the node is finishing one interval (the timer attribute is 0), and must select
new speed and direction for its next round, and reset the timer:

crl [startNewMove] :

< O : RWNode | timer : 0, speedRange : SR, dirRange : DR >

=>

< O : RWNode | timer : movingTime, speed : S, direction : D > .

if choose(SR) => [S] /\ choose(DR) => [D] .

The actual movement of such a node is modeled in Section 4.3.

Random Waypoint. In the random waypoint mobility model, a node alternates
between pausing and moving. When it starts moving, it selects a new speed and
a new destination and starts moving towards the destination. Such a node should
be modeled by an object instance of the RWPNode subclass:

class RWPNode | speedRange : SpeedRange, destRange : DestRange,

status : Status .

subclass RWPNode < MobileNode .

The status attribute is either pausing or moving, and destRange denotes the
range of possible goal locations.

The instantaneous behavior of this mobility model is given by the following
rewrite rules. First, if the node is pausing and the timer expires, the node must
get moving by selecting a new speed and desired next location, and resetting the
timer so that it expires when the goal location is reached:

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 9

var MOVE-TIME : Time .

crl [startMoving] :

< O : RWPNode | currentLocation : CURR-LOC, status : pausing, timer : 0,

speedRange : SR, destRange : DER >

=>

< O : RWPNode | status : moving, speed : S,

direction : D, timer : MOVE-TIME >

if choose(SR) => [S]

/\ choose(DER) => [NEXT-LOC]

/\ D := direction(L, NEXT-LOC)

/\ MOVE-TIME := timeBetweenLocations(CURR-LOC, NEXT-LOC, S) .

where direction gives the direction from one location to another, and time-

BetweenLocations denotes the time it takes to travel between two locations
at a given speed. Notice that the selected speed cannot be zero, unless the
selected next location is also the current location, because then the last matching
equation would not hold, since the traveling time between the two locations
would be the infinity value INF, which is not a Time value.

The following rule applies when the timer of a moving node expires; then it
is time to take a rest for pauseTime time units:

rl [startPausing] :

< O : RWPNode | status : moving, timer : 0 >

=>

< O : RWPNode | status : pausing, timer : pauseTime, speed : 0 > .

Random Direction. A node that moves according to the random direction model
nondeterministically chooses a direction and a speed, and walks in the given
direction until it reaches the boundary of the area. It then pauses for some time
before starting a new walk. Nodes following this mobility pattern should be
declared as instances of the RDNode subclass:

subclasses of the following class

class RDNode | speedRange : SpeedRange, dirRange : DirRange,

status : Status .

subclass RDNode < MobileNode .

Its instantaneous behaviors are formalized by two rewrite rules; the first one
chooses a new direction and speed when the node has paused enough:

crl [newRDwalk] :

< O : RDNode | currentLocation : CURR-LOC, speedRange : SR,

dirRange : DR, timer : 0, status : pausing >

=>

< O : RDNode | status : moving, speed : S,

direction : D, timer : MOVE-TIME >

if choose(SR) => [S] /\ choose(DR) => [D]

/\ NEW-GOAL-LOC := borderLocation(CURR-LOC, D)

/\ NEW-GOAL-LOC =/= CURR-LOC

/\ MOVE-TIME := timeBetweenLocations(CURR-LOC, NEW-GOAL-LOC, S) .

10 S. Liu, P.C. Ölveczky, and J. Meseguer

The second-to-last conjunct in the condition ensures that the selected direction
leads inwards towards the area of operation.

The second rule models the stage when a moving node starts pausing:

rl [startPausing] :

< O : RDNode | status : moving, timer : 0 >

=>

< O : RDNode | status : pausing, timer : pauseTime, speed : 0 > .

4.3 Timed Behavior and Compositionality

Our model of mobile nodes must be easily composable with “application” proto-
cols such as AODV to define a particular MANET system. The straight-forward
way of composing our model of mobility with a MANET protocol is to let the
nodes in the application protocol be modeled as objects of subclasses of the
classes introduced above, since a subclass “inherits” all the attributes and rewrite
rules of its superclasses; in particular, such application-specific subclasses would
inherit the rewrite rules modeling the movements of their nodes.

However, we must allow the user to define the timed behavior of her system,
and compose it with the timed behavior of mobile nodes. We therefore use the
following extension of the “standard” tick rule for object-oriented specifications

var T : Time . var C : Configuration .

crl [tick] : {C} => {timeEffect(timeEffectMob(C, T), T)} in time T

if T <= min(mte(C), mteMob(C)) .

where timeEffectMob defines the effect of time elapse on the mobility-specific
parts of the system, and timeEffect defines how the passage of a certain amount
of time changes the state in the parts of the composed system that does not deal
with node mobility. Likewise, mteMob denotes the maximum amount of time that
may elapse from a given state until some mobility action must be taken, and
mte defines the amount of time until the application protocol must perform a
discrete action. These functions should distribute over the single objects and
messages in the configuration as follows:

vars NECF1 NECF2 : NEConfiguration .

ops timeEffectMob timeEffect : Configuration Time -> Configuration [frozen (1)] .

ops mte mteMob : Configuration -> TimeInf [frozen (1)] .

eq timeEffectMob(none, T) = none .

eq timeEffect(none, T) = none .

eq timeEffectMob(NECF1 NECF2, T)

= timeEffectMob(NECF1, T) timeEffectMob(NECF2, T) .

eq timeEffect(NECF1 NECF2, T) = timeEffect(NECF1, T) timeEffect(NECF2, T) .

eq mte(NECF1 NECF2) = min(mte(NECF1), mte(NECF2)) .

eq mteMob(NECF1 NECF2) = min(mteMob(NECF1), mteMob(NECF2)) .

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 11

That is, the “user” can specify his protocol without worrying about having
to model the node’s mobility, and should take care about defining timeEffect

and mte for the “application-specific” timed features.
Since we set the speed to 0 when a node is pausing, we can easily define the

timed behavior of both stationary and mobile nodes. First of all, time does not
affect (the mobility-specific parts of) a stationary node:

eq timeEffectMob(< O : StationaryNode | >, T) = < O : StationaryNode | > .

Time affects a mobile node by moving the node and decreasing its timer value:

eq timeEffectMob(< O : MobileNode | currentLocation : L, speed : S,

direction : D, timer : T1 >, T)

= < O : MobileNode | currentLocation : move(L,S,D,T), timer : T1 monus T > .

where move(l,s,d,t) denotes the location resulting from moving a node in loca-
tion l for t time units in direction d and with speed s. This function also makes
sure that a node does not move beyond the area under consideration.

The mobility model does not restrict the time advance for stationary nodes,
whereas for mobile nodes, time can advance until the timer becomes 0:

eq mteMob(< O : StationaryNode | >) = INF .

eq mteMob(< O : MobileNode | timer : T >) = T .

Finally, the following equations take care of messages and of objects that are
not mobile or stationary nodes, in case such extra objects are introduced by the
application:

eq mteMob(OBJECT) = INF [owise] .

eq timeEffectMob(OBJECT, T) = OBJECT [owise] .

eq mteMob(MSG) = INF .

eq timeEffectMob(MSG, T) = MSG .

4.4 Modeling Wireless Communication in Mobile Systems

Finally, we need to model wireless communication in mobile systems. Typically
only nodes that are sufficiently close to the sender, i.e., within the sender’s
transmission range, receive the message with sufficient signal strength. However,
both the sender and the potential receivers might move (possibly out of, or into,
the sender’s transmission range) during the entire communication delay.

As mentioned in Section 3, the total communication “delay” can be decom-
posed into five parts. However, if we abstract from the radio propagation delay,
the per-hop delay can be seen to consist of two parts: the delay at the sender side
(including sender processing delay, media access delay and transmit delay) and
the delay at the receiver side (including receiver processing delay). The point is
that exactly those nodes that are within the transmission range of the sender
when the sending delay ends should receive a message.

12 S. Liu, P.C. Ölveczky, and J. Meseguer

It is also worth mentioning that our model is still somewhat abstract and
does not capture all network factors, most notably collisions.

In MANETs communication can be by broadcast, unicast, or groupcast, de-
pending on which kind of message a transmitter intends to send, and who are
the recipients. In our model we have three corresponding message constructors
for broadcast, unicast, and groupcast, respectively:

msg broadcast_from_ : MsgCont Oid -> Msg .

msg unicast_from_to_ : MsgCont Oid Oid -> Msg .

msg gpcast_from_to_ : MsgCont Oid NeighborSet -> Msg .

where Oid is the identifier of a node; NeighborSet is a set of nodes that should
be informed as a group; and MsgCont is the sort for message contents.

When a node sender wants to broadcast some message content mc, it gener-
ates a “message” broadcast mc from sender. The following equation adds the
delay on the sending side, sendDelay, to this “broadcast message:”

eq broadcast MC from O = dly(transmit MC from O, sendDelay) .

The crucial moment is when the sending delay expires and the transmit

message becomes “ripe.” All the nodes that are within the transmission range
of the sender at that moment should receive the message. This distribution is
performed by the function distrMsg, where distrMsg(snd, loc, mc, conf) gen-
erates a single message, with content mc, to each node in conf that is currently
within the transmission range of location loc; furthermore, this single message
has delay recDelay modeling the delay at the receiving site:

eq {< O : Node | currentLocation : L > (transmit MC from O) C}

= {< O : Node | > distrMsg(O, L, MC, C)} .

eq distrMsg(O, L, MC, < O’ : Node | currentLocation : L’ > C)

= < O’ : Node | currentLocation : L’ > distrMsg(O, L, MC, C)

(if L withinTransRangeOf L’

then dly((MC from O to O’), recDelay)

else none fi) .

Unicast and groupcast are modeled similarly.

5 Case Study: Route Discovery in AODV

This section first gives an overview of the Ad hoc On-Demand Distance Vector
(AODV) routing protocol, and then presents our Real-Time Maude model of
AODV, focusing on the route discovery process. The entire executable Real-
Time Maude specification is available at http://folk.uio.no/RealTimeMaude/
MANET.

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 13

5.1 Route Discovery in AODV

AODV [25] is a widely used algorithm for routing messages between mobile
nodes which dynamically form an ad hoc network. AODV allows a source node
not to maintain any routing information but instead to initiate a route discovery
process based on an on-demand mechanism to establish a route to a destination
node.

Fig. 2. Route discovery process.

When necessary, a source node S

initiates a route discovery process by
broadcasting a route request (RREQ)
message to its neighbors. An interme-
diate node can either unicast a route
reply (RREP) message back to the
source if a valid route to the destina-
tion D can be found in its local rout-
ing table, or re-broadcast the received
RREQ to its own neighbors. As the
RREQ travels from S to D, reverse
paths from all nodes back to S are au-
tomatically set up. Eventually, when
the RREQ reaches D, it sends a RREP
back along the previously established

reverse path. After this process, a route between S and D is set up, along which
further packets can be delivered. An intermediate node that receives multiple
RREQ messages drops the subsequent ones if the same RREQ was recorded
previously. To ensure loop-free routing, AODV employs a sequence number to
represent how fresh the received information is. The higher a sequence number
is, the fresher a route will be. Therefore a requesting node is required to select
the one with the greatest sequence number.

5.2 Modeling AODV Nodes and Messages

We model an AODV node as an object of a subclass AODVNode of class Node. The
new attributes show the identification of a node’s routing request, the sequence
number of a node itself, the local routing table, and the buffered routing requests
sent since the beginning of the current round, respectively. Since the routing
protocol is aimed at finding a route between two nodes, we can check if this has
been achieved by looking up a special routing table entry for the destination
node in the local routing table after the current round.

class AODVNode | rreqID : Nat, sequenceNumber : Sqn,

routingTable : RouteTable, requestBuffer : RreqBuffer .

subclass AODVNode < Node .

A routing table of sort RouteTable is modeled using the predefined data type
MAP in Maude, consisting of routing table entries of the form Oid |-> Tuple3,
where Oid refers to a destination node; and Tuple3 refers to a tuple of three

14 S. Liu, P.C. Ölveczky, and J. Meseguer

elements in a routing table entry: the next hop towards the destination, the
distance to the destination, and the local destination sequence number. A route
request buffer of the sort RreqBuffer is specified as a set of requests of the sort
RreqID that is of the form Oid ∼ Sqn, uniquely identifying a route request by
the identifier of a node and its sequence number.

In the AODV route discovery process there are mainly two kinds of mes-
sages, i.e., RREQ by broadcast and RREP by unicast. They are specified in our
model as rreq(...) and rrep(...) respectively. The message content will be
illustrated below.

AODV is demand-driven and does not impose additional timing constraints:

eq timeEffect(< O : AODVNode | >, T) = < O : AODVNode | > .

eq mte(< O : AODVNode | >) = INF .

5.3 Modeling Route Discovery in Real-Time Maude

In our model a route discovery process of AODV consists of three parts: initiating
route discovery, route request handling, and route reply handling.

Initiating Route Discovery. At the start of the route discovery process, an orig-
inator is bootstrapped to look up its local routing table for a special entry
towards the destination. If that exists, the originator is in fact ready to deliver
the data; otherwise, it initiates the route discovery process by broadcasting a
rreq(O,SN + 1,RREQID,DIP,0,0,O) message. Since in that case the originator
does not know the sequence number of the destination or the distance from it,
we set both elements to 0. Before broadcasting, the originator needs to increase
the local routing request ID, as well as its own sequence number, and add the
outgoing RREQ to the request buffer.

rl [init-route-discovery] :

(bootstrap O)

< O : AODVNode | rreqID : RREQID, sequenceNumber : SN,

routingTable : RT, requestBuffer : RB >

=>

if inRT(RT,DIP)

then < O : AODVNode | > (msg PKT from O to DIP)

else < O : AODVNode | rreqID : RREQID + 1, sequenceNumber : SN + 1,

requestBuffer : (O ∼ RREQID, RB) >

(broadcast rreq(O,SN + 1,RREQID,DIP,0,0,O) from O) fi .

Route Request Handling. The RREQ-handling rules specify all events that may
happen when a route request is received. The receiving node first checks whether
a received (OIP ∼ RREQID) has already been stored locally in the request buffer.
If so, the route request can be ignored and the local routing table is updated by
adding a routing table entry towards the sender; otherwise, the receiving node

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 15

adds the new route request identifier to the request buffer, and takes further
actions according to the following policy.

On the one hand, if the receiving node O is actually the intended destination
(DIP == O), a route reply message rrep(OIP,DIP,SN’,0,O) should be gener-
ated. SN’ is actually the maximum of the current sequence number and the
destination sequence number in the RREQ according to [25]. The hop count
is obviously 0. The destination should also update the routing table entry for
the sender, as well as the source node, in its local routing table RT respec-
tively, RT’ := update(SIP,SIP,1,0,RT) and RT’’ := update(OIP,SIP,HOPS

+ 1,OSN,RT’). Then the RREP is unicast to the next hop along the route back
to the source node nexthop(RT’’[OIP]) by looking up the newly updated rout-
ing table RT’’.

On the other hand, if the receiving node O is not the destination DIP but
an intermediate node, it either: (a) generates a route reply to the sender, or (b)
re-broadcasts the received RREQ to its neighbors. Action (a), as the following
rewrite rule shows, happens only when O’s local information is fresher than that
in the RREQ; that is, its local sequence number of the destination is greater
than or equal to the received sequence number (DSN <= localdsn(RT[DIP])).
In this case, O unicasts the route reply with the fresher destination sequence
number and its distance in hops from the destination along the route back to
the source node.

Action (b) happens if local information is not fresh enough, or no route ta-
ble entry for DIP can be found. O should then re-broadcast the received RREQ
with the hops increment and the maximal destination sequence number in the
message content.

crl [on-receiving-rreq-3] :

(rreq(OIP,OSN,RREQID,DIP,DSN,HOPS,SIP) from SIP to O)

< O : AODVNode | routingTable : RT, requestBuffer : RB >

=>

< O : AODVNode | routingTable : RT’’,

requestBuffer : (OIP ∼ RREQID, RB) >

(msg rrep(OIP,DIP,localdsn(RT’’[DIP]),hops(RT’’[DIP]),O)

from O to nexthop(RT’’[OIP]))

if RT’ := update(SIP,SIP,1,0,RT)

/\ RT’’ := update(OIP,SIP,HOPS + 1,OSN,RT’)

/\ not (OIP ∼ RREQID) in RB /\ inRT(RT,DIP)

/\ DIP =/= O /\ DSN <= localdsn(RT[DIP]) .

Route Reply Handling. The RREP-handling rules describe all events that may
happen when a route reply is received. If a receiver is actually the originator,
the RREP can be resolved and a route table entry for the destination is created
or updated. We can consider these cases as either: (a) the destination sequence
number in the originator’s existing routing table is smaller then the one in the
received RREP; or (b) the two destination sequence numbers are the same but

16 S. Liu, P.C. Ölveczky, and J. Meseguer

the increased hop count in the received RREP is smaller than the one in the
local routing table hops(RT[DIP]) > HOPS + 1; or (c) no route table entry for
the destination can be found locally. In all other cases, the received RREP can
be silently ignored. The following rewrite rule shows the handling of case (b) as
an example:

crl [on-receiving-rrep-4] :

(rrep(OIP,DIP,DSN,HOPS,SIP) from SIP to O)

< O : AODVNode | routingTable : RT >

=>

< O : AODVNode | >

if OIP == O /\ inRT(RT,DIP) /\ DSN == localdsn(RT[DIP])

/\ hops(RT[DIP]) <= HOPS + 1 .

When a receiver is an intermediate node, the RREP can be forwarded if any
of the above cases (a), (b) or (c) can be satisfied, or can be silently ignored
otherwise. The following rewrite rule shows case (c) as an example:

crl [on-receiving-rrep-6] :

(rrep(OIP,DIP,DSN,HOPS,SIP) from SIP to O)

< O : AODVNode | routingTable : RT >

=>

< O : AODVNode | routingTable : RT’ >

(msg rrep(OIP,DIP,DSN,HOPS + 1,O) from O to nexthop(RT’[OIP]))

if OIP =/= O /\ not inRT(RT,DIP)

/\ RT’ := update(DIP,SIP,HOPS + 1,DSN,RT) .

6 Formal Analysis of AODV

In this section we explain how specifications based on our mobility framework
can be combined to analyze the AODV route discovery process under various
mobility models. We construct several scenarios to investigate how different mo-
bility models influence the performance of our target routing protocol.

6.1 Motivation

In protocol design for MANETs, the choice of appropriate mobility models has
always been considered as a critical factor for the successful evaluation of pro-
tocols. In terms of using formal approaches to model and analyze MANET pro-
tocols, mobility is also given an essential role. However, protocols in general,
and AODV in particular, have so far not been formally analyzed under realistic
mobility models, but in static topologies where some random link failures were
consideredd, or under an arbitrary mobility setting. Thus, very little is known
by way of formal analysis about how AODV behaves under realistic mobility.
Besides, few studies have taken into account communication delay and mobility

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 17

together. However, this issue is important, since both may happen concurrently,
thus affecting the transmission between nodes. Using our framework, we can nat-
urally combine the independent AODV model with intended mobility models,
as well as communication delay, for the above analysis purpose.

6.2 Preliminaries

Based on the previous specification for nodes, we combine an AODV node with
each mobility-specific node by defining a subclass that inherits from both the
AODV and the mobility model’s classes. For example, an AODV node moving
according to the random waypoint model is defined as:

class RWPANode .

subclasses RWPANode < RWPNode AODVNode .

In our experiments we consider the most crucial property of any routing
protocol such as AODV, i.e., once a route discovery process starts, eventually
there will be a route established between the source node and the destination
node.

To check such a property, we use RTM’s temporal logic model checker, and
define an atomic proposition route-found to hold if we can find, in the routing
table of the source node (OIP), a routing table entry towards the destination
node (DIP):

op route-found : Oid Oid -> Prop [ctor] .

eq {CONFIG} |= route-found(OIP,DIP) = routeFound(OIP,DIP,CONFIG) .

where routeFound is defined by checking whether such a routing table entry
exists in the source node’s routing table:

op routeFound : Oid Oid Configuration -> Bool [frozen (3)] .

eq routeFound(OIP,DIP,< OIP : AODVNode |

routingTable : (RT,DIP |-> TP) > C) = true .

eq routeFound(OIP,DIP,C) = false [owise] .

Thus, the property is defined using temporal logic as <> route-found(...).
Given an initial state initConfig, the following command returns true, if the
property holds up to a test round roundTime; Otherwise, a trace illustrating the
counterexample is shown.

(mc {initConfig} |=t <> route-found(oip,dip) in time <= roundTime .)

Moreover, if the property holds (or does not hold), we use the following
timed search command to search for states reachable from a given initial state,
and matched by a pattern satisfying the condition routeFound, which is defined
by looking up a routing table entry towards the destination node in the source

18 S. Liu, P.C. Ölveczky, and J. Meseguer

node’s routing table.

(tsearch {initConfig} =>* {C:Configuration} such that

routeFound(oip,dip,C:Configuration) in time <= roundTime .)

From the returned solutions, we can check, in the source node’s routing table,
the routing table entry towards the destination for the next hop, and further
track its next hop towards the destination, so on and so forth, until we find the
complete route.

6.3 Scenarios and Analysis

We make the following assumptions and setting for our experiments:

• The transmission range is 10m, and the test area is 100m × 100m;
• The test round is 100s. Both delays at a sender side and a receiver side are

fixed after initialized, and independent of the distance between nodes. We
set them to 10s and 5s respectively for all scenarios except for scenarios (iii)
and (iii’);
• The speed range is initialized as a singleton (1). Nodes can move right, up,

left or down. Thus, the direction range is correspondingly defined as a subset
of (0,90,180,270), and the destination range is a subset of four locations
in the corresponding four directions based on a node’s current location.

Scenario (i). This scenario, as shown in Fig. 2, considers the route discovery
process with up to five stationary nodes, where the source node 1 located at (45
. 45) intends to build a route to the destination node 5 located at (60 . 50),
and nodes 2, 3 and 4 are initially at (50 . 50), (50 . 40) and (60 . 40) re-
spectively. The model checking result shows that the property holds. By using the
tsearch command, we can find a routing table entry (5 |-> tuple3(2,2,1))
in node 1’s routing table, indicating that a 2-hop route with the next hop 2 is
built towards node 5. By further checking node 2’s routing table, we can obtain
the route (1→2→5).

Scenario (i’). This scenario, as shown in the left graph of Fig. 3 (in this paper,
a solid circle refers to the initial location of a node, while a dash circle refers
to some point along the motion path of a node), enjoys the same topology and
setting with the above scenario, except that node 2 is a Random Waypoint node
that can only move upwards. We set its pause time to: (a) 10s, (b) 30s, or (c)
60s. Still the source node 1 intends to establish a route to the destination node
5. As an example, the initial state of this scenario is specified as:

eq oip = 1 .

eq initConfig = < 1 : SANode | currentLocation : 45 . 45 , rreqID : 10,

sequenceNumber : 1, routingTable : empty,

requestBuffer : empty >

< 2 : RWPANode | currentLocation : 50 . 50, speed : 0,

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 19

direction : 0, timer : pauseTime,

speedRange : (1), destRange : (50 . 60),

status : pausing, rreqID : 20,

sequenceNumber : 1, routingTable : empty,

requestBuffer : empty >

< 3 : SANode | currentLocation : 50 . 40, rreqID : 30,

sequenceNumber : 1, routingTable : empty,

requestBuffer : empty >

< 4 : SANode | currentLocation : 60 . 40, rreqID : 40,

sequenceNumber : 1, routingTable : empty,

requestBuffer : empty >

< 5 : SANode | currentLocation : 60 . 50, rreqID : 50,

sequenceNumber : 1, routingTable : empty,

requestBuffer : empty > (bootstrap oip) .

The experimental results show that:

• For Case (a), the property holds, and by searching we can find a routing
table entry (5 |-> tuple3(3,3,1)) in node 1’s routing table, indicating
that a 3-hop route with the next hop 3 is built towards node 5. By further
tracking, we can obtain the route (1→3→4→5);

• For Case (b), the property does not hold, and the tsearch command returns
no solution, meaning that there is no possibility that a route can be built
between nodes 1 and 5;

• For Case (c), the property holds, and we can obtain the same route with
Scenario (i).

Analysis: For Case (a), in the search results, we also can find a routing table
entry (1 |-> tuple3(10,1,2)) in node 2’s routing table, meaning that node 2

has received the RREQ message from node 1. This is obvious because the pause
time (10s) equals to the sending delay (10s). However, when the receiving delay
(5s) expires, node 2 has moved to (50 . 55), as shown by the dash circle, that
is beyond the transmission range of node 5. Thus, we cannot obtain the same
route with Scenario (i), but the route (1→3→4→5), because other nodes are
stationary.

For Case (b), the pause time (30s) allows node 2 to forward the RREQ
message to node 5. However, node 2 cannot receive the RREP message from node
5 due to its movement (the dash circle in this case is at (50 . 60)). Meanwhile,
since node 5 has already recorded node 1’s RREQ from node 2, it silently ingores
the one from node 4. Thus, in this case, no route can be established between
nodes 1 and 5.

For Case (c), the large pause time (60s) allows the same scenario with Sce-
nario (i) before node 2 starts to move. Thus, a route (1→2→5) can be built.

Thus, our experimental results indicate that:

• Based on Scenario (i) and Case (a), AODV demonstrates robustness in route
discovery in the face of some dynamic topologies;
• Further, based on Case (b), AODV’s robustness in route discovery is limited;

20 S. Liu, P.C. Ölveczky, and J. Meseguer

• Based on Scenario (i) and Case (c), with large pause time, the network
topology hardly changes, and thus provides a more stable environment to
improve the success rate for the AODV route discovery;

• Based on the cases (a), (b) and (c), the performance of the AODV route
discovery varies with different settings, even under the same mobility model.

Fig. 3. Topologies of Scenarios (i’) and (ii)

Scenario (ii). This scenario, as shown in the right graph of Fig. 3 considers
three nodes with both nodes 2 located at (40 . 50) and 3 (a Random Waypoint
node initialized with timer : 0 and status : pausing) located at (50 . 40)

intending to build a route to the destination node 1 located at (50 . 50). Before
sending out the RREQ message, node 3 moves left to a new location (40 . 40)

within the transmission range of node 2. Thus, to establish the route to node
1, node 3’s RREQ message needs to be forwarded by node 2. However, the
experimental results show that route discovery for node 3 fails, i.e., no route can
be found between nodes 3 and 1, though obviously node 2 succeeds in building
a route to node 1.

Analysis: This problem arises due to the discarding of the RREP message. As
stated in [25], an intermediate node forwards a RREP message only if the RREP
message serves to update its routing table entry towards the destination. How-
ever, in this case, node 2 has already secured an optimal route to node 1 before
receiving the RREQ message from node 3. [8] also pointed out this problem, but
in a static linear topology with three nodes and two links. However, our scenario,
besides uncovering that case, shows in a more realistic setting that node mobility
may cause failure in the AODV route discovery.

Scenario (iii). This scenario, as shown in Fig. 4, considers four nodes with the
source node 1 located at (40 . 50), the destination node 4 located at (70 .

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 21

50), the intermediate stationary node 3 located at (60 . 50), and the interme-
diate Random Walk node 2 located at (50 . 40), which can move up or down
for each step. Also, we set the delays at the sender side and the receiver side to
10s and 0s respectively, and node 2’s moving time to 10s. Thus, it can receive
the RREQ message from node 1, once it reaches up to the intermediate point
(50 . 50) between nodes 1 and 3. However, the experimental results show that
route discovery fails.

Scenario (iii’). This scenario enjoys the same topology and setting as Scenario
(iii), except that node 2 is a Random Waypoint node with pause time 10s

(initialized with timer : 0 and status : pausing, so that it can receive the
RREQ message from node 1, once it moves to the intermediate point (50 . 50)

between nodes 1 and 3). The model checking results show that the property does
not hold. However, the searching results illustrate that a route between nodes 1
and 4 can sometimes be successfully established.

Fig. 4. Topologies of Scenarios (iii) and (iii’)

Analysis: For Scenario (iii), when node 2 is ready to send out the RREQ message
after both delays expire, it has moved to (50 . 60), indicated by the uppermost
dash circle, which is beyond the transmission range of node 3, and therefore no
RREQ message will be delivered to node 3, not to mention the destination node
4.

For Scenario (iii’), since node 2 has, for each moving step, two nondetermin-
istic choices (up or down) for the intending destination, the property cannot
be guaranteed for all possible motion paths, e.g., a path (up,down,down,down).

22 S. Liu, P.C. Ölveczky, and J. Meseguer

However, thanks to the Random Waypoint mobility model, AODV could be
lucky to find a route. Specifically, node 2 pauses at the intermediate point (50

. 50) for a time interval that equals to the sum of both delays at its side, thus
generating the RREQ message for node 3 before it moves away. Likewise, when
node 2 returns to the intermediate point, it happens to receive the RREP mes-
sage from node 3. Despite of delays, it takes advantage of the pause time to
forward the RREP message back to the source node 1.

Thus, our experimental results indicate that, with mobility, AODV cannot
guarantee the desired property of route discovery, but a route may be found in
some cases. Also, performance of the AODV route discovery varies with mobility
models in general, and Random Walk and Random Waypoint mobility models
in particular, i.e., Random Waypoint nodes in some cases increase the chance of
route discovery.

Table 1. Property Check Results (For mc, if the property holds, we mark with (X),
otherwise with (×). For tsearch, if a route can be found, we mark with (X), otherwise
with (×).)

XXXXXXXXXCommand
Scenario

(i) (i’)-(a) (i’)-(b) (i’)-(c) (ii) (iii) (iii’)

mc X X × X × × ×
tsearch X X × X × × X

6.4 Discussion

The above experiments demonstrate the feasibility and flexibility of our mobil-
ity framework, on the one hand, to formally analyze the AODV protocol under
different mobility models with communication delays, and on the other hand, to
compare the strength of such mobility models for a given protocol. Moreover,
our framework is a step towards bridging the gap between protocol development
and formal analysis, because it involves the same realistic mobility models with
protocol simulation. Since our framework involves mobility, and does not handle
a large number of nodes (due to state space limitations of normal model check-
ing), the property in some scenario cannot be guaranteed. We simply compare
with other approaches on this point:

• Protocol simulation allows a large number of nodes, so the property is more
likely to be guaranteed. However, it cannot exhaustively check all possible
scenarios, thus neglecting possible property violations;

• Other works using formal approaches did not consider realistic mobility, but
static topologies, arbitrary node movement, or simple dynamic topologies
with random link break, thus preventing a thorough reasoning about protocol
properties.

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 23

In the future, we plan to improve the scalability of our framework by using
probabilistic rewrite rules and exploiting statistical model checking methods and
tools.

7 Related Work

There are a number of formal specification and analysis efforts of MANETs in
general, and AODV in particular.

Bhargavan et al. [1] use the SPIN model checker to analyze AODV. They
only consider a 3-node topology with one link break, but without node move-
ment, and communication delay is not considered. Chiyangwa et al. [5] apply
the real-time model checker Uppaal to analyze AODV. They only consider a
static linear network topology. Although they take communication delay into
account, the effect of mobility on communication delay is not considered, since
the topology is fixed. Fehnker et al. [8] also use Uppaal to analyze AODV. They
also only considered static topologies, or simple dynamic topologies by adding or
removing a link, and those topologies are based on the connectivity graph with-
out concrete locations for nodes. Furthermore, no timing issues are considered.
Höfner et al. [13] apply statistical model checking to AODV. However, mobility is
simply considered by arbitrary instantaneous node jumping between zones that
split the whole test grid. Although they take into account the communication
delay, the combination of mobility and communication delay is not considered.
None of these studies has built a generic framework for MANETs. Our modeling
framework aims at the combination of wireless communication and mobility, and
allows formal modeling and analysis of protocols under realistic mobility models.

On the process algebra side, [20,22,11,18,26,10,12,19,7,17,15,16] have been
proposed as process algebraic modeling languages for MANETs. These languages
feature a form of local broadcast, in which a message sent by a node could be
received by other nodes “within transmission range.” However, the connectivity
is only considered abstractly and logically, without taking into account concrete
locations and transmission range for nodes. Furthermore, [20] only considers
fixed network topologies, whereas the others (except [12]) deal with arbitrary
changes in topology. Godskesen et al. [12] consider realistic mobility, and pro-
pose concrete mobility models. However, no protocol application or automated
analysis is given, and communication delay is not taken into account. Merro
et al. [19] propose a timed calculus with time-consuming communications, and
equip it with a formal semantics to analyze communication collisions.

Generally, these studies have proposed a framework for MANETs, but they
lack of either mobility modeling or timing issues handling.

There are also a number of well known “ambient” calculi for mobility, such as
the ambient calculus [4], the π-calculus [21], and the join-calculus [9]. However,
these are very abstract models that do not take locations and geographically
bounded communication into account, and are therefore not suitable to model
MANETs at the level of abstraction considered in this paper.

24 S. Liu, P.C. Ölveczky, and J. Meseguer

Finally, Maude and Real-Time Maude have been applied to analyze wireless
sensor networks, but the work in [24,14] do not consider node mobility (even
though [14] mentions that mobility is addressed in a technical report in prepa-
ration; however, we cannot find that technical report).

8 Concluding Remarks

We have defined in Real-Time Maude what we believe is the first formal model of
MANETs that provides a reasonably faithful model of popular node movement
patterns and wireless communication. We have used our compositional model to
specify and formally analyze the AODV routing protocol, and have shown that
such Real-Time Maude analysis could easily find the known flaw in AODV.

We have abstracted from message collision, which should also be considered in
our model. The price to pay for having a much more realistic model of MANETs
than other formal approaches is that the state space quickly becomes too large
for model checking. We should therefore develop statistical model checking tech-
niques for MANETs. Most importantly, we should develop abstraction tech-
niques for MANETs. The formalization presented in this paper has provided the
necessary foundations for such efforts.

References

1. Bhargavan, K., Obradovic, D., Gunter, C.: Formal verification of standards for
distance vector routing protocols. Journal of the ACM 49(4), 538–576 (2002)

2. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236(1-2), 35–132 (2000)

3. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

4. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Proc. POPL’98. ACM (1998)
5. Chiyangwa, S., Kwiatkowska, M.Z.: A timing analysis of AODV. In: Proc.

FMOODS’05. LNCS, vol. 3535. Springer (2005)
6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)
7. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.:

A process algebra for wireless mesh networks used for modelling, verifying and
analysing AODV. In: Tech. Rep. 5513. NICTA (2012)

8. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: TACAS. pp. 173–187 (2012)

9. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: Proc.
POPL’96. ACM (1996)

10. Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted broadcast process theory. In:
Proc. SEFM ’08. IEEE (2008)

11. Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Proc. Coordination’07.
LNCS, vol. 4467. Springer (2007)

12. Godskesen, J.C., Nanz, S.: Mobility models and behavioural equivalence for wire-
less networks. In: Proc. Coordination’09. LNCS, vol. 5521. Springer (2009)

A Formal Framework for Mobile Ad hoc Networks in Real-Time Maude 25

13. Höfner, P., Kamali, M.: Quantitative analysis of AODV and its variants on dynamic
topologies using statistical model checking. In: Proc. FORMATS’13. LNCS, vol.
8053. Springer (2013)

14. Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the LMST wireless sen-
sor protocol through formal modeling and statistical model checking. In: Proc.
FMOODS’08. LNCS, vol. 5051. Springer (2008)

15. Liu, S., Wu, X., Li, Q., Zhu, H., Wang, Q.: Formal approaches to wireless sen-
sor networks. In: Fifth International Conference on Secure Software Integration
and Reliability Improvement, SSIRI 2011, - Companion Volume. pp. 11–18. IEEE
Computer Society (2011)

16. Liu, S., Zhao, Y., Zhu, H., Li, Q.: A calculus for mobile ad hoc networks from a
group probabilistic perspective. In: 13th IEEE International Symposium on High-
Assurance Systems Engineering, HASE 2011. pp. 157–162. IEEE Computer Society
(2011)

17. Liu, S., Zhao, Y., Zhu, H., Li, Q.: Towards a probabilistic calculus for mobile ad
hoc networks. In: 5th IEEE International Symposium on Theoretical Aspects of
Software Engineering, TASE 2011. pp. 195–198. IEEE Computer Society (2011)

18. Merro, M.: An observational theory for mobile ad hoc networks (full version). Inf.
Comput. 207(2), 194–208 (2009)

19. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. Theor.
Comput. Sci. 412(47), 6585–6611 (2011)

20. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electron. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

21. Milner, R.: Communicating and mobile systems – the Pi-calculus. Cambridge Uni-
versity Press (1999)

22. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theor. Comput. Sci. 367(1), 203–227 (2006)

23. Ölveczky, P., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-
order and Symbolic Computation 20(1-2), 161–196 (2007)

24. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410(2-3), 254–280 (2009)

25. Perking, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector
(AODV) routing. RFC 3561 (experimental) (2003), http://www.ietf.org/rfc/

rfc3561

26. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad
hoc networks. Sci. Comput. Program. 75(6), 440–469 (2010)

27. Su, P.: Delay measurement time synchronization for wireless sensor networks. Intel
Research Berkeley Lab (2003)

