
Exploring Design Alternatives for RAMP
Transactions through Statistical Model Checking

Si Liu1, Peter Csaba Ölveczky2,1, Jatin Ganhotra3, Indranil Gupta1, and
José Meseguer1

1 University of Illinois at Urbana-Champaign
2 University of Oslo

3 IBM Research, New York

Abstract. In this paper we explore and extend the design space of
the recent RAMP (Read Atomic Multi-Partition) transaction system
for large-scale partitioned data stores. Arriving at a mature distributed
system design through implementation and experimental validation is a
labor-intensive task, so that only a limited number of design alternatives
can be explored in practice. The developers of RAMP did implement
and validate three design alternatives for RAMP, and sketched three ad-
ditional designs. This work addresses two questions: (1) How can the
design space of a distributed transaction system such as RAMP be ex-
plored with modest effort, so that substantial knowledge about design
alternatives can be gained before designs are implemented? and (2) How
realistic and informative are the results of such design explorations? We
answer the first question by: (i) formally modeling eight RAMP-like de-
signs (five by the RAMP developers and three of our own) in Maude as
probabilistic rewrite theories, and (ii) using statistical model checking of
those models to analyze key performance metrics such as throughput, av-
erage latency, and degrees of strong consistency and read atomicity. We
answer the second question by showing that our quantitative analyses:
(i) are consistent with the experimental results obtained by the RAMP
developers for their implemented designs; (ii) confirm the conjectures
made by the RAMP developers for their other three unimplemented de-
signs; and (iii) uncover some promising new designs that seem attractive
for some applications.

1 Introduction

The Problem. Distributed systems are remarkably hard to get right, both in
terms of their correctness and in meeting desired performance requirements.
Furthermore, in cloud-based storage systems, such as the RAMP (Read Atomic
Multi-Partition) transaction system for large-scale partition data stores [5,6],
whose design space we systematically explore in this paper, correctness and per-
formance properties are intimately intertwined and need to be balanced out. This
is because for cloud-based systems high availability is an essential requirement;
but the CAP Theorem [9] states the intrinsic impossibility of having both effi-
ciency (low latency) and strong consistency (correctness) in a distributed storage

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Liu et al.

system. Therefore, tradeoffs that combine efficiency with weaker transactional
guarantees (such as Read Atomicity (RA) for RAMP), are needed.

This makes the task of arriving at a good design of a large scale distributed
storage system meeting both performance and correctness requirements highly
non-trivial. Building such a system is challenging. Currently, to improve its per-
formance the only available option is making changes to a typically very large
source code base. This is very labor-intensive, has a high risk of introducing
new bugs, and is not repeatable. In practice, very few design alternatives, which
may in the end fail to lead to a better design, can be explored this way. In
the case of RAMP [5,6], three designs were explored in detail, and three more
were sketched out but not implement. Even for the three implemented RAMP
designs, only a limited number of properties and performance parameters were
actually evaluated, due to the serious effort involved in experimental evaluation.

Our Proposed Solution. Since design errors can be orders of magnitude more
costly than coding errors, the most cost-effective application of formal methods
is not as a postmortem analysis of an already implemented system, but during
the design process, to maximize the chances of arriving at a good system de-
sign before it is implemented. In this way, formal methods can bring the power
of the Gedankenexperiment to system design, greatly increasing the capacity
for designers to explore design alternatives and subject them to rigorous anal-
ysis before implementation. For large scale distributed storage systems, not all
formal methods can support well this process. Since in such systems correct-
ness and performance are closely intertwined, the methods in question should
support: (i) executability, so that formal specifications are easy to understand
by designers and can serve as system prototypes; (ii) qualitative analysis of cor-
rectness properties with a Yes/Counterexample answer, hopefully automatically;
and (iii) quantitative analysis of performance properties, also automatically.

In previous work [17], we used Maude [10] to develop formal, executable spec-
ifications of several RAMP designs, some proposed by the RAMP designers and
some by us; and model checked such specifications in Maude to analyze consis-
tency properties, thus meeting above requirements (i)–(ii). In this work we meet
requirement (iii) by extending our previous specifications of RAMP designs as
probabilistic rewrite theories [3] and exploring in depth various performance and
consistency properties for eight RAMP designs, six of them never implemented
before, through statistical model checking [22,24] using PVeStA [4].

Main Contributions. Our first main contribution is methodological. It ap-
plies not just to RAMP designs, but more broadly to the design of complex
distributed systems with non-trivial correctness and performance requirements.
Using RAMP as a case study, we illustrate in detail a formal method by which:
(i) designers can easily and quickly develop formal executable models of alter-
native designs for a system; (ii) specifying system behavior with probabilistic
rewrite rules, both performance and the degree to which correctness require-
ments are met can be modeled; (iii) alternative system designs can then be
thoroughly analyzed through statistical model checking to measure and compare
them agains each other along various performance and correctness dimensions,

Exploring Design Alternatives for RAMP Transactions through SMC 3

maximizing the chances of arriving at a design best meeting given requirements
before implementation; and, as we show, (iv) a thorough analysis, widely ranging
in properties and parameter choices, can be easily achieved, whereas a similar
experimental evaluation would require prior implementation and a large effort.

A second, key contribution is the uncovering by the above method of several
unimplemented RAMP designs that seem highly promising alternatives to the
three already implemented. According to our analysis, they outperform all other
designs among the eight we analyzed in key properties. Specifically: (1) the never
implemented RAMP-F+1PW design sketched in [5,6] outperforms all others if
100% degree of read atomicity is given higher priority than any other correctness
or performance properties; and (2) our own RAMP-Faster design outperforms
all others in degree of strong consistency, throughput, and lower average latency,
while still providing read atomicity for around 97% - 99% of the transactions
with typical workloads. Modeling analyses do not provide as much assurance as
experimental evaluations; however, our evaluations: (i) are consistent with those
in [5,6] for the properties already measured experimentally for the implemented
designs; (ii) are also consistent with the properties conjectured by the RAMP
designers for their unimplemented designs; and (iii) they subject the eight designs
to a considerably wider range of properties —and of parameter variations for each
property— than any previous experimental evaluation, thus providing further
insights about both the implemented and unimplemented designs.

The rest of the paper is organized as follows. Section 2 gives some back-
ground on RAMP, Maude, and statistical model checking with PVeStA. Section 3
presents our new RAMP design alternative, RAMP-Faster. Section 4 shows how
we can specify our RAMP designs as probabilistic rewrite theories. Section 5
explains how we can evaluate the performance of the designs for different per-
formance parameters and workloads, and shows the results of these evaluations.
Section 6 discusses related work, and Section 7 gives some concluding remarks.

2 Preliminaries

2.1 Read-Atomic Multi-Partition (RAMP) Transactions

To deal with ever-increasing amounts of data, distributed databases partition
their data across multiple servers. Unfortunately, many real-world systems do
not provide useful semantics for transactions accessing multiple partitions, since
the latency needed to ensure correct multi-partition transactional access is often
high. Therefore, trade-offs that combine efficiency with weaker transactional
guarantees for operations accessing multiple partitions are needed.

In [5,6], Bailis et al. propose a new isolation model, read atomic (RA) iso-
lation, and Read Atomic Multi-Partition (RAMP) transactions, that together
provide efficient multi-partition operations with the following guarantee: either
all or none of a transaction’s updates are visible to other transactions.

RAMP transactions use metadata and multi-versioning. Metadata is attached
to each write, and the reads use this metadata to get the correct version. There

4 S. Liu et al.

are three versions of RAMP, which offer different trade-offs between the size of
the metadata and performance: RAMP-Fast, RAMP-Small, and RAMP-Hybrid.
In this paper we focus on RAMP-F and RAMP-S, which lie at the end points.
The write protocols in these algorithms only differ in the amount of attached
metadata. To guarantee that all partitions perform a transaction successfully or
that none do, RAMP performs two-phase writes using the two-phase commit pro-
tocol (2PC). 2PC involves two phases: In the prepare phase, each timestamped
write is sent to its partition, which adds the write to its local database. In the
commit phase, each such partition updates an index which contains the highest-
timestamped committed version of each item stored at the partition. The RAMP
algorithms in [5] only deal with read-only and write-only transactions.

RAMP-Fast (abbreviated RAMP-F). In RAMP-Fast, read operations require
one round trip time delay (RTT) in the common race-free case, and two RTTs
in the worst case; writes require two RTTs. Read transactions proceed by first
fetching the highest-timestamped committed version of each requested data item
from the corresponding partition, and then decide if they have missed any version
that has been prepared but not yet committed. The timestamp and the metadata
from each version read induce a mapping from items to timestamps that records
the highest-timestamped write for each transaction, appearing in the first-round
read set. If the reader has a lower timestamp version than indicated in the
mapping for that item, a second-round read will be issued to fetch the missing
version. Once all the missing versions have been fetched, the client can return the
resulting set of versions, which include both the first-round reads as well as any
missing versions fetched in the second round of reads. The detailed specification
of RAMP-Fast in [5] is shown in Appendix A.

RAMP-Small (abbreviated RAMP-S). Unlike RAMP-Fast, RAMP-Small read
transactions proceed by first fetching the highest committed timestamp of each
requested data item; the readers then send the entire set of those timestamps in a
second message. The highest-timestamped version that also exists in the received
set will be returned to the reader by the corresponding partition. RAMP-Small
transactions require constant-size metadata, but require two RTTs for reads
and writes. RAMP-Small writes only store the transaction timestamp, instead
of attaching the entire write set to each write.

Extensions of RAMP. The paper [5] briefly discusses the following extensions
and optimizations of the basic RAMP algorithms, but without giving any details:

– RAMP with one-phase writes (RAMP-F+1PW and RAMP-S+1PW), where
writes only require one prepare phase, as the client can execute the commit
phase asynchronously.

– RAMP with faster commit detection (RAMP-F+FC). If a server returns a
version with the timestamp fresher than the highest committed version of
the item, then the server can mark the version as committed. This allows
faster updates to correct versioning and thus fewer round trip time delays.

Exploring Design Alternatives for RAMP Transactions through SMC 5

In [17] we formalized these extensions in Maude and used Maude model check-
ing to analyze their correctness properties. In [17] we also developed two new
RAMP-like designs on our own, where RAMP-F and RAMP-S are executed
without two-phase commit (denoted RAMP-F-2PC and RAMP-S-2PC). This
allows interleaving of the prepare phase and the commit phase (unlike RAMP
where those two phases are strictly ordered). In Section 3 we explain a third
design of our own called RAMP-Faster.

2.2 Rewriting Logic and Maude

In rewriting logic [19] a concurrent system is specified a as rewrite theory (Σ,E∪
A,R), where (Σ,E ∪A) is a membership equational logic theory [10], with Σ an
algebraic signature declaring sorts, subsorts, and function symbols, E a set of
conditional equations, and A a set of equational axioms. It specifies the system’s
state space as an algebraic data type. R is a set of labeled conditional rewrite
rules, specifying the system’s local transitions, of the form [l] : t −→ t′ if cond ,
where cond is a condition and l is a label. Such a rule specifies a transition from
an instance of t to the corresponding instance of t′, provided the condition holds.

Maude [10] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is formal-
ized as a multiset of objects and messages. An object of class C is modeled as a
term < o : C | att1 : v1, att2 : v2, ..., attn : vn >, where o is its object
identifier, and where the attributes att1 to attn have the current values v1 to vn,
respectively. Upon receiving a message, an object can change its state and/or
send messages to other objects. For example, the rewrite rule (with label l)

rl [l] : m(O,z) < O : C | a1 : x, a2 : O’ >

=> < O : C | a1 : x + z, a2 : O’ > m’(O’,x + z) .

defines a transition where an incoming message m, with parameters O and z, is
consumed by the target object O of class C, the attribute a1 is updated to x +

z, and an outgoing message m’(O’,x + z) is generated.

2.3 Statistical Model Checking and PVeStA

Probabilistic distributed systems can be modeled as probabilistic rewrite theo-
ries [3] with rules of the form

[l] : t(−→x) −→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x)

where the term t′ has additional new variables −→y disjoint from the variables −→x
in the term t. Since for a given matching instance of the variables −→x there can
be many (often infinite) ways to instantiate the extra variables −→y , such a rule is
nondeterministic. The probabilistic nature of the rule stems from the probability
distribution π(−→x), which depends on the matching instance of −→x , and governs
the probabilistic choice of the instance of −→y in the result t′(−→x ,−→y).

6 S. Liu et al.

Statistical model checking [22,24] is an attractive formal approach to analyz-
ing probabilistic systems against temporal logic properties. Instead of offering
a yes/no answer, it can verify a property up to a user-specified level of confi-
dence by running Monte-Carlo simulations of the system model. For example, a
statistical model checking result may be “86.87% of the RAMP-F transactions
satisfy read atomicity with 99% confidence.” Existing statistical verification tech-
niques assume that the system is purely probabilistic. Using the methodology
in [3,11] we can eliminate nondeterminism in the choice of firing rules. We then
use PVeStA [4], a parallelization of the tool VeStA [23], to statistically model
check purely probabilistic systems against properties expressed by QuaTEx
probabilistic temporal logic [3]. The expected value of a QuaTEx expression is
iteratively evaluated w.r.t. two parameters α and δ provided as input by sam-
pling until the size of (1-α)100% confidence interval is bounded by δ, where the
result of evaluating a formula is not a Boolean value, but a real number.

3 The RAMP-Faster Design

We developed two new RAMP-like designs already in [17]. More recently, we
have developed a third design, called RAMP-Faster, which also decouples two-
phase commitment, but commits a write transaction in one RTT instead of the
two RTTs required by writes in RAMP and RAMP without two-phase commit.

In RAMP-F, upon receiving a prepare message, the partition adds the times-
tamped write to its local database, and upon receiving the commit message, up-
dates an index containing the highest-timestamped committed version of each
item. In RAMP-Faster, a partition performs both operations upon receiving the
prepare message, and hence requires only one RTT. Note that all information
required to complete the two operations is provided by the prepare message:
RAMP-Faster does not need to store more data than RAMP-F.

Since each write in RAMP-Faster needs only one RTT, it incurs lower latency
per transaction and provides higher throughput. Furthermore, since writes are
much faster, it seems reasonable to conjecture that there is a higher chance that
reads will fetch the latest write; this means that RAMP-Faster should provide
better consistency4 than the other RAMP designs. Even though RAMP-Faster is
not designed to guarantee read atomicity, as the client does not ensure that each
partition has received the prepare message before issuing the commit message, it
would be interesting to investigate whether RAMP-Faster provides read atomic-
ity for a high percentage of transactions encountered in practice. If this were the
case, RAMP-Faster would become an attractive option for multi-partition trans-
actions where read atomicity, good consistency properties, and low latency are
highly desired. Transaction systems are well-known to have issues w.r.t. latency
to complete transactions [20]. RAMP-Faster would address this issue without
compromising on the consistency. For example, in social networks we might tol-

4 “Consistency” in such a non-replicated setting is understood as reads reading the
“latest writes.”

Exploring Design Alternatives for RAMP Transactions through SMC 7

erate that a few transactions do not provide read atomicity if transactions are
faster and reads show more recent writes instead of older ones.

4 Probabilistic Modeling of RAMP Designs

In [17] we describe how RAMP and its variations can be modeled in Maude for
correctness analysis purposes. The state consists of a number of objects model-
ing partitions < pi : Partition | versions : ver, latestCommit : lc >,
with ver the versions of the items in the partition, and lc the timestamp of
the latest commit of each item; and objects modeling clients < cj : Client |

transac : txns, sqn : n, pendingOps : ops, pendingPrep : pw, 1stGets

: 1st, latest : latest >, with txns a list of transactions the client wants to
issue, n the sequence number that together with the client identifier determine
timestamps, ops the pending reads/writes, pw the pending writes in the prepare
phase, 1st the pending first-round reads, and latest a mapping from each item
to its latest committed timestamp from a client’s perspective.

The models in [17] are untimed, non-probabilistic, and nondeterministic, so
that Maude LTL model checking analyzes all possible interleavings. In this paper
we are interested in estimating the performance (expected latency, percentage
of transactions satisfying certain properties, etc.) of our designs. We therefore
need to: (i) include time and probabilities in our models, and (ii) eliminate any
nondeterminism, so that our models become purely probabilistic and can be
subjected to statistical model checking.

The key idea to address both of these issues, following [11], is to probabilisti-
cally assign to each message a delay. The point regarding issue (ii) is that if: (a)
each rewrite rule is triggered by the arrival of a message, and (b) the delay is
sampled probabilistically from a dense/continuous time interval, then the prob-
ability that two messages have the same delay is 0, and hence no two actions
could happen at the same time, eliminating nondeterminism.

In more detail, nodes send messages of the form [∆,rcvr <- msg], where ∆
is the message delay, rcvr is the recipient, and msg is the message content. When
time ∆ has elapsed, this message becomes a ripe message {T,rcvr <- msg},
where T is the “current global time” (used for analysis purposes only). Such a
ripe message must then be consumed by the receiver rcvr before time advances.

We show an example of how we have transformed the untimed non-probabilistic
rewrite rules in [17] to the timed and probabilistic setting. All our models are
available at https://sites.google.com/site/siliunobi/ramp-smc.

The following rewrites rules describe how a partition reacts when it receives
a commit message from the client O’ with transaction ID TID, operation ID ID,
and timestamp timestamp(O’, SQN’). The partition O invokes the function cmt

to update the latest commit timestamp in the set latestCommit with the fresher
timestamp of the incoming one and the local one; it then notifies the client to
commit the write by sending the message committed. The difference between the
untimed version ([...-untimed]) and the probabilistic version ([...-prob]) is

8 S. Liu et al.

that in the latter, the outgoing message committed is equipped with a delay D

sampled from the probability distribution distr(...).5

rl [on-receive-commit-untimed] :

commit(TID, ID, ts(O’, SQN’)) from O’ to O

< O : Partition | versions : VS, latestCommit : LC >

=>

< O : Partition | versions : VS,

latestCommit : cmt(LC, VS, ts(O’, SQN’)) >

committed(TID, ID) from O to O’ .

crl [on-receive-commit-prob] :

{T, O <- commit(TID, ID, ts(O’, SQN’), O’)}

< O : Partition | versions: VS, latestCommit: LC, AS >

=>

< O : Partition | versions: VS,

latestCommit: cmt(LC, VS, ts(O’, SQN’)), AS >

[D , O’ <- committed(TID, ID, O)]

with probability D := distr(...) .

4.1 Specifying Alternative RAMP Designs

A main advantage of the model-based approach is the ease with which new
designs can be formalized and analyzed before implementation. We illustrate
below how easily we can specify a number of RAMP design alternatives.

The main difference between our different versions of RAMP is how writes
are committed; i.e., what happens when a node receives a prepared message. In
the original RAMP, a client needs to check if all prepared messages are received
(by checking if IDS’ is empty) before starting to commit each write operation
(using the function startCommit to generate all commit messages):6

crl [receive-prepared-with-2PC] :

{T, O <- prepared(TID, ID, O’)}

< O : Client | pendingPrep: IDS, pendingOps: OI, sqn: SQN, AS >

=>

< O : Client | pendingPrep: IDS’, pendingOps: OI, sqn: SQN, AS >

(if IDS’ == empty then startCommit(TID, OI, SQN, O) else null fi)

if IDS’ := delete(ID,IDS) .

In RAMP-F/S-2PC a client sends a commit message upon receiving a prepared
message, which allows the asynchronous commitment of the write operation ID

(no need to wait for all prepared messages before starting to commit):

crl [receive-prepared-without-2PC] :

{T, O <- prepared(TID, ID, O’)}

5 We do not show the variable declarations, but follow the Maude convention that
variables are written with (all) capital letters.

6 The variable AS of sort AttributeSet denotes the “other attributes” of the object.

Exploring Design Alternatives for RAMP Transactions through SMC 9

< O : Client | sqn: SQN, AS >

=>

< O : Client | sqn: SQN, AS >

[D, O’ <- commit(TID, ID, ts(O, SQN), O)]

with probability D := distr(...) .

RAMP-Faster integrates the two phases in writes: upon receiving a prepare

message, the partition adds the incoming version to its local database VS, and
also updates the index containing the highest-timestamped committed version
of the item by invoking the function cmt:

crl [receive-prepare-faster] :

{T, O <- prepare(TID, ID, X, V, ts(O’, SQN), MD, O’)}

< O : Partition | versions: VS, latestCommit: LC, AS >

=>

< O : Partition | versions: VS’,

latestCommit: cmt(LC, VS’, ts(O’, SQN)), AS >

[D, O’ <- committed(TID, ID, O)]

if VS’ := (v(X, V, ts(O’, SQN), MD), VS)

with probability D := distr(...) .

5 Quantitative Analysis of RAMP Designs

The main difference between the RAMP designs in [5] and the three new de-
signs we have proposed is that those in [5] guarantee read atomicity whereas
ours do not. On the other hand, as mentioned in Section 3, we conjecture that
our designs—in particular, RAMP-Faster—provide not only better performance
(throughput, average latency, etc.) but also better “consistency” in the sense of
reads more often reading the latest value written. If this is indeed the case, and,
furthermore, a large fraction of transactions in representative workloads satisfy
read atomicity, then our designs should be interesting for applications where read
atomicity is highly desired but not an absolute requirement. For example, in a
social network, read atomicity is desired (if A befriends B in a transaction, then
another transaction should not observe a “fractured read” where A is a friend of
B but where B is not a friend of A), but a small percentage of fractured reads
might be acceptable if the performance becomes significantly better.

In this paper we compare the performance—along a number of performance
parameters, including throughput, average latency, percentage of strongly con-
sistent reads—of our own RAMP-like designs with the original RAMP designs
using statistical model checking. The question is whether statistical model check-
ing of probabilistic Maude models provides realistic performance estimates for
RAMP designs. To answer this question, we compare the performance estimates
obtained by our method with the implementation-based evaluations in [5].7

7 Second-round reads and strong consistency are not considered in [5].

10 S. Liu et al.

5.1 Extracting Performance Measures from Executions

For analysis purposes we add to the state an object

< record : Monitor | log: log >

which stores crucial information about each transaction. The log is a list of
records record(tid , issueTime, commitTime, client , result , secRoundReads), with
tid the transaction’s ID, issueTime its issue time, commitTime its commit time,
client the identifier of the client issuing the transaction, result the result of
the transaction (for writes: the values written; for reads: the values read), and
secRoundReads a flag that is true if the transaction required second-round reads.

We refine our models by updating the Monitor when needed. For example,
when a client has received all committed messages (allOpsCommitted(...)),
the monitor records the commit time (T) for that transaction. The client then
also issues its next transaction, if any:

crl [receive-committed] :

{T , O <- committed(TID, ID, O’)}

< M : Monitor | log: (LOG record(TID, T4, T’, O, R, F) LOG’) >

< O : Client | transac: TRS, sqn: SQN, pendingOps: OI, AS >

=>

if allOpsCommitted(TID,OI’) *** commit a write txn ***

then if TRS == nil *** no more txns to issue ***

then < M : Monitor | log: (LOG record(TID, T4, T , O, R, F) LOG’) >

< O : Client | transac: TRS, sqn: s SQN, pendingOps: OI’, AS >

else < M : Monitor | log: (LOG record(TID, T4, T , O, R, F) LOG’) >

< O : Client | transac: TRS, sqn: s SQN, pendingOps: OI’, AS >

[0.0, O <- next] fi *** issue next txn ***

else < M : Monitor | log: (LOG record(TID, T4, T’, O, R, F) LOG’) >

< O : Client | transac: TRS, sqn: SQN, pendingOps: OI’, AS > fi

if OI’ := remove(ID,OI) .

We can now define a number of functions on (states with) such a monitor
that extract different performance parameters from the “system execution log.”

Throughput. The function throughput computes the number of committed
transactions per time unit. size computes the length of the LOG, and totalRunTime

returns the time when all transactions are committed (i.e., the largest commitTime
in LOG):

var C : Config .

op throughput : Config -> Float [frozen] .

eq throughput(< M : Monitor | log: LOG > C) = size(LOG) / totalRunTime(LOG) .

Exploring Design Alternatives for RAMP Transactions through SMC 11

Average Latency. The function avgLatency computes the average transaction
latency by dividing the sum of all transaction latencies by the number of trans-
actions. The first argument of the function $avgLatency computes the sum of
all transaction latencies (time between the issue time and the commit time of a
transaction), and the second argument computes the number of transactions:

op avgLatency : Config -> Float [frozen] .

op $avgLatency : Float Float Records -> Float .

eq avgLatency(< M : Monitor | log: LOG > C) = $avgLatency(0.0, 0.0, LOG) .

eq $avgLatency(N1, N2, (record(TID1, T1, T1’, O1, R, F) LOG))

= $avgLatency(N1 + (T1’ - T1), N2 + 1.0, LOG) .

eq $avgLatency(N1, N2, nil) = N1 / N2 .

Percentage of Second-Round Reads. We complement [5] by exploring the fraction
of transactions which needed second-round reads. This fraction is given by the
function 2ndReadTxn, where the function 2nd counts the number of transactions
which needed second-round reads (i.e., counts the number of flags set), and the
function sizeRO counts the number of read-only transactions:

op 2ndReadTxn : Config -> Float [frozen] .

eq 2ndReadTxn(< M : Monitor | log: LOG > C) = 2nd(LOG) / sizeRO(LOG) .

Strong Consistency. Strong consistency means that each read transaction re-
turns the value of the last write transaction that occurred before that read
transaction. As all transactions from different clients can be totally ordered by
their issuing times (stored in Monitor), we can define a function sc that com-
putes the fraction of read-only transactions which satisfy strong consistency.
Specifically, for each read transaction in log , we check backwards if its stored
values match those of the last write transaction. If so, we count it as a transac-
tion satisfying strong consistency. sc returns the number of the read transactions
satisfying strong consistency divided by the number of read transactions.

The third parameter in the auxiliary function $sc counts the number of
read-only transactions which satisfy strong consistency:

op sc : Config -> Float .

op $sc : Records Records Float -> Float .

eq sc(< M : Monitor | log: LOG > C) = $sc(LOG,LOG,0.0) .

When all records in log have been checked, $sc returns the percentage of
read-only transactions which satisfy strong consistency:

eq $sc(nil,LOG,N) = N / sizeRO(LOG) .

12 S. Liu et al.

By checking the records in log , we always start from the head of the list: if
the head is a write transaction denoted by null, then we simply ignore it:

eq $sc((record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,null,MD1),R)) LOG),LOG’,N)

= $sc(LOG,LOG’,N) .

In the case the head is a read transaction denoted by both TS1 and TS2 not
null, if it has no write transactions before, then it will satisfy strong consistency
as long as it returns any of the write transactions:

ceq $sc((record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2))) LOG),

(LOG1 record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2)))

LOG2 record(TID2,T2,T2’,O2,(ID3 |-> v(X,V1,null,MD3),

ID4 |-> v(Y,V2,null,MD4))) LOG3),N)

= $sc(LOG,(LOG1 record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2)))

LOG2 record(TID2,T2,T2’,O2,(ID3 |-> v(X,V1,null,MD3),

ID4 |-> v(Y,V2,null,MD4))) LOG3),N + 1.0)

if noWrites?(LOG1) and TS1 =/= null and TS2 =/= null .

Otherwise if it has any write transaction before, then it will satisfy strong
consistency as long as if it returns the last write transaction in log :

ceq $sc((record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2))) LOG),

(LOG1 record(TID2,T2,T2’,O2,(ID3 |-> v(X,V1,null,MD3),

ID4 |-> v(Y,V2,null,MD4)))

LOG2 record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2))) LOG3),N)

= $sc(LOG,(LOG1 record(TID2,T2,T2’,O2,(ID3 |-> v(X,V1,null,MD3),

ID4 |-> v(Y,V2,null,MD4)))

LOG2 record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2))) LOG3),N + 1.0)

if noWrites?(LOG2) and TS1 =/= null and TS2 =/= null .

The following deals with the rest cases:

eq $sc((record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2))) LOG),LOG’,N)

= $sc(LOG,LOG’,N) [owise] .

Exploring Design Alternatives for RAMP Transactions through SMC 13

Read Atomicity. A system provides read atomic isolation if it prevents fractured
reads, and also prevents transactions from reading uncommitted, aborted, or
intermediate data. A transaction Tj exhibits fractured reads if transaction Ti
writes version xm and yn, Tj reads version xm and version yk, and k < n [5].

The function ra computes the fraction of read transactions which satisfy
read atomic isolation. For each read transaction in log , it checks if its stored
values match those of any write transaction. If so, the transaction satisfies read
atomicity. ra returns the number of those transactions satisfying read atomicity
divided by the number of read transactions.

The third argument of the auxiliary function $ra counts the number of read-
only transactions which satisfy read atomicity:

op ra : Config -> Float .

op $ra : Records Records Float -> Float .

eq ra(< M : Monitor | log: LOG > C) = $ra(LOG, LOG, 0.0) .

When all records in log have been checked, $ra returns the fraction of read-
only transactions which satisfy read atomicity:

eq $ra(nil,LOG,N) = N / sizeRO(LOG) .

When checking the records in log , we always start from the head of the list:
if the head is a write transaction denoted by null, then we simply ignore it:

eq $ra((record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,null,MD1),R)) LOG),LOG’,N)

= $ra(LOG,LOG’,N) .

In the case the head is a read transaction denoted by both TS1 and TS2 not
null, if it has no write transactions before, then it will satisfy read atomicity as
long as it matches any of the write transactions:

ceq $ra((record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2))) LOG),

(LOG1 record(TID2,T2,T2’,O2,(ID3 |-> v(X,V1,null,MD3),

ID4 |-> v(Y,V2,null,MD4))) LOG2),N)

= $ra(LOG,(LOG1 record(TID2,T2,T2’,O2,(ID3 |-> v(X,V1,null,MD3),

ID4 |-> v(Y,V2,null,MD4))) LOG2),N + 1.0)

if TS1 =/= null and TS2 =/= null .

We also count the read-only transaction which returns the initial value:

ceq $ra((record(TID1,T1,T1’,O1,(ID1 |-> v(X,0,TS1,MD1),

ID2 |-> v(Y,0,TS2,MD2))) LOG),LOG’,N)

= $ra(LOG,LOG’,N + 1.0)

if TS1 =/= null and TS2 =/= null .

14 S. Liu et al.

The following deals with the rest cases:

eq $ra((record(TID1,T1,T1’,O1,(ID1 |-> v(X,V1,TS1,MD1),

ID2 |-> v(Y,V2,TS2,MD2))) LOG),LOG’,N)

= $ra(LOG,LOG’,N) [owise] .

5.2 Generating Initial States

Statistical model checking verifies a property up to a user-specified level of confi-
dence by running Monte-Carlo simulations from a given initial state. We use an
operator init to probabilistically generate initial states. init(rtx,wtx, clients)
generates an initial state with rtx number of read-only transactions, wtx number
of write-only transactions, and clients number of clients. We use two partitions
and two data items x and y, with each partition storing one data item. The fol-
lowing parts of the initial states are chosen probabilistically by uniform sampling
from the given distribution: (i) whether a read-only or write-only transaction is
generated next, and (ii) which client is the issuer of the generated transaction.
Each transaction consists of two operations, on different data items.

Each PVeStA simulation starts from init(rtx,wtx,clients), which rewrites
to a different initial state in each simulation. The reason is that this expression
involves choosing certain values probabilistically. init is defined as follows:

op init : NzNat NzNat NzNat -> Config .

eq init(RTX, WTX, CLIENTS)

= {0 | nil} < record : Monitor | log: nil >

< x : Partition | versions: (v(x, 0, null, empty)),

latestCommit: (x |-> ts(0, 0)) >

< y : Partition | versions: (v(y, 0, null, empty)),

latestCommit: (y |-> ts(0, 0)) >

generateClientsAndTranses(RTX, WTX, CLIENTS) .

When generating clients and transactions, we first generate the clients; then
we generate the next transaction and assigns it probabilistically to some client:

op generateClientsAndTranses : NzNat NzNat NzNat -> Config .

op genCT : Nat Nat Nat NzNat Config -> Config .

eq generateClientsAndTranses(RTX, WTX, CLIENTS)

= genCT(RTX, WTX, CLIENTS, CLIENTS, null) .

*** first generate clients and add then to the last parameter:

eq genCT(RTX, WTX, s CLIENTS, CLIENTS2, C)

= genCT(RTX, WTX, CLIENTS, CLIENTS2, C

< s CLIENTS : Client | transac: nil, sqn: 1, pendingOps: empty,

pendingPrep: empty, 1stGets: empty,

latest: empty, result: nil > {d,s CLS <- start}) .

Exploring Design Alternatives for RAMP Transactions through SMC 15

When all clients have been generated, we generate transactions one by one,
and assign each one to a client. The following probabilistic rule treats the case
when the number of clients left to generate is 0, and the number of read (s RTX

(= RTX+ 1)) and write (s WTX) transactions to generate both are greater than 0:

crl [genTrans] :

genCT(s RTX, s WTX, 0, CLIENTS, C)

=>

if R-OR-W < s RTX *** new read transaction

then genCT(RTX, s WTX, 0, CLIENTS, addReadTrans(CLIENT + 1, C))

else genCT(s RTX, WTX, 0, CLIENTS, addWriteTrans(CLIENT + 1, C)) fi

with probability R-OR-W := sampleUniWithInt(s RTX + s WTX) /\

CLIENT := sampleUniWithInt(CLIENTS) .

This rule first probabilistically decides whether the next transaction is a read or
a write transaction. Since the probability of picking a read transaction should
be #readsLeft

#txnLeft , it uniformly picks a value R-OR-W from [0, . . . ,#txnLeft − 1] (the

number of transactions left to generate is s RTX + s WTX) using the expression
sampleUniWithInt(s RTX + s WTX). If the value picked is in [0, . . . ,#readsLeft − 1]
(< s RTX), we generate a new read transaction next (then branch); otherwise we
generate a new write transaction (else branch). But which client should issue
the transaction? The clients have identities 1, 2, . . . , n, where n is the number of
clients (CLIENTS). The expression sampleUniWithInt(CLIENTS) + 1 (i.e., CLIENT + 1)
gives us the client, sampled uniformly from [1, . . . , n].

If the remaining transactions to generate are only read-only transactions,
then we uniformly assign the transaction to a client:

crl genCT(s RTS,0,0,CLIENTS,C)

=>

genCT(RTS,0,0,CLIENTS,addReadTrans(CLIENT + 1,C))

with probability CLIENT := sampleUniWithInt(CLIENTS) .

The following is the case where the remaining transactions to generate are
only write-only transactions:

crl genCT(0,s WTX,0,CLIENTS,C)

=>

genCT(0,WTX,0,CLIENTS,addWriteTrans(CLIENT + 1,C))

with probability CLIENT := sampleUniWithInt(CLIENTS) .

The following defines the functions addReadTrans which generates a new
read-only transaction:

*** Assuming two operations per transaction with each on a different data item

op addReadTrans : Address Config -> Config .

*** If this is the first transaction to generate for a client

eq addReadTrans(O,< O : Client | transac: nil, AS > C) =

< O : Client | transac: ((read(O * x + 1,O * x + 1,x),

read(O * x + 1,O * x + 2,y))), AS > C .

16 S. Liu et al.

*** If the previous transaction is a read-only transaction

eq addReadTrans(O,< O : Client | transac: (TRS (read(ID1,ID2,x),

read(ID1,ID3,y))), AS > C) =

< O : Client | transac: (TRS (read(ID1,ID2,x),read(ID1,ID3,y))

(read(ID1 + 1,ID2 + 2,x),read(ID1 + 1,ID3 + 2,y))), AS > C .

*** If the previous transaction is a write-only transaction

eq addReadTrans(O,< O : Client | transac: (TRS (write(ID1,ID2,x,ID2),

write(ID1,ID3,y,ID3))), AS > C) =

< O : Client | transac: (TRS (write(ID1,ID2,x,ID2),write(ID1,ID3,y,ID3))

(read(ID1 + 1,ID2 + 2,x),read(ID1 + 1,ID3 + 2,y))), AS > C .

Similarly, the following is the case which deal with generating a writing-only
transaction:

*** Assuming two operations per transaction with each on a different data item

op addWriteTrans : Address Config -> Config .

*** If this is the first transaction to generate for a client

eq addWriteTrans(O,< O : Client | transac: nil, AS > C) =

< O : Client | transac: ((write(O * x + 1,O * x + 1,x,O * x + 1),

write(O * x + 1,O * x + 2,y,O * x + 2))), AS > C .

*** If the previous transaction is a read-only transaction

eq addWriteTrans(O,< O : Client | transac: (TRS (read(ID1,ID2,x),

read(ID1,ID3,y))), AS > C) =

< O : Client | transac: (TRS (read(ID1,ID2,x),read(ID1,ID3,y))

(write(ID1 + 1,ID2 + 2,x,ID2 + 2),write(ID1 + 1,ID3 + 2,y,ID3 + 2))), AS > C .

*** If the previous transaction is a write-only transaction

eq addWriteTrans(O,< O : Client | transac: (TRS (write(ID1,ID2,x,ID2),

write(ID1,ID3,y,ID3))), AS > C) =

< O : Client | transac: (TRS (write(ID1,ID2,x,ID2),write(ID1,ID3,y,ID3))

(write(ID1 + 1,ID2 + 2,x,ID2 + 2),write(ID1 + 1,ID3 + 2,y,ID3 + 2))), AS > C .

When there are no more transactions or clients left to generate, genCT returns
the generated client objects (each with a list of transactions to issue):

eq genCT(0, 0, 0, CLIENTS, C) = C .

5.3 Statistical Model Checking Results

This section shows the result of using statistical model checking from the initial
states in Section 5.2 to compare all eight RAMP versions w.r.t. the performance
and consistency measures defined in Section 5.1.

In our experiments we use lognormal distribution for message delay with the
mean µ = 0.0 and standard deviation σ = 1.0 [8]. All properties are computed
with a 99% confidence level of size at most 0.01 (Section 2.3). We could not find

Exploring Design Alternatives for RAMP Transactions through SMC 17

the distribution used in [5] for message delays, so we use those in [15]. Due to
state space limitations, our analyses consider a limited number of data items
(2), operations per transaction (2), clients (up to 50), and transactions (up to
400). We consider not only the 95% read transaction and 5% write transaction
proportion workloads in [5], but also explore how the RAMP designs behave for
different read/write proportions.

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Th
ro
ug
hp

ut
(tx

n/
tim

e
un

it)

of concurrent clients

RAMP-F RAMP-F-2PC RAMP-S
RAMP-S-2PC RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

0

0.5

1

1.5

2

2.5

3

0 25 50 75 100
Th

ro
ug
hp

ut
(tx

n/
tim

e
un

it)

Percentage (reads)

RAMP-F RAMP-F-2PC RAMP-S
RAMP-S-2PC RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

Fig. 1. Throughput under varying client and read load.

Throughput. Figure 1 shows the resulting of analyzing throughput against the
number of concurrent clients (left) and percentage of read transactions (right).8

For the original RAMP designs, under a 95% read proportion, as the number
of clients increases, both RAMP-F and RAMP-S’s throughput increases, and
RAMP-F provides higher throughput than RAMP-S. As the read proportion
increases, RAMP-F’s throughput increases, while RAMP-S’s throughput keeps
nearly constant; and RAMP-F also outperforms RAMP-S in throughput. These
observations are consistent with the experimental results in [5].

There are no conjectures in [5] about the throughput of the designs that
were only sketched in [5]. We observe that unlike other RAMP-F-like algo-
rithms, whose throughput increases as read activities increase, RAMP-F+1PW’s
throughput keeps high with all reads/writes. As the right plot shows, at the
beginning, when there are more writes than reads, RAMP-F+1PW and RAMP-
Faster perform better than other RAMP-F-like designs. This happens because
RAMP-F requires two RTTs for a write, RAMP-F+1PW needs only one RTT
and RAMP-Faster, our proposed design, performs commit when the PREPARE
message is received. Hence, with all write transactions, RAMP-F+1PW and
RAMP-Faster will always provide higher throughput. However, as read activ-
ities increase, other RAMP-F-like designs increase their throughput, as they

8 Larger versions of our figures can be found in the appendix.

18 S. Liu et al.

require one RTT for all reads. Even though as the percentage of reads increases,
RAMP-F+1PW and RAMP-Faster compensate the extra RTT incurred due to
the races, with the RTT saved during the write operations.

The RAMP-S-like designs provide lower throughput than the RAMP-F-like
designs, which is consistent with the observations in [5]. As expected, as the
read percentage increases, RAMP-S+1PW’s throughput converges with those of
other RAMP-S-like designs, because all RAMP-S-like designs require more RTTs
for reads compared to RAMP-F even when there is no race between reads and
writes. In the worst case, when there is a race between read and write operations,
all designs require two RTTs for reads.

Regarding our own designs, RAMP-Faster provides the highest throughput
with varying read load and with larger number of concurrent clients among
all RAMP versions. One reason is that RAMP-Faster’s writes need only one
RTT. RAMP-F-2PC (or RAMP-S-2PC) is not competitive with RAMP-F (or
RAMP-S) regarding throughput. The reason is that, although they sacrifice 2PC,
they still need to commit each write operation before committing the write
transaction, which brings no apparent difference in throughput.

4

5

6

7

8

9

10

0 10 20 30 40 50

Av
g.
La
te
nc
y
(ti
m
e
un

it)

of concurrent clients

RAMP-F RAMP-F-2PC RAMP-S

RAMP-S-2PC RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

2

3

4

5

6

7

8

9

10

0 25 50 75 100

Av
g.
La
te
nc
y
(ti
m
e
un

it)

Percentage (reads)

RAMP-F RAMP-F-2PC RAMP-S

RAMP-S-2PC RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

Fig. 2. Average transaction latency under varying client and read load.

Average Latency. Figure 2 shows the average transaction latency as the num-
ber of concurrent clients (left) and the proportion of read transactions (right)
increases.

Under a 95% read proportion, as the number of concurrent clients increases,
the RAMP-F versions’ average latency increases slightly, and the RAMP-S ver-
sions are almost twice as slow as the RAMP-F variations. And although RAMP-
F+1PW and RAMP-S+1PW as expected have lower latencies than RAMP-F
and RAMP-S, respectively, the differences are surprisingly small. In the same
way, removing 2PC does not seem to help much. Although the differences are
small, RAMP-Faster is the fastest, followed by RAMP-F with one-phase writes.

Exploring Design Alternatives for RAMP Transactions through SMC 19

In Fig. 2(right) we see that RAMP-F+1PW and RAMP-Faster significantly
outperform all the other algorithms when the proportion of write transactions
is between 25% and 75-80%.

Regarding our own designs, it seems that RAMP-F-2PC (or RAMP-S-2PC)
is not competitive with RAMP-F (or RAMP-S) regarding average latency. The
reason is that, although they sacrifice 2PC, they still need to commit each write
operation before committing the write transaction, which brings no apparent
difference in latency. RAMP-Faster incurs the lowest average latency among all
RAMP versions with varying client and read load.

Second-Round Reads. Figure 3 shows the percentage of transactions requiring
second-round reads for different number of clients (left) and read proportions
(right).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

%
of
	tx
ns

re
qu

iri
ng

2n
d
ro
un

d
re
ad
s

of concurrent clients

RAMP-F RAMP-F-2PC

RAMP-S/-2PC/+1PW RAMP-F+FC

RAMP-F+1PW RAMP-Faster

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100

%
of

tx
ns

re
qu

iri
ng

2n
d
ro
un

d
re
ad
s

Percentage (reads)

RAMP-F RAMP-F-2PC

RAMP-S/-2PC/+1PW RAMP-F+FC

RAMP-F+1PW RAMP-Faster

Fig. 3. Percentage of transactions requiring second-round reads under varying client
and read load.

As expected, all RAMP-F versions require significantly fewer second-round
reads than the RAMP-S variations, which always require second-rounds reads.

Regarding the sketched RAMP designs in [5], we observe that RAMP-F+FC
requires less second-round reads than RAMP-F, since allows faster commit.

Regarding our own designs, we observe that RAMP-F-2PC requires more
second-round reads than RAMP-F. The reason is that before a transaction com-
mits, RAMP-F-2PC allows interleaving of the prepare phase and the commit

phase, which increases the chances of reading from a partially-committed write
transaction. Although RAMP-Faster also decouples 2PC, it requires fewer second-
round reads than RAMP-F (with 95% read load; left). The reason is that it com-
mits a write transaction in one RTT, and thus each partition adds the write to its
local database, and updates an index containing the highest-timestamped com-
mitted version of each item at the same time. Furthermore, decreased write ac-
tivity leads to fewer races between reads and writes. Thus, compared to RAMP-

20 S. Liu et al.

F, RAMP-Faster decreases the chances of fetching from a partially-committed
write transaction under a read-heavy workload. However, under a more write-
heavy workload, RAMP-Faster need somewhat more second-round reads than
RAMP-F and RAMP-F with fast commit.

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

%
of

tx
ns
	sa

tis
fy
in
g
st
ro
ng
	co

ns
ist
en

cy

of concurrent clients

RAMP-F RAMP-F-2PC
RAMP-S RAMP-S-2PC
RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

0

10

20

30

40

50

0 25 50 75 100

%
	o
f	t
xn
s	s
at
isf
yi
ng
	st
ro
ng

co
ns
ist
en

cy

Percentage (reads)

RAMP-F RAMP-F-2PC

RAMP-S RAMP-S-2PC

RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

Fig. 4. Probability of satisfying strong consistency under varying client and read load.

Strong Consistency. Figure 4 shows the percentage of transactions satisfying
strong consistency under varying number of clients and read/write proportions.

In all RAMP designs, the probability of satisfying strong consistency de-
creases as the number of clients increases, since there are more races between
reads and writes, which decreases the probability of reading the preceding write.

It is natural that the percentage of transactions satisfying strong consistency
increases as the reads increase: the chance of reading the latest preceding write
should increase when writes are few and far between.

We also observe that RAMP-S-like designs (i.e., RAMP-S/+1PW/-2PC) pro-
vide more strong consistency than their RAMP-F counterparts. The reason is
that RAMP-S-like designs always use second-round reads, which might increase
the chance of reading the latest write. The only exception seems to be that
RAMP-Faster outperforms all the other RAMP designs for 25-75% read work-
loads. The reason is that RAMP-Faster only requires one RTT for a write to
commit, which increases a read transaction’s chance to fetch the latest write.

Read Atomicity. Figure 5 shows the percentage of transactions satisfying read
atomicity. As it should be, all designs in [5] satisfy read atomic isolation. Our
own design alternatives provide 92-100% read atomicity under all scenarios con-
sidered. With 95% read transactions, they all offer 97-100% read atomicity.

Summary. Our formal model-based methodology has allowed us to quickly
and easily analyze the expected performance of a large number of RAMP de-

Exploring Design Alternatives for RAMP Transactions through SMC 21

90

91

92

93

94

95

96

97

98

99

100

0 10 20 30 40 50

%
of
	tx
ns

sa
tis
fy
in
g
re
ad

at
om

ic
ity

of concurrent clients

RAMP-F/S/+FC/+1PW RAMP-F-2PC

RAMP-S-2PC RAMP-Faster

90

91

92

93

94

95

96

97

98

99

100

0 25 50 75 100

%
of

tx
ns
	sa

tis
fy
in
g
re
ad
	a
to
m
ic
ity

Percentage (reads)

RAMP-F/S/+FC/+1PW RAMP-F-2PC

RAMP-S-2PC RAMP-Faster

Fig. 5. Probability of satisfying read atomicity under varying client and read load.

signs along a number of performance parameters and with varying number of
concurrent clients and read/write transaction proportions. This allows to predict
which design is the best fit for a particular application.

Our results are consistent with the experimental results in [5]. For example:
the throughput of both RAMP-F and RAMP-S increases with the number of
concurrent clients, and RAMP-F provides higher throughput than RAMP-S;
the latency also increases with the increase of concurrent clients (very minimally
for RAMP-S, however).

Our results also confirm the conjectures about the sketched designs in [5],
which were never experimentally validated by the RAMP developers. For ex-
ample: RAMP-F+FC and RAMP-F+1PW have lower latency than RAMP-F
(and similarly for RAMP-S). We can also compare RAMP-F-FC with RAMP-
F+1PW, and see that RAMP-F+1PW typically provides better performance
among these two optimizations.

We can also evaluate our own designs. It turns out that RAMP without 2PC
does not improve the performance of RAMP. On the other hand, RAMP-Faster
is an interesting design, as it generally provides the smallest average latency and
highest throughput among all RAMP designs, in particular when there are a fair
amount of write transactions, while providing more than 92% read atomicity even
for very write-heavy workloads. Maybe slightly surprisingly, RAMP-Faster does
not provide the highest percentage of strongly consistent reads for read-heavy
workloads, but does so for workloads with 25-75% read transactions.

Note that the actual values might differ between the experiments in [5] and
our statistical analysis, due to factors like hard-to-match experimental configura-
tions, the inherent difference between statistical model checking and implementation-
based evaluation9, processing delay at client/partition side, and different distri-

9 In general, implementation-based evaluation is based on a single trace of hundreds
of thousands of transactions, while statistical model checking is based on sampling

22 S. Liu et al.

butions of item accesses. The important observation is that the relative perfor-
mance in both sides are similar.

It is also worth remarking we only use two data items, while the experiments
in [5] use up to thousands. This implies that we “stress” the algorithms much
more, since there are much fewer potential clashes between small transactions
(typically with four operations) in a 1000-data-object setting that between our
two-operation transactions on two data objects.

All the RAMP models considered in this paper consist of around 4000 lines of
code, and the time to compute the probabilities for strong consistency is around
15 hours (worst-case), and for other metrics is around 8 hours (worst-case) with a
workload of 400 transactions on a 2.7 GHz Intel Core i5 CPU with 8 GB memory.
Each point in the plots represents the average of three statistical model checking
results. The upper bound for model runtime depends on the confidence level of
our statistical model checker (99% confidence level for all our experiments).

6 Related Work

Maude for Distributed Storage Systems. In [17] we formalized RAMP and some
proposed extensions, and used Maude model checking to analyze their correct-
ness properties. In contrast, this paper focuses on analyzing the performance
of RAMP and its variations using statistical model checking with PVeStA. In
addition, this paper also introduces our most promising RAMP design: RAMP-
Faster. The papers [13,14] use Maude to formalize and analyze Google’s Megas-
tore and a proposed extension. Those papers also focus on correctness analysis,
although they present some ad hoc performance estimation using randomized
Real-Time Maude simulations. In contrast to the methodology in this paper,
such ad hoc simulations cannot give any measure of statistical confidence in the
results. The papers [15,16,18] describe how the Cassandra key/value store has
been analyzed both for correctness and performance using Maude and PVeStA.
The main differences between [15,16,18] and this paper are: Cassandra only sup-
ports single read and write operations, whereas RAMP supports transactions,
which also implies that the consistency levels to analyze in RAMP are more
complex; in this paper we also propose a promising variation of the system
(RAMP-Faster); and, finally, we compare our performance estimates with those
obtained by the RAMP developers’ simulations, whereas [15,16] compares the
model-based performance estimates with those obtained by running the system.

Model-Based Performance Estimation of Distributed Storage Systems. Despite
the importance of globally-distributed transactional databases, we are not aware
of work on (formal) model-based performance analysis of such systems. One rea-
son might be that the most popular state-of-art formal tools supporting prob-
abilistic/statistical model checking are mainly based on automata (e.g., Uppaal
SMC [2] and Prism [1]), and it is probably just too hard, or impossible, to model

hundreds of thousands of Monte-Carlo simulations of hundreds of transactions up
to a certain statistical confidence.

Exploring Design Alternatives for RAMP Transactions through SMC 23

such complex artifacts as state-of-the-art distributed transactional systems using
timed/probabilistic automata. Another reason might be that NoSQL stores be-
came mainstream earlier than globally-distributed transactional databases and
gathered attention from the research community to work on model-based per-
formance analysis of NoSQL stores [7,12,21].

7 Concluding Remarks

We have explored eight design alternatives for RAMP transactions following a
general methodology based on formal modeling with probabilistic rewrite rules
and analyzing performance using statistical model checking. Substantial knowl-
edge about both implemented and unimplemented RAMP designs has thus been
gained. This knowledge can help find the best match between a given RAMP
version and a class of applications. For example, we now know how the differ-
ent designs behave not just for read-intensive workloads, but understand their
behavior across the entire spectrum from read-intensive to write-intensive tasks.

Our work has also shown that it is possible to use this methodology to iden-
tify promising new design alternatives for given classes of applications relatively
easily before they are implemented. This of course does not replace the need for
implementation and experimental validation, but it allows us to focus implemen-
tation and validation efforts where they are most likely to pay off.

Much work remains ahead. A natural next step is to confirm experimentally
our findings about some of the RAMP unimplemented designs by implementing
and evaluating them to demonstrate their practical advantages. On the other
hand, since our methodology can be applied not just to RAMP, but to many
other distributed systems, more case studies like the one presented here should be
developed to both improve the methodology, and to demonstrate its effectiveness.

References

1. PRISM, http://www.prismmodelchecker.org/
2. Uppaal SMC, http://people.cs.aau.dk/~adavid/smc/
3. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language

for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2) (2006)
4. AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quan-

titative analysis tool. In: CALCO’11. LNCS, vol. 6859. Springer (2011)
5. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic

visibility with RAMP transactions. ACM Trans. Database Syst. 41(3), 15:1–15:45
(2016)

6. Bailis, P., Fekete, A., Hellerstein, J.M., Ghodsi, A., Stoica, I.: Scalable atomic
visibility with RAMP transactions. In: Proc. SIGMOD’14. ACM (2014)

7. Barbierato, E., Gribaudo, M., Iacono, M.: Performance evaluation of NoSQL big-
data applications using multi-formalism models. Future Generation Comp. Syst.
37, 345–353 (2014)

8. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: IMC. pp. 267–280 (2010)

24 S. Liu et al.

9. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC. p. 7
(2000)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)

11. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking
for composite actor systems. In: WADT’12. LNCS, vol. 7841. Springer (2013)

12. Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Perfor-
mance evaluation of NoSQL databases. In: EPEW’14. LNCS, vol. 8721. Springer
(2014)

13. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Specification, Algebra, and Software. LNCS, vol. 8373.
Springer (2014)

14. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: SEFM. LNCS, vol. 8702. Springer
(2014)

15. Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Transactions on
Embedded Systems 4(1), 03:1–03:26 (2017)

16. Liu, S., Nguyen, S., Ganhotra, J., Rahman, M.R., Gupta, I., Meseguer, J.: Quan-
titative analysis of consistency in NoSQL key-value stores. In: QEST. pp. 228–243
(2015)

17. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: SAC’16. ACM
(2016)

18. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: ICFEM’14. LNCS, vol. 8829. Springer (2014)

19. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

20. Nawab, F., Arora, V., Agrawal, D., El Abbadi, A.: Minimizing commit latency of
transactions in geo-replicated data stores. In: SIGMOD. pp. 1279–1294 (2015)

21. Osman, R., Piazzolla, P.: Modelling replication in NoSQL datastores. In: QEST’14.
LNCS, vol. 8657. Springer (2014)

22. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: CAV’05. LNCS, vol. 3576. Springer (2005)

23. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: QEST’05. IEEE Computer Society (2005)

24. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

A The RAMP-Fast Algorithm as Given in [5]

Figure 6 shows the RAMP-Fast algorithm as it is described in [5].

B Larger Versions of the Figures

Due to space limitations, our plots have limited size in the paper. We therefore
also show here larger versions of these figures.

Exploring Design Alternatives for RAMP Transactions through SMC 25

Figure 7 shows the plots for throughput; the Fig. 8 shows the results for
average transaction latency. Figure 10 shows the percentage of read transactions
satisfying strong consistency (reading the latest preceding writes), and, finally,
Fig. 11 shows the percentage of transactions satisfying read atomicity.

26 S. Liu et al.

Fig. 6. The RAMP-Fast algorithm as described in [5].

Exploring Design Alternatives for RAMP Transactions through SMC 27

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Th
ro
ug
hp

ut
(tx

n/
tim

e
un

it)

of concurrent clients

RAMP-F RAMP-F-2PC RAMP-S
RAMP-S-2PC RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

0

0.5

1

1.5

2

2.5

3

0 25 50 75 100

Th
ro
ug
hp

ut
(tx

n/
tim

e
un

it)

Percentage (reads)

RAMP-F RAMP-F-2PC RAMP-S
RAMP-S-2PC RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

Fig. 7. Throughput under varying client and read load.

28 S. Liu et al.

4

5

6

7

8

9

10

0 10 20 30 40 50

Av
g.
La
te
nc
y
(ti
m
e
un

it)

of concurrent clients

RAMP-F RAMP-F-2PC RAMP-S

RAMP-S-2PC RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

2

3

4

5

6

7

8

9

10

0 25 50 75 100

Av
g.
La
te
nc
y
(ti
m
e
un

it)

Percentage (reads)

RAMP-F RAMP-F-2PC RAMP-S

RAMP-S-2PC RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

Fig. 8. Average transaction latency under varying client and read load.

Exploring Design Alternatives for RAMP Transactions through SMC 29

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

%
of
	tx
ns

re
qu

iri
ng

2n
d
ro
un

d
re
ad
s

of concurrent clients

RAMP-F RAMP-F-2PC

RAMP-S/-2PC/+1PW RAMP-F+FC

RAMP-F+1PW RAMP-Faster

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100

%
of

tx
ns

re
qu

iri
ng

2n
d
ro
un

d
re
ad
s

Percentage (reads)

RAMP-F RAMP-F-2PC

RAMP-S/-2PC/+1PW RAMP-F+FC

RAMP-F+1PW RAMP-Faster

Fig. 9. Percentage of transactions requiring second-round reads under varying client
and read load.

30 S. Liu et al.

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

%
of

tx
ns
	sa

tis
fy
in
g
st
ro
ng
	co

ns
ist
en

cy

of concurrent clients

RAMP-F RAMP-F-2PC
RAMP-S RAMP-S-2PC
RAMP-F+FC RAMP-F+1PW
RAMP-S+1PW RAMP-Faster

0

10

20

30

40

50

0 25 50 75 100

%
	o
f	t
xn
s	s
at
isf
yi
ng
	st
ro
ng

co
ns
ist
en

cy

Percentage (reads)

RAMP-F RAMP-F-2PC

RAMP-S RAMP-S-2PC

RAMP-F+FC RAMP-F+1PW

RAMP-S+1PW RAMP-Faster

Fig. 10. Probability of satisfying strong consistency under varying client and read load.

Exploring Design Alternatives for RAMP Transactions through SMC 31

90

91

92

93

94

95

96

97

98

99

100

0 10 20 30 40 50

%
of
	tx
ns

sa
tis
fy
in
g
re
ad

at
om

ic
ity

of concurrent clients

RAMP-F/S/+FC/+1PW RAMP-F-2PC

RAMP-S-2PC RAMP-Faster

90

91

92

93

94

95

96

97

98

99

100

0 25 50 75 100

%
of

tx
ns
	sa

tis
fy
in
g
re
ad
	a
to
m
ic
ity

Percentage (reads)

RAMP-F/S/+FC/+1PW RAMP-F-2PC

RAMP-S-2PC RAMP-Faster

Fig. 11. Probability of satisfying read atomicity under varying client and read load.

