
Formal Modeling and Analysis of RAMP
Transaction Systems in Maude

Si Liu1, Peter Csaba Ölveczky2, Muntasir Raihan Rahman1, Jatin Ganhotra1,
Indranil Gupta1, and José Meseguer1

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. To cope with ever-increasing data sets, distributed data stores
partition their data across servers. However, real-world systems usually
do not provide useful transactional semantics for operations accessing
multiple partitions due to the delays involved in achieving multi-partition
consistency. Read Atomic Multi-Partition (RAMP) transactions have re-
cently been proposed as efficient light-weight multi-partition transactions
that guarantee read atomicity: either all updates or no updates of a trans-
action are visible to other transactions. In this paper we formalize RAMP
transactions in rewriting logic and perform model checking verification of
key properties using the Maude tool. In particular, we develop detailed
formal models—and formally analyze—a number of extensions and op-
timizations of RAMP that are only briefly mentioned by the RAMP
developers.

1 Introduction

The success of cloud computing relies on software systems that store large
amounts of data correctly and efficiently. It is hard to satisfy both these require-
ments in a distributed storage system. While traditional relational databases
(like MySQL) offer strong notions of correctness (such as ACID properties) when
multiple clients access data (via transactions), these systems are considered too
slow for today’s workloads and applications. As a result, a new generation of
storage systems called NoSQL (“Not only SQL”) have emerged, and are already
a multi-billion dollar industry [3]. The NoSQL era was kicked off by systems
from Google [8] and Facebook [13], and includes open-source systems that are
wildly popular in industry today [1,2,12]. These systems offer weak notions of
correctness, such as “eventual consistency,” while enabling operations on stored
data to execute orders of magnitude faster than relational databases.

At the heart of this dichotomy is the CAP theorem [7,16], which says that it
is impossible to have both efficiency (low latency) and strong consistency (cor-
rectness) in a distributed storage system.1 Several efforts have recently emerged
to bridge this gap, and in a sense to circumvent the CAP theorem. The RAMP

1 When there are partitions present. We exclude this clause because partitions are
endemic in distributed systems in today’s Internet.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Liu et al.

system of transactions proposed by Bailis et al. [4,5] is one of the most promis-
ing among those proposals. RAMP allows clients to execute transactions (like
in relational databases) in NoSQL-like storage systems. It offers a correctness
property called “Read Atomicity” (RA) which ensures that a given transaction’s
updates are either all visible or not visible at all, to other transactions.2 RAMP
also allows data to be partitioned across multiple partitions.

The original RAMP paper [5] presented experimental results that demon-
strated its efficiency properties of low latency and high throughput; it also gave
“hand proofs” that RAMP in fact provides read atomicity. The paper [5] also
briefly mentions a number of extensions and optimizations, such as faster com-
mit and one-phase writes; however, no details or correctness proofs for these
extensions are given in [5].

There is therefore a clear need for formally specifying and analyzing RAMP
and its proposed extensions. Indeed, a main contribution of our work is to develop
detailed models, and to formally analyze, a number of those briefly-mentioned ex-
tensions and variants of RAMP. Providing correctness in the overall protocol and
its extensions are a critical step towards making RAMP a production-capable
system. Without such analysis, developers and deployers might enable or disable
particular extensions at will, without knowing the correctness ramifications.

In this paper, we therefore use the expressive Maude formal specification lan-
guage [9] to provide the first executable formal model of RAMP and a number
of its extensions. This approach allows us to analyze the correctness properties
of RAMP in a fully-automated manner, rather than relying only on hand proofs.
However, explicit-state model checking can only analyze the system from single
initial configurations, which provide limited coverage. One of the new contribu-
tions of this paper is therefore a general technique in Maude for model checking
a protocol for all possible initial configurations up to certain bounds. We use this
technique to analyze some of the (unproved) conjectures in the original RAMP
paper—in particular, how some of the extensions and optimizations of RAMP
affect its behavior. We model and analyze the effect of the following RAMP
building blocks: fast commit, one-phase write, and two-phase commit.

We explore not only the “strong” notion of read atomicity correctness but
also a weaker consistency model called “read-your-writes” (whereby a client is
assured of being able to read at least its own latest writes). For instance, we find
that two-phase commit is a necessary building block for ensuring read atomicity,
and that for one-phase writes even the weak correctness notion of read-your-
writes cannot be guaranteed!

we explain various consistency models in greater detail including their for-
mal definitions (Section 3) and specifications (Section 5.1). Second, we provide
quantitative analysis of consistency using both statistical model checking and
implementation-based estimation for three new consistency models (Section 5.2):
monotonic reads, consistent pefix and causal consistency [37, 38, 30, 8].

2 While RA is stronger than eventual consistency, it is still not equivalent to ACID as
it is not serializable.

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 3

The rest of this paper is structured as follows. Section 2 gives some back-
ground on RAMP and Maude. Section 3 presents our formal model of RAMP
and its extensions. Section 4 explains how the different consistency levels and
other key properties of RAMP can be formally specified as reachability prop-
erties, which can then be analyzed using Maude. Finally, Section 5 discusses
related work and Section 6 gives some concluding remarks.

2 Preliminaries

2.1 Read-Atomic Multi-Partition (RAMP) Transactions

To deal with ever-increasing amounts of data, distributed databases partition
their data across multiple servers. Unfortunately, many real-world systems do
not provide useful transactional semantics for operations accessing multiple par-
titions, since the latency needed to ensure correct multi-partition transactional
access is often high. Therefore, trade-offs that combine efficiency with weaker
transactional guarantees for operations accessing multiple partitions are needed.

In [5], Bailis et al. propose a new isolation model, called read atomic (RA)
isolation, and Read Atomic Multi-Partition (RAMP) transactions, that together
combine efficient multi-partition operations and partial fault tolerance with some
kind of transactional guarantee: either all or none of a transaction’s updates are
visible to other transactions. For example, if A and B become “friends” in one
transaction, then other transactions should not see that A is a friend of B but
that B is not a friend of A; either both relationships are visible or neither is.

RAMP trades serializability for a weaker isolation model (read atomic isola-
tion) and high availability and efficiency, where transactions are never blocked
waiting for concurrent transactions. Read isolation of RAMP transactions should
nevertheless be useful for a number of real-world applications such as foreign key
constraints, secondary indexing, and materialized view maintenance [5]. It is also
worth noting that RAMP does not consider replication of items across partitions.

RAMP transactions use metadata and multi-versioning. RAMP writers at-
tach metadata to each write and the reads use this metadata to get the correct
version. There are three versions of RAMP, which offer different trade-offs be-
tween the size of the attached metadata and performance:3 RAMP-Fast, RAMP-
Small, and RAMP-Hybrid. The write protocols in these algorithms only differ
in the amount of attached metadata. To guarantee that all partitions perform a
transaction successfully or that none do, RAMP performs two-phase writes by
using the two-phase commit protocol (2PC). 2PC involves two phases: In the
prepare phase, each timestamped write is sent to the respective partition and
each partition adds the write to its local database. In the commit phase, each
partition updates an index which contains the highest-timestamped committed
version of each item. The RAMP algorithms described in [5] only deal with
read-only and write-only transactions.

3 Performance is measured in terms of the expected number of extra reads required
to fetch the corresponding missing writes.

4 S. Liu et al.

RAMP-Fast. In RAMP-Fast, the size of the metadata of a transaction is linear
in the number of writes in the transaction. Read operations require one round
trip time delay (RTT) in the common race-free case, and two RTTs in the worst
case; writes require two RTTs. Read transactions proceed by first fetching the
highest-timestamped committed version of each requested data item from the
corresponding partition, and then decide if they have missed any version that has
been prepared but not yet committed. The timestamp and the metadata from
each version read produces a mapping from items to timestamps that represent
the highest-timestamped write for each transaction, appearing in the first-round
read set. If the reader has a lower timestamp version than indicated in the
mapping for that item, a second-round read will be issued to fetch the missing
version. Once all the missing versions have been fetched, the client can return the
resulting set of versions, which include both the first-round reads as well as any
missing versions fetched in the second round of reads. The detailed specification
of RAMP-Fast in [5] is shown in Fig. 1.

RAMP-Small. Unlike RAMP-Fast, RAMP-Small read transactions proceed by
first fetching the highest committed timestamp of each requested data item; the
readers then send the entire set of those timestamps in a second message. The
highest-timestamped version that also exists in the received set will be returned
to the reader by the corresponding partition. RAMP-Small transactions require
constant-size metadata, but require two RTTs for reads and writes. RAMP-Small
writes only store the transaction timestamp, instead of attaching the entire write
set to each write.

RAMP-Hybrid. RAMP-Hybrid transactions provide an intermediate solution
between RAMP-Fast and RAMP-Small. RAMP-Hybrid algorithms only store a
Bloom filter which represents the transaction set, instead of storing the entire
write set as in RAMP-Fast. The RAMP-Hybrid and RAMP-Fast read protocols
are identical where the first round of communication fetches the last-committed
version of each item from its partition and the second round involves fetching
any higher timestamped writes for each item.

In this paper we focus on RAMP-Fast and RAMP-Small, which lie at the
end-points of the spectrum (in terms of the attached metadata for each write).

Extensions of RAMP The paper [5] spells out the basic algorithms for
RAMP-Fast, RAMP-Small, and RAMP-Hybrid in some detail. That paper also
briefly discusses a number of extensions and optimizations of these basic al-
gorithms, but without giving any details. A main contribution of our work is
therefore to develop detailed models, and to formally analyze, a number of those
extensions and variants of RAMP, including:

– RAMP with one-phase writes (1PW). The performance can be improved
if a client does not wish to read her own writes. In this RAMP + 1PW
variant, writes only require one prepare phase, as the client can execute

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 5

Fig. 1. The RAMP-Fast algorithm as described in [5].

6 S. Liu et al.

the commit phase asynchronously. We have analyzed both RAMP-Fast and
RAMP-Small with one-phase writes.

– RAMP with faster commit (FC). If a server returns a version with the time-
stamp fresher than the highest committed version of the item, then the
server can mark the version as committed. This allows faster updates to
correct versioning and thus fewer round trip time delays.

– RAMP without two-phase commit. We have also experimented with the
possibility of decoupling two-phase commit. (This is not a variant proposed
by the authors of [5].)

2.2 Rewriting Logic and Maude

Maude [9] is an expressive rewriting-logic-based formal specification language
and high-performance simulation and model checking tool for concurrent sys-
tems. Maude specifications are executable, and the tool provides a variety of
formal analysis methods, including simulation, reachability analysis, and linear
temporal logic (LTL) model checking.

Specification. A Maude module specifies a rewrite theory (Σ,E∪A,R), where:

– Σ is an algebraic signature; that is, a set of sorts, subsorts, and function
symbols.

– (Σ,E∪A) is a membership equational logic theory [9], with E a set of possibly
conditional equations and membership axioms, and A a set of equational
axioms such as associativity, commutativity, and identity, so that equational
deduction is performed modulo the axioms A. The theory (Σ,E∪A) specifies
the system’s state space as an algebraic data type.

– R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond ,
specifying the system’s local transitions.

We briefly summarize the syntax of Maude and refer to [9] for more details.
Operators are introduced with the op keyword: op f : s1 . . . sn -> s. They can
have user-definable syntax, with underbars ‘_’ marking the argument positions.
Equations and rewrite rules are introduced with, respectively, keywords eq, or
ceq for conditional equations, and rl and crl. The mathematical variables in
such statements are declared with the keywords var and vars, or can be in-
troduced on the fly, in which case they have the form var:sort. An equation
f(t1, . . . , tn) = t with the owise (“otherwise”) attribute can be applied to a
subterm f(. . .) only if no other equation with left-hand side f(u1, . . . , un) can
be applied.

A class declaration class C | att1 : s1, ..., attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An object instance of class C is
represented as a term <O : C | att1 : val1, ..., attn : valn >, where O, of sort Oid,
is the object’s identifier, and where val1 to valn are the current values of the
attributes att1 to attn. A message is a term of sort Msg. The state is a term of
the sort Configuration, and has the structure of a multiset made up of objects

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 7

and messages. The dynamic behavior of a system is axiomatized by specifying
each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z >

m’(O’,x) .

defines a family of transitions in which a message m, with parameters O and w,
is read and consumed by an object O of class C, the attribute a1 of the object
O is changed to x + w, and a new message m’(O’,x) is generated. Attributes
whose values do not change and do not affect the next state, such as a3 and the
righthand side occurrence of a2, need not be mentioned in a rule.

Reachability Analysis. Maude’s search command

(search [n] t0 =>* pattern such that condition .)

uses a breadth-first strategy to search for at most n states that are reachable
from the initial state t0 in zero or more steps, match the search pattern, and
satisfy the search condition. To search for final states (i.e., states that cannot
be further rewritten) matching pattern and satisfying condition, the arrow =>!

is used instead of =>*.

3 Modeling RAMP Transaction Algorithms in Maude

This section presents formal models of RAMP and its variants. We describe the
specification of RAMP-Fast in detail, and only show the main differences for the
other algorithms. Since we focus on analyzing the correctness of RAMP, and not
its performance, our model is an untimed one, so that all possible interleavings
are analyzed by Maude model checking. The executable Maude specifications
are available at https://sites.google.com/site/siliunobi/sac16-ramp.

3.1 Data Types, Objects, and Messages

We formalize (the different versions of) RAMP in an object-oriented style, where
the state consists of a number of Partition objects, each modeling a partition
of the database, a number of Client objects modeling clients that issue trans-
actions, and a number of messages traveling between the objects.

We assume that transactions do not have conditional reads and that a trans-
action does not write the same item multiple times; read-only and write-only
transactions can then largely be seen as sets of operations. As in [5], we assume
that data are not replicated.

8 S. Liu et al.

Data Types. A version is a timestamped version of a data item and is mod-
eled as a 4-tuple version(item,value,timestamp,metadata) consisting of the
data item, its value, and the version’s timestamp and metadata. A timestamp is
modeled as a pair timestamp(id,sqn) consisting of a client’s identifier id and
a sequence number sqn that together uniquely identify a writing transaction.
Metadata (which in RAMP-Fast are write sets) are modeled as a set of data
items, denoting, for each item, the other items that are written in the same
transaction. For example, if a write-only transaction has writes on items x, y,
and z, then versions of x have as metadata the write set {y, z}.

sorts Item Value Timestamp Metadata Version Latest .

subsort Set{Item} < Metadata .

op timestamp : Nat Nat -> Timestamp . --- client ID, sequence number

op version : Item Value Timestamp Metadata -> Version [ctor] .

A transaction (request) is a set of read operations read(id, item) and write
operations write(id, item, value), where id denotes the identity of the opera-
tion. The sort Transactions denotes lists of transactions.

sort Operation .

op read : Nat Item -> Operation .

op write : Nat Item Value -> Operation .

pr SET{Operation} * (sort Set{Operation} to Transaction) .

pr LIST{Transaction} * (sort List{Transaction} to Transactions) .

Objects and Messages. A client issues transactions and collects responses for
analysis purposes. To avoid cluttering the specification, we assume without loss
of generality that a client issues transactions sequentially: a transaction from a
client is issued when its preceding transaction has been committed. Concurrent
transactions can be modeled by multiple transactions issued by different clients.

A client is modeled as an object instance of the class Client, and has the fol-
lowing attributes: a list of transactions it wants to issue (transac); the sequence
number that together with the client identifier determine timestamps (sqn); a
flag indicating whether a transaction has been committed (trflag); several sets
of operations buffering intermediate information (pendingOps, denoting pend-
ing reads/writes, pendingPrep, denoting pending writes in the prepare phase,
1stGets, denoting pending first-round reads); a mapping from each item to its
latest committed timestamp from a client’s perspective (latest); and the re-
turned value and operations for each transaction (result):

class Client | transac : Transactions, sqn : Int, trflag : Bool,

pendingOps : OpsInfo, pendingPrep : Set{Nat},
1stGets : Set{Nat}, latest : Latest, result : Results .

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 9

A partition stores a set of versions for a number of data items. We model a
partition as an object of class Partition with attributes: versions, denoting a
set of versions for each data item in the partition, and latestCommit, denoting
the timestamp of the last commit of each item:

pr SET{Version} * (sort Set{Version} to Versions) .

pr MAP{Item,Timestamp} * (sort Map{Item,Timestamp} to Latest) .

class Partition | versions : Versions, latestCommit : Latest .

For example, the state fragment

< c1 : Client |

transac : (read(3,x),read(4,y)), sqn : 3, trflag : true,

pendingOps : {1,2}, pendingPrep : {2}, 1stGets : empty,

latest : empty, result : nil >

< p1 : Partition |

versions : version(x,v,timestamp(c2,3),y),

version(y,w,timestamp(c1,1),x),

latestCommit : (x |-> timestamp(c2,3) ,

y |-> timestamp(c1,1)) >

models a setting where partition p1 holds a version for each of the items x and
y, with respective values v and w, and associated timestamps timestamp(c2,3)
and timestamp(c1,1). Client c1 intends to issue a transaction of two reads,
reading items x and y; trflag is true, meaning that one of c1’s transactions is
being executed, and pendingOps has two pending operations 1 and 2. We can
tell from pendingPrep that the ongoing transaction is a write-only transaction
with a write 1 that has already committed. The remaining three attributes are
empty or nil, since they are only updated when a read-only transaction is issued.

Messages travel between clients and partitions, and have the form msg msg-
Content from sender to receiver, where the message content msgContent is
either prepare(id, version) (placing a timestamped write (or version) on its
partition), commit(id,timestamp) (marking versions as committed using the
timestamp generated by a client), prepared(id) (reply to prepare for write
id), committed(id) (reply to commit), get(id,item,timestamp), (fetching the
highest-timestamped committed version or any missing version for an item by
timestamp) 1st-response(id,version) (returned version for first-round get for
read id), or 2nd-response(id,version) (returned version for second-round get

for read id), where id denotes the operation’s identifier.

3.2 Formalizing RAMP-Fast

This section formalizes the dynamic behaviors of RAMP-Fast using rewrite rules.
We also refer to the corresponding lines of code in the description in Fig. 1.

10 S. Liu et al.

Starting a New Transaction (Lines 14–19 for writes and lines 22–26 for
reads). Whenever a client is not executing a transaction (the attribute trflag

has the value false and the buffers storing intermediate information are empty)
and there is a pending transaction in the client’s transaction list transac (the
pattern4 TR TRL denotes a list with a single transaction TR followed by a (possibly
empty) list of TRL of the other remaining transactions), the client starts issuing
the transaction TR by sending a prepare message for each write in a write-only
transaction, or by sending a get message for each read in a read-only transaction.
The function genOps generates these messages.

The client will then wait for intermediate response messages from the parti-
tions by setting pendingOps to the operations in TR, pendingPrep to the writes
(w) in TR if TR is a write-only transaction, 1stGets to the reads (r) in TR if TR is a
read-only transaction, and latest to default timestamps for each item requested
in TR’s reads, respectively. Furthermore, to record the final committed versions,
the client also adds to result the default version rs(TR) (with null value and
timestamp, and empty metadata) for each read in TR. Finally, the client sets
trflag to true to indicate that it is currently executing a transaction:

rl [init-transaction] :

< O : Client | transac : TR TRL, sqn : SQN, trflag : false,

pendingOps : empty, pendingPrep : empty,

1stGets : empty, latest : VL, result : RS >

=>

< O : Client | transac : TRL, trflag : true,

pendingOps : rw(TR), pendingPrep : w(TR),

1stGets : r(TR), latest : vl(TR,VL),

result : RS rs(TR) >

genOps(TR,SQN,O) .

Receiving Prepare Messages (Lines 3–5). When a partition O receives a
prepare message with identifier ID from the client O’ for a version v, it adds v
to its local storage versions and sends a prepared message back to the client:

rl [receive-prepare] :

msg prepare(ID,version(X,V,timestamp(O’,SQN),MD))

from O’ to O

< O : Partition | versions : VS >

=>

< O : Partition | versions :

version(X,V,timestamp(O’,SQN),MD),VS >

msg prepared(ID) from O to O’ .

Receiving Prepared Messages (Lines 20–21). When a client receives a
prepared message for the current write ID from a partition O’, it deletes ID from
the set pendingPrep. If the resulting set is empty, meaning that all prepared
messages have been received, the client starts committing the transaction using
the function startCommit, which generates a commit message for each write.

4 We do not show variable declarations, but follow the Maude convention that variables
are written in capital letters.

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 11

crl [receive-prepared] :

msg prepared(ID) from O’ to O

< O : Client | pendingPrep : NS, pendingOps : OI, sqn : SQN >

=>

< O : Client | pendingPrep : NS’ >

(if NS’ == empty then startCommit(OI,SQN,O) else none fi)

if NS’ := delete(ID,NS) .

Receiving Commit Messages (Lines 6–8). When a partition receives a
commit message with timestamp timestamp(O’,SQN), it invokes the function
cmt to update the latest commit timestamp in the set latestCommit with the
fresher timestamp of the incoming one and the local one, provided those two can
be matched; it then notifies the client to commit the write:

rl [receive-commit] :

msg commit(ID,timestamp(O’,SQN)) from O’ to O

< O : Partition | versions : VS, latestCommit : LC >

=>

< O : Partition | latestCommit :

cmt(LC,VS,timestamp(O’,SQN)) >

msg committed(ID) from O to O’ .

Receiving Committed Message. When a client receives a committed mes-
sage, it removes the committed read/write ID from its set pendingOps. If all
pending reads/writes have been committed (pendingOps is empty), the client
gets ready to issue its next transaction by setting trflag to false and increasing
the sequence number:

rl [receive-committed] :

msg committed(ID) from O’ to O

< O : Client | pendingOps : OI >

=>

< O : Client | pendingOps : remove(ID,OI) > .

rl [commit-transaction] :

< O : Client | trflag : true, pendingOps : empty,

sqn : SQN >

=>

< O : Client | trflag : false, sqn : SQN + 1 > .

Receiving Get Messages (Lines 9–13). When a partition receives a get

message with identifier ID, requested data item X and timestamp TS’ from the
client O’, it replies with the last committed version of the item. If the incoming
get is for first round communication (TS’ == null), then the partition invokes
vmatch to return the version of X in VS with the timestamp matched by that in
LC for X:

12 S. Liu et al.

rl [on-receiving-get] :

msg get(ID,X,TS’) from O’ to O

< O : Partition | versions : VS, latestCommit : LC >

=>

< O : Partition | >

(if TS’ == null then 1st-response(ID,vmatch(X,VS,LC)) from O to O’

else 2nd-response(ID,vmatch(X,VS,TS’)) from O to O’ fi) .

Receiving Response to First-round Get Messages (Lines 25, 27–33).
When a client first receives the (last) committed version of the requested item,
it removes the transaction read ID from the set 1stGets, and adds the received
version into the set result. It updates the set latest with the received times-
tamp and set of items from the received version (i.e., its metadata), thus pro-
ducing a new mapping VL’ from the item to the timestamp representing the
highest-timestamped write for the transaction appearing in the first-round read
set. When all responses to the first-round get messages have been collected, the
client invokes the function gen2ndGets to issue a second-round read to fetch the
missing version: a get message will be sent to the corresponding partition if the
received version of an item has a lower timestamp than indicated in VL’:

crl [on-receiving-1st-response] :

msg 1st-response(ID,version(X,V1,TS1,MD1)) from O’ to O

< O : Client | 1stGets : NS, result : RS, latest : VL >

=>

< O : Client | 1stGets : NS’, result : RS’, latest : VL’ >

(if NS’ == empty then gen2ndGets(ID,VL’,RS’,O) else none fi)

if NS’ := delete(ID,NS) /\ VL’ := lat(VL,MD1,TS1) /\

RS’ := addVersion(ID,version(X,V1,TS1,MD1),RS) .

Receiving Response to Second-round Get Messages (Lines 32–33).
When a client receives the response to a second-round get message, it adds the
fetched version into result:

rl [on-receiving-2nd-response] :

msg 2nd-response(ID,version(X,V,TS,MD)) from O’ to O

< O : Client | pendingOps : OI, result : R >

=>

< O : Client | pendingOps : remove(ID,OI),

result : addVersion(ID,v(X,V,TS,MD),RS) > .

3.3 Formalizing RAMP-Small

Instead of attaching the entire write set to each write, RAMP-Small clients
only store the transaction timestamp. This correspond to changing the rule
init-transaction by letting genOps not instantiate metadata for each out-
going write, but instead leave it as an empty set. Apart from that, only the
following two rules in RAMP-Fast must be modified to define RAMP-Small.

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 13

Receiving Response to First-round Get Messages. When a client has
fetched the (highest-timestamped) committed timestamp for the requested item
in the received version, it proceeds in the similar way as in RAMP-Fast except
that it will not update result since RAMP-Small always requires two RTT for
reads. Each outgoing get message generated by gen2ndGets includes the entire
set of timestamps received via first-round get messages:

crl [on-receiving-1st-response] :

msg 1st-response(ID, version(X,V1,TS1,MD1)) from O’ to O

< O : Client | 1stGets : NS, latest : VL, result : RS >

=>

< O : Client | 1stGets : NS’, latest : VL’ >

(if NS’ == empty then gen2ndGets(ID,VL’,RS,O) else none fi)

if NS’ := delete(ID,NS) /\ VL’ := insert(X,TS1,VL) .

Receiving Get Messages. When a partition receives a get message for the
first time, it proceeds in the same way as in RAMP-Fast; however, when the
second get message arrives that contains the entire set of timestamps for the re-
quested item, it returns the highest-timestamped version (determined by maxts)
of that item that also exists in the received set of timestamps (determined by
tsmatch). Note that the incoming get message includes a set of timestamps TSS:

rl [on-receiving-get-small] :

msg get(ID,X,TSS) from O’ to O

< O : Partition | versions : VS, latestCommit : LC >

=>

< O : Partition | >

(if TSS == empty

then 1st-response(ID,vmatch(X,VS,LC)) from O to O’

else 2nd-response(ID,vmatch(X,VS,maxts(tsmatch(X,VS,TSS)))) from O to O’ fi) .

3.4 Formalizing Variants of RAMP

RAMP Without 2PC. RAMP uses two-phase commit (2PC) to ensure that
all partitions successfully execute a transaction or that none do. Specifically,
writes start to commit only after all of them are prepared on the partitions. This
results in high latency, even “resource leak” on partitions during failures [5], since
one blocked write will cause the transaction to stall. We can “decouple” 2PC
from RAMP by changing the rule on-receiving-prepare to the following rule,
in which a client simply removes the write from the pending set and commits it
on the partition, instead of waiting for all prepared messages to arrive:

rl [on-receiving-prepared-decouple-2pc] :

msg prepared(ID) from O’ to O

14 S. Liu et al.

< O : Client | pendingPrep : NS, sqn : SQN >

=>

< O : Client | pendingPrep : delete(ID,NS) >

msg commit(ID, timestamp(O,SQN)) from O to O’ .

RAMP with Faster Commit. This optimization is described as follows in [5]:

If a server returns a version in response to a GET request and the ver-
sion’s timestamp is greater than the highest committed version of that
item, then transaction writing the version has committed on at least one
partition. In this case, the server can mark the version as committed.

That is, a partition can mark as committed the version (by sending a commit

message to the client O’) that has a fresher timestamp than the highest commit-
ted version of the requested item (indicated by LC[X] < TS’). We model this
proposed optimization of RAMP-Fast by replacing the rule on-receiving-get

with the following rule on-receiving-get-faster-commit. The other rules are
unchanged.

rl [on-receiving-get-faster-commit] :

msg get(ID,X,TS’) from O’ to O

< O : Partition | versions : VS, latestCommit : LC >

=>

if TS’ == null

then < O : Partition | >

msg 1st-response(ID, vmatch(X,VS,LC)) from O to O’

else if LC[X] < TS’

then < O : Partition | latestCommit : insert(X,TS’,LC) >

(msg committed(ID) from O to O’)

(msg 2nd-response(ID, vmatch(X,VS,TS’)) from O to O’)

else < O : Partition | >

msg 2nd-response(ID, vmatch(X,VS,TS’)) from O to O’ fi fi .

RAMP with One-Phase Writes (1PW). An optimization proposed in [5]
in case a user does not wish to read her writes is to allow a client to

return after issuing its PREPARE round. The client can subsequently
execute the COMMIT phase asynchronously.

Specifically, after collecting all prepare messages (indicated by NS’ == empty),
a client starts to execute the commit phase by invoking startCommit to gener-
ate commit messages, and kicks off the next transaction by sending a message
executeTransaction to itself to force the client to start executing the next
transaction.

crl [on-receiving-prepared-1pw] :

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 15

msg prepared(ID) from O’ to O

< O : Client | pendingPrep : NS, pendingOps : OI, sqn : SQN >

=>

< O : Client | pendingPrep : NS’ >

(if NS’ == empty

then (startCommit(OI,SQN,O))

(executeTransaction O)

else none fi)

if NS’ := delete(ID,NS) .

4 Formal Analysis of RAMP and Its Variants

In this section we use reachability analysis to analyze whether RAMP and its
variants satisfy the properties in [5]. Explicit-state model checkers like Maude
are typically quite expressive but only analyze the system from a single initial
configuration. To increase coverage, we would like to model check RAMP for
all possible configurations up to certain bounds, for example k operations and
j clients. Despite the wealth of Maude applications, we are not aware of any
work doing such comprehensive model checking in Maude. Section 4.1 therefore
presents a general technique in Maude for model checking a system from a range
of different initial configurations. Section 4.2 formalizes the desired properties
that RAMP transactions should satisfy and analyzes them for all configurations
with four operations and two clients, as well as for a number of configurations
with six operations.

4.1 Model Checking Many Initial States

The idea behind model checking many initial configurations is to introduce a
new operator init, have a one-step rewrite init(parameters) −→ t0 for any
possible initial configuration t0, and start the analysis from init(parameters).
However, there are two things to take into account:

1. The analysis must take into account the additional rewrite step before the
actual analysis of all behaviors from a concrete initial state begins. A search
command (search t0 =>* pattern .), which searches for states reachable
in zero or more steps from t0, must be replaced by (init(parameters)
=>+ pattern .), which searches for states reachable in one or more steps.
Likewise, in temporal logic model checking, an LTL formula ϕ should be
replaced by the formula © ϕ (which means that ϕ holds in the next state).

2. The property to analyze may depend on the particular initial state. When
generating multiple initial states and model checking them in one command,
it might be necessary to record (parts of) the initial state, and carry this
record in the state throughout the analysis.

To generate all possible initial states, we declare a new sort denoting sets of
configurations:

16 S. Liu et al.

sort ConfigSet . subsort Configuration < ConfigSet .

op empty : -> ConfigSet .

op _;_ : ConfigSet ConfigSet -> ConfigSet [assoc comm id: empty] .

We assume that there is a function

op initAux : s1 ... sn -> ConfigSet .

such that initAux(params,params ′) generates all possible initial states, and
add the following rewrite rule to our model:

var C : Configuration . var CS : ConfigSet .

crl [init] : init(params) => C

if C ; CS := initAux(params,params’) .

If the state needs to carry a record f(t0) of the initial state t0, we use the
following rule instead:

crl [init] :

init(params) => C < r : Record | record : f(C) >

if C ; CS := initAux(params,params’) .

where Record is a new class which stores selected data from the chosen initial
state throughout the computations.

For RAMP, init has the parameters: #ops, the total number of (read or
write) operations to be performed; #clients, the the number of clients; and
dataItems, the set of data items in the system, with each partition storing one
item. We also store in the record object the list of transactions to be issued by
each client.

--- Generate a new client

rl initAux(OPS, s CLS, (I,ITEMS), none, C)

=>

initAux(OPS, CLS, (I,ITEMS), < s CLS : Client | transac : nil, sqn : 1,

trflag : false, pendingOps : empty, pendingPrep : empty, 1stGets : empty,

latest : empty, result : nil >, C) .

--- Add an op to the current transaction, if more ops needed

--- Check for read-only transaction

op noWriteIn : Transaction -> Bool .

eq noWriteIn((write(ID,X,V),TR)) = false .

eq noWriteIn(TR) = true [owise] .

--- Check for write-only transaction

op noReadIn : Transaction -> Bool .

eq noReadIn((read(ID,X),TR)) = false .

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 17

eq noReadIn(TR) = true [owise] .

--- Add a write to a write-only transaction

crl initAux(s OPS, CLS, (I,ITEMS), < O : Client | transac : TRS TR >, C)

=>

initAux(OPS, CLS, (I,ITEMS), < O : Client |

transac : TRS (TR,write(s OPS,I,s OPS)) >, C)

if noReadIn(TR) /\ noSameItem(TR,I) .

--- Add a read to a read-only transaction

crl initAux(s OPS, CLS, (I,ITEMS), < O : Client |

transac : TRS TR >, C)

=>

initAux(OPS, CLS, (I,ITEMS), < O : Client |

transac : TRS (TR,read(s OPS,I)) >, C)

if noWriteIn(TR) .

--- Guarantee there are no writes on the same item

op noSameItem : Transaction Item -> Bool .

eq noSameItem((write(ID,I,V),TR),I) = false .

eq noSameItem((read(ID,I),TR),I) = false .

eq noSameItem(TR,I) = true [owise] .

--- Start a new read-only transaction

rl initAux(s OPS, CLS, (I,ITEMS), < O : Client | transac : TRS >, C)

=>

initAux(OPS, CLS, (I,ITEMS), < O : Client | transac :

TRS (read(s OPS,I)) >, C) .

--- Start a new write-only transaction

rl initAux(s OPS, CLS, (I,ITEMS), < O : Client | transac : TRS >, C)

=>

initAux(OPS, CLS, (I,ITEMS), < O : Client | transac :

TRS (write(s OPS,I,s OPS)) >, C) .

--- Done with the client, ready for generating a new client

rl initAux(OPS, CLS, (I,ITEMS), < O : Client | transac : TRS >,

< R : Record | record : REC > C)

=>

initAux(OPS, CLS, (I,ITEMS), none, < O : Client | transac : TRS >

< R : Record | record : insert(O,TRS,REC) > C) .

--- Generating partitions

rl initAux(0,0,(I,ITEMS),none,C)

=>

initAux(0,0,ITEMS,none,< I : Partition |

versions : (v(I,null,timestamp(0,0),empty)),

latestCommit : (I |-> timestamp(0,0)) > C) .

One of 2764 initial states defined by init(4,2,(x,y)) is

18 S. Liu et al.

< 1 : Client | transac : (read(1,x) , read(2,x)) , sqn : 1,

1stGets : empty, latest : empty, pendingOps : empty,

pendingPrep : empty, result : nil, trflag : false >

< 2 : Client | transac : (write(4,y,4) write(3,x,3)) , ... >

< x : Partition | latestCommit : x |-> timestamp(0,0),

versions : version(x,null,timestamp(0,0), empty)>

< y : Partition | latestCommit : y |-> timestamp(0,0),

versions : version(y,null,timestamp(0,0),empty)>

< 100 : Record | record : 1 |->(read(1,x) , read(2,x)) ,

2 |-> write(4,y,4) write(3,x,3) >

where client 1 has one transaction with two reads, and client 2 has two transac-
tions, each having one write operation.

4.2 Analyzing the Correctness Properties

This section formalizes the correctness requirements of RAMP as reachability
properties and analyzes them using Maude.

During the execution of a transaction with multiple reads, one read will be
committed before the other, leading to intermediate states where key properties
do not hold. Since RAMP is terminating if each client issues a finite number
of transactions, we therefore analyze most properties on final states, when all
transactions are committed.

We have performed our analysis from init(4,2,(x,y)), which means that
we consider all possible initial configurations with a total of 4 operations, 2
clients, and 2 data items. There are 2764 such initial configurations. Each anal-
ysis command took about 20 seconds to execute on a 2.9 GHz Intel 4-Core
i7-3520M CPU with 3.7 GB memory.

For 6 total operations, we analyze the different variations of RAMP for all
possible non-trivial scenarios with 6 total operations, 2 clients, 2 data items,
and 2 partitions, each storing one item. RAMP only considers read-only and
write-only transactions; furthermore, as already explained, we ignore pointless
transactions in which the same item is read twice or written twice. Likewise, we
ignore single-operation transactions: neither a single read transaction nor a single
write transaction can lead to fractured reads. Finally, after we omit symmetric
scenarios (e.g., if client c1 has transaction(s) tl1 and client c2 wants to execute
the transaction(s) tl2, then there is no need to consider the symmetric scenario
where c1 executes tl2 and c2 executes tl1), we are left with 6 scenarios to analyze:

c1 : [read(x), read(y)] c2 : [write(x),write(y)] [write(x),write(y)]
c1 : [write(x),write(y)] c2 : [read(x), read(y)] [write(x),write(y)]
c1 : [write(x),write(y)] c2 : [write(x),write(y)] [read(x), read(y)]
c1 : [write(x),write(y)] c2 : [read(x), read(y)] [read(x), read(y)]
c1 : [read(x), read(y)] c2 : [write(x),write(y)] [read(x), read(y)]
c1 : [read(x), read(y)] c2 : [read(x), read(y)] [write(x),write(y)]

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 19

Read Atomic Isolation. The main correctness property, read atomic isolation,
that RAMP should satisfy is defined as follows in [5]:

“A system provides Read Atomic isolation if it prevents fractured reads
anomalies and also prevents transactions from reading uncommitted,
aborted, or intermediate data.”

where fractured reads are described as follows:

“A transaction Tj exhibits fractured reads if transaction Ti writes version
xm and yn (in any order, with x possibly but not necessarily equal to
y), Tj reads version xm and version yk, and k < n.”

We analyze this property by searching for a reachable final state where the
property does not hold; i.e., a state where one of the clients’ committed results,
RES1 or RES2, has a fractured read:

(search [1] init(4,2,(x , y)) =>!

C:Configuration

< r:Oid : Record | record : (O1:Oid |-> TL1:TrList)

(O2:Oid |-> TL2:TrList) >

< O1:Oid : Client | result : RES1:Result >

< O2:Oid : Client | result : RES2:Result >

such that fracRead(RES1:Result, TL1:TrList, TL2:TrList)

or fracRead(RES2:Result, TL2:TrList, TL1:TrList) .)

where the function fracRead checks whether there are fractured reads on each
client’s committed result, based on the initial transactions of all clients:

op fracRead : Results Transactions Transactions -> Bool .

--- handle a client’s own write-only transactions

ceq fracRead((RS1 (ID1 |-> v(X1,V,TS1,MD1),ID2 |-> v(X2,V2,TS2,MD2),R) RS2),

(TRL (write(ID,X1,V),write(ID’,X2,V’),TR) TRL’

(read(ID1,X1),read(ID2,X2),TR’) TRL’’),TRL2) = true

if V2 =/= V’ /\ X1 =/= X2 .

--- handle another client’s write-only transactions

ceq fracRead((RS1 (ID1 |-> v(X1,V,TS1,MD1),ID2 |-> v(X2,V2,TS2,MD2),R) RS2),

TRL1,(TRL (write(ID,X1,V),write(ID’,X2,V’),TR) TRL’)) = true

if V2 =/= V’ /\ X1 =/= X2 .

eq fracRead(RS1,TRL,TRL’) = false [owise] .

Our analysis results are consistent with the analytic and predicted results
in [5]: RAMP without two-phase commit does not satisfy read atomicity; all other
versions of RAMP do. Model checking the Scenario c1 : [read(x), read(y)] c2 :
[write(x),write(y)] [read(x), read(y)] yields the following counterexample for

20 S. Liu et al.

RAMP without two-phase commit: The read-only transaction c1 : [read(x), read(y)]
has committed and returned, before the partition holding item x has been pre-
pared by the write-only transaction (i.e., before the associated prepare message
has reached that partition), but the other prepare message even arrives at the
partition holding item y. In that case, the read-only transaction will return the
result where only one write write(y) of the write-only transaction is visible,
which violates RA.

Companions Present. Another property that is verified in [5] is the following
invariant:

“If a version xi is referenced by lastCommit (that is, lastCommit[x] =
i), then each of xi’s sibling versions5 are present in versions on their
respective partitions.”

This invariant can be analyzed by searching for a state that does not satisfy the
property:

(search [1] init(4,2,(x , y)) =>+ C:Configuration

< r:Oid : Record | record : (O1:Oid |-> TL1:TrList)

(O2:Oid |-> TL2:TrList) >

such that not comp-present(C:Configuration,TL1:TrList,TL2:TrList) .)

where comp-present holds if and only if for each committed item, the sibling
version of its associated version is present in the other partition:

op comp-present : Configuration Transactions Transactions -> Bool .

ceq comp-present(< O1 : Partition | versions : (v(X1,V1,TS1,MD1),VS1),

latestCommit : (X1 |-> TS1) >

< O2 : Partition | versions : (v(X2,V2,TS1,MD2),VS2) >

REST, TRL,TRL’) = false

if not sib(V1,V2,TRL,TRL’) .

eq comp-present(C,TRL,TRL’) = true [owise] .

op sib : Value Value Transactions Transactions -> Bool .

eq sib(V1,V2,(TRL (write(ID,X1,V1),write(ID’,X2,V2),TR) TRL’),TRL2) = true .

eq sib(V1,V2,TRL1,(TRL (write(ID,X1,V1),write(ID’,X2,V2),TR) TRL’)) = true .

eq sib(null,null,TRL1,TRL2) = true .

eq sib(V1,V2,TRL1,TRL2) = false [owise] .

where the function sib is defined to check whether versions of the same times-
tamp (by matching TS1 in each version on different partitions, i.e., versions by
the writes in the same transaction) are siblings. This can be done by checking if
V1 and V2 match the writes in each write-only transaction in TRL or TRL’.

Our analysis shows that all versions, except the ones without 2PC, satisfy
this property.

5 We call the set of versions produced by a (write-only) transaction sibling versions.

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 21

Synchronization Independence. Synchronization Independence. This
property is described as follows in [5]:

“Synchronization Independence ensures that one client’s transactions
cannot cause another client’s to block and that, if a client can contact
the partition responsible for each item in its transaction, the transaction
will eventually commit (or abort of its own volition).”

We check the stronger property that all transactions are eventually always com-
mitted on all clients’ sides: since we assume that there are no uncommitted or
aborted transactions, a client-side method can return only if the corresponding
partition-side methods have returned. The following function syn-indep holds
in a state if and only if there are no pending transactions (transac is nil and
all buffers are empty) and no ongoing transactions (trflag is false):

op syn-indep : Configuration -> Bool .

eq syn-indep(

< O1 : Client | transac : nil, trflag : false,

pendingOps : empty, pendingPrep : empty,

1stGets : empty >

< O2 : Client | transac : nil, trflag : false,

pendingOps : empty, pendingPrep : empty,

1stGets : empty > REST)

= true .

eq syn-indep(SYSTEM) = false [owise] .

Again, we analyze the property by searching for a final state which does
not satisfy syn-indep. The property is satisfied by all versions of RAMP in our
analysis.

Partition Independence. Partition independence means that a client never
has to contact a partition that its transaction does not access. This follows
directly from the fact that the function genOps only generates messages to the
partitions that store the data items of the transaction. Hence this property holds
trivially in our model.

Read Your Writes. This property says that a client’s writes are visible to her
subsequent reads. It can be analyzed by searching for a final state in which a
client’s recorded reads contain a read that read the client’s write which was not
the write immediately preceding the read:

(search [1] init(4,2,(x , y)) =>!

C:Configuration

< r:Oid : Record | record : (C1:Oid |-> TL1:TrList)

(C2:Oid |-> TL2:TrList) >

22 S. Liu et al.

< C1:Oid : Client | result : RES1:Result >

< C2:Oid : Client | result : RES2:Result >

such that tooOldRead(RES1:Result, TL1:TrList)

or tooOldRead(RES2:Result, TL2:TrList) .)

A client has read a too old value if either it reads a null value, or a value it
has written earlier, and it has a (later) write transaction writing the item.

The function tooOldRead returns true if a read ID has fetched either: (i) a
value V1 of an earlier write ID1 although the client had a later write ID2 preceding
the read ID (first equation); or (ii) the initial value null even though the client
had an earlier write ID1 that has not written null (second equation). In the first
equation below, the result value contains a read ID |-> version(X,V1,TS,MD),
and the transactions that the client should execute match the pattern

TRL (OPS1, write(ID1,X,V1), OPS1’)

TRL’ (OPS2, write(ID2,X,V2), OPS2’)

TRL’’ (OPS, read(ID,X), OPS’) TRL’’’

where the variables TRL denote lists of transactions, and the variables OPS de-
note parts of a single transaction (sets of operations). In particular, in the client’s
original transaction list, there are two transactions (OPS1, write(ID1,X,V1),

OPS1’) and (OPS2, write(ID2,X,V2), OPS2’) both writing X before the trans-
action (OPS, read(ID,X), OPS’) reads the X. It is clear that if read(ID,X)

reads the value written by write(ID1,X,V1), then the client has not read its
own (latest) writes. The second equation takes care of the case when the read
operation reads null even though it itself had an earlier transaction writing X.
If none of these equations apply, and the owise equation returns false:

op tooOldRead : Results TrList -> Bool .

eq tooOldRead((RS (ID |-> version(X,V1,TS,MD) ,R) RS2),

(TRL (OPS1, write(ID1,X,V1), OPS1’)

TRL’ (OPS2, write(ID2,X,V2), OPS2’)

TRL’’ (OPS, read(ID,X), OPS’) TRL’’’) = true .

eq tooOldRead((RS1 (ID |-> version(X,null,TS,MD) ,R) RS2),

(TRL (OPS1, write(ID1,X,V1), OPS2)

TRL’ (OPS, read(ID,X), OPS’) TRL’’)) = true .

eq tooOldRead(RS, TRL) = false [owise] .

Our analysis shows that only RAMP with one-phase writes does not satisfy
the property. The counterexample obtained by analyzing the initial state where
a client has transactions [write(x),write(y)] [read(x), read(y)] shows that the
read operations both return null. The reason is that one-phase writes do not
forbid the client to start the subsequent read-only transaction before its last
write-only transaction has committed (by commit messages) on the partitions.

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 23

Summary. We have analyzed all 4 key properties of our 7 versions of RAMP.
Our results agree with the proved and conjectured results in [5]: All versions
satisfy the properties, except that

– RAMP without 2PC does not satisfy read atomicity, “companions present”,
and read-your-writes; and

– RAMP with one-phase writes does not satisfy read-your-writes.

5 Related Work

Despite the importance of distributed data stores for cloud computing, we are
not aware of much work on formalizing and verifying such systems. The recent
paper [17] describes experiences at Amazon Web Services using TLA+ to for-
malize and model check Amazon’s scalable high-performance replicated NoSQL
data store DynamoDB. The authors report that TLA+ model checking “[found]
bugs in system designs that cannot be found through any other techniques we
know of” and that “formal methods are routinely applied to the design of com-
plex real-world software, including public cloud services,” at Amazon. Maude
and Real-Time Maude were used in [10,11] to define a formal model of Google’s
widely-replicated data store Megastore, which ensures serializability for certain
classes of transactions, and to develop an extension of Megastore. These models
were simulated for QoS estimation and model checked for functional correct-
ness. In a similar vein, [15] presents a formal model of the popular distributed
key-value store Cassandra, and formally analyzes different consistency prop-
erties using Maude. The authors in [6] reduce the problem of verifying even-
tual consistency of optimistic data replication systems in large-scale networks
to reachability and model checking problems. The main difference between all
the above-mentioned work and this paper is that we formalize and analyze a
different consistency property (read atomic isolation) than the various eventual
consistency and serializability properties analyzed in the related work, and that
we do so for several alternative designs of RAMP, a system that, to the best of
our knowledge, has not been formally modeled and analyzed before.

6 Concluding Remarks

Today’s distributed storage systems are seeing a convergence of traditional “strong
consistency” databases and the new generation of “fast but eventually consis-
tent” NoSQL databases. In this paper, we have analyzed the most promising
bridge system, called RAMP [5], which seeks to provide strong consistency for
client transactions while still offering fast performance. While the original RAMP
paper included hand proofs for only the basic RAMP algorithms, we adopted a
model checking approach where we: (1) first developed fully-executable formal
models of many RAMP variants, extensions, and optimizations using Maude;
(2) formally analyzed these models to confirm the original correctness properties

24 S. Liu et al.

(within some constraints); (3) used our models to evaluate the correctness prop-
erties of RAMP’s extensions and optimizations (something the original RAMP
paper did not do); and (4) used our models to evaluate the critical dependence
of RAMP’s correctness properties on its building blocks.

Based on our experience, we believe that the formal modeling and model
checking approach can be powerful if used by developers (of cloud storage sys-
tems) before (or even alongside) their implementation. This approach allows
developers to go beyond mere hand proofs or implementation-based simulations.
Once the formal model is written, correctness properties can be automatically
analyzed. We could also use formal modeling with probabilistic rewrite rules and
statistical model checking to evaluate the effect of further optimizations [14].

References

1. Basho Riak, http://basho.com/riak/

2. Cassandra, http://cassandra.apache.org

3. Market research media, NoSQL market forecast 2013-2018, http://www.

marketresearchmedia.com/?p=568

4. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
available transactions: Virtues and limitations. PVLDB 7(3) (2013)

5. Bailis, P., Fekete, A., Hellerstein, J.M., Ghodsi, A., Stoica, I.: Scalable atomic
visibility with RAMP transactions. In: Proc. SIGMOD’14. ACM (2014)

6. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: Proc. POPL’14. ACM (2014)

7. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC. p. 7
(2000)

8. Chang, F., et al.: Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2) (2008)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)

10. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Specification, Algebra, and Software. LNCS, vol. 8373.
Springer (2014)

11. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: SEFM. LNCS, vol. 8702. Springer
(2014)

12. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media (2010)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

14. Liu, S., Nguyen, S., Ganhotra, J., Rahman, M.R., Gupta, I., Meseguer, J.: Quan-
titative analysis of consistency in nosql key-value stores. In: QEST 2015. Lecture
Notes in Computer Science, vol. 9259, pp. 228–243. Springer (2015)

15. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: Proc. ICFEM’14. LNCS, vol. 8829. Springer
(2014)

16. Lynch, N., Gilbert, S.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (June 2002)

Formal Modeling and Analysis of RAMP Transaction Systems in Maude 25

17. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Communications of the ACM
58(4), 66–73 (2015)

