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Semanticists have long investigated the linguistic phenomenon of
negative polarity items (NPIs) and have demonstrated that there
exists a relationship between NPIs and downward entailing (DE)
operators. NPI licensing theories aim to explain the exact nature of
that relationship. These semantic theories can be leveraged to aid
research in other linguistic subfields. The contribution of this paper
is to demonstrate how we may successfully use linguistic knowledge
and the relationship between NPIs and DEs to build an informed
computational system that can successfully detect DE operators from
text. This work presents an algorithm that automatically detects a
word’s monotonicity information.

1. Introduction

Semantic theories can and should be leveraged to aid research in other
linguistic subfields. This work is motivated by semantic theory on the rela-
tionship between NPIs and DE operators. The contribution of this paper is to
demonstrate how we may successfully use linguistic knowledge and the rela-
tionship between NPIs and DE operators to build an informed computational
system that can successfully detect DE operators from text. This task is a
crucial contribution to any inference system and has widespread applications
in the field of computational linguistics. Therefore, the goal of this work
is to demonstrate how we can integrate knowledge of linguistic theory in
designing computational inference systems. Specifically, this paper presents
an algorithm that automatically detects a word’s monotonicity information.
Due to this, we will review some of the leading and most influential semantic
accounts of NPI licensing, so that the connection between NPIs and mono-
tonicity can be made clear, and thereby relevant to inference system design.
This paper is outlined as follows, Section 2 is dedicated to introducing NPIs
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and their distribution, Section 3 provides a short introduction to the licensing
of NPIs, Section 4 outlines a novel contribution to the subfield of compu-
tational linguistics: a linguistically informed algorithm that automatically
learns downward entailing operators from text. Lastly, we conclude our
discussion in Section 5.

2. Negative Polarity Items

This section introduces the data on Negative Polarity Items (NPIs) in English.
The feature characteristic of NPIs is their restricted distribution. As examples
consider (1-2).

(1) a. John didn’t know any French.
b. * John knew any French.

(2) a. I haven’t ever met Mr. Smith.
b. * I have ever met Mr. Smith.

In the preceding examples, the distinction between the (a) and (b) sentences
suggests that an NPI is sensitive to its environment, appearing acceptable
in the negative sentences but unacceptable in their positive counterparts.
Similar findings hold for other NPIs. The class of NPIs in English includes,
but is not limited to the lexical items any1, ever, yet, and much. The main
question to answer when investigating NPIs, is which contexts license them.
This question is extremely difficult due to the variable nature of NPIs. In
addition to negation, there exist a number of other expressions that license
NPIs in English. The following sentences from Ladusaw 1979 characterize
environments in which NPIs can or cannot appear and demonstrate the
difficulty of providing a unified account for their distribution. We see that
the list of elements includes members of various syntactic categories and
extends far beyond what we would consider to be overt negation. In the
following examples, each word or phrase in brackets represents an item
whose appearance allows or doesn’t allow for the subsequent appearance of
an NPI, which is italicized.

Adverbial Conjunctions:
1 This includes any variation of any including anybody, anymore, anyone, anything etc.
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(3) a. John will replace the money {before/if} anyone ever misses it.
b. * John will replace the money {after/when} anyone ever misses

it.

Degree Words:

(4) a. John is {too smart} to ever do anything like that again.
b. * John is {smart enough} to ever do anything like that again.

Determiners:

(5) a. {No one/At most three people/Few students} who had read any-
thing about phrenology attended any of the lectures.

b. * {Someone/At least three people/Many students} who had read
anything about phrenology attended any of the lectures.

Prepositions:

(6) a. John finished his homework {without} any help.
b. * John finished his homework {with} any help.

Quantification Adverbs:

(7) a. I {never/rarely/seldom)} ever eat anything for breakfast.
b. * I {usually/always/sometimes} ever eat anything for breakfast.

Verbs and Adjectives:

(8) a. It’s {hard/difficult} to find anyone who has ever read anything
much about phrenology.

b. * It’s {easy/possible} to find anyone who has ever read anything
much about phrenology.

(9) a. John {doubted/denied} that anyone would ever discover that the
money was missing.
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b. * John {believed/hoped} that anyone would ever discover that
the money was missing.

Comparatives:

(10) a. He was {taller than} we ever thought he would be.
b. * He was {so tall that} we ever thought he would bump his

head.

Questions:

(11) a. Have you ever met George?
b. * You have ever met George.

Taken together all the preceding examples show that NPIs acceptability and
distribution is considerably varied and widespread. Ultimately, the goal
of this work is to design an algorithm that relies on NPI distribution to
learn a word’s monotonicity information or entailment direction. Therefore,
understanding the distribution of NPIs is crucial. Early breakthroughs by
Fauconnier 1975 and Ladusaw 1979 discovered that the relevant property
that distinguished acceptable from unacceptable NPI contexts dealt with
entailment patterns. The arrows in the example below from Chierchia 2013
represent the direction of entailment.

(12) a. {x: x eats pizza with anchovies} ⊆ {x: x eats pizza}
b. Superset inference:

i. Somebody ate pizza.
⇑

ii. Somebody ate pizza with anchovies.
c. Subset inference:

i. Nobody ate pizza.
⇓

ii. Nobody ate pizza with anchovies.

Given the two sets in question, shown in (12a), the inference in (12b) goes
from a subset to a superset. Contexts that give rise to this pattern are referred
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to as Upward Entailing (UE) or upward monotone. The situation is reversed
in (12c); the inference made goes from a superset to a subset. Contexts that
exhibit this property are referred to as downward entailing (DE) or down-
ward monotone. Chierchia 2013 describes the notion of being DE as the
generalized semantic notion of “being negative”. The match between down-
ward entailment and licensing of NPIs is quite remarkable and has attracted
significant amounts of discussion, which is summarized and described below
in Section 3.

3. NPI Licensing

Although the distribution of NPIs has been treated in both the syntactic and
semantic literature, this paper will approach NPI licensing from a semantic
angle2.

3.1. Ladusaw’s 1979 Licensing Analysis

According to Ladusaw, NPIs are only licensed in the scope of downward
entailing operators. A DE operator is defined as follows:

(13) O is a DE operator iff A⇒ B then O(B)⇒ O(A)

This rule then accounts for the distribution of the NPI any.

(14) a. I don’t have any potatoes.
b. * I have any potatoes.

The distinction between (14a) and (14b) illustrates the dependence of any on
the presence of a DE operator, in this case negation. However, downward en-
tailment is not limited to negation; the quantifier every exhibits this property
on its first argument.

2 For syntactic accounts of NPI licensing see Klima 1964, Baker 1970 and Progovac 1988;
1993. Also, from an algebraic theory that focuses on NPI types and contexts see Zwarts
1998.
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(15) a. Every person who ever ate pepperoni pizza from that place got
sick.

b. * Every person who eats my pepperoni pizza will ever get sick.

We assume quantifiers like every represent relations between sets. The
semantics of every is defined as follows:

(16) J every K = [λP.λQ for all entities x, if P(x)=1, then Q(x)=1]

Given the examples in (15) and the semantics of every, consider the in-
ferences that arise. In order for every to be DE on its first argument, the
inference that arises from the first argument must be a subset inference: an
inference from a set to a subset. On the contrary, the second argument should
exhibit a superset inference, demonstrating that every is UE on its second
argument. To simplify, consider an example that does not include an NPI
(17).

(17) a. Every pizza makes me sick. ⇒ Every pepperoni pizza makes
me sick.

b. Every time at lunch I eat pepperoni pizza.⇒ Every time at lunch
I eat pizza.

Given the first sentence in (17) a speaker can logically infer that the state-
ment holds true for any subset of pizza. This subset inference demonstrates
that the first argument of every is in a DE environment. Contrastingly, a
superset inference in (17b) supports that every is UE on its second argument.
Following Ladusaw’s analysis, this DE property correctly accounts for the
distinction between the sentences in (15); the NPI ever may only appear in
the first argument of every leading to the ungrammatically of (15b), where
the NPI appears in the second argument: a UE environment.

Although Ladusaw’s analysis is quite successful, there remain some issues.
Specifically, Ladusaw only provides a descriptive generalization of NPIs and
does not delve into how the meaning of NPIs trigger a certain distribution. A
major step that subsequent licensing theories made was to question why these
contexts license NPIs; an overview of licensing theories is outside the scope
of this paper. For a detailed description of influential NPI licensing theories
see Kadmon and Landman (1993), Krifka (1995), and Chierchia (2013).
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Moreover, there exist some problem cases that Ladusaw’s theory and other
subsequent licensing theories licensing struggle to account for. For example,
Linebarger (1987) showed, contra Ladusaw (1979) that merely being in a
DE environment is not sufficient for licensing and that NPIs are subject to
locality conditions. Locality3 is especially relevant to our computational
system, and we will consider the importance of locality when constructing
our system, which will be made clear in Section 4.

3.2. Summary

Ladusaw demonstrated that NPI licensing takes place in DE contexts: a
descriptive generalization, although many issues still remained. The goal of
this work is to build an informed system that can learn DE operators using
linguistic knowledge of NPIs. The main motivation for our computational
system comes from the common stance shared by many of licensing theories
in the field —NPIs appear in DE environments. We inform our system
by constructing linguistic rules which mirror ideas from these theories.
Specifically, we adopt Ladusaw’s hypothesis and require NPIs to appear in
the scope of DE operators. This requirement allows our system to make a
DE operator prediction in every NPI context it finds. We also incorporate
a linguistic rule meant to capture locality, by imposing some restriction on
the distance between the NPI and DE operator. Our system is described in
further detail in the following section.

4. Discovering Downward Entailing Operators

Given two sentences (T and H) a computational inference system must de-
termine whether T entails H. Many Natural Language Processing (NLP)
applications4 involve semantic inference as way to recognize that one tar-
get meaning can be deduced from different text variants. There are many
linguistic phenomena that complicate this task. One property researchers
have considered is monotonicity. Since monotonicity is a pervasive feature
of natural language, it is an important factor to consider. As we have noted
previously, in the scope of a downward entailing operator, such as negation,
the entailment direction is reversed as demonstrated in (18).
3 For a discussion of locality and intervention effects see Linebarger (1987).
4 Some NLP applications that require semantic inference include Question Answering,
Information Extraction, summarization, and machine translation.
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(18) a. T: I will adopt a black and white kitten. ⇒ H: I will adopt a
kitten.

b. T: I will not adopt a kitten.⇒H: I will not adopt a black and white kitten.

Given black and white kitten is a subset of kitten, in a UE environment, like
(18a), we infer from the subset to the set. However, in a DE environment
this entailment direction is reversed, as is shown in (18b). If we could
automatically learn DE environments, then a inference system would be able
to correctly predict when the entailment direction between two sentences
should be reversed, leading to better precision in inference tasks.

Given the importance and prevalence of monotonicity in ordinary reasoning,
researchers have incorporated monotonicity components into their inference
systems MacCartney (2009); MacCartney & Manning (2009). However,
these monotonicity components relied on a manually annotated list that
includes words and their monotonicity information: labels for UE or DE.
Although these sorts of lists have proven to be very useful, they are quite
difficult and time intensive to create. The existence of these lists is also a
significant barrier to applying these techniques to new languages. There-
fore, some efforts have been made to automatically learn DE operators from
text; this task is the main contribution of this work. We build an algorithm
that automatically learns DE operators from text using linguistic rules. Our
approach is motivated by linguistic knowledge of negative polarity items
(NPIs). Many have claimed Ladusaw (1979); Kadmon & Landman (1993);
Krifka (1995); Chierchia (2013) that negative polarity items require a down-
ward entailing environment. Therefore, we adopt this hypothesis and use
NPIs as clues to discover DE operators from text.

We propose a novel method for detecting DE operators and compare our
approach with two previous approaches: Cheung and Penn 2012 and Danescu
et al. 2009. Our method is the first to use word vectors and a cosine similarity
measure to score and rank possible DE operators. We achieve state-of-the-art
results finding our approach to outperform previous approaches in average
precision. The figure below gives a simplified breakdown of our system’s
pipeline.

The input to our system is a large corpus of English text. We then process
the data by performing part of speech tagging, parsing, and word vector
extraction. Next, our system learns the linguistic rules we constructed that
were motivated by NPI licensing theories from the semantic literature. Lastly,
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using the processed data, the linguistic rules, and our novel method for
making predictions our system outputs a ranked list of possible DE operators.
We compare our system with two other existing systems. The following
sections explain the details of each step in our pipeline.

4.1. Data

This work uses the Brown Corpus available from the Natural Language
Toolkit Bird (2006). The Brown Corpus includes 57,340 sentences, which
consist of approximately 1.2 million words. When exploring how often NPIs
appear in the corpus, we find 2,562 NPI contexts.

4.2. Processes

This step consists of 3 processing tasks: part-of-speech (POS) tagging,
parsing, and word vector extraction. For each sentence in the corpus, we first
tag each word with its POS tag using NLTK’s Penn Treebank tagger Bird
(2006), as shown in (19).

(19) a. The company said it isn’t aware of any takeover interest.
b. The.DT company.NN said.VBD it.PRP is.VBZ nt.RB aware.JJ

of.IN any.DT takeover.NN interest.NN

After each sentence is tagged it is then parsed to derive each sentence’s
syntax tree using a statistical parser from the NLTK toolkit trained on the
Penn Treebank, the parser’s output for example (19) is shown below.

43



STUDIES IN THE LINGUISTIC SCIENCES 2016

S

NP

DT

The

NN

company

VP

VBD

said

S’

NP

PRP

it

VP

VP’

VBZ

is

RB

n’t

ADJP

JJ

aware

PP

IN

of

NP

DT

any

NP’

NN

takeover

NN

interest

The last part of the processing stage is to extract word vector representations
for each word in the corpus. The use of these types of representations
dates back to the 1980s Williams & Hinton (1986), and has subsequently
been used to group similar words in many computational linguistic tasks.
The idea behind word vector representations stems from a Distributional
Semantics approach and there is an increasing body of research supporting
the argument that distributional information plays a larger role in language
processing than previously thought Saffran et al. (1996); Landauer & Dumais
(1997); Redington et al. (1998); McDonald (2000). Semantic vector space
models of language represent each word with a real-valued vector, which
is learned using context and co-occurrence values. In the model, a word
is located in space according to the degree to which it co-occurs with each
of the others in space. Therefore, two words that tend to occur in similar
linguistic contexts will be positioned closer in semantic space. Co-occurrence
frequency information is extracted from a large corpus of natural language
that acts as a record of language experience.
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Researchers have noted many interesting properties of word vectors suggest-
ing that they are able to capture semantic regularities. Interestingly, words
with similar meanings appear together in space, even across languages; for
example, given the vector for frog the model is able to predict that rana5

is semantically similar Pennington et al. (2014). In addition, using vector
arithmetic the model can capture semantic relations between words. As the
diagram below shows, given the angle and distance between the man/woman
pair, a system can determine that the king/queen relation is semantically
similar. Similarly the model is able to capture plurality as is shown with
king/kings and queen/queens Mikolov et al. (2013).

Using a vector representation is extremely advantageous, since it can be
applied to different domains and different languages without supervised
learning or manual pattern construction. The motivation for using this
approach in this work comes from a preliminary analysis of the word vectors
generated for NPIs. After training a word vector model, given a word vector
we are able to search for its closest neighbor. If we search for the closest
vector to an NPI vector, what we find closest tends to be a vector for a DE
operator. For example, if we look for the closest vector to any the model
returns the vector for without.

NPI Vector Closest Vector Cosine Similarity
any without .62

anything nothing .70
ever never .70
yet though .58

Table 1. NPIs and Their Neighbors

We hypothesize that the word vector model is capturing the correlation
between NPIs and DE operators. Additionally, we assume the NPI and
5 Rana is the Spanish word for frog.

45



STUDIES IN THE LINGUISTIC SCIENCES 2016

DE operator will represent the closest relationship in semantic space. We
incorporate word vector representations into our approach by training a word
vector model to generate word vector representations for each word in our
corpus. We use the Mikolov et al.’s Word2vec implementation in Python
using the Gensim package. We learn using the distributed Skip-gram neural
network model because it has been found to give good word representations
when the monolingual data is small Mikolov et al. (2013). These word
vectors are then used as a key component in our scoring algorithm.

4.3. Linguistic Rules

In this stage, we borrow ideas from the semantic literature on negative
polarity items and construct three rules that are integrated into our system:

(20) (Rule 1) The words any, any+6 , ever, yet are negative polarity items
(Rule 2) If a negative polarity item appears in a sentence so must a
DE operator
(Rule 3) Locality constraints:
a. The NPI and DE operator must be clausemates
b. The NPI must appear in the scope of the DE operator

Given the known relationship between NPIs and DE environments our system
uses NPIs as clues that a DE operator may be present. Rule 1 provides our
system with a list of NPIs. Given this list, our system can then search the
corpus for sentences that include NPIs. We assume Ladusaw’s Hypothesis
1979 to be true and capture it with Rule 2, which requires an NPI to appear
with a DE operator. Since NPIs are subject to locality conditions Linebarger
(1987); Kadmon & Landman (1993); Chierchia (2013) we use Rule 3a to
help ensure that the NPI and DE operator in question appear in the same
clause. We determine clausehood using the sentence’s parsed tree structure.
Rule 3b is also included to help eliminate contexts in which the NPI appears
higher in the structure then the DE operator. Since NPIs at times will be
licensed at a distance we explore multiple models both with and without
Rule 3. In addition to the model with Rule 3, we have two other models that
consider different contexts. The first is a naively constrained context where a
sentence is narrowed down to a NPI context using punctuation by restricting

6 any+ represents all the variations of any, such as anyone, anybody, anywhere, and so on.
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the context to any words appearing to the left of the NPI up until a comma,
semi-colon or end of sentence. The last context is the sentence in its entirety.
After the linguistic rules are learned, we proceed to the final step of making
predictions using our algorithms.

4.4. Scoring Algorithms

We compare our novel Word Similarity Algorithm to two other scoring
algorithms: Danescu et al.’s 2009 Distillation Algorithm and Cheung and
Penn’s 2012 Certainty algorithm. Since these two systems currently represent
the state of the art in this task.

4.4.1. Novel Word Similarity Alogrithm

Given the NPI contexts we established using linguistic rules, we use the
extracted word vectors to make predictions. For each NPI context, we
compare the NPI vector,~i, with each other word vector, ~j in its context. For
each pair (~i,~j), we calculate the cosine similarity between the two.

sim(i, j) = cos(~i,~j) =
~i ·~j

‖~i ‖ ∗ ‖ ~j ‖

After computing the cosine similarity between each pair of vectors, we pick
the closest word vector to the NPI vector as the possible DE candidate for
that context. The similarity measure is then used as that candidate’s score.
Lastly, we rank all the candidates by their scores. We hypothesize that the
DE operator and NPI vectors will represent the closest relationship in each
context.

4.4.2. Distillation Alogrithm

In this approach Danescu et al. first rank DE operator candidates by a
score. Given a corpus C and NPI contexts N, tokens(C) and tokens(N)
represent respectively the number of words in C and N. Let y be a DE
candidate, then CountC(y) represents the frequency of y in the corpus and
CountN(y) represents the frequency of y in NPI contexts. The score given
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to each candidate y is S(y). The score captures the correlation between DE
candidates and NPIs by highly ranking words that appear in NPI contexts
more, as shown below.

S(y) =
countN(y)/tokens(N)
countC(y)/tokens(C)

For example, given the DE candidate but, this approach counts its frequency
in NPI contexts and in the corpus. Say the frequency values for but are as
follows: CountC(y) = 100, CountN(y)= 20, tokens(N) = 10,000, and tokens(C)
= 1,000,000. As a DE candidate but would then receive a score of:

S(but) =
20/10,000

100/1,000,000
= 20

An issue with this approach is that there exist words that are not DE operators
that co-occur with NPIs, which will receive a high score. Danescu et al.
refer to these interlopers as ‘piggybackers’ and deal with the issue by adding
a distillation step. In this step, each NPI context is distributed a budget
of a total score of 1 among its candidates. In other words, each score is
normalized so that the total score for that NPI context sums to 1. In so doing,
apparently plausible candidates that often appear in contexts with multiple
candidates receive a low distilled score, despite a high initial score. As it is
expected to find true DE candidates alone (without piggybackers) throughout
NPI contexts, plausible candidates should still receive a high score. However,
as piggybackers should only appear in contexts with multiple candidates,
they will in turn receive a low distilled score.

4.4.3. Certainty Alogrithm

Cheung and Penn build off of Danescu et al.’s approach by beginning with
the same initial score S(y). Their heuristic method then adjusts each score
by assigning credit to candidates within each NPI context. The strongest
candidate in each NPI context, the one with the highest score, is represented
by M(p). Each NPI context is represented by p. If y is currently the strongest
DE operator candidate in p then it is given credit equal to the proportional
change to the highest score if y was removed. If y is not the highest scoring
candidate it receives a credit of zero.
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cred(p,y) =

{
M(p)−M(p/y)

M(y) if S(y) = M(p)

0 otherwise

After credit is distributed across contexts, each score is updated so that
the new score for each DE operator candidate represents the original score
multiplied by its average credit received. All updated scores are then nor-
malized across NPI contexts. So for example, given just one NPI context,
this approach updates the original scores as follows:

NPI Context:
but in any

Original Scores:
S(but) = 20, S(in) = 5

Updated Scores:
SU (but) = 20 x (20 - 5)/20 = 15
SU (in) = 5 x 0 = 0

Since the DE candidate but represents the strongest DE candidate in the
context it receives credit, according to the above formula, leading to its
updated score. Contrarily, the other DE candidate in receives a credit of 0
leading to an updated score of 0. Similar to Danescu et al., Cheung and
Penn use the credit heuristic to help distinguish DE operators from possible
piggybackers. We test our novel algorithm, the Word Similarity algorithm,
against the pre-existing scoring algorithms from Danescu et al. and Cheung
and Penn. We report our findings in the next section.

4.5. Precision Results

We examined the top 150 items that were ranked by each system. Previ-
ous work Danescu-Niculescu-Mizil et al. (2009); Cheung & Penn (2012)
provided public lists of annotated DE operators. We use these lists to help
evaluate the output of all the systems. We implement our novel approach as
well as re-implement Danescu et al.’s and Cheung and Penn’s algorithms.
We score our systems’ outputs by first checking to see if the ranked DE
candidates appear on one of the lists. If the item does not appear on any of
the lists, we then hand annotate the item. The guideline criteria we use for
judging items is taken from the examples given in the semantic literature

49



STUDIES IN THE LINGUISTIC SCIENCES 2016

on NPIs. If an item creates a context in which an NPI can be licensed we
mark that item as correct. Therefore, we are not strictly reporting precision
for predicting DE operators but more so DE/negative environment triggers.
We are allowing items like comparatives, the antecedent of the conditional,
question words, and comparatives to be counted as correct. We choose a
relaxed criterion because we do not want to exclude these important items.
We believe these triggers are important to discover and provide useful infor-
mation about the context in which they appear. We evaluate our performance
using the same evaluation measure used in previous work; Danescu et al.
and Cheung and Penn evaluated the top 150 operators outputted and judged
the precision k at various values of k beginning at 10 and increasing by 10
up until 150. They then reported average precision. We report precision
to allow for a direct comparison with previous work. Table 2 reports the
average precision k for the top ranked 150 items of each approach.

Rule-governed Punctuation-based Full Sentence
Word Similarity 11.1% 55.3% 9.0%
Distillation 14.6% 38.0% 10.7%
Certainty 18.4% 22.8% 16.4%

Table 2. Average Precision Reported

We report results for each of the scoring algorithms. With each algorithm
we consider three different NPI contexts: (1) the rule-governed context
(following Rule 3), (2) the punctuation-based context (any words to the left
of the NPI up until the first punctuation mark), and (3) the entire sentence.
We find using the punctuation-based context works best across all scoring
approaches. In addition, we find our novel scoring algorithm, the Word
Similarity algorithm to perform the highest across all models. The top 20
ranked DE operators from our model are given in Table 3.

Word Similarity with the Punctuation-based Context
nobody, how, only, hadn’t, whether, too, isn’t, nor

none, without, difficult, neither, doubted, but, didn’t,
wasn’t, if, hardly, no, lest

Table 3. System Output

Although we see lower results for our approach in the other two contexts
we actually find our scoring approach to discover the highest number of DE
operators even though the overall average precision reported is lower. Total
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number of DE operators discovered for each scoring approach is shown in
Table 4.

Rule-governed Punctuation-based Full Sentence
Word Similarity 17 49 20
Distillation 13 37 15
Certainty 12 27 11

Table 4. Total DE Operators Discovered

The precision results for the entire sentence reflect the difficulty in using the
entire sentence, as it represents the largest context with the most candidates
to choose from; this is reflected in Table 5, which shows that the average
word count for the full sentence is substantially larger then the other two
contexts.

Rule-governed Punctuation-based Full Sentence
8.1 6.8 29

Table 5. Average Word Count per Context

However, differences in average word count alone can not account for the
disparity in precision results for the rule-governed context. Since we find
that the rule-governed context and punctuation-based context only differ on
average by about 1-2 words, it is unlikely that this is main the cause of the
low precision results. The rule-governed context was based on Rule 3 which
was largely motivated by locality theories from the NPI literature Linebarger
(1987); Kadmon & Landman (1993); Chierchia (2013); as this context
represented the most informed way to restrict the context we hypothesized it
would perform the best. Determining the rule-governed context relies on the
implementation of Rule 3: (a) the NPI and DE operator must be clausemates
and (b) the NPI must appear in the scope of the DE operator. There are many
factors within Rule 3’s implementation that could have ultimately affected
the precision results. When we analyze the contexts generated using Rule
3, we find some cases where a given sentence’s context is empty. Rule 3
relies on a generated parse structure, and if the parser is unable to return a
parse for the sentence it could result in an empty context. Also if the NPI
in the sentence is within an embedded clause, the NPI may represent the
highest word in that clause. If so, the NPI would not be in the scope of a DE
operator, and following Rule 3b the context would be empty. In addition to
empty contexts, when checking Rule 3a it is possible that the clauses being
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chosen do not contain the NPI and its licenser; this could be due to errors
by the parser or by how we specified clauses in our code. It is likely that a
combination of all the preceding reasons contributed to the low precision
results of the rule-governed context. However, if implemented correctly, we
do believe a rule-governed approach, motivated by locality, could perform
well. In future work, we will focus on locality and intervention effects aiming
to refine how we determine the appropriate context to consider.

In summary, our findings suggest that negative polarity items can be very
useful clues to automatically learn DE operators from text. Given a list of
NPIs and linguistic rules, which capture the relationship between NPIs and
DE operators, a scoring algorithm can successfully predict DE operators.
This work further supports the important relationship that exists between
NPIs and DE operators and highlights how it may be leveraged to aid an
inference system. Also, to our knowledge this is the first attempt to use a
word vector representation to learn words’ monotonicity information and we
find our novel scoring approach outperforms all existing approaches in this
task.

5. Concluding Remarks

This work further supports the important relationship that exists between
NPIs and DE operators and highlights how it may be leveraged to aid an
inference system. To our knowledge this represents the first attempt to use
a word vector representation to learn words’ monotonicity information and
we find our novel scoring approach outperforms all existing approaches
in this task. We show that by using linguistic rules we can capture the
relationship between NPIs and DE operators, which can then be used by a
scoring algorithm to successfully predict DE operators from text.
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