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ABSTRACT

Neural coding, the process by which neurons represent, transmit, and ma-

nipulate physical signals, is critical to the function of the nervous system.

Despite years of study, neural coding is still not fully understood. Efforts

to model neural coding could improve both the understanding of the ner-

vous system and the design of artificial devices which interact with neurons.

Sensory receptors and neurons transduce physical signals into a sequence

of action potentials, called a spike train. The principles which underly the

translation from signal to spike train are still under investigation.

From the perspective of an organism, neural codes which maximize the

fidelity of the encoded signal (minimize encoding error), provide a compet-

itive advantage. Selective pressure over evolutionary timescales has likely

encouraged neural codes which minimize encoding error. At the same time,

neural coding is metabolically expensive, which suggests that selective pres-

sure would also encourage neural codes which minimize energy. Based on

these assumptions, this work proposes a principle of neural coding which

captures the trade-off between error and energy as a constrained optimiza-

tion problem of minimizing encoding error while satisfying a constraint on

energy.

A solution to the proposed optimization problem is derived in the limit of

high spike-rates. The solution is to track the instantaneous reconstruction

error, and to time spikes when the error crosses a threshold value. In the

limit of large signals, the threshold level is a constant, but in general it is

signal dependent. This coding model, called the neural source coder, implies

neurons should be able to track reconstruction error internally, using the

error signal to precisely time spikes. Mathematically, this model is similar to

existing adaptive threshold models, but it provides a new way to understand

coding by sensory neurons.

Comparing the predictions of the neural source coder to experimental data
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recorded from a peripheral neuron, the coder is able to predict spike times

with considerable accuracy. Intriguingly, this is also true for a cortical neuron

which has a low spike-rate. Reconstructions using the neural source coder

show lower error than other spiking neuron models. The neural source coder

also predicts the asymmetric spike-rate adaptation seen in sensory neurons

(the primary-like response). An alternative expression for the neural source

coder is as an instantaneous-rate coder of a rate function which depends on

the signal, signal derivative, and encoding parameters. The instantaneous

rate closely predicts experimental peri-stimulus time histograms.

The addition of a stochastic threshold to the neural source coder accounts

for the spike-time jitter observed in experimental datasets. Jittered spike-

trains from the neural source coder show long-term interval statistics which

closely match experimental recordings from a peripheral neuron. Moreover,

the spike trains have strongly anti-correlated intervals, a feature observed in

experimental data. Interestingly, jittered spike-trains do not improve recon-

struction error for an individual neuron, but reconstruction error is reduced

in simulations of small populations of independent neurons. This suggests

that jittered spike-trains provide a method for small populations of sensory

neurons to improve encoding error.

Finally, a sound coding method for applying the neural source coder to

timing spikes for cochlear implants is proposed. For each channel of the

cochlear implant, a neural source coder can be used to time pulses to fol-

low the patterns expected by peripheral neurons. Simulations show reduced

reconstruction error compared to standard approaches using the signal enve-

lope. Initial experiments with normal-hearing subjects show that a vocoder

simulating this cochlear implant sound coding approach results in better

speech perception thresholds when compared to a standard noise vocoder.

Although further experiments with cochlear implant users are critical, initial

results encourage further study of the proposed sound-coding method.

Overall, the proposed principle of minimum-error, energy-constrained en-

coding for sensory neural coding can be implemented by a spike-timing model

with a feedback loop which computes reconstruction error. This model of

neural source coding predicts a wide range of experimental observations

from both peripheral and cortical neurons. The close agreement between

experimental data and the predictions of the neural source coder suggests a

fundamental principle underlying neural coding.
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CHAPTER 1

INTRODUCTION

In response to sensory stimuli, sensory neurons generate abrupt changes in

the voltage measured across the cell membrane, known as action potentials

or spikes. These waveforms propagate along the entire length of the neuronal

axon, allowing for communication over long distances. Since action-potential

waveforms have short duration and are essentially stereotyped for a given

neuron, it is assumed that any meaningful information about a stimulus

is carried in the timing of the spikes. When a spike arrives at a synapse

(the junction between two neurons) it causes release of vesicles containing

neurotransmitters, exciting or inhibiting the target neuron [1]. In this sense,

information about a stimuli is encoded as action potentials and propagated to

downstream neurons. Although critical for communication between neurons,

the process of generating action potentials is also metabolically expensive,

requiring the activation of ATP-driven mechanisms to restore the equilibrium

ion concentrations.

Understanding neural encoding (how stimuli are represented as spike trains)

and neural decoding (how stimuli can be reconstructed from spike trains) is

critical to understanding information processing in the nervous system [2, 3].

In sensory systems, stimuli typically activate sensory receptors. These recep-

tors release neurotransmitters which stimulate sensory neurons. This thesis

will consider encoding of signals by single sensory neurons and small popula-

tions of neurons. Especially in sensory neurons, neural codes should represent

real-world signals with high fidelity (alternatively with minimal error). This

implies that it would be possible to estimate, or decode, the input signal

given a spike train from a sensory neuron with minimal error.

As action potentials are largely stereotyped for a given neuron, the spike

train from a single neuron can be reasonably modeled as a sum of Dirac

delta functions
∑N

i=1 δ(t − ti), where ti are the spike times of the N spikes.

The process of neural encoding is defined here as the process of mapping
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a finite-energy, non-negative, continuous-time signal s(t), defined over the

interval [0, T ], into a sequence of spike times. This continuous-time signal

might represent the membrane voltage of the neuron near the site of spike

generation. The spike times are a vector of N real values bounded between 0

and T . The process of neural decoding “reads” a spike train and produces a

reconstructed signal r(t) [4]. Neural decoding is a mapping between the vec-

tor of N spike times and a finite-energy, non-negative, continuous-time signal

r(t) defined over [0, T ]. This reconstruction process could represent stimula-

tion of a downstream neuron by neurotransmitter released at synapses. An

illustration of this process can be seen in Fig. 1.1.

Figure 1.1: Illustration of the neural encoding and decoding processes. The
neuron is stimulated by an input signal s(t), which could, for instance,
represent the membrane voltage induced in the cell by neurotransmitter
released from a sensory receptor. The encoding process maps the signal s(t)
to a sequence of spike times,

∑N
i=1 δ(t− ti). The neural decoding process

maps a spike train into a reconstructed waveform r(t), and could represent
the membrane voltage induced in downstream neurons by neurotransmitter
released at synapses.

1.1 Proposed Minimum-Error, Energy-Constrained

Neural Encoding by Single Neurons

What principles govern neural encoding and decoding in sensory systems?

This thesis posits that sensory neurons have been subjected to millions of

years of selective pressure resulting in strategies which encode stimuli with

minimum error. An optimized neural encoder should time spikes such that

the signal can be decoded with minimum error. Neurons, however, are also

constrained by physiology. A critical constraint for neurons is the amount of

available metabolic energy [5]. Every action potential generated by a neuron

consumes energy, as ATP-driven sodium-potassium pumps work to restore

the cell’s ion concentrations and resting membrane potential. It has been

suggested that metabolic energy consumption has placed selective pressure
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on the development of sensory systems and neural codes [6]. This thesis

develops a model of neural encoding and decoding by sensory neurons which

minimizes encoding error subject to a constraint, or penalty, on the metabolic

energy consumed.

Traditionally, the problems of neural encoding and decoding have been ap-

proached separately. However, an encoding scheme which is designed without

knowledge of the decoding scheme may be suboptimal. This thesis supposes

that the processes of neural encoding and decoding are closely related. Here

it is assumed that neurons attempt to minimize the error between a finite-

energy, non-negative, continuous-time signal s(t) defined over [0, T ] and a

reconstruction of the signal, r(t), given only the spike times. This interpre-

tation is most relevant to primary sensory neurons, but may have implications

for many other kinds of neurons as well. Millions of years of selective pres-

sure suggest that the spike times, ti, should be timed such that the error

s(t)− r(t) is minimized. This thesis uses a squared-error criterion. Although

other error measures may be relevant, there is currently little experimental

evidence to suggest which criterion should be used. Neurons are also con-

strained by the energy they can expend. A possible model is that a neural

code must use energy e less than a total energy budget E. This leads to the

following general optimization problem for a fixed decoding process

min
t1,t2,...,tN

∫ T

0

(s(t)− r(t))2dt (1.1)

subject to e ≤ E

What form might the decoding strategy take? One possibility to generate

r(t) is to filter the spike train with a linear filter h(t), r(t) = h(t)∗(
∑
δ(t−ti)).

This approach, though simple, is based on post-synaptic filtering of spike

trains, where the post-synaptic neuron membrane passively filters spikes to

create a time-varying membrane voltage [7]. Such a passive filter can be ap-

proximated as a linear, time-invariant filter h(t). Existing neural decoding

methods such as stimulus reconstruction [4] and reverse correlation [8] also

model the decoding process as a linear filter. The simplest biologically plau-

sible reconstruction filter is a first-order low-pass filter with impulse response

h(t) = A exp(−t/τ). This reconstruction filter form comes from modeling a

cell membrane as an RC circuit, which is a well-established model of the
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passive electrical properties of cell membranes [7]. For example, a first-order

passive component is included as the leak term in the Hodgkin-Huxley model

of membrane voltage [9].

Intuitively, firing more spikes provides more degrees of freedom for en-

coding an input signal and should lead to lower reconstruction error. Why,

then, are there such a variety of spike rates observed experimentally? Gener-

ating action potentials is an energy-intensive process for neurons, consuming

a considerable amount of a neuron’s metabolic energy [10, 11]. Prior work

has estimated that 20%-50% of a neuron’s energy is expended generating

and propagating action potentials. Other sources of energy consumption in-

clude maintaining the baseline ion concentrations and functions of the cell,

generating post-synaptic potentials, and recycling vesicles. Neural energy ex-

penditure can then be broadly divided into two categories that are relevant

for neural encoding. The first category consists of the baseline metabolic

processes which are not affected by spiking activity, at least on short time

scales. From the perspective of an encoding scheme, this energy expenditure

is a fixed component b. The other major category consists of energy costs

incurred for every spike fired. This includes generating and propagating the

action potentials, as well as releasing and recycling vesicles. As post-synaptic

potentials are generated in response to spiking activity, these costs could also

be considered to be incurred when a spike is fired. These costs are generally

proportional to the number of spikes fired, and can be roughly approximated

by a per-spike cost k. This leads to a model of the energy consumption rate

in a neuron as E = b + kR [12], where R is the average spike-rate in spikes

per second. A neural encoder can therefore control its energy consumption

by limiting the mean rate at which spikes are fired. This results in a trade-off

between the number of spikes used to encode a signal and the encoding error.

In this thesis, a minimum-error, energy-constrained neural encoding scheme

is developed in which the encoder uses knowledge of the decoded signal to

track the encoding error. Spikes are fired whenever the error signal reaches

a (potentially time-varying) error threshold, γ(t).

s(t)− r(t) = γ(t) (1.2)

This system is closely related to dynamic threshold spike-timing models [13,

14]. These models, however, are not optimized to minimize reconstruction
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Figure 1.2: The proposed minimum-error, energy-constrained neural
encoding system, which is related to dynamic-threshold neural models
[13, 14]. The reconstruction filter is h(t). In this model, the decoding filter
is used to generate r(t) and also to compute the error e(t) = s(t)− r(t).
Spikes are generated when s(t)− r(t) = γ(t), where γ(t) is a potentially
time-varying threshold. The parameters of the proposed model must be
optimized to achieve minimum error for a given energy constraint.

error. A block diagram of the proposed encoding and decoding scheme can

be seen in Fig. 1.2. In Chapter 3, the optimality of the proposed model is

proved and the optimal parameter values are derived under the assumption

of a high spike-rate.

The proposed minimum-error, energy-constrained neural encoding scheme

tracks the error between the reconstructed waveform and the input signal.

When this error gets too large, a spike is fired. An optimal encoder should

time spikes to minimize encoding error while also limiting the spike rate. An

example encoding of a signal can be seen in Fig. 1.3. Figure 1.3A shows

the input stimulus in black and a possible reconstructed signal in red. The

reconstructed waveform shows discontinuities whenever a spike is fired. This

is due to the first-order form of the reconstruction filter. Figure 1.3B shows

the spike times for this example, and Fig. 1.3C shows the reconstruction

error. In this example, the threshold level γ is a constant, which does not

vary with time.

1.2 Overview

The goal of this thesis is to investigate models of minimum-error, energy-

constrained neural encoding. This thesis hypothesizes that sensory neurons

maintain a trade-off between reconstruction error and energy consumption.

This suggests that any model of neural encoding, or spike timing, should

explicitly consider possible reconstruction error and energy expenditure when
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Figure 1.3: Example encoding of an input signal s(t) by the neural encoder
shown in Fig. 1.2. The input signal is shown in black and the reconstructed
signal in red. The spike times predicted by the model are shown in Panel B.
One can see that the reconstructed signal has a discontinuity at the spike
times, corresponding to the arrival of a spike at the reconstruction filter.
This approach creates an approximation of the original input signal. Panel
C shows the error term, e(t) = s(t)− r(t). In this example γ is assumed to
be constant and the error is bounded between γ and γ − A. This thesis
hypothesizes that an optimal neural encoder should time spikes such that
the error is minimized, subject to an energy constraint.

deriving an optimal encoding strategy.

Investigating this hypothesis first requires the development of the energy-

constrained neural encoding problem and the derivation of an encoding strat-

egy and optimal parameter values. Equally critical is the comparison of

the predicted spike-times and reconstructed waveforms against experimental

data and the predictions of other neural encoding models.

The proposed encoding strategy also has many possible extensions. The

first extension presented in this thesis is the interpretation of the optimal,

energy-constrained neural coder as an instantaneous rate coder of a rate

function determined by the input signal and reconstruction filter. The sec-

ond extension is modeling stochastic spike-firing to study encoding in small

populations of sensory neurons. Finally, new models of neural encoding

have important implications for Brain Machine Interfaces (BMIs) which en-

code information to stimulate neurons. One example is encoding auditory

signals in cochlear implants. This thesis proposes a strategy to encode

sounds in cochlear implants which is consistent with minimum-error, energy-

constrained neural coding.
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This thesis presents the proposed neural coding model along with several

extensions. Chapter 2 begins by reviewing the relevant literature in neu-

roscience, computational neuroscience and information theory. This back-

ground establishes the relevance of the problem and argues for the novelty

of the approach. Chapter 3 introduces a simplified version of the encoding

model, then presents a more formal development of the theory for this model

in the limit of high spike-firing rates. In Chapter 4, the predictions of the

model are compared against data from primary sensory neurons and cortical

neurons. Chapter 5 introduces an instantaneous rate code which produces

identical interspike intervals when compared to the optimal neural coder, sug-

gesting an alternative interpretation of optimal neural coding. To extend the

model to stochastic spike-firing, Chapter 6 introduces a stochastic threshold

which has implications for encoding in neural populations. Finally, Chap-

ter 7 introduces a possible method to apply the theory of minimum-error,

energy-constrained neural coding to sound coding in cochlear implants.
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CHAPTER 2

LITERATURE REVIEW

Understanding how physical signals such as light intensities or sound pressure

waves are represented and processed in the nervous system has long been a

fundamental goal of systems neuroscience. The neurons of the nervous system

are the main processing and communication units in the brain. Neurons

transmit signals along their axons by firing action potentials, also known as

spikes. These action potentials allow for rapid transmission of information

over long distances. During an action potential, channels embedded in the

cell membrane of the neuron allow ions, such as sodium and potassium,

to flow into and out of the cell. The action potential consists of a rapid

depolarization of the cell membrane voltage followed by a somewhat slower

re-polarization. This change in membrane potential propagates down the

axon of the neuron due to the action of voltage-gated ion channels. Following

the action potential, the neuron must restore the resting concentrations of

the ions, which requires the ATP-driven activity of sodium-potassium pumps

[7].

Neurons use spikes to encode and transmit information throughout most

of the nervous system. When the dendrites of a neuron are stimulated by a

neurotransmitter (usually released by another neuron or sensory receptor),

the cell membrane voltage is changed. In the simplest case, when the cell

membrane voltage in the cell body, or soma, is sufficiently depolarized, an

action potential is generated. This action potential is propagated down the

axon of the neuron to its axon terminals. Here, the neuron interfaces with

other neurons, forming a connection called a synapse. When an action poten-

tial reaches the synapse, the pre-synaptic neuron releases vesicles containing

neurotransmitters. The neurotransmitters then excite or inhibit the post-

synaptic neurons. In this way, neurons use spikes to transmit information

about the stimulus at their dendrites to post-synaptic neurons [1].

Spike shape and propagation speed vary significantly across neuron types
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and geometry [15], but the spike shape is largely fixed for a given neuron

geometry. Some conditions, such as rapid bursts of spikes or complex axonal

geometries, can alter the action-potential shape [16], but spike shapes are

generally fixed for a given neuron. Unlike experimental extracellular record-

ings, the shapes of the spikes do not play a major role and spike-sorting is not

done by the nervous system [17]. A spike train, therefore, can be thought of

as a sequence of all-or-none responses. As each spike waveform is essentially

the same, the information conveyed by a spike train must be represented in

the times of the spikes. Such a signal can be thought of as a sum of Dirac

deltas,
∑
δ(t−ti). The critical question is how neurons, such as sensory neu-

rons, represent continuous signals such as sensory input, receptor potentials,

and membrane voltages as a spike train.

Of course, neurons do not simply connect one neuron or receptor to an-

other neuron. Many neurons have complex dendritic arbors with synapses

from hundreds of other neurons. The aggregate activity of all these pre-

synaptic neurons drives the spiking activity of the neuron at the soma [18].

At the terminals, a neuron may again synapse onto hundreds of other neu-

rons, forming a large and complex network. Although the behavior of large

populations of neurons is an extremely important problem, this thesis will

largely deal with spike generation in a single neuron. In sensory systems,

understanding encoding by single neurons is critical to describing the role of

primary sensory afferents, the first stage of processing in sensory systems.

Another critical point is that the study of single neurons allows for direct

comparison to experimental data where the activity of individual neurons

can be measured in response to known stimuli.

2.1 Spiking Neuron Models

Attempts to model the membrane voltage in neurons date back at least to

Lapicque [19]. Measuring the membrane potentials of frog nerves, Lapicque

began to model the membrane of the cell as an integrator. Studying the

giant squid axon, Hodgkin and Huxley [9] greatly expanded on this concept

to model the cell membrane as a resistive and capacitive circuit with variable

resistance terms. This results in a coupled set of nonlinear differential equa-

tions which determine the voltage across the cell membrane. The resistance
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terms model different ionic channels, and the model is capable of predicting

action-potential waveforms. Over the years, the Hodgkin and Huxley model

has been expanded many times with the addition of more terms capturing

different ionic currents to model phenomenon such as spike-rate adaptation

(see, for example [20]). These models are closely coupled to the biophysics

of cells, modeling the flows of individual ion currents. These models predict

not only the times at which action potentials occur, but also the shape of the

action potential and the membrane voltage in response to an input current.

These models are biophysically plausible, but also require a large number of

parameters to accurately reproduce experimental data.

A much simpler model of neuronal spiking is the leaky integrate-and-fire

(LIF) model, which has been used extensively (for example, Model 1 of [21]).

In this approach, the membrane of the cell is modeled as a low-pass filter,

and the membrane voltage is defined as

τ
dV (t)

dt
= RI(t)− V (t) (2.1)

where V (t) is the time course of the membrane potential, I(t) is the input

current, R is the membrane resistance, and τ is the membrane time-constant.

Whenever the voltage reaches a fixed threshold θ, a spike is generated and

the voltage is reset to a resting level Vr. Although it is a very common neural

model, the LIF model does not predict the membrane voltage and does not

reproduce all of the expected behaviors of experimental neurons, such as

spike-frequency adaptation [22]. In general, there are a variety of neural

models with varying trade-offs between computational complexity, accuracy,

and number of parameters [23].

A promising class of models, which balance relatively low computational

complexity with good predictive power, are dynamic-threshold models (also

known as adaptive or moving thresholds). The key concept is an extension

of the classic LIF model dating back at least to Katz [24], which was then

explored further [25, 26]. The goal of these models is to better represent

adaptation in spike rates and relative refractory periods. Rather than using

a fixed threshold θ as in the standard LIF model, the firing threshold varies

with time in response to spiking activity. The intuition is that the threshold

should be raised initially following a spike, resulting in a lower probability of

firing. The threshold then decays, and further spiking becomes more proba-
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ble. This adaptation accounts for the relative refractory period observed in

neurons.

More recently, models with dynamic thresholds have been used to model

the spike-train statistics of weakly electric fish [14, 27, 28], showing strong

negative correlations between interspike intervals as well as spike-frequency

adaptation. These models, however, do not explicitly incorporate ion cur-

rents as a Hodgkin-Huxley style model does. An alternative approach to in-

troducing spike-frequency adaptation is the addition of an adaptation current

model, such as modeling the after-hyperpolarizing potential (AHP) [29] or M

current [30]. Previous studies have incorporated such adaptation currents,

showing similar results when compared to dynamic-threshold models without

explicit ion-channel models [31, 32]. Dynamic threshold models can also be

extended to include nonlinear terms in the differential equations which define

the model, which help explicitly capture the absolute and relative refractory

periods [33, 34, 35].

Dynamic-threshold models have also been used to predict spike times from

experimental data with millisecond precision. The Multi-timescale Adaptive

Threshold (MAT) model [13], which uses a linear sum of exponentials to

model the dynamic threshold, is capable of predicting spike times recorded

experimentally from a cortical neuron stimulated by current injection. This

model participated in the INCF Quantitative Spike Prediction challenge

[36], predicting spike times more accurately than all other tested models.

Even though dynamic-threshold models are comparatively simple, these ap-

proaches are capable of closely modeling experimental spike-times.

Due to the predictive power of these dynamic-threshold models, they are

particularly important to investigate. There are two main distinctions be-

tween these models – models with a reset of the input voltage [27, 31] and

those which are non-resetting [14, 13]. In both cases the models define a

membrane voltage v(t) and threshold process r(t). Spikes are generally fired

at a time ti when

r(ti)− v(ti) = 0 (2.2)
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The voltage v(t) is defined as in the classic LIF model

τ
dv(t)

dt
= Ri(t)− v(t) (2.3)

The threshold adaptation is defined by an adaptation function h(t) which

models the change in spike threshold. Intuitively, the threshold should be

increased immediately following a spike then decay downward. A typical

choice is h(t) = A exp(−t/τ), t > 0 [31]. If the train of spikes up to time t is

given by
∑

k δ(t− ti), then the threshold process is given by

r(t) = h(t) ∗
(∑

k

δ(t− ti)
)

(2.4)

In the resetting models, when a spike is fired, v(t) is reset to Vr as in the LIF

model. This extension of the LIF model is commonly referred to as a LIF

Dynamic Threshold (LIF-DT) model [32]. The non-resetting models [13] do

not include this reset in the input voltage. For these models, the input is

simply the filtered version of the input current I(t).

There are a wide variety of spiking neuron models with a range of biophys-

ical detail and computational complexity. Dynamic-threshold models have

few parameters and low computational complexity compared to Hodgkin-

Huxley style models, but have strong predictive power. It is still unclear,

however, what processing principle drives these models. What encoding

strategies are implemented by dynamic threshold models?

2.2 Spike-Train Decoding

The problem of decoding a spike train has also received considerable atten-

tion. Decoding spike trains is important not only for understanding what

information is encoded in a spike train but also for BMIs which rely on de-

coding strategies to generate commands for artificial systems. The nature of

the neural code for single neurons has been widely debated, with two common

interpretations being rate and temporal codes [2, 37]. A rate code supposes

that variables of interest are encoded in the rate at which spikes are fired

over a short window. Temporal codes posit instead that the precise timing

of spikes encodes additional information. When decoding a rate code, it is
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possible to simply estimate the spike rate in small bins and translate this

directly into the quantity of interest.

More sophisticated techniques exist to estimate an input stimulus from a

spike train [38] such that squared reconstruction error is minimized. This was

attempted using the reverse-correlation technique [8], where a spike-triggered

average of the input signal is computed. If the spikes are spaced further apart

than the length of the average, the time-reversed average can be used as a

reconstruction filter. The spikes are treated as Dirac deltas filtered through

the reconstruction filter.

For reconstruction of spike trains, the reverse-correlation approach was

extended by the stimulus-reconstruction method [38, 4, 3], which aims to find

the filter h(t) for the input signal s(t) such that the squared approximation

error h(t) ∗ (
∑

i δ(t − ti)) − s(t) is minimized. For stationary input signals

and spike trains, this is a standard minimum mean squared-error filtering

problem, with the solution given by the well-known Wiener filter

H(ω) =
Ss,spikes(ω)

Sspikes(ω)
(2.5)

where capital letters denote the Fourier transform, Ss,spikes is the cross-

spectral density of the input signal and spike train, and Sspikes is the spectral

density of the spike train. If the spike train is convolved with this filter,

the estimated reconstruction has minimal error. This approach can estimate

amplitude modulations in the sensory systems of weakly electric fish [4].

In general, however, decoding of neural signals has been investigated sepa-

rately from the process of encoding spike trains. Neural decoding approaches

are designed to work with spike trains that have already been generated.

Prior work generally does not use direct knowledge of the encoding process.

One would expect biological systems, over evolutionary time-scales, to have

jointly optimized the encoding and decoding process.

An alternative approach to reconstruction was developed for encoding with

populations of simple neural models with randomized parameters [39]. This

thesis showed that using knowledge of the encoding scheme and parameters

across the entire population, it was possible to design a reconstruction scheme

based on the theory of frames. This was extended to Hodgkin-Huxley neurons

[40] and encoding of video data [41]. These approaches are closely related to

filter-bank reconstructions and are not necessarily physically realizable, nor
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do they imply neurons use a similar approach.

Another view of neural encoding and decoding is the noise-shaping neuron

hypothesis proposed by Shin et al. [42, 43, 44]. In this model, a negative

feedback signal is defined as L(s(t))−Y (t), where Y (t) is a filtered spike train

(not a dynamic threshold). This feedback signal is used in spike generation,

for instance to modulate a Poisson process. This hypothesis proposes that

the feedback filter is specifically designed to adapt the neuron’s input/output

function to the input signal statistics and filter out encoding noise from

the signal band. This is similar to the idea of noise shaping in sigma-delta

converters [45]. While there are many superficial similarities between the

noise-shaping neuron and the source-coding neuron proposed in Chapter 1,

previous work on the noise-shaping neuron [43] is not concerned with coding

fidelity or an energy constraint.

For realistic models of neuronal coding, it is critical that both the encoding

and decoding processes be causal. The causality requirement for decoding

requires causal decoding filters. The generation of spikes must also be causal,

depending only on the previous history of spiking and the previous input

signal.

2.3 Energy-Constrained Neurons

Neural processing of sensory signals is constrained by many factors includ-

ing metabolic energy expenditure. Metabolic energy is a limited resource

in organisms, and minimizing energy consumption is critical. It has been

suggested that metabolic cost can be seen as a unifying principle underlying

all of neuronal biophysics [46]. Cortical computation can be a large portion

of an organism’s energy budget [47], with the generation of action poten-

tials accounting for 20-50% of the expended energy of the nervous system

[10, 48, 11]. Every time an action potential is generated, sodium and potas-

sium pumps, activated by ATP, work to restore the resting concentrations of

the cell membrane. Every spike has an energetic cost for an organism.

The cost of generating action potentials suggests that selective pressure

has been applied on evolutionary timescales, resulting in codes which are op-

timized to minimize energy consumption while operating with a high fidelity

[6]. It is very likely that neural codes in sensory systems are optimized to
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balance a trade-off between energy and encoding error.

There are different ways to approach questions of energy-efficiency in neu-

rons. Sengupta et al. [11] showed that action-potential shape can have a large

influence on the relative energy cost of spiking. They found that the most effi-

cient potentials occurred in mammalian cortical neuron models. A follow-up

study [49] showed that balancing excitatory and inhibitory currents limits the

energy required to generate post-synaptic potentials. Broadly, these studies

have estimated that energy is consumed to generate post-synaptic potentials,

spiking activity (including generating and propagating the action potential

and releasing and recycling vesicles), and baseline maintenance of cellular

processes unrelated to spiking.

At the level of a single neuron, a simplifying assumption is that encoding

only influences the energy costs which are incurred by spiking. This includes

the generation and propagation of the action potential, the release of vesi-

cles, and recycling vesicles. As action potentials are nearly fixed for a given

neuron, the cost per action potential is essentially fixed. This suggests that

an energy-efficient encoding scheme must control the mean spike rate of the

resulting code to control the mean energy expenditure. Ideally, the code

would time spikes to minimize representation error while limiting the overall

number of spikes fired.

2.4 Energy-Efficient Encoding Schemes

The idea that a neuron must make efficient use of limited resources is an old

one, dating back at least to the ideas of Barlow [50]. It has been hypothesized

that a neural code should maximize the information capacity of the resulting

spike trains [51]. This idea has been applied at the level of neuronal popula-

tions, resulting in ideas such as sparse population coding [52] and receptive

fields optimized for particular sets of stimuli [53].

At the level of individual neurons, it is also possible to derive energy-

efficient encoding strategies. Previous work has attempted to understand

energy-efficient neural processing by modeling the channel capacity of neu-

rons or the entropy of a spike train. Levy and Baxter [12] proposed an energy-

constrained encoding model and maximized a ratio of spike-train entropy to

energy expended. This was expanded to study optimal interspike-interval

15



(ISI) distributions [54]. Further work by Berger and Levy [55] proposed

modeling an integrate-and-fire neuron as a communication channel. They

then derived the interspike interval distribution which maximizes the ratio of

bits transmitted to energy expended. This approach has been generalized in

several ways, including introducing unequal synaptic weights [56] and gen-

eralized inverse Gaussian interspike intervals [57]. These existing theories of

energy-efficient neural encoding, however, do not provide a mechanism for

predicting spike times from a sensory signal, nor do they predict encoding

errors (distortion) of sensory signals.

The neural source coder is also related to prior work on predictive coding

in spiking networks [58], which has also been examined in a probabilistic

framework [59]. This previous work also proposed an optimization problem

which balanced fidelity against spiking activity (as a surrogate for energy),

where the goal was to encode the state variables of a dynamical system

in the activity of a population of spiking neurons. This population was

meant to simulate cortical networks. Assuming a fixed threshold, a neural

model similar to the neural source coder was derived and studied in simulated

populations of cortical neurons. Here, a more general stimulus-dependent

threshold is derived for a single neuron, and this thesis provides a detailed

comparison to experimental data from single sensory neurons.

2.5 Contributions of This Thesis

This thesis proposes that sensory neurons balance a trade-off between energy

consumption (the average spike-rate of the neuron) and encoding error by

incorporating knowledge of the decoding scheme within the encoder. In the

limit of high spike-rates, the optimal form of the encoder is derived along

with the optimal parameters. This model is used to predict spike times from

a primary sensory neuron and a cortical neuron. Extending the model, an

instantaneous rate code is also proposed which, in the limit of high spike-

rates, produces spike trains with identical intervals. Stochastic spike firing is

introduced to explain jittered spikes, and the possible benefits to population

coding are explored. Finally, in an example of spiking neuron models being

applied to the design of artificial systems, an approach for cochlear-implant

stimulation is proposed.
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The fundamental motivation for using a decoding filter is the classic pre-

synaptic/post-synaptic neuronal pair which could serve as an encoder-decoder

system [7]. The encoder neuron communicates a spike train along the length

of its axon to the synaptic terminals. The post-synaptic neuron is modeled

as recovering the input signal with a simple filtering operation, mimicking

the cell membrane and propagation through the dendritic arbor [21, 7]. The

filter is usually a single-pole element that models the RC characteristics of

the cell membrane. Although this ignores aspects of synaptic processing such

as quantal synaptic failure and synaptic adaptation [18], this is a reasonable

starting point.

Rather than studying the questions of neural encoding and decoding sepa-

rately, the proposed approach argues that evolution has jointly optimized the

encoding and decoding process within a single neuron to minimize a trade-off

between encoding error and energy expenditure. In doing so, neurons may

have incorporated a biophysical decoder internally so that the coding error

is made available to the neuron. By tracking the encoding error, it is possi-

ble to generate an encoded spike train that minimizes reconstruction error.

This internal decoder tracks the input stimulus from the encoded spike-train

and fires an impulse whenever the coding error reaches a threshold. This

is mathematically close to the dynamic-threshold-without-resetting that has

been used to predict spike times [13] and the statistical structure of spike

trains [14]. Unlike adaptive-threshold models, however, this thesis proposes

an encoding principle and derives the optimal form of encoder.

This approach provides a coding framework that has strong analogies to

lossy source-coding theory [60, 61]; namely, an internal decoder tracks the

coding error and determines an optimum policy for timing the spikes. The

extent of permissible error is determined by the constraint on the spike-rate,

much in the way that the rate-distortion function determines the trade-off

between coding error and bit-rate. Previous work [58] has developed similar

predictive coding models of neurons, but the model derived here has a more

general form for single neurons and is compared directly to experimental data

from sensory neurons.

Unlike many previous studies of energy-efficient encoding schemes [62, 12,

55], the approach proposed in this thesis predicts precise spike-times and es-

timates reconstructions of input signals. These predictions can be compared

with experimental spike-times and reconstructions estimated from experi-

17



mental spikes. The concept of minimum-error, energy-constrained encoding

by single neurons provides a way to understand the principles of neural en-

coding and decoding.
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CHAPTER 3

DETERMINISTIC, OPTIMAL NEURAL
SOURCE CODING

The proposed energy-constrained, optimal encoding scheme for neurons re-

sults in a spike-firing rule which can be used to predict spike times. Further,

the method can predict reconstructed waveforms with highest fidelity for the

given constraint on the long-term spike rate. The predicted spike-times are

the key outcome of the encoding model and can be directly compared to

experimental observations. Reconstructed waveforms can also be estimated

from experimental spike-trains and compared to the original signal.

In this chapter, the form of the energy-constrained optimal encoder is

derived for the case of a deterministic signal with a high spike-rate. The

form of the encoder which minimizes reconstruction error is derived, and the

parameters of the reconstruction filter are constrained to satisfy the energy

constraint.

Two approaches are taken to derive the optimal neural encoder. The first

assumes a constant input, which does not vary between spikes. This approach

leads to the development of a stimulus-dependent threshold on the error. The

second approach assumes a more formal, first-order linearization of the error

signal in the limit of high spike-rates. This approach gives a rule for spike

firing which does not depend on the input signal. The error is determined

by the signal, signal derivative, and encoder parameters.

It has been shown previously [13, 36] that dynamic threshold models can

accurately reproduce experimental spike-times with millisecond precision.

These models, however, do not give insight into the principles of encoding and

do not predict reconstructed waveforms. The proposed energy-constrained,

optimal encoding scheme is closely related to dynamic threshold models with-

out resetting the input voltage [13, 14]. Thus, it seems reasonable to expect

the proposed encoder to also accurately predict spike times. The optimal

neural encoding model goes beyond existing spike-timing models by predict-

ing a reconstructed waveform with minimal error.
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3.1 Formulation of the Optimal Encoder with

Stimulus-Dependent Threshold

This chapter develops a formulation of the optimal neural-encoding scheme

presented in Chapter 1 in the case of high spike-rates. The assumption for

this derivation is that the signal can be approximated as piecewise constant.

The procedure results in an optimal spike-firing threshold γ(t) which varies

with the strictly positive signal level s(t) > 0.

The neural source coder generates a sequence of spike times ti. This spike

train is represented as a sum of Dirac delta functions
∑

i δ(t− ti). A recon-

structed signal is generated by filtering the spike train with a reconstruction

filter h(t). The reconstructed waveform r(t) is given by the convolution of

the reconstruction filter with the spike train r(t) = h(t) ∗ (
∑

i δ(t− ti)). The

encoding error is therefore given by s(t) − r(t), and spikes are fired when

s(ti)− r(ti) ≥ γ(ti).

The encoding/decoding mechanism is motivated by the classic idea of a

pre- and post-synaptic neuron pair [18]. The pre-synaptic neuron encodes

the signal s(t), whereas the post-synaptic neuron decodes the signal r(t) by

filtering with the post-synaptic membrane. The encoding neuron needs to

maintain the error signal e(t) = s(t) − r(t) to ensure spikes are fired to

minimize encoding error.

For this formulation, the decoding filter h(t) is restricted to be a first-order

filter with impulse response A exp(−t/τ), t > 0. This form models the post-

synaptic membrane as an RC element, which is a well-established model for

the passive electrical properties of cell membranes [7, 9].

In this approach, γ will be optimized in its most general form, γ = f(s, t).

This firing level is allowed to vary as a function of the input signal level,

as well as time. By allowing a variable value of γ, encoding error will be

minimized.

The proposed optimal neural-encoding strategy must solve the problem of

minimizing encoding error subject to a constraint on the energy expended

by the neuron. Encoding error is measured by the average squared recon-

struction error over an interval [0, T ], 1
T

∫ T
0

(s(t)− r(t))2dt. As a first approx-

imation, encoding energy can be approximated as E = kR + b, where R is

the average spike-rate in the window of length T . The term b includes the

baseline processes of the neurons that are not affected by spiking activity.
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The term k is the energy cost per spike and includes the cost of generat-

ing the action potential, propagating the action potential, and releasing and

recycling vesicles. These costs are roughly proportional to the number of

spikes. The rate must then be constrained to R = (E − b)/k to satisfy the

energy constraint.

The three parameters A, τ , and γ are unknown and must be chosen to min-

imize encoding error while achieving the energy constraint. This approach

assumes that A, τ , and γ can be varied across neurons to minimize encod-

ing error. Once set by the optimization procedure, however, the parameters

A and τ are constant over the window of length T . The optimal encoding

scheme can then be written as

min
γ(s(t),t),A,τ

1

T

∫ T

0

(s(t)− r(t))2dt (3.1)

subject to R =
E − b
k

In general, this problem is difficult to solve due to the nonlinearity of the

encoding strategy. The problem is decomposed into two easier problems.

First, the spike-rate constraint is satisfied by adjusting the parameters A

and τ . Second, the optimal value of γ(s(t), t) is derived to minimize encoding

error for a given A and τ .

3.1.1 Average Rate with a First-Order Reconstruction Filter

It is possible to decompose Problem 3.1 by first satisfying the rate constraint,

then deriving the optimal form of γ. By computing the average output level

for a given spike rate, it is possible to define the rate constraint in terms of A

and τ . This simplifying approximation places a constraint on A and τ which

will approximately satisfy the rate constraint.

Integrating the filter impulse response h(t) for t > 0, the average output

level of a single spike is given by Aτ . The average filter output should

match the average level of the signal over a long time window T . In this

case, fluctuations in the signal will contribute minimally to the spike rate.

Given a target average rate RT , the average output level of the reconstructed

function is AτRT . If the average signal level is S̄, then the filter parameters
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Figure 3.1: Geometrical interpretation of the optimization procedure to
achieve a minimum-error reconstruction of a signal given a constraint on
the mean firing rate ( 1

T̄
). The signal (black line) is assumed to be constant

within the interval of interest (between adjacent spikes). The
reconstruction r(t) (red) is a single-pole low-pass filter with parameters A
and τ . It undergoes a discrete jump of magnitude A whenever the encoder
emits a spike. The decoded signal then relaxes until it reaches a firing level
of s− Ac when a spike is generated. For fixed s, A, c, and τ , the interspike
interval is T̄ . The parameters A and τ are determined from a constraint on
T̄ . The optimization procedure is applied to find the optimal value of c that
minimizes the error between s and r(t).The threshold value of the
reconstruction error γ = Ac will in general be signal level-dependent.

A and τ should be chosen to satisfy

Aτ =
S̄

RT

(3.2)

This approach does not uniquely define A and τ , leaving one degree of free-

dom. However, this does define how the rate constraint can be satisfied by

adjusting A and τ . To match experimental data, the ambiguity is resolved by

selecting the parameters to satisfy Eq. 3.2 while maximizing the coincidence

with the experimental spike-train, as described in Chapter 4. Now it remains

to determine the optimal value of γ given A and τ .

3.1.2 Derivation of Stimulus-Dependent Firing Threshold

Given the filter values A and τ required to satisfy the rate constraint, the

remaining step is to derive the optimal value of γ to minimize the error in
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Problem 3.1. This requires further simplification of the input signal, namely

the assumption of a piece-wise constant input signal.

In the limit of high spike-rates, the time between spikes decreases. Assum-

ing that the signal s(t) changes much more slowly than the time between

spikes, it is possible to assume that the signal is constant between spikes.

This leads to a piece-wise constant signal approximation. As the spike rate

increases, the approximation error between the signal s(t) and the piece-wise

constant signal decreases.

Applying the piece-wise constant approximation, assume the signal has

value s. A spike is fired at time 0 when s(t)− r(t) = γ. For simplicity, define

c = γ/A (3.3)

ε = s/A (3.4)

These two terms are the threshold and signal values normalized by the spike

height A. Figure 3.1 shows a geometrical interpretation of these parameters.

Then the reconstructed waveform for t > 0 is given by

r(t) = (s+ A(1− c)) exp(−t/τ) (3.5)

The value of c should lie between 0 and 1. This can be seen from Fig. 3.1,

where otherwise the entire signal would lie above or below the signal level s,

resulting in greater squared error.

Assuming that s > Ac, the reconstruction will decay until it reaches the

level s−Ac. At this time, another spike will be fired. Defining the time T̄ as

the time where r(T̄ ) = s− Ac, this will be the time of the next spike. This

defines the interspike interval. Solving for T̄ , this yields

T̄ = −τ ln(
ε− c

1 + ε− c
) (3.6)

To minimize reconstruction error, it is possible to minimize the error between

0 and T̄ . The problem can be written as

min
c
A2

∫ T̄

0

((1 + ε− c) exp(−t/τ)− ε)2dt (3.7)
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Substituting the value of T̄ yields

A2τ

2
(1− 2ε− 2c− 2ε2ln(

ε− c
1 + ε− c

)) (3.8)

Differentiating with respect to c gives

dE

dc
= A2τ(

ε2

ε− c
− ε2

1 + ε− c
− 1) (3.9)

Setting the derivative to 0, with A > 0, α > 0, and ε > 0, gives a quadratic

equation for c

0 = c2 − (1 + 2ε)c+ ε (3.10)

For 0 ≤ c ≤ 1, there is only one valid solution

c∗ =
(1 + 2ε)−

√
1 + 4ε2

2
(3.11)

To test if this critical point is a minima, the second derivative is given by

A2ε2τ

(
1

(ε− c)2
− 1

(1 + ε− c)2

)
(3.12)

At the value of c∗, this gives 1 + 4ε2, which is always positive. Hence this

critical point is a minima.

In terms of the firing level γ, this gives

γ(s(t)) = Ac = A
(1 + 2ε)−

√
1 + 4ε2

2
(3.13)

As the value of ε varies with the input signal, this term γ becomes dependent

on the signal s(t). The value of γ is also dependent on A.

It is important to note the asymptotic limit of γ as ε increases. If the signal

level increases, ε increases and the limit approaches A/2. More formally,

limε→∞γ = A/2 (3.14)

For signals which are much larger than A, γ approaches a constant and

is no longer signal-dependent. This suggests that a fixed firing level is an

approximation of the optimal value of γ for large signals.
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The derivation of γ results in a different firing rule than previous adaptive

threshold models without resetting [14]. In previous models, spikes were fired

when s(t) − r(t) = 0. Setting γ = 0 results in suboptimal reconstructions.

Moreover, the value of γ actually varies with the signal level.

3.1.3 Minimum Firing Level

A simple, but meaningful, extension of this derivation is for very small input

signals. In many neurons, small input signals only result in subthreshold

variations. Equation 3.13, however, predicts spiking for any nonzero ε. This

may not result in minimal encoding error. A minimum firing level can be

derived for piece-wise constant input functions.

To derive a minimum level for spike firing, consider the case where no

spikes are fired. The reconstructed signal r(t) will decay to zero. In this

case, the reconstruction error is given by

E0 =

∫ T̄

0

(s)2dt (3.15)

This is an approximation that holds well after the signal has not spiked for

some time. This yields a baseline error value of E0 = s2T̄ . From Eq. 3.8,

the error when firing a spike, E, is given by

E =
A2τ

2
(1− 2ε− 2c) + s2T̄ (3.16)

The point of interest is the value of s0 such that E = E0. For signals smaller

than s0, firing spikes actually results in additional error. Setting the two

equations equal yields

1− 2c− 2ε = 0 (3.17)
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Substituting in the optimal value of c yields

√
1 + 4ε2 − 4ε = 0 (3.18)

ε =
1√
12

(3.19)

s =
A√
12

(3.20)

For signals with s smaller than this level, spikes should not be fired. This

provides a lower limit on γ for small signals. A minimum firing level is

important from a neural modeling perspective, as it implies the existence of

subthreshold variations that are known to exist in neurons.

The expression for the optimal signal-dependent firing-level γ in Eq. 3.13

and the rate constraint in Eq. 3.2 approximate a solution to Problem 3.1 in

the limit of high spike-firing rates. This solution varies considerably from pre-

vious dynamic threshold models without resetting. In these existing models,

spikes are fired when s(t) − r(t) reaches 0, regardless of the encoding error.

The minimum firing level in Eq. 3.20 extends the optimal encoding problem

in the limit of small signals, which should not elicit spikes.

3.2 Derivation of Optimal Encoder with Linearized

Model

Although the derivation of the stimulus-dependent threshold assumes a con-

stant stimulus at high spike-rates, it also is possible to derive results for a

linearized signal and reconstruction model. The encoded spikes are recon-

structed by convolving them with the filter h(t), and the result is subtracted

from the input s(t) to compute e(t). In the limit of high spike-rates, this

alternative derivation approach uses a linearization of the encoding error.

Critically, this derivation accounts for changes in the derivative of the input

signal. This analysis predicts a spike rate versus distortion curve parameter-

ized by the encoder parameters and derives asymptotic expressions, valid at

high spike-rates, for the encoder error and the optimal parameter values.

A trade-off between spike rate and encoding error in the optimal neural

encoder is similar to the ideas of the bit rate and distortion trade-off in

rate-distortion theory. The dynamic threshold also has strong analogies to
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source-coding theory; namely, an internal decoder tracks the coding error

and determines an optimum policy for timing the spikes. The extent of

permissible error is determined by the constraint on the spike rate, much in

the way that the rate-distortion function determines the trade-off between

coding error and bit rate.

3.2.1 Linearized Encoding Model

In this derivation, it is assumed that a spike train is reconstructed using

a causal linear filter of the form h(t) = A exp(−t/τ). The spike train is

modeled as a sum of Dirac delta functions
∑N

i=1 δ(t − ti). One can then

define the reconstructed waveform as

r(t) = h(t) ∗
( N∑
i=1

δ(t− ti)
)

(3.21)

Spikes are fired at time ti whenever

s(ti)− r(ti) = γ(ti) (3.22)

where γ(ti) is the potentially time-varying signal level. In this formulation,

it is assumed that the value of τ is given, as the dynamics of the neuron

membrane are relatively fixed. The firing level γ(ti) is a free parameter, as

is the parameter A. This parameter represents how large a change a spike

induces in the reconstructed signal. In a neuron, this could correspond to the

strength of the synapse between the encoding neuron and the post-synaptic

neuron. When a spike is fired, there is a discontinuous jump in the signal

r(t) of size A.

An optimal neural encoder should minimize the squared reconstruction

error e(t) = s(t) − r(t) subject to an energy constraint on the number of

spikes fired. This derivation assumes a linearization of the input signal s(t)

and reconstruction r(t) using a first-order taylor series approximation, as

seen in Fig. 3.2. The signal, following a spike at time ti is approximated as

s(ti)+s′(ti)t. For the reconstruction, the linearization is r(ti+)+r′(ti)t, where

r′(ti) is the first right derivative of the reconstruction. These approximations
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Figure 3.2: Illustration of the linearized input signal s(t) and reconstructed
waveform r(t). A spike is fired at time ti and the next spike is fired at time
ti+1, following an interval of ∆t seconds. In this example, the input signal is
assumed to be approximately linear between spike times. At time ti, a spike
is emitted, causing a discontinuity in the reconstructed waveform r(t) of
height A. The value of r(ti+) = s(ti) + A/2, as the spike was fired when
r(ti−) = s(ti)− A/2. For t > ti, the reconstructed waveform is given by
r(t) = (s(ti) + A/2) exp(−t/τ). First-order Taylor series approximations of
r(t) and s(t) are used. The linear approximation of r(t) is shown as the
dashed gray line. In this case, the predicted time between spikes using the
linear approximation is given by the black circle. This leads to a slightly
lower estimate of the time between spikes. As spike rate increases, the
estimate of the time between spikes using the linearizations approaches the
true time between spikes.

lead to a linear form of the encoding error,

e(t) = e0 + kt (3.23)

where e0 is the value of the error immediately following a spike (assumed to

be at t = 0 without loss of generality), and k is the slope of the error. Exam-

ining this linearized error, it is possible to derive some important structural

properties about an optimal encoder.

Suppose the error has an initial value of e0 = −A/2. If a spike is fired at

time ti = A/k + ∆, the averaged squared error over the interval T = 2A/k
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is given by

E(∆) =
1

T

∫ T

0

e(t)2dt (3.24)

=
k

2A

(∫ A/k+∆

0

(kt+ e0)2dt+

∫ 2A/k

A/k+∆

(kt+ e0 − A)2dt

)
(3.25)

Analyzing this expression will result in the value of ∆ which minimizes

squared error over this interval. Substituting −A/2 for e0 in Eq. 3.23 gives

k

2A

(∫ A/k+∆

0

(kt− A/2)2dt+

∫ 2A/k

A/k+∆

(kt+−3A/2)2dt

)
(3.26)

=
k

2A

(
k2t3

3
− kt2A

2
+
tA2

4

∣∣∣∣A/k+∆

0

+
k2t3

3
− 3kt2A

2
+

9tA2

4

∣∣∣∣2A/k
A/k+∆

)
(3.27)

=

(
7A2

12
− k2

2
(A/k + ∆)2 − Ak(A/k + ∆)

)
(3.28)

Taking the first derivative of the error with respect to the perturbation pa-

rameter ∆, the expression is

dE(∆)

d∆
= k2(A/k + ∆)− Ak (3.29)

= k2∆ (3.30)

The second derivative is then given by

d2E(∆)

d∆2
= k2 (3.31)

The first-order condition for optimality is satisfied when ∆ = 0 and the

second-order sufficient condition for local minima is satisified for any k > 0.

As long as the slope parameter, k, is positive, the error will be minimized

when a spike is fired after A/k seconds. This corresponds to a change in the

error of A. Regardless of the slope value, this will always give a fixed value

of γ. This value of gamma will result in a local minima for the error. For a

linearized model, an optimal encoder will track the error and fire after reach-

ing a fixed γ. Given this intuition, the following section formally establishes

the linearized model and derives the parameters which minimize error for a

fixed spike-rate.
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3.2.2 Derivation of Linearized Model and Optimal Parameters

The neural source coder attempts to encode a non-negative function s(t)

defined over the interval [0, T ]. The time between the ith and (i+ 1)th spike

is the ith interspike interval, ∆ti . The metabolic energy constraint is modeled

as a constraint on the spike rate R. The parameters A and γ of the neural

encoder should then be chosen to minimize

min
A,γ

1

T

∫ T

0

(s(t)− r(t))2dt (3.32)

subject to Nspike/T ≤ R

where Nspike is the number of spikes used to encode the signal. Intuitively, the

constraint should be tight as all available energy should be used in encoding

the signal with minimal error. For arbitrary signals s(t), it is difficult to

optimize the parameters of the encoder, as the spikes lead to discontinuities

in the encoding error. Asymptotic bounds on the reconstruction error and

optimal parameter values are derived in the limit of high spike-firing rates.

Consider encoding a real-valued function, s(t), with the encoding model

given by Eqs. 3.21 and 3.22. The reconstruction filter is

h(t) = A exp(−t/τ) (3.33)

with a known τ . The first step is to analyze the encoding error e(t) =

s(t) − r(t) between two spike times corresponding to ∆ti . This leads to an

asymptotic result on the interspike interval and the integral of the squared

encoding error. It is then possible to derive optimal values of the encoder

parameters A∗ and γ∗. Assume that the real-valued, twice-differentiable

function s(t) is defined over [0, T ] with s(t) > 0. Also assumed is s(t) �
A− γ, which is consistent with encoding a continuous signal at a high spike-

rate. Finally, it is assumed that s′(t) > −(s(t) + A − γ)/τ . Without this

assumption, the signal could decay too rapidly to generate more spikes. The

first result bounds the error function e(t) between two successive spike-times.

Without loss of generality, we assume the time of the first spike of the interval

is at time zero.

Lemma 1. Given the adaptive-threshold neural encoder and input signal

s(t) defined above, there exists a value ∆t > 0 for any ε > 0 such that e(t) =

30



s(t) − r(t) between the two spike times t1 = 0 and t2 = ∆t is approximated

by ê(t) = (s′(0) + s(0)+A−γ
τ

)t− (A− γ) with absolute error of at most ε.

Proof. The first-order Taylor series expansions of s(t) and r(t) for t > 0 are

given by s(t) = s(0)+s′(0)t+g1(t) and r(t) = r(0)+r′(0)t+g2(t), where s′(0)

and r′(0) are the first (right) derivatives of s(t) and r(t). The error residuals,

g1(t), g2(t) ∝ t2, are given by the mean-value form of Taylor’s theorem. The

reconstruction function derivative is

r′(0) = −s(0) + A− γ
τ

(3.34)

and r(0) = s(0) + (A− γ). Combining these two approximations gives

e(t) = s(t)− r(t) (3.35)

e(t) = s′(0)t+ g1(t)− A+ γ +
s(0) + A− γ

τ
t− g2(t) (3.36)

e(t) = (s′(0) +
s(0) + A− γ

τ
)t− (A− γ) + g(t) (3.37)

where g(t) ∝ t2. Since ∆t > t ∈ (0,∆t), |g(t)| is less than or equal to |g(∆t)|.
Then for any ε > 0, ∆t can be selected such that |g(∆t)| < ε, which implies

that |e(t)− ê(t)| < ε.

Using the results from Lemma 1 and the assumption that s(t) � A − γ,

one can derive the following result on ∆t.

Lemma 2. Given the adaptive threshold neural encoder and s(t) described

above, there exists a ∆t > 0 such that ∆t is approximated by ∆̂t = A
s′(0)+s(0)/τ

with absolute error of at most ε.

Proof. Equation 3.37 of Theorem 1, evaluated at the time of the next spike,

when e(∆t) = γ, gives

γ = (s′(0) +
s(0) + A− γ

τ
)∆t − (A− γ) + g(∆t) (3.38)

∆t =
A

s′(0) + (s(0) + A− γ)/τ
− κg(∆t) (3.39)

where κ = 1/(s′(0) + (s(0) + A − γ)/τ). Applying the assumptions that
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s(0)� A− γ, the interspike interval is given by

∆t =
A

s′(0) + s(0)/τ
− κg(∆t) (3.40)

By selecting ∆t small enough that |κg(∆t)| < ε, |∆̂t −∆t| is at most ε.

Building on Lemmas 1 and 2, the next result gives an expression for the

average squared error between two successive spike times.

Theorem 1. Given the signal s(t), the adaptive threshold neural encoding

model, and the expressions of ê(t) and ∆̂t from Lemmas 1 and 2, the average

reconstruction error over the interval 0 to ∆̂t is given by 1

∆̂t

∫ ∆̂t

0
(ê(t))2dt =

A2

3
− γA+ γ2.

Proof. Applying the form of ê(t) from Lemma 1 and the assumption that

s(t) � A − γ, the average reconstruction error over the interval [0, ∆̂t) can

be written as

1

∆̂t

∫ ∆̂t

0

(ê(t))2dt =
1

∆̂t

∫ ∆̂t

0

((s′(0) + s(0)/τ)t− (A− γ))2dt

=
1

∆̂t

(
(s′(0) + s(0)/τ)2

3
∆̂3
t

− (A− γ)(s′(0) + s(0)/τ)∆̂2
t + (A− γ)2∆̂t

)
(3.41)

Substituting the result of Lemma 2 for the interspike interval yields

1

∆̂t

∫ ∆̂t

0

(ê(t))2dt =
A2

3
− γA+ γ2 (3.42)

Using this result, it is possible to derive the optimal values of A and γ for

the energy-constrained encoder problem.

Theorem 2. Given the adaptive-threshold neural encoder, s(t) as defined

above, and the expressions for ê(t) and ∆̂t, the value of A which satisfies an

average spike-rate constraint R is given by

A∗ =
1
T

∫ T
0
s′(t)dt+ 1

Tτ

∫ T
0
s(t)dt

R
(3.43)
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with absolute error less than ε > 0 for a large enough Nspike.

Proof. The expression for ∆̂t from Lemma 2 for any spike time ti can be

rewritten as A = (s′(ti) + s(ti)/τ)∆̂ti . To satisfy the rate constraint R =

Nspike/T , there must be Nspike spikes in total. Summing the total amplitude

increase from Nspike over the interval T and multiplying both sides by 1
T

yields

1

T

Nspike∑
i=1

A =
1

T

Nspike∑
i=1

(s′(ti) + s(ti)/τ)∆̂ti (3.44)

RA =
1

T

Nspike∑
i=1

(s′(ti) + s(ti)/τ)∆̂ti (3.45)

The spike times define a partition of the interval [0, T ] with partition norm

maxi ∆̂ti . The terms
∑Nspike

i=1 s′(ti)∆̂ti and
∑Nspike

i=1 s(ti)∆̂ti are the Riemann

sums of the functions s′(t) and s(t) with respect to the partition. As Nspike

increases, the norm of the partition decreases. These sums therefore approx-

imate their respective integrals for any error ε1, ε2 > 0 for some partition

with small enough norm. Requiring that ε1 + ε2 ≤ Rε, replacing the sums

with the corresponding Riemann integrals yields

A∗ =
1
T

∫ T
t=0

s′(t) + 1
Tτ

∫ T
t=0

s(t))

R
(3.46)

with absolute error |A− A∗| of at most ε.

This result gives the parameter A∗ which satisfies a given rate constraint.

As the spike-rate constraint changes, the parameter A∗ is adjusted to achieve

the constraint. The final result gives the threshold value γ which minimizes

the average squared reconstruction error.

Theorem 3. Given an adaptive-threshold neural encoding model, an input

function s(t), and the results of Lemmas 1 and 2, the value of γ which min-

imizes the average squared reconstruction error is given by γ∗ = A/2.

Proof. As the parameter A is set to satisfy the constraint on spike rate, only

the parameter γ needs to be chosen to minimize the objective function of

Problem 3.32. As the asymptotic form of the average squared error over the

interval [0,∆t] does not depend on the signal level s(t), the overall average
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squared error can simply be minimized by choosing γ to minimize the aver-

aged squared error given by Theorem 1. This is quadratic in γ and yields a

unique minimum.

min
γ
A2/3− Aγ + γ2 (3.47)

Taking the derivative with respect to gamma yields γ∗ = A/2.

The parameter values γ∗ and A∗ optimize Problem 3.32, providing the

best parameters for energy-constrained neural encoding with an adaptive

threshold model for large enough firing rates.

3.3 Discussion

This chapter has introduced two alternative approaches to deriving the opti-

mal source-coding neuron in the limit of high spike-rates. In both methods,

it is necessary to assume that the variation in the input signal between two

spikes can be approximated by a simple model. This approach allows for

analytic analysis of the nonlinear system.

The first approach assumed a piece-wise constant input which resulted in

a threshold that varied with the stimulus level. This implies slow variation

between spikes, and can be thought of as an approximation of a time-varying

signal with a piece-wise constant signal. For most signals, this approxima-

tion will hold with increasing accuracy as the time between spikes decreases.

Given the first-order reconstruction filter, the optimal strategy is to track

the encoding error and fire a spike when a stimulus-dependent threshold

is reached. This threshold varies from A/
√

12 to A/2, with the upper limit

achieved in the limit of large signals. Interestingly, a dependence between the

cell membrane voltage and spike initiation threshold has been noted in vivo

[35]. This could be related to the concept of a stimulus-dependent threshold

for optimal encoding, although this needs to be explored in more detail.

An alternative approach is based around linearizion of the input signal and

reconstruction through a first-order Taylor series approximation. In the limit

of high spike-rates, this linearization holds with arbitrarily small error. The

resulting error is linear and is minimized for a fixed firing threshold γ = A/2.

Therefore, in the limit of high firing rates, an optimal neural coder will track
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the encoding error and fire spikes when the error hits a fixed threshold. This

model predicts an encoding error dependent on the signal, signal derivative,

and encoding parameters. The error is always bounded between A/2 and

−A/2.

Given the lack of direct experimental evidence, it is unclear exactly what

criterion should be used to determine minimum error. Although the squared-

error criterion (related to the L2-norm) is a common error model, it is not

necessarily optimized by neural systems. Interestingly, the results of this

chapter hold for other Lp norms as well. Using the L1 norm, one can integrate

the absolute value of the error s(t)− r(t). In the linearized case, the optimal

γ is also A/2. This solution also minimizes the L∞ norm, which is the

maximum absolute value of the error. If γ is not equal to A/2 at the time of

spiking, the absolute error before or after the spike will be greater than A/2,

resulting in an increased L∞ norm. Appendix A derives an optimal firing

level of γ = A/2 for the Lp norms with p ≥ 1. The results of the linearized

analysis therefore apply to any Lp norm, although other objective functions

are still possible.

Both approaches show that an optimal neural encoder must incorporate

a reconstruction term to calculate error, as shown in Fig. 1.1. Although

the form of the threshold γ varies, both approaches determine firing times

based on the encoding error. This thesis extends existing models of adaptive

threshold models [14, 13] and predictive coding in neurons [58] by deriving

the form of the optimal encoder in the asymptotic limit of high firing rates.

The neural source coder will, in the limit of high spike-rates, time spikes to

minimize error given a constraint on the number of spikes fired. A critical

step, however, when studying neural coding, is to compare the predictions

of the neural source coder to data from experiments. This is the focus of

Chapter 4.
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CHAPTER 4

COMPARISON TO EXPERIMENTAL DATA

The neural source coder shows that, theoretically, a neuron could achieve

minimum-error, energy-constrained encoding using a feedback mechanism to

track reconstruction error. Based on the reconstruction error, the threshold

γ is used to time spikes such that minimum error is achieved for a given

spike rate. This encoding process is similar to existing models with adaptive

thresholds [14, 13], but these models may not time spikes optimally. To begin

validating the idea that neurons may time spikes to achieve minimum-error,

energy-constrained encoding, it is necessary to compare the predictions of

the source-coding neuron to data recorded from experimental neurons.

Here, the energy-constrained optimal encoding model is tested against ex-

perimental spike-times recorded from two datasets. The first is in vivo ex-

tracellular recordings of spike times from primary sensory afferents in the

electrosense system of a weakly electric fish. The second dataset consists

of an in vitro intracellular recording of a pyramidal, neocortical neuron of

a rat. To provide a baseline comparison, the energy-constrained, optimal

neural encoder is compared against a standard LIF neuron model and a LIF

model with Dynamic Threshold and a resetting input (LIF-DT, see [27]).

The ubiquity and computational simplicity of the LIF model make it an

appealing choice for comparison despite its well-known limitations. Due to

the close relationship between the proposed optimal encoding strategy and

the class of dynamic threshold models, a comparison between the proposed

approach and the LIF-DT model is very relevant.

There is a close match between the predicted and experimental spike-times

in these two very different neurons. This suggests that the proposed opti-

mal encoding strategy may indeed capture something fundamental about the

mechanism of spike generation. This goes beyond existing dynamic threshold

models by providing a new perspective on the joint encoding and decoding of

neural signals. These results suggest that a neuron may attempt to carefully
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time its spikes such that the signal can be reconstructed with minimum error,

making the best use of a limited number of spikes.

4.1 Materials and Methods

Experimental work on weakly electric fish was carried out at the University

of Illinois at Urbana-Champaign, USA, with approval from the university

IACUC and was kindly made available by Mark Nelson and Rama Ratnam.

The pyramidal cell dataset used here is from the rat, and was collected by

Thomas Berger and Richard Naud in the laboratory of Henry Markram at

École Polytechnique Federale de Lausanne (EPFL), Switzerland. The EPFL

data are available in the public domain through the International Neuroinfor-

matics Coordinating Facility (INCF) 2009 Spike Time Prediction Challenge

[36].

4.1.1 Electrophysiology in the Weakly Electric Fish

Surgical and electrophysiological recording procedures in the weakly elec-

tric fish follow those reported by Nelson et al. [63]. The fish used in the

study are of unknown sex. Briefly, adult brown ghost knife fish (Apteronotus

leptorhynchus, 12-17 cm long), a species of gymnotiform fish, were lightly

anesthetized by immersion in 100 ppm tricaine methane-sulfonate (MS-222,

Sigma) for 2 minutes, and then immobilized with a 3 µl intramuscular injec-

tion of 10% gallamine triethiodide (Flaxedil, Sigma). The fish was restrained

in a holding tank containing water and actively ventilated via a mouth tube.

A surgical incision was made on the skin just posterior to the operculum to

expose the posterior branch of the anterior lateral line nerve (pALLN). The

nerve fiber from a P-type (probability coding) primary electrosensory afferent

was isolated and its action potentials were recorded using glass micropipettes

filled with 3M KCl solution. Spike times and their associated spike wave-

forms were sampled and stored for offline analysis (at 60 µs resolution). The

ongoing electric-organ discharge (EOD) generated by the fish was monitored

with a pair of carbon electrodes placed near the head and tail of the fish.

Stimulation was provided by modulating the EOD with a single-cycle raised

cosine of 100 ms duration and delivered across the whole body using two
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carbon rods placed on opposite sides of the fish along the anterior-posterior

axis. The stimulus amplitude was calibrated with respect to the transdermal

potential, measured between a recording electrode close to the skin on the

lateral trunk of the fish and a reference electrode inserted under the skin on

the dorsal surface. A 1 mV root mean-square (RMS) voltage increase was

defined as the reference (0 dBV). Stimulus intensities ranged from 0 dBV

to -60 dBV attenuation in 5 dB steps with 20 stimulus repetitions at each

amplitude. Stimulus waveforms time-locked to the neural data were stored

for offline analysis.

4.1.2 Intracellular Recording of Rat Pyramidal Neurons

The 2009 INCF Spike Time Prediction Competition provides datasets with

the challenge to reproduce the spike times using a computational model [36].

Stimulus data are also provided, although the competition did not require

that the stimuli be reconstructed from the given spike activity. The dataset

from Challenge A (one of four challenges) is considered here, and is available

in the public domain along with a complete description of the methods from

the organizers (http://www.incf.org/community/competitions/archive/spike-

time-prediction/2009/challenge-a). Briefly, the data were obtained from in

vitro current-clamp recordings in the soma of L5 pyramidal cells in the pri-

mary somatosensory cortex of the rat. The sex of the rat was not made

known. The voltage data were filtered (2.4 kHz bandwidth Bessel filter) and

sampled at 100 µs resolution. Recordings of the somatic membrane potential

were obtained in response to 60 seconds of injected current. The stimulus was

repeated for a total of 13 trials. The stimulus and the first 39 seconds of the

response from each trial were made public, whereas the remaining 21 seconds

of the response remained private and was reserved for testing by the organiz-

ers of the competition. The stimulus consisted of the following sequence: four

step current inputs with a duration of 2 s with an inter-stimulus duration of 2

s, a white noise sequence of 2 second duration, and six simulated spike trains

generated by an inhomogeneous Poisson process convolved with exponential

decays of different time constants and summed together for a duration of

42.5 s. The intensities were chosen randomly over 300 to 500 ms blocks to

elicit firing rates between 5 and 10 Hz. From the voltage recordings, spike
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times were found using a threshold of 0 mV. This study used the first 39

seconds of the publicly available current-clamp stimulus and the spike times

extracted from the 13 trials.

4.1.3 LIF and LIF-DT Neural Models

To provide a baseline of comparison for the proposed encoding model, the

spike-time predictions of the model are compared with both experimental

spike-times and two common neural models. The first is the classical leaky

integrate-and-fire (LIF) model, which is a standard and ubiquitous model.

Although it is known that the LIF model does not capture many spiking

phenomena observed in real neurons, it is very common and computationally

simple. For this comparison, the model is defined by

τm
dV (t)

dt
= −V (t) +RI(t) (4.1)

where R is the membrane resistance, τm is the membrane time-constant, I(t)

is the input current, and V (t) is the predicted membrane voltage.

Spikes are fired when the membrane potential V(t) exceeds a threshold θ.

When a spike is fired, the membrane potential is reset to zero. The constant-

threshold model can be extended to the dynamic-threshold case [27, 31]. In

this case, the threshold is defined as a time-varying function

θ(t) = h(t) ∗
(∑

i

δ(t− ti)
)

(4.2)

with h(t) = A exp(−t/τ). This gives an exponentially decaying threshold.

Spikes are fired when s(t)− θ(t) = 0. This is very close to the firing rule for

the proposed encoder, but with a fixed value of γ.

This work tests the LIF-DT model with resetting. In this case, when

s(t) − θ(t) = 0, the membrane voltage is reset to 0 and the threshold is

increased. Although very similar to the proposed encoder, this additional

nonlinearity can result in unpredictable behavior.
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4.1.4 Coincidence Measure

A measure of closeness between two spike trains is required to compare sim-

ulated predictions and experimental data. The coincidence factor [64] com-

pares two spike trains by counting the number of spikes which occur within

a window of ∆ seconds of a spike from the other spike train. Coincidence

is then defined between an experimental spike-train (data) and a predicted

spike-train (model) as

Γ =
Ncoin − E[Ncoin]

Ndata +Nmodel

2

1− 2ν∆
(4.3)

where Ncoin is the number of coincident spikes, E[Ncoin] is the expected num-

ber of coincident spikes if the model was a homogeneous Poisson process with

the same spike rate, Ndata is the number of experimental spikes and Nmodel

is the number of spikes from the model. The second term normalizes the

result, where ν is the spike rate of the model.

The result is normalized so 1 indicates a perfect match between every spike.

A coincidence of 0 means there are no more coincidences then expected by

a spike train with a Poisson process. For the weakly electric fish dataset,

the coincidence window is half an EOD period. For the INCF competition,

a coincidence window of 4 ms was used.

4.1.5 Reconstruction Error

Reconstruction error was calculated from the RMS value of the error normal-

ized by the RMS value of the stimulus, and reported as dBV RMS (relative

to the stimulus)

10 log10

(
∫ T

0
(s(t)− r(t))2dt)1/2

(
∫ T

0
s(t)2dt)1/2

(4.4)

The normalization allows reconstruction error to be compared across multiple

input stimuli.
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4.1.6 Parameter Selection

To simulate results with the optimal encoding model, the Eqs. 3.13, 3.2, and

3.20 were applied to ensure optimal encoding.

However, there were still additional degrees of freedom to be resolved.

Equation 3.2 does not fully define A and τ , leaving an unaccounted-for degree

of freedom. Additionally, the datasets required extra parameters described

below. To set these parameters, a sweep of the relevant space was conducted

and the parameter values which resulted in the best coincidence with the

experimental spikes were chosen. For both datasets, the model parameters

were fit against a single trial.

For the LIF and LIF-DT models, there are no optimal parameter values.

For these models, all parameters were adjusted to obtain maximum coinci-

dence with the experimental spike-train.

For the P-type spike-trains, the stimulus (modulated EOD waveform) was

recorded at the skin of the fish. It was filtered with a bandpass filter centered

at the EOD frequency with a bandwidth of approximately 50 Hz. This

preserved the EOD waveform and amplitude modulations while eliminating

artifacts in the recorded stimulus. Stimuli were measured at the skin of the

fish with respect to a subdermal reference electrode placed on the dorsal side

of the fish.

These are most likely not the true potential differences across the receptor

due to the directional tuning of electroreceptors [65]. They were rescaled

with respect to the baseline EOD to correct for stimulus discrepancies using

a parameter aeod. This affects the absolute value of the stimulus peak am-

plitude but preserves the differences between the stimuli (in dBV). For the

optimal coder the scale factor which optimized coincidence was 4.95 (stimu-

lus level: -20 dBV), 6.28 (stimulus level: -10 dBV) and 4.55 (stimulus level:

0 dBV). Where applicable, the parameter values used to simulate the data

were τ = 34.5 ms and A = 2.05 × 10−4 V (-20 dBV), τ = 22 ms and

A = 3.42 × 10−4 V (-10 dBV), and τ = 24.5 ms and A = 3.22 × 10−4 V

(0 dBV). For each stimulus level, the parameters were chosen to maximize

coincidence with the P-type spike-train from one randomly selected trial (out

of twenty). The same parameters were used to generate spike times for the

remaining 19 trials. The parameters are similar across stimulus strength,

with the small differences resulting from the small changes in the average
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baseline firing rate as measured in the pre- and post-stimulus periods.

The LIF model was tuned using the threshold parameter and the time-

constant of the input filter. For simplicity, the input filter resistance R was

fixed at 1. The threshold level could then be adjusted to achieve the desired

firing rate. The half-wave-rectified EOD waveform was used as input to the

neuron. The EOD scale factor which maximized coincidence was 5.1 (-20

dBV), 4.9 (-10 dBV) and 4.2 (0 dBV). Where applicable, the parameter

values used to generate LIF spike-trains and PSTHs were τm = 50 ms and

θ = 3.28 × 10−5 V (-20 dBV), τ = 114 ms and θ = 1.44 × 10−5 V (-10

dBV), and τm = 98 ms and θ = 1.62× 10−5 V (0 dBV). As with the optimal

coder, the LIF parameters were selected to maximize coincidence with the P-

type spike-train from one randomly selected trial (out of twenty). The same

parameters were used to generate spike times for the remaining 19 trials.

The LIF and LIF-DT models do not have a built-in decoder. To generate

decoded waveforms, it is necessary to choose a reconstruction filter for both

of these models.

To compare the LIF model with the optimal encoder, a first-order recon-

struction filter was used to reconstruct the signal from the LIF spike-trains.

The filter parameters were chosen to minimize the average reconstruction

error between the EOD envelope and the LIF spike-trains. The optimum

reconstruction filter parameters were determined through simulations, and

the reconstructions depicted used the following parameters: τ = 27 ms and

A = 2.58× 10−4 V (-20 dBV), τ = 11 ms and A = 6.01× 10−4 V (-10 dBV),

and τ = 6.5 ms and A = 1.1 × 10−3 V (0 dBV). P-type afferents can fire a

maximum of one spike per EOD cycle, so the optimal encoder and the LIF

neuron were limited to firing at most once per EOD cycle.

To tune the LIF-DT model, a similar procedure to the LIF model was

used. The input filter resistance was again assumed to be 1. The membrane

time constant τm, adaptation time-constant τ , and adaptation height A were

adjusted to achieve the baseline firing rate and maximize the coincidence with

the P-type spike-train from a random trial. The same EOD scale factors were

used as for the proposed neural encoding model. The half-wave-rectified EOD

waveform was used as input. The optimal parameters were A = 7 × 10−5

V, τ = 35 ms, τm = 2 ms (-20 dBV), A = 6.4 × 10−5 V, τ = 44 ms,

τm = 1 ms (-10 dBV), and A = 6.4 × 10−5 V, τ = 44 ms, and τm = 1

ms (0 dBV). Like the LIF model, the LIF-DT model has no notion of a
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decoded waveform. We therefore had to determine a low-pass reconstruction

filter which minimized the average reconstruction error for the LIF-DT spike-

trains. The reconstruction parameters were A = 2.1×10−5 V and τ = 36 ms

(-20 dBV), A = 2.6×10−4 V and τ = 28.5 ms (-10 dBV), and A = 3.9×10−4

V and τ = 20 ms (0 dBV). The LIF-DT model was constrained to fire at

most one spike per EOD cycle. The parameters of the LIF-DT model differ

significantly from the parameters of the LIF model due to the two interacting

discontinuities which determine spiking behavior. The first discontinuity is

the jump in the adaptive threshold and the second is the reset of the input

voltage.

To fit the spike times from the INCF competition, the current waveform

was first filtered with a first-order low-pass filter with a gain of 106 and

a time-constant of τm. The filter gain served to convert the input signal

from hundreds of picoamps into the millivolt range. The three methods were

used to predict the precise spike times for one trial with parameters being

adjusted to match spike times with highest coincidence factor Γ. For the

optimal neural source encoder, these parameters were: A = 1.5 mV, τ = 224

ms, and τm = 20.3 ms. For the LIF model, the parameters were τm = 225

ms and θ = 1.24 mV. The parameters minimizing reconstruction error for

the LIF model were A = 2.2 mV and τ = 150 ms. For the LIF-DT model,

the values were τm = 13 ms, τ = 165 ms, and A = 2.7 mV. The parameters

minimizing reconstruction error for the LIF-DT model were A = 1.6 mV

and τ = 187 ms. For all models when simulating the INCF dataset, a 1 ms

absolute refractory period was enforced.

Reconstructions of the experimental spike-trains were created by finding

the parameters A and τ which minimized the reconstruction error when the

spike trains were convolved with a filter h(t) = A exp(−t/τ). For the weakly

electric fish dataset, the optimal parameters were A = 0.17 mV and τ = 45

ms (-20 dBV), A = 0.29 mV and τ = 26.8 ms (-10 dBV), and A = 0.4

mV and τ = 20 ms (0 dBV). For the INCF dataset, the parameters which

minimized reconstruction error for the experimental spike-train were A = 2

mV and τ = 157 ms.
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4.2 Results

The proposed optimal encoding scheme predicts spike times, which can be

validated experimentally by comparing them to experimental data. Further,

for a given spike rate (energy constraint), the internal decoder provides a

reconstruction which has lower error than other reconstructions. These pre-

dictions will be compared to spike-timing data obtained from a peripheral

sensory neuron in the electrosensory system of weakly electric fish (in vivo)

and from a cortical pyramidal neuron in the somatosensory system of the rat

(in vitro). They will also be compared to spike trains predicted by a classi-

cal leaky-integrate and fire (LIF) neuron and a LIF neuron with a dynamic

threshold (LIF-DT).

4.2.1 Encoding by Weakly Electric Fish Primary Sensory
Neurons Using Stimulus-Dependent γ

Generally, the predicted spike-times from the optimal encoding model follow

the same pattern of spiking as the data from the P-type neuron. Figure 4.1A,

B show the stimulus (black trace, A: -10 dBV and B: 0 dBV intensities)

and spike response (black spikes) of a primary P-type electrosensory afferent

from the weakly electric fish, the optimum reconstruction (red trace) and

spike response (red spikes) of the neural coder, the response of a leaky-

integrate-and fire (LIF) neuron (blue spikes), and the response of an LIF-DT

neuron (magenta spikes). The energy constraint of the optimal coder was

the baseline spike rate of the afferent (237 spikes/s). For each of 20 trials,

the initial condition of the optimal decoder was set so that the time to first

spike of the encoder was the same as the time to first spike of the P-type

unit.

At the -10 dBV amplitude (Fig. 4.1A) the peak firing rate is well below

saturation, and there is good agreement with the experimental spike-times

as seen from a comparison of the P-type and encoder spike-trains (top). The

Fig. 4.1A insets magnify the time period around the stimulus onset (inset a)

and offset (inset b). At the onset of the stimulus, as intensity increases, the

optimal encoder predicts that the neuron will rapidly fire spikes to encode

the changing stimulus level with minimal error. In the model, this is due to a

rapid build-up in the error s(t)−r(t) resulting in a shortening of the recovery
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Figure 4.1: Stimulus coding in an example P-type afferent from a weakly
electric fish. The experimental results are compared with the proposed
optimal neural encoder, a leaky integrate-and-fire-neuron (LIF), and a LIF
neuron with dynamic-threshold (LIF-DT) at two different stimulus
intensities: (A) -10 dBV, and (B) 0 dBV. The stimulus, recorded at the
skin of the fish (top, black trace), is a 100 ms modulation of the electric
organ discharge (EOD) waveform of the fish. The decoder output (optimal
reconstruction of the envelope modulation) is overlaid (red trace). Spike
trains are shown below the stimulus, P-type (black), optimum encoder
(red), LIF (blue), LIF-DT (magenta). Reconstruction from LIF and
LIF-DT neurons are not shown. Onset and offset periods (insets a-d) are
magnified (lower panels) to show details of experimental versus predicted
spike-timing. The EOD (carrier) waveform is also shown with stimulus and
reconstruction. The 0 dBV stimulus causes saturation in firing rate during
the rise (arrow, inset c) and peak of the stimulus, and suppression of firing
during the latter part of the decay (arrow, inset d).
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period of the decoder following a spike (red trace). When the stimulus decays

(inset b), the error is sub-threshold s(t) − r(t) < γ, and the decoded signal

goes into a free decay thereby lengthening the ISI. This is seen more clearly

in inset b where the ISI between spikes 3 and 4 is longer for both coder (red

spikes) and experimental P-type spikes (black spikes). Whenever the error

grows slowly, the time for the error to reach the threshold will be longer, and

so the time interval between spikes increases.

Large stimuli with large slopes at the onset and offset can generate rates

which drive a neuron into saturation (peak firing rate) and suppression, serve

to illustrate other aspects of the optimal coder (Fig. 4.1B, 0 dBV). Following

the onset, the stimulus grows so rapidly that the decoder is unable to reduce

the reconstruction error, and therefore fires at the maximal rate, reaching

saturation well before the peak of the stimulus (inset c, red arrow). There-

after, the source encoder and the afferent both fire at their peak rate. The

reconstruction falls just short of the stimulus at the peak (red trace in Fig.

4.1B).

On the decaying slope of the stimulus (inset d) the stimulus falls off rapidly,

and its rate of decay is faster than the decay rate of the filter impulse response

(inset d, time-interval around red arrow). At this point, the neural coder (and

the afferent) cease to fire. The most accurate way to represent an extremely

sharp onset (high attack rate) is to fire at high rates. Conversely, the most

accurate way to represent a rapid offset (high decay rate) is to completely

cease firing. Thus, the source encoder provides an explanation for the rapid

changes in discharge timing at the onset and offset of stimuli; namely, spikes

are placed only where they are needed. This is a major consequence of the

energy constraint and a feature of optimal coding.

The optimal neural encoding model predicts the number of spikes and

timing fairly accurately. The coincidence factors Γ averaged over 20 trials

were 0.2 ± 0.06 (-10 dBV) and 0.49 ± 0.04 (0 dBV). These are conservative

estimates because we used a small coincidence window ∆ of one-half the

EOD period (0.6 ms). While the features in the timing of P-type spikes are

captured by the optimal coder, the LIF neuron encodes stimulus amplitude

in its firing rate and does not predict timing as accurately. For the LIF

model, the coincidence values of 0.12 ± 0.04 (-10 dBV) and 0.19 ± 0.04 (0

dBV) are smaller than coincidence values for the optimal coder. The LIF

neuron does not reproduce the suppression in firing observed in the afferent
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Figure 4.2: Change in spike rate as a function of stimulus intensity in
response to modulations of the EOD waveform. Shown are the change in
spike-rates for the P-type afferent (filled black circles), optimal neural
encoder (red), LIF model (blue), and LIF-DT model (magenta). The
change in spike rate is calculated as the difference between the average
spike-rate elicited by the stimulus in the window shown in Fig. 4.1 and the
baseline firing rate, averaged over 20 trials. All models tested are capable of
predicting the change in spike-rate. If encoding were strictly following a
rate-code, this information would be sufficient to encode the signal.

and encoder spike-trains. The LIF-DT model has a higher coincidence factor

than the LIF model, 0.16 ± 0.09 (-10 dBV), 0.42 ± 0.05 (0 dBV). Using a

Mann-Whitney U-test for the 0 dBV stimuli, we reject the null hypothesis

that the mean coincidences are the same between the deterministic optimal

coder and LIF-DT model (p < 0.01). For the LIF-DT model and optimal

encoder at the -10 dBV stimulation level, the difference in mean coincidence

was not found to be significant. The mean coincidence for the optimal coder

is significantly higher than the mean coincidence for the LIF neuron at both

the 0 dBV and -10 dBV stimulus levels (p < 0.01).

Interestingly, despite the poorer performance of the LIF neuron, all models

are capable of capturing a change in the aggregate spike-rates. The spike

rates as a function of stimulus intensity were estimated for the spike trains.

Figure 4.2 shows the rate-intensity curve in logarithmic coordinates. Spike

rate is depicted as an increase in average firing rate within the stimulus

window over the baseline discharge rate. The P-type firing rates are obtained

from experimental data and shown as points (filled black circles). The spike

47



rates are in good agreement with one another over a wide range of stimulus

amplitudes. All four neuronal models convey information about the mean

signal amplitude in the average firing rate in nearly identical ways, even

though LIF neuron spike-timing is in disagreement with the P-type afferent,

the optimal coder, and the LIF-DT neuron. This suggests that matching the

average rate alone is not sufficient to achieve optimal encoding.

Figure 4.3: Peri-stimulus time histograms (PSTHs) obtained in response to
stimuli shown in Fig. 4.1. The columns from left to right are for the P-type
responses, the spike trains predicted by the optimal neural encoder, the
spike trains predicted by a LIF model, and the spike trains predicted by a
LIF-DT model. The rows show responses to stimuli of amplitudes 0 dBV
(A), -10 dBV (B), and -20 dBV (C). Each PSTH was determined from 20
trials (4 ms bins). To highlight the change in spike rate, a smoothed
estimate was produced using a sliding window of length 16 ms (black
traces). The experimental PSTH shows strong adaptation in the spike rate
which is not proportional to the stimulus. The PSTH of the spikes
simulated by the optimal encoder closely approximate the time-varying
spike-rate seen in the P-type responses. The spikes from the LIF model
predict a spike rate which is proportional to the input signal. The LIF-DT
model does predict adaptation, but does not match the experimental data
as closely as the proposed encoder.

The fluctuations in spike rate can be studied more closely using the Peri-
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Stimulus Time Histogram (PSTH). Figure 4.3 reports PSTHs over 20 trials

at three intensities: Figures 4.3A (0 dBV), 4.3B (-10 dBV), and 4.3C (-20

dBV) for P-type afferent (gray, column 1), optimal coder (red, column 2),

LIF neuron (blue, column 3), and LIF-DT neuron (magenta, column 4). The

smoothed histogram is also shown as the black trace. The P-type afferent,

optimal coder, and LIF-DT neurons have similar PSTHs and demonstrate

response saturation (Figs. 4.3A1, 4.3A2) and varying degrees of response

suppression at stimulus offset (all intensities). It should be noted that the

P-type PSTHs and the optimal coder PSTHs are not directly proportional

to the stimulus, unlike the LIF PSTH. Broadly, a comparison of the optimal

coder PSTHs (column 2) with experimental data (column 1) supports the

assertion that the optimal coding principle captures spike timing features

accurately.

The LIF neuron, LIF-DT neuron, and experimental data do not inherently

have a reconstructed signal. To reconstruct these spike trains, a first-order

filter was found with values of A and τ that minimized reconstruction error

between the stimulus envelope and the reconstructed waveform. Figure 4.4

depicts reconstructions for the spike trains at three different stimulus inten-

sities (rows A-C), for optimal-coder-generated spike trains (red, column 1)

LIF neuron spike-trains (blue, column 2), and LIF-DT neuron spike-trains

(magenta, column 3). As expected, errors are lower for the reconstructions

using the optimal coder. Predicted reconstruction errors from the optimal

encoder model were significantly lower than both the LIF and LIF-DT neu-

rons (Mann-Whitney U-test, p < 0.01). However, fidelity of coding is only

one issue. The optimal coder reconstruction also preserves amplitude and

timing features of the stimulus, unlike the LIF reconstructions which suffer

amplitude distortions and temporal distortions such as lengthening (smear-

ing) of estimated stimulus duration. The quality of reconstructions from the

LIF-DT neuron are in between those of the optimal coder and the LIF re-

constructions, with noticeable distortion at higher signal amplitudes. The

LIF-DT neuron preserves spike-timing information much like the optimal

coder (see Fig. 4.1). These results suggest that information in spike tim-

ing is necessary to recover stimulus features without distortion and without

appreciable time-delay.
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Figure 4.4: Examples of reconstructed stimuli from the optimal encoder, a
LIF neuron model, and a LIF-DT neuron model. The spike trains were
reconstructed using low-pass filters for three different stimulus levels: (A) 0
dBV, (B) -10 dBV, (C) -20 dBV. The experimental data are from a P-type
afferent. The panels depict the stimulus (black trace) and the reconstructed
stimulus (encoder: red, LIF: blue, LIF-DT: magenta) from one of 20 trials.
For reference, the spike train is shown below the stimulus. For the -20 dBV
stimulus, insets provide a magnified view of the stimulus and
reconstruction. Reconstruction error in dBV (relative to the stimulus) is
reported in each panel, with more negative values indicating smaller error.
For the LIF and LIF-DT neuron models, a reconstruction filter was
optimized to provide the lowest possible average reconstruction error. The
reconstructions from the optimal encoder track the stimulus onset and
offset without noticeable delays, and track the stimulus amplitude.
However, the LIF reconstructions suffer amplitude distortion. The quality
of LIF-DT reconstructions lie between those of the optimal decoder and the
LIF neuron, with noticeable distortion at the highest signal amplitudes.
This is due to the fact that the LIF-DT spikes are not timed to minimize
reconstruction error.
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4.2.2 Encoding by a Cortical Sensory Neuron Using
Stimulus-Dependent γ

Figure 4.5 shows in vitro data from a cortical pyramidal neuron in response

to injected current (frozen noise, top black trace; raster plot of 13 trials), the

optimal coder response (red spikes), matched LIF neuron (blue spikes), and

matched LIF-DT neuron (magenta spikes). The total duration is 21.5 s. Note

that we filtered the stimulus (low-pass, with cut-off of 50 Hz). Parameters

are reported in Section 4.1. Experimental spike data from Trial 1 (red arrow)

were used to tune the optimal coder and LIF neuron with a matched spike

rate (energy constraint). Insets B and C, arbitrarily selected (duration 1.5

s, and 1 s, respectively), are expanded and shown in Figs. 4.5B, 4.5C. In

general, the optimal coder predicts spike-timing with good accuracy, with

mean Γ = 0.38± 0.02 compared to the 13 experimental trials. Predictability

was good for those spikes where inter-trial timing is reliable, but there is

greater ambiguity when spike timing is less reliable. The model also tends

to generate too many spikes in responses to changes in the input signal. The

LIF spike train exhibited poorer coincidence with Γ = 0.12± 0.02, although

it appears to broadly match the cortical and coder spike trains (Fig. 4.5A,

blue spikes). However, when seen on an expanded scale it can be seen that

there is poor coincidence reflected in the smaller value of Γ. The LIF-DT

neuron also shows comparable performance with the optimal coder, with

Γ = 0.38 ± 0.04. The coincidence for the optimal coder was significantly

higher than the LIF model but not the LIF-DT model (Mann-Whitney U-

test, p < 0.01). This result suggests that dynamic threshold models can

closely model the experimental spike times with and without resetting.

Optimum reconstructions using the best filter parameters are shown in

Fig. 4.6 for the experimental, optimal encoder, LIF, and LIF-DT spike-trains.

The stimulus trace (black) is overlaid with the reconstructions of the stimulus

(optimal coder, red; LIF neuron, blue; LIF-DT Neuron, magenta). Figure

4.6A covers the entire stimulus duration (reconstruction errors are specified

above the trace), and Fig. 4.6B shows an expanded view of the inset. Also

included in Panel B is the cortical spike-train (bottom). In Fig. 4.6B, it

can be seen that the LIF neuron demonstrates considerable lag when recon-

structing sharp transients (e.g., arrows a and b) whereas the optimum coder

reconstruction matches the onset transients with almost no lag (Fig. 4.6B,
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Figure 4.5: Comparison of experimental and simulated spike-times for a
cortical pyramidal neuron from the INCF Spike Time Prediction Challenge
dataset. Spikes shown are from the cortical pyramidal neuron, optimal
coder, LIF-DT and LIF neuron in response to frozen noise. Panel A shows
the current-injection stimulus trace (black), raster plots of cortical response
to 13 trials (black), predicted coder spike train (red), predicted LIF spike
train (blue), and predicted LIF-DT spike train (magenta) over the entire
duration of 21.5 s. The model parameters were adjusted to maximize
coincidence with trial 1 (red arrow). The optimal neural encoder and the
two LIF models’ spike times are deterministic, so only one trial can be
generated for the given input stimulus. Panels B and C show expanded
views of the input and spike times for the two insets (arbitrarily selected)
shown in A. The optimal coder makes prediction of spike-times that are in
good but not complete agreement with the experimental data, particularly
at the onset of sudden changes. The LIF-DT model has slightly worse
coincidence, but also makes very good predictions. The LIF spike-times
have poor coincidence.
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Figure 4.6: Example stimulus reconstructions for the cortical pyramidal
neuron dataset. Reconstructions are shown from the optimal coder, a LIF
neuron model, and a LIF-DT neuron model. Spike trains were
reconstructed using a low-pass reconstruction filter. Experimental data
from the cortical pyramidal neuron are depicted in Fig. 4.5. Panel A shows
the stimulus (black trace), reconstructed stimulus from the encoder (top,
red), LIF neuron (middle, blue), and LIF-DT neuron (bottom, magenta).
Reconstruction errors in dBV (relative to the stimulus) are reported for
each trace, with more negative values indicating smaller error. Panel B
shows an inset of A with a magnified view of the stimulus and
reconstructions. For comparison, stimulus and cortical neuron spikes are
also shown. The optimal decoder and LIF-DT neuron reconstructions track
the stimulus onset and offset without noticeable delays, and match the
stimulus amplitude. Due to the low spike-rate and variable input signal,
reconstruction errors are larger than the weakly electric fish dataset.

top trace). The LIF model here responds slowly due to the long integration

time-constant. The LIF-DT neuron also shows spikes fired when the input

stimulus is small. The LIF-DT model does not properly predict subthresh-

old variations without an additional free parameter. When used for coding

error, the dynamic threshold has the advantage that it can follow temporal

changes in the input signal more quickly and with greater fidelity. This is a

direct consequence of the optimal coding mechanism, and the energy-fidelity

trade-off.
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4.2.3 Encoding Using Linear Approximation

In addition to testing the stimulus-dependent form of γ, it is also of interest

to explore the predictions of the source coding neuron using the linearized

form of the error and the fixed threshold of γ = A/2. This form of the

encoder is also used to predict a spike rate versus error curve, analogous to

the rate-distortion curve in lossy source coding.

The responses of primary electrosensory neurons of the weakly electric fish

were modeled by a neural source coder with the optimal parameters from the

linearized model. The source-coding neuron was also applied to the response

of a pyramidal neuron from the somatosensory cortex of the rat. Several

parameters were unknown, including the value of τ and the rescaling factor.

For these parameters, the values which maximized coincidence were applied.

Unlike the stimulus-dependent threshold, however, the parameters A and γ

were determined using Theorems 2 and 3 from Chapter 3.

To provide a baseline for comparison, a brute-force approach was used to

generate A and γ for a range of spike rates (R) by searching over the param-

eter space. For the weakly electric fish neuron, the best time-constant was

τ = 22 ms, and for the cortical neuron, the time-constant was τ = 43 ms. The

encoding MSE of the experimental spike-trains was estimated by calculating

the error between the input signal and the convolution of the experimental

spike-trains with the filter g(t) = Ae exp(−t/τ). The same value of τ was

used for the experimental reconstruction as the energy-constrained neural

encoding simulation.

Figures 4.7 and 4.8 show the results of applying the energy-constrained

neural encoder to twenty trials of EOD modulations from the weakly electric

fish with a -10 dBV amplitude. Figure 4.7A shows an example encoding for

the value of R closest to the experimental data. The histograms of the spike

times over twenty trials, shown in Fig. 4.7B, show a close match between the

simulated encoding and the experimental data. The decoded signal closely

follows the input signal envelope. Figure 4.8 shows the spike rate and dis-

tortion trade-off curve using both the brute-force approach and Theorems 2

and 3. Error is reported in dBV relative to the stimulus amplitude, and the

spike rate is reported in spikes per second. The parameter values A and γ

appear to converge to the brute-force parameters for high spike-rates. The

point corresponding to the experimentally recorded neuron is also shown.
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Figure 4.7: Results of applying the optimal energy-constrained neural
encoder to recordings from a weakly electric fish. Panel A and B show the
results of applying the optimized encoding model to twenty modulations of
the EOD waveform. A segment of the encoded spikes and reconstructed
signal for the simulation closest to the experimental spike-rate is shown in
panel A, with blue lines indicating experimentally recorded spike-times and
red lines indicating simulated spike-times. The encoder generally follows
the experimental spike-times. This is made more quantitative in Panel B,
which shows close agreement between the histograms of spike times
computed over twenty trials using 5 ms bins.

The curve predicted by the optimal values is quite close to the brute-force

approach over a wide range of spike rates. This promising result implies that

the derived parameters apply over a wide range of spike rates.

Figures 4.9 and 4.10 show the application of the neural source coder to

the current-clamp stimulation of a cortical neuron. Examining the simulated

encoding with the closest spike rate to the experimental neurons, one can see

that the reconstructed signal broadly follows the injected current waveform.

The experimental spike-times show a similar pattern. Figure 4.10 also shows

the spike rate versus distortion trade-off for the simulated encoder. The

experimental data, in this case, are very close to the simulated curve. Despite

the fact that this dataset uses an input signal which violates many of the

assumptions of the derivation, the predictions seem to match experimental

data well and are quite close to the optimal parameters found by brute-force

search.
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Figure 4.8: Optimal parameters from applying the optimal
energy-constrained neural encoder to the weakly electric fish dataset. Panel
A shows the MSE (in dB relative to s(t)) versus energy (measured by the
spike-rate) trade-off curve. The point representing the experimentally
recorded neuron is also shown. Panel B shows a close match using
Theorems 2 and 3 and a brute-force parameter search to determine A and
γ. Although the optimal parameters are derived only for a high spike-rate,
the parameters appear to be near-optimal over a wide range of spikes. The
experimental neuron exhibits an error-energy trade-off which is close to the
optimal curve.

4.3 Discussion

This chapter compared a neural model which results in reconstructions with

minimal error for a given spike rate to data recorded experimentally. The

motivation for the source-coding neuron rests on the following assumptions:

(1) A neuron is subject to an energy constraint in the form of a limit on the

average spike-rate. (2) A neuron must transmit information with the highest

possible fidelity for a given average spike-rate. (3) The encoding neuron has

some idea about the process of decoding. The first two assumptions are not

new, as discussed in Chapter 2. Energy-efficient coding by neurons is a topic

of wide interest in the neuroscience community [10, 6] and the information

theory community [12, 55] as is coding fidelity, which has been examined from

information theoretic and statistical signal processing perspectives. However,

little was known about the trade-off between energy and reconstruction error,

which has been explored in detail in this chapter.

The comparison with experimental data in two very different systems,

P-type neurons in a weakly electric fish and neocortical neurons in a rat, re-
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Figure 4.9: Results of applying the optimal energy-constrained neural
encoder to a single trial of the current injection dataset, with total length of
21.5 seconds. A segment of the encoded spikes and reconstructed signal for
the simulation closest to the experimental spike-rate is shown. The blue
lines indicate experimentally recorded spike-times and red lines indicate
simulated spike-times. The encoder generally follows the pattern of
experimental spike-times.

sulted in close predictions of spike times which were at least as good or better

than the LIF-DT model. The optimal encoder also generates reconstructed

waveforms, whereas the other models require a separate reconstruction filter

to be defined. Again, the reconstructions predicted by the optimal encoder

model were at least as good or better than those generated from the LIF-

DT model. The agreement between the predicted and experimental data in

these two very different systems suggests there may be a common shared

mechanism for spike generation which can be modeled as an optimal neural

encoding scheme.

It is particularly interesting that this approach appears to model a cortical

neuron under current injection. This neuron has a much lower spike rate and

a rapidly fluctuating input, which does not satisfy the assumptions under

which a solution was derived. Moreover, it is not clear in vivo how to model

an input signal to a cortical neuron. It is also not clear that these neurons

should simply relay input signals. These questions will require further ex-

perimental investigation. The current-injection dataset, however, simplifies

this problem by providing a single, controlled input signal to this neuron.

Despite the low spike-rate, the experimental response seems consistent with

the idea of optimal encoding by cortical neurons.
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Figure 4.10: Optimal parameters from applying the optimal
energy-constrained neural encoder to the neocortical neuron dataset. Panel
A shows the MSE (in dB relative to s(t)) versus energy (measured by the
spike-rate) trade-off curve. The point representing the experimentally
recorded neuron is also shown. Panel B shows the parameters using
Theorems 2 and 3 and the parameters from a brute-force search to
determine A and γ. Even in a dataset with a low spike-rate, the parameters
appear to give near-optimal performance. The experimental neuron
exhibits an error-energy trade-off which is close to the optimal curve.

The approximate solution of Problem 3.1 relies on an assumption of high

spike-rate. A more general approach will be needed to ensure the encoding

is optimal for rapidly varying or stochastic input signals. This derivation

also differs from previous approaches in that it predicts a value of γ which is

dependent on the signal. Spike firing therefore depends not only on the recon-

structed signal r(t) but also γ. Previous dynamic-threshold models without

resets fire spikes when s(t)− r(t) = 0 [13, 14]. The firing level γ in the opti-

mal encoder is dependent on the value of the input signal s(t), although this

dependence is fairly small for high spike-rates (between A/
√

(12) and A/2).

In many cases the threshold can be approximated by γ = A/2. There is

evidence suggesting that the firing threshold may be dependent on the signal

level. Recently for example, Fontaine et al. [35] showed that spike thresholds

can vary with the level of the membrane voltage. While their model assumes

fast adaptation (of the order of 1 ms), and is based on Na-channel inactiva-

tion, the dynamic threshold time-constants for the data considered here cover

much larger timescales, from tens to hundred milliseconds. These may be

mediated by a voltage-dependent conductance, such as the M-current which

is known to contribute to increased refractoriness on short to long time-scales
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[30].

This work considers a dynamic threshold at an abstract level by lump-

ing all the currents into a simple adaptation model (a low-pass element).

The approach does not specifically model neural geometry using a multi-

compartmental approach nor does it specifically model ionic currents. The

advantage of this approach is an analytically tractable model, but it does

not explicitly model biophysical mechanisms. Biophysically realistic cur-

rents can be incorporated into the threshold dynamics, which is a possible

extension of this work. Benda and Herz [20] incorporate M-current, AHP

currents, and slowly recovering Na currents, while Jolivet et al. [34] consider

a full-conductance model that incorporates an adapting potassium conduc-

tance. Liu and Wang [31] and Benda et al. [32] provide a comparison of

models with dynamic (adapting) threshold and biophysically realistic cur-

rents, concluding that behavior is similar under many conditions. Chacron

et al. [27, 28] suggest that the low-pass dynamics built into their dynamic

threshold model may be mediated by Kv3.1 channels, but their model did

not specifically incorporate Kv3.1 dynamics. In summary, there is a diversity

of approaches in the study of dynamic or adapting thresholds, ranging from

the abstract to the biophysically realistic. This work should lead to research

into biophysically realistic refinements to the proposed optimal coder.

There are several critical unanswered questions in this work. First is the

question of biological mechanisms. One possibility is that a neuron is ca-

pable of estimating the encoding error s(t) − r(t) and adjusting its firing

level γ. This process must be under metabolic control to allow for long-term

adaptation to changes in firing-rate. There are candidate mechanisms that

satisfy these criteria. For instance, the KCNQ/Kv7 (M-current) family of

channels [30] may be likely candidates. They are a regulator of neuronal

excitability, and are coupled to metabolic processes via the membrane phos-

pholipid PI(4,5)P2 [66]. The M-current channels are present in the axonal

initial segment where spike initiation takes place [67]. These factors make

them suitable initial candidates for further investigation.

The optimal neural encoder model suggests that an individual neuron is

capable of tracking encoding error, possibly as a subthreshold membrane

voltage. It is important to understand how this approach can expand to

populations of neurons. The notion of an externally generated error signal is

commonly used in predictive coding models of the auditory system [68] and
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in hierarchical prediction in the visual system [69, 70]. These predictive cod-

ing models differ from the proposed approach in several key ways. The pre-

dicted input is generated by higher-level brain structures at the network-level

and provides descending information to generate a reference signal against

ascending sensory information. The proposed neural encoder, however, is

conceptually different and does not rely on a descending reference signal

from higher brain structures. Incorporating this error mechanism into mod-

els of neural networks may improve understanding of low-error, low-energy

encoding of signals by neuronal populations.

Using the parameters derived from the linearized form of the error, the

optimization process results in an energy versus distortion trade-off curve

rather than the traditional bit-rate versus distortion curve (rate-distortion

function). Conceptually, this is an interesting observation that suggests that

neurons are tuned for different trade-offs of energy expenditure and encoding

error. In this comparison, the P-type afferent has a high spike-rate and

comparatively low error. The cortical neuron has a low spike-rate but higher

error.

In the limit of high spike-rates, it is possible to derive expressions for the

minimal encoding error, the filter amplitude, and the spike-firing threshold.

The optimal spike-times predicted by the optimal encoder are in close agree-

ment with experimentally determined spike-times. The asymptotic results

appear to hold over a wide range of spike rates as determined by a brute-

force search of the parameter space. The predicted energy versus distortion

curves are within 2 dB of the energy and distortion trade-off observed for

experimental neurons. This is encouraging, as it suggests that the results

from studying the linearized form of the error closely predict experimental

data. This provides a simpler model for analysis than the stimulus-dependent

threshold, while still capturing critical features of experimental data.

Overall, using the stimulus-dependent threshold or the linearized error ap-

proximation, the proposed optimal neural encoding scheme predicts spike

times which are promisingly close to those from neurons recorded from two

very different species and structures. This suggests that there may be a

shared mechanism of spike generation which times spikes to carefully min-

imize encoding error subject to a long-term energy constraint. Much work

is left to be done to experimentally validate this model and investigate the

biological plausibility of such an approach.
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CHAPTER 5

INSTANTANEOUS RATE-CODING BY AN
OPTIMAL, ENERGY-CONSTRAINED

NEURAL ENCODER

The previous chapters have introduced an optimal, energy-constrained neural

coder, but it is unclear how this principle relates to the current understanding

of encoding by single neurons. Broadly, the two most common approaches

to understanding encoding by individual neurons advocate either for rate

coding or temporal coding [37, 71, 72]. Rate codes assume that information

is represented in the average spike-rate over some counting window. For

example, a higher stimulus intensity would result in a higher average spike-

rate. This is an idea dating back at least to Adrian [73]. Rate codes are

robust to variability in spike timing, which has led many to believe that rate

codes may serve as a fundamental coding strategy in neural systems [74]. On

the other hand, it has long been noted that rate coding is not necessarily

efficient at transmitting information. Temporal codes, which postulate that

the precise timing of spikes carry information, have the potential to transmit

more information in the same window of time [75]. For example, the time-

to-first-spike can be used to reliably distinguish between stimulus intensities

with only a single spike [76, 72]. In the auditory system of non-human

primates, it has been shown that spike trains with millisecond precision carry

more information about the stimulus than spike trains with coarser resolution

[77]. In simulation, it can also be shown that the precise pattern of spiking

carries more information than expected by a rate code [78]. There is still

considerable debate on whether temporal codes or rate codes best describe

the neural coding scheme.

Prior work has attempted to bridge the gap between these two, sometimes

conflicting, approaches to understanding neural encoding. As the width of

the temporal window decreases, the information entropy of a spike train in-

creases [79]. Rate codes with decreasing averaging windows approach an

instantaneous spike-rate code, which can be estimated as the inverse of the

sequence of interspike intervals [80]. The instantaneous rate can also be in-
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terpreted as the probability of observing a spike at a particular time, and

thus, can be estimated experimentally as a rescaling of the Peri-Stimulus

Time Histogram (PSTH). Dayan and Abbott [81] argue that observations of

a slowly varying instantaneous rate is consistent with a rate-coding hypothe-

sis, and a more rapidly modulated instantaneous rate suggests temporal cod-

ing. Experimentally, it has been shown in the cricket auditory system that

the instantaneous spike-rate over a small window provides a better estimate

of responses to repetitive stimuli than the average spike-rate [82] and that

the interspike intervals of short bursts of action potentials code modulation

intensity in the electrosensory lobe of a weakly electric fish [83].

This chapter seeks to reconcile some of these widely differing views. The

optimal source-coding neuron [84] is connected with the views of rate and

temporal coding. In the limit of high firing rates, an instantaneous-rate

coder is derived which minimizes reconstruction error subject to a constraint

on energy expenditure. The instantaneous rate depends on the input sig-

nal, input signal derivative, and the reconstruction filter. The predictions

of the instantaneous-rate coder are compared to data from the two systems

studied in Chapter 4, namely the peripheral sensory neuron of a weakly elec-

tric fish and the the response of a neocortical neuron of a rat. The results

indicate that estimates of the experimental spike-rate correspond closely to

the predicted instantaneous rate, modeling spike-rate adaptation. Instan-

taneous rate coding also predicts the time-to-first-spike (a simple temporal

code) and average spike-rate in the neocortical neuron. These results suggest

that the optimal source-coding neuron shows some key aspects of both rate

and temporal coding.

5.1 An Instantaneous-Rate Coder for Minimum-Error,

Energy-Constrained Neural Coding

This chapter considers the encoding (generation of spikes) and decoding (esti-

mation of the input signal from spikes) of a non-negative, twice-differentiable

input signal s(t). The coded spike-train is composed as a sequence of spikes at

times ti. For a given neuron, spike waveforms are essentially identical and are

simply represented as a sum of impulses,
∑

i δ(t−ti) [4]. The decoding process

maps
∑

i δ(t− ti) to r(t), an estimate of the input signal s(t). In this thesis,
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the signal is recovered by filtering the spike train with a fixed, linear recon-

struction filter specified by the impulse response h(t), t ≥ 0. This approach is

consistent with the reconstruction of dynamic signals by spike-triggered aver-

age filters [8] or stimulus reconstruction filters [38, 4]. A simple reconstruction

filter is given by the impulse response h(t) = A exp (−t/τ), t ≥ 0. This filter

form is based on the classic idea of a pre-synaptic and post-synaptic neu-

ron, where the post-synaptic potential can by modeled by filtering the sum

of impulses with a low-pass filter representing the post-synaptic membrane

[7]. The decaying exponential corresponds to a RC circuit model of the cell

membrane, which is commonly used to model the passive dynamics of a cell

membrane, for example in Hodgkin-Huxley models [9]. The reconstructed

signal is then given by r(t) = h(t) ∗ (
∑

i δ(t− ti)) =
∑

i h(t− ti).
This thesis has hypothesized that a neuron encodes an input signal with

minimal reconstruction error given a constraint on the available energy. In

neurons, a major source of energy consumption over a period of time (T ) is

the number of spikes fired [5, 11]. Energy expenditure in a neuron can be

largely factored into generating post-synaptic potentials, maintaining base-

line potentials, generating and propagating action potentials, and releasing

and recycling vesicles. For a fixed input signal, energy expenditure can be

divided into costs which do not depend on the number of action potentials,

and those which are proportional to the number of action potentials. From

the perspective of an encoding model, it is therefore possible to model energy

expenditure per unit time as E = b + kR. Here E is the expended energy

rate, b is the baseline cost, k is the cost per spike, and R is the spike rate. An

optimal neural encoding strategy should therefore minimize reconstruction

error such that an average spike-rate is maintained. In the proposed model,

spikes are fired when the error reaches a threshold level γ. This leads to the

following constrained optimization problem

min
A,τ,γ

1

T

∫ T

0

(s(t)− r(t))2dt (5.1)

subject to R ≤ (E − b)/k

In this problem, the parameter A is the value of the filter h(t) at time 0, the

parameter τ is the time-constant of h(t), and γ is the variable threshold level.

Chapter 3 shows the derivation of an optimal strategy to solve this prob-
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lem for the case of slowly varying signals which are approximately constant

between spikes [84]. In this case, an optimal strategy is to track the recon-

struction error e(t) = s(t)−r(t) and to fire a spike when e(ti) = γ(s(t), r(t)),

where γ is a stimulus-dependent firing threshold available in closed form.

This leads to a code which times spikes to minimize error. In the limit of

large signals relative to the decoding filter parameter A, this rule reduces to

γ = A/2.

This chapter proposes an alternative method for generating spike times

which are, in the limit of high spike-rates, equivalent to the neural source-

coding model. Given the parameters A and τ it is possible to derive an

instantaneous rate function. This instantaneous rate is then encoded as

spikes with an integrate-and-fire model. For high rates, the optimal neural

source coder and instantaneous rate coder have identical interspike-intervals.

Since the intervals are identical for high firing rates, the instantaneous rate

coder is an alternative approach to minimize reconstruction error subject to

a constraint on the expended energy. Thus, in the limit of high spike-rates,

the spike-timing code introduced in Chapter 3 and the instantaneous rate

code are two different ways of describing the same code.

5.1.1 Instantaneous-Rate Coding

For the case of a single-pole low-pass reconstruction filter given by h(t) =

A exp(−t/τ), t ≥ 0 and the asymptotic firing rule s(t) − r(t) = A/2, it is

possible to derive an analytic expression for the instantaneous firing rate,

defined as the inverse of the interspike interval, given the values of A and τ .

Assuming a high enough spike rate, the decoded signal r(t) =
∑

i h(t− ti)
and input signal s(t) can be approximated, with small error, by their first-

order Taylor series expansions at time ti

r(ti + t) = r(ti) + r′(ti)t (5.2)

s(ti + t) = s(ti) + s′(ti)t (5.3)

where r′(ti) is the first right derivative. Taking ti to be the firing time of

spike i, one can assume that r(ti+) = s(ti)+A/2, if a spike was fired following

the asymptotic spike-firing rule. An example of s(t) and r(t) are shown in

Fig. 3.2. The linearization of r(t) is also shown. At time ti, the first right
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derivative of the reconstruction is

r′(ti) = −(s(ti) + A/2)/τ (5.4)

Assuming that s(ti) >> A/2, this can be approximated as

r′(ti) ≈ −s(ti)/τ (5.5)

Given these approximations, it is possible to calculate the time between

the spikes.

s(ti) + s′(ti)(ti+1 − ti)− A/2 =

r(ti+) + r′(ti)(ti+1 − ti) =

s(ti) + A/2− (s(ti)/τ)(ti+1 − ti) (5.6)

Rearranging Eq. 5.6 to solve for the time between spikes gives

(ti+1 − ti) =
A

(s′(ti) + s(ti)/τ)
(5.7)

Inverting the expression for (ti+1− ti) gives the instantaneous spike-rate, i(t)

i(t) =
s(t)/τ + s′(t)

A
(5.8)

The relationship of the instantaneous rate to the energy constraint in Eq.

5.1 is apparent if we consider a constant signal S̄ = s(t). Then the rate is

constant and given by

i(t) =
S̄

Aτ
= R (5.9)

This expression agrees with the results from Chapter 3 for the optimal neural

source coder, where the rate generated by a constant stimulus was estimated

from the average output level of the reconstruction filter. The instantaneous

rate function i(t) given by Eq. 5.8 captures the spike rate in the limit of high

firing rates, when h(t) can be approximated linearly with low error. The rate

function depends on the input signal, the derivative of the input signal, and

the filter parameters A and τ .

The expression for the instantaneous rate suggests a new method to gener-
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Figure 5.1: Comparison of two neural encoding models. Panel A shows the
schematic of the optimal neural source coder. The encoder is implemented
using a dynamic threshold with a decoding filter impulse response of
h(t) = A exp (−t/τ), t ≥ 0. The dynamic threshold encoder generates an
internal error signal which is compared to a threshold firing rule. When the
threshold is exceeded, a spike is fired. The decoder filters these spikes to
generate the reconstructed signal. In the limit of high firing rates, this
strategy achieves minimal error subject to a constraint on the spike rate.
Panel B shows an alternative interpretation of optimal, energy-constrained
encoding which is also valid at high spike-rates. In this case, an
instantaneous rate i(t) is computed from the signal s(t). Spikes are then
fired proportionally to this function using an integrate-and-fire model. In
the limit of high firing rates, the instantaneous-rate approach generates a
spike train with interspike intervals identical to the encoder in A.
Therefore, in the limit of high firing rates, this approach is an equivalent
solution to Eq. 5.1.

ate a spike train which achieves the minimum (asymptotically in the limit of

high spike-rates) of Eq. 5.1. First, generate the instantaneous rate function

i(t) from s(t) using Eq. 5.8. Next, fire spikes proportionally to i(t) using a

simple integrate and fire model. Given a spike at time ti, the next spike will

be fired after an interval ∆t defined by∫ (ti+∆t)

ti

i(t)dt = 1 (5.10)

When a spike is fired, the output of the integrator is reset to 0. This model is
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compared to the optimal neural source coder proposed previously [84] in Fig.

5.1. The neural source coder computes the error between the reconstruction

r(t) and input signal s(t) to generate a spike train which is the solution of

Eq. 5.1 in the limit of high spike-rates. For high spike-rates, we show both

coders produce spike sequences with identical interspike intervals.

In the limit of high spike-rates, the asymptotic expression for the interspike

intervals of the optimal neural source coder shown in Fig. 5.1A is [85]

∆t =
A

(s′(ti) + s(ti)/τ)
(5.11)

For the spike-firing rule defined in Eq. 5.10, the interspike interval, at high

firing rates, can be approximated as∫ (ti+∆t)

ti

i(t)dt ≈ (ti + ∆t − ti)i(ti) = 1

∆t =
1

i(ti)
=

A

(s′(ti) + s(ti)/τ)
(5.12)

The instantaneous rate is ∆−1. Since both methods produce spike-sequences

with the same interspike intervals, in the limit of high spike-rates, the instan-

taneous rate coder is also an asymptotically optimal solution to Eq. 5.1. This

derivation holds for high firing rates because h(t) can be approximated as

linear in this limit. The solution to the optimization problem can be viewed

either as the optimal neural source coder, which computes reconstruction er-

ror internally, or an instantaneous rate coder defined by the signal, the signal

derivative, and the filter parameters.

5.2 Methods

Responses of the proposed instantaneous rate coding model and a standard

rate-coding model were generated for three sets of data: a simulated input

with known functions for the signal and signal derivative, the responses of

a P-type primary electrosensory afferent of a weakly electric fish, and the

responses to current injection from a rat somatosensory cortical neuron in an

in vitro preparation [36]. The data for the second and third datasets were

discussed previously in Chapter 4. This chapter studies the predictions of the
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instantaneous rate coder against these experimental data in order to better

understand how minimum-error, energy-constrained encoding is related to

rate and temporal coding.

Figure 5.2 shows the simulated function, which was modeled as two sig-

moid functions with known slope parameters. The first sigmoid simulated a

sudden positive change. By subtracting the second sigmoid from the first,

a smaller negative step was simulated. The simulated function provided an

example with known signal and signal derivative terms to test the instanta-

neous rate coding. Responses were simulated at a sampling rate of 5000 Hz

for a duration of one second.

5.2.1 Parameter Selection

To generate the instantaneous rate code, it is first necessary to determine the

parameters A and τ , as well as the dataset-specific parameters. Previously

[84], the parameters of the optimal neural source coder shown in Fig. 5.1A

were determined to maximize the spike-time coincidence factor between the

model spike-times and the experimental spike-times. The coincidence factor

[64] compares two spike trains by counting the number of spikes which occur

within a window of ∆ seconds of a spike from the other spike train. The

coincidence is then defined between an experimental spike-train (data) and

a predicted spike-train (model) as

Γ =
Ncoinc − E[Ncoinc]

Ndata +Nmodel

2

1− 2ν∆
(5.13)

where Ncoinc is the number of coincident spikes, E[Ncoinc] is the expected

number of coincident spikes if the model was a homogeneous Poisson process

with the same spike rate as the model spike train, Ndata is the number of

experimental spikes, and Nmodel is the number of spikes from the model. The

second term normalizes the result, where ν is the spike rate of the model.

In this thesis, the optimal parameters derived in Chapter 3 were also used

to generate the instantaneous rate code. Briefly, spike-time coincidence was

optimized by sweeping over τ and the stimulus-specific parameters. The neu-

ral source coder (Fig. 5.1A) with γ = A/2 was simulated for this parameter

set. For each value of τ and the stimulus parameters, the following two steps

were performed.
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1. Select A so that the average spike-rate constraint is satisfied.

2. Use the optimal value of γ to generate an encoded spike-train using the

optimal source coder. Compute the coincidence between the encoded

spike-train and one experimental trial.

The parameter values which resulted in the highest coincidence were also

used as the parameters for the proposed instantaneous rate coder.

For the experimental data from the P-type afferent of a weakly electric fish,

the raw waveform was filtered with a second-order band-pass filter with a 3

dB bandwidth of approximately 50 Hz, centered at the EOD frequency. The

values of A, τ , and aEOD were found for the stimulus levels (0 dBV through

-30 dBV) in order to maximize the coincidence averaged over all stimulus

levels. The value of aEOD was 5.30. The values of τ and A were 24.0 ms and

2.92×10−4 V. The same parameters were used for all 20 trials at all stimulus

levels.

For the current-clamp injection data, the current waveform was first filtered

with a first-order low-pass filter with unity gain and a time-constant of τm.

The parameter values were chosen to maximize average coincidence with the

spike-times in response to the three positive DC steps included in the data.

The optimal parameters were τm = 26.3 ms, τ = 75 ms, and A = 487.4.

Note that for this dataset, A is defined in nA, which is the units of the

experimental stimulus. The variable A could be converted to a voltage by

assuming an appropriate membrane resistance value.

5.2.2 Instantaneous-Rate Coding

For each set of data, the instantaneous-rate function was calculated using the

reconstruction filter parameters, input function, and input function deriva-

tive following Eq. 5.8. For the simulated data, the input function was as-

sumed to be the simulated waveform. For the weakly electric fish data, the

input signal was taken to be the envelope of the EOD waveform after the

band-pass filter. For the INCF data, the input signal was assumed to be

the current-injection waveform after low-pass filtering. For the simulated

data and the DC step stimuli in the current-clamp injection data, the sig-

nal derivative was computed analytically. For the modulations of the EOD
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waveform, the input signal derivative was found by filtering the input sig-

nal with an eleventh-order differentiating filter, implemented digitally with a

frequency cut-off of π/2. These signals were used to calculate the theoretical

instantaneous-rate function following Eq. 5.8. Using the instantaneous-rate

function, spikes were generated using Eq. 5.10. The integrator output was

initialized to 0 for the weakly electric fish data. For rat cortical neuron data,

the integrator output was initialized to 0.5. This is because the input signal

value starts at 0. The error only needs to accumulate to a level of A/2 before

the first spike should be fired.

A rate-coding strategy was also implemented using a simple integrate-and-

fire model, which fires spikes proportionally to the signal level. For each set

of data, the input signal was rescaled by the mean firing rate derived from

the experimental data, fexp, divided by the mean input signal level, S̄. Given

a spike at time ti, the next spike is fired after an interval ∆t such that∫ ti+∆t

ti

fexp

S̄
s(t)dt = 1 (5.14)

When a spike is fired, the output of the integrator is set to 0. Spikes were

reconstructed by filtering with the impulse response h(t) = A exp(−t/τ), t ≥
0, using the values of A and τ described above. To generate the spike trains,

the initial value of the integrator was set identically to the instantaneous-rate

coder.

The error between the reconstructed waveforms and stimuli was computed

using the RMS value of the error divided by the RMS value of the stimulus,

reported in dB as

10 log10

(
∫ T

0
(s(t)− r(t))2dt)1/2

(
∫ T

0
s(t)2dt))1/2

(5.15)

This metric allows for better comparison across stimulus levels.

5.3 Results

The proposed instantaneous-rate coder and a standard rate coder were ap-

plied to study the simulated dataset, different modulation levels of the EOD

waveform of a weakly electric fish, and current-clamp injection in the INCF
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data. The reconstructed waveforms and spike times were compared to the

experimental stimuli and spike times.

Figure 5.2: Encoding of a simulated waveform consisting of a sigmoid
function centered at 500 ms added to a second sigmoid function centered at
750 ms, with a negative amplitude. This waveform had sudden changes but
well-defined derivatives. The waveform was used as the input for the
proposed instantaneous rate coder and a rate coder (integrate and fire
model). Panel A shows the reconstructed waveforms and resulting rate
functions for A = 0.002 and τ = 50 ms. The instantaneous rate code
reconstruction tracks the input signal, providing minimum-error encoding.
The rate code produces significant distortion. The theoretical instantaneous
rate (Eq. 5.8, calculated using the sigmoid functions and their derivatives)
and the rate of the instantaneous rate coder (estimated from the simulated
spike-times, generated using the encoder specified by Eq. 5.10) show nearly
identical spike rates, as expected. Both methods show spike-rate adaptation
in response to the signal at the onset and offset of the waveform. The inset
A1 shows a small section of the simulation which emphasizes the spike-rate
adaptation at the onset. The rate-code predicts a spike rate which is
proportional to the signal, resulting in worse reconstruction error. Panel B
shows the response of the instantaneous rate coder using the parameters
A = 0.008 and τ = 10 ms. Different parameter values change the
instantaneous rate function predicted by Eq. 5.8. In this case, the term
proportional to the signal s(t) is much larger than the term proportional to
the signal derivative. This results in an optimal instantaneous rate function
which is closer to the rate-coding approach. The inset B1 shows the onset
of the signal, where the instantaneous-rate code is much closer to the rate
code. Depending on the situation, the optimal instantaneous rate coder can
show strong spike-rate adaptation or rate encoding.

First, the instantaneous-rate coder was applied to a simulated waveform,
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consisting of two sigmoid functions, using the parameters (A) A = 0.002 and

τ = 50 ms, (B) A = 0.008 and τ = 10 ms. For the simulated dataset, the

stimulus level has arbitrary units, and the values of A are reported without

a unit. Figures 5.2A and B show the reconstructed waveforms and spike

rates for these two sets of parameter values. The spike rates were estimated

using the inverse of the interspike interval. Panel a shows the case where A

is smaller and τ is larger. These parameters emphasize the derivative term

in Eq. 5.8. This leads to an increase in firing rates when the signal derivative

is positive and a decrease in firing when the derivative is negative. The

instantaneous-rate function predicts a constant rate whenever the signal is

not changing (when the derivative is zero). This behavior is similar to spike-

rate adaptation observed in many primary sensory neurons [86]. The rate

coder, on the other hand, predicts a spike rate which is exactly proportional

to the stimulus. Firing spikes proportionally to the signal leads to large errors

in the reconstruction. Panel b shows the encoding for a larger value of A and

a smaller value of τ . In this case, the term of Eq. 5.8 which is proportional

to the signal dominates the rate. The instantaneous rate is close to the rate

coder. The instantaneous-rate coder predicts observed encoding behaviors,

such as spike-rate adaptation and rate coding.

The proposed instantaneous-rate coder and rate coder were applied to the

weakly electric fish data to generate reconstructions of the signal envelope.

Figure 5.3 shows reconstructed waveforms, Peri-Stimulus Time Histograms

(PSTHs), and spike-time rasters for the instantaneous-rate coder and rate

coder. The instantaneous-rate coder (red) closely follows the instantaneous-

rate function for the −10 dBV and −20 dBV steps and matches the experi-

mental PSTH (black, Fig. 5.3B). The rate coder (green) fires spikes propor-

tionally to the signal envelope. This pattern of spiking does not follow the

pattern seen in the experimental spikes. The reconstructed waveforms for

the instantaneous rate code closely follow the signal envelopes for all three

stimulus levels. The reconstructions of the rate code produce significant dis-

tortions in the signal envelope. The reconstruction lags the change in the

input signal, resulting in higher error. Mean reconstruction errors (RMS) for

the instantaneous-rate code and rate code were: −12.8 dB and −4.0 dB (0

dBV), −13.4 dB and −7.0 dB (−10 dBV), −12.7 dB and −10.2 dB (−20

dBV). These differences were all found to be significant using a Wilcoxon

rank-sum test (20 trials, p < 10−6).
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Figure 5.3: Instantaneous-rate coding and rate coding in response to AM
modulation of the EOD waveform of a weakly electric fish. The predictions
of the instantaneous rate code are shown in red, the predictions of the rate
code in green, the experimental data are shown in black, and the
instantaneous rate function (Eq. 5.8) in blue. The fish was stimulated with
three amplitudes of EOD waveform modulations (row A, black traces) of
duration 100 ms. Row a shows the reconstructed waveform for the
instantaneous-rate code (red) and rate code (green). For the three
stimulation levels, the reconstructed signal of the instantaneous-rate code
closely follows the signal envelope. The reconstruction of the rate code
shows significant lag in reconstructing the signal, leading to higher error.
Row B shows the Peri-Stimulus Time Histograms (PSTHs) for the
experimental spikes, the instantaneous-rate-coded spikes and rate-coded
spikes, calculated over 20 trials, along with the theoretical
instantaneous-rate function from Eq. 5.8. For the -10 dBV and -20 dBV
cases, the PSTH of the experimental spike-times, the PSTH of the
instantaneous-rate-coded spikes, and instantaneous-rate function coincide
very closely. In the 0 dBV case, it is clear that the experimental spikes are
driven into saturation when firing once per EOD cycle. The
instantaneous-rate function predicts a rate which is not realizable by the
experimental neuron. In the case of -10 dBV and -20 dBV stimulation,
however, the instantaneous-rate function is a very close match to the
experimentally observed PSTH, suggesting that the instantaneous-rate
coder closely models the spike times recorded from the P-type afferent.
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An interesting phenomenon can be observed in the responses to the 0 dBV

stimulus in Fig. 5.3B. Due to the rapid change in the input stimulus, the

theoretically calculated instantaneous rate function predicts spike rates that

exceed the maximum and minimum possible spike rate for real neurons. In

weakly electric fish, P-type afferents fire no faster than once per EOD cycle

and can fire no slower than zero spikes per second. The instantaneous-rate

function for the 0 dBV stimulus predicts a spike rate that is too large at

the onset of the stimulus. As the stimulus falls off, the theoretical function

predicts a negative spike-rate. The instantaneous-rate coder also predicts

rates above the maximum allowable rate, but cannot fire with a negative

spike-rate. Further constraints would be required to ensure the instantaneous

rate function predicts spike rates which are physically realizable.

It is important to note that over the entire window of 0.3 s shown, both

rate coding models predict a stimulus-dependent change in the spike rate.

Figure 5.4 shows the spike rate for the rate coder, instantaneous-rate coder,

and experimental data. The rates are all quite close except at the 0 dBV

stimulus level, when the neuron is driven into saturation. In this case, the

instantaneous-rate coder predicts a rate which is too large. The increase

in spike rate with stimulus intensity is typically expected of a rate code.

In this sense, the instantaneous-rate code is consistent with observations of

rate-coding in different sensory neurons, unless the neuron is driven into

saturation. The instantaneous-rate code, however, also follows the spike rate

at shorter time scales and leads to lower reconstruction error, as seen in Fig.

5.3.

5.3.1 Response of a Cortical Neuron to Current-Clamp
Stimulation

The proposed instantaneous-rate coder and rate coder were used to predict

spike times in response to DC current-clamp injections. Figure 5.5 shows

the response of the instantaneous-rate coder, rate coder, and experimental

neuron to three levels of DC stimulation. The reconstructed waveforms,

spike-time rasters, and spike rates are shown. The spike rates are estimated

using the inverse of the interspike interval. For the DC stimulation, the

experimental data show an initial increase in spike rate which returns to
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Figure 5.4: Shown here are the spike rates for the experimental (black),
instantaneous-rate encoded (red) and rate encoded spikes (green), averaged
over a 0.3 s window. These are plotted as a function of five stimulus levels
ranging from −30 dBV to 0 dBV. Error bars indicate the standard
deviation over 20 trials. Both the instantaneous rate coder and the rate
coder show a long-term average spike-rate close to the experimental data,
except for the 0 dBV case. As seen in Fig. 5.3, the instantaneous rate code
does not show the saturation seen experimentally, leading to a higher
spike-rate. The spike rate varies with stimulus intensity. This suggests a
possible rate-coding scheme, at least when the signal is not saturated.
However, as seen in Fig. 5.3, the adaptation in the instantaneous spike-rate
over shorter time windows leads to lower reconstruction error.

a constant level. This is also apparent in the instantaneous-rate function.

The spikes are timed to code the sudden change in the signal level then

maintain this new level. The instantaneous rate coder predicts this behavior

at the two larger stimulus levels. The rate coder does not predict the initial

increase in spike rate. Because the initial spike rate is not high, the change

is not coded with low error by the rate coder, as seen in the reconstructed

waveforms. The reconstruction errors for the instantaneous-rate coder and

rate coder were: −3.2 dB and −2.4 dB (Level 1), −5.8 dB and −5.3 dB (Level

2), −7.1 dB and −6.7 dB (Level 3). For this data, a single deterministic

waveform was encoded with deterministic models, so a significance test was

not appropriate. At the lowest signal level, the predicted instantaneous rate

is somewhat higher than the experimental spike-rate. This is likely due to the

derivation of the instantaneous rate using a linearization of the reconstructed

waveform. At very low spike-rates, the exponential decay is not well modeled

as a linear function.
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Figure 5.6 shows two interesting properties of both the experimental data

and the instantaneous rate coder. Averaged over the full two seconds of stim-

ulation, the instantaneous-rate coded, rate coded, and experimental spike-

trains all show a level-dependent change in firing rate, or rate-coding. Also

interesting is the level-dependent change in the time-to-first-spike due to

the interplay of the low-pass filtered input signal and the instantaneous-rate

function. The time-to-first-spike is determined by the increase in the signal

derivative at the onset of the step. Larger steps have a steeper derivative

and a faster first spike. The rate code predicts long first-spike times. The

times-to-first-spike are often interpreted as a simple temporal code [76]. The

theory of minimum-error, energy-constrained neural encoding is consistent

with both experimental observations, suggesting that the instantaneous-rate

function can help explain some aspects of both rate coding and temporal

coding.

5.4 Discussion

The proposed instantaneous-rate coder provides a method for firing spikes

with ISIs determined by the instantaneous-rate function in Eq. 5.8. This

strategy is an alternative method, in the limit of high spike-rates, for gener-

ating spike trains with intervals which match the previously proposed optimal

neural source coder [84]. Although the generated spike trains are asymptot-

ically equal, these two methods give different insights about minimum-error,

energy-constrained encoding. The optimal instantaneous rate is actually a

function of the stimulus, stimulus derivative, and reconstruction filter param-

eters. Note that in the datasets considered here, such as the cortical neuron,

the spike rate is often not high. Nevertheless, the instantaneous-rate coder

generates spike trains which show many features of the experimental data.

Comparing the modeled spike-times with the experimental data from a P-

type afferent of a weakly electric fish (Fig. 5.3) and DC current injection (Fig.

5.5) of a rat cortical neuron, the instantaneous-rate coder closely predicts the

experimental spike-rates. The pattern of spiking observed experimentally is

consistent with the proposed instantaneous-rate function. For these stimuli,

the instantaneous-rate-encoding model makes much more accurate predic-

tions than a rate-coding model which is proportional to the input stimulus.
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Figure 5.5: Instantaneous-rate encoding and rate encoding of three
amplitudes of DC step stimulation of a cortical neuron in vitro using a
current-clamp configuration. The figure shows the input steps (top row,
black trace), which are filtered with a first-order low-pass filter. The step is
coarsely represented by the reconstructed signal of the instantaneous-rate
coder (red). The rate coder reconstruction (green) results in higher
reconstruction error due to the lag in tracking the onset of the signal. The
second row shows the spike times from 13 experimental trials along with
the instantaneous-rate-coded and rate-coded spike-trains. The third row
shows the theoretical instantaneous-rate function from Eq. 5.8, the rate
function of the experimental spikes (estimated using the inverse of the
interspike interval), the rate function of the instantaneous-rate-coded spikes
and the rate function of the rate-coded spikes. For the two larger stimuli,
the experimental data, instantaneous-rate-coded spikes, and theoretical
instantaneous-rate function are in close agreement. All three show a sharp
increase in spike rate, followed by a decay to a new baseline level. At the
lowest stimulus level, the instantaneous-rate function predicts a spike rate
which is higher than the experimental rate. This may be due to the
linearizations and assumptions made in deriving Eq. 5.8, which do not hold
for long interspike intervals.

The rate-coding approach produces poor reconstructions as well.

For cases where the spike-rate is not saturated, Fig. 5.3B shows that the
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Figure 5.6: Time-to-first-spike and spike rate of instantaneous-rate encoding
and rate encoding of three amplitudes of DC step stimulation of a cortical
neuron in vitro using a current-clamp configuration. This shows that the
instantaneous rate coder exhibits some characteristics of both a rate and a
temporal code. The time-to-first-spike and the average rate (calculated over
2 seconds) both match the experimentally observed spikes. Although the
rate-coded spikes match the experimental spike-rate, they do not show the
same time-to-first-spike. Optimal encoding with an instantaneous rate
coder can model some aspects of both temporal and rate codes.

instantaneous rate function can be used as an estimator for the PSTH. Here,

the PSTH is scaled by the bin size and the number of trials to produce units

of spikes/s. After rescaling, the PSTH corresponds closely to the predicted

instantaneous rate. This suggests an interpretation of experimental PSTHs

from primary sensory neurons as a measure of the instantaneous rate. The

high spike-rates observed in the primary neuron may be due to the require-

ment of encoding sensory signals in the periphery with high fidelity.

The neural source coder is closely related to prior work on predictive coding

in spiking networks [58]. This study also proposed an optimization problem

which balanced fidelity against spiking activity (as a surrogate for energy),

where the goal was to encode the state variables of a dynamical system

in the activity of a population of spiking neurons. This population was

meant to simulate cortical networks. Assuming a fixed threshold, a neural

model similar to the neural source coder was derived and studied in simulated

populations of cortical neurons. This current analysis builds upon prior work

by predicting a stimulus-specific instantaneous spike-rate which, in the limit

of high spike-rates, produces a spike train which minimizes reconstruction

error for a given energy constraint.
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The predicted instantaneous-rate function is determined by two terms– one

proportional to the signal level and one proportional to the signal derivative.

For a constant or slowly varying signal, the instantaneous rate is propor-

tional to the signal level. This is essentially rate coding. For more rapidly

fluctuating signals, the signal derivative plays a role in determining the spike

rate, typically leading to high spike-rates for a brief period when the signal

level changes. This spike-rate adaptation leads to spikes which are closely

timed to changes in the signal. Instantaneous rates which are slowly vary-

ing favor a rate-encoding hypothesis, whereas rapidly varying instantaneous

rates are thought to imply temporal codes [81]. The responses of the instan-

taneous rate coder to the DC step inputs (Fig. 5.6), match both the average

spike-rate and time-to-first-spike. Due to the adaptation in the instanta-

neous spike-rate, the resulting code shows some properties of both rate and

temporal coding. Previously, coding strategies have been developed which

show aspects of both rate and temporal coding depending on the regime be-

ing tested [87]. It has also been shown that neural models can be tuned on a

continuum to act as coincidence detectors or integrators [88]. Populations of

neural models can be tuned between synchronous firing (a kind of temporal

code) and rate coding, depending on the model parameters [89]. These re-

sults show that an instantaneous-rate code can operate in different regimes

of a single underlying mechanism.

One important aspect of neural encoding which was not explicitly explored

in our study was correlations between ISIs. Negative correlations between

adjacent ISIs have been observed in a wide range of neurons [90], and have

been implicated as particularly important for encoding in P-type sensory

afferents [91, 92]. Previous studies of neural models which generate nega-

tive serial correlation coefficients have been shown to improve information

transmission [27] and detection of weak sensory signals [93]. More recent

work has shown that a neural model with adaptation currents results in

negatively correlated ISIs and uncorrelated adaptation current levels, lead-

ing to improved information transmission with low decoder complexity [94].

The neural source coder is mathematically similar to some adaptive thresh-

old models [27, 14]. As these adaptive threshold models produce negatively

correlated ISIs, the neural source coder will likely result in similar ISI correla-

tions. The results show that the instantaneous-rate coder generates the same

ISI sequence as the neural source coder in the limit of high spike-rates; there-
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fore, the instantaneous rate coder should also produce negatively correlated

ISIs.

Although the proposed instantaneous-rate coder shows some aspects of

both rate and temporal encoding, it is important to note that the temporal

coding observed is due to the adaptation in spike rate caused by the term

proportional to the signal derivative. The instantaneous rate is sensitive to

changes in the signal, which results in precise spike-times when the signal level

changes rapidly. In general, temporal coding is often poorly defined and refers

to different observed phenomena which are not necessarily related to spike-

rate adaptation. Many experimental observations of temporal encoding, such

as encoding in spike-time correlations or phase-locking, are not addressed

here. Further work will be needed to explore the proposed instantaneous

rate coder (and the optimal neural source coder) in these contexts.

The instantaneous-rate coder replicates many aspects of the experimental

data, but the generation of an instantaneous-rate function is not necessar-

ily a biophysically plausible mechanism for implementing minimum-error,

energy-constrained encoding. However, the instantaneous-rate coder gener-

ates spike-intervals which are equivalent to the source coding neuron shown

in Fig. 5.1A. Benda and Herz [20] showed that M-currents, AHP-type cur-

rents, and slow recovery from inactivation of fast sodium channels can in-

troduce spike-frequency adaptation in computational models. The value of

the instantaneous-rate coder is not as a possible biophysical mechanism, but

rather as a tool for understanding neural encoding. Further work will be

required to understand the biophysical mechanisms underlying the trade-off

between encoding error and energy consumption.

Minimum-error, energy-constrained neural encoding by individual neurons

can be achieved by a rate coder of an instantaneous-rate function which de-

pends on the input signal, signal derivative, and the reconstruction filter

parameters. In the limit of high spike-rates, this approach generates inter-

spike intervals which are identical to the interspike intervals generated by

an optimal source-coding neuron. Promisingly, the instantaneous-rate func-

tion closely models the spike rates recorded experimentally from a P-type

afferent of a weakly electric fish and reproduces the observed PSTHs. The

instantaneous-rate coder also predicts the average spike-rate and time-to-

first-spike of a cortical neuron’s response in vitro to DC step inputs. This

result suggests that the instantaneous-rate coder can capture some aspects of
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both rate-coding and temporal coding at different levels of the sensory path-

way. Certain experimental observations of rate and temporal coding may in

fact arise from an underlying mechanism of optimal neural encoding subject

to an energy constraint.
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CHAPTER 6

A STOCHASTIC THRESHOLD PREDICTS
INTERVAL STATISTICS AND IMPROVED

POPULATION CODING

Neurons are often thought to be noisy information-processing units, but many

studies have explored the possible benefits of noise in neural systems. In some

systems, added noise can improve performance, an effect known as noise-

enhanced processing (closely related to stochastic resonance and dithering in

quantizers). The neural source coder presented in this thesis predicts spike

times which minimize reconstruction error; up to this point these spikes are

generated by a deterministic firing rule. This chapter extends this model

to stochastic spike-firing by introducing a noisy threshold. Comparing the

predictions of this model to spike trains recorded from 53 P-type afferents

of weakly electric fish, the model can predict anti-correlated spike times and

higher-order interval statistics. Common stochastic spiking models, such

as renewal or Poisson models, do not show this behavior. Further simula-

tions show that additive threshold noise can improve encoding performance

in a neural population without interconnections. Estimated error is approxi-

mately 8 dB lower for a population of eight neural source coders than popula-

tions with renewal or Poisson statistics. The model was also used to predict

spike times of a cortical neuron subject to current injection. In this case,

the source-coding neuron predicts reliable spike times in response to frozen-

noise stimulation, but progressively decorrelated spike trains in response to

DC step stimulation. A neural source coder with noisy threshold accurately

predicts the statistics observed in real neurons and suggests a mechanism to

lower encoding error in populations of sensory neurons.

The previous chapters have introduced a deterministic neural coding model,

the neural source coder, where the model is constrained to maintain an av-

erage firing rate while minimizing error. The encoder tracks the coding er-

ror s(t) − r(t) and fires a spike whenever the error reaches a deterministic,

stimulus-dependent firing threshold γ(s, t). The firing threshold γ(s, t) is

optimal in the limit of high firing-rates, which achieves the energy-fidelity
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trade-off. This type of coding is analogous to lossy source coding in digital

systems, where the coding error is minimized for a fixed bit rate [95]. So far

in this thesis, the source-coding neuron has been deterministic. This chapter

provides its stochastic extension.

Physiological neurons exhibit variability in their spike times even when

stimulated repeatedly with a deterministic stimulus [96, 97]. On the other

hand, the neural source coder, as originally developed in Chapter 3, has a

deterministic spike-firing threshold. Repeated stimulation with a determin-

istic stimulus will generate identical spike times. These spikes are timed so

as to minimize coding error. Thus, for the same stimulus and constraint on

the spike-rate R, any other set of spike times will lead to an increase in cod-

ing error. This chapter therefore extends the original model and determines

the role of timing jitter in a source-coding neuron, and whether it has any

benefits when representing sensory signals.

The key assumption is that noise is added to the threshold. To make the

stochastic neural source coder realistic, the ISI statistics are constrained to

follow the statistics of the experimental neurons against which the source-

coding neuron is being tested. While the most common assumption is that

neuronal spike-times follow a Poisson process [98], this chapter considers

non-renewal statistics, in particular anti-correlated ISIs [91]. Several rea-

sons motivate this choice. A dynamic or adaptive threshold was originally

proposed as a mechanism that gave rise to ISI anti-correlations [25]. Anti-

correlations stabilize the mean spike-firing rate and have been presumed to

serve the ethologically important function of weak-signal detection [27, 91],

particularly in sequential or real-time tasks [99, 93]. While sensory neu-

rons in several model systems are known to exhibit such correlations (see

[93, 90]), the P-type primary electroreceptor afferent demonstrates some of

the strongest known anti-correlations [91] and has been successfully modeled

using a dynamic threshold [14, 27, 28]. The proposed source-coding neuron

was developed from observations of P-type spike-trains [84], albeit determin-

istically. It is therefore reasonable to expect that a stochastic extension of

the source-coding neuron will also exhibit anti-correlations. Thus, it is of

interest to ask how these correlations can be introduced into a spike train,

and determine their effects on coding at the single neuron and population

levels.

When studying neuronal noise, a classical view is that neurons are sim-
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ply inherently noisy due to the underlying biophysics, and that neuronal

networks function despite these noisy mechanisms [100]. Over the last 20

years, however, many studies have investigated the enhancement of neurons

and neural networks by the addition of noise. The idea of noise-enhanced

processing, or stochastic facilitation, is related to the concept of dithering in

quantization [101], and is often termed stochastic resonance [102, 103, 104].

Additive threshold noise has been shown to enhance processing in both single-

neuron models [105] and populations of neuron models [106, 107, 108]. In

particular, additive noise in a population of neuron models improves the

signal-to-noise ratio of reconstructed waveforms when using a simple sum-

ming architecture [106]. Experimental evidence for stochastic facilitation in

neuronal systems has been observed in a range of systems such as cutaneous

mammalian mechanoreceptors [106] and cricket sensory systems [109]. There

is substantial evidence, both computational and experimental, that noise in

neural systems serves to enhance coding and processing of sensory signals.

This work extends the source-coding neuron with the addition of a stochas-

tic threshold. Spike-train statistics are controlled by the parameters of the

noise, the encoding model, and the input signal. The hypothesis is that

while the addition of stochastic spike-firing will only increase encoding er-

ror for single neurons, it could lead to greatly reduced encoding error in a

population of neurons. The source-coding neuron with stochastic threshold

is used to simulate responses to the baseline stimulus and amplitude mod-

ulations in the electrosense system of weakly electric fish. The higher-order

interval statistics and correlations between intervals are well modeled by the

source-coding neuron with noisy threshold. Simulations of small populations

of source-coding neurons show a clear noise-enhancement of encoding error.

The source-coding neuron also demonstrates similar patterns of spike-time

reliability as observed experimentally [110]. The addition of a stochastic

threshold to the source-coding neuron predicts the statistics of experimental

spike-trains and reduced encoding error in populations of stochastic units.

6.1 Stochastic Threshold

The neural encoding model in sensory neurons should map an experimental

stimulus s(t) to a sequence of spike times, t1, t2, . . . , tn. The input stimulus
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is non-negative and defined over the interval [0, T ]. Since the spike train is

defined by its times, it is possible to represent the encoded signal as a sum of

Dirac delta functions,
∑

i δ(t− ti). The reconstruction filter is defined by the

impulse response h(t), and the reconstructed waveform is defined as r(t) =

h(t) ∗ (
∑

i δ(t − ti)). The impulse response is given by h(t) = A exp(−t/τ),

where A is the initial height of the impulse response and τ is the membrane

time-constant. Spikes are fired when s(t)− r(t) = γ(s(t)), where

γ(s(t)) = A
(1 + 2s(t)/A)−

√
1 + 4(s(t)/A)2

2
(6.1)

In the limit of large signal levels (s(t) >> A), the threshold asymptotically

reaches a constant γ = A/2. The asymptotic limit of γ = A/2 is a good

approximation for most cases, and is used in this chapter. It is known that

changes in firing threshold between successive firings are small as seen from

current-voltage phase plots (for example [35]). This observation is supported

by the source-coding model which predicts that optimality can be achieved

with small signal-dependent shifts in the firing threshold. For the rest of this

chapter, the asymptotic limit of γ is used.

This firing rule, however, is deterministic and will not generate variable re-

sponses to repeated stimuli [97]. The source-coding neuron can be augmented

with a stochastic firing rule to generate variable spike-times, possibly at the

cost of increased encoding error. In this chapter, stochastic spike-firing is in-

troduced using an additive threshold noise ν(t), representing the probabilis-

tic opening and closing of voltage-gated sodium channels. In the stochastic

model, spikes are fired when

s(t)− r(t) ≥ γ(t) + ν(t) (6.2)

Threshold noise can be generated by filtering a white-noise process to create

a bandlimited output. In continuous time, this noise source is an Ornstein-

Uhlenbeck process [111]. In a discrete-time simulation, with sampling period

Ts and t = nTs, a Gaussian white noise process σwn can be filtered to generate

a process with a desired bandwidth, B. The resulting process is defined by

νn = ρνn−1 + σwn (6.3)
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The bandwidth in Hertz of the resulting noise is given by

B =
1

2πTs
cos−1

(2ρ− 1
2
(1 + ρ2)

ρ

)
(6.4)

The resulting stochastic source-coding neuron is shown in Fig. 6.1. The

optimal neural source coder computes the reconstruction of the spike train

and computes the encoding error. This error is compared to a threshold

γ(t) + ν(t), and a spike is generated if the error exceeds this threshold. The

noise process is described by the bandwidth B in Hertz and the white-noise

variance σ. In this work, the white noise is assumed to be Gaussian. The neu-

ral source encoder is defined by the parameters A and τ of the reconstruction

filter.

In certain cases, the statistical properties of the P-type afferents could not

be described adequately using the low-pass filtered Gaussian noise defined

above. For these afferents, a form of ν(t) with a band-pass power spectral

density was required. In discrete time, this was generated using an autore-

gressive moving-average model applied to a Gaussian white-noise process

σwn

νn =
N∑
i=1

ρiνn−i +
M∑
j=0

θjσwn−j (6.5)

where the coefficients ρi and θj were designed as a third-order, Type-II

Chebyshev band-pass filter using the Matlab Filter Design toolbox (The

Mathworks, Natick, MA). The pass band of the filter was defined by a center

frequency fc and a bandwidth B.

6.1.1 Electrophysiological Methods

Similarly to Chapters 4 and 5, data from two model systems were used to

test the stochastic source-coding neuron: (1) in vivo extracellular recordings

of spike trains from the P-type primary electrosensory afferent of the weakly

electric fish Apteronotus leptorhynchus, and (2) in vitro intracellular record-

ings from a neocortical pyramidal neuron in the rat somatosensory cortex.

In the weakly electric fish, responses of 52 units to baseline EOD activ-

ity were recorded along with the response of one additional unit to baseline
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Figure 6.1: A block diagram of the neural source coder with noisy
spike-firing rule γ(t). The reconstruction filter is h(t) = A exp(−t/τ), t ≥ 0.
To encode the signal as a spike train, the reconstructed waveform r(t) is
computed and used to determine the error e(t). The error is compared to a
firing threshold γ(t) in order to generate spikes. The threshold is modified
by an additive, bandlimited noise process ν(t). This noisy firing threshold
results in random spiking behavior in response to repeated, deterministic
experimental stimuli. The model is defined by the parameters A, τ , the
bandwidth of the input process B, and the variance of the noise process σ.

activity and stimulation by modulations by a raised-cosine waveform of dif-

ferent stimulus intensities. Stimulation was provided by a pair of carbon

electrodes placed perpendicularly to the lateral line on either side of the fish.

The responses of a regular-spiking L5 pyramidal cell from the rat so-

matosensory neocortex recoded in vitro is also tested in this chapter. This

dataset was made publicly available by the 2009 INCF Spike Time Prediction

Competition [36]. The stimuli consisted of four DC steps (one negative and

three positive) and frozen-noise stimulation. The frozen-noise stimulation

was generated by filtering a nonhomogenous Poisson process and repeated

for all 13 trials.

6.1.2 Spike-Train Statistics and Reconstruction Error

Experimentally recorded spike-trains were compared against the spike trains

generated by the source-coding neuron with a noisy threshold. The spike

trains were treated as point processes, and the statistical properties of the

ISIs were determined [112]. The analysis presented here is drawn largely

from previous in-depth studies of the statistics of baseline spike-trains and
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interval sequences [91].

For a sequence of N spikes, the ISIs are defined as the differences between

each spike time and the succeeding spike time.

∆i = ti+1 − ti, 1 ≤ i ≤ N − 1 (6.6)

The spike train can also be studied using interval sequences of higher-orders

[91]. An order-k sequence consists of the differences in time between a spike

and the k-th following spike.

∆k,i = tki+1 − tk(i−1)+1, 1 ≤ i ≤ (N − 1)/k (6.7)

The distribution of ∆i is the ISI distribution and is typically estimated from

a normalized histogram of the experimentally recorded ISIs. The ISI dis-

tribution characterizes the first-order interval statistics, but experimental

spike-trains show interesting structure in their higher-order statistics as well

[91].

To study the relationship between ISIs, the joint histogram of the ISIs

(∆i,∆i+1) can be computed. In the joint histogram, one ISI and its suc-

cessive ISI are paired together. This histogram estimates the probability of

observing an ISI of particular length followed by an ISI of another length.

The plotted joint histogram is also referred to as an ISI return plot, and the

joint histogram is used to visualize the relationship between ISIs.

The higher-order interval distributions were characterized using their vari-

ance and Coefficient of Variation (CV). The CV is a dimensionless quantity

relating the variance of a distribution to its mean. For the kth-order interval

distribution, the coefficient of variation is defined as

CVk =
var(∆k,i)

1/2

E[∆k,i]
(6.8)

The relationship between successive ISIs was determined using the Serial

Correlation Coefficient (SCC) of the ISI sequence. The SCC ρl at lag l was

computed as

ρl =

∑N−1
i=1 (∆i − E[∆i])(∆i+l − E[∆i])

(
∑N−1

i=1 (∆i − E[∆i])2
∑N−1

i=1 (∆i+l − E[∆i])2)1/2
(6.9)
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where the ISI sequence was of length N . SCC values range from 1 to −1.

Reconstruction error was calculated using the RMS value of the error.

This was normalized by the value of the stimulus, which allows for better

comparisons for different stimuli.

10 log10

(
∫ T

0
(s(t)− r(t))2dt)1/2

(
∫ T

0
s(t)2dt)1/2

(6.10)

6.1.3 Poisson and Renewal Spike-Trains

To provide a baseline comparison to the spike trains generated by the source-

coding neuron with noisy threshold, two additional methods were used to

simulate spike trains. The first method was to generate spike trains fol-

lowing a homogeneous Poisson process. For a Poisson process the ISI, ∆,

is exponentially distributed with an intensity parameter λ = R, giving the

probability density function

f(∆) = R exp (−R∆),∆ ≥ 0 (6.11)

To generate the Poisson process, the following procedure was used for each

simulated unit. First the experimental spike-rate was calculated and used as

the parameter R. Then, starting at time t = 0, An interval ∆ was generated

using the exponential distribution. The simulation time was incremented to

t = t + ∆. The process was continued until t + ∆ > T , where T was the

length of the experimental data.

A renewal process is an interval process where intervals are identically and

independently distributed. To generate renewal spike-trains, the experimen-

tal ISI histogram was first calculated, using bins of one-tenth of an EOD

cycle. This was normalized to estimate the distribution of the ISIs from the

experimental data. The intervals were assumed to be identically and inde-

pendently distributed following this experimentally derived distribution. To

generate simulated spike-trains with renewal statistics, a simulation was first

started at time t = 0. An interval ∆ was drawn (with replacement) from the

experimentally derived distribution. The simulation time was then updated

to t = t+ ∆. This process continued until t+ ∆ > T , where T is the length

of the experimental data. The sequence of intervals then followed a renewal
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process with interval distribution identical to the experimental data.

6.1.4 Parameter Fitting

To compare the predictions of the source-coding neuron with noisy firing

threshold to the experimental data, a method to select A, τ , the noise band-

width, and σ was required. First, the parameter A was constrained to ensure

the baseline firing rate was met [84]. The average reconstruction level re-

sulting from a single spike is Aτ , so for a baseline stimulus level of b and a

baseline rate of R, A should be constrained to be

A =
b

τR
(6.12)

This leaves three degrees of freedom, τ, noise bandwidth B, and σ, which

were adjusted to best match the joint ISI histogram (∆i,∆i+1). A parameter

search was conducted over τ , the noise bandwidth, and σ. For each set

of parameter values, a simulated spike-train was generated. The joint ISI

histogram was computed for this spike train, binned into whole numbers of

EOD cycles. The squared error between the simulated and experimental

joint ISI histograms was computed. The parameter set with the lowest error

was selected for that unit. Each experimentally recorded unit had a different

set of parameter values.

For the single P-type afferent which was also stimulated with raised co-

sine modulations of the EOD, a single scaling parameter, aEOD, was needed.

This is due to the unknown orientation of the electrode relative to the stimu-

lated electrosensory receptors, which influences the strength of the response

[65]. The parameter was used to scale any deviation from the baseline EOD

level. This parameter was determined after A and τ . For the 20 trials, the

experimental spike-trains were first filtered through the reconstruction filter

A exp(−t/τ) to create an estimate of the signal envelope ŝ(t). The value of

aEOD was used to rescale ŝ(t). The value of aEOD which minimized the mean

squared error between the rescaled ŝ(t) and s(t), averaged over the 20 trials,

was selected.

In order to generate simulated spike-trains to compare with the data

recorded in vitro from the neocortical rat neurons, an additional parame-

ter was required. In the experiment, the electrode and intracellular fluid of
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the cell body likely low-pass filtered the injected-current waveform. For sim-

ulation purposes, the input current waveform provided with the dataset was

first filtered using a first-order low-pass filter with time constant τm. For the

source-coding neuron, the parameters A, τm, τ , noise bandwidth, and σ must

be chosen. Given τm, the parameter A was estimated using the time-to-first-

spike for each of the three positive DC stimuli in the dataset. The value of

A was estimated from each DC level and the results averaged together. For

a given DC step, the value for A is calculated as

A = 2I(1− exp (−t1/τm)) (6.13)

where I is the height of the DC step and t1 is the first-spike time. To

determine the remaining free parameters, a search was conducted over τm, τ ,

B, and σ. The spike times were computed for all three stimulus levels and

the frozen-noise stimulus. The spike times were filtered with a Hann window

of length 20 ms to estimate the instantaneous rate. The average squared

error between the simulated and experimental instantaneous spike-rate was

calculated. The parameter set with the lowest squared error was chosen.

6.2 Results

The stochastic source-coding neuron, Poisson process model, and renewal

model were used to predict spike times from 53 experimentally recorded P-

type afferents and a cortical pyramidal neuron. Statistics and reconstructed

waveforms were computed for each spike train.

Figure 6.2 shows a comparison of the spike-train statistics of the exper-

imental P-type (black), source coding (red), Poisson (blue), and renewal

(green) spike-trains. Although the EOD waveform (Fig. 6.2A, top, black,

high-frequency oscillations at 878 Hz) was supplied as input to the source

coder, the reconstructed signal r(t) (red) tracks the envelope of the EOD

and not the rapidly varying carrier. Spike trains are shown below the EOD

trace with at most one spike per EOD cycle, in the positive phase. Thus

the ISI distributions are peaked at multiples of the EOD period (Fig. 6.2B)

in all cases except for the Poisson neuron, where the distribution is expo-

nential. The most probable ISIs are about 4-5 EOD periods long (Figs.
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6.2B1, 6.2B2, 6.2B4) whereas the mean ISIs are identical in all four cases.

By design, the renewal ISI distribution is identical to the P-type ISI dis-

tribution. There is some similarity between the ISI distribution from the

source coding neuron and the P-type ISI distribution, but it is not a perfect

match. The renewal and Poisson processes demonstrate independent and un-

correlated ISIs, i.e., P (∆i, ∆i+1) = P (∆i)P (∆i+1). This is reflected in their

joint distributions depicted in Figs. 6.2C3, 6.2C4. However, the ISIs in the

experimental data are correlated (Fig. 6.2C1) and demonstrate long-short

anti-correlations (see [91]). The source-coding neuron closely matches this

long-short anti-correlation pattern (Fig. 6.2C2). The serial correlation coef-

ficients for the ISI sequence are another way of showing the dependencies in

the intervals (Fig. 6.2D). The P-type and source-coding neuron show strong

negative correlations at the first lag (around −0.5) whereas the renewal and

Poisson models are uncorrelated over all lags, l ≥ 1. The source-coding neu-

ron manages to accurately capture the P-type ISI correlations, and thus the

spike trains from these two neurons have similar correlation structure. An

analysis of the statistics of higher-order interval distributions, in particular

the variance-growth curves (Fig. 6.2E) and CV-growth curves (Fig. 6.2F)

further demonstrate that the source-coding neuron matches the non-renewal

P-type statistics at least up to interval orders of about 100, i.e., several hun-

dred milliseconds (see also [91] for a detailed analysis of P-type afferents).

Renewal processes have a variance that grows proportionally with k (as seen

in Fig. 6.2E). However, anti-correlated interspike intervals demonstrate a

much slower growth in variance, with the P-type neuron showing almost

constant variance initially (up to about k = 100) and increasing thereafter

[91]. This increase is likely due to additive measurement noise and long-

term adaptation processes not modeled in the source-coding neuron. This

can be seen in Figs. 6.2E and 6.2F as well. However, the source coding neu-

ron demonstrates variance that is identically constant across all orders k.

Thus, the source-coding neuron closely matches the non-renewal statistical

properties of the P-type neuron.

The statistics of the P-type afferents varied considerably over the 53 units

studied. Almost all units showed a strong negative correlation between suc-

ceeding ISIs (ρ1 < 0 and none showed a positive correlation). The variable

ρ1 is the serial correlation coefficient at lag k = 1. Three typical classes of

statistics are observed as shown in Fig. 6.3.
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Figure 6.2: Comparison of statistics of an experimental spike-train and
model neuron spike-trains. The colors are black (P-type data), red
(source-coding neuron), green (renewal model), blue (Poisson model). Panel
A shows an example of a baseline EOD waveform (black oscillating trace)
and reconstruction (red trace) from the source-coding neuron. Note that
the envelope, rather than the EOD waveform, is being encoded by the
source-coding neuron. Bottom traces show the spikes. Panel B shows the
ISI distributions from 2 s of data. The renewal model, by design, matches
the experimental ISI exactly. Panel C shows the ISI joint distributions
P (∆i, ∆i+1). The size of the circles is proportional to the probability. The
experimental ISIs demonstrate long-short intervals, i.e., anti-correlations
(see also [91]). Critically, source-coding neurons also demonstrate
anti-correlations, but the renewal and Poisson neurons do not. Panel D
gives the serial correlation coefficients (ordinate) as a function of interval
lag (abscissa). The long-short anti-correlations are evident from the marked
negative correlation at lag = 1. The renewal and Poisson spike-trains have
uncorrelated ISIs. Panel E plots the growth of variance as function of
interval order. Renewal and Poisson neurons show a linear growth in
variance, whereas the source coding neuron has nearly constant variance.
P-type spike trains are similar to the spike-train from the source-coding
neuron for interval orders up to about 100. Panel F shows the CV as a
function of interval order.
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1. ρ1 of almost exactly -0.5, followed by coefficients ρk which are nearly

zero for k ≥ 2. These afferents have a joint ISI distribution resembling

Fig. 6.3A1, and serial correlation coefficients as shown in Fig. 6.3A3.

These afferent statistics can be readily captured using a low-pass fil-

tered noise source in the firing rule, Eq. 6.1 (joint ISI distribution shown

in Fig. 6.3A2, and matching correlation coefficient in Fig. 6.3A3).

2. −0.5 < ρ1 < 0, followed by negative coefficients ρk, k ≥ 2 at higher

lags, gradually decreasing to zero. These afferents have a joint ISI

distribution resembling Fig. 6.3B1, and serial correlation coefficients

as shown in Fig. 6.3B3. These afferent statistics can also be captured

using a low-pass filtered noise source in the firing rule, Eq. 6.1 (joint ISI

distribution shown in Fig. 6.3B2, and matching correlation coefficient

in Fig. 6.3B3).

3. −1 < ρ1 < −0.5, followed by alternating positive and negative ρk,

k ≥ 2, gradually diminishing to zero. In the joint ISI distributions,

these units often display two clusters of ISI pairs as seen in Fig. 6.3C1.

Two successive ISIs with the same value, regardless of length, are highly

improbable. This leads to strongly anti-correlated ISI sequences (Fig.

6.3C3). For this type of afferent a low-pass filtered noise source in the

firing rule fails to capture the joint ISI distribution. However, when

a band-pass filtered noise source is added to the firing rule, instead of

a low-pass filtered noise source, then the joint ISI distribution (Fig.

6.3C2); serial coefficients (Fig. 6.3C3) are accurately captured. The

noise process is determined by a center frequency fc , a bandwidth

B, and a power σ and generated as described in Section 6.1.1. Using

these parameters it is possible to fit units which have two clusters of

ISI pairs and ρ1 < −0.5. Alternatively, it is possible that there is

a modulation in the baseline EOD waveform. If the baseline EOD

waveform was modulated with a depth of approximately 5% and much

lower frequency than the EOD waveform, it is possible to also produce

a similar ISI return pattern.

The neural source coding model is also able to replicate the power spectral

density observed in experimental spike-trains. These spike trains exhibit

a high-pass characteristic, as shown in Fig. 6.4. In contrast, the renewal
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process and LIF neuron have much flatter spectra. It has been suggested

that power spectra with a high-pass characteristic are related to the signal-

processing concept of noise shaping [113]. Noise shaping can improve the

resulting signal-to-noise ratio of a quantizer. The high-pass spectra is also

closely related to the anti-correlated intervals observed in Fig. 6.3. Prior

work has shown that a spike train with a high-pass power spectrum could

have higher coherence with a stimulus than a spike train with a flat spectra

[114].

Over the 52 units with baseline activity, the interval order statistics ob-

served for a single unit in Fig. 6.2 have been shown to hold over the entire

population [91]. Interval order statistics were averaged over the 52 units

with baseline activity, including the variance, CV, and Fano factor. These

are shown in Fig. 6.5. Averaged over the entire population, the neural coder

shows very similar statistics as the experimental data for the first 10 to 100

intervals. The variance increases sub-linearly and the Fano factor decreases

with order. The renewal and Poisson models both increase linearly in vari-

ance and show a flat Fano factor. Interestingly, the neural coder population

statistics diverge from the experimental population for long interval orders

which approach 100.

In summary, Figs. 6.2-6.5 demonstrate that the source-coding neuron ac-

curately captures the statistical properties of P-type afferents up to approx-

imately 50-100 ISIs. Beyond this time-scale, the P-type units deviate from

the behavior predicted by the source coding neuron.

To investigate the possible role and benefits of stochastic spike-firing in the

electrosensory system of weakly electric fish, populations of various sizes were

simulated using the source-coding neuron with noisy threshold, Poisson, and

renewal spike-trains. Figure 6.6 shows the results of these simulations for the

experimentally recorded baseline activity also shown in Fig. 6.2. For each

plot, the simulation was repeated 100 times and the mean result presented in

order to generate smooth curves. First, a population of eight identical source-

coding neurons were simulated. This population size is approximately equal

to the number of afferents which innervate neurons in the Electrosensory

Lateral line Lobe (ELL) [115]. Population reconstruction was conducted by

averaging the outputs of the units together. The goal was to reconstruct

the quiescent EOD envelope, which is a DC-level signal (see Fig. 6.2A).

Figure 6.6A1 and Fig. 6.6A2 show the results of this simulation as the noise
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Figure 6.3: Three serial correlation patterns typically observed in P-type
afferent spike-trains whose joint ISI distributions are shown in Panels A1,
B1, and C1. The P-type neuron in Panel A1 has ρ1 ≈ −0.5 and all other ρk
are approximately zero (see Panel A3). The P-type neuron in Panel A2 has
−0.5 < ρ1 < 0 followed by negative ρk, k ≥ 2 which gradually decrease to
zero (see panel B3). The P-type neuron in Panel C1 (and D1) has
−1 < ρ1 < −0.5, followed by alternating positive and negative ρk, gradually
diminishing to zero (see Panel C3). For the examples shown in Panels A1
and B1, the source-coding neuron is able to reproduce the joint ISI
distributions (Panels A2 and B2) and the serial correlations (Panels A3 and
B3) using a low-pass filtered noise source in the firing rule. However, a
low-pass-filtered noise source cannot reproduce a ρ1 < −0.5. If a
band-pass-filtered threshold noise process is introduced in the source-coding
neuron then the joint ISI distribution is accurately reproduced (Panel C2)
along with ρ1 < −0.5 and the alternating positive-negative correlations
(Panel C3).

threshold standard deviation, σ, and bandwidth are varied. Reconstruction

error reaches a clear minimum as a function of the variance of the threshold

noise process (Fig. 6.6A1). Thus, there is a noise enhancement, or stochastic

facilitation, where reconstruction error is large for small and large values

96



Figure 6.4: The power spectral densities of the raw spike-trains for the
simulated neural models and experimental data shown in Fig. 6.3A. A spike
train generated by a Poisson process shows a power spectrum which is flat
across frequencies. The renewal model shows a slight increase at higher
frequencies. The neural source-coding neuron and experimental spike-train
show a high-pass characteristic, which is related to the anti-correlated
structure of the ISIs.

of noise power but is greatly reduced at intermediate values. There are no

gains in encoding error for a single stochastic neuron. In fact, for a single

source-coding neuron, the deterministic firing rule minimizes reconstruction

error for a given stimulus [84], and the addition of noise to the threshold only

increases the reconstruction error. Figure 6.6A2 shows that as the bandwidth

is varied, a large range of bandwidths produces low error in the population.

Using the value of variance which resulted in minimum error in Fig. 6.6A1,

populations of source-coding, Poisson, and renewal neurons were simulated

for various population sizes (Fig. 6.6B1). The Poisson and renewal spike-

trains were reconstructed using a first-order low-pass filter with identical

parameters to the source-coding neuron. All methods showed a decrease in

reconstruction error with the number of units averaged, but the source-coding

neuron showed the lowest reconstruction error at all population sizes. For

the Poisson neuron, the improvement in encoding error is consistent with the

1/N fall-off expected from averaging (dotted black line). The improvement

in error for each unit added is shown in Fig. 6.6B2. All three models show

that improvement shows diminishing returns after approximately 10 units,
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Figure 6.5: Interval order statistics, averaged over the population of 52
units with only baseline activity. Panel A shows the variance versus interval
order. Panel B plots the CV versus interval order. Panel C shows the Fano
factor versus interval order. For all three metrics, the population average of
the neural coding model matches the experimental neurons for the first
10-100 intervals, then diverges. The P-type afferent shows more regular
statistics than expected from a Poisson or renewal process. Spike trains
with these statistics may lead to optimal detection performance [91].
Standard Poisson and renewal models do not show the same pattern of
statistics seen in the population average.

on the order of the number of units averaged by ELL neurons [115]. These

simulations suggest that the negative correlations between ISIs observed in

experimental neurons may play a key role in encoding signals in populations

with minimal error.

While Fig. 6.6 depicts population reconstructions for a DC-level (quiescent)

EOD envelope, it is very relevant to ask whether populations of identical

source-coding neurons can also reduce encoding error in response to weak

modulations of the EOD waveform. Such modulations can be induced by

small prey and can cause transient changes in the firing activity of P-type

electroreceptors [116]. Thus, a quick and accurate detection of modulations

is of ethological importance [91, 93]. The average reconstructed waveform

from a population of eight simulated neural source coders are shown in Fig.

6.7A1. In Fig. 6.7A2, a population of eight Poisson neurons with variable

rate were simulated and used to reconstruct the signal. The Poisson spike-

trains used a rate proportional to the signal level. The source-coding neuron

population tracks the changes in the waveform with lower error than the

Poisson population. The spike-rate histograms in Figs. 6.7B1 and 6.7B2
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show that the highest rates for the source-coding neuron occur at the onset

of stimulation. The population of eight source-coding neurons was simulated

100 times to produce average errors for different values of noise standard

deviation, σ, shown in Fig. 6.7C. There is also a clear stochastic facilitation,

or noise enhancement, for the population, but a noisy threshold only increases

error for a single neuron. Populations of Poisson neurons and neural source

coders were then simulated for different population sizes, and the simulations

repeated 100 times to produce smooth estimates. Figure 6.7D1 shows that

the reconstruction error is still improved by averaging over multiple units,

although the decrease is smaller than in the baseline case seen in Fig. 6.6.

The error from the neural coder population is much lower than the Poisson

population. This improvement in error is somewhat slower than the 1/N

improvement expected from averaging. Figure 6.7D2 shows the improvement

in error provided by each unit. Again, the neural source coder population

shows diminishing returns after a population size of 10 units. As with the DC

stimulus, a population of neural source coders with noisy thresholds results

in low encoding error for small modulations in the EOD waveform. Encoding

these modulations with low error is of great ethological relevance.

Another important aspect of stochastic spike-firing which has been ob-

served experimentally is the reliability of spike times in response to differ-

ent stimuli [110]. For instance, it has been observed that cortical neurons

recorded in vitro in response to current injections exhibit decreasing correla-

tion over time in response to DC stimulation (low trial-to-trial reliability), but

these neurons show high trial-to-trial correlation (high reliability) in response

to repeated presentation of frozen-noise stimulation (repeated presentations

of the same realization of a random process). Figure 6.8 explores the spike-

time reliability predicted by the source-coding neuron with noisy threshold

for the parameter values which best matched the PSTH of the cortical neuron,

computed over 13 trials. Figure 6.8A shows the stimulus current (black) and

reconstructed waveform (red) for the DC step stimulus (left) and noise stim-

ulus (right). In the DC case, the reconstructed waveform tracks the stimulus

level. For the noise stimulus, the reconstruction broadly follows the current,

but with higher error due to the low spike-rate. Figure 6.8B shows the raster

plots in response to DC stimulation (left) and noise stimulus (right). In the

DC case, for both the experimentally recorded spike-trains and the neural-

source-coded spike-trains, spikes are produced with high probability at the
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Figure 6.6: Encoding of a quiescent EOD waveform by a population of
simulated neural source coders. A baseline stimulus was encoded with a
deterministic source-coding neuron, a population of source-coding neurons
with noisy thresholds, a population of renewal process neurons and
population of Poisson neurons. Panel A1 shows the change in population
encoding error as a function of the standard deviation of the noise. There is
a noise enhancement for the population of noisy neurons. Adding a noise
process with nonzero power results in lower reconstruction error than a
deterministically generated spike-train. The single stochastic neuron does
not show this benefit. Panel A2 plots the variation in population encoding
error with bandwidth of the noisy threshold. In the population, error is low
for a wide range of bandwidths above 1 kHz. Panel B1 plots the encoding
error as a function of the number of units averaged together. For the neural
encoder with stochastic threshold, the value of variance which minimized
error in A1 was used. The dotted black lines indicate the improvement
expected from averaging independent observations (1/N). The error
decreases with the number of units averaged, and the encoding error is
lower than spike trains with Poisson or renewal statistics. This suggests
that the neural source coder with noisy threshold can lead to improved
encoding in populations of sensory neurons using a simple population
averaging approach. Panel B2 show the improvement in error per unit
added to the population. For all three models, the improvement per unit
small after approximately 10 units.

onset of the stimulus. As time progresses, the spikes become increasingly

decorrelated trial-to-trial. Thus there is a stimulus-induced correlation at
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Figure 6.7: Responses to stimulation with 100 ms raised-cosine modulations
in the EOD waveform in a weakly electric fish. Populations of eight neural
source coder and Poisson neurons were simulated for each of the 20
experimental trials. The Poisson spike-trains were simulated with a rate
proportional to the stimulus level. Panel A shows the stimulus envelope
(black) and the reconstructed waveform from a population of eight neural
source coders (red) and Poisson neurons (blue) for a single trial. The source
coding neurons follow the stimulus closely, but the Poisson population
reconstruction shows significant error. Panel B shows the spike-rate
histograms of the two populations of eight neurons shown in Panel A. The
neural source coder (red) shows the highest rate on the rising slope of the
envelope, indicating spike-rate adaptation. Panel C plots the MSE as a
function of noise standard deviation for a population of eight neurons,
showing that the population of source-coding neurons shows a
stochastic-facilitation effect not seen in a single neural coder. Panel D1
shows the MSE as a function of the number of units in a simulated
population. There is a decrease in error of several dB for the neural source
coder. The Poisson model has higher reconstruction error. Panel D2 plots
the improvement in dB from adding a model neuron to the population.
Adding Poisson units to the Poisson population does not lower error as
much as adding units to the source-coding neuron population.
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the onset of the stimulus which decorrelates over time. This decorrelation,

as argued for the P-type afferents in Fig. 6.6, may play an important role in

population encoding. For the frozen-noise stimulus, however, the spikes oc-

cur with high trial-to-trial correlation. This behavior is also predicted by the

noisy source-coding model. The sudden changes and variation in the input

signal drive spiking at specific times with very high probability. This results

in spike trains which are very similar trial-to-trial. This is further shown by

Fig. 6.8C, which shows the normalized, smoothed, PSTHs corresponding to

the raster plots. In the DC case, the PSTH is peaked immediately following

stimulation, then falls with time. The PSTHs for the noise stimulus, how-

ever, do not show this same progression in time. Figure 6.8D shows that

the spike-time variance, over the 13 trials, increases with the spike number

for the DC stimulus. Interestingly, the variance of the experimental data

continues to grow more quickly than for the source-coding neuron. In the

case of the noise stimulus, the variance does not grow with time. Instead,

there are peaks in the variance, corresponding to missing spikes. The neural

source coder with noisy threshold can predict both the repeatability of the

spike-times in response to frozen-noise stimulation and the decorrelation of

spikes over time in response to the DC stimulation.

6.3 Discussion

The neural source coder with stochastic threshold is capable of reproducing

a range of observations observed in experimentally recorded spike-trains. By

introducing stochastic spiking, small populations of neurons could be aver-

aged together to reduce encoding error. In the original derivation of the

neural source-coding model [84], however, the spike-firing rule is determin-

istic. Given a deterministic stimulus, the model predicts the deterministic

spike-times which minimize reconstruction error. In the source-coding neu-

ron, adding threshold noise to a single-neuron model does not improve en-

coding fidelity or the ability to predict spike times. This result is in contrast

to some previous studies which show stochastic resonance effects in single-

neuron models [105]. Different nonlinear systems will respond differently to

noise, and these previous studies did not investigate an optimal strategy for

timing spikes using the neural source coder.
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Figure 6.8: In vitro responses of a cortical pyramidal neuron, and matched
neural source coder. Panel A displays the stimulus current (black) and
reconstructed waveform (red) are shown for a DC stimulus (left) and
frozen-noise stimulus (right). Panel B shows the raster plots of the
experimental and neural source coder spike-trains. The DC stimulus (left)
shows increased variability in spike times as the stimulus progresses,
resulting in high trial-to-trial variability. The experimental data and neural
source coder have spike trains with less variability for the frozen-noise
stimulus (right). Panel C plots the smoothed, normalized PSTHs for the
DC stimulus and frozen noise stimulus. For the DC stimulus, the
trial-to-trial spike-trains progressively decorrelate. For the frozen noise, the
times remain relatively precise. Panel D plots the variance of the spike
times as a function of the spike number (from the start of the stimulus).
For the DC stimulus, there is a growth in variance with spike number. The
frozen-noise stimulus shows low variance for most spikes, with a few peaks.
These peaks are largely due to missing spikes.
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Although noisy thresholds only increase encoding error in single neural

source coders, populations of neural source coders with noisy thresholds show

reduced encoding error. This is a stochastic facilitation effect. In the pro-

posed population reconstruction, the reconstructed waveforms are simply

averaged together. This approach implicitly models a downstream neuron

in the electrosensory lateral line lobe, which is innervated by a number of

P-type afferents. By weighting and summing the input signals, the model

roughly approximates reconstruction of input stimuli by these neurons. Al-

though this is a reasonable first approximation, this does not capture all

known aspects of synaptic processing [18] and filtering. The population re-

construction approach also assumes that all neurons are identical and encode

the same baseline stimulus. Although nearby electroreceptors are stimulated

with highly correlated signals under natural conditions [116], the signal stim-

ulating each electroreceptor is not perfectly correlated. Further work will be

required to study encoding of correlated input signals by a population with

variable encoding parameters.

Previous studies [106, 108] have investigated stochastic resonance and

dithering effects in populations of spiking neuron models, also showing im-

proved performance metrics for noisy populations. Unlike previous studies,

which used models such as the FitzHugh-Nagumo model, this study investi-

gated the effect of threshold noise on the optimal spike-times generated by

the neural source coder. The model closely predicts the statistics of experi-

mental spike-trains, and simulations suggest that these statistics may play a

key role in minimum-error population encoding.

Anti-correlations in spike trains have been observed in a wide range of sen-

sory systems and animals [91, 90]. Anti-correlations have been suggested to

increase information transfer [27] or improve detection of weak signals [93].

The neural source coder with stochastic threshold can be used to model these

spike-train statistics, and the encoding model suggests that these statistics

are important for minimum-error population coding. Spiking neuron mod-

els with adaptive thresholds have also been used to model the strong anti-

correlations seen in experimental spike trains [28, 14, 117]. These models are

mathematically similar to the neural source coder, but do not time spikes

for minimum-error reconstruction. Although this work studies the encod-

ing error of spike trains with these statistics, previous work has shown that

strong anti-correlations leads to optimal detection of weak signals [91, 93].
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The problem of sensory coding can be viewed from either the detection per-

spective or from the perspective of estimation (reconstruction) of the sensory

signal. Further theoretical work will be required to study the optimal noise

distributions for the neural source coder from a detection [118] and estima-

tion [119] perspective.

Even though spike trains are often modeled as Poisson point processes,

high spike-time reliability has been observed in many neurons, both corti-

cal and peripheral [110, 120]. A neural source coder with noisy threshold

predicts both the decorrelation of spike times in response to step stimuli

and the reliable spike times in response to fluctuating stimuli. This raises

some interesting questions about the role of precise spike-times in neural cod-

ing. Even though the step stimulus has decreasingly correlated spike-times,

it may be encoded with low error by a population of neurons with decor-

related spike-trains. The lack of reliability does not necessarily mean the

population-encoding error is poor. It is still unclear, however, how the intu-

ition of population encoding in sensory afferents can be translated to cortical

neurons.

For the neural source coder, the threshold noise was modeled as a low-pass

or band-pass Gaussian random process. This additive threshold noise can be

viewed as a model of internal noise, due to the random fluctuations within

the neuron. A major noise source is the random opening and closing of the

ion channels which determine the membrane potential [121, 122]. Due to the

thousands of individual channels, the law of large numbers suggests that the

aggregate effect on the membrane potential will be approximately Gaussian.

The bandwidth of the noise process would be related to the rate at which

channels open and close. There may still be further noise sources to consider.

Modeling spike-train statistics with first serial correlation coefficients less

than -0.5 required the introduction of a band-pass component. Biophysical

mechanisms to generate band-pass noise will require further investigation,

but this effect could also be due to a band-pass component in the input

signal. Prior work has also demonstrated this behavior in resonate-and-fire

neurons [117]. Further experimental evidence will be required to understand

the true sources of noise in sensory encoding by populations, which may

involve many ionic currents [123]. A final source of noise not studied here is

quantal synaptic release, where a post-synaptic potential of random height is

generated in response to a single spike [18]. Quantal synaptic failure has been
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suggested as a mechanism to improve neural coding [124]. Further modeling

work should incorporate this effect.

A model of optimal neural source coding which predicts deterministic spike

times can be extended to generate jittered spike trains using a stochastic

threshold. The parameters of the neural encoding model and noise process

can be tuned to generate spike trains which match the range of spike-interval

statistics observed in the spike trains of P-type sensory afferents of a weakly

electric fish. The statistics are non-Poisson and non-renewal, showing strong

correlations between intervals. Introducing stochastic spike-firing does not

improve the encoding error of a single simulated neural source coder. How-

ever, simulated populations of these neural models show reduced encoding

error for nonzero noise power, which is a clear noise-enhancement effect. A

simple averaging of the population reconstructions improved encoding error.

The neural source coder with stochastic threshold also models observations

of spike-time reliability in response to constant and rapidly fluctuating stim-

uli. Further experiments involving population recordings in sensory systems

will be required to further study the role of spike-time variability in optimal

sensory encoding.
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CHAPTER 7

POTENTIAL APPLICATION OF
MINIMUM-ERROR ENCODING TO

COCHLEAR IMPLANTS

The previous chapters of this thesis have proposed a model of optimal,

energy-constrained neural encoding, compared the predictions to electro-

physiological recordings, and proposed extensions to the original model. This

approach has proven to accurately capture many aspects of sensory coding

seen in experimentally recorded neurons. The precisely timed spikes pre-

dicted by this approach allow for minimum-error decoding of sensory stim-

uli. An interesting question is whether or not an improved understanding of

sensory neural encoding can be applied to improve engineered systems, such

as cochlear implants, which interact with sensory neurons. This chapter pro-

poses a potential strategy for cochlear-implant sound-coding using the neural

source coder and presents initial validation of this model using a vocoding

experiment with normal-hearing subjects.

Here, the hypothesis is that the neural source coder can be used to time

electrical pulses in cochlear implants to improve sound-coding. Little prior

work has applied spiking neuron models to the problem of sound-coding for

cochlear implants, but this emerging model may prove to be a good candi-

date. The proposed approach would be a new way to do sound-coding in

cochlear implants. Precisely controlling the pulse-times following an opti-

mal neural encoding strategy may be critical to improving speech and pitch

perception for cochlear implants.

Cochlear implants are Brain Machine Interfaces (BMIs) which partially

restore hearing for profoundly deaf or severely hard-of-hearing individuals

[125, 126]. These implants are by far the most ubiquitous invasive BMI, with

hundreds of thousands of devices implanted worldwide. Cochlear implant

users, however, still suffer from poor perception, particularly for pitch and

music [127, 128]. These devices are limited by physical constraints such as

the number of possible electrodes [125], but also by sound-coding mecha-

nisms which do not accurately transform sound signals into electrical pulses
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to stimulate the auditory nerve [129]. The physical realities of battery life

and processing power also limit performance [125]. Although there has been

considerable success in restoring speech perception, there are still shortcom-

ings in cochlear implants. For example, the perception of pitch and music is

poor, and cochlear implant patients perform worse than hearing aid users at

melody and pitch perception tests [127].

Much prior work on binaural cochlear-implants has focused on study-

ing and overcoming the physical limitations of cochlear-implant devices.

The number of electrodes and electrode configuration have been studied

extensively in cochlear-implant patients [130] and in vocoding simulations

[131, 132]. Another critical parameter is the electrode insertion depth [133],

which can affect the area stimulated by each channel. The spatial spread

of current is also a major area of study, as it is linked to frequency reso-

lution in the cochlear implant [134]. The exact configuration of electrodes

and the configuration during stimulation can have a direct affect on speech

threshold levels [135]. However, it is critical to note that once a device is

implanted in the subject, it is no longer possible to increase the number of

channels, alter insertion depth, or change the electrode orientation. Due to

the physical limitations of already implanted devices, it is important that

sound-coding schemes be optimized for the best possible performance given

existing devices.

Cochlear implants stimulate the auditory nerve by coding sound signals

as electrical pulses. Each channel of the cochlear implant corresponds to a

frequency band which is closely related to the tonotopic mapping of nearby

auditory fibers. Typically, the sound is first passed through a filter bank,

generating a band-pass filtered waveform for each channel. These filters can

be designed with varying overlaps [136] and design methods [137], although a

common model is simply a bank of IIR filters with a constant Q factor (cen-

ter frequency to bandwidth ratio). Many current sound-coding approaches,

such as Continuous-Interleaved-Sampling (CIS), use the amplitude of the

signal envelope in each channel to modulate the pulse height [125]. ACE,

another common coding strategy [129], builds off CIS by adding a chan-

nel selection block to preserve frequency features. A more recent strategy,

Envelope Enhancement (EE), has been developed to enhance the encoded

pulses at critical times, such as the onset of a stimulus [129]. To improve

pitch perception, strategies have been developed to specifically modulate the
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pulses with the detected pitch [128]. The sound-coding strategy then pro-

duces pulses with varying amplitudes and interpulse intervals. Interestingly,

most of these models are ad-hoc and not directly based off the current un-

derstanding of encoding of signals by the inner hair cells and auditory nerve

neurons.

Very rarely have spiking neuron models been applied to cochlear implant

encoding, and in practice most coding strategies are similar to CIS. Model-

ing the inner hair cells, Meyer-Baese et al. [138] proposed two FPGA-based

models to capture impulse generation by the hair cells and the adaptation in

the spike rate using a two time-constant model. Further work by Grayden

et al. [139], proposed sound-coding based on models of the auditory system,

implementing a zero-crossing detector to generate spikes. Although inter-

esting approaches, these works have not yet supplanted standard cochlear

processing approaches such as CIS. The assumptions of these previous at-

tempts, however, do not guarantee a close match to spike times observed

in sensory afferents. The neural source coding approach provides a possible

way to time pulses such that the spike times of sensory afferents are closely

modeled. In particular, many existing sound-coding approaches do not fully

exploit the timing of pulses, which could play a key role in phase locking for

binaural processing and pitch processing [140].

For many cochlear-implant patients, it is not realistic to modify the im-

plant to improve performance, and current sound-coding strategies often do

not provide adequate performance for noisy speech and music perception.

This chapter proposes an extension of the neural source coder which can be

used to time pulses for cochlear implants, using pulses of a constant ampli-

tude. This is in contrast to many common strategies such as CIS, which rely

on amplitude modulation. It is possible that timing pulses using a modified

neural source-coding strategy will result in spike times in the sensory af-

ferents which mimic experimentally observed spike-times. If successful, this

approach could result not only in improved perceptual performance, but also

a new outlook on stimulus encoding for a wide variety of BMIs. Although

tests with cochlear-implant patients have not yet been conducted, initial

vocoding experiments with normal-hearing subjects suggest further work is

well warranted.
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7.1 Sound-Coding Strategy Using Neural Source

Coders

This section proposes a stimulation strategy for cochlear implants based on

the neural source coder. The goal is to time pulses from the implant such

that the spikes generated in the auditory neurons will follow the encoding

principles observed in the previous chapters. Here, the asymptotic form of the

neural source coder introduced in Chapter 3 is used to generate desired spike

times. Adapting the neural source coder to create a stimulation strategy,

however, first requires an understanding of the responses of auditory-nerve

neurons to electrical stimulation.

In healthy ears, the inner hair cells of the auditory system transduce me-

chanical vibrations of the cochlear into release of neurotransmitter to stimu-

late auditory neurons. Different spatial segments of the cochlear respond to

different stimulation frequencies, resulting in a form of frequency analysis.

This transduction process is complicated, and is often modeled in cochlear

implants with several signal-processing blocks. There is often an automatic

gain control block to account for the dynamic range of the signal, a pre-

emphasis filter, and a filter bank with frequency bands corresponding to the

spatial positions of the electrodes along the cochlear.

Although the auditory transduction process is complicated, the effects of

direct electrical stimulation of individual sensory neurons have been studied

in mammals. Experiments in cats show that the spiking probabilities of au-

ditory neurons in response to biphasic electrical pulses is quite high [141]. A

strong, biphasic pulse shows a high probability of generating a single spike

with a relatively fixed delay. Smaller pulses generate spikes with lower prob-

ability. Due to the spatial spread of the current, many nearby afferents are

likely affected. In the presence of a damaged cochlear, these spikes are partic-

ularly predictable [142, 143]. Repeated pulses can generate repeated spikes,

with refractory periods of less than one millisecond [144]. There is also strong

phase locking to direct sinusoid electric stimulation of auditory nerves [145].

Given these experiments, it is quite likely that human auditory neurons, in

humans with damaged cochlears, also spike once with high probability in

response to a large biphasic pulse. Therefore, the pulse times predicted by

the neural source coder can be translated into electrical stimulation pulses

of relatively large amplitude. This will result in a spiking pattern for nearby
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auditory afferents which will follow, with high probability, the desired spiking

pattern. Neurons which are further separated from the electrode will also be

stimulated, but with a lower probability of spiking, introducing a potential

complication. This sound-coding strategy is fundamentally different from

common CIS strategies which pulse at fixed intervals and instead vary the

amplitude to vary the probability of spiking. This is much like a rate-coding

strategy, which is often a poor model of sensory neural coding, as argued in

Chapters 4 and 5.

The proposed neural coding strategy is shown in Fig. 7.1. The fundamental

idea is that after the standard auditory filterbank, a neural source coder can

be used on each channel to generate pulse times with properties similar to the

spike times of sensory afferents. A current source then generates a biphasic

pulse, with fixed amplitude, to drive spikes on the auditory nerve with high

probability. The experimental work in the cat auditory nerve [141, 142]

suggests such a strategy will generate spike times on the auditory nerve

following the predictions of the neural source coder.

In Fig. 7.1, the first two stages of processing are shared with standard

cochlear implants. The first stage of processing is a pre-processing block,

representing the standard pre-processing steps for cochlear implants. The

most important of these steps is automatic gain control, which is necessary

due to the limited dynamic range of neural responses to electrical stimuli

[125]. After this, the signal is passed through a filterbank corresponding

approximately to the frequency ranges stimulated by each electrode channel.

The number of channels and the precise frequency mapping vary from patient

to patient, and can be considered fixed for the purposes of introducing a

neural source coder for cochlear implant sound-coding.

After analysis using the filterbank, a neural source coder is used to encode

each channel independently. The output of the filterbank is used as the input

signal s(t), and it is assumed that the reconstruction r(t) tracks the envelope

of the signal. The asymptotic form of γ = A/2 is used. To determine the

parameters Ai and τi for each channel, it is assumed some training data are

available. The parameters are then selected as

{A∗i , τ ∗i } = argminA,τ
1

T

∫ T

0

( ˆsi(t)− ri(t))2dt (7.1)

subject to Nspikes/T < Ri (7.2)
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where ˆsi(t) is the envelope of the output of each channel of the filter bank, and

Ri is the maximum average rate allowed for each channel in spikes per second.

One approach to choosing the values of Ri is to assume an overall average

number of spikes per sensory neuron expected in response to stimulation at

reasonable levels. In auditory sensory neurons, this would be approximately

150-200 spikes per second. This level is multiplied by the total number of

channels to get an overall rate R. Spikes are then assigned to each channel

as

Ri =
||si(t)||22
||s(t)||22

R (7.3)

This procedure, assuming small overlap between filters, assigns the overall

spikes to each channel proportionally to the power of that channel in the

training data. This strategy prevents a large number of pulses being assigned

to channels where the overall signal is small and dominated by noise.

A final consideration is that the pulses must be scheduled for output to

the implant. Implants cannot drive pulses faster than a maximum rate, and

cannot typically drive pulses on multiple channels simultaneously. More-

over, rapid stimulation of adjacent channels typically results in unexpected

behavior due to the spatial spread of current. Therefore, it is necessary to

introduce a refractory period ∆ which restricts simultaneous pulses on mul-

tiple channels. A simple strategy to accomplish this is to allow the channel

with the largest error to fire a spike, then lock out all firing for a period of ∆

seconds. Thus, channel i will fire a pulse at time t if the following conditions

are met:

1. ei(t) ≥ Ai/2

2. t − maxi,jti,j > ∆, where ti,j is the time of the jth pulse on the ith

channel

3. ei(t) ≥ ej(t), where j ranges from 1 to the number of channels

Simulations of this strategy, shown in Fig. 7.2, show significant difference

between the proposed method and standard CIS strategies. In this example,

a segment of music was processed using a 20-channel filter bank of second-

order Butterworth filters. The filters covered frequencies from 188 to 7938 Hz.

The envelope was estimated using half-wave rectification and filtering with
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Figure 7.1: The signal processing chain for the proposed method of using
neural source coders for sound-coding with cochlear implants. The figure
flows from the left to the right. The raw audio signal is first passed through
the standard pre-processing steps. This signal is then processed by the
filterbank to create band-pass signals. These first two stages are identical to
standard cochlear implant strategies, and the number of filters and filter
frequency bands are already determined for each patient. After the
filterbank, this thesis proposes using a neural source coder on each channel
to generate pulse times. A pulse-scheduling algorithm assures that pulses
do not occur too rapidly, which is determined by the hardware limitations
of each implant. The pulse times are then used as the input to a current
source which generates biphasic pulses. These pulses will drive individual
spikes in the sensory afferents with high probability, in principle resulting in
spike trains which follow the predictions of the neural source coder.

a low-pass filter with a 160 Hz cutoff frequency. Assuming an average rate

of 150 spikes per second, rates were allocated to each channel as described

above. For the channel shown in Fig. 7.2, the rate was 175 spikes per second.

The parameter A was 0.0023 V and the time constant was 16 milliseconds.

A CIS strategy was simulated, also using 175 spikes per second. For the CIS

strategy, the amplitude of each pulse is equal to the value of the envelope

at that time instant. Both pulse trains were reconstructed using the filter

h(t) of the neural source coder, although the filter was rescaled for the CIS

pulses. Figure 7.2B and C highlight the differences in pulses generated by the

two methods. The pulse train generated by the neural source coder shows

spike-rate adaptation to positive changes in the signal, and a low pulse rate

when the signal is small. When reconstructed, Fig. 7.2D shows that the

neural source coder follows the envelope much more precisely than the CIS

strategy, despite the CIS strategy encoding the exact envelope level. The

slight error between the neural source coder reconstruction and the envelope

is due to the fact that neural source coder input signal is the output of

the filterbank, not the envelope itself. The CIS reconstruction does not rise

rapidly enough in response to changes in the signal. The reconstruction error
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for the CIS strategy is -5.3 dBV compared to -7.5 dBV for the neural source

coder.

Figure 7.2: Simulated encoding of one cochlear-implant channel using a CIS
strategy and a neural source-coding strategy. Panel A shows the signal
envelope for one channel of the filterbank. The envelope is estimated using
half-wave rectification and a low-pass filter. Panel B shows a CIS encoding
of this envelope, using a pulse rate of 175 pulses per second (the same as
the neural source coder). Pulses are equally spaced with amplitude equal to
the signal envelope. Panel C shows the pulse times generated by the neural
source coder. In this case, the amplitudes of all the pulses are the same,
and the information is encoded in time. This strategy shows aspects of
sensory neural coding, such as the increase in spike rate when the envelope
rapidly increases. Panel D shows the original envelope, along with the
reconstructions of the neural source encoder and CIS strategies. The CIS
strategy lags when the envelope suddenly changes, and does not follow the
envelope as closely. This results in an encoding error of -5.3 dBV compared
to -7.5 dBV for the neural source coder.
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7.2 Hearing-in-Noise Test Using a Vocoding Simulation

Although this sound-coding strategy must obviously be tested on existing

cochlear-implant speech processors, a reasonable first step to assessing this

approach is to reconstruct the sound waveform and present the vocoded ex-

ample to normal-hearing listeners. Due to the difficulty of testing algorithmic

developments on large populations of cochlear-implant patients, vocoding ex-

periments involving normal-hearing subjects are often used as a preliminary

assessment of processing strategies for cochlear implants. Previously, vocod-

ing experiments have found noise and sine-wave vocoding result in similar

hearing thresholds [146]. Further work has investigated the number of chan-

nels required for accurate speech recognition [131, 132]. Other vocoding

strategies have been used to investigate electrode insertion depth [133] and

filter bank design [137].

Here, the Hearing In Noise Test (HINT) [147] is used to assess the difference

in hearing thresholds for the neural source vocoder and a standard noise

vocoder. To reconstruct the spike trains generated by the system in Fig.

7.1, the pulses are first filtered by the neural source-coding filter h(t). This

generates, in the limit of high spike-rates, an optimal estimate of the envelope

of the signal. Secondly, the pulses are filtered by the frequency response of

the filterbank for that channel, gi(t), scaled to create a unity-gain filter. This

creates an estimate of the carrier frequency for each channel. The theoretical

analysis of the optimal source coder does not provide any guarantees on this

reconstruction, but it appears to work well in practice. The carrier is then

modulated by the envelope to estimate the signal for that channel. The

signal in each channel is summed together and played to the listener. The

reconstruction process for a signal channel is shown in Fig. 7.3.

The noise vocoder is related to CIS and other strategies which stimulate

proportionally to the signal envelope. The same pre-processing and filter

bank is used for the noise vocoder as for the neural source vocoder. The

signal in each band is then half-wave rectified and low-pass filtered with a

cutoff of 160 Hz to estimate the signal envelope. The envelope is then used

to modulate colored noise, which is generated by passing independent, Gaus-

sian, white noise through the band-pass filter for each channel, normalized

to unity gain. The modulated signals are then summed together and played

to the listener. This strategy preserves the envelope in each frequency band.
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Figure 7.3: The reconstruction process for each channel in the proposed
neural source vocoder. The pulse train generated for each channel using the
system shown in Fig. 7.1 is passed through two different filters. The first is
the low-pass filter h(t) used by the neural source coder. This reconstruction
provides an estimate of the signal envelope, as predicted by the neural
source coder. The second filter is the band-pass filter gi(t) for the channel,
which is corresponds to the filter in Fig. 7.1 normalized to unity gain. This
provides an estimate of the carrier frequency of the signal. These two
signals are multiplied together to estimate the signal for this channel.

For the spike encoder, the spike rate varied from 73 to 228 spikes per

second, with an average of 153 spikes per second. The value of A ranged

form 0.0019 to 0.0025 and τ ranged from 20 to 30 milliseconds. A refractory

period of 1 millisecond was used. The parameters A and τ were chosen for

each channel using the procedure described above with one of the practice

sentences used as training data.

The HINT was administered to nine subjects in the laboratory of Justin

Aronoff (University of Illinois IRB, #14035). The subjects were all college

undergraduates with pure-tone thresholds in a normal range, as tested with a

standard audiogram. All subjects except Subject 6 spoke English as a native

language. Subject 6 was removed from the study for this reason. Subjects

were first allowed to practice the HINT using the signal without vocoding.

One of the two vocoders was then selected at random, and three sentence

lists were presented to the listener. The listener was then presented with

three sentence lists using the other vocoder.

For all listeners, eight channels were used. No preprocessing steps were

used in this experiment. The filter banks were implemented as fourth-order

Butterworth filters. The frequencies covered by the filter bank ranged from

200 Hz to 7000 Hz. Each sentence list consisted of 20 sentences. A threshold

of 50% of words identified correctly was used to determine whether to increase

or decrease the signal power. Speech-shaped noise was presented at a fixed
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Table 7.1: Results of HINT with Normal-Hearing Subjects (dB SNR)

Noise Vocoder Neural Source Vocoder Difference
Subject 1 3.29 -0.23 3.53
Subject 2 2.82 1.65 1.18
Subject 3 4.83 1.41 3.41
Subject 4 1.53 0.59 0.94
Subject 5 4.59 0.71 3.88
Subject 7 2.94 1.53 1.41
Subject 8 1.29 0.82 0.47
Subject 9 2.24 -0.47 2.71

level of 60 dB, and the signal level adjusted. Using the first sentence, the

signal power was increased by 4 dB until the listener could recognize 50% of

the words. For the remaining 19 sentences, the SNR was adjusted by 2 dB.

The results of this first experiment are summarized in Table 7.1. The data

from eight subjects are shown. The mean threshold for the noise vocoder was

2.90 dB SNR. The mean threshold for the neural source vocoder was 0.80 dB

SNR, a difference of 2.10 dB. For every subject, the neural source coder had

a lower threshold. The difference between the two encoders was found to be

significant using a one-sample t-test of the difference (p = 0.0012). Although

this result does not necessarily imply improvement in cochlear implants, it

does suggest that the neural source coder is preserving important aspects of

the signal. It also outperforms the noise vocoder, which relies solely on the

envelope of the signal.

7.3 Future Directions

The next step is to implement this strategy for testing with cochlear-implant

patients. This will require the ability to precisely control the pulse times

of the implant. Although the initial vocoder results are promising, it is

absolutely critical to investigate this strategy for actual cochlear-implant

users.

Further experiments will also be needed to assess the neural source coder

for binaural processing and pitch perception. The precise timing of the neural

source coder may preserve interaural time differences which are not used by
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strategies which rely solely on the envelope. Envelope-based strategies are

likely relying primarily on interaural level differences. Since the neural source

coder input signal is the output of each filter, spikes will tend to be generated

at the peaks of the signal. The phase locking predicted by the neural source

coder may also play a role in pitch and music perception.

Beyond cochlear implants, the neural source coder may have implications

for a large number of BMI systems. Few BMIs currently consider direct

neural feedback, and the user receives only ad hoc visual or haptic feedback.

A principled approach to optimally encoding stimuli for BMI systems which

directly stimulate sensory neurons could alter the design of devices such as

prosthetic arms. Feedback in these systems is usually visual, audio, or tactile.

Sometimes, cortical feedback is provided by implanted electrodes, known as

intracortical micro stimulation [148, 149]. In these cases, feedback tends to

use a rate code of electrical pulses, where the pulse rate is proportional to

the stimulus intensity. It is possible that the neural source coder could be

applied to generate spike trains which follow the principles of sensory neural

encoding.
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CHAPTER 8

CONCLUSIONS AND FUTURE
DIRECTIONS

This work has argued that sensory neurons follow an encoding principle which

simultaneously attempts to minimize encoding error while limiting the ex-

pended energy. Over millions of years of evolution, selective pressure has

likely favored the development of neural codes which represent sensory signals

with maximum fidelity. Yet at the same time, neural activity is metaboli-

cally expensive, which provides selective pressure to minimize neural activity.

Since neurons communicate with each other by firing action potentials, this

suggests the spikes must be timed to minimize error while simultaneously

limiting the rate at which they are fired.

The trade-off between minimum error encoding and energy consumption

can be modeled as a constrained optimization problem. This problem in-

volves minimizing the average, squared encoding error subject to a constraint

on the average spike-rate. For a first-order reconstruction filter in the limit of

high spike-rates, a solution to the constrained optimization problem is found

by tracking the encoding error and firing spikes when a threshold level is

reached. This approach suggests that neurons must track the reconstructed

signal internally to compute the reconstruction error, possibly using an adap-

tive threshold mechanism. In the limit of high spike-rates, this neural source

coder is capable of optimizing the trade-off between error consumption and

encoding error.

Comparing the predictions of the neural source coder to experimental data,

several key features of experimental spike-trains were replicated which were

not explicitly modeled in the optimization problem. The neural source coder

was able to predict spike times with millisecond precision in both a peripheral

sensory neuron and a cortical neuron. The accuracy of the predictions for

the cortical neuron were particularly surprising, as the spike rate was quite

low. Additionally, the neural source coder predicts the asymmetric spike-rate

adaptation observed in experimental data.
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Further analysis of the neural source coder yielded an alternative view of

the encoder as an instantaneous-rate coder of a function which depends on

the signal, signal derivative, and encoding parameters. This model shows

rate coding properties when the signal is slowly varying and temporal coding

properties due to spike-rate adaptation when the signal is rapidly varying.

The addition of a noisy threshold results in spike times which closely match

the interval statistics observed in experimental neurons. Overall, the neural

source coder predicts many experimental phenomenon which are not explic-

itly modeled by the constrained optimization approach.

Introducing the noisy threshold also reduced encoding error in a simulated

neural population, where reconstruction was performed by averaging across

neurons. This noise enhancement suggests that while deterministic times

may minimize encoding error in individual neurons, populations may benefit

from jittered spiking. Further work will be necessary to examine minimum-

error, energy-constrained encoding in populations. This will require more

detailed modeling of the synapse and dendrites, to understand how signals

from multiple neurons are integrated before being encoded as a spike train. It

is also possible that populations with inter-neuron communication could out-

perform populations of neurons which do not have interconnections [58], and

it will be important to investigate encoding error in both of these situations.

More experimental work is also necessary. This work suggests that there

is a range of possible trade-offs between encoding error and energy consump-

tion. This likely varies from sensory system to sensory system, and may

also change with time. Experimental work in different sensory afferents

may lead to a better understanding of this trade-off. Intracellular record-

ings may be needed to better understand how such a mechanism could be

implemented biophysically. This might allow for experiments to better un-

derstand spike-threshold adaptation and the relationship to minimum-error,

energy-constrained neural encoding.
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APPENDIX A

ENERGY-CONSTRAINED,
MINIMUM-ERROR ENCODING WITH LP

NORMS

What is the appropriate error metric when studying neural coding? In many

prior studies, such as stimulus reconstruction studies [38], encoding error is

studied using a squared-error criterion. A squared-error, or mean squared-

error, criterion has been well studied and is mathematically tractable. How-

ever, it is unclear what criterion is actually optimized in the process of neural

coding. This appendix shows that the results of Chapter 3 using the lin-

earized model of the error can be extended to the class of Lp norms, for a

real number p ≥ 1. These norms are defined by

‖x(t)‖p =

(∫ T

0

|x(t)|pdt
)1/p

(A.1)

for a function x(t) defined from 0 to T .

In terms of the LP norms, Problem 3.1 can be written as

min
γ(s(t),t),A,τ

1

T
(‖s(t)− r(t)‖p)p (A.2)

subject to R =
E − b
k

Here, the norm is raised to the pth power, which is monotonically increasing

and preserves the minimizing value. In the limit of high spike-rates, it is

possible to take the approach of Chapter 3 and linearize the error. The same

assumptions on the input signal s(t) are required.

As the choice of norm does not affect the linearization of the input signal

and reconstruction, Lemma 1 still holds. Then with small error for a high

spike-rate, the error can be expressed as

ê(t) = (s′(0) +
s(0) + A− γ

τ
)t− (A− γ) (A.3)
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Assuming s(t) >> A − γ, the result of Lemma 2 still holds, and the time

until the next spike is given with small error by

∆̂ =
A

s′(0) + s(0)/τ
(A.4)

The average error for the Lp norm criterion in Problem A.2 over the interval

0 to ∆̂ is then given by

1

∆̂

∫ ∆̂

0

∣∣(s′(0) +
s(0)

τ

)
t− (A− γ)

∣∣pdt (A.5)

The linear form of the error is always increasing over the interval from 0 to ∆̂,

under the assumptions on the input signal stated in Chapter 3. Therefore,

the error undergoes a sign transition at most once. The transition point,

where ê(t) = 0, can be defined as t = δ with 0 ≤ δ ≤ ∆̂. The integral can

then be written as

1

∆̂

(∫ δ

0

(−
(
s′(0) +

s(0)

τ

)
t+ (A− γ))pdt+∫ ∆̂

δ

((
s′(0) +

s(0)

τ

)
t− (A− γ)

)p
dt

)
(A.6)

Evaluating the integral gives

1

∆̂

(
−

(−
(
s′(0) + s(0)

τ

)
δ + (A− γ))p+1

(s′(0) + s(0)
τ

)(p+ 1)
+

(A− γ)p+1

(s′(0) + s(0)
τ

)(p+ 1)
+((

s′(0) + s(0)
τ

)
∆̂− (A− γ)

)p+1

(s′(0) + s(0)
τ

)(p+ 1)
−

(
(
s′(0) + s(0)

τ

)
δ − (A− γ)

)p+1

(s′(0) + s(0)
τ

)(p+ 1)

)
(A.7)

Since at the transition point δ the linearized error is zero, this expression is

reduced to

1

∆̂

(
(A− γ)p+1

(s′(0) + s(0)
τ

)(p+ 1)
+

((
s′(0) + s(0)

τ

)
∆̂− (A− γ)

)p+1

(s′(0) + s(0)
τ

)(p+ 1)

)
(A.8)

Substituting the value of ∆̂, taking the derivative with respect to γ, and
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setting the derivative to zero gives

(A− γ)p = (γ)p (A.9)

which is satisfied by γ∗ = A/2, regardless of p. The second derivative with

respect to γ is given by

p(A− γ)p−1

A
+
pγp−1

A
(A.10)

which is greater than 0 for all 0 < γ < A. The point γ∗ is therefore a unique

minimum over the range of interest, for all values of p ≥ 1. For the limiting

case of p → ∞, the L∞ norm is the maximum of the absolute value of the

error function over the interval. This is also minimized by γ∗ = A/2, as any

other value results in an absolute value of the error greater than A/2 either

just before or just after the spike. The rate constraint is still satisfied by

applying the results of Theorem 2. When analyzing the linearized model in

the limit of high spike-rates, the results of Chapter 3 hold for the class of LP

norms.
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