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ABSTRACT 

 Molecular imaging (MI) has revolutionized the visualization of complex biochemical 

processes in normal physiology and diseased states. Although still in its infancy, the data 

generated from MI studies aids in identifying sites of pathological involvement and provides key 

insight into the mechanisms that lead to the onset and progression of disease. Consequently, 

these techniques hold tremendous potential in the areas of diagnostics, therapy assessment, 

and drug development in the coming years.  

Amongst MI techniques, Positron Emission Tomography (PET) separates itself from the 

rest of the field with its exceptional sensitivity, near limitless depth of penetration and its ability 

to quantify metabolic processes in living patients. With the ability to visualize and quantify on an 

individualized basis, PET imaging has received considerable attention recently because of its 

potential for contributing to personalized medicine. Through better diagnosis, rational selection 

of targeted therapies, and individualization of therapy regimens for each patient, personalized 

medicine holds the promise of greatly improving patient outcomes as well as safeguarding 

against the use of unnecessary, harmful medical procedures.  

Given the current status of the PET field and the impact it has on many fields, significant 

effort is being made to expand the existing repertoire of imaging agents capable of further 

detailing pathophysiological processes beyond the most commonly used PET tracer, 

[18F]fluorodeoxyglucose, including the use of large, sensitive biomolecules such as peptides and 

antibodies, which may be of considerable clinical importance. However, the available 

methodology associated with PET isotope incorporation, specifically fluorine-18, involves rather 

harsh conditions that are incompatible with sensitive substrates, which restricts the availability of 

these agents and their subsequent clinical evaluation. Thus, there remains a tremendous need 

for rapid, mild and efficient methodology that can be used to label these previously inaccessible 

substrates in a direct, late-stage fashion. 

 Chapter 1 presents a brief introduction into molecular imaging and the techniques 

available for use in the preclinical and clinical setting as well as in drug development. 

Additionally, the basics of PET principles and radiochemistry are introduced, with a significant 

focus on the synthetic difficulties involved in working with the most commonly used PET isotope, 

fluorine-18, and why there is a need for improved methodology for its incorporation into new 

radiopharmaceutical agents, especially sensitive ones. 
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Chapter 2 details the development of methodology that targets the shortcomings of C-

18F strategies through Si-18F bond formation approaches. We have developed a simple and 

straightforward strategy in radiofluorinating complex substrates at a late stage, at room 

temperature, or in an aqueous environment in high radiochemical yields and specific activities 

through a reactive silyl acetate moiety. The utility and versatility of the approach is showcased in 

three main areas of research: small adaptor molecules, small molecules, and peptides. 

We have applied this Si-18F labeling strategy (Chapter 3) to prepare a fluorine-18 labeled 

version of 17α-ethynylestradiol conjugated PAMAM dendrimer that can be used for in vivo 

distribution studies of this novel hormone-polymer conjugate. Through biodistribution studies, 

we have found that the EDC, a dendrimer-bound estrogen that provides selective 

cardiovascular protection without classical stimulation of uterus and mammary tissues, also 

shows selective, ER-mediated uptake and retention by the vascular target tissues, heart and 

aorta, but not the classical target, the uterus. These findings suggest that the selective 

cardiovascular protective effect of EDC is the result of two factors, one mechanistic (selective 

stimulation of the extra-nuclear pathway of ER action) and one pharmacokinetic (selective 

accumulation of EDC in vascular targets). This points to a new dimension for extending the 

selective, potentially beneficial actions of estrogens. 

Chapter 4 details the synthetic approaches towards the radiosynthesis a promising ER 

imaging agent, 2-[18F]fluoroestradiol, and illustrates the most well-known difficulty encountered 

in fluorine-18 chemistry, specifically the radiofluorination of electron-rich aromatic rings. Efforts 

have focused on the use of diaryliodonium salts which has afforded synthetically useful 

radiochemical yields of the desired compound and is currently being scaled up, in terms of 

radioactivity, for evaluation in animal studies.  
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CHAPTER 1 

INTRODUCTION 

I. MOLECULAR IMAGING BACKGROUND 

A. Background 

Advances in minimally invasive imaging technologies have opened up endless 

opportunities for molecular diagnostic and therapeutic regimens.1 Traditionally, the primary role 

of molecular imaging has been to assist medical diagnosis as a confirmation tool of diseased 

states through the in vivo visualization of the presence and extent of pathologies. More recently, 

the functional information of diseased states elucidated through imaging techniques has 

significantly transformed medical diagnosis from a mere identification tool towards the ability to 

characterize the molecular processes involved with disease progression.2 Consequently, this 

will have a tremendous impact on patient care and treatment in the coming years, especially in 

the development of personalized medicine, in addition to becoming an indispensable research 

tool for drug development.3,4  

B. Molecular Imaging and Personalized Medicine 

 Molecular imaging enables the visualization, characterization, and measurement of in 

vivo biological processes in living systems through the use of specific imaging probes. It 

comprises a range of techniques (Table 1.1), but the premise is basically the same throughout: 

an optimally designed tissue- or receptor-specific compound provides an analytical signal (e.g., 

positrons, gamma rays) that is detected by a given detector, which after using complex 

computational algorithms, yields a two- or three-dimensional detailed image of the targeted 

structure or biological process under study.5  The proper choice among the available imaging 

techniques ultimately depends on the particular biological process to be visualized and the data 

that is needed from the study.6  
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Modality 
Spatial 

Resolution 
Sensitivity 

Safety 
Profile 

Used  
Clinically 

Quantification 

Computed 
Tomography 

(CT) 

 
0.5-1 mm 

Not  
Determined 

Ionizing 
Radiation 

 
Yes 

 
- 

Magnetic 
Resonance 

Imaging (MRI) 

 
1 mm 

 
10-3-10-5 M 

No Ionizing 
Radiation 

 
Yes 

 
Fair 

Positron 
Emission 

Tomography 
(PET) 

 
2`-7 mm 

 
10-11-10-12 M 

Ionizing 
Radiation 

 
Yes 

 
Very Good 

Single Photon 
Emission 

Computed 
Tomography 

(SPECT) 

 
8-10 mm 

 
10-10-10-11 M 

Ionizing  
Radiation 

 
Yes 

 
Good 

Ultrasound (US) 1-2 mm 10-12 M 
Good Safety  

Profile 
Yes Poor 

Optical 
Fluorescence 
Imaging (OFI) 

 
2-3 mm 

 
10-9-10-12 M 

Good Safety  
Profile 

 
Emerging 

 
Poor to Fair 

 

Table 1.1 Comparison of the different molecular imaging techniques available. 

 

Molecular imaging has played a key role in translational biomedical research and 

diagnostic clinical studies. Imaging the presence and functionality of a given diseased state 

provides tremendous insight into the mechanisms leading to disease onset and progression. 

Although similar information in certain cases can be obtained through tumor biopsies and 

subsequent histopathological evaluations, it is difficult and risky to obtain biopsies from some 

tumor sites, such as those present in the brain; so, less invasive approaches are needed. 

Additionally, tumor heterogeneity,7,8 biopsy sampling errors,9 and varying expression profiles 

between primary and metastatic sites10,11 further complicate matters and thus may not yield a 

true representation of the diseased state. Advances in medical imaging, however, can provide 

detailed biochemical information at the earliest stages of disease onset, often before any 

observable symptoms are seen in the patient. Early detection before the disease has 

progressed can improve the prognosis and also can allow for the customization of appropriate 

therapeutic regimens to the individual patient. Such advances hold tremendous potential for 

accelerating appropriately designed targeted therapy through personalized medicine that not 

only can serve to reduce high medical care costs but more importantly, safeguards against the 

use of unnecessary, harmful medical procedures.  
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Our group has utilized a similar PET imaging strategy to understand the molecular 

characteristics of a breast tumor before starting treatment in order to establish the most 

appropriate therapy for patients with advanced ER+ breast cancer. Specifically, the levels of 

estrogen receptor in a breast tumor have been shown to be important prognostic indicators for 

the progression of the disease, and the presence of the receptor is used to guide the treatment 

regimen. Tumor uptake using the most promising high affinity ER agent to date, 16α-

[18F]fluoroestradiol (Figure 1.1., [18F]FES, 1), as measured by PET imaging, aids in the 

confirmation of ER expression in the tumor (more accurately than from standard 

immunohistochemical studies) and thus serves as a strong predictor for the success of hormone 

therapy.12,13 Although these studies can confirm the presence of ER in tumors, they do not 

establish that this ER is functional, and thus uncertainty remains as to whether hormone therapy 

will be beneficial. The functionality of the receptor can be assessed by an additional hormone 

challenge test that uses [18F]FDG-PET (2) to monitor a metabolic flare in terms of enhanced 

uptake after a 1-day estradiol treatment in breast patients in which tumor ER is functional.14 

Taken together, both approaches aid in the selection of patients that will most likely benefit from 

ER-targeted therapies and such strategies have already been implemented within the clinic.15-17 

Thus, in this instance, confirmation of the presence and function of ER through FES- and FDG-

PET imaging studies enables selected patients to undergo less toxic endocrine therapies 

instead of the more costly and morbid cytotoxic therapy. By individualizing treatment plans such 

as this one, the expectation is that patient outcomes will be greatly improved.  

 

Figure 1.1. Structures of 16α-[18F]fluoroestradiol (FES, 1) and 2-[18F]fluoro-2-deoxyglucose  
(FDG, 2). 

 

C. Impact of Molecular Imaging on Drug Development 

Beyond clinical applications, molecular imaging has become an important component in 

the drug development process.18,19 The cost of bringing a drug onto the market has been 

steadily rising and is expected to continue to rise in the coming years, with the average cost 

estimated around 1 billion dollars.20,21 Therefore, the development of more cost-effective 

strategies aimed at accelerating the drug development process are highly desired. Molecular 
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imaging is now anticipated to play a key role in this process. After optimization of a radiotracer’s 

in vivo behavior, it is possible to determine the occupancy of the drug candidate at the target 

site through kinetic modeling studies in addition to the duration of target engagement.22,23 Such 

studies are aimed at investigating the relationship between receptor occupancy levels of the 

drug in order to establish dose selection and to observe any pharmacological effects at a given 

dose. This data not only enables a better understanding of the in vivo pharmacokinetics of the 

drug and the required drug levels needed to obtain pharmacological effects, but more 

importantly, it provides invaluable insight into potential toxicity or side effects associated with the 

drug. This in turn facilitates the opportunity for drug companies to halt lead drug candidates that 

fail to exhibit the desired in vivo behavior or may possess unanticipated toxicity that otherwise 

would have not been discovered until potentially the costly Phase 3 trials. This leads to an 

enormous cost savings aimed at circumventing the failure of drug candidates in late stages of 

clinical trials, while at the same time, allowing for the acceleration of those that appear 

promising.   

 

II. POSITRON EMISSION TOMOGRAPHY 

A. Background  

Positron Emission Tomography (PET) is a powerful, minimally invasive imaging 

technique that is used to visualize and characterize human physiology. Unlike Magnetic 

Resonance Imaging (MRI) and Computed Tomography (CT), which provide detailed anatomical 

images associated with structural abnormalities related to pathologies, PET separates itself 

from the rest of the field with its exceptional sensitivity towards positron detection and its ability 

to measure metabolic processes in living patients. By monitoring the biodistribution and uptake 

of a positron emitting radiotracer in the body over a given time period, PET enables researchers 

to quantitate important physiological and biochemical information about the onset and 

progression of diseased states.24  

B. PET Imaging of Disease 

 PET has a tremendous impact as both a medical and research tool.25  By far, the most 

commonly used PET tracer for medical imaging is [18F]fluorodeoxyglucose ([18F]FDG, 2).26 

[18F]FDG-PET exploits the upregulated glucose transport and glycolysis pathway of tumors, 

where, after undergoing an initial phosphorylation, the labeled agent becomes irreversibly 

entrapped in tumor tissues. The subsequent elevated accumulation leads to an imaging contrast 

between cancerous and normal tissues.27 As a result, [18F]FDG has been extensively used as a 
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biomarker in oncology, including the detection of breast, lung, and colorectal cancers.28 In 

neurology, PET has proved useful for the imaging and characterization of early onset 

neurodegenerative disorders, such as Alzheimer’s29,30 and Parkinson’s diseases.31,32 The 

extensive use of PET in neuroimaging is most likely due to the inability of accessing brain tissue 

except through autopsies, and thus enables diagnosis in living patients. PET has also been 

extensively utilized in cardiology as a myocardial imaging tool to characterize coronary heart 

disease.33  

Given the current status of PET and the impact and potential that it has on various fields 

of medicine, there is a significant effort among researchers to expand the existing repertoire of 

imaging agents capable of further detailing pathophysiological processes that may be of 

considerable clinical importance. Because of this, there is immense interest of the development 

of more specific imaging probes that can potentially provide additional biological information 

than what is currently already known for tracers such as FDG.   

C. Principles of PET 

PET imaging probes are radiolabeled with positron-emitting radionuclides which decay 

by the emission of a positively charged particle called the positron, the antimatter of an electron, 

which has identical mass but contains a positive charge. Schematically, the decay process for 

this nuclear transformation is shown below (Figure 1.2): 

 

                           aX
m   a-1Y

m + β+ + v 
 

a = Atomic Number 
m = Mass Number 
X = Parent Nuclide 
Y = Daughter Nuclide 
β+ = Positron 
v = Neutrino 
 

Figure 1.2. The decay process for positron-emitting radionuclides. 
 

All positron emitters contain nuclei that are proton-rich and emit excess protons in an 

attempt to reach nuclear stability through two different processes: positron emission and 

electron capture. Positron emission tends to occur in lower atomic weight nuclei (e.g., 18F, 11C), 

while the predominant mode of decay in higher atomic weight nuclei (e.g., 123I) is electron 

capture. 

As the radionuclide undergoes positron-emission decay, the emitted positron, being 

highly interactive, is not detected directly but traverses a short distance (typically 0.5-2.0 mm 

depending on radionuclide and positron energy) and, due to interactions with the surrounding 
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medium, decelerates to an energy minimum where it then interacts with an electron. The 

collision produces an annihilation event from which the two particles yield two gamma photons 

of 511 keV, which are emitted at approximately 180o to each other (Figure 1.3). It is the 

simultaneous detection of the two emitted gamma photons along a line of coincidence that 

enables statistical analysis to reconstruct the location of the annihilation event. The resulting 

image details the approximate accumulation of the PET radiotracer within a given tissue, and 

interpretation can facilitate patient diagnosis and possible therapeutic regimen.34  

 

Figure 1.3. Schematic representation of a positron decay and the annihilation event that result  
in a PET image. The 11C (blue dot) nucleus emits a positron (red ball) which interacts with 
an electron (green ball) to produce two gamma photons that are detected by the PET 
instrument (red blocks).35 

 

III. RADIOSYNTHESIS WITH SHORT-LIVED PET ISOTOPES 

A. Available Positron Emitters and Synthetic Aspects  

One of the more attractive features of PET is its use of radionuclides (Table 1.2) that are 

isotopes of the main elements found in biomolecules (e.g., C, N, and O). This enables the 

radiosynthesis of labeled probes to be chemically indistinguishable from their nonradioactive 

counterparts and thus to function without altering the in vivo biological properties of the original 

compound. Fluorine is normally not found naturally in biomolecules, but the exchange of a 

hydrogen or an oxygen atom for a fluorine is one of the more commonly applied bioisoteric 

replacements, especially in drug development,36 and at times, this substitution can exhibit 

improved in vivo behavior when compared to their non-fluorinated analogues.37  
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Radionuclide Half-Life (min) 
Maximum Energy 

(MeV) 
Mode of Decay 

Decay 
Product 

11C 20 0.97 β+(99%) 11B 
13N 10 1.20 β+(100%) 13C 
15O 2 1.74 β+(100%) 15N 

18F 110 0.64 
β+(97%) 
EC (3%) 

18O 

 
Table 1.2. Nuclear properties of commonly used positron-emitting radionuclides. 
 

The incorporation of short-lived radioisotopes into tracers for PET imaging, however, is 

not a trivial task: the labeled probe must be synthesized, purified, characterized, and 

reformulated for human injection, all within two or three half-lives of the PET isotope in use. This 

demands rapid synthetic sequences, with the isotope being introduced as late as possible into 

the scheme. Typically, a large excess of precursor (often, 103-104-fold higher than the 

concentration of the isotope) is used to effectively drive the reaction to completion within the 

short time frame. To further complicate matters, the presence of ionizing radiation emitted from 

the radionuclides poses serious health concerns, and because of this, radiosynthesis differs 

significantly from mainstream organic chemistry. First, all chemical transformations are 

performed in lead-lined fume hoods called hot cells. These cells are relatively bulky and difficult 

to work in because they obstruct optimal access to the reaction vessel and require specific 

handling procedures. Second, standard workup and purification practices in bench top 

chemistry are unsuitable to the radiochemist. The dangerous radiation necessitates maintaining 

adequate distances from the radionuclide to limit the absorbed dose; thus, one cannot touch 

anything inside the hot cell where the isotope is present. Lastly, the production of radioisotopes 

typically yields only picomolar to nanomolar amounts of activity. Radiochemists often refer to 

this chemistry as working on tracer levels due to the miniscule amounts of the isotope present. 

One would imagine that the vast stoichiometric excess of starting material used would only 

serve to benefit the radiosynthesis. Unfortunately, working at tracer levels can differ significantly 

from cold chemistry and often involves considerable manipulation of reaction conditions to 

obtain any successful incorporation.  

B. Radiochemical Yields 

 Radiochemical yields (RCYs) can be reported two ways: decay-corrected and non-decay 

corrected yields. Decay corrected yields, which are calculated back from the end of 

bombardment of the target, are indicative of the success of the radiochemical reaction and are 

most often cited in the development of new methodology. Non-decay corrected yields are much 
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more useful and informative in the preparative potential of a synthetic scheme, and they aid in 

determining the amount of activity of a radiotracer after purification.  

C. Specific Activity 

 A key component associated with PET imaging is the calculated specific activity of the 

radiotracer. The term specific activity (SA) denotes the amount of radioactivity per mass of 

compound (both labeled and unlabeled) and is typically expressed in Ci/mmol or GBq/µmol. 

Radiochemists strive for high SA radiotracers, which contain mainly the desired isotope with 

minimal non-radioactive nuclide contamination in the desired material. This is critical, especially 

with receptor-based PET imaging, because of the low physiological concentrations of receptors 

present within the body and thus, the limited availability of binding sites that can be occupied by 

the radioligand. Low specific activity material, which contains significant amounts of unlabeled 

mass as compared to the radiotracer itself, can lead to saturation of these binding sites at low 

activity levels, resulting in a reduction of signal-to-noise ratios and essentially no image contrast. 

Moreover, the additional injected mass may be at high enough concentrations to cause 

pharmacological or toxic side effects. Typically, SA values over 1000 Ci/mmol are deemed 

suitable for PET imaging studies. 

 Specific activities can also be defined as effective specific activities. This is the specific 

activity of a radiotracer that has been determined by a biological assay. Additional mass may be 

present in the final radiotracer preparation which contains similar biological properties to that of 

the desired radiopharmaceutical and is taken into account for this calculation. 

 Several factors contribute to the SA values of labeled compounds. First, these values 

are directly dependent on the radionuclide’s half-life, with the shorter the half-life having higher 

theoretical specific activities. Second, the ubiquitous presence of nonradioactive nuclides 

present in glassware, solvents etc., which can also be incorporated into the radiotracer, can 

significantly reduce activity levels. Lastly, the vast excess of starting materials needed to drive 

the reaction to completion can complicate purification efforts, and difficulties in fully separating 

the radiolabelled product from abundant quantities of the unlabeled precursor or other reaction 

products can also have a detrimental effects, especially if they are able to compete with the 

labeled radiotracer for the target site of imaging.  
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IV. CHEMISTRY OF [18F]FLUORIDE ION 

A. Background 

Of all the available positron nuclides employed in PET, fluorine-18 is often considered 

the isotope of choice for PET imaging because of its ideal nuclear properties. Its sufficiently long 

half-life (110 min) allows for complex, multi-step syntheses, extended in vivo imaging studies, 

and from a practical point of view, commercial distribution to satellite clinical PET centers that 

lack F-18 production facilities. Furthermore, the clean decay properties (97% β+) and relatively 

low positron energy results in PET images of the highest quality. Moreover, the low abundance 

of fluorine-19 in the environment enables the synthesis of F-18 labeled compounds in high 

specific activity, a perquisite for receptor-based imaging.  

However, despite these positive and laudable properties of F-18, the radiochemistry 

associated with its introduction is far from ideal, especially in the context of direct labeling of 

sensitive biomolecules such as peptides and proteins. The variety of synthetic methods by 

which F-18 can be introduced is rather limited and can be divided into two distinct areas: an 

electrophilic method utilizing [18F]F2 directly or less reactive electrophilic reagents derived from 

the gas itself, and a nucleophilic [18F]fluoride anion derived from an aqueous target. 

B. Electrophilic [18F]Fluorinations 

 Although a majority of F-18 radiochemistry in PET relies on nucleophilic [18F]fluoride 

anion, electrophilic fluorinating agents have played a key role in the development of clinically 

relevant 18F-radiopharmaceuticals. For instance, [18F]F2 gas was used in the initial synthesis of 

[18F]fluorodeoxyglucose ([18F]FDG, 2, Scheme 1.1) because its regioselective addition to one 

face of the double bond afforded the required configuration in the 18F-labelled sugar product.38 

Due to its high reactivity, [18F]F2 is typically converted to less reactive and more selective 

reagents, such as acetyl hypofluorite (CH3CO2[
18F]F),39 xenon difluoride (Xe[18F]F2)

40 and 

fluorosulfonamides (R-SO2-NR[18F]F),41 which are commonly utilized in direct electrophilic 

substitutions with electron-rich substrates (e.g., alkenes, aryl groups).  

 
Scheme 1.1. Radiosynthesis of 2 with electrophilic [18F]fluoride ion.38  
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The most obvious shortcoming of the electrophilic method is the low specific activities of 

the [18F]fluorinated products. The issue stems from how [18F]F2 gas is produced. Two of the 

more common strategies involve the nuclear reactions, 20Ne(d,α)18F or 18O(p,n)18F, and in order 

to prevent the [18F]fluoride ion from being fully adsorbed on the target walls, 19F gas (0.1-2%) is 

added, diluting the original high specific activity [18F]fluoride anion with now carrier added 19F to 

afford the 18F-19F gas. Thus, in reactions involving the 18F-19F gas, the maximum radiochemical 

yield (RCY) is 50% since only one [18F]fluoride can be incorporated into the desired product, but 

in practice, specific activities are very low because of the large excess of [19F]F2 gas needed in 

production of the [18F]F2 gas. Even with the monofluorinated agents, such as acetyl hypofluorite 

(CH3CO2[
18F]F) where the theoretical RCY can be 100%, these agents are also prepared from 

the 18F-19F gas; so, the maximum RCY is still at most 50% in these instances. Specific activity 

values from all of these electrophilic fluorination methods are typically less than 10 Ci/mmol, 

thereby rendering the corresponding [18F]fluoroproducts unsuitable for PET studies involving 

saturable receptors.  

 Despite these shortcomings, the electrophilic method still possesses tremendous clinical 

value in those applications that do not require high specific activity. Currently, it remains the 

preferred method, due to the synthetic ease over multi-step nucleophilic syntheses, for the 

routine syntheses of common radiopharmaceuticals for patient use, including [18F]fluoro-L-

dopa42 ([18F]FDOPA, 5, Scheme 1.2) and [18F]fluorotyrosine ([18F]FT). 

 

Scheme 1.2. Radiosynthesis of [18F]FDOPA (5) from organotin precursor (4) by direct 
fluorination with [18F]F2.

42 
 

Recently, two influential studies have been reported to address the specific activity 

issues of [18F]F2 gas, and both hold promise for the use of electrophilic F-18 as a viable 

synthetic alternative. In the context of improving the specific activity of [18F]F2 gas, significant 

improvements have been achieved through the use of [18F]fluoromethane, prepared from no-

carrier-added [18F]fluoride anion and H2[
18O]O as the target, where, after electrical discharge in 
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the presence of miniscule amounts of 19F2 gas, affords [18F]F2 gas in high specific activity (1500 

Ci/mmol).43 In comparison, the previously highest reported SA was 55 Ci/mmol.44  

 Ritter and coworkers reported45 the first electrophilic [18F]fluorination reagent (Scheme 

1.3), an in situ generated [18F]fluoropalladium (IV) species (7), prepared from no-carrier-added, 

high specific activity [18F]fluoride anion. The chemistry works exceptionally well in late-stage 

[18F]fluorination of complex substrates, including efficient reactions with electron-rich aromatic 

rings (9), in satisfactory RCYs. The generation of such electrophilic species from the widely 

available [18F]fluoride anion, as opposed to the less accessible [18F]F2 gas, affords synthetically 

useful electrophilic 18F equivalents in a facile and concise manner with sufficiently high reactivity 

under mild conditions of late-stage, complex substrates. Consequently, access to conventionally 

unavailable radiotracers through this method will greatly expand potential PET applications.  

 

Scheme 1.3. Late-stage [18]fluorination of complex substrates with electrophilic [18F]fluoride  
(7).45 

 

C. Nucleophilic Chemistry  

 The nucleophilic method is the method of choice for the radiosynthesis of 18F-labelled 

tracers in high specific activity. [18F]Fluoride anion may be produced by several methods,46 but 

by far, the most common is through proton irradiation of 18O-enriched water.47 An enrichment of 

>95% H2[
18O]O (occurs naturally in ~0.2%) is required because 16O can also undergo a nuclear 

reaction within the target to produce nitrogen-13 (t1/2 = 9.96 min), although the byproduct has 

essentially no effect on the chemistry itself. Overall, this nuclear reaction, 18O(p,n)18F, is 

intrinsically high yielding from small, compact cyclotrons, with several Curies (Ci) of activity 

being routinely produced in about an hour. Moreover, the method of production involves no 
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carrier addition, enabling the production of [18F]fluoride ion at high specific activities. This factor 

alone explains its clear preference over electrophilic methods as it enables production of PET 

probes that can be used for receptor-based imaging studies. Also, the resulting [18F]fluoride ion 

is obtained as an aqueous solution, affording a product that is considerably easier to handle and 

work with as compared to [18F]F2 gas.  

 However, the aqueous [18F]fluoride obtained is a poor nucleophile because of its tightly 

bound hydration sphere, and thus one must undertake a tedious, time-consuming drying step in 

order to produce a sufficiently anhydrous [18F]fluoride ion for nucleophilic substitution reactions 

to proceed. Key to this step is the addition of an appropriate base to afford a reactive, organic 

soluble fluoride source. Traditionally, slightly soluble inorganic fluoride sources such as K[18F]F 

were utilized, but the slow and inefficient reactions were hampered by the low solubility of the 

potassium salts. More recently, activation of the [18F]fluoride ion through the use of cryptands48 

has significantly enhanced fluoride solubility and in turn, has greatly improved radiochemical 

yields. By far, the most popular method employs the aminopolyether, 4,7,13,16,21,24-hexaoxa-

1,10-diazabicyclo[8.8.8]hexacosane (Figure 1.4, K222, 10), that can effectively complex the 

potassium counter ion in K[18F]F to produce a highly nucleophilic, organic soluble “naked” 

fluoride anion. Other alkali metals (i.e., Cs, Rb) or quaternary ammonium fluoride salts, obtained 

from their respective carbonates, bicarbonates, or hydroxides, have also been utilized with 

varying success. Overall, the choice of cation often plays a critical role in the success of 

radiofluorination reactions, but definitive guidelines for correctly choosing any of the available 

options do not exist and more often, one must screen the reaction to find the optimal base. 

 
Figure 1.4. Structure of 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (K222). 
 

 In a typical drying step (Scheme 1.4), the water is removed by repeated azeotropic 

distillation in the presence of acetonitrile, base (e.g., K2CO3) and phase-transfer catalyst under a 

stream of nitrogen and thermal drying at temperatures between 80-110 oC (left side). More 

recently, the use of anion-exchange cartridge chemistry49 (right side) has become more popular, 

due to the cost effectiveness in recycling the [18O]H2O for future F-18 production. Technically 
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speaking, the drying step is not vigorous enough to remove all waters of hydration, and as a 

result, a truly anhydrous [18F]fluoride ion source (12) has never been achieved. Consequently, 

this can directly affect the reactivity of the [18F]fluoride anion, and RCYs can suffer dramatically. 

Also, the addition of base, required to prevent the release of [18F]HF during the drying, can 

further complicate matters with base-sensitive precursors. Nevertheless, this is the standard 

protocol for the vast majority of 18F-labelling methods, and at this point, the dried [18F]fluoride 

source is ready for use (12). 

 

Scheme 1.4. Schematic of drying step from time of bombardment to a dried [18F]fluoride source  
(12); x = fully hydrated [18F]fluoride ion; y = amount of hydration (less than x). 

 

The vast majority of 18F-labelling strategies involve two methods: nucleophilic 

substitution on aliphatic and on electron-deficient aromatic systems. In the aliphatic series, 

substitution is typically performed on halogenated derivatives or sulfonates (i.e., tosylates, 

mesylates, triflates, or nosylates), with the radiosynthesis of [18F]FDG being the most well-

known example (Scheme 1.5).50 The main drawback of this method is the competing elimination 

reaction to afford the undesired alkene. However, recent studies have found the addition of tert-

butanol can significantly suppress the elimination pathway and greatly improve radiochemical 

yields.51,52  
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Scheme 1.5. Radiosynthesis of [18F]FDG (2) with [18F]fluoride anion.50 
 

 Direct nucleophilic aromatic substitution reactions provide an expedient entry into 

complex systems in a one-step process. However, the reaction is only feasible if the aryl system 

is sufficiently electron deficient. Strong electron-withdrawing substituents such as -CN, -CHO,    

-COR, and -CF3 in the ortho and para positions have been commonly utilized, and the leaving 

groups are typically nitro and trimethylammonium groups. Other heteroaromatic systems such 

as the electron-poor pyridine series (14), however, do not require activation, and as a result, the 

simplicity of the method has led to its popularity, especially for the preparation of neurological 

imaging tracers (Scheme 1.6).53  

 

Scheme 1.6. Nucleophilic aromatic substitution using an electron-poor pyridine substrate (14).53 
  

 As highlighted previously, nucleophilic aromatic substitutions proceed smoothly on 

electron-deficient arenes. Unfortunately, similar high-yielding strategies for electron-rich 

systems are lacking. Thus, the efficient radiofluorination of electron-rich species represents a 

significant methodological gap within PET chemistry. To date, the use of diaryliodonium salts 

represents the lone method that can be used for radiofluorination of electron-rich aryl rings in 

sufficiently high RCYs and specific activities. First reported by Pike,54 the use of these salts has 

enabled reliable 18F-labelling of both unactivated or electron-rich [18F]fluoroaromatic 

compounds, although most have been relatively simple substrates.55,56 An interesting feature of 

these compounds is the regioselectivity of the reaction, where fluorinations tend to favor ortho-

substituted phenyl groups (aka the “ortho effect”) (Scheme 1.7, left side, 16).55 In the absence of 

an ortho substituent, fluorination favors the least electron-rich ring. Consequently, the use of 

unsymmetrical diaryliodonium salts where one aryl group is an electron-rich p-methoxyphenyl or 

2-thiophene group results in selective fluorination to the other, less electronically rich arene 

(Scheme 1.7, right side, 18).57,58  
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Scheme 1.7. Left Side: Transition state in the radiofluorination of diaryliodonium salts that  
favors [18F]fluoride incorporation on the aryl ring bearing an ortho substituent; Right side: 
Use of unsymmetrical diaryliodonium salts where [18F]fluorination prefers the less 
electronically rich ring.58 

 

The short half-lives of positron-emitting nuclides requires concise radiosynthetic 

sequences involving as few steps as possible to isolate high activity levels of the purified 

radiotracer. In addition to the large excess of unlabeled precursor as mentioned previously, 

reaction temperatures typically vary from 120-150 oC and can exceed 190 oC in order to rapidly 

drive the reaction to completion. Consequently, direct [18F]fluorination strategies are not 

universally suitable for all 18F-applications, especially with those containing sensitive organic 

functionality, because of these harsh reaction conditions (i.e., high temperatures, highly basic 

media). More often, milder, indirect methods have been employed with 18F-labelled small 

organic compounds, commonly referred to as prosthetic groups. Standard protocols generally 

involve first direct incorporation of the [18F]fluoride anion into a more structurally robust 

prosthetic group, which is then appended to the biomolecule of interest through alkylation, 

acylation, amination, photochemical or click reactions. A variety of [18F]fluorinated precursors 

are now well established (Figure 1.5) and includes 2-[18F]fluoroethyl-tosylate ([18F]FETos, 

(19)),59 N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB (20)),60 4-[18F]fluorobenzaldehyde 

([18F]FBA (21)),61 and 4-[18F]fluorophenacyl bromide ([18F]FPB, (22)).62 The main shortcomings 

of prosthetic groups are the relatively complex, multistep synthetic sequences needed for their 

radiosyntheses, and quite often, the radiolabel is incorporated within the first step, which can be 

methodologically awkward. Ideally, short-lived isotopes should always be incorporated as late 

as possible in the sequence.  
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Figure 1.5. Structures of 18F-labelled prosthetic groups used for coupling to biomolecules. 
 

V. CONCLUDING INTRODUCTORY REMARKS 

 Although the development of PET radiopharmaceuticals has been ongoing for decades, 

many of these agents reside in the preclinical stage, with only a handful of them actually being 

used in the clinic. Of these, almost 90% of all PET scans conducted worldwide involve a single 

radiotracer, [18F]FDG.63 Despite its popularity, the use of [18F]FDG is not without its flaws: it has 

nonselective uptake in noncancerous conditions (i.e., infection, inflammation),64 low uptake in 

certain cancers (i.e., bronchoalveolar cancer),65,66 and low contrast ratios in several areas of 

imaging including the brain. Consequently, this can often lead to difficulty in correctly assessing 

(or staging) a particular diseased state. By improving the specificity and sensitivity beyond what 

[18F]FDG affords, beneficial outcomes will be two-fold: the improved characterization of the 

diseased state will significantly increase the overall diagnostic accuracy while also giving rise to 

the possibility of tailoring therapeutic regimens to the individual. 

 Of the three components that comprise the translational PET imaging process, target 

discovery and software/hardware development significantly outpace the advancement of novel 

imaging probes. The key to advancing translational PET is overcoming the barrier that has 

impeded the field: the lack of synthetic approaches for late-stage radiofluorination of complex 

substrates in a mild and efficient manner. Mainstream organic chemistry is inundated with 

chemical building blocks and synthetic methods that have enabled almost any imaginable 

molecule to be constructed, yet radiochemists are restricted to a single, low-reactivity 

nucleophilic [18F]fluoride salt. Moreover, the harsh conditions (i.e., high temperatures, basic 

conditions) associated with existing C-18F approaches are incompatible with sensitive 

substrates, including large biomolecules. This then necessitates time-consuming, multi-step 

strategies, which further limit the practicality of the approach, especially when working with 

short-lived isotopes. To satisfy the growing demand for novel PET tracers (including peptides 

and proteins), there is a tremendous need for rapid and efficient methodology in an ideal one-
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step, aqueous approach that is amenable to virtually any potential substrate in a late-stage 

context. Al-18F, B-18F, and Si-18F bonds are intriguing possibilities in this area.  
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CHAPTER 2 

DEVELOPMENT OF NOVEL SILICON PRECURSORS FOR RAPID AND EFFICIENT 

RADIOFLUORINATION REACTIONS 

 I. INTRODUCTION 

A. Background 

By far, the most widely utilized radiotracer in clinical PET imaging is the glucose 

analogue, [18F]fluorodeoxyglucose ([18F]FDG).1 Many would agree that the development of the 

field would have not been possible without the discovery of [18F]FDG. Its widespread 

applications in oncology have justified the installation of the expensive production and imaging 

infrastructure needed within hospitals, and as a result, [18F]fluoride ion is now readily available, 

even from commercial suppliers. With the proper infrastructure in place, clinical research has 

focused primarily on other small molecules as potential imaging agents to address the 

limitations of PET imaging with [18F]FDG.2-4 More recently, however, the radiolabeling of large 

biomolecules, such as peptides, proteins, and antibodies, has also been proposed to expand 

imaging applications well beyond [18F]FDG.5,6 What has impeded and still remains a significant 

challenge in accessing these new applications are the mild and efficient radiofluorination 

reactions that are needed for radiolabeling these sensitive, polyfunctional substrates. 

Unfortunately, current labeling conditions restrict the use of the more desirable one-step 

strategy in favor of the multi-step, indirect prosthetic group labeling approach. Consequently, the 

additional steps required add a further level of synthetic difficulty and increase the absorbed 

dose by the radiochemist, in addition to raising the problem of overconjugation of the 

biomolecule with prosthetic group, all of which conspire to severely limit the practicality of this 

approach. 

The synthetic problems associated with the radiolabeling of sensitive biomolecules using 

[18F]fluoride ion are in stark contrast to other isotopic labeling methods, especially those using 

Cu-64. Despite the less than ideal nuclear properties (i.e., multiple decay processes, isotopic 

impurities,7 undesirable transchelation of 63Cu/64Cu in vivo8), Cu-64 is becoming an attractive 

alternative in recent years due to the ease of isotopic incorporation. Typically, Cu-64 

radiolabeling methods involve a simple and straightforward one-step, wash-in protocol where an 

aqueous solution of [64Cu]-cupric ion is incorporated into chelators appended on biomolecules 

(i.e., NOTA, DOTA) in high RCYs under mild conditions (Scheme 2.1).9,10 The use of aqueous 

conditions without the need for a time-consuming, basic drying step, elevated temperatures or 



23 
 

organic solvents is highly attractive, especially when working with water-soluble proteins and 

antibodies. At present, analogous approaches with [18F]fluoride ion are underdeveloped, but 

strategies conceptually similar to those used for 64Cu-labelling are currently being investigated 

for F-18 using fluorophilic elements (i.e., Al, B, Si). 

 

Scheme 2.1. Incorporation of [64Cu]-cupric ion into complex peptide (2) in a mild, one-step 
process.9 

 

B. Al-18F Strategies  

Following the literature precedent of the chelation of radiometals as an effective strategy 

for radiolabeling peptides, an analogous approach, focused on targeting the high affinity of 

some metals for fluoride ion, has been achieved through aluminum-[18F]fluoride peptide 

complexes.11,12 The novel pentadentate bifunctional chelator, 1,4,7-triazacyclononane-1,4-

diacetate (NODA), to coordinate Al3+ ion provided an effective scaffold to capture aqueous 

[18F]fluoride anion in a single, high yielding step (55-89%) within 15 minutes at 110 oC, and more 

importantly, the corresponding bioconjugates (4) exhibited exceptional stability, with no 

defluorination observed for 4 hours in human serum at 37 oC (Scheme 2.2).12 This technically 

simple labeling procedure has led to the development of labeling kits,13 similar to those used 

with 99mTc, that will aid in streamlining reactions and facilitate product purification and isolation.14 

As a result, this has enabled rapid and reproducible labelings of peptides in high RCYs and 

specific activities through a simple, one-step process to afford 18F-labelled products that are 

compliable with good manufacturing practices (GMPs) and ready for patient injection within 30 

minutes. Of these three new strategies, the Al-18F approach is the most recently introduced and 

while still in its infancy within the development process, possesses the greatest likelihood of 

benchtop-to-patient translation, especially with their kit formulations.  
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Scheme 2.2. One-step chelation of aqueous [18F]fluoride anion with Al3+-NODA.12 
 

C. B-18F Strategies 

Trivalent organoboranes, particularly alkyl- and alkynylboranes, exhibit poor stability 

under atmospheric conditions, thereby making handling of these reagents extremely difficult. 

The 1960s discovery and subsequent development, most notably by Molander, of potassium 

organotrifluoroborates as superior alternatives to their trivalent counterparts, however, has 

transformed the field.15,16 These reagents exhibit exceptional stabilities towards nucleophiles, air 

and water, and can be handled on the benchtop without special precautions, all without altering 

their high reactivity, particularly in palladium-catalyzed cross coupling reactions.17 The 

translation into tracer level chemistry with F-18, however, has only recently been realized. 

 Ting and coworkers were the first to report the 18F-labelling of aryl boronic esters, under 

carrier added conditions (KH19F2) to afford [18F]-aryltrifluoroborates.18 Similar to the aluminum 

chemistry described previously, the attractiveness of the method resides in the simple, one-step 

protocol, performed under aqueous conditions, which is ideally compatible with water-soluble 

biomolecules and also alleviates the need for the time-consuming drying step. The initial 

practicality of the approach was validated through the radiosynthesis of a biotinylated [18F]-p-

aminophenyltrifluoroborate (6, Scheme 2.3) and has since led to the development of additional 

boronic ester bioconjugates, including peptides and nucleic acids, and bifunctional linkers for 

other potential applications of this chemistry.19 Additionally, the reported in vivo evaluations to 

date have revealed no skeletal uptake of radioactivity, demonstrating the exceptional stability of 

the B-18F bond.20  

 

Scheme 2.3. Formation of [18F]-aryltrifluoroborates (6) from aqueous [18F]fluoride ion.18 
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 Despite the attractiveness of the simple, aqueous radiochemistry and high in vivo 

stability of the corresponding radiotracers, this approach still suffers from two glaring 

weaknesses which must be overcome before routine production is possible. First, the reaction 

with [18F]fluoride ion (and KH19F2) is inherently slow (~2-3 hours), and attempts to address this 

issue with higher concentrations of reagents and small reaction volumes (~10 µl) only further 

impede the practicality of this method. Second, any carrier-added radiosyntheses are inherently 

limited to low specific activities. Unfortunately, in this case, the addition of cold [19F]fluoride ion 

is required to achieve moderate RCYs of the desired R-B18F19F2K (6) salt; thus, further design of 

suitable precursors and optimization of reaction conditions without carrier added are needed to 

realize the full potential of this method.  

D. Si-18F Strategies  

 For decades, chemists have exploited the silicon-fluoride bond as a facile method for the 

deprotection of silyl ethers to the corresponding alcohols.21 Interestingly, radiochemists have 

only recently been able to develop similar silyl-based methods to incorporate [18F]fluoride ion. 

Rosenthal reported22 the first Si-18F bond with [18F]fluorotrimethylsilane, but preliminary in vivo 

experiments in rats revealed significant bone accumulation, demonstrating the low stability of 

the Si-18F bond in the body and the need for sterically hindered substituents around the silicon 

atom to prevent hydrolysis. In addition to their B-18F work, Ting18 also investigated the potential 

of tetrafluorosilcates (8, Scheme 2.4) as imaging agents, but the need for carrier added (KH19F2) 

and moderate stabilities of the corresponding [18F]fluoroproducts severely limit the practicality of 

this approach and call for further experimental and precursor design.  

 

Scheme 2.4. Formation of [18F]-aryltrifluorosilicates (8) from aqueous [18F]fluoride ion.18 
 

 In an attempt to gain better insight into the stabilities of Si-18F bonds, Hohne and 

coworkers utilized density functional theory (DFT) models to estimate the hydrolytic stability of 

appropriately designed silyl-based precursors; their work revealed the need for at least two tert-

butyl groups (t1/2 of Si-F bond = >300 h) or two isopropyl groups flanked by two methyl groups 

(t1/2 of Si-F bond = >300 h) in order to provide adequate stabilization.23 This approach was 

pursued further through the use of bifunctional triorganosilanes (9), based on alkoxy, hydroxy, 
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and hydride leaving groups. Initial studies yielded conversion rates of up to 96% for [18F]fluoride 

incorporation into relatively simple substrates within 20 minutes in DMSO with catalytic amounts 

of acetic acid (Scheme 2.5).24,25 Additional investigations into the hydrolytic stabilities of the 

corresponding [18F]fluorosilane products (10) showed strong correlations with the previous 

computational data, suggesting that the presence of more sterically demanding substituents 

(e.g., tBu) generates [18F]fluoroproducts that are more hydrolytically resistant under 

physiological conditions.  

 

Scheme 2.5. Acid-promoted formation of Si-18F bonds.24 
 

 Application of this approach to more structurally complex substrates, such as peptides 

(11, Scheme 2.6), yielded synthetically useful RCYs (~50%) after 15 minutes and in sufficiently 

high specific activities (1600 Ci/mmol). Although the chemistry cannot be performed with 

aqueous [18F]fluoride as in previous cases (therefore requiring a drying step), the most 

significant shortcoming of this strategy is the issue of effective specific activity. Specifically, with 

large, complex substrates such as 11, the conservative exchange of a hydrogen (11) for a 

[18F]fluorine atom (12) does not provide sufficiently high structural and electronic differences 

between starting material and product that would enable effective separation during HPLC 

purification. As a result, the large excess of starting material (at times, up to 5 mg needed) will 

most likely not be fully separated from the [18F]fluorosilane product. Thus, there will be 

considerable contamination of the final radiotracer (12) with starting material (11). Because the 

starting material is structurally related to the tracer and will most likely compete with the tracer 

for binding to a receptor target, this will greatly reduce the “effective” specific activity of the 

labeled material, which could compromise its usefulness in PET imaging of limited capacity 

targets.      
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Scheme 2.6. Acid-promoted formation of a complex 18F-labelled peptide (12) through a direct,  
one-step process.25 

 

A highly promising Si-18F variant method, developed by Schirrmacher and coworkers,26-

30 relies on the facile isotopic exchange between [18F]fluorine ion and trialkyl-[19F]fluorosilane 

precursors (Scheme 2.7). The exchange process is surprisingly efficient, with nanomole 

quantities of starting material (13), proceeding rapidly at room temperature in high RCYs 

(>90%) within 15 minutes.26 Unfortunately, the method is inherently limited to low specific 

activities because of the inability to separate the [18F]fluorosilane product from the chemically 

identical [19F]fluorosilane starting material, which is in large excess in order to achieve high 

RCYs. The chemistry works best in a two-step approach to label biomolecules through the use 

of bifunctional triorgano-[18F]fluorosilane derivatives (15), each containing a range of coupling 

functionality, including aldehydes, thiols, amines, alcohols, isothiocyanates, carboxylic acids, 

and maleimides.  

 

Scheme 2.7. Left side: isotopic exchange of [18F]fluoride ion with Ar-(tBu)2-Si-19F precursor (13); 
Right Side: different [18F]fluorosilane products exhibiting a range of coupling functionality.26 

 

 However, in the presence of complex, polyfunctional biomolecules such as peptides (16, 

Scheme 2.8), RCYs suffer significantly in direct, one-step processes, and any appreciable gain 

in yields can only be achieved through the use of additional amounts of [19F]-starting material 
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(16). Consequently, specific activities of the [18F]fluorosilane product (17) are extremely low 

(<100 Ci/mmol), well below the threshold for receptor-based imaging studies, and as a result, 

isotopic exchange has limited applicability within this area.26 

 

Scheme 2.8. Isotopic exchange of [18F]fluoride ion into a complex, polyfunctional peptide (17).26 
 

II. CONCLUDING INTRODUCTORY REMARKS 

In coordination with our group’s goal of developing ER PET imaging agents, we were 

intrigued by the advantages of the Si-18F chemistry over the aluminum and boron strategies 

mainly because it appeared to us that the bulky appended chelator, Al3+-NODA, designed to 

capture aqueous [18F]fluoride, in addition to the negative charges associated with the Al-18F and 

B-18F complexes would most likely have minimal, if any, affinity for the nuclear ERs. 

Furthermore, the formation of Si-18F bonds has been reported to be extremely rapid and 

efficient, proceeding in high radiochemical yields at room temperature, and can even be 

conducted in an aqueous environment. The Si-18F labeling methods used so far, however, have 

disadvantages. Although the exchange is facile with Ar-(tBu)2-Si-19F precursors, an excess of 

19F-starting materials is often needed, especially with radiolabeling peptides, and this restricts 

access to high specific activity 18F-labelled products. An alternative approach involving reaction 

of [18F]fluoride ion with hydrosilanes, Ar(R)2Si-H, required a troublesome optimization process 

for each reaction and was slow and relatively inefficient, with remaining precursor difficult to 

separate from the product. In an attempt to improve on the existing methods, we sought the use 

of silyl acetates as exceptional alternatives for Si-18F radiochemistry.  

Herein, we describe a vastly improved version of Si-18F bond formation through our silyl 

acetate moiety, and we demonstrate its utility and flexibility in small molecules and large, 

polyfunctional biomolecules. These precursors have proven to be extremely reactive to 

[18F]fluoride ion and tolerant of protic functionality and water to provide an ideal one-step 

approach to functionally complex substrates in a late-stage fashion in high radiochemical yields 

and specific activities.  
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III. RESULTS 

*Portions of the synthesis work, notably preparation of the precursors [22-26, 29, 30, 38-44, 46-

51, 52-59, 61] were done by Dr. Sung Hoon Kim. All of the radiolabeling work was done by the 

author of this thesis. 

A. Small Adaptor Si-18F Molecules 

 The practicality of F-18 methodology for labeling PET agents relies heavily on simple 

and straightforward approaches that are needed to incorporate the isotope. Thus, the direct, 

one-step approach is much preferred over multi-step syntheses. More often, however, the 

incompatibility of certain sensitive substrates to F-18 labeling conditions or the low yields 

associated with a direct, one-step methods complicates production of the desired tracer and as 

a result, the multi-step approach is typically favored, especially for large biomolecules. 

Unfortunately, the complexity of these radiosyntheses complicates transition to clinical 

production and thus restricts their availability and evaluation in patients.  

As discussed previously, the strategy involves initial incorporation of the isotope into 

small adaptor precursors, which are then readily appended to large, sensitive biomolecules 

through a variety of methods. Of those reported, the most commonly used adaptor molecule is 

N-succinimidyl 4-[18F]fluorobenzoate, (21, [18F]-SFB), and its use nicely exemplifies the 

deficiencies in this approach. First, the radiosynthesis of [18F]-SFB (21) alone involves three 

steps (Scheme 2.9), with an additional step needed to append 21 to the biomolecule of interest, 

for a total of at least four steps to access the desired tracer.31 

 

Scheme 2.9. Radiosynthesis of N-succinimidyl-[18F]fluorobenzoate (21) for conjugation to  
biomolecules through a multi-step approach.31 

 

Moreover, the isotope is incorporated in the first step of the sequence (19), and the 

additional manipulations restrict access to extremely high activities of 21, which are required in 

the clinic. Finally, the multi-step sequence is technically challenging to perform (Figure 2.1). 

Although high yielding, each step is rather involved and requires purification either using a filter, 
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cartridge, or extraction from the previous step, leading to undesired absorbed hand and body 

doses and extreme difficulty in translating the chemistry to automated modules for clinical 

production.  A typical [18F]-SFB production protocol is given below. 

18
F-Fluoride solution (300–400 µL) was transferred to the first reaction vial, without trapping on an 

anion exchange cartridge, followed by the addition of K2CO3 (8.63 mg/mL, 5 mmol) and Kryptofix 
2.2.2 (4.5 mg, 12 mmol) in 10% water:acetonitrile solution. Then, water and acetonitrile were 
azeotropically evaporated by heating the reactor to 120 

o
C under a stream of argon followed by a 

vacuum. Further azeotropic drying was accomplished by the addition of 0.5 mL of acetonitrile. The 
dried K

18
F • Kryptofix 2.2.2 complex was then dissolved in 400 mL of acetonitrile containing 5 mg 

(14.7 mmol) of pentamethylbenzyl 4-(N,N,N-trimethylammonium)benzoate 
trifluoromethanesulfonate. The reactor was sealed and heated to 105 

o
C for 10 min, to yield 4-

18
F-

fluorobenzoic acid pentamethylphenylmethyl ester. Then, the reactor was cooled to 10 
o
C and 0.8 

mL of diethyl ether was added. The crude 4-
18

F-fluorobenzoic acid pentamethylphenylmethyl ester 
solution was then transferred through the silica cartridge to the second reaction vial. The first 
reaction vial and silica cartridge were washed with an additional 0.8-mL portion of diethyl ether. The 
diethyl ether was evaporated for 5 min at 35 

o
C under a stream of argon. Then the reaction vial was 

cooled to 25 
o
C, and 0.15 mL of 99.9% trifluoroacetic acid (TFA) was added. The 

pentamethylbenzyl deprotection proceeded for 2 min to yield 4-
18

F-fluoro-benzoic acid (
18

F-FBA). 
Thereafter, the reaction vial was cooled to 4 

o
C, and TFA was evaporated under a stream of argon, 

followed by the addition of 3 mg of 4-(dimethylamino)pyridine and 5.2 mg of N,N-disuccinimidyl 
carbonate. The reactor was sealed and heated to 100 

o
C for 5 min. The reaction vial was then 

cooled to 30 
o
C, and the crude 

18
F-SFB was diluted with 20 mL of water and passed through an 

activated C18 cartridge. The cartridge was washed with 10 mL of water and 1.8 mL of petroleum 
ether. Finally, the 

18
F-SFB was eluted from the cartridge with 1 mL of dichloromethane. The solvent 

was removed by a stream of argon at 25 
o
C. 

Figure 2.1 Reported method detailing the difficulty in the radiosynthesis of N-succinimidyl-
[18F]fluorobenzoate (21).31  

 

 In an effort to simplify existing labeling chemistries, we sought to address the 

deficiencies in C-18F approaches through the use of our silyl acetate precursors (28, Scheme 

2.11). As shown in Scheme 2.10, the initial preparation of the desired silyl acetates 28 

commenced with lithiation of bromide 22, followed by condensation with di-tert-

butylchlorosilane, to provide hydrosilane 23. Hydrolysis of acetal 23 and subsequent Jones 

oxidation afforded acid 25, which readily underwent ester formation (26) under DCC-mediated 

conditions. The corresponding hydrosilanes (24 and 26) were converted to the desired silyl 

acetates (28) in high yields through a Pd-mediated process (Scheme 2.11). 
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Scheme 2.10. Synthesis of hydrosilane precursors for silyl acetate products. (a) (i) nBuLi, THF,  

-78 oC; (ii) (tBu)2-SiH-Cl, TEA, THF, -78 oC rt; (b) SiO2, rt; (c) Jones reagent, acetone, 0 oC; 
(d) DCC, DMAP, DCM, 0 oC. 

 

 The silyl acetate products have proven to be quite useful. First, the silyl acetates can be 

rapidly accessed, and the flexibility of the preparative sequence enables the generation of 

products that exhibit a wide range of different coupling functionality that would be utilized in a 

two-step labeling approach. Moreover, the production method can be used to incorporate other 

coupling functionality (i.e., alkynes for click chemistry), depending on the particular need. 

Secondly, the silyl acetates are extremely bench-stable, and they tolerate exposure to air and 

water, and silica gel purifications. Traditionally, Si-Cl bonds epitomized reactive silyl 

functionality, but their sensitivity towards hydrolysis to the unreactive silanol limits their utility in 

our [18F]fluorination conditions. Likewise, Si-Cl precursors would need to be purified by 

distillation, since they are unstable on silica gel; thus, they would be limited to relatively small 

substrates and would require multi-step [18F]fluorination approaches.  However, the exceptional 

stability of the Si-OAc bond enables silica gel purification, which expands their applicability for 

the preparation of a wide variety of potential substrates, including complex, polyfunctional 

peptides, by direct [18F]fluorinations. Even with this elevated stability of the starting material, 28 

reacted rapidly with cold fluoride anion at room temperature within 5 minutes, with benzene 

being the optimal solvent (Scheme 2.11). More importantly, the fluorination of silyl acetates had 

minimal effect on the sensitive coupling functionality (i.e., NHS ester). This was key, since in 

previous methods, sensitive ester functionality was incompatible with the conditions required for 

radiofluorination. In addition, our interest in amine-reactive functionality was rooted in our desire 

to label a poly(amido)amine (PAMAM) dendrimer to understand the biodistribution of this 

interesting ER-targeted biopolymer. The NHS ester, in this case, was found to be the superior 

functionality over other potential strategies (i.e., reductive amination with CHO derivative), in 

terms of efficiency and reactivity, for this transformation.  
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Scheme 2.11. Pd-mediated synthesis of silyl acetates (28) and cold fluorination with TBAF. (a) 
Pd(OAc)2, AcOH, PhH, reflux; (b) TBAF, PhH, rt. 

 

The translation of the fluorination chemistry in Scheme 2.11 to tracer-level chemistry 

with [18F]fluoride anion proved to be challenging. First and foremost, the initial re-solubilization 

of the fluoride salt, TBA18F (from TBA[HCO3]), which was found to be the best fluoride source in 

our original cold fluoride screen, was far from ideal (Scheme 2.12). Initially, this remained a 

significant limitation of our approach, since most of the expensive [18F]fluoride isotope would be 

stuck to the reaction vial and therefore, unreactive, and eventually would be discarded as waste. 

Resolubilization is a fairly standard problem after the drying step is completed, and one of the 

main reasons that radiochemists prefer polar aprotic solvents (i.e., ACN, DMF, DMSO) is 

because of their ability to successfully re-dissolve the [18F]fluoride source from the glass 

surface. However, our cold chemistry screen of solvents with TBA19F revealed far superior 

yields with less polar solvents, with benzene being the optimal solvent. Unfortunately, these 

non-polar aprotic solvents were not efficient for re-dissolving the dried TBA18F, although the low 

levels of activity that were solubilized did provide promising yields of the desired compound, 

especially with PhH and DCM. Thus, we began to investigate other strategies in an attempt to 

discover a more organic-soluble [18F]fluoride source.  
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Solvent 
Total Activity of 

TBA[18F]F (mCi) 

TBA[18F]F in 

Solution (mCi) 

TBA[18F]F  

on Vial (mCi) 

% in 

Solution 
RCY 

Benzene 5.34 1.32 4.02 24.7 61 

DCM 5.18 2.75 2.43 53.1 72 

Isoamyl Alcohol 5.62 0.18 5.44 3.20 32 

Diethyl Ether 4.97 0.36 4.61 7.24 46 

 
Scheme 2.12. Evaluation of the solubility and reaction with 30 of TBA[18F]F in various organic 

solvents. 
 

 Of the commonly used [18F]fluoride sources (i.e., TBA[18F]F, Cs[18F]F, Rb[18F]F), by far 

the most widely used is the K[18F]F-K222 complex. Initial attempts to replicate previous protocols 

(K2CO3 (1 mg) and K222 (7 mg)) afforded a highly soluble [18F]fluoride source in PhH (70-80% of 

activity in solution), but the excess base proved detrimental to the stability of the product 31. As 

shown in Figure 2.2, the crude radio-HPLC revealed multiple 18F-products, with the desired 

product (31) being retained at 4.15 minutes. After continued analysis over a 30 minute time 

period, 31 completely decomposed with a subsequent increase in the radio-peak to the right 

(4.66 minutes). This was not too surprising since the reaction is conducted under basic 

conditions in the presence of a base-sensitive NHS ester functionality, and it was assumed that 

the increase of the radio-peak at 4.66 minutes was the carboxylic acid derivative. However, 

synthesis of the cold fluorine standard of the acid and co-injection with the reaction mixture 

revealed elution of the acid to the left of the product peak. Identification of the product to the 

right of 31 still remains undetermined.   
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Figure 2.2. Radio-HPLC of the [18F]fluorination of 30 with K[18F]F-K222 showing the base 
sensitivity of 31 and the formation of multiple side [18F]fluoroproducts. Product elutes at 4.15 
minutes with the remaining other [18F]fluoroproducts being undetermined. 

 

 The initial investigations in the radiofluorination of 30 led to two main conclusions: low 

solubility of TBA[18F]F in the preferred solvent, PhH, and sensitivity of the NHS ester to the 

added base. The simple solution to these problems would be to essentially eliminate TBA[18F]F, 

PhH, and added base from being factors in the success of the reaction. Unfortunately, there 

was little precedent in the literature for this approach to work since almost every [18F]fluorination 

reaction involves a drying step, a [18F]fluoride salt, and an organic solvent under scrupulously 

dry conditions. However, our anticipated reaction conditions would be the exact opposite of how 

classical C-18F strategies are performed: no drying step or [18F]fluoride salts, and a reaction to 

be conducted in an aqueous environment.  

 Preliminary investigations revealed a critical dependence of the reaction temperature to 

afford high RCYs, starting from the cyclotron-produced aqueous [18F]fluoride source without any 

added base or a drying step (Scheme 2.13). The attractiveness of targeting silicon with 

[18F]fluoride is due to the mildness of the reaction conditions and the hope that they would be 

compatible with the efficient radiolabeling of sensitive substrates that had proved to be 

incompatible with conventional C-18F labeling approaches. Unfortunately, attempts to 

successfully [18F]fluorinate 30 at room temperature afforded no conversion to the desired 

product, but when the reaction was heated to 105 oC, excellent yields could be obtained. 
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Temperature 5% H2O-ACN 10% H2O-ACN 20% H2O-ACN 

rt 0% 0% 0% 

88 oC 33.7% 60.1% 65.9% 

105 oC 63.2% 75.3% 92.1% 

 
Scheme 2.13. Screening of the optimal water concentration and temperature for the 

radiofluorination of 30.  
 

Nevertheless, the radiofluorination of 30 is highly attractive because of its simplicity. The 

labeling is rapid and efficient, producing the 18F-labelled product in high radiochemical purity, 

with only one major F-18 product being formed, as shown in the radio-HPLC of the crude 

reaction mixture (Figure 2.3). This is one of the first reported cases in which the cyclotron-

produced 18F-aqueous solution could be used directly as an off-the-bench reagent, without the 

need for the tedious drying step; this significantly reduces precious reaction time and drastically 

improves the reliability of the [18F]fluorination. To date, this reaction has been performed over 10 

times without a single RCY under 90%. Also, in stark contrast to [18F]-SFB (26), the 

radiosynthesis is technically simple: the aqueous [18F]fluoride is placed in a glass vial, an ACN 

solution with dissolved 30 is added, heated to 105 oC for 10 minutes, and injected directly into 

the HPLC for purification. Overall, we can rapidly access 35-40 mCi of 31, starting from only 50-

55 mCi of aqueous [18F]fluoride within 1 hour after HPLC purification. 

 

Figure 2.3. Crude radio-HPLC trace of the [18F]fluorination of 30 (retention time = 4.82 minutes) 
under aqueous conditions. 
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The original objective of the project was to develop mild and efficient methodology 

through Si-18F bond formation to address the shortcomings of C-18F strategies. Although the 

base-free, 105 oC reaction can be considered a milder alternative to the exceedingly harsh 

temperatures (in excess of 130 oC) and basic conditions (pH ~9) required for the C-18F 

approaches, our present reaction was still far from the ideal room temperature reactions we had 

initially envisioned. We began to re-investigate this possibility through two strategies. First, we 

drastically reduced the amount of added base in the drying step, which had originally caused 

extensive decomposition, such that only 0.1 mg and 1 mg of K2CO3 and K222 respectively were 

used. Secondly, to improve the re-solubilization of the [18F]fluoride salt with PhH, we switched 

the glass vial for a plastic one, since it was hypothesized that the anion would have less affinity 

for the plastic and therefore might be more readily redissolved into the PhH solution. 

 In the midst of finding the best vial for this purpose, we initially chose an unknown, clear 

plastic vial that maintained full integrity of the vessel wall during the drying step (ACN, 105 oC, 

0.1 mg K2CO3 and 1 mg K222). Upon addition of the precursor in PhH, however, portions of the 

vessel wall appeared to dissolve, and it was belatedly realized that the unknown vial was 

polystyrene-based. Quite surprisingly though, in the presence of miniscule amounts of dissolved 

polystyrene, RCYs were high (in excess of >90%), with a significant reduction in side product 

formation, as determined by the radio-HPLC trace. After considerable screening of amounts and 

other polymers (i.e., PEG2000), we found that 25-50 µg of polystyrene was sufficient to maintain 

high RCYs (Scheme 2.14), albeit in slightly longer reaction times (15 minutes); this amount was 

also sufficient to inhibit the undesired decomposition previously seen (Figure 2.2) and to afford 

high radiochemical purity (Scheme 2.14, bottom) in the crude radio-HPLC trace.  
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Scheme 2.14. Room temperature [18F]fluorination of 30 in the presence of lowered base and 
polystyrene. Bottom: Crude radio-HPLC of the [18F]fluorination showing an efficient 
formation of a single desired 18F-compound (Retention time = 3.93 minutes). 

 

 Overall, we have established a superior method in the realm of Si-18F bond formation 

strategies through the use of silyl acetates, which have proven to stable yet extremely reactive 

to [18F]fluoride anion, through two approaches to afford rapid and efficient formation of the 

desired [18F]fluorosilane products in high RCYs (>90%) and specific activities (3500-3800 

Ci/mmol). To demonstrate the utility of this approach, we prepared a 18F-labelled version of an 

estrogen dendrimer conjugate (EDC, 32) to evaluate its in vivo biodistribution in the context of 

the cardiovasculature (Scheme 2.15).32-34 A simple dilution of the 18F-H2[
18O]O water with 

acetonitrile and dissolved NHS-silyl acetate (6) and heating at 105 oC for 10 minutes yielded 31 

in high RCY. After cooling to room temperature, the reaction mixture, without any extraction, is 

injected directly into the HPLC to afford 7 in high radiochemical purity (>99%) and specific 

activity. The purified [18F]fluorosilane product can be readily appended to EDC (32) within 10 

minutes, albeit in somewhat varying RCYs of 33 (60-98%). The attractiveness of the approach 

lies heavily in the efficiency of the radiofluorination reaction: beginning with 50 mCi, the reaction 

sequence can reliably afford 15 mCi of the desired compound (33) after 2 hours. This is a highly 

attractive feature, especially when conducting time-sensitive animal studies that are dependent 

on sufficient amounts of activity of the radiotracer at a specified time. 
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Scheme 2.15. Radiosynthesis of [18F]EDC through the Si-18F approach. (a) MeOH, rt. 
 

 Of the necessary steps for radiotracer production, the HPLC purification step is by far 

the most time-consuming. The process involves exceedingly long retention times (20-30 

minutes), especially for short-lived isotope work, which is generally needed to effectively 

separate the large excess of precursor from the [18F]fluoroproduct. Most HPLC purifications 

involve reverse phase conditions, and therefore, the collected fractions of the radiotracer are 

present in varying concentrations of acetonitrile and water. The volume of the liquid can be quite 

high (~10 mL), and because the amount of organic solvent present is not compatible with 

animal work, it must be removed. The standard procedure typically involves dilution of the 

collection activity with water to a total volume of 50 mL which is then passed through an intricate 

array of Teflon tubing to capture the radiotracer on a C18 cartridge. After additional washings 

with water, drying over a stream of nitrogen and elution of the labeled organic species with 

ethanol, this step alone consumes 30 minutes. Moreover, the dilution step causes loss of 

activity from precipitation on the vial wall, and at times, the C18 cartridge is not fully effective at 

capturing the radiotracer. Overall, both complicated steps involve at least 45-60 minutes of 

effort, which equates to approximately a quarter of the activity being lost from decay processes 

alone, in addition to the losses within the tubings and vials. Thus, a more efficient protocol is 

needed to maximize retrieval of the desired radiotracer. 

 In an attempt to circumvent these shortcomings and bypass this HPLC purification 

process altogether, we have modified our original silyl acetate moiety with acid units that are 

either tethered to beads or chromatographically distinct (made extremely polar with polyethylene 

glycol chains) (Scheme 2.16). Because reaction of the silicon atom with [18F]fluoride ion will 

release the labeled [18F]fluorosilane, any remaining precursor should be easily separable by 
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solid-phase extraction in the case of polar esters or removed by simple filtration in the case of 

the beads. In fact, the bead technology could be adapted to precursor cartridges, where the 

fluoride ion is introduced by flow, and only labeled product emerges from the cartridge. If 

successful, this will enable kit-like protocols that will streamline reactions and facilitate rapid 

product isolation and purification. 

 

Scheme 2.16. Proposed HPLC-free strategy for the synthesis of 31 through the use of polar 
PEG chains or a bead system. 

 

To date, this technology is still under development, but promising results have already 

been obtained. As shown in Figure 2.4, [18F]fluorination of the original silyl acetate NHS 

derivative (Scheme 2.13) yielded a HPLC UV chromatogram showing significant amounts of 

mass, including starting material and other decomposition products, that must be removed 

before the next conjugation step can be performed. However, when the PEG-based derivative 

(35) was utilized (Scheme 2.17), there is a tremendous reduction of mass in the UV trace with 

only two peaks present: solvent front (1.5 min) and residual PhH (2.5 min). Radiochemical 

yields (50-70%) and specific activities appear promising, with the radiochemical purity being the 

only limiting factor to date (~85%).  Nevertheless, in the event of high radiochemical purity, this 

highly encouraging approach would be a significant advancement for the field since 

[18F]fluorosilane products could be rapidly accessed within minutes, devoid of the time-

consuming HPLC purification process, and used directly in the next conjugation step. In the 

case of the EDC labeling procedure (Scheme 2.15), where total production time is 2 hours, 

application of the PEG-based strategy could significantly reduce the whole process down to 20 

minutes. Further investigations into the factors contributing to the undesired decomposition of 

31 are needed for this goal to be realized. 
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Figure 2.4. UV trace of the radiofluorination of 30 using the aqueous [18F]fluoride method 
showing significant mass with the product present at 16 minutes.  

 

 

 

Scheme 2.17. UV trace of the radiofluorination of 35 showing negligible mass peaks of other 
products. 

 

B. Si-18F Small Molecules 

A significant portion of PET agent development involves small-molecule research. The 

approach is largely conducted through nucleophilic alkyl chain displacement, aromatic 

substitution or diaryliodonium salt C-18F bond formation strategies; however, besides the 

problems associated with the high temperatures and basicity seen previously, these approaches 

also necessitate the use of protecting groups, which can potentially complicate efforts. A typical 

nucleophilic aromatic substitution reaction is shown in Scheme 2.18 (unpublished work), 

showing the minimum 2-step sequence with the isotope being introduced early in the sequence 

and a final deprotection step. Consequently, this approach restricts access to the more 

desirable one-step, late-stage [18F]fluorination strategies that would be optimum for short-lived 

isotope work. 
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Scheme 2.18. Example of a required two-step approach for nucleophilic aromatic substitution. 
 

Moreover in this sequence, the conditions (AlBr3, dodecanethiol) needed for removal of 

the methyl ethers caused complete decomposition of the substrate. Attempts to perform the 

reaction in the absence of protecting groups were also unsuccessful, leading only to the 

formation of undesired [18F]fluoroproducts. Switching to a more acid-labile tetrahydropyran 

(THP) group afforded a simple solution to this problem; however, similar solutions are restricted 

to relatively simple small molecule substrates. These synthetic issues become more 

complicated with complex, polyfunctional substrates since the flexibility and available 

protection/deprotection synthetic options become rather limited, and ultimately this leads to 

additional steps or harsh conditions that are most likely incompatible with these substrates. 

Protecting group-free strategies would render these problems obsolete and access substrates in 

a rapid, late-stage fashion. The use of Si-18F bonds provides an intriguing solution to this 

problem. 

In an effort to develop silicon-based ER PET imaging agents, we focused on appending 

the (tBu)2-Si-OAc moiety at the 17α position of estradiol since this position is known to tolerate 

large substitution and produce ligands that still retain high affinity for the estrogen receptor.35 

Beginning with alkylation of the iodophenol (39) with the Boc-protected bromide (38), acid 

hydrolysis of the Boc group, followed by a Sonogashira reaction with commercially available 

ethynyl estradiol (42), afforded the requisite amine 43, which reacted readily with the NHS ester 

30 to yield the desired precursor (44) for [18F]fluorination (Scheme 2.19).  
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Scheme 2.19. Synthesis of the small molecule [18F]fluorination precursor for Si-18F-based ER 
PET imaging agents. (a) K2CO3, DMF, 55 oC; (b) SiO2, rt; (c) piperidine, CuI, PdCl2(PPh3)4, 
ACN, 55 oC;  (d) 30, TEA, DMF, rt. 

 

Similar to the radiosynthesis of 30, we subjected silyl acetate 44 to the two originally 

discovered conditions, and in both instances, high radiochemical yields and specific activities 

were obtained (Scheme 2.20). Under the aqueous [18F]fluoride method, 44 reacted rapidly in 

near quantitative yield with only a single [18F]fluorinated product being formed, as shown in the 

radio-HPLC of the crude reaction product (Scheme 2.20, bottom). The efficiency of this 

protecting group-, drying step-, and base-free reaction is exemplified by the preparative 

recovery of 45, where over 60% (non-decay corrected) of the starting activity is present in the 

desired compound. In contrast to the protecting group strategies, the silyl acetate moiety 

enables a direct, one-step [18F]fluorination into a complex substrate in the presence of acidic 

functionality in a highly efficient (one [18F]fluorinated product, only 45 minutes total), late-stage 

fashion.  
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Scheme 2.20. Radiosynthesis of Si-18F-based ER small molecule (45). Top: Method A- K[18F]F, 
K2CO3, K222, DMSO, rt, 10 min, RCY: 86.8% (n=2); Method B: 18F-H2[

18O]O, ACN, 105 oC, 
10 min, RCY: 94.4% (n=2); SA = 2300-2500 Ci/mmol. Bottom: crude radio-HPLC of the 
reaction showing only a single 18F-product being formed (Retention time = 22.4 minutes). 

 

The only difference from the original conditions was the use of DMSO rather than PhH in 

the room temperature method. Use of PhH was initially attempted, and a quantitative conversion 

to a [18F]fluorinated product was observed by radio-TLC; however, co-injection with the cold 

standard revealed a different and still unidentified product. Switching the solvent to DMSO, 

however, afforded the desired compound in high radiochemical yields.   

 

C. Masking the High Lipophilicity of the (tBu)2-Si-18F Group with PEG Chains 

From a chemical perspective, the silyl acetates have proven to be ideal substrates: 

easily prepared and bench stable, yet highly reactive to [18F]fluoride ion and able to give labeled 

products in exceptional RCYs and SAs, even in the presence of water and protic functionality. 

Despite these merits, a major shortcoming of this approach is the high lipophilicity of the 

corresponding products, which can significantly alter the in vivo behavior of a tracer, especially 

for compounds of low molecular weight. Previous investigations of similar [18F]fluorosilane 

products showed poor biodistributions, with high accumulation in the liver and excessive 

nonspecific binding to nontarget tissue.36 Moreover, the presence of the two bulky tert-butyl 

substituents significantly reduces the likelihood of receptor tolerance, and binding affinities can 

suffer considerably.  

However, modification of the original tert-butyl design with smaller substituents (e.g., 

methyl groups) revealed significant hydrolysis, indicating that the tert-butyl groups are required 
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for engendering high in vivo stability of the Si-18F bond. Attempts to counter the lipophilicity of 

the group with more polar PEG chains, carbohydrates, or quaternary ammonium salts have 

afforded only minor improvements in the behavior of these agents.37,38 Therefore, strategies 

aimed at masking the high lipophilicity of the (tBu)2-Si-18F moiety to improve the in vivo 

pharmacokinetics and biodistributions of these agents are needed.   

Our original attempt to develop silicon-based ER imaging agents (Scheme 2.20) yielded 

potential tracers with negligible affinity for the receptor (RBA: ERα, ERβ = <0.1%) and thus were 

of little utility to us. To improve binding affinities for ER, we became interested in a common 

nonsteroidal motif, based on a 1,1-diarylethylene unit, that is well-known to afford potent 

estrogens having high affinity for the receptor.39 For our purpose, we focused on the 

adamantane derivative, which is a minor modification of the well-known nonsteroidal estrogen, 

cyclofenil (Figure 2.4).40 To provide an attachment point for our silyl acetate moiety, we 

appended ethylene glycol chains of varying length bearing a reactive terminal amine group for 

reaction with the NHS ester 27, and we evaluated their relative ligand binding affinities for the 

estrogen receptor in competitive radioligand binding assays using [3H]-17β-estradiol (E2) as a 

tracer and full-length human estrogen receptors, ERα and ERβ. The results, as shown in Figure 

2.5, are expressed as relative binding affinities (RBAs) and are referenced to the affinity of E2, 

which is set to 100%. The hydrosilane derivatives (47, 49, and 51) were used in these studies 

due to their ease of preparation, handling and enhanced stability during the assay itself. Due to 

the similar nature of the hydrosilanes, it is hypothesized that the fluorine derivatives will have 

comparable values. 

Modification of the original high affinity compound (46) with the silane moiety, (tBu)2-Si-H 

(47), resulted in a significant reduction in the affinity for the receptor. Extension of the amine 

side chain with a single tetraethylene glycol (TEG) linkage (49) afforded minor improvements in 

affinity, albeit still considerably less than the underivatized compound (48). Only when an 

additional TEG chain was attached could sufficiently high binding affinity be obtained (51). A 

possible reason for the tolerance of the bulky silane moiety and subsequent increase in RBA in 

the presence of the di-TEG moiety is the result of the ability of this moiety to enwrap the 

hydrophobic silane group, removing it from the unfavorable aqueous environment and 

ensconcing it in a more organic-friendly environment as a result of multiple oxyethylene group 

interactions between the cyclofenil and glycol chain. Such possibilities were confirmed through 

2-dimensional NMR studies. 
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Figure 2.5. RBAs of various silyl-based adamantane compounds showing the needed for a 
diTEG linkage to obtain high affinity estrogens. 

 

The preparation of diTEG silyl acetate 59 commenced from mesylate 52 (Scheme 2.21). 

The formation of phthalimide 54, followed by selective mono-alkylation of diphenol 55 and acid 

deprotection, afforded amine 57 in high yield. An iterative double amidation/deprotection 

sequence afforded the requisite free amine 58 from which the silyl acetate 30 could be 

appended. 
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Scheme 2.21. Synthesis of the diTEG-adamantane compound (59). (a) DMF, 50 oC; (b)  
K2CO3, DMF, 75 oC; (c) H2NNH2, MeOH, rt; (d) NHSCO-diTEG-NHBoc, TEA, DMF, rt; TFA, 
DCM, rt; (e) 30, TEA, DMF, rt.  

 

Application of the aqueous [18F]fluoride method afforded exceptional RCYs (Scheme 

2.22). Key to the success of this approach was effective separation of starting material (59) from 

the [18F]fluorosilane product 60. Since these are relatively high molecular weight compounds 

and the reaction involves only a minor substitution for [18F]fluoride ion, it is critical to obtain 

clean separation of the two in order to reach high effective specific activities. Additional 

investigations are still needed to find the optimal HPLC conditions for this important separation. 

The promise of this strategy as a viable masking approach to counter the high lipophilicity of the 

[18F]fluorosilane moiety is still currently being evaluated in animal models. 

 

Scheme 2.22. Radiosynthesis of 51. (a) 18F-H2[
18O]O, ACN, 105 oC, 10 min, RCY: 91.6% (n=2). 
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D. Direct, One-Step Labeling of Peptides Through Si-18F Bonds 

 [18F]Fluorinated peptides have been a focal point of a great deal of research in recent 

years in an attempt to improve and expand on the successes of [18F]FDG. Their tremendous 

potential has been demonstrated in imaging several diseases, especially cancers, due to their 

favorable pharmacokinetics, metabolic stabilities and higher tolerance towards bulky 

substitutions.41 However, progress in the area has been exceedingly slow: Only a few 18F-

labelled peptides have been evaluated in humans,42-44 and this has been largely attributed to the 

lack of efficient methodology to access these agents for clinical use.  

 To demonstrate the versatility of the silyl acetate moiety for radiolabeling peptides and to 

improve on the existing methodology,25,26 we became interested in the direct radiofluorination of 

an RGD peptide. Cyclic RGD pentapeptides are well-known to have high binding affinity and 

selectivity for the most well-known member of the integrin family, αvβ3.
45,46 Studied mainly for its 

role in tumor growth, progression, and angiogenesis, αvβ3 is a target for radiotracers that has 

the potential for early detection of metastatic tumors, and for monitoring tumor growth, 

metastasis and therapeutic response by PET imaging.47,48 

 Application of the (tBu)2-Si-OAc moiety for peptide labeling commenced with NHS ester 

30 being coupled to the free –NH2 of the lysine residue of commercially available cRGD to 

afford the desired [18F]fluorination precursor (61, Scheme 2.23). The initial difficulty in assessing 

the success of the radiofluorination reaction was due to the inability of the [18F]fluorosilane 

product (62) to move on a silica gel TLC plate. Due to the safety hazards of working with 

positron emitters, radiochemists are rather limited by the availability of analytical instruments 

that can be utilized for product detection. The setups for traditional analytical instruments (NMR, 

UV-Vis, IR, and MS (unless coupled to a HPLC)) are incompatible with the specific safety and 

handling procedures that are demanded by PET isotopes. As a result, radio-TLCs and –HPLCs 

are two of the most common instruments available to radiochemists for product analysis.  

 A radio-TLC is a straightforward method for analyzing the conversion of [18F]fluoride ion 

into [18F]fluoroproducts. Key to this is the fact that unreacted [18F]fluoride ion remains at the 

baseline of a silica gel TLC plate, while any F-18 organic products will move with the solvent 

front as is typical for traditional TLC development. After development, the plate is then placed 

on a TLC scanner, which can detect the activities along the path length (Figure 2.6). Since the 

resolution between unreacted and reacted 18F-peaks is not ideal (peaks are generally very 

broad), TLC development often involves very polar solvent conditions, such as 100% EtOAc or 
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5%MeOH/DCM. Consequently, a single peak may comprise of multiple [18F]fluoroproducts. 

Thus, radio-TLCs are only useful for determining conversion rates, and the corresponding yields 

are not representative of the true radiochemical yields of the desired compound or 

radiochemical purities. Injection of the reaction mixture into the HPLC and analysis of the trace 

is a better indicator of both RCY and RCP, since it allows for better resolution of the 

[18F]fluorinated products. 

 

Figure 2.6. Depiction of a radio-TLC analysis. Left: peak remains at the baseline and is 
indicative of unreactive [18F]fluoride (35 mm). Right: reaction analysis showing unreacted 
[18F]fluoride (35 mm) and [18F]fluoroproduct (55 mm). 

 

In the case of the radiofluorination of cRGD (61, Scheme 2.23), the corresponding 

product (62) did not move on the TLC plate, possibility indicating no conversion to 62. However, 

injection of the cold standard with the reaction mixture revealed co-elution with a single 

radioactive peak in the radio-HPLC, suggesting product formation. Since the product did not 

move on the TLC plate, it was also difficult to ascertain incorporation yields. After extensive 

screening of elution solvents and TLC plates, we were able to find conditions (C18 plate, 80% 

ACN, 20% H2O, 0.1% TFA) that could be used to analyze the reaction, albeit in low but 

workable resolution.  

Similar to the [18F]fluorination of the small-molecule example (Scheme 2.20), DMSO was 

the preferred solvent for 61 (Scheme 2.23) and resulted in excellent yields of 62 within 15 

minutes, giving a product in high radiochemical purity before further purification. The reaction 

times were slightly longer than the previous examples, and this is most likely attributed to the 

nature of the peptide, but further analysis of the reaction revealed high RCYs (in excess of 60%) 

within 5 minutes with only a slight increase in the yield with an additional 10 minutes.  
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Scheme 2.23. Direct, one-step radiosynthesis of a complex peptide 62. Method A: 18F-H2[
18O]O, 

ACN, MeOH, 105 oC, 10 minutes, RCY: 81.1% (n=2); Method B: K[18F]F, K2CO3, K222, 
DMSO, rt, 15 minutes, RCY: 85.7% (n=2). Bottom: radiochemical purity after purification of 
62 (retention time = 12.6 minutes). 

 

The aqueous [18F]fluoride protocol required a minor modification, the addition of MeOH 

as a cosolvent, since the original conditions could not fully solubilize the peptide. Nevertheless, 

61 reacted rapidly in high RCY within 10 minutes, with a single [18F]fluorinated product being 

formed. Even with the rather harsh, elevated temperature (105 oC), no decomposition of the 

sensitive peptide substrate was observed, most likely the result of the short reaction time. Upon 

cooling to room temperature, the crude reaction mixture can be injected directly into the HPLC 

without the need for any additional purification, and the peak activity is collected on a C18 

cartridge and eluted with ethanol, ready for animal injection in less than 1 hour.  

The recovery yields were not exceedingly high or representative of the radio-TLC and  

-HPLC analysis. Although yields were in excess of 80% with a single product being formed, only 

4 mCi were obtained from 20 mCi of starting activity. The most likely source of loss in this case 

was in the HPLC column. After injection and recovery of 62, subsequent counting of the HPLC 

column with a Geiger counter revealed significant amount of activity stuck in the column. It 

seems as though the product precipitates within the HPLC column after removal of the DMSO 

from elution and mixing with the HPLC eluent (ACN/H2O/TFA solution). This is a difficult 

problem to solve, and switching to a more polar solvent is not the simple solution. Since there is 
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a large excess of starting material, typical HPLC retention times are deliberately long (20-30 

minutes) to provide sufficient separation of the two materials and often involve more aqueous-

based reverse phase conditions. Switching to a more organic-based condition will decrease 

retention times, hamper separation, and ultimately result in contamination of the 

[18F]fluoroproduct with starting material. When working with high molecular weight substrates 

such as this, long retention times are essential for separation since the structural and electronic 

differences are exceedingly small. Attempts at varying the HPLC conditions resulted in lower 

specific activities, and the original conditions are currently the best available for this application.  

 

IV. DISCUSSION 

 The potential impact of PET imaging on the fields of medical care and drug development 

is undeniable. In the clinic, the functional information of diseased states obtained through PET 

imaging techniques has significantly transformed medical diagnosis from a mere identification 

tool towards characterizing the molecular processes involved with disease progression.49 The 

ability to characterize disease at the molecular level through imaging provides an indispensable 

clinical tool that can aid in the diagnosis, prognosis, and the design of proper therapeutic 

regimens for a particular diseased state.50,51 As a result, PET imaging has received significant 

attention recently due to the possibility of developing medicine that is personalized for each 

patient.51 By individualizing treatment plans, the expectation is that patient outcomes will be 

greatly improved through better diagnosis and targeted therapies, as well as safeguarding 

against the use of unnecessary, harmful medical procedures. This enticing possibility, however, 

relies on the clinical availability of well-designed radiotracers for specific biomarkers or diseased 

states that can yield the desired information for personalized medicine to develop. 

Unfortunately, the availability of such agents are lacking, and the field continues to be 

dominated by a single, nonspecific agent, [18F]FDG.1  

 Of the multiple components that encompass the PET imaging process, target discovery 

and software/hardware development significantly outpace the advancement of novel imaging 

probes. A significant impediment to the field is the lack of synthetic approaches that can access 

these desired probes in a mild and efficient manner that is demanded by the sensitivity of many 

of these substrates. Consequently, the lack of compatible and efficient methodology restricts 

their clinical evaluation and development. Mainstream organic chemistry is dominated by an 

innumerable amount of synthetic building blocks and methodology that has enabled the 



51 
 

construction of almost any imaginable structure. However, the 18F-labelling chemistry, reactions 

are limited to a single entity, [18F]fluoride anion, and incorporation of the isotope is not trivial. 

Consequently, the available methodology is extremely limited and as a result, tracer 

development is exceedingly slow. 

 A significant portion of radiofluorination reactions are predicated on C-18F bond 

formation. Although successfully employed for decades, this approach is not without its issues. 

First, this approach is only well-established in two areas: Sn2 alkyl displacement and 

nucleophilic aromatic substitution. Access to agents not included in these strategies involves 

indirect, multi-step approaches that are time-consuming and inefficient, and ultimately limit the 

practicality of these approaches. Second, the conditions for incorporation of the isotope are 

often harsh (basic, high temperatures) and require protecting groups. As a result, these 

conditions restrict the use of most substrates, especially biomolecules, for the ideal, one-step 

approach and complicate synthetic efforts significantly. Consequently, the incompatibility of 

complex, polyfunctional biomolecules has necessitated the use of alternative strategies to 

access these agents in a rapid, late-stage fashion.  

Interest in Al-18F, B-18F, and Si-18F bonds has been largely driven by the potential of 

peptides, proteins, and antibodies as imaging agents and the need for these substrates to be 

radiolabeled under mild conditions, preferably in an aqueous environment. Our interest in the 

field was spurred on by the rapid and efficient manner of Si-18F bond formation and the most 

likely compatibility of the corresponding Si-18F products (over the Al-18F and B-18F ones) within 

the estrogen receptor system. Of the reported conditions, both are inherently limited to low 

specific activity and have little value in receptor-based PET imaging. Consequently, we sought 

to improve on the existing methodology through the use of our silyl acetate precursors which 

have proven to be ideal substrates: easily prepared and bench-stable, yet highly reactive to 

[18F]fluoride ion, giving high radiochemical yields and specific activities. The versatility of the silyl 

acetate moiety was demonstrated in three main active areas of research: adaptor molecules, 

small molecules, and peptides.  

Although a direct, one-step radiofluorination is highly desirable, the incompatibility of 

some substrates or the difficulty associated with a one-step approach demand a synthetically 

simpler indirect, multistep strategy through the use of small adaptor molecules. However, the 

existing available chemistry is flawed by complex, inefficient sequences that make translation to 

the clinic exceedingly difficult, especially since the isotope is incorporated very early in the 
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sequence. Alternatively, our NHS ester 30 reacts rapidly with aqueous [18F]fluoride ion without 

the need for the time-consuming drying step or added base. Exceedingly high levels of activity 

of 31 (35-40 mCi from starting 50-55 mCi of activity) can be quickly accessed within 45 minutes 

after HPLC purification. The utility of the method was demonstrated in the radiosynthesis of 

[18F]-EDC where 15 mCi of material can be routinely synthesized from 50 mCi of activity within 2 

hours.  

To illustrate the utility of the approach for radiolabeling of small molecules, we became 

interested in developing Si-18F–based ER PET imaging agents. The problem with small- 

molecule radiosyntheses is their multi-step approaches which typically involve deprotection 

steps and/or functional group manipulations and restricts the use of direct, late-stage 

[18F]fluorinations to rapidly access functionally complex agents. The protection/deprotection 

sequences are usually amenable to relatively simple small molecules, but this becomes more 

complicated with complex substrates and only further undermines the practicality of the 

approach. However, the Si-OAc moiety facilitates a protecting group-free strategy to generate a 

complex [18F]-estrogen (45) in high RCYs and preparative yields through a simple, late-stage 

aqueous [18F]fluorination. We also developed a complementary room temperature 

[18F]fluorination method for those substrates that may not be compatible with the higher 

temperatures required in the previous method. Similarly, the reaction proceeds smoothly, in the 

presence of protic functionality, with the K[18F]F-K222 cryptate in high RCYs within 10 minutes.  

One of the more active areas of research is the radiolabeling and in vivo investigations 

of peptides. However, despite their attractive in vivo properties, 18F-labelled peptides have had 

limited success, with only a few being evaluated in humans.42-44 The dismal success rate has 

largely been attributed to the lack of methodologies that would enable more convenient and 

efficient preparation of these agents. Because of this, a majority of the peptides are radiolabeled 

with a useful “wash-in” of radiometals, especially with Cu-64, despite their less than ideal 

nuclear properties.54 The direct, one-step labeling of silyl peptides with [18F]fluoride ion has only 

recently been demonstrated as a viable strategy, albeit in low specific activities in most 

instances.26 Application of the silyl acetate chemistry, however, afforded high RCYs of cRGD 62 

through both methods and in contrast to those previously reported, in high SAs. This is one of 

the first reported cases of high RCYs and SAs in a one-step [18F]fluorination of peptides and 

should hold tremendous potential for future applications in this area.  
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Although the (tBu)2-Si-OAc moiety has proven to be highly efficient at capturing 

[18F]fluoride ion, the required two tert-butyl groups that are required to provide high hydrolytic 

stability to the Si-18F bond can also have a tremendous impact on the in vivo behavior of the 

radiotracer, especially those of low molecular weight. Efforts to counter the high lipophilicity with 

PEG chains, sugars, or ammonium salts have yielded minimal success.37,38 Our efforts to mask 

the impact of this group through the use of tetraethylene glycols has afforded extremely potent 

estrogens which can be readily labeled with F-18. This approach relies on the more polar TEG 

chains to effectively solvate the hydrophobic silane entity away from the unfavorable aqueous 

environment and into a more organic-friendly setting. This strategy appears to work best with a 

diTEG linkage, which provides significant improvements in the binding affinities for the receptor, 

as compared to the original silyl-estrogen. Unfortunately, high RBAs do not necessarily predict 

in vivo behavior, and further animal studies are still needed to validate this approach as an 

effective means to counter the problems associated with the (tBu)2-Si-18F moiety. 

A concern for the majority of radiofluorination reactions is the purification process and 

specific activities, as the large excess of starting materials needed to drive the reaction to 

completion often can complicate purification efforts and generate tracers with low SA or 

effective SA. A notable feature of these silyl acetates is the low amount of precursor needed for 

the reaction. Traditionally, typical amounts of precursor range from 1-2 mg and can exceed 5 

mg, especially when using iodonium salts or the hydrosilane chemistry. Since these reactions 

usually form nano-to-pico mole amount of [18F]fluoroproducts, it is not difficult to see why the 

purification problem is so severe. However, the silyl acetates in all cases react rapidly in 

extremely low amounts (NHS ester (30, 0.1 mg, 0.28 µmol), EE2 (44, 0.3 mg, 0.39 µmol), and 

peptide (61, 0.3 mg, 0.33 µmol)), which facilitates much easier purifications and ultimately is one 

of the main reasons for our high specific activities. Also, the problem with starting material 

contamination only serves to validate the PEG- and bead-based approaches as viable 

strategies, since this would eliminate the HPLC purification process altogether and allow for only 

the [18F]fluorosilane product to be eluted off the cartridge, devoid of any starting material. 

Further studies are still needed to improve radiochemical purities. 

Due to the presence of harmful ionizing radiation, 18F-labelling demands significantly 

different handling and tracer production protocols compared to mainstream organic chemistry. 

Even relatively simple purifications, such as extractions, are extremely difficult to perform, 

especially in relation to safety considerations. In almost all instances, production in the clinic is 

performed in automated synthesizers called modules to eliminate human error and maintain 
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reliable availability of tracers for patient use. These relatively simple machines serve as an all-

in-one module for routine production from the end of bombardment to the final HPLC purification 

step and work especially well for standard procedures such as for [18F]FDG, but the transition to 

more challenging protocols is not as straightforward. The machine functions through an intricate 

array of lines, filters, pumps, and columns and any additional step such as a simple extraction 

requires modification of the existing module. Minor modifications (i.e., extraction) can be readily 

accommodated into the machine, but the number of available options is rather limited, and at 

times, these modifications can often be a source of production failures. Consequently, the 

translation into the clinic demands simple and straightforward protocols. The silyl acetate moiety 

provides just that. A simple dilution of the cyclotron-produced aqueous [18F]fluoride source and 

subsequent heating for 10 minutes enables rapid and efficient fluorination of precursors in high 

RCYs. After cooling and without any other manipulations, the reaction mixture is injected directly 

into the HPLC and provides the purified radiotracer within 1 hour. Application of the method, in 

the event of a suitable Si-18F radiotracer, should provide a facile transition into the clinic. 

 

V. CONCLUSION 

In summary, we have developed a rapid and efficient Si-18F bond formation protocol 

based on silyl acetate precursors that is broadly applicable to small molecules and peptides. 

This method is particularly noteworthy given its experimentally simple, exceptional generality, 

and high level of functional group tolerance which permits entry to once previously inaccessible 

sensitive substrates, including complex, polyfunctional biomolecules, in a direct, late-stage 

approach to radiolabeling with F-18. The corresponding [18F]fluorosilane products were obtained 

in high yields and specific activities, and the utility of the method was demonstrated in labeling a 

challenging biopolymer, an estrogen dendrimer conjugate (EDC), allowing its in vivo evaluation 

within the cardiovascular system. Current efforts have focused on addressing the high 

lipophilicity of the (tBu)2-Si-18F with ethylene glycol chains and is currently being validated in  

animal models as a viable approach. 
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VI. METHODS 

Materials 

All reactions were carried out under a nitrogen atmosphere with dry solvents using anhydrous 

conditions unless otherwise stated. Solvents used in the reactions were dried in a solvent 

delivery system (neutral alumina column). Reagents were purchased from Aldrich and used 

without further purification, unless otherwise stated. Yields refer to chromatographically and 

spectroscopically (1H NMR) homogeneous materials, unless otherwise stated. Reactions were 

monitored by thin layer chromatography (TLC) carried out on Merck silica gel 60 F254 

precoated plates (0.25 mm) using UV light as the visualizing agent and ceric ammonium 

molybdate and heat as developing agents. Flash column chromatography was performed on 

Silica P Flash silica gel (40-64 μM, 60 Å) from SiliCycle. 1H NMR spectra were recorded at 23 

oC on a Varian Unity-400, Varian Inova-500 or Varian Unity-500 spectrometer and are reported 

in ppm using residual protium as the internal standard (CHCl3, δ = 7.26, CD2HCN, δ = 1.94, 

center line, acetone-d6, δ = 2.05, center line). The following abbreviations were used to denote 

the multiplicities: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = 

multiplet and b = broad. Proton-decoupled 13C NMR spectra were recorded on a Varian Unity-

500 (126 MHz) spectrometer and are reported in ppm using solvent as an internal standard 

(CDCl3, δ = 77.16, CD3CN, δ = 1.30, center line, acetone-d6, δ = 29.80, center line). High 

resolution mass spectra were obtained at the University of Illinois School of Chemical Sciences 

Mass Spectrometry Laboratory. No-carrier-added [18F]fluoride was produced at Washington 

University Medical School by the 18O(p,n)18F reaction through proton irradiation of enriched 

(95%) [18O]H2O using a RDS111 cyclotron. Screw-cap test tubes used for drying fluoride and 

radiolabeling were purchased from Fisher Scientific (Pyrex No. 9825). Radiochemical 

purification utilized a reverse-phase semi-preparative HPLC column (HPLC: Thermo P2000, 

Column: Agilent Zorbax SB-C18, 5 µm, 9.4 X 250 mm, Product #: 880975-202, λ = 254 nm, 

ACN/H2O). For quality control, the radiochemical purity was determined by analytical HPLC 

(HPLC: P4000, Column: Altima C18, 5 µm, 250 mm, Product #: 88056). C18 Sep-Pak cartridges 

were purchased from Waters Corporation (Milford, MA, USA). For the thin-layer 

chromatography (TLC) analyses, EM Science Silica Gel 60 F254 TLC plates were purchased 

from Fisher Scientific (Pittsburgh, PA, USA). Radio-TLC was accomplished using a Bioscan 200 

imaging scanner (Bioscan, Inc., Washington, DC, USA). Radioactivity was counted with a 

Beckman Gamma 8000 counter containing a NaI crystal (Beckman Instruments, Inc., Irvine, CA, 

USA). 
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Estrogen Receptor Binding Affinity Assays 

Relative binding affinities were determined by a competitive radiometric binding assay 

using 10 nM [3H]estradiol as tracer (Amersham Biosciences, Piscataway, NJ), and purified full-

length human ERα and ERβ (PanVera/Invitrogen, Carlsbad, CA). Compounds were assayed 

from 10-4 to 10-9 M as equivalents of estradiol (20-fold lower than the molar concentration of the 

dendrimer itself). Incubations were for 18-24 h at 0 °C, and the bound compound-receptor 

complexes were absorbed onto hydroxyapatite (BioRad, Hercules, CA), and the unbound 

compound was washed away. The binding affinities are expressed as relative binding affinity 

(RBA) values, with the RBA of estradiol for both receptors being set at 100. The values given 

are the average ± range or SD for two or more independent determinations. Estradiol binds to 

ERα with a Kd of 0.2 nM and to ERβ with a Kd of 0.5 nM. 

 

4-(Di-tert-butylsilyl)benzaldehyde (24): To a solution of 4-bromobenzaldehyde dimethyl acetal 

(1.20 g, 5.20 mmol) in THF (10 mL) at -78 oC was added nBuLi (3.20 mL, 5.12 mmol, 1.6 M in 

hexanes) and left to stir at this temperature for 1 h. Triethylamine (0.86 mL, 6.26 mmol) was 

added into the reaction mixture before injecting di-tert-butylchlorosilane (3.25 g, 18.2 mmol) at   

-78 oC. The reaction was left to warm to room temperature over 10 h before being quenched 

with EtOAc (50 mL) and sat. aq. NH4Cl (50 mL). The crude reaction was further extracted with 

EtOAc (40 mL), and the combined organic extracts were dried over MgSO4 and concentrated in 

vacuo. Purification by column chromatography (Hex:EtOAc, 1:0 1:1) afforded 24 (0.84 g, 

65.0%) as a white solid. Due to air sensitivity, the product was immediately used in the next 

reaction. 1H NMR (500 MHz, CDCl3):  10.0 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 

2H), 3.93 (s, 1H), 1.07 (s, 18H); 13C (126 MHz, CDCl3):  192.9, 144.7, 136.8, 136.5, 128.6, 

29.1, 19.3. 

4-(Di-tert-butylsilyl)benzoic acid (25): To a solution of 24 (0.49 g, 2.00 mmol) in acetone (10 

mL) at 0 oC was added dropwise a freshly prepared Jones reagent until a reddish color 

remained before being quenched with MeOH (10 mL). The crude reaction was extracted with 

EtOAc (2 X 50 mL) from water (50 mL), and the combined organic extracts were dried over 

MgSO4 and concentrated in vacuo. Purification by column chromatography (Hex:EtOAc,3:2) 

afforded 25 (0.45 g, 85.4%) as an off-white solid. 1H NMR (500 MHz, CDCl3): 12.50 (br, 1H), 

8.06 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 3.90 (s, 1H), 1.04 (s, 18H); 13C (126 MHz, 

CDCl3): 172.9, 143.6, 136.1, 129.8, 129.0, 29.0, 19.2; ESI (m/z): 263.1 [M + 1]. 
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2,5-Dioxopyrrolidin-1-yl 4-(di-tert-butylsilyl)benzoate (26): To a solution of 25 (0.26 g, 1.0 

mmol) in DCM (20 mL) at 0 oC was added cat. DMAP (5 mg) and N,N’-dicyclohexylcarbodiimide 

(0.21 g, 1.0 mmol). The resulting mixture was left to stir until the acid disappeared on TLC and 

quenched upon filtering off the dicyclohexyl urea. Purification by column chromatography 

(Hex:EtOAc,3:2) afforded 26 (0.35 g, 98.2%) as an off-white solid. 1H NMR (500 MHz, CDCl3): 

8.09 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 3.92 (s, 1H), 2.92 (s, 4H), 1.06 (s, 18H); 13C 

(126 MHz, CDCl3):  169.5, 145.4, 136.3, 129.3, 125.6, 29.0, 25.9, 19.2; HRMS (ESI) calc’d for 

C19H28NO4Si [M + 1] 362.1788; found 362.1788. 

2,5-Dioxopyrrolidin-1-yl 4-(acetoxydi-tert-butylsilyl)benzoate (28): To a solution of 27 (0.10 

g, 0.25 mmol) in PhH (1 mL) at room temperature was added Pd(OAc)2 (34 mg, 0.15 mmol) and 

acetic acid (15 mg, 0.25 mmol). The resulting black mixture was heated at 85 oC before being 

filtered at room temperature. Purification by column chromatography (Hex:EtOAc,3:2) afforded 

28 (85 mg, 82%) as clear oil. 1H NMR (400 MHz, CDCl3): 8.09 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 

8.0 Hz, 2H), 2.89 (s, 4H), 2.34 (s, 3H), 1.08 (s, 18H); 13C (100 MHz, CDCl3): 170.1, 169.4, 

162.1, 142.6, 135.2, 129.2, 125.9, 28.1, 25.9, 23.2, 20.9; HRMS (ESI) calc’d for C21H30NO6Si [M 

+ 1] 420.1842; found 420.1840. 

2,5-dioxopyrrolidin-1-yl-4-(di-tert-butylchlorosilyl)benzoate (63): Cl2(g) was bubbled into 

CCl4 (20 mL) at -78 oC to capture Cl2 (g) and determine the concentration as 3.5 mM. To a 

solution of 26 (0.36 g, 1.0 mmol) in DCM (0.50 mL) at -78 oC was added the Cl2 in CCl4 (0.50 

mL, 1.75 mmol). After 5 min, the solvent was evaporated with a stream of N2(g) and then 

applied onto a SiO2 prep-TLC plate, followed by elution with Hex:EtOAc (3:2) to afford 63 (0.34 

g, 85%) as an off-white solid. 1H NMR (500 MHz, CDCl3): 8.13 (d, J = 8 Hz, 2H), 7.92 (d, J = 

8.0 Hz, 2H), 2.92 (s, 4H), 1.11 (s, 18H); 13C (126 MHz, CDCl3): 169.4, 162.1, 142.3, 135.5, 

129.4, 126.2, 28.1, 25.9, 22.3. 

Di-tert-butyl(4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)silyl 2,5,8,11,14-pentaoxa- 

heptadecan-17-oate (35):  To a solution of 63 (40 mg, 0.10 mmol) in EtOAc (1 mL) at room 

temperature was added TEA (42 µL, 0.30 mmol) and 3-(-methyl)tetraethylene glycolyl-

propionic acid (70 mg, 0.25 mmol). The resulting mixture was left to stir at room temperature for 

4 h before being directly applied to a SiO2 prep-TLC plate. 1H NMR (500 MHz, CDCl3): 8.10 

(d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 3.83 (t, J = 6.0 Hz, 2H), 3.66-3.61 (m, 10H), 3.56-

3.54 (m, 2H), 3.37 (s, 3H), 2.92 (s, 4), 2.79 (t, J = 6.0 Hz, 2H), 1.10 (s, 18H); 13C (126 MHz, 
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CDCl3): 170.7, 169.4, 162.2, 142.5, 135.2, 129.2, 125.9, 72.2, 70.9, 70.8, 70.8, 70.7, 67.2, 

59.3, 37.3, 28.2, 25.9, 20.9; ESI-MS [M + 1] 640.3. 

Bead-(tBu)2Si-OAc (34): To solution of Novasyn-CO2H resin (0.10 g, 0.03 mmol, 

Novabiochem, carboxy terminated PEG resin, 0.28 mmol/g) in THF (1 mL) and DCM (1 mL) 

was added 63 (27 mg, 0.07 mmol) and TEA (5.8 µL, 0.04 mmol). The reaction mixture was left 

shaking at room temperature for 1 d before being passed through a sintered glass filter and 

washed with DCM (4 X 10 mL). The resin was dried under vacuum for 1 d and used for reaction.  

 

2,5-Dioxopyrrolidin-1-yl 4-(di-tert-butylfluorosilyl)benzoate (29): To a solution of 28 (2.0 mg, 

4.8 µmol) in DCM (0.20 mL) was added TBAF.3H2O. The resulting mixture was left to stir at 

room temperature for 5 min before being passed directly through a silica gel plug to afford 29 

(1.7 mg, 95%) as a colorless liquid. 1H NMR (500 MHz, CDCl3): 7.67 (d, J = 8.0 Hz, 2H), 7.13 

(d, J = 8.0 Hz, 2H), 2.93 (s, 4H), 1.07 (s, 18H); 13C (126 MHz, CDCl3): 169.4, 167.6, 143.1, 

136.4, 134.5, 129.5, 27.4, 25.9, 20.5; 19F (470 MHz, CDCl3): -188.9; HRMS (ESI) calc’d for 

C19H27NO4SiF [M + 1] 380.1693; found 380.1689. 

5-(4-Iodophenoxy)pentan-1-amine (40): To a solution of 4-iodophenol (0.22 g, 1.0 mmol) in 

DMF (1 mL) was added K2CO3 (0.15 g, 1.1 mmol) and 5-t-butoxycarbonylamino-pentylbromide 

(0.32 g, 1.2 mmol). The resulting mixture was left to stir for 1 h at 55 oC before being quenched 

with sat. NH4Cl (40 mL). The crude reaction was extracted with EtOAc (2 X 75 mL), and the 

combined organic extracts were dried over MgSO4 and concentrated in vacuo. After 

evaporation, the crude material was redissolved in TFA-DCM (10 mL, 1:1) and left to stir at rt for 
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1 h before being quenched with sat. NaHCO3. The crude reaction was extracted with CHCl3 (2 X 

75 mL), and the combined organic extracts were dried over MgSO4 and concentrated in vacuo. 

Purification by column chromatography (CHCl3:MeOH (10%)) afforded 40 (0.22 g, 73%) as a 

white powder. 1H NMR (500 MHz, CDCl3 + CD3OD): 7.45 (d, J = 8.0 Hz, 2H), 6.58 (d, J = 8.0 

Hz, 2H), 3.84 (t, J = 8.0 Hz, 2H), 2.83 (t, J = 8.0 Hz, 2H), 1.72 (q, J = 7.0 Hz, 2H), 1.63 (q, J = 

7.0 Hz, 2H), 1.46 (q, J = 7.0 Hz, 2H); 13C (126 MHz, CDCl3 + CD3OD): 158.9, 138.3, 116.9, 

82.8, 67.6, 39.6, 28.6, 27.3, 23.1; HRMS (ESI) calc’d for C11H17NOI [M + 1] 306.0346; found 

380.0344. 

(13S,17S)-17-((4-((5-Aminopentyl)oxy)phenyl)ethynyl)-13-methyl-7,8,9,11,12,13,14,15,16, 

17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (43): To a solution of 41 (0.20 g, 

0.65 mmol) in ACN (15 mL) at room temperature was added 17α-ethynylestradiol (0.15 g, 0.5 

mmol), CuI (10 mg, 0.05 mmol), piperidine (2 mL), and PdCl2(PPh3)2 (10 mg, 0.01 mmol). The 

resulting mixture was stirred for 4 h at 55 oC before being evaporated at room temperature. The 

crude material was redissolved in EtOAc (2 X 50 mL), washed with brine, and the organic layers 

were combined and concentrated in vacuo. Purification by column chromatography 

(CHCl3:MeOH (10%)) afford 43 (0.15 g, 65%) as a pale yellow solid. 1H NMR (500 MHz, CDCl3 

+ CD3OD): 7.33 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 2H), 6.60 (td, 

J = 8.0, 2.0 Hz, 1H), 6.53 (d, J = 2.0 Hz, 1H), 3.90 (t, J = 8.0 Hz, 2H), 0.88 (s, 3H); 13C (126 

MHz, CDCl3 + CD3OD): 159.2, 154.6, 138.2, 133.2, 131.9, 126.6, 115.6, 114.6, 113.0, 91.8, 

85.7, 80.3, 67.9, 49.9, 47.8, 43.9, 41.7, 39.8, 39.2, 33.3, 32.8, 29.9, 29.1, 27.6, 26.8, 23.5, 23.1, 

13.2; HRMS (ESI) calc’d for C31H40NO3 [M + 1] 474.3008; found 474.3017. 

Di-tert-butyl(4-((5-(4-(((13S,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthren-17-yl)ethynyl)phenoxy)pentyl)carbamoyl) 

phenyl)silyl acetate (44): To a solution of 43 (20 mg, 0.04 mmol) in DMF (0.10 mL) was added 

30 (21 mg, 0.05 mmol) and TEA (7 µL, 0.05 mmol) at room temperature. The resulting mixture 

was left to stir at this temperature for 1 h before the solvent was removed under a stream of N2 

(g). Purification by prep-TLC (Hex:EtOAc, 3:2) afforded 44 (23 mg, 75%) as a white solid. 1H 

NMR (500 MHz, CDCl3):  7.70 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 

2H), 7.12 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 2H), 6.62 (dd, J = 8.0, 2.0 Hz, 1H), 6.55 (d, J = 

2.0 Hz, 1H), 3.93 (t, J = 8.0 Hz, 2H), 3.46 (q, J = 8.0 Hz, 2H), 2.81-2.74 (m, 2H), 2.40-2.29 (m, 

2H), 2.22 (s, 3H), 0.89 (s, 3H); 13C (126 MHz, CDCl3): 170.4, 167.9, 159.2, 153.9, 138.4, 

137.5, 135.6, 135.0, 133.3, 132.4, 126.7, 125.8, 115.2, 114.6, 112.9, 91.5, 96.0, 80.6, 67.9, 
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49.9, 47.8, 43.8, 40.1, 39.7, 39.3, 36.8, 33.3, 29.9, 29.6, 29.0, 28.2, 27.4, 26.7, 23.7, 23.3, 23.1, 

20.9, 13.1; HRMS (ESI) calc’d for C48H64NO6Si [M + 1] 778.4503; found 778.4521. 

4-(Di-tert-butylfluorosilyl)-N-(5-(4-(((13S,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14, 

15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)ethynyl)phenoxy)pentyl) 

benzamide (64): To a solution of 44 (5 mg, 6.4 µmol) in DCM (0.20 mL) was added TBAF.3H2O 

at room temperature. The resulting mixture was left to stir at this temperature before being 

directly applied to a SiO2 prep-TLC plate. Purification (Hex:EtOAc, 3:2) afforded 64 (4.0 mg, 

85%) as a white solid. 1H NMR (500 MHz, CDCl3): 7.76 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 

Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 8.0Hz, 2H), 6.83 (dd, J = 

8.0, 2.0 Hz, 1H), 6.58 (d, J = 2.0 Hz, 1H), 6.16 (t, J = 5.0 Hz, 1H), 3.99 (t, J = 8.0 Hz, 2H), 3.53 

(q, J = 8.0 Hz, 2H), 2.90-2.80 (m, 2H), 2.40-2.29 (m, 2H), 2.22 (s, 3H), 0.95 (s, 3H). HRMS (ESI) 

calc’d for C46H59NO3SiF [M + 1] 720.4248; found 720.4250. 

RGD-(tBu)2-Si-OAc (61): To a solution of RGD peptide (3 mg, 3.9 µmol) in DMF (0.10 mL) was 

added 30 (2 mg, 4.8 µmol) and TEA (1 µL). The resulting mixture was left to stir at room 

temperature for 15 min before being quenched upon diethyl ether addition (20 mL). The crude 

reaction was then centrifuged to afford 61 (2.8 mg) as a colorless solid. HRMS (ESI) calc’d for 

C44H65N9O10Si [M + 1] 908.4702; found 908.4709.   

RGD-(tBu)2-Si-F (65): To a solution of 61 (0.5 mg, 0.6 µmol) in DMSO (0.10 mL) was added 

TBAF.3H2O. The resulting mixture was left to stir at room temperature for 5 min before being 

quenched upon diethyl ether addition (20 mL). The crude reaction was then centrifuged to afford 

65 as a colorless solid. HRMS (ESI) calc’d for C44H63N9O8SiF [M + 1] 868.4553; found 

868.4564. 

Radiochemical Syntheses 

2,5-Dioxopyrrolidin-1-yl-4-(di-tert-butyl-[18F]fluorosilyl)benzoate (31): 51 mCi of [18F]fluoride 

in 200 µL [18O]H2O was eluted into Pyrex vial (No. 9825) and used as is without any drying step 

or added base. The syringe was rinsed with dry 500 µL ACN, and any residual activity was 

added to vial. 30 (1 mg, 2.81 µmol) was dissolved in dry 300 µL ACN, added to the reaction vial,  

the vial was capped firmly and placed in an oil bath at 105 oC for 10 minutes (RCY: 93.5%, n = 

3, SA = 3500-3800 Ci/mmol). After 10 minutes, the vial was cooled at room temperature for 2 

minutes and the solvent was injected directly into the semi-preparative HPLC. The reaction vial 

was rinsed with 3 mL of the HPLC eluting solvent (80% ACN/ 20% H2O) and the rinse solvent 
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was added to the initial reaction mixture before injecting into HPLC. The purification was carried 

by a semi-preparative HPLC system (Agilent Zorbax SB-C18, 5 µm, 9.4 X 250 mm, Product #: 

880975-202), eluting with a gradient (A: 80% ACN 20% H2O   B: 90% ACN 10% H2O over 15 

min) at a flow rate of 4 mL/min and with the UV detector set at 254 nm. The radioactive peak 

corresponding to 31 was detected at 14 to 16 min and was collected in a large glass vial. The 

collected activity was diluted with 30 mL H2O and passed through a C18 column to capture the 

activity. The collection vial was rinsed with 3 mL H2O, which was also passed through the C18 

column. A nitrogen line was connected to the cartridge to dry as best as possible residual H2O 

captured in cartridge. The activity (35.9 mCi) was eluted from the column with Et2O (0.8 mL), 

and nitrogen was used to remove the solvent. The desired compound was obtained within 45 

minutes and the radiochemical purity was assessed by HPLC and was deemed suitable for the 

next conjugation step. Non-decay corrected yield = 70.4%. Decay-corrected yield = 93.5%. 

Radio-TLC of the radiofluorination of 30 with [18F]fluoride ion after 10 minutes: 

DONG: 81520111.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 5.3% 

Region 2 ([18F]fluoroproduct; 55 mm): 94.7% 

 

Prep HPLC purification of crude material: 

Conditions: A: 80% ACN 20% H2O   B: 90% ACN 10% H2O over 15 mins, flow rate = 4 mL/ 
min, λ = 254 nm 
 
UV trace: 
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Radioactivity trace (Product: 15.2 min): 

 

 

Quality Control analysis after purification: 

Conditions: 80% ACN, 20% H2O flow rate = 2 mL/ min, λ = 254 nm 
 

UV trace used for specific activity determination (Product: 4.51 min): 

 

UV trace of co-injection with cold standard for product (31) confirmation (Product: 4.56 
min): 
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Radioactivity trace of co-injection with cold standard for product (31) confirmation and 
radiochemical purity: 

 

 

 [18F]-EDC (33): To a dried solution of 31 in 40 µL MeOH was added EDC (32, 6 nmol in 10 µL 

MeOH) at room temperature and left to stir for 10 mins (RCY: 60-98%). The reaction mixture 

was added directly to a G25 column (PD Minitrap G-25, Sephadex G-25 medium, Product #: 28-

9180-07), and 33 was eluted with PBS buffer (~1.5 mL, in 0.5 mL increments) to obtain 15.1 

mCi in ca. 80 min from end of bombardment. The isolated yield (without decay correction) was 

29.4%, with a radiochemical purity of >99% and specific activity of 2500 mCi/µmol (92.5 

GBq/µmol); Decay-corrected yield = 48.6%. 

[18F]-EDC purity determined by radio-TLC: 

DONG: 81520113.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% MeOH 

Region 1 (35 mm; [18F]-EDC): 100% 

 

2,5-Dioxopyrrolidin-1-yl-4-(di-tert-butyl-[18F]fluorosilyl)benzoate (31): To a plastic vial was 

added 5.51 mCi of [18F]fluoride in 50 µL [18O]H2O, 0.1 mg K2CO3 (solution: 1 mg/50 µL in H2O), 

and 1 mg K222 (solution: 56 mg/1000 µL in ACN). The vial was placed in an oil bath at 105 oC 

and the water was removed by azeotropic evaporation with ACN (1 mL) using a stream of 

nitrogen. This was repeated twice more with 1 mL increments of ACN until the [18F]fluoride 

source was deemed dry. The residue containing the [18F]F.K222 cryptate was redissolved in 0.3 

mL PhH (0.289 mCi stuck in vial) and transferred to a glass vial containing 30 (1 mg, 2.81 
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µmol), 0.025 mg polystyrene, and 0.2 mL PhH. The reaction was maintained at room 

temperature for 10 minutes and monitored by radio-TLC (RCY: 94.8%, n = 2). Confirmation of 

product (31) and the purity was assessed as above.  

 

Radio-TLC of the radiofluorination of 30 with [18F]fluoride ion after 10 minutes: 

DONG: 6320113.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

3.0e3

6.0e3

9.0e3

1.2e4

1.5e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 3.9% 

Region 2 ([18F]fluoroproduct; 60 mm): 96.1% 

 

Radioactivity trace (Product: 3.93 min): 

 

 

2,5-Dioxopyrrolidin-1-yl-4-(di-tert-butyl-[18F]fluorosilyl)benzoate (31): To a plastic vial was 

added 1.036 mCi of [18F]fluoride in 25 µL [18O]H2O, 0.1 mg K2CO3 (solution: 1 mg/50 µL in H2O), 

and 1 mg K222 (solution: 56 mg/1000 µL in ACN). The vial was placed in an oil bath at 105 oC 

and the water was removed by azeotropic evaporation with ACN (1 mL) using a stream of 

nitrogen. This was repeated twice more with 1 mL increments of ACN until the [18F]fluoride salt 

was deemed dry. The residue containing the [18F]F.K222 cryptate was redissolved in 0.3 mL PhH 

(0.211 mCi stuck in vial) and transferred to a glass vial containing 35 (1 mg, 1.75 µmol) and 0.2 

mL PhH. The reaction was maintained at room temperature for 2 minutes, injected onto and 

eluted from a silica gel plug (Hexanes:EtOAc, 4:3, 2 mL). Confirmation of product (31) and 

purity was assessed as above.  
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Radio-TLC of the radiofluorination of 35 with [18F]fluoride ion after 10 minutes (left) and 

after silica gel purification (right): 

DONG: 61620113.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0

1000
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3000

4000

5000

6000

DONG: 71320113.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0

1000
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3000

4000

5000

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 53.8% 

Region 2 ([18F]fluoroproduct; 55 mm): 46.2% 

 

Quality Control analysis after purification: 

Conditions: 80% ACN, 20% H2O flow rate = 2 mL/ min, λ = 254 nm 
 
UV trace: 

 

Radioactivity trace: 

 

 

EE2-(tBu)2-Si-18F (45): 21.8 mCi of [18F]fluoride in 100 µL [18O]H2O was eluted into Pyrex vial 

(No. 9825) and used as is without any drying step or added base. 44 (0.3 mg, 0.3 µmol) was 

dissolved in dry 400 µL ACN, added to reaction vial, capped firmly and placed in oil bath at 105 

oC for 10 minutes (RCY: 94.4%, n = 2, SA = 2300-2500 Ci/mmol). After 10 minutes, the vial was 

cooled at room temperature for 2 minutes and then injected directly into the semi-preparative 
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HPLC. The reaction vial was rinsed with 1 mL of the HPLC eluting solvent (80% ACN/ 20% 

H2O) and added to the initial reaction mixture before injecting into HPLC. The purification was 

carried by a semi-preparative HPLC system (Agilent Zorbax SB-C18, 5 µm, 9.4 X 250 mm, 

Product #: 880975-202), eluting with a gradient (80% ACN 20% H2O) at a flow rate of 4 mL/min 

and the UV detector set at 254 nm. The radioactive peak corresponding to 45 was detected at 

22 to 24 min by the radioactivity detector and was collected in a large glass vial. The collected 

activity was diluted with 40 mL H2O and passed through a C18 column to capture the activity. 

The collection vial was rinsed with 3 mL H2O, which was also passed through the C18 column. 

A nitrogen line was connected to the cartridge to dry as best as possible residual H2O captured 

in cartridge. The activity (13.72 mCi) was eluted from the column with 2.0 mL, and nitrogen was 

used to remove the solvent. The desired compound was obtained within 45 minutes and the 

radiochemical purity was assessed by the HPLC. Non-decay corrected yield = 62.9%. Decay-

corrected yield = 84.0%. 

Radio-TLC of the radiofluorination of 44 with [18F]fluoride ion after 10 minutes: 

DONG: 22420122.R01 

0.0 15.0 30.0 45.0 60.0 75.0 90.0 mm

cnts

0

1500

3000

4500

6000

7500

9000

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 5.72% 

Region 2 ([18F]fluoroproduct; 55 mm): 94.28% 
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Prep HPLC purification of crude material: 

Conditions: 80% ACN 20% H2O, flow rate = 4 mL/ min, λ = 254 nm 

UV trace: 

 

Radioactivity trace (Product: 22.4 min): 

 

Quality control analysis after purification: 

Conditions: 100% ACN, flow rate = 1.5 mL/ min, λ = 254 nm 
 

UV trace used for specific activity determination (Product: 5.11 min): 
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UV trace of co-injection with cold standard for product (45) confirmation (Product: 5.01 
min): 

 

Radioactivity trace of co-injection with cold standard for product (45) confirmation and 
radiochemical purity (Product: 5.12 min): 

 
 

EE2-(tBu)2-Si-18F (45): To a glass vial was added 4.55 mCi of [18F]fluoride in 15 µL [18O]H2O, 

0.2 mg K2CO3 (Solution: 1 mg/ 50 µL in H2O), and 2 mg K222 (Solution: 56 mg/ 1000 µL in ACN). 

The vial was placed in an oil bath at 105 oC and the water was removed from azeotropic 

distillation with ACN (1 mL) using a stream of nitrogen. This was repeated twice more with 1 mL 

increments of ACN until the [18F]fluoride source was deemed dry. The residue containing the 

[18F]F.K222 cryptate was redissolved in 0.3 mL DMSO containing 44 (0.3 mg, 0.39 µmol). The 

reaction was maintained at room temperature for 10 minutes and monitored by radio-TLC (RCY: 

86.8%, n = 2). Confirmation of product (45) and purity was assessed as above.  

Radio-TLC of the radiofluorination of 44 with [18F]fluoride ion after 10 minutes: 

DONG: 52120121.R01 
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TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 14.53% 
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Region 2 ([18F]fluoroproduct; 65 mm): 85.47% 

 

RGD-(tBu)2-Si-18F (62): To a glass vial was added 19.75 mCi of [18F]fluoride in 15 µL [18O]H2O, 

0.1 mg K2CO3 (Solution: 1 mg/ 50 µL in H2O), and 1 mg K222 (Solution: 56 mg/ 1000 µL in ACN). 

The vial was placed in an oil bath at 105 oC and the water was removed by azeotropic 

distillation with ACN (1 mL) using a stream of nitrogen. This was repeated twice more with 1 mL 

increments of ACN until the [18F]fluoride source was deemed dry. The residue containing the 

[18F]F.K222 cryptate was redissolved in 0.3 mL DMSO containing 61 (0.3 mg, 0.33 µmol), left at 

room temperature for 15 minutes (RCY: 85.7%, n = 2) and then injected directly into the HPLC. 

The reaction vial was rinsed with 3 mL of the HPLC eluting solvent (45% ACN/ 55% H2O/ 0.1% 

TFA) and added to the initial reaction mixture before injecting into HPLC. The purification was 

carried by a semi-preparative HPLC system (Agilent Zorbax SB-C18, 5 µm, 9.4 X 250 mm, 

Product #: 880975-202), eluting with a gradient (45% ACN/ 55% H2O/ 0.1% TFA) at a flow rate 

of 4 mL/min and the UV detector set at 254 nm. The radioactive peak corresponding to 62 was 

detected at 18 to 20 minutes by the radioactivity detector and was collected in a large glass vial. 

The collected activity was diluted with 30 mL H2O and passed through a C18 column to capture 

the activity. The collection vial was rinsed with 3 mL H2O, which was also passed through the 

C18 column. A nitrogen line was connected to the cartridge to dry as best as possible residual 

H2O captured in cartridge. The activity (4.05 mCi) was eluted from the column with 2 mL EtOH, 

and nitrogen was used to remove the solvent. The desired compound was obtained within 45 

minutes and the radiochemical purity was assessed by the HPLC. Non-decay corrected yield = 

20.5%. Decay-corrected yield = 27.2%. 

Radio-TLC of the radiofluorination of 61 with [18F]fluoride ion after 15 minutes: 

DONG: 52420126.R01 
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TLC Eluting Conditions: 45% ACN/ 55% H2O/ 0.1% TFA; C18 plate 

Region 1 (unreacted [18F]fluoride; 35 mm): 11.65% 

Region 2 ([18F]fluoroproduct; 45 mm): 88.35% 

Prep HPLC purification of crude material: 
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Conditions: 45% ACN 55% H2O 0.1% TFA, flow rate = 3 mL/ min, λ = 254 nm 

UV trace (Product: 5.11 min): 

 

Radioactivity trace: 

 
 

Quality control analysis after purification: 

Conditions: 60% ACN, 40% H2O flow rate = 1.5 mL/ min, λ = 254 nm 
 

UV trace used for specific activity determination (Product: 12.5 min): 
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UV trace of co-injection with cold standard for product (62) confirmation (Product: 4.61 
min): 

 

Radioactivity trace of co-injection with cold standard for product (62) confirmation and 
radiochemical purity (Product: 4.72 min): 

 

 

RGD-(tBu)2-Si-18F (62): 2.31 mCi of [18F]fluoride in 20 µL [18O]H2O was eluted into Pyrex vial 

(No. 9825) and used as is without any drying step or added base. 61 (0.3 mg, 0.33 µmol) was 

dissolved in dry 200 µL ACN, 200 µL MeOH and 30 µL H2O added to reaction vial, capped 

firmly and placed in oil bath at 105 oC. The reaction was maintained at this temperature for 10 

minutes and monitored by radio-TLC (RCY: 81.1%, n = 2). Confirmation of product (62) and 

purity was assessed as above.  

Radio-TLC of the radiofluorination of 61 with [18F]fluoride ion after 10 minutes: 

DONG: 52520125.R01 
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TLC Eluting Conditions: 45% ACN/ 55% H2O/ 0.1% TFA; C18 plate 
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Region 1 (unreacted [18F]fluoride; 35 mm): 18.19% 

Region 2 ([18F]fluoroproduct; 60 mm): 81.81% 

 

Radio-TLC of the radiofluorination of 59 with [18F]fluoride ion after 10 minutes: 

DONG: 2212012E.R01 

0.0 15.0 30.0 45.0 60.0 75.0 90.0 mm
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TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 5.69% 

Region 2 ([18F]fluoroproduct; 65 mm): 94.31% 
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 CHAPTER 3 

A NEW DIMENSION IN SELECTIVE ESTROGEN ACTION: A VASCULAR-PROTECTING 

ESTROGEN DENDRIMER CONJUGATE SHOWS SELECTIVE RECEPTOR-MEDIATED 

UPTAKE IN THE HEART AND VASCULATURE 

I. INTRODUCTION 

A. Background 

Discrepancies in the incidence of heart disease between males and females, and in pre- 

vs. postmenopausal women, illustrate the significant beneficial effect of estrogen on the 

cardiovascular system.1,2 Until recently, the cardioprotective effects of estrogen were originally 

attributed to its effects on serum lipid concentrations by modulating the hepatic expression of 

apoprotein genes.3 Large, randomized trials have revealed similar conclusions, documenting 

estrogen’s ability to increase the beneficial high-density lipoprotein (HDL) serum concentrations 

while decreasing harmful low-density lipoprotein (LDL) concentrations.4 Maintaining a proper 

balance between the two concentrations have been shown to be critical in preserving vascular 

health, with subsequent studies revealing that even minor disruptions can offset key signaling 

pathways within these tissues and eventually lead to the onset of atherosclerosis.5-7 However, 

only one-third of the observed clinical benefits of estrogen therapy are attributed to the lipid 

concentration alterations,3 suggesting a more direct interaction between estrogen and blood 

vessels in vascular health maintenance. Consequently, the estrogen receptor (ER) in the 

vasculature is now considered an important target for the beneficial actions of estrogens. 

B. Estrogen Receptor Signaling 

The physiological effects of both endogenous and synthetic estrogens are mediated 

through two estrogen receptors, ERα and ERβ, which are both members of the nuclear receptor 

superfamily of ligand-regulated transcription factors.8 The receptors are composed of five 

domains, each with a specific function including DNA and ligand binding, transcriptional 

activation and repression, and receptor dimerization.9 Upon ligand binding, the receptor 

undergoes major conformational changes to facilitate ER dimerization, binding to estrogen 

response elements (EREs) on target genes, and recruitment of coregulator proteins, thereby 

altering the expression of specific genes within the nucleus.10 ERs can also modulate 

transcription in the absence of ligand binding through protein-protein interactions with other 

transcription factors.11 However, many of the cardioprotective effects attributed to estrogen have 
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been largely mediated through an extranuclear signaling pathway with membrane-associated 

ERs.  

The estrogen receptor has traditionally been conceived to function exclusively through 

nuclear activation (“genomic pathway”).12 More recently, emerging data has identified an 

additional extranuclear role, capable of initiating diverse nongenomic cellular responses via 

activation of plasma membrane associated ERs (“nongenomic pathway”) (Figure 3.1).13 In 

contrast to the classical genomic pathway of estrogen action (i.e., several hours to days), these 

nongenomic responses are often extremely rapid, with biological effects typically observed 

within seconds to minutes. The rapid nature of this response system assisted in its initial 

discovery in 196714 when cyclic adenosine monophosphate (cAMP) levels were observed to 

significantly increase within 15 seconds upon intravenous administration of physiological 

amounts of 17β-estradiol (E2) and was further supported in other studies demonstrating rapid 

calcium responses to E2 in endometrial cells.15 Compelling evidence now confirms the existence 

of the nongenomic pathway: rapid signaling has been identified in many different cell types 

including oocytes, osteoblasts, osteoclasts, breast cancer cells, adipocytes and endothelial 

cells, where it mediates ion fluxes, kinase cascades and enzyme activities.16-22 However, 

because of the difficulty in selectively activating the nongenomic over the genomic pathway (i.e., 

traditional estrogens are effective at stimulating both pathways), the extent to which the 

biological effects of estrogen are attributed to the nongenomic pathway and whether this 

pathway is operative and biologically relevant in vivo have remained unknown. Consequently, 

the mechanism of action and the cellular functions of these extranuclear ERs are now being 

defined, and this has since become an active area of investigation.13 
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Figure 3.1. Schematic depicting two mechanisms of estrogen signaling: nuclear, or genomic, 
signaling (green) and extranuclear, or nongenomic, signaling (yellow). 

 

C. Nuclear and Membrane-Associated ERs 

 Although it has yet to be sequenced, it appears membrane ERs are structurally very 

similar to nuclear ERs: immunohistochemistry studies shared the same epitope homology as 

nuclear ERα23 and the expression of ERα and ERβ in ER null cells resulted in the detection of 

both nuclear and membrane-localized pools of ERs.24 Furthermore, analysis of double knockout 

ERα/ERβ mice (DERKO) did not reveal a functional ER protein at the cell surface.25 Moreover, 

both nuclear and membrane-initiated signaling were eliminated in the presence of either small 

interfering RNA or antisense oligonucleotides directed against the proteins.25-27 Lastly, and 

perhaps the most convincing, membrane-extracted ERs displayed an identical mass to nuclear 

ERs by mass spectrometry and identical binding affinities for the endogenous ligand, 17β-

estradiol.27  

D. The Estrogen Receptor and the Cardiovascular System 

The many clinical and basic science investigations have demonstrated estrogen’s impact 

on cardiovascular health. In animal studies, estrogen has been shown to stimulate endothelial 

cell growth following denudation,28 inhibit the proliferation of vascular smooth-muscle cells29,30 

and attenuate arterial lesion sizes,31,32 all of which are key to maintaining the integrity of the 

blood vessel. Even minor disruptions to the wall can lead to vascular disease.33 Moreover, 
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additional investigations in specialized normolipidemic and hypercholesterolemic animal models 

revealed no effect of estrogen treatment on circulating lipid concentrations, further 

demonstrating the direct relationship between estrogen and the blood vessel wall.29,34,35   

Blood vessels are composed of smooth-muscle cells and an endothelial cell lining, with 

both ER subtypes being identified within each, as well as in myocardial cells.36 Although the 

absolute level of expression of ERα and ERβ is not well characterized, it is known that both 

endothelial and smooth muscle cells bind estrogen with high affinity.3 Upon binding, the clinical 

benefits of estrogen are at least partially related to its capacity to enhance the bioavailability of 

the powerful vasodilator nitric oxide (NO) through stimulation of endothelial nitric oxide synthase 

(eNOS).37,38 NO, produced from the conversion of L-arginine to L-citrulline by eNOS, is well-

known to provide significant benefits to the vasculature through regulation of blood pressure and 

platelet aggregation while maintaining the structural integrity of the vessel wall through the 

promotion of endothelial cell growth and migration, and attenuation of smooth muscle cell 

growth and migration.28,39,40  

Cell-based studies have further established the intricate relationship between the 

estrogen receptor and eNOS. In cultured endothelial cells, physiological concentrations of E2 

caused eNOS activation within 15 minutes of exposure to the hormone, which is consistent with 

studies in arteries, and the response is blunted by ER antagonism, suggesting an ER-mediated 

process.41,42 Furthermore, overexpression of ERα within these cells resulted in an enhancement 

of NO production. In COS-7 cells, which do not constitutively express ERα or eNOS, NO 

production could only be detected after cotransfection of ERα and eNOS cDNAs.5  

Vascular benefits of NO production are now well-documented, and it is becoming clear 

that estrogen binding with membrane-associated ERs and subsequent stimulation of eNOS play 

a key role in blood vessel health and have since provided the rationale for hormone 

replacement therapy (HRT) in cardiovascular maintenance.43 

E. Estrogen, Heart Disease, and Hormone Replacement Therapy 

Before menopause, the main endogenously derived circulating estrogen is 17β-estradiol, 

and depending on the age and stage of the menstrual cycle of a female, concentrations of this 

hormone can vary considerably: serum estradiol concentrations are low in preadolescent girls, 

ranges from 100 pg/mL in the follicular phase to 600 pg/mL at the time of ovulation in 

premenopausal women, and after menopause, declines to levels seen in men of similar age (2-

5 pg/mL).44 Correlation of serum estradiol concentrations to the incidence of heart disease in 
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women is quite striking: the incidence of heart disease is low in premenopausal women, 

comparable to those seen in men, steadily rises in postmenopausal women, and reverts back to 

premenopausal levels with estrogen replacement therapy.44 Such studies have demonstrated 

the significance of estrogen within the cardiovascular system and the need to maintain optimal 

serum estrogen concentrations to decrease the risk of developing heart disease.   

Unfortunately, a liability associated with estrogen administration for the maintenance of 

cardiovascular health is the global agonist effects estrogen has on the many and diverse 

estrogen target tissues. The beneficial effects in the vasculature can come at the expense of 

overstimulation of other estrogen-sensitive tissues, such as breast and uterus, which increase 

the risks of cancers in these tissues, as revealed by recent hormone replacement therapy (HRT) 

studies.45,46 Much effort has gone into the development of estrogens that have a more favorable 

profile of beneficial vs. detrimental effects in different target tissues.47,48 Such compounds, 

termed selective estrogen receptor modulators (SERMs), have a selectivity based on differential 

interaction with coregulator proteins that mediate the nuclear action of the ER, and though they 

represent an therapeutic advance, their desired beneficial agonist effects rarely match those of 

estradiol itself. The development of estrogens that selectively stimulate the extra-nuclear 

pathway, in the absence of nuclear activation, would provide intriguing and potentially safer 

alternatives to the estrogens and SERMs currently used in HRT regimens that non-selectively 

target both pathways.  

F. The Estrogen Dendrimer Conjugate (EDC) 

Currently, the only successful strategy to achieve selective activation of the extra-

nuclear pathway of estrogen action has been to tether estrogens to a large molecule that 

prevents its nuclear uptake. The most widely used are various commercial preparations of a 

conjugate between estradiol and bovine serum albumin (E2-BSA)49-51 or, to a lesser extent, 

peroxidase (E2-peroxidase).52-54 Numerous studies in cell culture have shown that E2-BSA is 

able to activate kinase cascades and other rapid cellular responses that are presumed to be 

mediated by extra-nuclear ER action. Nevertheless, E2-BSA has proved to be a troublesome 

reagent: its affinity for ER is limited and instability in the covalent link between estrogen and 

BSA releases active estrogens;55 furthermore, the protein nature of BSA makes it unsuitable for 

in vivo work. 

Recently, we reengineered such hormone-macromolecule conjugates by designing a 

more structurally robust system called the estrogen dendrimer conjugate (1, EDC, Figure 3.2).56 
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The EDC is constructed through the use of a high affinity estrogen, ethynyl estradiol, derivatized 

at the 17α-position of the steroid, a position known to tolerate large substitution and still retain 

high affinity for ER.57 The estrogen is attached through a short linker, that has been shown not 

to affect its binding affinity, to a large, positively charged, non-biodegradable generation-6 (G6) 

poly(amido)amine (PAMAM) dendrimer. Key to the design is the use of hydrolytically stable 

linkages between the estrogen and PAMAM dendrimer as any release of the estrogen would 

stimulate the undesired genomic pathway and reduce the selectivity for the preferred 

nongenomic pathway. 

 

Figure 3.2. Structure of the Estrogen Dendrimer Conjugate (EDC). 
 

 The synthesis of EDC is straightforward (Scheme 3.1).56 The benzaldehyde derivative 

(3) can be rapidly accessed through a Sonogashira reaction between commercially available 

ethynyl estradiol (2) and 4-bromobenzaldehyde and the degree of dendrimer substitution by the 

estrogen can be controlled simply by adjusting the molar ratios of aldehyde (3) to dendrimer (4) 

which in our case, 20 of the free 256 amines present on the PAMAM periphery were utilized for 

derivatization. In MeOH, imine formation was spontaneous; reduction with borohydride was 

quantitative, and the reaction could be monitored by aldehyde peak disappearance in the 1H 

NMR spectrum. The resulting EDC (1) then underwent 5 extensive rounds of rigorous 

purification to remove any unreacted estrogen, with the final ligand-to-dendrimer being 

determined by matrix-assisted laser desorption ionization (MALDI) which reflected the reaction 

stoichiometry.  
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Scheme 3.1. Synthesis of EDC (1).56 
 

 An attractive feature of the PAMAM dendrimer system is that its periphery can be further 

functionalized with fluorophores to follow the cellular distribution of EDC with confocal 

microscopy (Figure 3.3). In MCF-7 cells, a tetramethylrhodamine-labeled EDC (TMR-EDC) 

showed bright fluorescent speckles at the plasma membrane with no accumulation in the nuclei, 

which were stained blue. Replication of the same experiment with a 30-fold excess of estradiol 

as a blocking agent revealed a marked suppression in cellular fluorescence, suggesting the 

uptake in the previous experiment was most likely an ER-mediated process.58   

 

Figure 3.3. Fluorescence photomicrographs of MCF-7 cells treated with 100 nM (estrogen 
equivalents) TMR-EDC (A) or together with a 30-fold excess of E2 (B) after 45 minutes. Red 
fluorescence is from TMR-EDC; blue staining with 4’,6-diamidino-2-phenylindole indicates 
the nucleus.58  

 

 A key aspect of these types of estrogens is their ability to selectively activate the 

nongenomic pathway over the genomic pathway; thus, they can be used to understand the 
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biological significance of this pathway and to test whether it is a viable target for therapy. From 

the confocal microscopy studies, one would expect that an ER ligand that remains outside the 

nucleus, because of its size and charge, would have an attenuated capacity to activate nuclear 

activities. To assess genomic stimulation (Figure 3.4), the relative potency of E2 and EDC to 

regulate two known endogenous estrogen responsive genes (pS2 and WISP2)59 was evaluated 

in ER+ MCF-7 cells.58 Dose-response studies revealed a strong and pronounced stimulation by 

estradiol at very low concentrations (10-11-10-12 M), while in contrast, stimulation with EDC was 

only seen at much higher concentrations (10-7 M). To investigate the effectiveness of EDC in 

activating the nongenomic pathway (Figure 3.5), the time course and dose response of 

extracellular signal-regulated kinase (ERK) was monitored in MCF-7 cells, because this cell line 

has been shown to exhibit strong nongenomic responses to E2. In the presence of EDC at low 

concentrations (10-11-10-12 M), a very robust stimulation in the phosphorylation of ERK was 

observed, even more so than when compared to estradiol itself.58 These studies demonstrated 

the effectiveness of EDC in selectively stimulating the nongenomic pathway, in the absence of 

nuclear activation, and now serves as an ideal biological tool to probe the complexities of 

estrogen action in the context of both pathways. 

 

Figure 3.4. Regulation of estrogen-responsive genes pS2 (A) and WISP2 (B) in MCF-7/Her 2 
cells treated with E2, EDC, or empty dendrimer (Dend) for 8 hours at the indicated 
concentration.58 

 

 

Figure 3.5. Stimulation of ERK phosphorylation in MCF-7/Her 2 cells by E2 (10 nM) and EDC 
(10 nM estrogen equivalents) for 20 minutes.58  
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Although the desired selectivity between the two pathways was obtained, it still remained 

unknown whether the nongenomic pathway was operative in vivo. PAMAM dendrimers are 

commonly utilized as drug delivery systems60,61 and EDC would assume a similar role in 

interrogating the significance of extranuclear estrogen actions in vivo within the context of the 

cardiovascular system. In collaboration with Phil Shaul at UT Southwestern Medical Center,62 

the cardioprotective effects of EDC were assessed in a carotid injury mouse model, in which a 

mouse carotid artery underwent electric injury and the extent of repair was evaluated after three 

day treatment with E2 and EDC. Quite strikingly, as shown in Figure 3.6, EDC is nearly as 

effective at repairing the injury to the arterial wall, as depicted by the decrease in blue color as 

compared to the controls, vehicle or empty dendrimer.  

 

Figure 3.6. Non-nuclear ER signaling promotes endothelial monolayer in vivo in ovariectomized 
female mice following perivascular electric injury. Left: Vehicle versus E2 3 day treatment 
after injury. Right: Empty dendrimer versus EDC 3 day treatment after injury. Blue color 
indicates the extent of injury.62  

 

However, in order for EDC to possess any clinical value, it would need to retain these 

exceptional cardioprotective properties while having minimal effect on other estrogen-sensitive 

tissues (i.e., breast, uterus). This is exactly the problem with traditional HRT and the 

nonselective nature of the administered estrogens. Since the receptor is widely distributed 

within both males and females, the beneficial effects in one tissue, such as the vasculature in 

this case, can come at the expense of overstimulation in others and increase the risks of certain 

cancers.45,63 Selective agents for protection of the cardiovasculature, similar to those seen with 

bone-selective SERMs (i.e., raloxifene) used in the treatment of osteoporosis, are still in need of 

further development.64  
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Remarkably, EDC possesses exceptional selectivity in vivo: investigations in the 

stimulations of uterotrophic responses and MCF-7 cell breast cancer xenograft growth, which 

readily responded to E2 through genomic stimulation, revealed no stimulation by EDC (Figure 

3.7). As a result, the observed benefits are largely the result of the ability of EDC to selectively 

stimulate the nongenomic response, which is sufficient to provide protection of the 

cardiovascular tissue and more importantly, its inability stimulate estrogen sensitive tissues (i.e., 

breast, uterus) because of its attenuated capacity to activate the genomic pathway. These 

findings are quite significant and should have a tremendous impact on the development of ER-

targeted hormone replacement agents in the future. 

 

Figure 3.7. Non-nuclear ER signaling does not stimulate an uterotrophic response or breast 
cancer cell tumor growth. (A) Uteri from mice treated for 24 days with vehicle, E2, empty 
dendrimer, or EDC. (B) Evaluation of uterine wet weight to body weight ratios. (C) Extended 
uterotrophic study with ER antagonism, ICI. (E) MCF-7 cell tumor xenografts after 21 day 
treatment with E2, vehicle, empty dendrimer or EDC.62 

 

II. CONCLUDING INTRODUCTORY REMARKS 

Overall, EDC has been found to retain good affinity for ER, but because of its size and 

charge, it is excluded from the nucleus. Consequently, EDC was found to possess minimal 

capacity for stimulating genomic activities, but a number of studies from our lab58,65,66 and 

others67-69 have shown that EDC effectively and selectively activates rapid extra-nuclear ER 

signaling in a variety of cellular response systems. More significantly, recent studies have 

demonstrated in two in vivo animal models that EDC provides cardiovascular protection 

equivalent to that of estradiol, yet unlike estradiol, does so without stimulating uterine growth or 
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breast tumor proliferation.62 These findings established that action only through the extra-

nuclear ER pathway, as stimulated by EDC, is sufficient to provide remarkably selective 

cardiovascular benefit, thereby avoiding undesired effects on other estrogen-responsive tissues. 

To investigate further the basis for the remarkable target-tissue selective activity of EDC, 

we have labeled this conjugate with fluorine-18 (F-18) and examined its biodistribution in vivo. 

We find that [18F]-EDC (8) is cleared rapidly from blood, and as expected for a particulate 

species, much activity becomes sequestered in spleen and liver. Nevertheless, significant 

uptake and retention are found in the heart and aorta, but by contrast, essentially no [18F]-EDC 

is taken up by the uterus. By comparing the uptake of [18F]-EDC with that of a structurally 

related analogue with little affinity for ER ([18F]-XDC, 21), we found that uptake in the heart and 

aorta appears to depend on the ER binding activity of EDC. These findings suggest that the 

selective cardiovascular protective effect of EDC is the result of two factors, one mechanistic 

(selective stimulation of the extra-nuclear pathway of ER action) and one pharmacokinetic 

(selective accumulation of EDC in vascular targets), and it points to a new dimension for 

extending the selective, potentially beneficial actions of estrogens. 

 

III. RESULTS 

A. Synthesis of [18F]-EDC 

EDC (1) was prepared as described previously;56 the degree of EE2 substitution was an 

average of 18 steroid molecules per dendrimer molecule, with a polydispersity index of 1.02, as 

determined by MALDI-TOF MS analysis. EDC was radiolabeled with fluorine-18 using two 

complementary methods based N-hydroxysuccinimide ester chemistry with either Si-18F or Cu-

click approaches. Both approaches utilized an indirect, multi-step sequence where fluorine-18 

was first introduced into small adaptor compounds and then appended to EDC through 

hydrolytically stable amide bonds. A direct approach was not attempted due to the inherent 

difficulty associated with radiolabeling a large nanoparticle such as EDC in a one-step process.  

The Si-18F approach has proved to be highly useful (Scheme 3.2). First and foremost, 

the aqueous [18F]fluoride source from the cyclotron can be used as an off-the-bench reagent, 

without having to resort to the tedious and time-consuming drying step required for classical C-

18F chemistry and the formation of a dried [18F]fluoride salt. A simple dilution of the [18F]F-

H2[
18O]O water with acetonitrile, dissolution of the NHS-silyl acetate (6), and heating at 105 oC 

for 10 minutes yielded 7 in high RCYs. After cooling to room temperature, the reaction mixture, 
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without any extraction, is injected directly into the HPLC to afford 7 in high radiochemical purity 

(>99%) and specific activity (3500-3800 Ci/mmol). The purified [18F]fluorosilane product can be 

readily appended to EDC (1) within 10 minutes, albeit in varying RCYs of 8 (60-98%). The 

sources of this variability have been difficult to ascertain, but appear to be dependent on the 

amount of H2O of 7 after purification, pH of the EDC solution, and precipitation issues from 

overconjugation. Nevertheless, the attractiveness of the approach lies in the high efficiency of 

the radiofluorination reaction: beginning with 50 milliCuries (mCi), the reaction sequence can 

reliably afford 15 mCi of the desired compound after 2 hours. This is a highly attractive feature, 

especially when conducting time-sensitive animal studies that are dependent on obtaining 

sufficient amounts of activity of the radiotracer at a specified time. 

 

Scheme 3.2. Radiosynthesis of [18F]-EDC (8) with the silyl acetate approach. (a) [18F]F-
H2[

18O]O, ACN, 105 oC, 10 min; (b) 1, 7, MeOH, rt, 10 min.  
 

 Of the available “click chemistry,” the most commonly used click-reaction is the Cu(I) 

catalyzed 1,3-dipolar cycloaddition of terminal alkynes with azides, called the Huisgen reaction, 

yielding 1,4-disubstitued 1,2,3-triazoles under mild conditions.70 The popularity of the reaction is 

attributed to its high efficiency, absence of protecting group protocols, chemical inertness of the 

azides and alkynes towards biological molecules and formation of an extremely stable triazole 

moiety, and it has since been used in numerous applications,71 but only recently have 

application in 18F-labelling been reported.72 Our approach takes advantage of the rapid and 

efficient manner of these reactions through a three-step sequence (Scheme 3.3): displacement 

of a tosylate to form the [18F]fluoroazide (10), Cu-mediated click reaction to afford triazole 12, 

and a final conjugation to EDC. Although an additional step is needed and lowered purified [18F]-

EDC-Click (13) activities, this approach has its own merits. The sequence still only requires one 

HPLC purification step, since the [18F]fluoroazide 10 can be readily distilled out of the reaction 
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mixture in high radiochemical purity. Due to the chemoselective nature of the click reaction, the 

next step can be performed directly, in the presence of other distilled mass from the previous 

step, without the need for HPLC purification. Consequently, sufficient amounts of 13 can be 

readily obtained in high SA (800-2600 Ci/mmol). 

 

Scheme 3.3. Radiosynthesis of [18F]-EDC-Click (13) with copper click approach. (a) K[18F]F, 
K2CO3, K222, ACN, 88 oC, 5 minutes; (b) CuSO4, sodium ascorbate, BPDS, DMF, H2O, rt, 5 
minutes; (c) 1, 12, MeOH, rt, 10 minutes. 

 

To investigate non ER-mediated uptake of the EDC, we also prepared and radiolabeled 

an ER non-binding analogue of EDC, termed XDC (20, Scheme 3.5), in which the EE2 hormone 

was replaced by a biphenyl methyl ether analogue. We modified our original high affinity 

estrogen by blocking the energetically crucial hydrogen bond between A-ring phenol of estradiol 

and polar residues in the ER ligand binding pocket through methyl ether formation and further 

by flanking it with two ortho methyl groups. These changes, together with deletion of the B-ring, 

afforded 18 with very low ER binding affinity (<0.001% relative to estradiol, 100%), and after it 

was conjugated to the G6 PAMAM dendrimer, we found that XDC had an ER binding affinity 

that was more than 45-fold less than that of EDC (0.083% for XDC and 3.8% for EDC). 

The non-binding estrogen was rapidly accessed through a three-step sequence 

(Scheme 3.4) involving a Suzuki coupling between boronic acid 14 and bromide 15, Grignard 

addition to the ketone 16, and a Sonogashira reaction to afford the desired compound (18). This 

analogue (18) was designed to be matched with the original estrogen (7) in EDC in terms of 

lipophilicity (Figure 3.8: cLogPo/w 5.98 for 18 vs 5.53 for 19) to allow comparison of the two 

particles based solely on the affinity of the attached estrogens for ER and not from the 

differences in LogP, which can markedly perturb in vivo biodistributions.  
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Scheme 3.4. Synthesis of a non-binding estrogen (18). (a) Na2CO3, Pd(PPh3)4, DMF, 80 oC; (b)  

TMSC CMgBr, THF, -78 oC; (c) 4-iodobenzaldehyde, piperidine, CuI, Pd(Cl2)(PPh3)4, THF, 
reflux. 

 

 

Figure 3.8. Structures for LogPo/w determinations: 5.98 for 18 vs 5.53 for 19.  
 

Under conditions identical to those previously used for [18F]-EDC, XDC (Scheme 3.5) 

was radiolabeled with our [18F]fluorosilane system in high radiochemical purity (>99%) and 

specific activity (1800 mCi/µmol; 67 GBq/µmol). The Si-18F approach was re-used in this system 

after 19F-NMR studies were inconclusive on the cause of defluorination and since the 

defluorination did not affect the biodistribution, it was the preferred method of choice since it 

was technically simpler and afforded EDC in higher specific activities. 

 

Scheme 3.5. Radiochemical synthesis of [18F]-XDC (21). (a) MeOH, rt, 10 min. 
 

 



91 
 

B. Biodistribution of [18F]-EDC 

After IV injection, the tissue distribution of [18F]-EDC (8) in adult female C57BL6 mice 

was determined at 30 minutes and 2 hour post injection, and tissue activity, expressed as the 

percent injected dose per gram of tissue, is shown in Figure 3.9. The highest initial uptake 

(%ID/g) of [18F]-EDC was localized in the spleen, followed by high levels in the liver and lung, 

consistent with the expected recognition and binding of an unprotected particle by opsonins and 

subsequent sequestration by the mononuclear phagocyte system (MPS) active in these 

tissues.73 In kidney and muscle, [18F]-EDC exhibited low uptake, with blood clearance occurring 

rapidly over the time course of the experiment, as relatively low activity was present at the 30 

minutes and clearance was almost complete within 2 hours.  

Strikingly, [18F]-EDC showed rapid and persistent accumulation in two presumed 

cardiovascular target tissues, heart and aorta. At 30 minutes, the %ID/g was 19.7 in the heart 

and 8.15 in the abdominal aorta, and unlike activity in blood, activity in these target tissues 

persisted at 2 hours with minimal clearance. In contrast to traditional 18F-labelled estrogens that 

often exhibit high uterine uptake in mice (10-15 %ID/g),74 [18F]-EDC shows minimal uptake in 

the uterus, most likely due to its particulate nature, which limits its access to the major pool of 

ERs in the nucleus. Taken together and outside of uptake in organs with high MPS activity, the 

tissue biodistribution of [18F]-EDC correlates well with the pattern of selective in vivo activity that 

we have reported.62 
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Figure 3.9. Biodistribution of [18F]-EDC in adult female C57BL6 mice (%ID/g). Mice were 

injected with 15-20 µCi of [18F]-EDC, and tissue distribution, determined at 30 minutes and 2 
hours, is expressed as % of injected dose per gram tissue (%ID/g). 

 

Although the EDC clearly is being rapidly sequestered by particle clearance organs, it is 

notable that even small molecule estrogens are rapidly lost from blood, so the blood clearance 

and tissue exposure is actually not all that different. The only difference resides in where the 

tracer becomes concentrated: small molecules typically clear through the liver and kidneys and 

are eliminated, but the EDCs become sequestered in the lung, liver, and spleen. The only 

legitimate concern from the initial biodistribution was the possible hydrolysis of the Si-18F bond 

as indicated by the elevated bone uptake (13% and 18% ID/organ at 0.5 and 2 hours, 

respectively). With the presence of numerous potential nucleophiles on the periphery of the 

PAMAM, the likelihood of amine attack on the silicon atom is not improbable, but did warrant 

further investigations with 19F NMR studies before continuing with this approach and we 

switched to the Cu-click strategy at this time. 

Following the same animal protocol used previously and the radiolabeling method in 

Scheme 3.2, the Si-18F and C-18F-labelled (13, Figure 3.10) EDCs showed remarkably similar 
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biodistributions: high uptake in the lung, liver and spleen, low uptake in the kidney, muscle, and 

uterus, and elevated activities in the cardiovascular tissues, heart and abdominal aorta. 

However, with the Si-18F labeled EDC, bone uptake was 13% and 18% ID/organ in female mice 

at 0.5 and 2 hours, but was only 2.8% and 2.5%ID/organ with the [18F]-EDC-Click material, 

suggesting that with time the Si-18F material is undergoing some progressive defluorination. 

Besides this unanticipated occurrence, loss of fluoride from the Si-18F material was relatively 

minor and did not perturb the overall distribution. This is not too surprising since the level of 

substitution from the 18F-conjugation is at most three appended groups and as a result, one 

would expect the conjugation not to alter the physical properties of the high molecular weight 

EDC (MW: 55,000) to any significant extent. 
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Figure 3.10.  Biodistribution of [18F]-EDC-Click (13) in adult female C57BL6 mice (%ID/g). Mice 

were injected with 15-20 µCi of [18F]-EDC-Click, and tissue distribution, determined at 30 
minutes and 2 hours, is expressed as % of injected dose per gram tissue (%ID/g). 

 

Blocking studies are often performed to validate receptor-mediated uptake. Typically, 

these studies involve two sets of injections. The first injection attempts to saturate the receptor 

binding sites with a large excess of either a chemically identical cold standard (only differs in the 
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isotope present) or a compound that is known to have high affinity for the receptor (i.e., E2 for 

ER) and the second injection introduces the radiotracer. Our strategy focused on saturating the 

available ER binding sites with E2 or unlabeled EDC to impede uptake in the heart and 

abdominal aorta in an attempt to confirm the observed elevated uptake was indeed ER-

mediated. 

Initially, we attempted to block the uptake of [18F]-EDC-Click (13) in the heart and aorta 

by co-administration of an excess of unlabeled estradiol (20-100-fold excess), but in both cases, 

the blocking was unsuccessful since high uptake was still seen in the heart and aorta. We 

believe that the lack of competition by estradiol represents simply its ineffectiveness as a 

monovalent ligand in competing with the multivalent ligand character of the EDC. Only when we 

used a 500-fold excess of unlabeled EDC could we effectively block the uptake, as shown in 

Figure 3.11. This study involved three different animal groups: a high dose, low dose, and EDC 

block group. The high dose group (30 µCi) served as a standard to confirm a similar 

biodistribution as the previous two cases and thus enables the blocking study results to be 

correlated to each study from before. The low dose group (3-5 µCi) was designed to ensure 

complete blockage of uptake if indeed it is ER-mediated. The EDC block involved a 500-fold 

excess of EDC, which equates to around 40 µg of material; this dose was injected into the 

mouse before any of the low dose was injected. At 2 hours post injection (Figure 3.11), the 

highest doses were concentrated in the liver and spleen but more importantly, when the EDC 

block was administered against the low dose, there is a significant reduction in EDC uptake 

within the heart and abdominal aorta, indicating the elevated uptake within these target tissues 

seen previously (Figure 3.8 and 3.9) was most likely ER-mediated.  
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Figure 3.11.  Biodistribution and blocking study of [18F]-EDC-Click (13) in adult female C57BL6 

mice (%ID/g). Mice were injected with 25-30 µCi of [18F]-EDC-Click for the high dose, 3-5 
µCi for the low dose and the block involved a 500-fold excess of unlabeled EDC and a 3-5 
µCi dose of labeled material. Tissue distribution, determined at 2 hours, is expressed as % 
of injected dose per gram tissue (%ID/g). 

 

To further investigate whether the selective uptake and retention of [18F]-EDC in the 

heart and aorta was mediated by binding to the ER, a biodistribution was also performed with 

the non-ER binding EDC analogue, [18F]-XDC (21); results are shown in Figure 3.12. Again, 

highest uptake of this particulate tracer was in spleen and liver, but notably, uptake in the heart 

and aorta at 30 minutes was 20-fold less than that of [18F]-EDC. Furthermore, even this reduced 

heart and aorta uptake of [18F]-XDC was essentially cleared by 2 hours, whereas the greater 

uptake of [18F]-EDC in these tissues was essentially unchanged at 2 hours. Thus, as shown in 

the expansion of the heart and aorta uptake data for the two agents (see Figure 3.12 inset), the 

non-ER binding [18F]-XDC showed much lower and less persistent uptake in the vascular target 

tissues than the ER binding [18F]-EDC, consistent with an ER-binding mediated 
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process.

 

Figure 3.12.  Biodistribution of [18F]-XDC (21) in adult female C57BL6 mice (%ID/g). Mice were 
injected with 15-20 µCi of [18F]-XDC, and tissue distribution, determined at 30 minutes and 2 
hours, is expressed as % of injected dose per gram tissue (%ID/g). Inset: comparison of 
uptake in the heart and abd. aorta between [18F]EDC (Figure 3.9) and [18F]-XDC. 

 

IV. DISCUSSION 

In this study, we have determined the biodistribution of EDC, a conjugate between EE2 

and a G6 PAMAM dendrimer, labeled with F-18 using two convenient and efficient methods. As 

is typical for a particulate species, the bulk of [18F]-EDC is rapidly taken up by the spleen and 

liver, presumably by an MPS-mediated process.73 The undesired uptake in these nontarget 

tissues still remains a significant obstacle for targeted-base drug delivery systems using these 

types of polymeric nanoparticles. The problem arises from their recognition as foreign particles 

in vivo and the defense mechanisms that designed for their removal. Upon injection, particles 

undergo opsonization, thereby rendering them visible to phagocytic cells and results in their 

very rapid removal from the bloodstream, typically within minutes.75 The particle then becomes 

engulfed through endocytosis by the phagocyte, which begins to secrete enzymes and other 
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chemical factors (i.e., hydrogen peroxide) to break down the foreign material.76 In our case, 

EDC is a non-biodegradable biopolymer and cannot be degraded significantly by this process. 

As a result, the particle becomes sequestered and stored in MPS organs, which explains the 

high uptake by the liver and spleen from our biodistributions. Several strategies of camouflaging 

(“stealth particles”) have been developed to bypass recognition and opsonization in an attempt 

to increase blood retention time and uptake in the desired target tissue, with PEGylation being 

the most well-known.77,78 Current efforts to redesign EDC with polyethylene glycol chains to 

extend blood circulation, minimize the undesired uptake in non-target tissue and increase 

uptake in the cardiovasculature are currently underway. 

Although the [18F]-EDC clearly is being rapidly sequestered by particle-clearance organs, 

it is notable that even small molecule estrogens are rapidly lost from blood, so the blood 

clearance and tissue exposure is actually not all that different; it is just that the small molecules 

clear through the liver and kidneys and are eliminated, but [18F]-EDC becomes trapped in the 

lung, liver, and spleen. However, very marked uptake and retention of [18F]-EDC is also noted in 

the heart and abdominal aorta, known target sites of the extra-nuclear action of estrogens. EDC 

uptake and retention in these sites appears to be ER mediated because a structurally matched, 

but non-ER binding EDC analogue, XDC, shows little uptake and rapid clearance. The ER-

mediated uptake of EDC in heart and aorta appears to be of a different nature than that of small 

molecule estrogens, which are most avidly taken up by the uterus, but not by heart and aorta; 

EDC, by contrast, shows no uptake and retention by the uterus. 

The negligible amount of activity present in the blood with the EDC block (Figure 3.11) is 

of interest and suggests that the high dose of EDC might be accelerating clearance processes, 

but since similar reductions of activity are not seen in other organs, this is most likely not the 

case; thus, the exact cause for the low blood activity is still unknown. Also, the increased uptake 

in certain tissues, including the uterus, bone and especially the kidney, is of note. However, the 

exceedingly high dose of material needed for the EDC block might be sufficient to cause some 

unanticipated pharmacological effects, which may lead to saturation of MPS organs and an 

increase uptake in nontarget tissue, although the mechanisms leading to this have yet to be 

determined. Nonetheless, cold EDC was effective at outcompeting [18F]-EDC to block ER-

mediated uptake and the unforeseen biodistribution concerns were only observed in the 

blocking study when EDC was present at much higher concentrations than in the previous 

studies (Figure 3.9 and 3.10). 
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It has been a longstanding challenge to develop estrogens that provide an ideal balance 

between beneficial vs. detrimental health effects in older women. While estrogen agonists like 

estradiol and conjugated equine estrogens suppress menopausal hot flush and maintain bone 

strength and cardiovascular health, they increase the risks of breast and endometrial cancers.79 

By contrast, antiestrogens, including SERMs, suppress estrogen-dependent cancers but 

generally exacerbate hot flush and are not fully protective of bone and vascular health.80 Thus, 

our recent report that EDC provided protection against cardiovascular injury equivalent to that of 

estradiol in two animal models—without stimulation of the uterus or mammary tissue—was a 

significant finding, because it indicated that pharmacological separation of these desired vs. 

undesired effects of estrogens could be cleanly achieved.62 

Mechanistically, this remarkable pharmacological separation appears to arise because in 

cells the EDC restricts estrogen stimulation only to the extra-nuclear signaling pathway, which 

appears sufficient to afford vascular protection but insufficient for stimulation of uterine and 

mammary tissues.58 The selective stimulation of the extra-nuclear over the nuclear ER signaling 

pathway appears to result from the unique subcellular distribution of EDC. Using fluorescence 

microscopy, we have shown that EDC labeled with rhodamine rapidly associates with the 

plasma membrane of ER-positive breast cancer and vascular endothelial cells, and with time 

enters the cytoplasm, apparently by endocytosis; however, it is never found in the nucleus, even 

after 24 hours.58  

In the animal studies showing vascular protection by EDC,62 the agent was administered 

continuously by an osmotic minipump at a dose that maintained blood levels of EDC presenting 

a concentration of tethered EE2 ligand equivalent to that of a protective dose of estradiol. In this 

study, the [18F]-EDC and [18F]-XDC agents were administered by IV injection, which is the route 

typically used to study the biodistribution of agents labeled with short-lived radionuclides. 

Remarkably, beyond the expected sequestration of these particulate species by liver and 

spleen, the [18F]-EDC, but not the [18F]-XDC, showed selective accumulation and retention in 

heart and aorta; this uptake appears to be ER mediated, yet there is essentially no 

accumulation in the uterus. Thus, in addition to selective ER pathway activation, the selective 

bioactivity of EDC in the vasculature may also originate from its selective biodistribution to these 

tissues.  

The contrast in the ER-mediated biodistribution of EDC (heart, aorta) vs. that of small 

molecule estrogens, such as the well-studied 16α-[18F]fluoroestradiol (FES) (uterus), is striking. 
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In principle, this difference could derive from access to the different cellular pools of ER, with 

small molecules like FES being able to access the larger nuclear pool of ER, but the more 

limited subcellular trafficking of EDC providing access only to the extra-nuclear or membrane 

fraction of ER. While the distribution of ER in the nuclear vs. extra-nuclear pools of the heart 

and vascular endothelium is not known, in cell culture extra-nuclear or membrane ER is 

considered to be a minor component of the total cellular ER (approximately 5-10% of ERα is 

present at the membrane).27 Nevertheless, in our studies, it appears to be adequate to mediate 

selective, ER-dependent uptake and retention of EDC in heart and aorta. 

There is increasing interest in the development of pharmaceuticals based on polymeric 

carriers such the PAMAM dendrimers;77,81,82 thus, it is conceivable of an agent like EDC that 

could be developed into a drug for human use. However, it is worthwhile to consider whether 

there are alternative strategies for developing an estrogen pharmaceutical with EDC-like 

selective cardiovascular protection without uterus and breast stimulation, whether it might be 

based on other, smaller polymers or might even be a small molecule that could be orally active. 

Agents based on estrogens covalently attached to alternative polymers would probably need to 

share with EDC the subcellular trafficking that restricts the hormonal element from engaging 

nuclear ER, which might depend on the inherent charge or polymer architecture of the PAMAM 

dendrimer. Because the extra-nuclear ER signaling pathway involves the engagement of ER 

with tethering and coregulator components that are distinct from those utilized in the nuclear 

pathway, it is conceivable that a small molecule estrogen might stabilize an ER conformation 

that can selectively activate those cofactors necessary for extra-nuclear activity and not those 

responsible for nuclear activity. Small molecules of this nature have been explored to some 

extent in other systems (bone),64 but it is important that any such small molecule, even if it has 

selective activity itself, not be prone to metabolism to more conventional and non-selective 

hormonal agents.  

In conclusion, through biodistribution studies, we have found that the EDC, a dendrimer-

bound estrogen that provides selective cardiovascular protection without classical stimulation of 

uterus and mammary tissues, also shows selective, ER-mediated uptake and retention by the 

vascular target tissues, heart and aorta, but not the classical target, uterus. Thus, the favorable 

cardiovascular-selective activity of EDC may rely not only on its capacity to selectively activate 

the extra-nuclear pathway of ER signaling, but also from an inherent pharmacokinetically 

selective, ER-directed biodistribution that favors vascular targets over reproductive targets. 
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V. METHODS 

Materials 

All reactions were carried out under a nitrogen atmosphere with dry solvents using anhydrous 

conditions unless otherwise stated. Solvents used in the reactions were dried in a solvent 

delivery system (neutral alumina column). Reagents were purchased from Aldrich and used 

without further purification, unless otherwise stated. Yields refer to chromatographically and 

spectroscopically (1H NMR) homogeneous materials, unless otherwise stated. Reactions were 

monitored by thin layer chromatography (TLC) carried out on Merck silica gel 60 F254 

precoated plates (0.25 mm) using UV light as the visualizing agent and ceric ammonium 

molybdate and heat as developing agents. Flash column chromatography was performed on 

Silica P Flash silica gel (40-64 μM, 60 Å) from SiliCycle. 1H NMR spectra were recorded at 23 

oC on a Varian Unity-400, Varian Inova-500 or Varian Unity-500 spectrometers and are reported 

in ppm using residual protium as the internal standard (CHCl3, δ = 7.26, CD2HCN, δ = 1.94, 

center line, acetone-d6, δ = 2.05, center line). The following abbreviations were used to explain 

the multiplicities: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = 

multiplet and b = broad. Proton-decoupled 13C NMR spectra were recorded on a Varian Unity-

500 (126 MHz) spectrometer and are reported in ppm using solvent as an internal standard 

(CDCl3, δ = 77.16, CD3CN, δ = 1.30, center line, acetone-d6, δ = 29.80, center line). High 

resolution mass spectra were obtained at the University of Illinois Mass Spectrometry 

Laboratory. No-carrier added [18F]fluoride was produced at Washington University Medical 

School by the 18O(p,n)18F reaction through proton irradiation of enriched (95%) [18O]H2O using a 

RDS111 cyclotron. Screw-cap test tubes used for drying fluoride and radiolabeling were 

purchased from Fisher Scientific (Pyrex No. 9825). Radiochemical purification utilized a 

reversed-phase semi-preparative HPLC column (HPLC: Thermo P2000, Column: Agilent 

Zorbax SB-C18, 5 µm, 9.4 X 250 mm, Product #: 880975-202, λ = 254 nm, ACN/H2O). For 

quality control, the radiochemical purity was determined by analytical HPLC (HPLC: P4000, 

Column: Altima C18, 5 µm, 250 mm, Product #: 88056). C18 Sep-Pak cartridges were 

purchased from Waters Corporation (Milford, MA, USA). For the thin-layer chromatography 

(TLC) analyses, EM Science Silica Gel 60 F254 TLC plates were purchased from Fisher 

Scientific (Pittsburgh, PA, USA). Radio-TLC was accomplished using a Bioscan 200 imaging 

scanner (Bioscan, Inc., Washington, DC, USA). Radioactivity was counted with a Beckman 

Gamma 8000 counter containing a NaI crystal (Beckman Instruments, Inc., Irvine, CA, USA). 
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Estrogen Receptor Binding Affinity Assays 

Relative binding affinities were determined by a competitive radiometric binding assay 

using 10 nM [3H]estradiol as tracer (Amersham BioSciences, Piscataway, NJ), and purified full-

length human ERα and ERβ (PanVera/InVitrogen, Carlsbad, CA). Compounds were assayed 

from 10-4 to 10-9 M as equivalents of estradiol (20-fold lower than the molar concentration of the 

dendrimer itself). Incubations were for 18-24 h at 0 °C, and the receptor-dendrimer complexes 

were absorbed onto hydroxyapatite (BioRad, Hercules, CA), and the unbound dendrimer was 

washed away. The binding affinities are expressed as relative binding affinity (RBA) values, with 

the RBA of estradiol for both receptors being set at 100. The values given are the average ± 

range or SD for two or more independent determinations. Estradiol binds to ERα with a Kd of 0.2 

nM and to ERβ with a Kd of 0.5 nM. 

 

Radiochemical Syntheses 

[18F]-EDC (8): 51 mCi of [18F]fluoride in 200 µL [18O]H2O was eluted into Pyrex vial (No. 9825) 

and used as is without any drying step or added base. The syringe was rinsed with dry 500 µL 

CAN, and any residual activity was added to vial. 6 (1 mg) was dissolved in dry 300 µL ACN, 

added to reaction vial, capped firmly and placed in oil bath at 105 oC for 10 minutes (RCY: 

94.7% by radio-TLC). After 10 minutes, the vial was cooled at room temperature for 2 minutes 

and then injected directly into the semi-preparative HPLC. The reaction vial was rinsed with 3 

mL of the HPLC eluting solvent (80% ACN/ 20% H2O) and added to the initial reaction mixture 

before injecting into HPLC. The purification was carried by a semi-preparative HPLC system 

(Agilent Zorbax SB-C18, 5 µm, 9.4 X 250 mm, Product #: 880975-202), eluting with a gradient 

(A: 80% ACN 20% H2O   B: 90% ACN 10% H2O over 15 mins) at a flow rate of 4 mL/min and 

the UV detector set at 254 nm. The radioactive peak corresponding to 7 was detected at 14 to 

16 min by the radioactivity detector and was collected. The collected activity was diluted with 30 

mL H2O and passed through a C18 column to capture the activity. The reaction vial was rinsed 

with 3 mL H2O, which was also passed through the C18 column. A nitrogen line was connected 

to the cartridge to dry as best as possible residual H2O captured in cartridge. The activity (30.9 

mCi) was eluted from the column with 0.8 mL Et2O, and nitrogen was used to remove the 

solvent. To a solution of 7 in 40 µL MeOH was added EDC (1, 6 nmol in 10 µL MeOH) at room 

temperature and left to stir for 10 mins. The reaction mixture was added directly to a G25 

column (PD Minitrap G-25, Sephadex G-25 medium, Product #: 28-9180-07), and 8 was eluted 

with PBS buffer (~1.5 mL, in 0.5 mL increments) to obtain 15.1 mCi in ca. 1.5 h. The portion 
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containing ~5 mCi was used for the final dose preparation. The isolated yield (without decay 

correction) was 29.4%, with a radiochemical purity of >99% and specific activity of 2500 

mCi/µmol (92.5 GBq/µmol).  

Radio-TLC of the radiofluorination of 6 with [18F]fluoride ion after 10 minutes: 

DONG: 81520111.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 5.3% 

Region 2 ([18F]fluoroproduct; 55 mm): 94.7% 

 

Prep HPLC purification of crude material: 

Conditions: A: 80% ACN 20% H2O   B: 90% ACN 10% H2O over 15 mins, flow rate = 4 mL/ 
min, λ = 254 nm 
 
UV Trace: 
 

 

Radioactivity Trace (Product: 15.2 min): 
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Quality Control (QC) analysis after purification: 

Conditions: 80% ACN, 20% H2O flow rate = 2 mL/ min, λ = 254 nm 
 

UV trace used for specific activity determination (Product: 4.51 min): 

 

UV trace of co-injection with cold standard for product (31) confirmation (Product: 4.56 
min): 

 

Radioactivity trace of co-injection with cold standard for product (31) confirmation and 
radiochemical purity: 
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[18F]-EDC purity determined by radio-TLC: 

DONG: 81520113.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% MeOH 

Region 1 (35 mm; [18F]-EDC): 100% 
 

 [18F]-XDC (21): By following procedure above, the radiochemical synthesis yielded 10.9 mCi of 

21 in high radiochemical purity (>99%) and specific activity (1820 mCi/µmol, 67.3 GBq/µmol)) in 

1.5 h. The portion containing 5.72 mCi was used for final dose preparation.  

[18F]-XDC purity determined by radio-TLC: 

DONG: 10520111.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

 

TLC Eluting Conditions: 100% MeOH 

Region 1 (35 mm): 100% 
 
1-Azido-2-[18F]fluoromethane (10): [18F]fluoride (62 mCi in 200 µL [18O]water) was transferred 

to a BD vacutainer (13 × 75 mm, 5 mL, glass, no additives) containing K222 (5.6 mg, 14.9 µmol) 

and K2CO3 (1 mg, 7.2 µmol), then the mixture was dried by azeotropic distillation at 105 ºC 

using ACN (3 × 1 mL) under a gentle flow of N2 gas. When the drying was close to finish, the 

vacutainer was removed from the oil bath and the solvent residue (< 100 µL) was removed by a 

flow of N2 at room temperature. The vacutainer was capped and connected to a dry ice trap (10 

mL Pyrex tube with screw-cap) via Teflon tubing. After a solution of 9 (2 mg, 8.3 µmol) in ACN 

(200 µL) was added to the vacutainer, it was shaken and heated at 88 ºC for 5 min, directly 

followed by vacuum distillation which was achieved by a 50 mL syringe. The distillation lasted 

for 1 min, after which N2 gas (10 mL) was released to the vacutainer. After this distillation 

procedure was repeated, the Pyrex tube was removed from the dry ice bath and warmed to 
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room temperature in a water bath for the subsequent click labeling (37 mCi). The processing 

time is about 10 min from the beginning of the labeling reaction, and the isolated yield is >80 %, 

determined by measuring the distilled activity (decay corrected).   

2,5-Dioxopyrrolidin-1-yl 4-((1-(2-[18F]fluoroethyl)-1H-1,2,3-triazol-4-yl)methoxy)benzoate 

(12): A solution of CuSO4·5H2O (1 mg, 4.0 µmol) in water (10 µL) and a solution of sodium 

ascorbate (3 mg, 15.1 µmol) in water (10 µL) were mixed; when the color of the mixture 

changed from black to yellow, the copper salt solution was mixed with a solution of BPDS (1.2 

mg, 2.0 µmol) in 1 : 4 DMF/H2O (20 µL). A portion of above mixture (25 µL), along with 11 (1 

mg, 3.66 µmol) in DMF (200 µL), was added to the distilled 10 in ACN (200 µL). After 5 min at 

room temperature, the reaction mixture was diluted with a solution of 10% ACN, 90% water, 

0.1% TFA(3 mL) for reversed-phase HPLC purification using column A and mobile phase (32% 

ACN, 68% water, 0.1% TFA) at 4 mL/min, and UV at 240 nm. 12 was collected at 15 min in 90% 

yield (decay corrected). The HPLC fraction containing 12 was diluted in water (50 mL), then 

[18F]7 was isolated by solid-phase extraction using a C18 SepPak by passing the diluted sample 

through the SepPak. The SepPak was rinsed with water (10 mL), and dried under a stream of 

N2 gas. 12 can be eluted from the SepPak in DMF for immediate conjugation, or in either 

dichloromethane or diethyl ether, to afford a dried form of 12 (15.71 mCi) after drying over 

Na2SO4 and removal of solvents. 

[18F]-EDC-Click purity determined by radio-TLC: 

DONG: 41120122.R01 
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TLC Eluting Conditions: 100% MeOH 

Region 1 (35 mm): 100% 
 

Biodistribution Experiments 

Female BALB/c mice were obtained from Charles River Laboratories and were housed in the 

Division of Comparative Animal Facility at Washington University Medical School. Animals were 

anesthetized in a Plexiglas induction chamber flowing with oxygen and 1-2% isoflurane. 15-20 
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µCi of 8, 13 or 21 in 100 µL PBS buffer pre-weighed in a 0.300cc, 29 gauge x ½’’ insulin 

syringe. The mouse was injected via the tail vein, and the syringe was post-counted to 

determine the total injected volume in grams. All injections were tolerated well. The mouse was 

weighed and returned to the cage to restore the animal to a normal, awake state. A spare, 

control dose was injected into a total volume of 100 mL of saline to disperse 1 mL aliquots into a 

vial for each animal that was counted along with each group of organs to create a standard. At 

30 min and 2 h, the mice were sacrificed by cervical dislocation.  Samples or whole organs were 

collected from blood, lung, liver, spleen, kidney, muscle, heart, abdominal aorta, uterus, bone 

and bone marrow. Organs were individually counted on a Beckmann gamma counter for 1 

minute per sample. Calculations were then performed to determine % injected dose per gram 

and per organ. All measurements were properly corrected for decay. 

Blocking Experiments 

Animals were prepared and treated as discuss previously. Before injection of tracer, PBS 

solutions of cold EDC (1, 40 µg, 500-fold excess) or estradiol (20-60 µg, 100-500-fold excess) 

were introduced into the mice.  
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Numerical Values of Biodistribution (Figure 3.9) for [18F]-EDC-Si-18F (Female; %ID/gram): 

 30 min 2 hour 2 hour Block (E2) 

Organ %ID/gram SD %ID/gram SD %ID/gram SD 

Blood 11.5617 0.8457 3.0666 0.7052 2.2074 0.9256 

Lung 26.0679 10.2063 13.5434 2.6317 22.0802 5.1329 

Liver 39.6676 4.9527 68.0836 7.6045 61.4188 9.0476 

Spleen 255.7602 37.0547 460.6485 72.375 388.6927 37.7974 

Kidney 3.4063 0.3721 3.2370 0.7161 2.6122 0.5103 

Muscle 0.9513 0.2086 0.6170 0.1296 0.6250 0.1477 

Heart 19.6690 1.4342 16.2298 2.9426 10.9753 1.7948 

Bone 5.7072 0.2562 8.3166 1.9434 7.6491 1.4159 

Uterus 0.6049 0.3238 0.3358 0.1512 0.8235 0.4174 

Abd. Aorta 8.1464 2.6876 6.5009 2.3213 5.2284 1.4757 

 

Numerical Values of Biodistribution for [18F]-EDC-Si-18F (Female; %ID/organ): 

 30 min 2 hour 2 hour Block (E2) 

Organ %ID/organ SD %ID/organ SD %ID/organ SD 

Blood 16.2055 1.3237 4.1718 0.7856 2.9529 1.0425 

Lung 3.6072 1.3777 2.0018 0.3391 3.0777 0.5913 

Liver 34.5596 3.5457 55.3582 4.0014 48.1138 2.5438 

Spleen 17.3475 3.0852 33.1527 4.1012 25.3507 3.7858 

Kidney 0.4279 0.0803 0.3632 0.0598 0.3058 0.0896 

Muscle 7.7454 1.2479 4.9146 0.7785 4.9174 0.8850 

Heart 2.0643 0.1271 1.6251 0.2462 1.1555 0.1444 

Bone 12.4810 1.1056 17.6862 3.7442 16.0541 2.1163 

Uterus 0.0437 0.0231 0.0348 0.0179 0.0411 0.0172 

Abd. Aorta 0.0805 0.0122 0.0819 0.0587 0.0595 0.0242 
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Numerical Values of Biodistribution for [18F]-EDC-Si-18F (Male; %ID/gram): 

 30 min 2 hour 2 hour Block (E2) 

Organ %ID/gram SD %ID/gram SD %ID/gram SD 

Blood 4.4978 1.7960 1.6116 0.3812 1.5946 0.2301 

Lung 26.1280 11.5194 19.9430 3.6527 21.0828 4.0406 

Liver 21.2623 7.3078 42.6931 3.7662 38.3988 3.2665 

Spleen 84.8652 38.1032 230.5541 32.7841 237.2420 22.1027 

Kidney 2.1468 0.7517 2.5679 0.4692 2.0270 0.1861 

Muscle 0.7827 0.2846 0.7730 0.1641 0.7415 0.0916 

Heart 17.2210 7.8135 15.6428 3.1304 16.1561 3.1632 

Bone 6.8779 1.9062 10.1312 1.3382 8.3705 1.1216 

Abd. Aorta 4.5541 1.6574 5.2080 2.4742 4.2915 0.8526 

 

Numerical Values of Biodistribution for [18F]-EDC-Si-18F (Male; %ID/organ): 

 30 min 2 hour 2 hour Block (E2) 

Organ %ID/organ SD %ID/organ SD %ID/organ SD 

Blood 6.8814 2.5906 2.4177 0.6022 2.3815 0.2869 

Lung 3.7986 1.6084 2.7518 0.5618 3.0157 0.7317 

Liver 23.8014 8.0007 42.7630 4.5811 35.6260 1.8567 

Spleen 6.4565 2.8316 14.0281 1.8753 14.0830 0.8566 

Kidney 0.2980 0.0963 0.3693 0.0682 0.2783 0.0310 

Muscle 7.0447 2.5373 6.7766 1.5213 6.4980 0.7727 

Heart 2.0262 0.8755 1.7095 0.3545 1.7286 0.3618 

Bone 16.4561 4.4628 23.6522 3.6493 19.4811 2.2915 

Abd. Aorta 0.0294 0.0138 0.0269 0.0166 0.0279 0.0080 
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Numerical Values of Biodistribution (Figure 3.10) for [18F]-EDC-Click (Female; %ID/gram): 

 30 min 2 hour 

Organ %ID/gram SD %ID/gram SD 

Blood 13.2763 4.3466 2.4183 0.4952 

Lung 21.6783 4.9191 12.0557 2.7106 

Liver 39.9442 2.0635 53.9221 6.3387 

Spleen 240.6968 38.1327 319.1434 78.3605 

Kidney 4.3545 0.8784 3.5402 0.4672 

Muscle 0.7859 0.2007 0.6593 0.1142 

Heart 13.2138 1.9454 12.6973 2.1333 

Brain 0.3379 0.1100 0.0961 0.0234 

Bone 1.2983 0.2029 1.2563 0.1538 

Marrow 1.8816 1.7191 3.7777 2.3665 

Uterus 0.4777 0.5048 0.5607 0.3724 

Abd. Aorta 7.8991 2.2757 6.7233 1.3971 

 

Numerical Values of Biodistribution for [18F]-EDC-Click (Female; %ID/organ): 

 30 min 2 hour 

Organ %ID/organ SD %ID/organ SD 

Blood 18.3398 5.4995 3.2783 0.7466 

Lung 3.2468 0.5963 1.8265 0.4122 

Liver 37.0714 3.4032 47.7170 4.9140 

Spleen 15.1994 2.1507 20.2292 4.2161 

Kidney 0.5902 0.1007 0.4721 0.0588 

Muscle 6.3973 1.5613 5.2131 0.8789 

Heart 1.5091 0.1983 1.4633 0.1222 

Brain 0.1302 0.0491 0.0376 0.0108 

Bone 2.8123 0.4013 2.6456 0.3579 

Marrow 0.0063 0.0036 0.0050 0.0015 

Uterus 0.0284 0.0309 0.0296 0.0201 

Abd. Aorta 0.0664 0.0209 0.0678 0.0249 
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Numerical Values of Biodistribution (Figure 3.12) for [18F]-XDC-Si-18F (Female; %ID/gram): 

   30 min 2 hour 

Organ %ID/gram SD %ID/gram SD 

Blood 4.7034 0.5973 0.2027 0.1774 

Lung 7.0214 2.4218 2.2039 1.0308 

Liver 74.2952 8.9768 85.9090 7.4361 

Spleen 84.8318 30.3325 76.0455 27.0040 

Kidney 1.3145 0.2342 0.6222 0.0862 

Muscle 0.1812 0.0241 0.0482 0.0148 

Heart 1.5001 0.2845 0.2161 0.0493 

Brain 0.1578 0.0175 0.0167 0.0101 

Bone 1.4457 0.1795 1.6438 0.5637 

Marrow 2.0014 0.6785 4.0009 3.4947 

Uterus 0.3057 0.0526 0.1876 0.2002 

Abd. Aorta 1.6118 0.3538 0.3590 0.4215 

 

Numerical Values of Biodistribution for [18F]-XDC-Si-18F (Female; %ID/organ): 

   30 min 2 hour 

Organ %ID/organ SD %ID/organ SD 

Blood 6.7759 0.6870 0.2913 0.2470 

Lung 0.9492 0.2813 0.3287 0.1653 

Liver 74.0380 6.6605 81.0654 2.7261 

Spleen 7.0069 1.6299 6.5437 2.0763 

Kidney 0.1649 0.0243 0.0856 0.0213 

Muscle 1.5314 0.1956 0.4082 0.1146 

Heart 0.1554 0.0246 0.0229 0.0038 

Brain 0.0626 0.0047 0.0067 0.0039 

Bone 3.2387 0.2428 3.7303 1.3515 

Marrow 0.0024 0.0012 0.0045 0.0047 

Uterus 0.0218 0.0080 0.0131 0.0171 

Abd. Aorta 0.0087 0.0037 0.0020 0.0023 
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Numerical Values of Biodistribution (Figure 3.11) for [18F]-EDC-Click 30 min block 
(Female; %ID/gram): 

 30 min High Dose 30 min Low Dose 30 min E2 Block 30 min EDC Block 

Organ %ID/gram SD %ID/gram SD %ID/gram SD %ID/gram SD 

Blood 14.4020 3.4107 5.2622 0.6678 6.9652 2.3877 0.4445 0.2580 

Lung 13.6754 4.7922 5.7999 0.6310 9.2502 1.5521 6.4220 0.6113 

Liver 27.9916 2.9665 38.3925 2.4497 39.7293 8.2372 78.0321 13.7196 

Spleen 276.7966 39.2418 164.7847 10.0198 253.6580 30.9604 66.5555 14.2317 

Kidney 3.4732 0.4287 3.6322 0.2811 3.4290 0.5995 20.5397 4.2353 

Muscle 0.7231 0.1832 0.6095 0.1802 0.6947 0.1257 0.1923 0.1398 

Heart 13.8879 2.2980 14.5021 2.6936 14.4835 2.6270 0.6416 0.1819 

Bone 1.2921 0.3073 1.5970 0.3408 1.6274 0.2152 2.7976 0.4360 

Uterus 0.3293 0.1173 0.3290 0.1495 0.4859 0.2145 1.1937 0.3873 

Abd. Aorta 6.7090 1.7659 7.7939 0.5328 4.9989 0.8999 3.7690 2.4894 

 

Numerical Values of Biodistribution for [18F]-EDC-Click 30 min block (Female; 
%ID/organ): 

 30 min High Dose 30 min Low Dose 30 min E2 Block 30 min EDC Block 

Organ %ID/organ SD %ID/organ SD %ID/organ SD %ID/organ SD 

Blood 19.4566 4.3494 7.1185 0.9208 9.4879 3.4319 0.5902 0.3212 

Lung 1.8661 0.6068 0.8495 0.1985 1.3660 0.3112 0.8691 0.1123 

Liver 26.2894 2.9303 32.2982 1.9601 36.3072 7.9931 70.6540 8.5146 

Spleen 20.5277 2.0437 12.2187 1.2697 19.8937 2.6393 4.9708 1.1179 

Kidney 0.4215 0.0690 0.4678 0.0290 0.4022 0.0686 2.5734 0.5546 

Muscle 5.7290 1.3983 4.8216 1.3871 5.5215 1.0177 1.5227 1.1391 

Heart 1.2577 0.1584 1.2707 0.2567 1.2926 0.1979 0.0558 0.0163 

Bone 2.7235 0.6398 3.3570 0.6668 3.4446 0.5358 5.8664 0.8290 

Uterus 0.0318 0.0075 0.0365 0.0246 0.0401 0.0208 0.0941 0.0459 

Abd. Aorta 0.0559 0.0068 0.0863 0.0068 0.0476 0.0193 0.0321 0.0363 
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Numerical Values of Biodistribution (Figure 3.11) for [18F]-EDC-Click 2 hr block (Female; 
%ID/gram): 

 2 hr High Dose 2 hr Low Dose 2 hr E2 Block 2 hr EDC Block 

Organ %ID/gram SD %ID/gram SD %ID/gram SD %ID/gram SD 

Blood 3.3067 0.6453 1.0119 0.3471 1.2020 0.0434 0.1058 0.0255 

Lung 9.3528 2.3708 6.9731 2.1549 4.4163 1.8373 3.4417 0.8115 

Liver 44.9795 7.1587 41.4023 1.8900 45.8173 7.2316 79.5245 11.9594 

Spleen 345.9963 27.7805 185.7553 24.4289 217.1845 82.3742 60.3171 9.3595 

Kidney 2.9919 0.2015 2.7899 0.1400 2.6151 0.2209 20.3701 2.4284 

Muscle 0.4642 0.1056 0.4559 0.1721 0.4622 0.2471 0.1488 0.0795 

Heart 10.5887 1.9170 8.2754 1.0681 8.5800 0.8972 0.4593 0.1231 

Bone 1.9091 0.3344 1.6217 0.3252 1.7204 0.0302 3.1844 0.6919 

Uterus 0.2236 0.0392 0.2494 0.0451 0.1908 0.0111 1.3920 0.4801 

Abd. Aorta 4.0470 1.0894 3.7275 1.7127 4.5092 0.5749 0.9734 0.7313 

 

Numerical Values of Biodistribution for [18F]-EDC-Click 2 hr block (Female; %ID/organ): 

 2 hr High Dose 2 hr Low Dose 2 hr E2 Block 2 hr EDC Block 

Organ %ID/organ SD %ID/organ SD %ID/organ SD %ID/organ SD 

Blood 4.4895 0.8347 1.3595 0.4803 1.6585 0.1075 0.1455 0.0340 

Lung 1.4060 0.2169 0.9577 0.2775 0.6687 0.2699 0.4847 0.1154 

Liver 38.3207 1.0643 38.0456 2.2391 41.7374 4.7256 66.1783 7.4003 

Spleen 28.8584 4.3638 15.1268 1.0892 17.7193 4.1551 5.0899 0.7014 

Kidney 0.3682 0.0494 0.3341 0.0593 0.3119 0.0291 2.5314 0.4036 

Muscle 3.6879 0.7919 3.5982 1.4061 3.7620 2.1027 1.2092 0.6733 

Heart 1.0314 0.1013 0.7345 0.0815 0.9260 0.2308 0.0440 0.0125 

Bone 4.0443 0.7337 3.3923 0.7114 3.6951 0.1708 6.8252 1.4647 

Uterus 0.0173 0.0061 0.0211 0.0041 0.0209 0.0085 0.1062 0.0242 

Abd. Aorta 0.0173 0.0199 0.0344 0.0159 0.0448 0.0167 0.0074 0.0035 
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CHAPTER 4 

SYNTHETIC APPROACHES TOWARDS THE 18F-LABELLING OF 

2-[18F]FLUOROESTRADIOL VIA COMPLEX DIARYLIODONIUM SALTS 

 
I. INTRODUCTION 

A. Background 

Molecular imaging has become a key component in biomedical research and diagnostic 

clinical studies.1 Imaging the presence and functionality of diseased states provides significant 

insight into the mechanisms leading to disease onset and progression.2 Although similar 

information can be obtained through tumor biopsies and immunohistochemical evaluations, 

some tumor sites (i.e., brain) cannot be accessed for biopsy and thus, demand a less invasive 

approach. Additionally, tumor heterogeneity, biopsy sampling errors, and varying expression 

profiles between primary and metastatic sites further complicate matters and may not yield an 

accurate description of the diseased state.3-7 Advances in medical imaging, however, can 

provide detailed biochemical information through minimally invasive procedures at the earliest 

stages of disease onset, before any observable symptoms are seen in the patient. 

B. PET Imaging and the Estrogen Receptor 

The measurement of estrogen receptor (ER) levels in breast cancer by using PET 

imaging using the compound our group developed, 16α-[18F]fluoroestradiol (1, Figure 4.1, 

[18F]FES), appears to be a better predictor of benefit from endocrine therapies than are standard 

immunohistochemical assays of ER.8-13 As a result, these [18F]FES-PET studies can assist in 

the proper selection of patients to undergo less toxic endocrine therapies instead of the more 

costly and morbid cytotoxic therapy.8,12 By individualizing treatment plans such as this one, the 

expectation is that patient outcomes will be greatly improved. However, despite the initial 

successes of FES, it is likely that PET measurements of ER in breast tumors can be vastly 

improved by developing other ER imaging agents having higher tumor-to-background-tissue 

activity, as this would extend the usefulness of the agent to detect smaller tumors and identify 

regions of lower ER concentrations. 
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Figure 4.1. Structure of [18F]FES (1), an agent used for ER-targeted PET imaging studies. 
 

[18F]FES (1) binds to ER as well as estradiol, but its affinity to an important serum 

protein, sex hormone binding globulin (SHBG), is less than 10% that of estradiol.14 SHBG 

binding is thought to facilitate uptake into hormone target tissues and tumors in humans through 

a specific cell membrane receptor, megalin, which is distinct from ER.15,16 Curiously, SHBG is 

not present in the blood of rats or mice, the species typically used for the development of PET 

imaging agents.15,17 As further evidence of the importance of SHBG in target tissue uptake of F-

18 labeled steroids in humans, we found some estrogens and androgens with high affinity for 

their receptor targets, but low affinity for SHBG, had high target tissue uptake in rodents, but 

very poor target tissue uptake in primates or humans.14,18,19 Thus, we believe that F-18 labeled 

estrogens with high affinity for both ER and SHBG would be better ER imaging agents than 

[18F]FES. 

In this respect, 2-[18F]fluoroestradiol ([18F]2FES, 2, Figure 4.2) appears promising: Its 

affinity for ER is 110% that of estradiol, similar to that of FES, but its affinity for SHBG is 3700%, 

whereas that for FES is only 9%.14 It was originally thought that the design of agents with high 

affinity for SHBG was to be avoided since it might retard the release of these estrogens to the 

target tissue and restrict their bioavailability by excessive binding in blood.20 However, recent 

evidence has indicated that binding to SHBG actually protects these agents from metabolism 

and subsequently, increases the bioavailability of estrogens to ER-rich target tissues.16,21-23 

 

Figure 4.2. Structure of [18F]2FES (2), a potentially useful ER-targeted radiopharmaceutical. 
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C. Radiosynthetic Challenges Associated with [18F]2FES (2) 

The phenol function is ubiquitous in both naturally occurring and synthetic bioactive 

compounds.24,25 In drugs, the phenolic function is often substituted with fluorine because fluorine 

substitution, particularly at the ortho position, enhances receptor target binding affinity, perhaps 

by adjusting the phenol pKa, and/or in vivo potency, by blocking the ortho-hydroxylation 

metabolism, extending drug clearance profile and increasing drug exposure.24,25 In any case, 

fluorine substitution is either beneficial to bioactivity or, in the worst case, well-tolerated. 

While there are many methods for labeling small molecules with F-18 at aliphatic 

positions and on electron-deficient aromatic rings, there are essentially no reliable and practical 

methods to label electron-rich aromatic rings, such as phenols, with F-18 at high specific 

activity. This is disappointing: Fluorine-labeled phenols are found in many drugs, because 

fluorine substitution often improves drug binding and pharmacokinetic properties; also, there are 

many interesting plant metabolites and hormones that contain either phenols or other electron-

rich aromatic systems such as indoles, whose metabolism, transport, and distribution would be 

interesting to study if they could readily be prepared in F-18 labeled form (Figure 4.3).24 

 

Figure 4.3. Phenolic and electron-rich molecules of interest for labeling with [18F]fluoride ion. 3: 
ERB-041, ERβ selective ligand; 4: ERα selective ligand; 5: Genistein, a plant isoflavone, 6: 
Auxin, a plant hormone. F = already present on molecule; (F) = potential site of F-18 
substitution.  

 

Most approaches to label phenols with F-18 involve the labeling of electron-poor arenes 

by nucleophilic aromatic substitution, followed by subsequent conversion to phenols by 

oxidation or other multi-step sequences that are often inefficient and time consuming. Thus, the 

lack of good methods for labeling phenols and other electron-rich aromatics with F-18 at high 

specific activity represents a significant methodological gap in F-18 radiochemistry. 
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In our experience, preparing 2-[18F]fluoroestradiol (2) is a prime example of the types of 

challenges present in the F-18 labeling of electron-rich aromatic systems.26 We examined many 

A-ring estrogen precursors and after several trials, we were able to prepare 2-

[18F]fluoroestradiol by the three-step process shown in Scheme 4.1.26 [18F]Fluoride ion was 

introduced into the 2 position by displacement of a trimethylammonium group (7) that was 

activated by a carbonyl group introduced into the steroid system at C-6, para to the leaving 

group. Although the first radiofluorination step proceeded satisfactorily, the next two steps were 

time-consuming and inefficient, but mainly in the additional manipulations required to remove 

the activating group (8) and deprotection of the methyl ethers (9) to afford the diphenol 2. 

Overall, the multistep transformations required to produce [18F]2FES proved sufficiently 

awkward that further biological evaluations of this compound awaits improvements in the 

synthesis of F-18 labeled phenols.  

 

Scheme 4.1. Synthesis of [18F]2FES (2) by nucleophilic aromatic substitution-reduction-
deprotection sequence.26 

 

D. Radiofluorination of Electron-Rich Arenes with Diaryliodonium Salts 

 The available methodology for the incorporation of [18F]fluoride ion into electron-rich 

arenes is extremely limited, with only a few methods being reported. The Balz-Schiemann 

reaction, the classical method for aromatic fluorination, is unsuitable for 18F-labelling at high 

specific activity because the radiofluorine is extensively diluted by the large excess of unlabeled 

[19F]fluoride in the counteranions. Although the use of other non-fluorine containing 

counteranions have been explored, the transition to tracer levels has been less than ideal.27 The 

use of aryl triazenes as precursors for aromatic fluorination, known as the Wallach reaction, 
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actually predates the Balz-Schiemann reaction, and although it has been investigated as a 

method for radiofluorination, it is very inefficient at the tracer level, especially with electron-rich 

aromatic systems.28,29  

A more recently described method for the preparation of [18F]fluoroarenes is through the 

use of diaryliodonium salts. Hypervalent iodine compounds have tremendous utility in many 

aspects of mainstream organic chemistry as mild, nontoxic alternatives30 to the commonly used 

oxidants and expensive organometallic catalysts. Although these agents have been known to 

exist since 1894, only recently have they been used for arene radiolabeling with [18F]fluoride 

ion.31 To date, the use of diaryliodonium salts represents the lone method by which electron-rich 

arenes can be radiofluorinated in sufficiently high RCYs and specific activities.  

First reported by Pike,31 the use of these salts has enabled reliable 18F-labelling of both 

unactivated or electron-rich [18F]fluoroaromatic compounds, although most have been relatively 

simple substrates. Nucleophilic [18F]fluoride attack occurs at the electrophilic iodine atom, and 

upon the release of one of the ligands, reductive elimination of the corresponding intermediate, 

Ar-I(Ar)(18F), affords the desired [18F]fluoroarene.32 [18F]Fluorination tends to favor the more 

electron-deficient ring, and as a result, the use of unsymmetrical diaryliodonium salts where one 

aryl group is an electron-rich p-methoxyphenyl or 2-thienyl group results in selective fluorination 

to the other, less electronically rich arene.33,34 Moreover, in the case of ortho-substituted 

diaryliodonium salts, the ortho-substituted arene is preferentially attacked by fluoride, even if it is 

more electron-rich, and this effect is further enhanced in the presence of doubly substituted 

arenes.35 Initially, a “turnstile” mechanism36 was proposed to account for the ortho effect, but 

subsequent theoretical studies have postulated other mechanisms and intermediates, including 

the formation of bridged dimers37 or trimers,38 before reductive elimination occurs. However, 

others have claimed a standard nucleophilic aromatic substitution mechanism based on 

Hammett plots.33 Consequently, not all reactions show a correlation towards a presumed 

mechanism and are most likely dependent on the electronic and steric nature of the particular 

substrate for each reaction.  

Access to diaryliodonium salts typically involves multi-step syntheses (Scheme 4.2) in 

which an aryl iodide (10) is oxidized to an aryliodine(III) (11) compound by treatment with an 

inorganic oxidant under acidic conditions. The diacetoxy reagents 11 are quite stable and can 

be isolated, and subsequent ligand exchange with arylstannanes, -silanes, or boronic acids (12) 

affords the desired salts (13). The anion (X-) in these instances originates from the acid used 
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(typically from TsOH), and anion exchange with salts (i.e., KBr, KI) generates other variations in 

the final structure. Until now, this 18F-labelling approach has been largely applied to relatively 

simple diaryliodonium salts, and only a few complex examples have been reported.34,39    

 

Scheme 4.2. Standard synthesis of unsymmetrical iodonium salts. 
 

As part of our ongoing investigations in developing improved ER-targeted 

radiopharmaceuticals, we wished to explore facile approaches towards the radiosynthesis of 2-

[18F]fluoroestradiol. Herein, we describe a rapid strategy to access this promising ER imaging 

agent through diaryliodonium salts within 25 minutes with nucleophilic [18F]fluoride ion in 

synthetically useful yields. This study demonstrates the critical dependence of multiple factors in 

the successful radiofluorination of unsymmetrical iodonium salts, and in our case, the bromide 

salt with K[18F]F.K222 in PhH was found to be the optimal conditions. 

 

II. RESULTS and DISCUSSION 

A. Synthesis of the Diaryliodonium Salts for [18F]Fluorination 

The synthesis of the diaryliodonium salts (Scheme 4.3) commenced with a dimethylation 

of commercially available 17β-estradiol (14) with NaH and MeI in high yields. A subsequent 

regioselective bromination of 15 with NBS afforded bromide 16 in a 4:1 ratio of the desired 

regioisomer (2-position over the 4-position).40 Two additional recrystallizations significantly 

increased the ratio to a synthetically useful proportion of 96:4 of the 2-position isomer over the 

4-position one. Attempts to append the required tin moiety on the ring through palladium-

mediated processes generated only the reduction product. However, dehalogenation of bromide 

16 with nBuLi and subsequent capture of the lithium intermediate with trimethyltin chloride 

yielded 17 in good yields. Unfortunately, the tin species (17) was sensitive to protio-

destannylation during purification and as a result, could not be obtained as a single product. 

Nevertheless, 17 was recovered in high crude chemical purity (>90%) after passing through a 

silica gel plug and could be used as it in the next step without any problems.  
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Scheme 4.3. Synthesis of the unsymmetrical diaryliodonium salts. (a) NaH, THF, 0 oC rt, 18 h; 

(b) NBS, DCM, ACN, rt, 18 h; (c) nBuLi, TMEDA, Me3SnCl, THF, -78 oC rt, 2 h; (d) 
RI(OAc)2, TsOH, ACN, rt, 18 h. (18) Aryl = 4-methoxyphenyl or 2-thiophene. 

 

The required (diacetoxy)arenes (18) were prepared by oxidation of the corresponding 

iodoarenes with sodium perborate in acetic acid in synthetically useful yields.41 The 

aryliodine(III) compounds are unreactive to the standard reaction conditions for the formation of 

iodonium salts, and only upon treatment of the diacetoxy derivatives to the Koser’s reagent with 

tosylic acid monohydrate in acetonitrile can the salts (19) be formed.40 These derivatives form 

readily with TsOH addition, but are difficult to isolate due to their instability; thus, they were used 

as is upon formation with the tin compound (17). We were interested in preparing salts 

containing one aryl ring that is electron-rich, such as a 4-methoxyphenyl or 2-thiophene groups, 

because fluorination tends to prefer the more electron-deficient ring. However, the exceptionally 

rich nature of the A-ring phenol of estradiol complicates fluorination onto the desired ring since it 

is difficult to synthesize iodonium salts that contain a more electron-rich second ring. Attempts 

to append additional electron donating groups such as methoxy groups onto these electron-rich 

rings were unsuccessful as these substrates were incompatible with the oxidizing conditions 

required to form the diacetoxy derivatives. As a result, the 4-methoxy and 2-thienyl arenes are 

two of the more commonly used dispensable arene rings for selective fluorination of 

unsymmetrical diaryliodonium salts and would serve as the basis of our precursors.33 

The diaryliodonium tosylates (19) contained either a 4-methoxy or 2-thiophene aryl 

group and were readily converted into other salts (PF6
-, Br-, I-) in moderate to high yields by 

anion exchange reactions, as shown in Figure 4.4.40 In each case, metathesis was confirmed by 

the absence of the tosylate signals in the 1H NMR spectrum. The preparation of the salts was 
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simple and straightforward and each precipitated from solution under the metathesis conditions 

to afford bench stable solids. Preparation of other salts was attempted (Cl-, CF3CO2
-, BPh4

-) but 

yielded none of the desired material.  

 

Figure 4.4. Representative structures of the prepared unsymmetrical diaryliodonium salts. 
 

The reported diaryliodonium salts have involved relatively simple substrates, intended to 

investigate [18F]fluorination selectivity, and of these, only a few have been applied to potential 

PET tracers.39 Since this was relatively new territory for these substrates, we undertook an 

exhaustive screen of every potential factor in the fluorination of these salts (Figure 4.4), 

including the effect of fluoride source, temperature, solvent, anion, and aryl group. 

B. Influence of the Counteranion 

 Counteranions in diaryliodonium salts can have a drastic effect on the radiochemical 

yields with [18F]fluoride ion. This is mainly the result of how these anions contribute to the 

structures of the salt in solution during the reaction. At times, inorganic counterions induce an 

effective salt separation between the two, which results in a “naked” iodonium cation,42 while 

other research suggests partially dimeric and trimeric structures of the iodonium salt.37,38 

Moreover, anions with high nucleophilicity also compete with [18F]fluoride ion for the substitution 

reaction, which can significantly reduce the availability of precursor to undergo the desired 

reaction. Nonetheless, radiochemists tend to prefer the use conjugate bases of strong acids      
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(-OTs, -OTf) due to their low nucleophilicity; however, recent evidence has suggested the use of 

the more nucleophilic bromides and chlorides as optimal counteranions.43,44 The exact influence 

of the anions on these reactions is still unknown, but at least for the more nucleophilic 

examples, this may be related to the enhanced stability of these precursors, thus suppressing 

undesired decomposition reactions that reduce the availability of these substrates for reaction 

with [18F]fluoride ion.  

We initially studied the counterion effect more closely with our unsymmetrical 

diaryliodonium salts in which each substrate underwent the same reaction conditions with only 

the anion being varied.  As shown in Scheme 4.4. (top half), the model reaction involved TBAF 

as the fluoride source and PhH as the solvent at 140 oC for 20 minutes, and the yields were 

determined by integrating the ratios of the aromatic regions of the steroid products, the fluoro- 

(29) and iododimethoxyestradiol (31) in the 1H NMR spectrum. The use of benzene differs 

considerably from traditional [18F]fluorination radiochemistry, which typically prefers the more 

polar, aprotic solvent, such as DMSO, ACN, DMF. However, recent reports have suggested the 

use of low polar, noncoordinating media, which can suppress side product formation, similar to 

those seen in transition metal complexes, is the preferred approach for improving the yields of 

fluorinated aromatic compounds.40,45  

 As shown in Scheme 4.4. (bottom two), the yields of the desired fluorinated compound 

(29) greatly depended on the counterion present, especially when the 4-methoxyphenyl group 

was used. Yields favor the use of the more nucleophilic (Br-, I-) over the non-nucleophilic 

counterions (-OTs), which is consistent with previous examples,33,35 but not with others,46 and 

further supports the notion each substrate must be screened individually. By contrast, the yield 

of 29 from the thienyl compound (32) was surprisingly low. A recent report demonstrates the 

use of the 2-thiophene group as the preferred dispensable aryl group for the ortho-

[18F]fluorination of phenols33 and yet, in our case, minimal or no yields of the desired compound 

were obtained with the 2-thiophene group. Consequently, our efforts on future reactions focused 

solely on the 4-methoxy derivative (30). 
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X- Counteranion NMR Ratio of 29 NMR Ratio of 31 

PF6
- 50 50 

Br- 35 65 

I- 25 75 
-OTs 0 100 

 

 

X- Counteranion NMR Ratio of 29 NMR Ratio of 31 

PF6
- 10 90 

Br- 0 100 

I- 0 100 

-OTs 0 100 

 
Scheme 4.4. Investigations on the counterion effect on the different diaryliodonium salts. Yields 

are calculated from integration of the aromatic peaks of 29 to 31 in the 1H NMR spectrum. 
 

To further confirm PhH as the optimal solvent (data not shown), the same reactions were 

repeated with DMSO, DMF, ACN, PhCH3, and cyclohexane. Again, PhH exhibited the highest 

yields of 29 and was used as the preferred solvent in all other reactions. 
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C. Screening for the Fluoride Source 

 We next studied the fluorination of diaryliodonium PF6
- (22) and bromide (26) salts with 

different fluoride sources. Of the available [18F]fluorination sources, TMA[18F]F, Cs[18F]F, 

K[18F]F.K222, and TBA[18F]F are four of the more well-known ones, with the latter two being the 

most commonly used. Overall, in both cases (Scheme 4.5), yields of 29 are fairly comparable 

with all fluoride sources, except for the use of TMAF and 22. In contrast, TMAF afforded the 

highest yields of 29 with bromide derivative 26. Nevertheless, the screen proved to be quite 

useful since it showed that these salts were reactive to a variety of fluoride sources; so, we were 

not constrained to a single source. This is significant especially since the transition to tracer 

level chemistry with [18F]fluoride ion is highly unreliable, and variations in the original protocol 

are often required to achieve success.  

 Aside from the TMAF reaction, the PF6
- salt (22) showed slightly higher yields of 29 

when compared to the bromide 26 yields. The increase is most likely attributed to the PF6
- 

anion, which can release fluoride anions from PF6
-, and these ions can attack the iodine to form 

the desired compound (29). Since this side reaction would dilute the specific activity of the 18F-

radiotracer, this substrate is not useful for us, and subsequently, all 18F-studies were conducted 

with bromide 26. 

 Nevertheless, these findings proved significant since the fluorination can proceed to the 

unanticipated more electron-rich arene in sufficiently high yields, especially for 18F-chemistry 

and is most likely the result of the ortho effect. 
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Fluoride Source NMR Ratio of 29 NMR Ratio of 31 

TBAF 50 50 

TMAF 0 100 

KF, K222 49 51 

CsF 45 55 

 

 

Fluoride Source NMR Ratio of 29 NMR Ratio of 31 

TBAF 35 65 

TMAF 51 49 

KF, K222 43 57 

CsF 36 64 

 
Scheme 4.5. Investigations of fluoride sources on the different diaryliodonium salts. Yields are 

calculated from integration of the aromatic peaks of 29 to 31 in the 1H NMR spectrum. 

 

D. Problems Associated with Methyl Ether Deprotection 

 One of the main problems associated with C-18F bond formation is the need for 

protecting groups, which adds to the technical difficulty in synthesizing short-lived isotope 

tracers through multistep sequences. The protecting groups are required due to the dual 

base/nucleophile nature of the fluoride, and the presence of acidic functionality can severely 
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affect the nucleophilicity of [18F]fluoride ion and radiochemical yields. However, the rapid 

reaction times demanded by short-lived isotopes require fast deprotections and use of harsh 

conditions for their removal, which, in turn, causes additional problems in the process. In our 

case, methyl ethers are notorious in mainstream organic chemistry for the difficulty involved in 

their removal, and the difficulty is only further exacerbated with F-18 work. Initial deprotection 

attempts of the crude reaction mixture after fluorination with HCl and AlCl3 proved to be futile. 

However, switching to pyridine.HCl revealed rapid removal of the methyl ethers within 10 

minutes. Unfortunately, the harsh conditions required by the reaction (180-220 oC) not only 

cleaved the iodine off the aryl ring, but strikingly, fluorine also proved sensitive, with the 

subsequent 1H NMR spectra showing only estradiol as the sole compound in the crude reaction 

mixture. After extensive screening and optimization, it was eventually discovered that AlBr3 and 

dodecanethiol (CH3(CH2)11SH) was the optimal combination for rapid and efficient deprotection 

of the methyl ethers (Scheme 4.6). 

 

Scheme 4.6. Deprotection of the methyl ethers to afford 2-fluoroestradiol (32). (a) 
CH3(CH2)11SH, AlBr3, rt, 5 min. 

 

 Overall, the cold chemistry revealed the following sequence for the synthesis of 2-

[18F]fluoroestradiol. The bromide salt 26 proved to be the best salt for the fluorination, and after 

passing through a silica gel plug, the crude material can be utilized in the deprotection step 

without the need for HPLC purification. This allows for 32 to be accessed rapidly within only 25 

minutes of reaction time. 

 

Scheme 4.7. Overall sequence for the synthesis of 2-fluoroestradiol (32). (a) KF, K222, PhH, 120 
oC, 20 minutes; (b) CH3(CH2)11SH, AlBr3, rt, 5 minutes. 
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E. Radiosynthesis of 2-[18F]Fluoroestradiol (2) 

 From our original cold screen, bromide 26 and PhH were the preferred substrate and 

solvent, respectively, with no considerable differences in yields with varying temperatures (80-

140 oC) or fluoride sources (Scheme 4.5). We next studied the application of these conditions to 

the synthesis of 2-[18F]fluoroestradiol (2).  

 Since the [18F]fluoride source is produced as an aqueous solution from the cyclotron, a 

drying step must be performed to remove the water in order to restore the nucleophilicity of the 

anion. Key to this drying step is the addition of an appropriate base to afford a reactive, organic 

soluble [18F]fluoride source. Typically, alkali (i.e., K, Cs) or quaternary ammonium [18F]fluoride 

salts are obtained from their respective carbonates, bicarbonates, or hydroxides, albeit with 

varying success. Overall, the appropriate choice of cation and base can have a critical role in 

the success of these reactions; however, definitive guidelines for the proper choice do not exist, 

and one must screen the reaction for the optimal base. 

 We initially investigated the use of quaternary ammonium salts, TMA[18F]F and 

TBA[18F]F, formed from TMA[HCO3] and TBA[HCO3], respectively, and our model reaction 

involved bromide 26 and PhH at 105 oC for 20 minutes (Scheme 4.8). Not surprisingly, the 

successes seen previously in cold chemistry with these fluoride sources were not repeated, and 

no product (33) was formed. This was largely attributed to the low solubility of the [18F]fluoride 

salts in PhH. After the drying step is performed and all the solvent is removed, the [18F]fluoride 

source becomes adhered to the surface of the glass vial and must be resolubilized for the 

reaction to proceed. Polar, aprotic solvents (i.e., DMSO, DMF) tend to dissolve these salts quite 

readily, which explains their widespread use; however, these solvents were inferior to PhH in 

the original screen in terms of product formation. Attempts to use DMSO, instead of PhH, with 

TBA[18F]F also yielded no success. 
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Salt  Oil Bath (105 oC)  Microwave  

TMAHCO3  0 0 

TBAHCO3  0 4 

Cs2CO3  0 14 

CsHCO3  0 17 

K2CO3/K222  19 10 

KHCO3/K222  0 7 

 
Scheme 4.8. Evaluation of the effect of different salts on the radiofluorination of bromide 26. 

Radiochemical yields were based on radio-TLCs and HPLC traces.  
 

 However, upon switching to Cs2CO3 and CsHCO3 (Scheme 4.8), acceptable amounts of 

33 were obtained through microwave heating. Unfortunately, a closer inspection of the reaction 

revealed similar solubility issues: after removal of the solvent, a majority of the Cs[18F]F 

remained stuck to the vessel wall of the original vial. The minor, soluble amounts were 

sufficiently reactive to give the desired compound (33), but since over 85% of all of the original 

activity was retained on the vessel wall, Cs[18F]F offers limited utility. This also demonstrates the 

dangers of interpreting reaction success based solely on radio-TLCs. 

 By far, the most commonly used [18F]fluoride source is the K[18F]F.K222 cryptate, due to 

its superior organic solubility and fluoride nucleophilicity as compared to the other salts. K[18F]F 

can be prepared from either the potassium carbonate or bicarbonate salt, but the presence of 

an additional protic hydrogen seems to have a critical effect on the reaction, since no product 

formed with KHCO3. Nevertheless, acceptable RCYs of 33 were obtained with the K2CO3/K222 

approach in the preferred oil bath method. Further modification of the method with the addition 

of radical scavenger, TEMPO, afforded a 4-5% increase in yields. TEMPO is a common radical-

scavenger additive for the radiofluorination of iodonium salts since these precursors are 

unstable to basic conditions and can generate aryl radicals by homolytic fragmentation of 

precursor. Although addition of TEMPO in the cold chemistry screen resulted in a significant 
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reduction in product formation, gratifyingly, its addition in the presence of F-18 increased the 

desired yields. 

 Additional investigations revealed that the reaction was complete within 10 minutes, and 

after elution through a silica gel plug, methyl ether deprotection proceeded rapidly with the 

original conditions (AlBr3, CH3(CH2)11SH) to generate 2-[18F]fluoroestradiol (2) within 20 

minutes. The overall sequence is shown in Scheme 4.9. 

 

Scheme 4.9. Overall sequence for the radiosynthesis of 2-[18F]fluoroestradiol (2). (a) K[18F]F, 
K2CO3, K222, TEMPO, PhH, 105 oC, 10 min, RCY = 23%; (b) CH3(CH2)11SH, AlBr3, rt, 5 min. 

 

 Again, these findings are significant since we are obtaining [18F]fluorination of the 

unanticipated more electron-rich ring, and although the yields are compared to mainstream 

organic chemistry, this is not unusual for F-18 chemistry (typically radiochemical yields range 

from 10-30%). Lower yields are not a significant problem for PET agent production since the 

sensitivity of PET imaging is extraordinarily high and only relatively low amounts of 18F-material 

are needed for biological evaluations. Although the yields are still not ideal, they are workable 

and sufficiently high to evaluate 2 in future animal studies.  

III. CONCLUSION 

 In summary, we have developed an experimentally simple method for the rapid and 

efficient preparation of a complex diaryliodonium bromide salt that can be used to afford 2-

[18F]fluoroestradiol within 20 minutes of reaction time in synthetically useful radiochemical 

yields. The reaction proved highly dependent on multiple factors (i.e., counteranion, solvent, 

fluoride source) and illustrates the lack of generality when utilizing these particular substrates to 

radiofluorinate electron-rich arenes. Current efforts have focused on scaling up the reaction with 

higher amounts of activity to generate sufficient amounts of the desired radiotracer for 

evaluation in the appropriate animal models. 
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IV. METHODS 

Materials 

All reactions were carried out under a nitrogen atmosphere with dry solvents using anhydrous 

conditions unless otherwise stated. Solvents used in the reactions were dried in a solvent 

delivery system (neutral alumina column). Reagents were purchased from Aldrich and used 

without further purification, unless otherwise stated. Yields refer to chromatographically and 

spectroscopically (1H NMR) homogeneous materials, unless otherwise stated. Reactions were 

monitored by thin layer chromatography (TLC) carried out on Merck silica gel 60 F254 

precoated plates (0.25 mm) using UV light as the visualizing agent and ceric ammonium 

molybdate and heat as developing agents. Flash column chromatography was performed on 

Silica P Flash silica gel (40-64 μM, 60 Å) from SiliCycle. 1H NMR spectra were recorded at 23 

oC on a Varian Unity-400, Varian Inova-500 or Varian Unity-500 spectrometers and are reported 

in ppm using residual protium as the internal standard (CHCl3, δ = 7.26, CD2HCN, δ = 1.94, 

center line, acetone-d6, δ = 2.05, center line, DMSO-d6, δ = 2.50, center line). The following 

abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of 

doublets, t = triplet, q = quartet, m = multiplet and b = broad. Proton-decoupled 13C NMR 

spectra were recorded on a Varian Unity-500 (126 MHz) spectrometer and are reported in ppm 

using solvent as an internal standard (CDCl3, δ = 77.16, CD3CN, δ = 1.30, center line, acetone-

d6, δ = 29.80, center line, DMSO-d6, δ = 40.1, center line). High resolution mass spectra were 

obtained at the University of Illinois Mass Spectrometry Laboratory. No-carrier added 

[18F]fluoride was produced at Washington University Medical School by the 18O(p,n)18F reaction 

through proton irradiation of enriched (95%) [18O]H2O using a RDS111 cyclotron. Screw-cap test 

tubes used for drying fluoride and radiolabeling were purchased from Fisher Scientific (Pyrex 

No. 9825). Radiochemical purification utilized a reversed-phase semi-preparative HPLC column 

(HPLC: Thermo P2000, Column: Agilent Zorbax SB-C18, 5 µm, 9.4 X 250 mm, Product #: 

880975-202, λ = 254 nm, ACN/H2O). For quality control, the radiochemical purity was 

determined by analytical HPLC (HPLC: P4000, Column: Altima C18, 5 µm, 250 mm, Product #: 

88056). C18 Sep-Pak cartridges were purchased from Waters Corporation (Milford, MA, USA). 

For the thin-layer chromatography (TLC) analyses, EM Science Silica Gel 60 F254 TLC plates 

were purchased from Fisher Scientific (Pittsburgh, PA, USA). Radio-TLC was accomplished 

using a Bioscan 200 imaging scanner (Bioscan, Inc., Washington, DC, USA). Radioactivity was 

counted with a Beckman Gamma 8000 counter containing a NaI crystal (Beckman Instruments, 

Inc., Irvine, CA, USA). 
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(13S,17S)-3,17-Dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta- 

[a]phenanthrene (15): To a solution of 14 (2.01 g, 7.38 mmol) in THF (100 mL) at 0 oC was 

added NaH (1.35 g, 33.9 mmol, 60% dispersion in mineral oil) and left at this temperature for 15 

minutes. MeI (4.59 mL, 73.8 mmol) was then added at 0 oC and left to stir to room temperature 

overnight before being quenched with H2O (50 mL). The crude reaction was extracted with 

EtOAc (2 X 100 mL), and the combined organic extracts were dried over MgSO4 and 

concentrated in vacuo. Purification by column chromatography (Hex:EtOAc, 10:1) afforded 15 

(1.68 g, 75.7%) as a white solid; mp 154-155 oC. Rf = 0.85 (Hex:EtOAc, 5:1). 1H NMR (500 

MHz, CDCl3):  7.21 (d, J = 8.5 Hz, 1H), 6.72 (dd, J = 8.5, 2.7 Hz, 1H), 6.64 (d, J = 2.7 Hz, 1H), 

3.79 (s, 3H), 3.39 (s, 3H), 3.32 (t, J = 8.3 Hz, 1H), 2.95-2.78 (m, 2H), 2.34-2.25 (m, 1H), 2.24-

2.16 (m, 1H), 2.13-2.02 (m, 2H), 1.93-1.84 (m, 1H), 1.76-1.65 (m, 1H), 1.56-1.16 (m, 7H), 0.80 

(s, 3H); 13C NMR (126 MHz, CDCl3):  157.4, 138.0, 132.7, 126.3, 113.8, 111.4, 90.8, 57.9, 

55.2, 50.3, 43.9, 43.2, 38.6, 38.1, 29.8, 27.8, 27.2, 26.4, 23.0, 11.5; HRMS (ESI) calc’d for 

C20H29O2 [M + 1] 301.2168; found 301.2179. 

 

(13S,17S)-2-Bromo-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthrene (16): To a solution of 15 (50.3 mg, 0.17 mmol) in DCM (1.5 mL) at 

room temperature was added NBS (32.5 mg, 0.18 mmol) in ACN (0.6 mL). The round bottom 

flask was wrapped in foil and left to stir at room temperature for 18 hours. The solvent was 

removed in vacuo, CHCl3 was added and the suspension was filtered through a silica gel plug. 

The eluent was evaporated to afford a crude yellow oil. The oil was triturated with warm MeOH 

(30 mL) to yield an off-white solid; repeating the step with the crude solid with more MeOH (20 

mL) yielded 16 (23.3 mg, 36.8%, 96:4) as an off-white solid; Rf = 0.75 (Hex:EtOAc, 7:1). 1H 

NMR (500 MHz, CDCl3):  7.44 (s, 1H), 6.62 (s, 1H), 3.86 (s, 3H), 3.39 (s, 3H), 3.32 (t, J = 8.4 

Hz, 1H), 2.86-2.78 (m, 2H), 2.29-2.21 (m, 1H), 2.21-2.14 (m, 1H), 2.13-2.03 (m, 2H), 1.94-1.85 

(m, 1H), 1.75-1.64 (m, 1H), 1.58-1.27 (m, 6H), 1.25-1.15 (m, 1H), 0.80 (s, 3H); 13C NMR (126 

MHz, CDCl3):  157.4, 138.0, 132.7, 126.3, 113.8, 111.4, 90.8, 57.9, 55.2, 50.3, 43.9, 43.2, 

38.6, 38.1, 29.8, 27.8, 27.2, 26.4, 23.0, 11.5; HRMS (ESI) calc’d for C20H28BrO2 [M + 1] 

379.1273; found 379.1261. 

 

((13S,17S)-3,17-Dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclo 

penta[a]phenanthren-2-yl)trimethylstannane (17): To a solution of 16 (0.50 g, 1.32 mmol) 

and TMEDA (0.79 mL, 5.27 mmol) in Et2O (10 mL) at -78 oC was added nBuLi (1.39 mL, 1.39 
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mmol, 1.6 M in hexanes) and left to stir at this temperature for 5 minutes. This solution was then 

cannulated into another flask containing Me3SnCl (1.32 mL, 1.32 mmol, 1.0 M in hexanes) and 

Et2O (10 mL), cooled to -78 oC, and the resulting mixture was left to stir to room temperature 

over 2 hours. The solution was then passed through a silica gel plug (Hex:EtOAc, 1:1) and 

concentrated in vacuo. The crude product was used as is in the next step as this intermediate 

was prone to protio-destannylation during column chromatography and on the bench. 1H NMR 

(500 MHz, CDCl3):  7.30 (s, 1H), 6.56 (s, 1H), 3.76 (s, 3H), 3.39 (s, 3H), 3.33 (t, J = 8.3 Hz, 

1H), 2.98-2.79 (m, 2H), 2.40-2.31 (m, 1H), 2.27-2.17 (m, 1H), 2.13-2.01 (m, 2H), 1.94-1.82 (m, 

1H), 1.76-1.64 (m, 1H), 1.59-1.17 (m, 7H), 0.80 (s, 3H), 0.25 (s, 9H). 

 

General procedure for the formation of the diaryliodonium salts (20, 21): To a partially 

dissolved solution of 18 (0.11 g, 0.32 mmol, 4-methoxyphenyl) in ACN (2 mL) was added TsOH 

(0.62 mg, 0.32 mmol) in ACN (2 mL) and the resulting solution was added to a flask containing 

17 (0.15 g, 0.32 mmol) in THF (2 mL). The light yellow mixture was left stirring for 18 hours at 

room temperature in foil.  The solution was evaporated to dryness to afford an oily product. The 

crude product was redissolved in EtOAc (1.5 mL) and MeOH (dropwise added until product 

dissolves fully) and the product was precipitated with hexanes (~3.0 mL). The mixture was left in 

a freezer for 3 hours until the mother liquor turned clear. The liquid was removed and the 

precipitation process was repeated once more to afford pure diaryliodonium salts. The 

procedure was repeated with the thiophene derivative the same way.  

 

20: From 17 (0.15 g, 0.32 mmol), 20 (0.094 g, 40.9%) was obtained as an off-white solid. 1H 

NMR (500 MHz, CD3CN):  7.93 (d, J = 9.3 Hz, 2H), 7.83 (s, 1H), 7.53 (d, J = 8.3 Hz, 2H), 7.17 

(d, J = 8.3 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 6.90 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.30 (s, 3H), 

2.90 (dd, J = 8.5, 4.2 Hz, 2H), 2.42-2.33 (m, 4H), 2.26-2.18 (m, 1H), 2.11-1.95 (m, 2H), 1.91-

1.81 (m, 1H), 1.72-1.62 (m, 1H), 1.52-1.13 (m, 8H), 0.74 (s, 3H); HRMS (ESI) calc’d for 

C27H34IO3 533.1553; found 533.1545. 

 

21: From 17 (0.101 g, 0.22 mmol), 21 (0.123 g, 82.6%) was obtained as a light brown solid. 1H 

NMR (500 MHz, CD3CN):  7.89 (s, 1H), 7.84 (dd, J = 3.9, 1.2 Hz, 1H), 7.78 (dd, J = 5.4, 1.2 

Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.17 (d, J = 8.1 Hz, 1H), 7.10 (dd, J = 5.4, 3.9 Hz, 1H), 6.91 

(s, 1H), 3.92 (s, 3H), 3.30 (s, 3H), 2.97-2.83 (m, 2H), 2.34 (s, 3H), 2.28-2.15 (m, 2H), 2.12-1.95 
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(m, 2H), 1.91-1.79 (m, 2H), 1.76-1.58 (m, 2H), 1.54-1.07 (m, 8H), 0.73 (s, 3H); HRMS (ESI) 

calc’d for C24H30IO2S 509.1011; found 509.1009. 

 

General procedure for anion exchange (22-27): Salts (20, 21) were dissolved in ACN (2 mL) 

and heated to 60 oC. If the solid does not dissolve, a few drops of water were added until a clear 

solution forms.  An aqueous solution of KBr ((or KI or NaPF6) 120 mg in 1 mL H2O) was added 

and left to cool in the dark to room temperature. The mother liquor was removed to afford a 

white solid. Impure salts were further recrystallized from EtOAc:MeOH:Hex as discussed 

previously.  

 

22: From 17 (0.142 g, 0.31 mmol), 22 (0.072 g, 34.3%) was obtained as a light brown solid. 1H 

NMR (500 MHz, CD3CN):  7.93 (d, J = 9.0 Hz, 2H), 7.83 (s, 1H), 6.98 (d, J = 9.0 Hz, 2H), 6.89 

(s, 1H), 3.88 (s, 3H), 3.81 (s, 3H), 3.30 (s, 3H), 2.90 (dd, J = 8.5, 4.0 Hz, 2H), 2.26-2.18 (m, 1H), 

2.18-2.11 (m, 1H), 2.10-1.99 (m, 2H), 1.89-1.81 (m, 1H), 1.73-1.60 (m, 1H), 1.52-1.12 (m, 7H), 

0.74 (s, 3H); HRMS (ESI) calc’d for C27H34IO3 533.1553; found 533.1543. 

 

23: From 17 (0.150 g, 0.32 mmol), 23 (0.091 g, 43.3%) was obtained as a light brown solid. 1H 

NMR (500 MHz, CD3CN):  7.90 (s, 1H), 7.83 (dd, J = 3.8, 1.2 Hz, 1H), 7.77 (dd, J = 5.4, 1.3 

Hz, 1H), 7.10 (dd, J = 4.9, 3.2 Hz, 1H), 6.90 (s, 1H), 3.92 (s, 3H), 3.30 (s, 3H), 2.90 (dd, J = 8.5, 

4.0 Hz, 2H), 2.24-2.17 (m, 2H), 2.11-2.00 (m, 2H), 1.90-1.81 (m, 1H), 1.74-1.60 (m, 1H), 1.52-

1.13 (m, 8H), 0.73 (s, 3H); HRMS (ESI) calc’d for C24H30IO2S 509.1011; found 509.1015. 

 

24: From 17 (0.101 g, 0.22 mmol), 24 (0.054 g, 37.8%) was obtained as a off-white solid. 1H 

NMR (500 MHz, DMSO-d6):  8.10 (s, 1H), 8.01 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H), 

6.96 (s, 1H), 3.87 (s, 3H), 3.78 (s, 3H), 3.26 (s, 3H), 2.91-2.82 (m, 2H), 2.41-2.32 (m, 1H), 2.23-

2.09 (m, 1H), 2.05-1.91 (m, 2H), 1.85-1.75 (m, 1H), 1.68-1.56 (m, 1H), 1.48-1.12 (m, 8H), 0.70 

(s, 3H); HRMS (ESI) calc’d for C27H34IO3 533.1553; found 533.1548. 

 

25: From 17 (0.107 g, 0.22 mmol), 25 (0.041 g, 21.8%) was obtained as a light brown solid. 1H 

NMR (500 MHz, DMSO-d6):  8.12 (s, 1H), 8.03 (dd, J = 3.9, 1.3 Hz, 1H), 7.96 (dd, J = 5.4, 1.3 

Hz, 1H), 7.31 (dd, J = 4.6, 3.4 Hz, 1H), 6.98 (s, 1H), 3.87 (s, 3H), 3.26 (s, 3H), 2.91-2.84 (m, 

2H), 2.40-2.32 (m, 1H), 2.23-2.10 (m, 1H), 2.04-1.89 (m, 2H), 1.86-1.76 (m, 1H), 1.68-1.54 (m, 
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1H), 1.45-1.14 (m, 8H), 0.70 (s, 3H); HRMS (ESI) calc’d for C24H30IO2S 509.1011; found 

509.1013. 

 

26: From 17 (0.114 g, 0.25 mmol), 26 (0.087 g, 58.0%) was obtained as an off-white solid. 1H 

NMR (500 MHz, DMSO-d6):  8.11 (s, 1H), 8.01 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 9.3 Hz, 2H), 

6.97 (s, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 3.27 (s, 3H), 2.93-2.82 (m, 2H), 2.43-2.33 (m, 1H), 2.24-

2.10 (m, 1H), 2.08-1.91 (m, 2H), 1.86-1.75 (m, 1H), 1.71-1.61 (m, 1H), 1.50-1.10 (m, 8H), 0.71 

(s, 3H); HRMS (ESI) calc’d for C27H34IO3 533.1553; found 533.1544. 

 

27: From 17 (0.114 g, 0.25 mmol), 27 (0.067 g, 46.7%) was obtained as a brown solid. 1H NMR 

(500 MHz, DMSO-d6):  8.10 (s, 1H), 8.01 (dd, J = 3.9, 1.3 Hz, 1H), 7.95 (dd, J = 5.4, 1.3 Hz, 

1H), 7.31 (dd, J = 4.6, 3.4 Hz, 1H), 6.99 (s, 1H), 3.87 (s, 3H), 3.26 (s, 3H), 2.91-2.84 (m, 2H), 

2.40-2.32 (m, 1H), 2.23-2.10 (m, 1H), 2.03-1.89 (m, 2H), 1.86-1.75 (m, 1H), 1.69-1.54 (m, 1H), 

1.47-1.13 (m, 8H), 0.70 (s, 3H); HRMS (ESI) calc’d for C24H30IO2S 509.1011; found 509.1014. 

 

General procedure for the investigations of fluoride sources on the different 

diaryliodonium salts. To a heterogenous solution of salts (22 or 26, 1 mg) in PhH (0.3 mL) 

was added the fluoride source (1 equiv., K222 = 3 equiv.) and then sealed and heated at 140 oC 

for 20 minutes. After the allotted time, the vial was cooled to room temperature, passed through 

a silica gel plug and the combined organic solvents were concentrated in vacuo. Product ratios 

of 29:31 were analyzed through integrations of the A-ring aromatic peaks in the 1H NMR 

spectrum. 

 

General procedure for the investigations on the counterion effect on the different 

diaryliodonium salts. To a heterogenous solution of salts (20-27, 1 mg) in PhH (0.3 mL) was 

added TBAF.3H2O (1 equiv.) and then sealed and heated at 140 oC for 20 minutes. After the 

allotted time, the vial was cooled to room temperature, passed through a silica gel plug and the 

combined organic solvents were concentrated in vacuo. Product ratios of 29:31 were analyzed 

through integrations of the A-ring aromatic peaks in the 1H NMR spectrum. 

 

(Diacetoxy)-2-thiophene (18): 4-Iodothiophene (1.1 mL, 10 mmol) was dissolved in AcOH (90 

mL) and heated to 40 oC. NaBO3
.4H2O was added portion wise over 1 hour and left to stir at this 

temperature for an additional 8 h. After the allotted time, the heterogeneous mixture was 

evaporated to approximately half the volume of the original AcOH and then the product was 
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extracted with DCM (2 X 100 mL) after adding H2O (50 mL). The combined organic extracts 

were dried over MgSO4 and concentrated in vacuo to afford pure 18 (1.25 g, 38.1%)  as a light 

yellow solid. 1H NMR (500 MHz, CD3CN):  7.86 (dd, J = 3.9, 1.3 Hz, 1H), 7.79 (dd, J = 5.4, 1.3 

Hz, 1H), 7.18 (dd, J = 5.5, 3.8 Hz, 1H), 1.93 (s, 6H); 13C NMR (126 MHz, CD3CN):  219.8, 

136.9, 130.7, 129.9, 120.9, 20.5. 

 

(Diacetoxy)-4-methoxybenzene (18): 4-Iodoanisole (2.34 g, 9.99 mmol) was dissolved in 

AcOH (90 mL) and heated to 40 oC. NaBO3
.4H2O was added portion wise over 1 hour and left to 

stir at this temperature for an additional 8 h. After the allotted time, the heterogeneous mixture 

was evaporated to approximately half the volume of the original AcOH and then the product was 

extracted with DCM (2 X 100 mL) after adding H2O (50 mL). The combined organic extracts 

were dried over MgSO4 and concentrated in vacuo to afford pure 18 (2.27 g, 64.5%) as a light 

yellow solid. 1H NMR (500 MHz, CD3CN):  8.05 (d, J = 9.2 Hz, 2H), 7.06 (d, J = 9.2 Hz, 2H), 

3.87 (s, 3H), 1.91 (s, 6H); 13C NMR (126 MHz, CD3CN):  203.9, 139.4, 138.5, 130.7, 120.9, 

56.6, 20.5. 

 

Scheme 4.10. Synthesis of the iodine standard for 1H NMR analysis. (a) MOMCl, Hunig’s Base,  

THF, reflux, 16 h; (b) (i) sec-BuLi, THF, 30 min (ii) I2, Et2O, -78 oC rt, overnight; (c) HCl, 
THF, reflux, 12 h; (d) (i) NaH, DMF, 0 oC, 10 min (ii) MeI, 0 oC rt, 5 h. 

 

(13S,17S)-3,17-Bis(methoxymethoxy)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthrene (34):  To a solution of 17β-estradiol (14, 2.01 g, 7.38 mmol) in 

THF (15 mL) was added Hunig’s base (6.5 mL) and MOMCl (2.8 mL, 36.9 mmol) and left at 

reflux for 16 h before being quenched with H2O (50 mL) at room temperature. The crude 

reaction was extracted with EtOAc (2 X 100 mL), and the combined organic extracts were dried 
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over MgSO4 and concentrated in vacuo. Purification by column chromatography (Hex:EtOAc, 

4:1) afforded 34 (2.49 g, 93.6%) as a clear oil; Rf = 0.95 (Hex:EtOAc, 2:1). 1H NMR (500 MHz, 

CDCl3): 7.21 (d, J = 8.3 Hz, 1H), 6.84 (dd, J = 8.5, 2.9 Hz, 1H), 6.78 (d, J = 2.7 Hz, 1H), 5.15 

(s, 2H), 4.71-4.64 (m, 2H), 3.63 (t, J = 8.4 Hz, 1H), 3.48 (s, 3H), 3.39 (s, 3H), 2.91-2.80 (m, 2H), 

2.34-2.26 (m, 1H), 2.24-2.16 (m, 1H), 2.14-1.97 (m, 2H), 1.92-1.84  (m, 1H), 1.76-1.66 (m,  1H), 

1.64-1.16 (m, 7H), 0.82 (s, 3H). 

 

(13S,17S)-2-Iodo-3,17-bis(methoxymethoxy)-13-methyl-7,8,9,11,12,13,14,15,16,17-deca- 

hydro-6H-cyclopenta[a]phenanthrene (35): To a solution of 34 (1.01 g, 2.80 mmol) in THF 

(25 mL) at -78 oC was added sec-BuLi (8 mL, 11.2 mmol, 1.4 M in cyclohexane) and left to stir 

for 30 min. This solution was cannulated into a solution of iodine (3.56 g, 14.01 mmol) in Et2O 

(25 mL) at -78 oC and left to stir at room temperature overnight before being quenched with H2O 

(50 mL). The crude reaction was extracted with EtOAc (2 X 100 mL), and the combined organic 

extracts were dried over MgSO4 and concentrated in vacuo. Purification by column 

chromatography (Hex:EtOAc, 6:1) afforded 35 (0.77 g, 56.3%) as a white solid; Rf = 0.70 

(Hex:EtOAc, 5:1). 1H NMR (500 MHz, CDCl3): 7.66 (s, 1H), 6.79 (s, 1H), 5.20 (s, 2H), 4.71-

4.56 (m, 2H), 3.62 (t, J = 8.4 Hz, 1H), 3.52 (s, 3H), 3.38 (s, 3H), 2.86-2.77 (m, 2H), 2.30-1.83 

(m, 5H), 1.76-1.12 (m, 8H), 0.81 (s, 3H). 

 

(13S,17S)-2-Iodo-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H cyclopenta[a]phena- 

nthrene-3,17-diol (36): To a solution of 35 (1.42 g, 2.92 mmol) in THF (30 mL) was added 12 M 

HCl (7 mL) and left to reflux for 12 h. The solution was cooled to room temperature and the 

crude reaction was extracted with EtOAc (2 X 100 mL), with the combined organic extracts were 

dried over MgSO4 and concentrated in vacuo. Purification by column chromatography 

(Hex:EtOAc, 2:1) afforded 36 (1.07 g, 92.1%) as a white solid; Rf = 0.19 (Hex:EtOAc, 4:1). 1H 

NMR (500 MHz, CDCl3):  7.53 (s, 1H), 6.73 (s, 1H), 2.80 (dd, J = 8.9, 4.0 Hz, 2H), 2.30-2.08 

(m, 2H), 2.00-1.83 (m, 3H), 1.75-1.65 (m, 1H), 1.56-1.13 (m, 7H), 0.79 (s, 3H). 

 

(13S,17S)-2-Iodo-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthrene (37): To a solution of 36 (0.938 g, 2.36 mmol) in DMF (14 mL) at 

0 oC was NaH (0.44 g, 10.9 mmol, 60% oil dispersion) and left to stir at this temperature for 10 

min. To this solution, MeI (1.47 mL, 23.6 mmol) was added and left to stir to room temperature 

for 5 h before being quenched with H2O (20 mL). The crude reaction was extracted with EtOAc 
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(2 X 100 mL), and the combined organic extracts were dried over MgSO4 and concentrated in 

vacuo. Purification by column chromatography (Hex:EtOAc, 6:1) afforded 37 (2.49 g, 93.6%) as 

an off-white solid; Rf = 0.87 (Hex:EtOAc, 4:1). 1H NMR (500 MHz, CDCl3):  7.65 (s, 1H), 6.55 

(s, 1H), 3.84 (s, 3H), 3.39 (s, 3H), 2.88-2.79 (m, 2H), 2.33-2.01 (m, 2H), 1.93-1.84 (m, 2H), 

1.75-1.64 (m, 1H), 1.56-1.14 (m, 7H), 0.79 (s, 3H). 13C NMR (126 MHz, CDCl3): 155.9, 138.4, 

136.4, 135.0, 111.4, 90.4, 90.7, 57.9, 56.3, 50.2, 43.6, 43.2, 38.3, 37.9, 29.7, 27.7, 27.0, 26.4, 

23.0, 11.5; HRMS (EI) calc’d for C20H27IO2 426.10561; found 426.10638.   

 

General procedure for the drying step: To a glass vial was added the carbonate or 

bicarbonate of the respective alkali or tetralkylammonium salt (0.1-1 mg, K222 = 1-5 mg) in water 

(25-200 µL). The vial was placed in an oil bath at 105 oC and the water was removed by 

azeotropic distillation with ACN (1 mL) using a stream of nitrogen. This was repeated twice 

more with 1 mL increments of ACN until the [18F]fluoride source was deemed dry. The 

corresponding diaryliodonium salt and PhH (0.3-0.5 mL) were added and then heated for the 

desired time period. The course of the reaction and yields were monitored by radio-TLC and      

-HPLC. 

Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and Cs18F (from Cs2CO3) 
after 20 minutes at 105 oC (oil bath): 

DONG: 71920111.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

1.4e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 78.47% 

Region 2 ([18F]fluoroproduct; 55 mm): 21.53% 

*Product did not co-elute with cold standard.  
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Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and Cs18F (from Cs2CO3) 
after 5 minutes in the microwave: 

DONG: 71920112.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0

1500

3000

4500

6000

7500

9000

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 86.28% 

Region 2 ([18F]fluoroproduct; 55 mm): 13.72% 

 

Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and Cs18F (from CsHCO3) 
after 20 minutes at 105 oC (oil bath): 

DONG: 71920113.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 96.70% 

Region 2 ([18F]fluoroproduct; 65 mm): 3.30% 

 

Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and Cs18F (from CsHCO3) 
after 5 minutes in the microwave: 

DONG: 71920114.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 83.23% 

Region 2 ([18F]fluoroproduct; 55 mm): 16.77% 
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Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and K18F (from K2CO3 and 
K222) after 20 minutes at 105 oC (oil bath): 

DONG: 71920115.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 81.32% 

Region 2 ([18F]fluoroproduct; 55 mm): 18.68% 

 

Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and K18F (from K2CO3 and 
K222) after 5 minutes in the microwave: 

DONG: 71920116.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0

1000

2000

3000

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 89.68% 

Region 2 ([18F]fluoroproduct; 60 mm): 10.32% 

 

Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and K18F (from KHCO3 and 
K222) after 20 minutes at 105 oC (oil bath): 

DONG: 72120111.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

3.0e3

6.0e3

9.0e3

1.2e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 100% 

Region 2 ([18F]fluoroproduct; 55 mm): 0% 
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Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and K18F (from K2CO3 and 
K222) after 5 minutes in the microwave: 

DONG: 72120112.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 92.37% 

Region 2 ([18F]fluoroproduct; 55 mm): 7.63% 

 

Radio-TLC of the radiofluorination of 26 with [18F]fluoride ion and K18F (from K2CO3 and 
K222) and TEMPO (95 µg) after 20 minutes at 105 oC (oil bath): 

DONG: 72120113.R01 

20.0 35.0 50.0 65.0 80.0 95.0 mm

cnts

0.0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

1.2e4

 

TLC Eluting Conditions: 100% EtOAc 

Region 1 (unreacted [18F]fluoride; 35 mm): 77.45% 

Region 2 ([18F]fluoroproduct; 55 mm): 22.55% 

 

Deprotection to 2-[18F]fluoroestradiol (2): After cooling to room temperature, the solution was 

passed through a silica gel plug and the solvent was blown down to dryness. The crude product 

was dissolved in dodecanethiol (0.2 mL) and AlBr3 (10 mg) was added and left to stand at room 

temperature for 5 minutes. The reaction was quenched with 5% HCl and MeOH until the 

bubbling ceased and then passed through another silica gel plug.  
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UV trace with injected cold standard (Product: 4.11 min): 

 Conditions: 80% ACN 20% H2O 1.5 mL/min, λ = 254 nM 

 

Radioactivity trace (Product: 4.21 min): 
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