
c© 2016 Jiayi Duan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EFFECTIVE DETECTION OF SECURITY COMPROMISES IN
ENTERPRISES USING FEATURE ENGINEERING

BY

JIAYI DUAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Associate Professor Shobha Vasudevan

ABSTRACT

We present a method to effectively detect malicious activity in the data of

enterprise logs. Our method involves feature engineering, or generating new

features by applying operators on the features of the raw data. We apply

the Fourier expansion of Boolean functions to generate parity functions on

feature subsets, or parity features. We also investigate a heuristic method

of applying Boolean operators to raw data features, generating propositional

features. We demonstrate with real data sets that the engineered features en-

hance the performance of classifiers and clustering algorithms. As compared

to classification of raw data features, the engineered features achieve up to

50.6% improvement in malicious recall while sacrificing no more than 0.47%

in accuracy. Clustering with respect to the engineered features finds up to

6 “pure” malicious clusters, as compared to 0 “pure” clusters with raw data

features. In one case, exactly one (1) engineered feature could achieve higher

performance than 91 raw data features. In general, a small number (<10) of

engineered features achieve higher performance than raw data features.

ii

Thanks to my parents for all the support during my school and university

years.

iii

ACKNOWLEDGMENTS

Thanks to Prof. Shobha Vasudevan, my academic advisor, for all the

support and advising during my master’s program.

Thanks to Alina Oprea for providing all the enterprise log data sets for us

to do the experiments.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Introduction to our approach 3
1.3 Adversarial learning . 6
1.4 Contribution of our method 6
1.5 Structure of this thesis . 7

CHAPTER 2 RELATED WORK . 8
2.1 Feature selection and feature transformation 8
2.2 Security and malware detection 10
2.3 Adversarial learning . 10

CHAPTER 3 OUR METHOD FOR FEATURE ENGINEERING . . 12
3.1 Boolean conversion of raw features 13
3.2 Fourier coefficients . 14
3.3 Generating propositional features 18
3.4 Selecting the top-ranked features using Fourier coefficients . . 20
3.5 Comparison with other feature selection or transformation

methods . 21

CHAPTER 4 ADVERSARIAL LEARNING 24
4.1 Mimicry attack on PDF files 24
4.2 Feature engineering for adversarial learning 26

CHAPTER 5 DATA SETS . 32
5.1 Enterprise log data sets . 32
5.2 Applying feature engineering to data sets 34
5.3 Contagio PDF file data set . 35

v

CHAPTER 6 EXPERIMENTS . 37
6.1 Experimental setup . 37
6.2 Performance of propositional (Boolean) features 39
6.3 Performance of parity features 40
6.4 Performance of propositional features 42
6.5 Timing comparison between raw and engineered features . . . 42
6.6 Analysis of feature engineering on classification 43
6.7 Comparison with other Boolean conversion methods 47
6.8 Comparison with other feature selection methods 49
6.9 Clustering with engineered features 52
6.10 Results of adversarial learning 53

CHAPTER 7 CONCLUSION . 56

REFERENCES . 57

vi

LIST OF TABLES

6.1 Timing comparison between raw and engineered features
(seconds) . 43

6.2 Explainability of top-ranked features 45
6.3 Result for highest recall (malicious) and corresponding ac-

curacy by PEBL . 47
6.4 Top-ranked Boolean features selected by lasso, RFI, and

Fourier method . 50
6.5 Recall of unattacked malicious files, attacked malicious files,

and benign files, when using raw features, Boolean features,
and parity features . 55

vii

LIST OF FIGURES

3.1 Flow graph of our method . 12

4.1 One way of attack for malicious examples to avoid detection . 25
4.2 An example of PDF file format 27
4.3 How Mimicus changes PDF files to modify feature values . . . 28
4.4 The original feature value, target feature value calculated

by Mimicus, and actual output feature value of a PDF file . . 29
4.5 The procedure of using raw features for classification, with

or without mimicry attack. This is to validate how much
a mimicry attack would affect classification, and compare
to feature engineering methods as a baseline. 31

4.6 The procedure of using feature engineering method to deal
with mimicry attack . 31

5.1 A small part of the data set, including a few examples and
a few raw features. 34

6.1 The accuracy and recall (malicious) of the 3 classifiers using
the top 1-20 features, compared with raw features, on data
set 2. PEBL gets up to 96.96% recall with 88.15% accuracy,
while others get 97.9%-98.6% accuracy and up to 78.61% recall. 39

6.2 The accuracy and recall (malicious) of the 3 classifiers using
the top 5-30 parity features on data set 1. PEBL gets up
to 88.97% recall with 92.95% accuracy, while others get
98.5%-98.7% accuracy and 76.3%-78.5% recall and are all
higher than raw. 40

6.3 The accuracy and recall (malicious) of the 3 classifiers using
the top 5-30 parity features on data set 2. PEBL gets up
to 87.25% recall with 95.87% accuracy, while others get
98.0% accuracy (lower than raw) and 60.8%-78.6% recall
(higher than raw). 41

viii

6.4 The accuracy and recall (malicious) of the 3 classifiers using
the top 5-30 propositional features on data set 1. PEBL
gets up to 77.01% recall with 98.04% accuracy, while others
get 98.56%-98.62% accuracy and 75.1%-76.3% recall and
are all higher than raw. 42

6.5 Change in accuracy (A) and recall of malicious domains
(R(+)) compared with raw features, when getting highest
recall with engineered features. Change in accuracy is very
little compared to recall and drop in accuracy is acceptable. . 44

6.6 Maximum improvement in recall of malicious domains (line,
higher is better) and the corresponding number of features
used to achieve this maximum improvement (column bars,
lower is better). Parity and Boolean features are better
than propositional features. 46

6.7 The trade-off between accuracy and recall (malicious) for
Boolean and parity features using PEBL. The arrows show
the position when using 5 or 20 features. 48

6.8 The accuracy and recall (malicious) of PEBL and SVM
using top 5-20 Boolean features generated by two Boolean
conversion methods on data set 2. Although Weka’s dis-
cretization gets higher accuracy with PEBL, its recall is as
low as <10% and therefore useless. 49

6.9 Comparison of recall using 3 classifiers with 3 types of fea-
tures and 3 types of feature ranking methods 51

6.10 Comparison of fraction of malicious domains in each cluster
between raw features and engineered features on data set
1. “Pure” positive clusters are shown by dotted circles. 53

6.11 Comparison of fraction of malicious domains in each clus-
ter between raw features, engineered features, and random
forest importance selected features, on data set 2. “Pure”
positive clusters are shown by dotted circles. 53

ix

LIST OF ABBREVIATIONS

DNF Disjunction normal form

DT Decision tree

FN False negative

FP False positive

PEBL Positive Example Based Learning

RF Random forest

RFI Random forest importance

RIPPER Repeated Incremental Pruning to Produce Error Reduction

TN True negative

TP True positive

aS The Fourier coefficient of subset S ∈ 1, ..., n for a given χS.

âS The estimated (from the training data set) Fourier coefficient of
subset S ∈ 1, ..., n for a given χS.

f The ideal target function which satisfies f(x) = y for all examples
x in the given data set.

m Number of examples in the training data set.

x = (x1, ..., xn) An example of the n-dimensional data set.

x(i) The i-th example in the training data set.

x
(i)
j The j-th element of the i-th example in the training data set.

y The label of an example in the data set.

χS(x) The parity value of example x on subset S ∈ 1, ..., n.

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

The security landscape is continuously evolving with a variety of new attacks.

Common threats today range from criminal activities which are opportunistic

and financially motivated (e.g., [1]) to cyber-espionage and state-sponsored

campaigns targeting particular organizations with specific motivation and

objectives (e.g., [2]).

To counteract increasingly sophisticated attacks, most organizations de-

ploy a variety of security controls within their perimeter, including firewalls,

anti-virus (AV) software, intrusion detection systems, web proxies and net-

work appliances. The security logs generated by these controls are collected

and stored by many enterprises, resulting in terabytes of log data generated

daily in large organizations.

While these controls help defend against large classes of attacks, they are

insufficient for protecting enterprise perimeters in today’s continuously evolv-

ing threat landscape. It is relatively easy for attackers to evade these controls,

as evidenced by the number of successful breaches happening today. As an

additional challenge, employees can bring their own devices inside corporate

networks, and expose corporate machines to various threats when traveling

or working remotely. According to a report published by Verizon [3], in 2014

alone, there were 2000 security breaches among 10,000 surveyed organiza-

tions worldwide. The effects of security breaches (e.g., the Sony breach [4],

or the breach against the Anthem insurance company [5]) are catastrophic,

with estimated losses in 2014 being around 400 million dollars.

To complement the protections offered by security products, large enter-

prises leverage teams of security analysts. These are experts tasked with

identifying suspicious activities in the network. Security analysts spend much

1

time manually investigating alerts, detecting the root cause of the attack, and

remedying their effects. It is highly desirable to automate this manual inves-

tigation process of detecting malicious communication within an enterprise.

The enterprise logs, as most other data, are created with respect to man-

ually specified features. These features represent aspects of the data that

human beings consider relevant. However, it is not clear that manually gen-

erated features would be the best parameters to classify, cluster, or make

predictions with the data. Given that features are critically important in the

efficacy of any learning and/or data analysis task, they merit careful analy-

sis. Manual analysis of enterprise log data has three issues. One is the scale

of enterprise log data. For big enterprises, the log data can be terabytes

per day, making it extremely hard for humans to manually analyze. Even

if the data has been pre-processed to summarize the behavior of each do-

main, there will still be millions of domains under analysis. Manual analysis

will take too much time in such cases. The second issue is the importance

of features. Even for domain experts, different people may have different

understandings of which feature could be important and which is not. In

addition, their opinions may not be suitable for the classifiers used to do

the identification. The third issue is that manual analysis is vulnerable to

attacks. If domain experts can identify important features and use them for

classification, attackers can also identify important features and disguise ma-

licious examples to align them with benign ones (called “mimicry attack”).

Attackers just need to know a few benign examples to do so. Now given that

manual analysis is not a proper way to process the data and features, we

propose an idea of generating all relevant features and using an algorithm to

identify or even generate important features. Since all the work is assigned

to machine learning, the processing time could be shortened a lot compared

to manual analysis, and the features may be more friendly for the machine.

Besides, attackers may have difficulty getting to know the features used in

the classifier because the analysis is based on the whole training set, and

some new features are generated that may be hard for attackers to guess.

Generating new features is necessary in some applications. One of the

reasons to do so, as stated above, is to enhance robustness against mimicry

attack. Another important reason is that new features can potentially achieve

higher accuracy and higher recall of malicious examples, while making the

training and testing procedure faster. A disadvantage of raw features is

2

that they are in different format: some features are numeric (real values,

such as 35.02, 0.425), others are nominal (strings, such as “True,” “small”).

Furthermore, the value scales of numeric features may significantly differ

from each other, and numbers of possible values of nominal features may

also significantly differ from each other. This makes it difficult to process

the data. For example, when calculating the distance between two examples,

features with large values could contribute much more than features with

small values, and we might even need to use some new metrics to deal with

both numeric and nominal features. Some classifiers that use distances may

suffer from this. Even for classifiers that do not use distances, there may still

be many redundant and unrelated features that misguide the training and

may cause over-fitting. Moreover, when we apply clustering algorithms, there

are two disadvantages of using raw features: one is that the output heavily

depends on the distance measurement, which could be disturbed by different

scales and different types of features; the other is that the large number of

features makes the data space sparse, and distance measurement may be

even less meaningful in such situations. Therefore, transforming the features

into a unified format is necessary for both classification and clustering. The

transformation is the key to generating new features. However, we want

to keep the physical meaning when performing the transformation, and this

is a big difference from other feature selection and feature transformation

methods.

In this work, we investigate methods for feature engineering, or generating

new features from operations on existing features of the raw data. We create a

new feature space which can then be used for analyzing the data. Adding our

engineered features to the raw data features will increase the dimensionality

of the problem. Hence, we go through a selection process to identify the most

important features among the total set of features and select the smallest

subset that gives us an empirically acceptable metric (accuracy, precision,

recall, etc).

1.2 Introduction to our approach

We investigate two methods for feature engineering. For both our methods,

we generate disjunctive normal form (DNF) formulas with respect to the raw

3

features and extract Boolean features from the formulas.

The first method is based on Fourier analysis of Boolean functions, f :

{0, 1}n −→ {−1,+1} that has widespread applications in various fields [6].

If the domain of the Boolean function {0, 1}n can be thought of as 2n points

lying in Rn, and f as assigning labels {−1,+1} to these data points, these

data points can be interpolated with a polynomial. The Fourier expansion

multiplies each x-interpolant by the desired f(x), and then expands it to a

unique multi-linear polynomial that can then be simplified, and the origi-

nal function can be reconstructed. An unknown function can be learned by

approximating its Fourier coefficients, where the n variables of the function

correspond to the features of the data. Since the Fourier coefficient is an ex-

pectation under the uniform distribution on {0, 1}n, it can be approximated

from (training) examples in the data set. An orthonormal basis is computed

for every subset of features. In this case, we use the parity function be-

tween feature subsets as the basis. If f is dominated by a few large Fourier

coefficients and we know a small subset of features corresponding to those

coefficients, f can be approximated by a real polynomial of low degree. In

these cases, the coefficients can be approximated quickly and faithfully with a

reasonable training set size. We do not use the Fourier expansion to learn the

function in this thesis. We use the Fourier expansion to (1) generate new fea-

tures using the parity function on feature subsets or parity features, and (2)

compute the Fourier coefficients for estimating the importance of each such

parity feature with respect to f . Since Fourier expansion does generate new

features as well as rank features and perform feature selection, it can dig into

the correlations between features and thus generates more information that

may be useful; then the coefficients do the work of feature selection which

is more suitable for parity functions than other feature selection methods.

We also use lasso and random forest as two ways of feature selection in the

comparison between Fourier expansion and other feature selection methods.

We can see that the Fourier method performs the best in the experiments.

The Fourier expansion provides a formal method using principles of har-

monic analysis to generate new features. The second method we investigate

in this thesis is a more heuristic method to achieve the same objective. We

apply common Boolean operators like AND, OR, NOT and combinations of

these between the Boolean features and generate propositional features. We

then analyze this list of propositional features with the Fourier coefficients

4

to rank the most important ones. We select the top-ranked propositional

features according to their Fourier coefficients. A reason to investigate these

type of operations is that a human expert can easily understand and inter-

pret the meaning of these operations between features. This is especially

important in the security application, since manual investigation is a part

of the process. For the same reason, we limit the number of features per

operation to 2 in the propositional features. It is possible to perform more

complex integer or real operations for engineering new features. The current

work is a first step in this direction.

For evaluating the effectiveness of the feature engineering, we provide a

few top-ranked parity features and propositional features to different clas-

sifiers and clustering algorithms. We compare the performance (accuracy,

precision, and recall) with the performance when using all the raw data fea-

tures. In the case of our application, recall of malicious domains in the logs

is a very important parameter, since a high recall ensures that all the ma-

licious domains are classified correctly, while a low recall means that many

malicious domains escape detection. Due to the imbalanced nature of this

data set with very few malicious (4.74% and 2.63% in the two data sets) and

a large number of benign domains, all the classifiers show a high prediction

accuracy, but have a low recall (as low as 20% and no greater than 70%) with

raw data features. With feature engineering methods, the recall shoots up

to as high as 92.85% while maintaining the accuracy at an acceptable level.

We are able to show such high performance with much fewer features than

raw data features (<15 in general). We show that even with just one (1)

engineered feature, we can get up to 98.02% accuracy and 78.61% recall, as

compared to 98.61% accuracy and 70.9% recall with the entire set of 91 fea-

tures. With clustering algorithms, we show that the clusters with raw data

features are not “pure”; i.e., not even one of the clusters can be identified

as malicious or benign. In contrast, the engineered features can generate up

to 6 “pure” clusters. We demonstrate that the engineered features have high

explainability and interpretability for use by a human expert.

In general, parity features outperform propositional features in our exper-

iments with respect to recall achieved, number of features, and quality of

clusters. This argues for the more formal harmonic analysis approach to

feature engineering over the heuristic approach.

We also compared our feature engineering method with other feature se-

5

lection methods. The results show that our engineering method beats both

lasso and random forest importance (RFI) when using parity features by

averagely around 10% higher recall. Meanwhile, our method converts the

messy raw features into uniform Boolean features while retaining physical

meanings, which is hard for other feature selection and feature transforma-

tion methods.

1.3 Adversarial learning

Recently, methods for evading malware detection have been studied. One

of the common methods, called mimicry attack [7], focuses on how to let

the malicious examples mimic benign examples in some or all features, thus

aligning such malicious examples with known benign examples. In this way,

a classifier will not detect such malicious examples if it is not robust enough.

A mimicry attack can perform differently when the attacker has different

knowledge of the procedure of malicious example detection. “F”, “T”, and

“C” denote that the attacker has knowledge of the features, training data

set, and the classifier model, respectively. There is also a tool introduced in

[7] called “Mimicus” which performs mimicry attack on malicious PDF files.

We used FC and FTC Mimicus [7] on a public PDF data set “Contagio”

[8] and extracted features from benign files, malicious files, and disguised

(after being modified by Mimicus) malicious files. After training an SVM

on 135 raw features with unmodified examples, we tested them on disguised

malicious examples. The result shows that the classifier can only identify

3.4% of the disguised malicious examples, while this number is over 99% on

unmodified malicious examples. Fortunately, our method of feature engineer-

ing makes the features more robust to such kinds of attack. Our modified

features retain over 96% accuracy under mimicry attack, compared to 3.4%

when using raw features. Our features are much better in such tasks.

1.4 Contribution of our method

In the experiment chapter, we discuss the improvements in detail. In sum-

mary, our method makes better features that result in much higher recall of

6

malicious domains, with very little or even no sacrifice of overall accuracy.

This means the new features we made can identify more malicious examples

than using raw features, without sacrificing overall accuracy. In clustering,

there will be more clusters in which a majority of the elements are malicious

when using new features. These clusters indicate some common properties of

malicious examples and give us information to deal with them. Meanwhile,

the new features are much more robust to mimicry attacks than raw features.

Our method also has some properties that may benefit the application.

First, the features are Boolean, which makes it much faster to train the classi-

fier models. The raw features are a mixture of numeric and nominal features,

and the values of numeric features differ a lot with each other on distributions.

Thus, classifiers need to deal with the messy structure of raw features and

get slowed down. Besides, calculation of distances is much faster for Boolean

features (Manhattan distance) than numeric features (Euclidean distance).

Second, our new features are propositions and combinations of propositions

with physical meanings. People can easily understand the meaning of each

proposition; for example, Numconnection ≥ 10 means this domain has 10 or

more connections with enterprise local machines. This helps when sometimes

the classifier or features need to be further analyzed by a human. People can

even change some values (thresholds) in the propositions if necessary.

1.5 Structure of this thesis

Chapter 2 summarizes related research in feature selection, feature transfor-

mation, security and malware detection, and adversarial learning. Chapter

3 presents the details of our method, including every step we used to gen-

erate and rank features and to achieve our experimental results. Chapter

4 discusses what happens when the classifier undergoes a mimicry attack,

and how we can use our method to deal with this problem. Chapter 5 in-

troduces the data sets we use to get the experimental results, and chapter 6

presents all the experimental results using these data sets and provides some

discussion. Chapter 7 concludes the thesis.

7

CHAPTER 2

RELATED WORK

2.1 Feature selection and feature transformation

Research in the feature space has focused on (1) feature selection and (2)

feature transformation. Feature selection involves selecting the best set of

features from the original features of the data. Feature transformation in-

volves numerical transformation of the raw features that do not preserve the

physical meaning of the original raw features (such as weighted sum of the

features). In contrast, we present an approach to apply operations on and

between raw features with an explicit intention to preserve their physical

meaning.

Convex function optimization [9, 10, 11, 12, 13] is a very popular feature

selection method, where the idea is to build a convex loss function and min-

imize it. The function has two parts: one is prediction error, the other is

the norm (L1-norm, L2-norm, etc.) of weights on original features. Both

parts are given a positive coefficient. When minimizing the loss function,

the algorithm minimizes the prediction error, while giving proper weight on

features. The existence of the second part of the loss function helps in giving

high weight to important features and low weight to useless features. Lasso

[14] is one such method using L1-norm in the loss function.

Recently, online feature selection [15, 16, 17], or scoring features by weights

and training with the highest weights, was introduced. The idea is to use

weights to score features, and only keep a limited number of highest weights

during training. Online streaming feature selection methods [18, 17] add

features one at a time, and evaluate the improvement due to this newly

added feature, then keep some of the most important features and discard

others.

There are also some other kinds of feature selection methods introduced

8

in recent years:

Xu et al. [19] introduce Gradient Boosted Feature Selection (GBFS), a

feature selection method based on Gradient Boosted Trees. Xiang et al.

[20] propose a sparse group hard thresholding algorithm for bi-level (fea-

tures and feature groups) feature selection, and give an error bound for it.

Woznica et al. [21] present a method of extracting patterns from feature

models, and then use these patterns to further derive feature models for

feature interactions. Cai et al. [22] introduce Multi-Cluster Feature Selec-

tion (MCFS), which selects features that can best present the clusters of the

given unlabeled data set. Xu et al. [23] use spectral feature analysis to deal

with both supervised and unsupervised feature selection. Cao et al. [24]

present a dual method of tensor-based multi-view feature selection (DUAL-

TMFS), which uses SVM for recursively eliminating features, and show its

application in identifying brain diseases. Barkia et al. [25] use co-training

and random forests, together with a permutation-based out-of-bag feature

importance measure, to deal with a data set which has only a small set of

labeled data. Farahat et al. [26] first define a reconstruction error of the data

matrix based on subsets of features, then give a greedy approach to select

features that minimize this reconstruction error. Le [27] uses a multi-layered

locally connected sparse auto-encoder to learn high-level concepts completely

from unlabeled data, and such concepts can be seen as transformed features.

Zhai et al. [28] introduce a method that uses correlation measures as con-

straints and then use cutting plane strategy for selection. Jiang and Ren [29]

propose that impacts of features on similarity matrix should be used as a fea-

ture importance measurement. Masaeli et al. [30] introduce the conversion

of a transformation-based to a feature-selection method via 1/∞ regulariza-

tion, in order to relax the problem from discrete optimization (selection) to

continuous (transformation) optimization. Paul and Drineas [31] introduce a

deterministic sampling based feature selection technique, and give worst-case

guarantees of the generalization power for a function of selected features com-

pared to all features. Paul et al. [32] perform feature sampling for SVM, and

prove that the margin in the feature space is preserved to within ε-relative

error of the original margin in the worst case.

9

2.2 Security and malware detection

There are many types of security and malware detection systems in enter-

prises. Beehive [33] is such a novel system that detects local network hosts

that are infected, or host users that violate enterprise policies. The system

uses 15 human-decided features of 4 types: destination-based, host-based,

policy-based, and traffic-based. Then the system uses clustering on exam-

ples with the 15 features. Dahl et al. [34] use random projections and neural

networks to classify malware. Their system generates 3 types of features from

malware including null-terminated patterns, tri-grams of system API calls,

and distinct combinations of a single API call and a parameter input. The

number of original features is over 50 million, and they need to use feature

selection first to reduce the dimensionality to 179 thousand. Pascanu et al.

[35] describe a method of using time-series behavior of objects to classify

malware. The classifier model is recurrent networks, an extension of neu-

ral networks which is good at dealing with time-series data. Their features

are 114 distinct, high-level behavioral events generated by the anti-malware

engine, and each time-series stream analysis considers the first 100 events.

As we can see, the above methods use human-defined features, which are

perhaps the only option for people to understand what they mean. Some

other methods, such as [36] and [37], simply use hexadecimal binary machine

codes or n-gram of codes as features. This may yield more useful information

than human-defined features, but the system may be hard for a human to

understand and maintain since the codes are fixed and un-refinable for each

example.

2.3 Adversarial learning

While classification methods are being developed, attackers are looking for

ways to evade detection by classifiers. For example, a simple way of attack-

ing is to let malicious objects mimic the behavior of benign objects, such as

making spam emails look like normal emails and thus avoid detection. There-

fore, it is important to learn classifier models in some ways that are robust

against attacking. Brückner et al. [38], [39], and [40] describe the behavior

of attackers and defenders as a static prediction game in which there exists a

10

Nash equilibrium. Biggio et al. [41], [42], and [43] propose a way to combine

multiple classifiers and gain higher robustness against attacks. Biggio et al.

[42] and Barth et al. [44] introduce a method that uses randomization or

disinformation along with the classifiers so that the attackers will be misled

when getting to know the system.

11

CHAPTER 3

OUR METHOD FOR FEATURE
ENGINEERING

In this chapter, we introduce the whole procedure of our feature engineering

method. Figure 3.1 shows the outline of our method. We first pass the

raw data to a rule-based classifier and convert them into Boolean features,

then apply Boolean operators to two Boolean features at a time, to get

propositional features. We apply the Fourier transform on the propositional

features and obtain an importance ranking using Fourier coefficients. In

a parallel branch, we group subsets of features and calculate their parity

according to the Fourier basis, to get parity features. We rank the parity

features by importance using the Fourier coefficients as well. We select the

top ranking features from both methods and provide them to classifiers and

clustering algorithms. Every step will be discussed in detail in the next

sections1.

Figure 3.1: Flow graph of our method

1Some of the codes for implementation of our method can be found in the following
Git repository with limited access: https://duanjiayi1@bitbucket.org/jiayis_code/
big_data_code.git. Please contact me (duanjiayi1@gmail.com) for access to the codes.

12

3.1 Boolean conversion of raw features

The first step is to convert the numerical or nominal raw features to new

Boolean features, in order to apply the Fourier transform. This is similar

to the feature transformation that transfers raw features into a new Boolean

space. The difference from other feature transformation methods is that

it keeps some physical meanings of raw features, and it only transfers raw

features that are useful for classification and discards others. We use RIPPER

[45] on raw data to generate classification rules first. The classification model

generated by RIPPER is a DNF. For example,

(A > 5) ∧ (B < 7) ∧ (D > 10)→ Class = TRUE

(A > 8) ∧ (C < 15) ∧ (E = “html”)→ Class = TRUE

All others→ Class = FALSE

where A,B,C,D,E are original numerical or nominal features, and the values

are thresholds generated by RIPPER algorithm.

Each conjunction in the DNF consists of several Boolean features like

(A > 5), (B < 7), and any example can get a TRUE or FALSE on such

propositions.

To make sure the Boolean features are potentially useful, the accuracy

of RIPPER’s output should not be too low. Since RIPPER is a rule-based

classifier, it can reach 100% accuracy if not pruned (which means severe over-

fitting). Fortunately, we can measure the importance of Boolean features in

the rules and pick out important ones, so we do not mind if we get more rules

and more Boolean features in this step. The accuracy of RIPPER output

is more important than the number of rules or over-fitting, so we restrict

pruning to make the accuracy high enough (e.g. over 98%).

Actually, other rule-based classifiers, such as decision trees, work in this

step. The propositions in each node of a decision tree can also be used as

Boolean features. The reason of using RIPPER instead of decision trees is

that RIPPER outputs DNF format rules but not tree structure rules. In

tree structure rules, every proposition in a node is generated on the basis of

its parent, its parent’s parent, etc., except the root node. In this way, the

feature and the corresponding threshold used in the node are influenced by

all the parental nodes. What we need are individual propositions, so we want

13

as little such influence as possible. DNF has less such influence because each

rule is established on its own, without many constraints from its previous

rules. Therefore, RIPPER is our choice.

3.2 Fourier coefficients

3.2.1 Fourier transform and coefficients

Fourier transform on Boolean variables [46] is a method to learn Boolean

functions. Its target is to learn a Boolean function f(x) with n Boolean

variables x = (x1, ..., xn) ∈ {0, 1}n as input and a label y ∈ {−1, 1} as

output:

f : {0, 1}n → {−1, 1}

If f is learned to satisfy f(x) = y ∀x in the training set, then f(x) becomes

a classifier. In our task, x is a training example, x1, ..., xn ∈ {0, 1} are n

Boolean features of example x, and y ∈ {−1, 1} is the label of the example.

We are not going to use the whole Fourier transform method to learn the

target function, but we use some of its ideas (parity functions and Fourier

coefficients) to generate new features and measure the importance of all fea-

tures, and then select some of the important ones for classification. The

generation of new features will blow up the Boolean feature space (generated

from Boolean conversion in 3.1) into a much higher dimensional Boolean fea-

ture space, but the feature importance ranking and selection will reduce the

dimension to no more than 30 for classification.

Just like Fourier expansion in signal processing that uses sine and cosine

functions, the Fourier transform here uses parity function of subsets as the

orthonormal basis. For any subset of Boolean variables S ⊆ {1, 2, ..., n}, the

parity function χS(x) identifies odd or even parity of set S on example x.

If there are odd 1’s in subset S of example x, then χS(x) = −1; otherwise,

χS(x) = +1, shown as follows:

χS(x) =
∏
i∈S

(−1)xi =

+1 if
∑

i∈S xi mod 2 = 0

−1 if
∑

i∈S xi mod 2 = 1
(3.1)

14

The output of parity function is also a Boolean value as χS(x) ∈ {−1, 1}.
Since there are 2n subsets of {1, ..., n}, there will be 2n selections of S and

thus 2n parity functions on each example x. Each such χS(x) represents a

parity feature that we can generate from example x.

We now want to project f(x) onto 2n-dimensional feature space con-

structed by the parity features. It is desirable to ensure that each axis rep-

resented by χS is orthonormal to another. Orthonormalcy ensures that f(x)

can be expanded as a sum of projections on different χS axes. Orthonormalcy

is defined as:

1

2n

∑
x∈{0,1}n

χS1(x)χS2(x) =

0 if S1 6= S2

1 if S1 = S2

Since χS1 , χS2 , ..., χS2n
satisfy such relationship, they can be used as 2n or-

thonormal bases of axes in the parity function space.

The Boolean function f(x) expands to:

f(x) =
∑

S⊆{1,...,n}

aSχS(x) (3.2)

The Fourier coefficient aS for a given χS is computed across all training

examples x ∈ {0, 1}n, as equation (3.3).

aS =
1

2n

∑
x∈{0,1}n

χS(x)f(x) (3.3)

As χS(x) ∈ {−1, 1}, f(x) ∈ {−1, 1}, we can easily get −1 ≤ aS ≤ 1.

This can also be used for reconstructing and thereby learning function

f(x) (as in (3.2)). In this thesis, we do not use a Fourier transform based

classifier. We use this method only for computing coefficients as in (3.3).

In practice, computing 2n parity functions of different feature subsets is

computationally hard. Hence, an approximation can be used by computing

fewer than 2n subsets. The error due to this approximation can be bounded

as follows.

For (3.2), Parseval’s identity states∑
S⊆{1,...,n}

a2S = E[f 2] (3.4)

15

where f is the function value (or label). Here we have f ∈ {−1, 1}, so

E[f 2] = 1, and ∑
S⊆{1,...,n}

a2S = 1

Suppose we know only subset β with aβ = 0.9, and a hypothesis h(x) =

aβχβ(x) = 0.9χβ(x); then the expected error is

E[(f − h)2] =
∑

S⊆{1,...,n},S 6=β

a2S = 1− a2β = 0.19

Mansour [46] provides a bound on the error due to considering only a subset

of 2n possible parity features:

Pr[f(x) 6= Sign(h(x))] ≤ E[(f − h)2]

where

Sign(z) =

+1 if z ≥ 0

−1 if z < 0

Equation (3.3) assumes that the training data set for computing coefficients

is a complete set that contains all x ∈ {0, 1}n. However, this is seldom the

case in practice. We need to approximate (3.3) in the absence of a complete

training set. When there’s only an incomplete training data set T including

m < 2n examples, the approximation of Fourier coefficient of subset β is

âβ =
1

m

∑
x∈T

χβ(x)f(x) (3.5)

Using the Chernoff bound, there is

Pr[|âβ − aβ| ≥ λ] ≤ 2e−λ
2m/2

Given that |âβ − aβ| ≤ λ, and

E[(f − âβχβ)2] = 1− a2β + λ2

The original error is 1 − a2β, so the additional error is λ2. The bigger m is,

the more we can reduce the error.

16

3.2.2 Scaling Fourier coefficient computation

Algorithm 1 Calculating Fourier coefficients for small subsets

1: function FCoeff(x
(1)
1 , ..., x

(i)
j , ..., x

(m)
n , y(1), ..., y(m), k)

2: for S ⊆ {1, ..., n}, |S| ≤ k do
3: for i = 1 to m do
4: χS(x(i)) =

∏
j∈S(−1)x

(i)
j

5: end for
6: aS = 1

m

∑m
i=1 χS(x(i))y(i)

7: end for
8: Return aS ∀S ⊆ {1, ..., n}
9: end function

There will be 2n parity features in total since a set with n elements has 2n

subsets. 2n is too large a number to finish the computation of coefficients.

Therefore, it is important to identify and select the Boolean feature subsets

from 2n possible subsets. A claim in [46] shows that, if f(x) can be expressed

as a decision list [47], then it is sufficient to concentrate on a small set

k � n of the feature variables. For this subset of k feature variables, Fourier

coefficients can be approximated for every subset of this set. In this case,

the total number of coefficients we need to calculate is
(
n
1

)
+
(
n
2

)
+ ... +

(
n
k

)
.

In our experiments, for example, we have 98 Boolean features after Boolean

conversion, so there will be totally 298 = 3.17×1029 subsets, too many for any

computer. However, if we choose k = 4, the number of coefficients we need to

calculate is
(
98
1

)
+
(
98
2

)
+
(
98
3

)
+
(
98
4

)
= 3.77×106, far smaller than 298. This is

a proper number for us to finish the computation while not losing too much

information of parities of larger subsets. RIPPER gives us a disjunction

normal form (DNF) formula on raw features with a high overall accuracy

(over 98.5%) in Boolean conversion. Since DNF is a proper subset of decision

lists [47], it is reasonable to consider only the small subsets in our task. We

only need to focus on some small subsets with high |aS|, because negating

them will cause 2|aS| difference on (3.2). In other words, these subsets are

the most important features for classification because they are most likely to

influence the function output (label). We will use these absolute values of

coefficients as importance measurements of features. Algorithm 1 shows how

to calculate Fourier coefficients for small subsets |S| ≤ k from the training

data examples x and labels y.

17

Since we do not know which k of n Boolean features are needed to be in the

small set, there are
(
n
1

)
+
(
n
2

)
+ ...+

(
n
k

)
ways (instead of 2k ways) of selecting

subsets of this small set. Hence the number of subsets can still be large. We

use the following method to retain the high coefficient subsets introduced

in [46]. We start from subsets that include only one feature, calculate their

coefficients, then keep only those with |aS| ≥ θ, where θ is a threshold, and

discard others. Next, we add one more feature (any one that is not already

in the current subset) to such subsets to get S ′, calculate their coefficients,

then again keep only those with |aS′ | ≥ θ. We keep doing this until we reach

a certain number of features in a subset. This method does not guarantee

that we can get all small subsets that have high coefficient, and actually it

is possible that a subset of 2 features can get high coefficient while the 2

Boolean features get low coefficients independently. However, this method

can empirically be shown to preserve high-coefficient subsets and save a lot

of time and memory.

3.3 Generating propositional features

This is a heuristic method for feature engineering. For any 2 features A and

B, we apply 5 operators A AND B, A OR B, ¬A AND B, A AND ¬B,

and A XOR B. These operations do not have orthonormal relationship or

properties displayed by parity functions. However, these operators have a

concrete and interpretable physical meaning. For n Boolean features, now

we have 5×
(
n
2

)
new features as the output of pairwise Boolean operators. We

call the 5×
(
n
2

)
new features together with n Boolean features propositional

features. We treat the propositional features as new added feature dimensions

and calculate Fourier coefficients for them. Algorithm 2 shows this process.

We restrict Boolean operations to 2 Boolean features at a time to keep

computation scalable. Consider applying operators on 3 features when we

have 98 Boolean features at the beginning; the number of new features gen-

erated in this way will be around 20 million. This is even much more than

the number of parity features at k = 4. If we consider operators on 4 or

more features, the number of new features will be exploding, so we chose to

stay at 2 features. We found that Boolean features with high coefficients are

frequently repeated as one of the features in the top-ranked propositional

18

Algorithm 2 Fourier coefficients for propositional features

1: function PwCoeff(x
(1)
1 , ..., x

(k)
j , ..., x

(m)
n , y(1), ..., y(m))

2: for i = 1 to n− 1 do
3: for j = i+ 1 to n do
4: for k = 1 to m do
5: Fij1(x

(k)) = x
(k)
i AND x

(k)
j

6: Fij2(x
(k)) = x

(k)
i OR x

(k)
j

7: Fij3(x
(k)) = ¬x(k)i AND x

(k)
j

8: Fij4(x
(k)) = x

(k)
i AND ¬x(k)j

9: Fij5(x
(k)) = x

(k)
i XOR x

(k)
j

10: end for
11: aijl = 1

m

∑m
k=1 Fijl(x

(k))y(k) ∀l = 1, 2, 3, 4, 5
12: end for
13: end for
14: Return aijl ∀l = 1, 2, 3, 4, 5 and

FCoeff(x
(1)
1 , ..., x

(i)
j , ..., x

(m)
n , y(1), ..., y(m), 1)

15: end function

features. The repetition of a feature in the top-ranked propositional features

leads to redundant information from a data splitting viewpoint. We prefer

non-repeated propositions in the propositional features.

We found a problem in which, if an original Boolean feature has a high

coefficient, it might appear many times in the new created features as one of

the two features in the pairwise operation. For example, if a feature, say F1,

has a high coefficient, then it might be possible that we can find (F1 AND

F2), (F1 AND F5), (F1 OR F6), and (F1 AND ¬F9) all have high coefficients.

This is not what we want to see, because the extra information given by

these features is not as much as we expected. (F1 AND F2) only gives extra

information on F2 compared to F1 itself, not as much as other features like

(F3 AND F4). It is not a good idea to simply eliminate the operations with

repeated features as we lose all the extra information combined with F1.

In the next step we compute coefficients for all the n + 5 ×
(
n
2

)
features

and rank them in descending order of importance.

19

3.4 Selecting the top-ranked features using Fourier

coefficients

The engineered parity and propositional features are more numerous than the

raw data features. Hence, we need to select the most important among them.

We continue using Fourier coefficients for this purpose. The calculation of

the coefficients of parity features is the same as (3.5). Here we do not know

the function f(x), but for each example x, we have its label, which is a value

in {−1, 1}. Therefore we use the label as the value of f(x) for each example.

As we do not have all examples in {0, 1}n, we use the whole training set as

T .

To calculate the coefficients of propositional features, we need not consider

subsets. We only need to calculate coefficients for one feature at a time

(in other words, set k = 1) for both original Boolean features and newly

generated features. The coefficient is calculated as

ai =
1

m

∑
x∈T

χi(x)f(x)

where T is the training set, m is the number of training examples, f(x) is

the label of example x, and χi(x) is the parity of i-th feature (ONE feature).

Then we pick only a few most important features for evaluation. Although

features fi and ¬fi have opposite sign coefficients, using ¬fi instead of fi is

treated the same by classification and clustering algorithms. Rule-based clas-

sifiers automatically deal with negations, and other classifiers and clustering

algorithms use Manhattan distance instead of Euclidean distance between

examples. We use the absolute value of coefficients |ai| to rank the features

in the descending order of |ai|.
We select features with the largest |aS| or |ai| to provide classification and

clustering algorithms. We do not use the Fourier transform based learning,

since the number of features we select is no more than 30, which is less than

the total number of engineered features. This is insufficient for the Fourier

transform based learner.

After ranking, we select only some features corresponding with the largest

|ai|; we do not use these features for Fourier transform, but rather feed them

into classification and clustering algorithms. We use at most only the top 30

features in each experiment, which is very few compared to the total number

20

of features. This is insufficient for Fourier transform, especially when we

can estimate the coefficients only from the training set T , not the entire set

{0, 1}n. But for clustering and classification, 30 could be a proper number, as

it is much smaller than the number of raw features, which is what we want to

see. Meanwhile, very high dimensions are ill suited to clustering algorithms

because data points will be too sparse, making it difficult to find clusters.

3.5 Comparison with other feature selection or

transformation methods

As mentioned in the related works, there are mainly two ways of engineer-

ing features: feature selection and feature transformation. Feature selection

methods, such as lasso [14] and random forest importance [48] measurement,

usually give a score for each feature showing how important they are in clas-

sification. If a feature is very valuable in classification, it will be given a

high score. If a feature does not contribute to classification (i.e. erasing

this feature has little impact on accuracy), it will be given a low score. If

we use such methods, we can keep some of the most important features and

erase others. This can eliminate the influence of useless features and thus

help prevent over-fitting, and also simplify the classifier model and shorten

processing time. Meanwhile, the selected features are still raw features and

do not change at all, so the physical meanings are preserved. However, be-

cause selected features are still raw features, the training and testing time

of the classifier is still much longer than using Boolean features, especially

for classifiers like SVM since the kernel (e.g., distance, inner production, etc)

calculation is much easier for Boolean vectors than numeric vectors. Besides,

the robustness against mimicry attack is not improved because the features

are not changed.

The other way involves using feature transformation methods, such as

PCA, that work well in many fields but may not be suitable for this field.

Since such methods transform features, they usually do not retain the phys-

ical meanings of the features, making it harder for manual analysis when

necessary. For example, PCA uses a projection matrix to project the raw

features into another lower-dimensional features space. Every new feature

in the new feature space is a linear combination of the raw features. The

21

advantage of this method is that it keeps nearly all the information pro-

vided by the raw features and only needs to discard very little informa-

tion. With more information, the classifiers will have a greater chance to

get higher accuracy. However, a linear combination of raw features, such as

0.3×connections+0.8×sent bytes−0.6×URL length, is usually impossible

for humans to understand. This can be a disadvantage when it is necessary

to manually analyze and control some parts of the classification procedure.

For comparison with other feature methods, we chose lasso and random

forest importance (RFI) as two baselines. Both the methods can give weights

or scores to each feature, so we can rank the features according to their score

and select the top ones for classification. We can use each of them to select

top features at 3 stages: top raw features, top Boolean features right after

Boolean conversion, and top parity features. We use the same classifiers on

these selected features to get the accuracy and recall, then compare with our

method.

In lasso, a weight vector ~w is trained to minimize the loss function

fLOSS =
m∑
1

(yi − ~w · ~xi)2 + λ||~w||1

where ~xi is the i-th example, yi is the label of i-th example, m is the number

of training examples, ||~w||1 is the L1-norm of vector ~w, and λ is a parameter.

When the loss function is minimized, ~w should be a sparse vector connecting

x and y. λ controls how sparse ~w would be. The larger λ is, the more

concentration will be put on the sparsity of ~w instead of prediction error∑m
1 (yi − ~w · ~xi)2, and the more zeros in ~w. We can select different values of

λ to control the number of non-zero elements in ~w and thus select the most

important features.

In random forest training, tens or hundreds of decision trees will be trained,

but each tree only uses a random subset of features and a random subset of

examples in training, and uses the same subset of features to predict. The

final prediction output comes from voting of all trees. There is an importance

measurement in random forest called “MeanDecreaseAccuracy.” It gives a

value to each feature, showing how much the accuracy will decrease if the

value of this feature is permuted in all trees. The greater this value, the more

important this feature for classification. We can therefore calculate this value

22

for all features and rank them from greatest to smallest, then pick the most

important ones for classification.

23

CHAPTER 4

ADVERSARIAL LEARNING

We select adversarial learning as an application of our feature engineering

method as well, since this is also an important part of security. According

to [49], adversarial learning focuses on dealing with misclassification due to

modifications on malicious examples by attackers. If an attacker gets access

to some parts of the classifier model, he will be able to find an algorithm that

helps malicious examples avoid detection by firewalls, anti-virus systems,

etc. Figure 4.1a shows how a regular classifier works, and Figure 4.1b shows

how a classifier can be affected under attack. A mimicry attack is one such

algorithm, which learns properties of the benign class from some benign

examples, then uses such properties to disguise malicious examples and lets

them look like benign examples, thus letting them avoid detection. In this

chapter, we talk more about how mimicry attacks work, and how we can

use our feature engineering method and do some experiments to see if our

feature engineering method can deal with such attacks.

4.1 Mimicry attack on PDF files

Mimicus [7] is a tool for mimicry attack on PDF files. Figure 4.2 shows

an example of PDF file format. Usually a PDF file has four parts: header,

body, cross-reference table, and trailer. By using a widely used feature ex-

tractor described in [7], totally 135 features can be extracted from a PDF file.

The features are typically author information (author len, author num, etc),

count of some objects (count eof, count image large, count javascript, etc),

creation date, size, etc. The principle of Mimicus is to add some injected

content to the PDF file between cross-reference table and trailer, as shown

in Figure 4.3, so that some features can be modified. What kind of content

it chooses to add, however, depends on how Mimicus learns about benign

24

(a) Regular classifier model

(b) Classifier model under attack

Figure 4.1: One way of attack for malicious examples to avoid detection

25

example properties. There are several scenarios in which Mimicus can learn

from benign examples. Each scenario can be expressed by “F,” “T,” and

“C.” “F” means the attacker (Mimicus) knows about the feature set that

are used for classification, “T” means the attacker knows a subset of training

examples, “C” means the attacker knows which classifier and what algorithm

are used in malware detection. For example, “FC” means the attacker knows

about the feature set and the classifier, thus he can attack these features and

classifier precisely and therefore increase the probability that an attacked

malicious example can successfully avoid detection. In theory, FTC should

be the most powerful scenario of mimicry attack because the attacker knows

the most.

Mimicus tries to add proper contents so that the extracted features look

like benign examples. However, by just adding injected contents to PDF

files, not all features can be changed perfectly to let them look exactly like

benign examples. Among 135 features, 67 features remain the same and

cannot be changed by using this method. The remaining 68 features can

be modified, but since some features are interdependent of each other, the

values cannot be changed exactly as Mimicus wants without any constraints.

Figure 4.4 shows how feature values can be changed. The first column shows

feature names of a subset of features, the second column (BEFORE) shows

the original feature value of a PDF file, the third column (AFTER) shows

the target feature value calculated by Mimicus, and the last column (FILE)

shows the feature values of the actual modified PDF file. As we can see,

there are some differences between target values and actual values due to

interdependency between features. Because of the unchanged 67 features and

interdependency between the remaining 68 features, classifiers still stand a

chance to correctly identify the malicious examples, but only if they are well

trained and sufficiently robust.

4.2 Feature engineering for adversarial learning

Since our feature engineering method can produce and select better features

than raw features for classification, we believe that our method can invalidate

the F in mimicry attack scenarios. This means attackers will not know the

exact features we use for classification. However, attackers may still know

26

Figure 4.2: An example of PDF file format

27

Figure 4.3: How Mimicus changes PDF files to modify feature values

28

Figure 4.4: The original feature value, target feature value calculated by
Mimicus, and actual output feature value of a PDF file

29

about the training file set and the classifier and training algorithm. We will

use our feature engineering method on FC and FTC scenarios to see how it

can handle the attacks.

Figure 4.5 shows the procedure of using raw features for classification. The

blue arrows show the typical classification without attack, and the red arrows

show the procedure under a mimicry attack. Theoretically the recall of ma-

licious examples will drop drastically under attack, compared to unchanged

malicious examples. Figure 4.6 shows how our feature engineering method

could be used in classification. We will apply our feature engineering method

on training, testing, and attacked testing examples, producing a new set of

features on the examples, and then send them to the training or testing step.

Note that the three feature engineering steps in the figure use the same set

of RIPPER rules and the same Fourier ranking method generated from the

training data set; therefore, the training and testing sets share the same set

of features. This is an important point to make sure the classifier works

correctly.

From Figure 4.6 and our feature engineering method in chapter 3, we can

see that the feature set has completely changed. In this way, the F in scenario

FC and FTC is nearly invalidated. Therefore, the effect of the mimicry attack

should have been reduced. We will see the detailed results in experiments.

However, it is hard to say if such scenarios can still be called “FC” and

“FTC”. If F is removed and only C and TC are left, then it might not be

fair to compare the results with the baseline, which uses raw features for all

the training and testing. If we consider the feature engineering method as

a part of the classifier model, or consider the dashed line in Figure 4.6 as a

black box, then maybe it can still keep the F and make a fair comparison.

30

Figure 4.5: The procedure of using raw features for classification, with or
without mimicry attack. This is to validate how much a mimicry attack
would affect classification, and compare to feature engineering methods as a
baseline.

Figure 4.6: The procedure of using feature engineering method to deal with
mimicry attack

31

CHAPTER 5

DATA SETS

This chapter introduces the data sets we use for the experiments. We have

two data sets of enterprise log data for testing the performance of engineered

features when using 6 classifiers, and another PDF file data set specially for

adversarial learning.

5.1 Enterprise log data sets

We have 2 data sets of enterprise log data, containing information about

connections between local machines and external web domains. Everything

about connections is logged in the log file, including domain name, sent/received

bytes, URL, content file name, etc. The data is pre-processed by extract-

ing features for each external domain from all the connections. The raw

features are numerical or nominal features such as number of connections,

content type, domain age, sent/received bytes, etc. Figure 5.1 shows a small

part of the data set. The features shown here are number of hosts, num-

ber/average/max/min of connections, total received/sent bytes, and aver-

age/max of ratio of received bytes. There are many other features in the

set. Each feature value of a certain domain example is extracted from all

connection logs between local machines and this domain. For example, when

extracting Total sent bytes (total sent bytes from local machines to the do-

main), we look for logs of all connections from local machines to this specific

domain, and add up all sent bytes. Each example (domain) has a label of

malicious (has aggressive or dangerous behaviors and may attack local ma-

chines, steal data, etc), benign (does not behave dangerously), or unknown.

We label these data examples using 2 external data bases: Alexa ranking

and Virus Total score. Alexa gives ranking of domains in the descending

order of global traffic, and Virus Total records how many times a domain is

32

reported malicious. If a domain has a Virus Total score greater than or equal

to 3, then it will be labeled malicious. If a domain has a Virus Total score

less than 3, and its Alexa ranking is in the top 100k, then it will be labeled

benign. The rest of the domains are unlabeled. Though this is already a

good way to identify malicious domains, the actually labeled examples are

just a small part of the whole data set. In our data set 2, only around 17.6%

of the examples can be labeled, and only around 0.5% examples in the whole

data set can be labeled malicious. This is far from enough, so we want to

train a classifier to do more. We only use the labeled data examples to do

the experiments. The scales of two data sets are:

Data set 1 has totally 242,074 examples (thus, 242,074 domains). 45,928

examples are successfully labeled: 43,753 are benign (95.26%) and 2,175

are malicious (4.74%). Each example has 63 features.

Data set 2 has totally 1,116,516 examples. 196,522 examples are success-

fully labeled: 191,355 are benign (97.37%) and 5,167 are malicious

(2.63%). Each example has 91 features.

The original target is to use classification algorithms to learn a model with

these examples, so that we can identify benign or malicious domains in the fu-

ture, and stop local machines from connecting malicious domains in advance.

In our experiments, malicious domains are labeled positive, and benign ones

are labeled negative.

The numbers of raw features of the two data sets are 63 and 91, not too

many, but there are still many redundant features. We used our method

on the two data sets to produce top-ranked Boolean features, and compared

the classification and clustering results between raw features and our new

features.

For adversarial learning, we use another data set in Contagio. It con-

tains 9,000 benign PDF files and 10,980 malicious PDF files. After feature

extraction, each PDF file will become an example with 135 features such

as author (author len, author num, etc), count of some objects (count eof,

count image large, count javascript, etc), create date, size, etc. We will split

the data into training and testing sets, then use Mimicus to attack the ma-

licious files in the testing set. We will first use raw features for classification

as a baseline, then use engineered features for classification and compare

33

Figure 5.1: A small part of the data set, including a few examples and a
few raw features.

the overall accuracy and recall (malicious) to see if our method gives better

results.

5.2 Applying feature engineering to data sets

After Boolean conversion via RIPPER, we got 77 Boolean features for data

set 1 (such as (MaxConnection ≥ 9), (DomainAge ≤ 37), etc), and 98

Boolean features for Data set 2.

We use algorithm 1 for parity features. The number of parity features

depends on k. When k = 1, we only look at individual original Boolean

features. When k = 4, we look at subsets of any 1, 2, 3, or 4 features. We

have 98 Boolean features at the beginning for data set 2, then setting k = 1

gives us totally 98 features, k = 2 gives 4,851, k = 4 gives 3,769,277, k = 6

gives 1,124,298,483. k = 6 is nearly 300 times k = 4, which takes much more

time and memory, but when looking at the coefficients in our observation, the

largest coefficients almost appear at subsets of 2, 3 or 4 features. Therefore,

we use k = 2 ∼ 4 in our experiments. When using k = 4 we need to start from

k = 1 and add features one by one, and keep only subsets with |aS| ≥ 0.7 at

each step, in order to prevent getting out of memory. Here are some examples

of the parity subsets: {(Num ASNs ≤ 0), (UA Popularity ≥ 0.013514)}
with coefficient of −0.7650, {(Reg Age ≤ 135), (ASN = UnknownIP),

(Levels ≤ 2), (Reg V alidity ≤ 1826)} with coefficient of −0.8634, etc. Note

that since we do not have the complete training set, Parseval’s identity (3.4)

is not satisfied here.

We use algorithm 2 to get propositional features. We can get 14,707 propo-

sitional features for data set 1, and 24,108 propositional features for data set

2. Here are some examples of the propositional features: ((Sub domains ≤ 3)

34

AND (Update Age ≥ 193)) with coefficient of −0.9158, ((Update V alidity ≤
1126) OR (Length ≥ 24)) with coefficient of 0.5954, etc.

Since the data sets are imbalanced, accuracy mainly reflects the prediction

result of benign domains. For example, if we classify all examples as benign in

data set 2, we can still get accuracy as high as 97.37%, but this is meaningless

for malicious domains. In our task, malicious examples are more important

than benign ones, since a false positive classification of a malicious domain

only causes delay in access, but a false negative classification of a malicious

domain would cause damage to the enterprise. We can tolerate false positives

more than false negatives in this application.

Due to the importance of malicious domains, we use two metrics to evaluate

the result: the overall accuracy TP+TN
All

, and recall of positive (malicious)
TP

TP+FN
. Recall of positive is more important than overall accuracy,

but it is no more than 70% in our data set when using raw features

for classification, sometimes as low as 28%, although accuracy can

easily reach 98%. We can therefore tolerate a decrease in accuracy if it

comes with an increase in recall.

5.3 Contagio PDF file data set

For adversarial learning, we use another data set called Contagio. This is

a publicly accessible file set for signature testing and research. It contains

16,800 clean (benign) files and 11,960 malicious files of different formats.

We will use the PDF files in this data set for our experiments. The PDF

files we use are 10,980 malicious files and 9,000 benign files. We use 2/3

of the files (7,320 malicious + 6,000 benign) for training classifier models

with raw features and engineered features, then use the remaining 1/3 files

(3,660 malicious + 3,000 benign) for testing. The 3,660 malicious files in the

test set will be tested before and after mimicry attack. That is to say, our

experiment process will be:

1. Raw features as baseline

Training set: 7,320 malicious + 6,000 benign examples with 135 raw

features

35

Testing set: (a) 3,660 malicious + 3,000 benign examples with 135

raw features without mimicry attack

(b) 3,660 malicious examples with 135 raw features with FC mimicry

attack

(c) 3,660 malicious examples with 135 raw features with FTC

mimicry attack

2. Boolean features right after Boolean conversion

Training set: 7,320 malicious + 6,000 benign examples with Boolean

features

Testing set: (a) 3,660 malicious + 3,000 benign examples with Boolean

features without mimicry attack

(b) 3,660 malicious examples with Boolean features with FC mimicry

attack

(c) 3,660 malicious examples with Boolean features with FTC

mimicry attack

3. Parity features after Fourier method with k = 4

Training set: 7,320 malicious + 6,000 benign examples with parity

features

Testing set: (a) 3,660 malicious + 3,000 benign examples with parity

features without mimicry attack

(b) 3,660 malicious examples with parity features with FC mimicry

attack

(c) 3,660 malicious examples with parity features with FTC mimicry

attack

Since benign files will not be attacked, we only need to test them once in

each experiment with different features. We focus on the recall of malicious

examples in testing, but we also test benign files in each experiment to make

sure the precision and recall of benign examples do not drop too much. The

only classifier we use here is random forest since it is what Mimicus attacks

for the F scenario, and we need to match the classifier with Mimicus.

36

CHAPTER 6

EXPERIMENTS

This chapter summarizes the experimental procedures and results. The re-

sults of the enterprise log data set include accuracy and recall (malicious)

using propositional Boolean features, parity features, and propositional fea-

tures, when using 6 classifiers. Also included are the timing and efficiency

analysis, classification results discussion, comparison with other Boolean con-

version methods, comparison with other feature selection methods, and clus-

tering results. For adversarial learning, we present results and discussion of

the recall on both benign and malicious examples.

6.1 Experimental setup

For classification, we use 6 algorithms (SVM, AdaBoost, RIPPER, decision

tree (DT), random forest (RF), and PEBL) to build models, and evaluate

using 3-fold cross validation. The classifiers are:

SVM: Support Vector Machine, a classification algorithm that finds a sep-

arator which has the largest margin for either of the two classes (or to

any of the classes for multi-class SVM). The separator can be linear or

non-linear according to its kernel function.

AdaBoost: A classification algorithm. It consists of a number of very simple

classifiers, and learns weights of such classifiers. The final classification

hypothesis is the weighted sum of simple classifiers.

RIPPER: Repeated Incremental Pruning to Produce Error Reduction, a

rule-based classifier. The output classification model is a DNF.

Decision Trees: a tree-structured classification algorithm. Each non-leaf

node considers a feature and has several branches for different cases of

37

the value of this feature. Leaves are classes. An example can follow

the nodes and branches to a leaf.

Random Forests: a tree-structured classification algorithm that consists of

a number of decision trees. Each decision tree uses a random sample of

features to build the classifier, and the forest uses the most frequently

appearing class among the trees as final classification result.

PEBL: Positive Example Based Learning [50], an SVM-based classification

algorithm. It deals with the case when the training data only has a

few positive examples and a large number of negative or unlabeled

examples. It finds a tight boundary containing almost all the positive

examples.

These algorithms are some widely used classifiers with different core ideas

and measurements. We use them to test if our new features can be used for

different types of classifiers. We compare the accuracy and recall (malicious)

with raw features using the same classifier to get the improvement. For SVM,

AdaBoost, RIPPER, DT, and RF, we use the default parameters of Weka

3.7.12 [51] to build the classifiers. For PEBL, we implement it according to

[50]. For clustering, we use EM and k-means algorithm.

PEBL needs to be initialized with “strong negative” examples. We use the

top-ranked features to select these examples. For example, when using top 5

features for classification, we look at the top 5 features. If the coefficient of

feature 1 (F1) is positive, then it is more likely that χF1(xi) and label yi are

both positive or both negative. On the other hand, if the coefficient of F1 is

negative, then it is more likely that one of χF1(xi) and label yi is positive and

the other is negative. For strong negative examples, we pick those for which

all 5 features are more likely to make the label negative, i.e., χFj
= −1 if

aFj
> 0 or χFj

= 1 if aFj
< 0. For example, if the coefficient of top 5

features are 0.6,−0.5,−0.4, 0.4, 0.2, then an example will be marked as strong

negative if and only if χF1 = −1, χF2 = 1, χF3 = 1, χF4 = −1, χF5 = −1, or

equivalently, F1 = TRUE,F2 = FALSE, F3 = FALSE, F4 = TRUE,F5 =

TRUE. As for raw features, this method does not work because it needs to

use the Fourier coefficients to identify strong negatives but we do not have

coefficients for raw features. In this case, the only way we can find strong

negatives is to calculate the distance between each positive example and each

38

(a) Overall accuracy (b) Recall of malicious domains

Figure 6.1: The accuracy and recall (malicious) of the 3 classifiers using the
top 1-20 features, compared with raw features, on data set 2. PEBL gets up
to 96.96% recall with 88.15% accuracy, while others get 97.9%-98.6%
accuracy and up to 78.61% recall.

negative example, and then some negative examples will be labeled strong

if they are far away from all positive examples. However, this is too time-

consuming and we cannot afford doing this. Therefore, we do not have PEBL

classification results when using raw features.

6.2 Performance of propositional (Boolean) features

In this experiment, we only looked at the individual Boolean features (equiv-

alent to k = 1). Although these are a part of propositional features, we

analyze them as a separate class of features. The top 1-20 features were

selected for classification.

Figure 6.1a and 6.1b show the accuracy and recall (malicious) of the 3

classifiers using top 1-20 features, compared with raw features, on data set

2. Note that the last point of each line is the result of using raw features

on the classifiers. AdaBoost, RIPPER, and RF are not shown here. They

have very similar accuracy as DT. SVM has similar recall (malicious) as DT

for engineered data, but 40% lower for raw features. RIPPER and RF have

similar recall (malicious) as DT.

As shown in the result, regardless of the number of features we used, SVM,

RIPPER, DT, and RF have similar accuracy compared with raw features

respectively. When using 6-7 features, SVM, RIPPER, DT, and RF get a bit

higher recall than the raw features. PEBL is an outlier that gets much higher

recall and much lower accuracy compared to other 5 classifiers. This shows

39

(a) Overall accuracy (b) Recall of malicious domains

Figure 6.2: The accuracy and recall (malicious) of the 3 classifiers using the
top 5-30 parity features on data set 1. PEBL gets up to 88.97% recall with
92.95% accuracy, while others get 98.5%-98.7% accuracy and 76.3%-78.5%
recall and are all higher than raw.

that we can usually get higher recall and nearly same accuracy when we use

much fewer engineered features than raw features. PEBL is an algorithm that

focuses on positive examples much more than negative ones, so it trades off

accuracy for recall of malicious domains. It discovers nearly all the positive

examples, but also leads to false positives.

In conclusion, the engineered propositional (Boolean) features get higher

recall of malicious domains, and a bit higher or lower accuracy depending on

the classifier, on data set 2.

As we can see, the accuracy of PEBL drops very fast and can easily go

below the accuracy of random guess, while the accuracies and recalls of the

other 5 classifiers nearly reach convergence at 20 features. Since the number

of raw features is not so large (63-91), it is not meaningful to use too many

engineered features for classification. Therefore, we decide that the max

number of engineered features used in our experiments should be 20-30.

6.3 Performance of parity features

In this experiment we consider the parity features. For data set 1 we set

k = 2 and for data set 2 we set k = 4. The top 5-30 features were used for

classification.

Figure 6.2a and 6.2b show the accuracy and recall (malicious) of the 3

classifiers using top 5-30 parity features on data set 1. AdaBoost, RIPPER,

and RF are very close in accuracy to DT for engineered features, and their

40

(a) Overall accuracy (b) Recall of malicious domains

Figure 6.3: The accuracy and recall (malicious) of the 3 classifiers using the
top 5-30 parity features on data set 2. PEBL gets up to 87.25% recall with
95.87% accuracy, while others get 98.0% accuracy (lower than raw) and
60.8%-78.6% recall (higher than raw).

accuracy for raw features ranges from 96.65% to 98.56%. Recall (malicious)

of RIPPER and RF are nearly the same as DT for engineered features, and

39.2% and 59.5% for raw features. Recall (malicious) of AdaBoost is 2%

lower than DT, and 69.70% for raw features. Figure 6.3a and 6.3b show

the same result on data set 2. AdaBoost, RIPPER, and RF have accuracy

and recall very close to DT, but they have lower accuracy and higher recall

(malicious) than raw features, which have 97.95% to 98.82% accuracy and

59.6% to 70.5% recall of malicious domains.

For data set 1, the engineered parity features seem to be very good, as we

can always get both higher accuracy and higher recall for all 5-30 features

compared to raw features. For data set 2, we can only get higher recall with

lower accuracy, but the improvement in recall is much higher than drop of

accuracy, which is acceptable for our application. PEBL trades off too much

accuracy for recall but fortunately we can control the number of features to

decide how far it goes in this trade-off.

In conclusion, the engineered parity features get both higher accuracy

and higher recall of malicious domains on data set 1, higher recall of malicious

domains on data set 2, and a bit higher or lower accuracy depending on the

classifier on data set 2.

41

(a) Overall accuracy (b) Recall of malicious domains

Figure 6.4: The accuracy and recall (malicious) of the 3 classifiers using the
top 5-30 propositional features on data set 1. PEBL gets up to 77.01%
recall with 98.04% accuracy, while others get 98.56%-98.62% accuracy and
75.1%-76.3% recall and are all higher than raw.

6.4 Performance of propositional features

In this experiment we considered only the top 5-30 propositional features.

Figure 6.4a and 6.4b show the accuracy and recall (malicious) of the 3 clas-

sifiers using the top 5-30 propositional features on data set 1. AdaBoost,

RIPPER, and RF have similar accuracy and recall (malicious) to DT for en-

gineered features, and 96.65% to 98.56% accuracy and 39.2% to 69.7% recall

(malicious) on raw features.

In conclusion, the engineered propositional features get both higher ac-

curacy and higher recall of malicious domains on data set 1.

6.5 Timing comparison between raw and engineered

features

Table 6.1 shows timing of 5 classifiers using raw features and 5 or 30 en-

gineered features on data set 2. PEBL is not included here because it is

hard for raw features. For raw features, the timing is just the time of clas-

sification. For engineered features, the timing includes Boolean conversion,

Fourier ranking, and classification. Typically, Boolean conversion takes the

same time for all tests on the same data set, but Fourier ranking takes much

more time for k = 4 than k = 1, and classification takes more time for 30

features than 5 features.

Table 6.1 shows the exact amount of time. Here we found that for SVM,

42

Table 6.1: Timing comparison between raw and engineered features
(seconds)

Classifier
Engineered k=1 Engineered k=4

Raw
5 features 30 features 5 features 30 features

SVM 1109.91 1405.29 4843.54 5138.92 134801.2
AdaBoost 667.14 675.87 4400.77 4409.5 224.13
RIPPER 673.26 993.63 4406.89 4727.26 2618.4

DT 665.19 694.26 4398.82 4427.89 890.76
RF 708.24 990.69 4441.87 4724.32 833.97

all tests on engineered features take much less time than raw features; for

AdaBoost, all tests on engineered features take more time than raw features;

for RIPPER, decision trees, and random forests, tests on engineered features

of k = 1 take the same or less time than raw features, but tests of k = 4

take more time. From the previous section we know that even k = 1 can

get much improvement in recall over raw features, but k = 4 does not have

much improvement over k = 1, so we can say that k = 1 is more efficient.

Meanwhile, we found that our feature engineering method is good for SVM,

RIPPER, decision trees, and random forests, but not so good for AdaBoost.

In conclusion, propositional Boolean features (k = 1) is more efficient for

the whole process, but parity features may get higher recall and accuracy.

6.6 Analysis of feature engineering on classification

In data set 2, we observe a trade-off between accuracy and recall. However,

the engineered features achieve a significant improvement in recall while not

sacrificing too much accuracy. Figure 6.5 shows the extent of improvement in

recall, as well as the corresponding change in accuracy for the engineered fea-

tures. The engineered features work best with SVM. This might be because

SVM needs to consider kernel calculation, but raw features are in different

formats, and the value scale differs a lot between different features. Boolean

and parity features, however, are in the same format, making it a lot eas-

ier for SVM to separate examples between classes. Parity features of data

set 1 show the best results with improvement in both accuracy and recall

(malicious). In general, parity features give better results than propositional

features, and Boolean features give nearly the same results as parity features.

43

Figure 6.5: Change in accuracy (A) and recall of malicious domains (R(+))
compared with raw features, when getting highest recall with engineered
features. Change in accuracy is very little compared to recall and drop in
accuracy is acceptable.

The drop in accuracy is acceptable considering of the improvement in recall.

Table 6.2 shows our top-ranked features and a domain expert’s interpreta-

tion of how they are related with identifying malicious domains. Some fea-

tures may appear several times with different thresholds (such as Sub domains ≤
2, etc.). This means the feature engineering method has provided top-ranked

features with reasonable explanations that are meaningful to domain experts.

In comparison to feature transformation approaches, this is the advantage of

our approach.

Figure 6.6 shows the maximum improvement in recall of malicious domains

(averaged across 5 classifiers) and the corresponding average number of fea-

tures used to achieve this maximum improvement. The change in accuracy

is very small (shown in Figure 6.5) compared to recall, so we do not need

to consider it. For data set 1, 5 propositional features average around 26%

improvement in recall, while 10 parity features are required to reach around

28%. For data set 2, Boolean features used fewer features to get nearly the

same improvement as parity features (1-3 features for averagely 20% of im-

provement in recall), while propositional features used more features without

as much improvement in recall.

PEBL is an algorithm different from other ones that focuses on recall much

more than accuracy. Figure 6.7 shows the trade-off between accuracy and

recall (malicious) for Boolean and parity features, and Table 6.3 shows the

44

Table 6.2: Explainability of top-ranked features

Features Explanations
Sub domains ≤ 1 Most legitimate domains have many

sub-domains on second-level, but ma-
licious domains have few of them.

ASN = UnknownIP We were not able to resolve the IP ad-
dress of the domain, meaning that the
domain is no longer registered. This is
suspicious as most likely the domain
has been taken down.

Levels ≤ 2 Many malicious domains have 2 or 3
levels.

Reg Age ≤ 69 Malicious domains are in general more
recently registered than legitimate
ones.

Reg V alidity ≤ 365 Malicious domains are registered for
shorter periods of time to reduce at-
tacker cost.

Length ≥ 13 Long URLs are more suspicious since
they might be used for malware com-
munication to a command-and-control
center.

Avg ratio rbytes ≥ 103.634489 The ratio of bytes sent over bytes re-
ceived. For legitimate web sites, usu-
ally more content is received than sent
by end hosts.

Update V alidity ≤ 365 Number of days from update till expi-
ration. Malicious domains have lower
expiration dates than legitimate ones.

45

Figure 6.6: Maximum improvement in recall of malicious domains (line,
higher is better) and the corresponding number of features used to achieve
this maximum improvement (column bars, lower is better). Parity and
Boolean features are better than propositional features.

46

Table 6.3: Result for highest recall (malicious) and corresponding accuracy
by PEBL

Method Data set Accuracy Recall
Original Boolean 2 88.15% 96.96%
Parity k=2 1 88.97% 92.95%
Parity k=4 2 95.87% 87.25%
Propositional 1 98.04% 77.01%
Propositional 2 98.03% 78.61%

exact value of highest recall and the corresponding accuracy. Note that in

each experiment, the highest accuracy always corresponds to lowest recall,

and the highest recall always corresponds to lowest accuracy. It is possi-

ble to control this trade-off of PEBL by choosing the number of features.

When initializing the strong negative examples, the more features we use,

the stricter the standard we use to identify strong negatives (see section 6.1).

The fewer strong negatives we use initially, the more false positives and fewer

false negatives we will get.

6.7 Comparison with other Boolean conversion

methods

Since there are many Boolean conversion methods to convert raw features

into Boolean features, RIPPER is a more effective way in this application

compared to others. Actually, other rule-based classifiers can also do this,

such as decision trees, but in decision trees every node is developed on the

basis of its parent and parents’ parent etc., so the stand-alone propositions

may not be very effective without its parent. RIPPER is better here because

every rule in a DNF stands alone, and every proposition is only restricted by

other propositions before it in the same rule. This is different from decision

trees, where all other propositions are restricted by the root. As for other

Boolean conversion methods without using a classifier, we ran an experiment

to compare RIPPER to one such method in Weka, namely supervised dis-

cretization, which uses mutual information to perform Boolean conversion.

We use RIPPER and Weka’s discretization on data set 2 raw features

to generate two sets of Boolean features, and use both of them for Fourier

47

Figure 6.7: The trade-off between accuracy and recall (malicious) for
Boolean and parity features using PEBL. The arrows show the position
when using 5 or 20 features.

48

(a) Overall accuracy (b) Recall of malicious domains

Figure 6.8: The accuracy and recall (malicious) of PEBL and SVM using
top 5-20 Boolean features generated by two Boolean conversion methods on
data set 2. Although Weka’s discretization gets higher accuracy with
PEBL, its recall is as low as <10% and therefore useless.

method with k = 1 (single feature ranking). Figure 6.8a and 6.8b show the re-

sult. We can see that Weka’s discretization gets higher accuracy with PEBL,

but the recall of Weka’s converted features is too low to reach even 10%,

which means these features are useless when we need to focus on malicious

examples.

In conclusion, RIPPER is much better than this mutual information

based Boolean conversion.

6.8 Comparison with other feature selection methods

In this experiment, we use lasso and random forest in three positions to

take the place of Fourier method, and see the performance. They will be

used for: raw features, Boolean features after Boolean conversion, and parity

features. For raw features, we give all raw features to lasso and RFI and

let them rank the features. Since Fourier method is the whole procedure,

it cannot be compared using raw features. For Boolean features, we give

all Boolean features generated by RIPPER propositions to lasso, RFI, and

Fourier method, and let them rank the features. For parity features, we

wanted to generate all parity features for k = 4 and then give them to

feature selection methods, but as there are nearly 4 million parity features

that will cost too much space and time, our actual procedure is to first select

the top 1000 parity features according to Fourier coefficients, and then give

them to lasso and RFI to rank. The top 30 features with highest Fourier

coefficients will also be used in comparison. We use our data set 2 with

49

Table 6.4: Top-ranked Boolean features selected by lasso, RFI, and Fourier
method

Feature rank Lasso RFI Fourier
1 Sub domains ≤ 1 Num hosts ≤ 1 Sub domains ≤ 1
2 Reg Age ≥ 10 Num ref doms ≤ 1 ASN = UnknownIP
3 Num ASNs ≤ 0 Num ASNs ≤ 0 Num ASNs ≤ 0
4 Reg Age ≤ 69 Avg depth ≥ 1.93 Levels ≤ 2
5 Reg Validity ≤ 365 Max depth ≤ 3 Sub domains ≤ 2

SVM, decision trees, and AdaBoost for evaluation. The results show that the

accuracy values are very close to each other among all experiments (maximum

difference less than 1%), but recall values are not, so we only need to look at

the recall of malicious examples.

The results are shown in Figure 6.9a, 6.9b, and 6.9c, for top raw features,

top Boolean features after Boolean conversion, and top parity features for

k = 4. In Figure 6.9b, we can see that RFI performs the worst, Fourier

method performs better for SVM and decision tree especially when using top

5 features, but it is beaten by lasso in AdaBoost. However, in Figure 6.9c,

Fourier method wins every one of the experiments regardless of classifiers

or number of features. By comparing Figure 6.9a and 6.9c, we can also see

that Fourier method ranked parity features beat lasso and RFI ranked raw

features in nearly every experiment. If we compare the performance of lasso

and RFI across 3 figures, we can see that raw features sometimes get even

better recall than Boolean and parity features, and parity features are not

always better than Boolean features. This might mean that our Boolean

conversion method and parity features do not suit lasso and RFI so well as

Fourier method. Besides, we can see that the recall difference between the

top 5 and 30 features is very large in some cases of lasso and RFI, sometimes

reaching 58%. The reason might be that lasso and RFI do not get consistent

feature importance. In this way, top features may not be truly important for

classification, but a lower-ranked feature may drastically improve the recall.

Since Fourier method focuses only on Boolean features and parity features

are designed for Fourier methods, such result is not surprising.

The top 5 Boolean features in data set 2 selected by each method are shown

in Table 6.4. As we can see, the 3rd feature is the only one in common for

all 3 methods, and the 1st feature is the same for lasso and Fourier method,

50

(a) Comparison of recall (malicious) using 3 classifiers with top 5 and 30 raw
features ranked by lasso and random forest importance.

(b) Comparison of recall (malicious) using 3 classifiers with top 5 and 30 Boolean
features (after Boolean conversion) ranked by lasso, random forest importance,
and Fourier coefficients. RFI works the worst, Fourier method is the best in SVM
and decision tree especially when using 5 features, lasso is the best in AdaBoost.

(c) Comparison of recall (malicious) using 3 classifiers with top 5 and 30 parity
features (k = 4) ranked by lasso, random forest importance, and Fourier
coefficients. Fourier method wins in every experiment, and is better than raw
features ranked by lasso or RFI in 6.9a.

Figure 6.9: Comparison of recall using 3 classifiers with 3 types of features
and 3 types of feature ranking methods

51

but all the rest are different. This shows that the different methods use very

different principles and get very different ranking output. From Figure 6.9

we can see that the Fourier features work the best among 3 methods, at least

for this data set.

In conclusion, the Fourier method is better than lasso or RFI in gener-

ating and selecting features, especially with larger k values.

6.9 Clustering with engineered features

We compare the clusters obtained from raw features and engineered features.

The evaluation method is to look at the fraction of positive (malicious) ex-

amples in each cluster according to the labels. If the majority of a cluster

is positive, then we can say this cluster is a “pure” positive cluster, and its

characteristic (cluster centroid) is a representative of positive examples. In

the same way, if the majority of a cluster is negative, then it is a “pure”

negative cluster, and its characteristic (cluster centroid) is a representative

of negative examples.

We first used EM algorithm to roughly find the proper number of clusters,

then used k-means algorithm with manually decided number of features. Fig-

ure 6.10a shows the fraction of positive examples in each cluster when using

63 raw features in data set 1. There are many “pure” negative clusters, but

no positive clusters. Meanwhile, each cluster contains from 1.26% to 10.11%

of all examples. This is a poor result, since the examples are distributed into

18 clusters that are not “pure” enough to distinguish them as malicious or

benign.

Figure 6.10b shows the fraction of positive examples in each cluster when

using the top 10 parity features (limited k = 2) of data set 1. Now, there are

6 “pure” positive clusters: cluster #1, #7, #9, #11, #13, #15. The biggest

cluster #0 contains 89.99% of the examples, and is a “pure” negative cluster.

Figure 6.11a and 6.11b show the result of a similar experiment on data

set 2: 91 raw features compared to top 20 parity features (limited k = 4).

Our method has a similar effect with data set 1: number of “pure” positive

clusters increased from 0 to 1 (cluster #9), and found a big “pure” negative

cluster #0 that contains 95.07% of all examples, while the fractions of positive

examples are 2.99% to 19.17% in clusters with raw features. Figure 6.11c is

52

(a) Raw features (b) Engineered features

Figure 6.10: Comparison of fraction of malicious domains in each cluster
between raw features and engineered features on data set 1. “Pure”
positive clusters are shown by dotted circles.

(a) Raw features (b) Engineered features (c) RFI selected features

Figure 6.11: Comparison of fraction of malicious domains in each cluster
between raw features, engineered features, and random forest importance
selected features, on data set 2. “Pure” positive clusters are shown by
dotted circles.

the clustering result using the top 20 features selected by the random forest

importance method. This result is worse than raw data, since no cluster has

more than 10% malicious examples.

In conclusion, the engineered features help in getting “pure” clusters and

summarizing properties of such clusters.

6.10 Results of adversarial learning

In this experiment we use 7,320 malicious + 6,000 benign PDF files in Conta-

gio data set for all the training work, including generating RIPPER rules and

propositions for Boolean conversion and building classifier models. Then we

use the rest 3,660 malicious + 3,000 benign files for testing. The 3,660 ma-

53

licious files will be tested 3 times, in status of unattacked, after FC mimicry

attack, and after FTC mimicry attack. Since benign files are not attacked,

we look at them separately with malicious files.

We have originally 135 raw features. After Boolean conversion, we got 18

Boolean features, and used all 18 features for classification. After Fourier

method, we select top 30 parity features (k = 4) for classification. Since this

mimicry attack focuses on random forest, we only use random forest as the

classifier. The result is shown in Table 6.5. We can see that the mimicry

attack is effective for raw features, making the recall of malicious files dropped

down to 3.4%. However, the Boolean features can already handle mimicry

attack to some extent, and parity features can further reduce the influence of

mimicry attack, boosting the recall back to above 96%, although the recall of

unattacked files dropped a little bit. The last row shows the recall of benign

files to show if the identification of benign files changes when using different

features. The output shows that Boolean features can get a bit higher recall

on benign files but parity features get a bit lower than raw. Considering the

drastic improvement of recall of malicious files, we think this little drop is

acceptable.

The improvement of robustness mainly comes from Boolean conversion.

After conversion, only 18 Boolean features are generated. As there are 135

raw features, most of the raw features are meaningless for classification and

are discarded. Moreover, there is a threshold in each of the propositions

used to generate Boolean features, such as the number “10” in proposition

“count eof<10”. As long as the modified (attacked by mimicry) feature value

does not go to the other side of the threshold, the Boolean feature value

remains unchanged. Since only half of the 135 features can be changed

and not freely, the Boolean conversion could improve much of robustness.

Furthermore, Fourier method and parity features discover the correlation

between features and thus get more useful information for classification.

In conclusion, the engineered features invalidate the F scenario in mimicry

attack and maintain a very high level of recall in detecting malicious exam-

ples, while not losing too much recall on benign examples.

54

Table 6.5: Recall of unattacked malicious files, attacked malicious files, and
benign files, when using raw features, Boolean features, and parity features

Recall Raw features Boolean features Parity features
Unattacked 99.9% 99.9% 99.5%
FC mimicry 36.0% 89.0% 96.7%
FTC mimicry 3.4% 88.1% 98.4%
Benign files 97.9% 98.2% 96.1%

55

CHAPTER 7

CONCLUSION

In conclusion, we have shown that the feature engineering approach bene-

fits classification and clustering algorithms. It produces higher performance

with respect to raw data and feature selection approaches, while reducing

the dimensionality of the problem significantly. Even very few of the engi-

neered features are able to produce a high recall of malicious domains in the

enterprise log data, while retaining interpretability by a human. Meanwhile,

features generated by our method are much more robust to mimicry attack.

In general, the parity features outperform the propositional features, arguing

for the more formal, harmonic analysis method of feature engineering.

56

REFERENCES

[1] J. Zorabedian, “Anatomy of a ransomware attack: CryptoLocker, Cryp-
toWall, and how to stay safe,” Available from blogs.sophos.com, March
03, 2015.

[2] Mandiant, “Apt1: Exposing one of China’s cyber espionage units,” Re-
port available from www.mandiant.com, February 18, 2013.

[3] “Verizon 2015 data breach investigations report,” http://www.
verizonenterprise.com/DBIR/2015/, April 13, 2015.

[4] J. Steinberg, “Massive security breach at Sony – here’s what you need
to know,” Available from www.forbes.com, December 11, 2014.

[5] J. Steinberg, “Massive breach at health care company Anthem Inc,”
Available from www.usatoday.com, February 05, 2015.

[6] R. O’Donnell, J. Wright, and Y. Zhou, “The Fourier entropy–influence
conjecture for certain classes of boolean functions,” in Automata, Lan-
guages and Programming. Springer, 2011, pp. 330–341.

[7] P. Laskov et al., “Practical evasion of a learning-based classifier: A case
study,” in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014,
pp. 197–211.

[8] C. Smutz and A. Stavrou, “Malicious PDF detection using metadata
and structural features,” in Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, 2012, pp. 239–248.

[9] S. Yang, L. Yuan, Y.-C. Lai, X. Shen, P. Wonka, and J. Ye, “Feature
grouping and selection over an undirected graph,” in Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2012, pp. 922–930.

[10] X. Cai, F. Nie, and H. Huang, “Exact top-k feature selection via l 2,
0-norm constraint,” in Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence. AAAI Press, 2013, pp.
1240–1246.

57

[11] Q. Gu, Z. Li, and J. Han, “Joint feature selection and subspace learn-
ing,” in IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, vol. 22, no. 1. Citeseer, 2011, p. 1294.

[12] J. Wang and J. Ye, “Multi-layer feature reduction for tree structured
group lasso via hierarchical projection,” in Advances in Neural Infor-
mation Processing Systems, 2015, pp. 1279–1287.

[13] B. Jiang, C. Ding, and B. Luo, “Covariate-correlated lasso for feature
selection,” in Machine Learning and Knowledge Discovery in Databases.
Springer, 2014, pp. 595–606.

[14] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society. Series B (Methodological), pp. 267–
288, 1996.

[15] K. Yu, X. Wu, W. Ding, and J. Pei, “Towards scalable and accurate
online feature selection for big data,” in Data Mining (ICDM), 2014
IEEE International Conference on. IEEE, 2014, pp. 660–669.

[16] J. Wang, P. Zhao, S. C. Hoi, and R. Jin, “Online feature selection and
its applications,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 26, no. 3, pp. 698–710, 2014.

[17] X. Wu, K. Yu, H. Wang, and W. Ding, “Online streaming feature selec-
tion,” in Proceedings of the 27th International Conference on Machine
Learning (ICML-10), 2010, pp. 1159–1166.

[18] K. Yu, W. Ding, D. A. Simovici, and X. Wu, “Mining emerging pat-
terns by streaming feature selection,” in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2012, pp. 60–68.

[19] Z. Xu, G. Huang, K. Q. Weinberger, and A. X. Zheng, “Gradient boosted
feature selection,” in Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2014, pp. 522–531.

[20] S. Xiang, T. Yang, and J. Ye, “Simultaneous feature and feature group
selection through hard thresholding,” in Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2014, pp. 532–541.

[21] A. Woznica, P. Nguyen, and A. Kalousis, “Model mining for robust fea-
ture selection,” in Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2012,
pp. 913–921.

58

[22] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-
cluster data,” in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2010,
pp. 333–342.

[23] L. Xu, Q. Zhou, A. Huang, W. Ouyang, and E. Chen, “Feature selec-
tion with integrated relevance and redundancy optimization,” in Data
Mining (ICDM), 2015 IEEE International Conference on. IEEE, 2015,
pp. 1063–1068.

[24] B. Cao, L. He, X. Kong, P. S. Yu, Z. Hao, and A. B. Ragin, “Tensor-
based multi-view feature selection with applications to brain diseases,”
in Data Mining (ICDM), 2014 IEEE International Conference on.
IEEE, 2014, pp. 40–49.

[25] H. Barkia, H. Elghazel, and A. Aussem, “Semi-supervised feature im-
portance evaluation with ensemble learning,” in Data Mining (ICDM),
2011 IEEE 11th International Conference on. IEEE, 2011, pp. 31–40.

[26] A. K. Farahat, A. Ghodsi, and M. S. Kamel, “An efficient greedy method
for unsupervised feature selection,” in Data Mining (ICDM), 2011 IEEE
11th International Conference on. IEEE, 2011, pp. 161–170.

[27] Q. V. Le, “Building high-level features using large scale unsupervised
learning,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 8595–8598.

[28] Y. Zhai, M. Tan, I. Tsang, and Y. S. Ong, “Discovering support
and affiliated features from very high dimensions,” arXiv preprint
arXiv:1206.6477, 2012.

[29] Y. Jiang and J. Ren, “Eigenvalue sensitive feature selection,” in Proceed-
ings of the 28th International Conference on Machine Learning (ICML-
11), 2011, pp. 89–96.

[30] M. Masaeli, J. G. Dy, and G. M. Fung, “From transformation-based
dimensionality reduction to feature selection,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10), 2010, pp.
751–758.

[31] S. Paul and P. Drineas, “Deterministic feature selection for regularized
least squares classification,” in Machine Learning and Knowledge Dis-
covery in Databases. Springer, 2014, pp. 533–548.

[32] S. Paul, M. Magdon-Ismail, and P. Drineas, “Feature selection for linear
svm with provable guarantees,” arXiv preprint arXiv:1406.0167, 2014.

59

[33] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson,
A. Juels, and E. Kirda, “Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks,” in Proceedings of the 29th
Annual Computer Security Applications Conference. ACM, 2013, pp.
199–208.

[34] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in 2013
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing. IEEE, 2013, pp. 3422–3426.

[35] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2015, pp. 1916–1920.

[36] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining meth-
ods for detection of new malicious executables,” in Security and Privacy,
2001. S&P 2001. Proceedings. 2001 IEEE Symposium on. IEEE, 2001,
pp. 38–49.

[37] I. Santos, C. Laorden, and P. G. Bringas, “Collective classification
for unknown malware detection,” in Security and Cryptography (SE-
CRYPT), 2011 Proceedings of the International Conference on. IEEE,
2011, pp. 251–256.

[38] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games for
adversarial learning problems,” Journal of Machine Learning Research,
vol. 13, no. Sep, pp. 2617–2654, 2012.

[39] M. Brückner and T. Scheffer, “Nash equilibria of static prediction
games,” in Advances in Neural Information Processing Systems, 2009,
pp. 171–179.

[40] M. Brückner and T. Scheffer, “Stackelberg games for adversarial predic-
tion problems,” in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2011,
pp. 547–555.

[41] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bag-
ging classifiers for fighting poisoning attacks in adversarial classifica-
tion tasks,” in International Workshop on Multiple Classifier Systems.
Springer, 2011, pp. 350–359.

60

[42] B. Biggio, G. Fumera, and F. Roli, “Adversarial pattern classification us-
ing multiple classifiers and randomisation,” in Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR). Springer, 2008,
pp. 500–509.

[43] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for robust
classifier design in adversarial environments,” International Journal of
Machine Learning and Cybernetics, vol. 1, no. 1-4, pp. 27–41, 2010.

[44] A. Barth, B. I. Rubinstein, M. Sundararajan, J. C. Mitchell, D. Song,
and P. L. Bartlett, “A learning-based approach to reactive security,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2010, pp. 192–206.

[45] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the
Twelfth International Conference on Machine Learning, 1995, pp. 115–
123.

[46] Y. Mansour, “Learning boolean functions via the fourier transform,” in
Theoretical Advances in Neural Computation and Learning. Springer,
1994, pp. 391–424.

[47] R. L. Rivest, “Learning decision lists,” Machine Learning, vol. 2, no. 3,
pp. 229–246, 1987.

[48] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[49] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of the
eleventh ACM SIGKDD International Conference on Knowledge Dis-
covery in Data Mining. ACM, 2005, pp. 641–647.

[50] H. Yu, J. Han, and K. C.-C. Chang, “PEBL: positive example based
learning for web page classification using svm,” in Proceedings of the
eighth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. ACM, 2002, pp. 239–248.

[51] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The Weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

61

