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Abstract

Continuum robots have been gaining popularity in recent years for their umpteen advan-

tages. Soft robots are a class of continuum robots which are made of squishy materials

which have the added benefit of being innocuous to humans. Soft robotic grippers are one

of the major application of soft robots as they have the ability to conform and adapt their

structure to the object to be grasped.

This work presents a bio-inspired technique to increase contact area while grasping and

handling long slender objects by helically twisting around them. An embodiment of such

a spiral gripper utilizes unique configurations of pneumatically actuated Fiber Reinforced

Elastomeric Enclosures which has a range of motions like extension, rotation, contraction.

This work presents a detailed analysis technique using Cosserat beam theory to estimate

the normal contact force exerted by the spiral gripper on cylindrical objects.
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1 INTRODUCTION

Unlike rigid robots, continuum flexible robots are increasingly becoming popular for their

advantage of operation in unstructured terrains [5] [6]. Recently, there has been a rise in

use of these continuum robots for various medical applications [7] and military applica-

tions [8]. Soft continuuum flexible robots are a class of these continuum robots which are

composed of soft actuators. This ‘soft’ nature has gained them immense interest in recent

years, as they can interact safely with humans and environment [9] [10]

These soft robots have been successfully demonstrated to perform various locomotion

[11] [12] and manipulation tasks, which largely includes gripping and grasping [13] [14].

As the name suggests soft robots inherently don’t possess the large stiffness needed to

hold heavy objects, unless they are stiffened by granular materials [15] [16].

Soft grippers generally adapt and conform to the shape of the objects that they ma-

nipulate, thus creating a stable grasp. Larger the contact surface, larger is the stability of

grasp. In conventional rigid-link robotics, researchers have used the concept of whole arm

grasping to good effect [17]. Here, the entire body of the robot is involved in grasping.

In nature, octopuses, grape-wine tendrils and squids spirally twist their tentacles around

their long and slender prey to maximize gripping force [18] [2]. Recently, there have

been a number of soft robots shown in Fig. 1.1 that claim whole arm grasping of long

and slender objects [4] [3] [1] [19]. In these works the focus has been on design of a spi-

ral soft robot to accomplish different tasks. In this work we present the design, analysis

and testing of a soft spiral gripper that twists around long and slender objects to maxi-
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mize the grip. The gripper is pneumatically actuated and is made up of Fiber Reinforced

Elastomeric Enclosures (FREEs) [20]. FREEs are hollow elastomeric tubes whose spa-

tial motion pattern is a function of the fluid pressure and the reinforced fiber orientations.

Earlier versions of spiral helical actuators were presented in [19] with simplistic analyti-

cal equations to explain its behavior without the inclusion of realistic conditions such as

contact forces, gravity and material properties. In this work, we present a geometrically

exact method [21] to analyze spiral FREE-based actuators, and use this to estimate the

gripping force on a cylinder surface. This analysis framework is deemed to be useful in

exploring the design space of spiral actuators, and specifically to synthesize a gripper for

maximum gripping force, stability and adaptability. There has also been work on proba-

bilistic force sensing on continuum robots by Rucker et al. [22] in which only tip force is

estimated.

1.1 Scope

The main objective of this work is to extend the Cosserat rod framework to FREE based

spiral actuator and to estimate the force exerted by the spiral actuator on the cylindrical

object. The design is limited to use of FREE as the basis actuator but the analysis pre-

sented in this work can be used to any spiral soft actuator which uses its entire or portion

of length for grasping objects. The main contributions of this work can be summarized

as:

• A new soft spiral actuator based on FREEs which can be used for grasping long

and cylindrical objects.

• Use of geometric exact model framework for FREE based spiral actuator.
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Figure 1.1: (a) Whole arm grasping used in various soft actuators (a) Octarm [1] (b)
Octopus [2] (c) 3D robotic tentacle [3] (d) Boa-type gripper [4] and (e) FREE based
spiral actuator (this work)

• Method to estimate the forces exerted by the spiral actuator on the cylindrical ob-

ject.

1.2 Outline

This thesis is organized as follows.

In Chapter 2, first a brief review of FREEs which are the building blocks for soft

robots is presented. Then using the design space of FREEs design of a spiral actuator is

detailed and finally a brief procedure of the fabrication used in this work is presented.

In Chapter 3, the modeling of FREE based spiral actuator is presented. The kinematic

equations and mechanics which facilitate the functionality of this actuator is explained

along with the numerical methods used to obtain a solution .

In Chapter 4, an algorithm for predicting the normal forces exerted on the spiral ac-
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tuator by a cylindrical object is presented. The different cases possible are presented and

modification in algorithm to comply with these cases is also detailed

In Chapter 5 the conclusions, future work along with an application is presented .
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2 FREE BASED SPIRAL ACTUATOR
DESIGN

In this chapter, firstly a novel pneumatic soft actuator termed as Fiber Reinforced Elas-

tomeric Enclosures(FREEs) is presented and then details about the design of spiral soft

actuator and its fabrication are discussed.

2.1 FREEs: Building blocks for soft robots

Fiber Reinforced Elastomeric Enclosures (FREEs) are quintessential building blocks for

soft robotics, as they encapsulate fundamental constituents of recurrent designs in litera-

ture and nature [20,23]. These designs include stretchable skin enclosures reinforced with

inextensible fibers that contain pressurized fluids. The interaction of these constituents

lead to complex deformed shapes that can be leveraged to perform mechanical tasks in

soft robots.

Figure 2.1: Structure of a regular FREE

The most simplified representation of a FREE is a hollow cylinder made of stretchable

elastomer material and reinforced with two families of fibers denoted by angles α and
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β respectively as shown in Fig. 2.1. These are inspired in construction and operating

principle by well-known pneumatic artificial muscles or McKibben actuators [24, 25].

While McKibben actuators either contract or extend upon pressurization, FREEs can also

undergo axial rotation as shown in Fig.2.3(b). It is the repository of these deformation

modes that can be leveraged to design novel soft robots.

Figure 2.2: Fiber Reinforced Elastomeric Enclosures (FREEs) Design space spanned by
the two fiber angles

Simple reduced order models show that two families of helically wound fibers yield a

kinematically well-constrained system (Fig.2.1) [20,23]. Due to this kinematic constraint

of the system, the actuator’s performance is less influenced by material imperfections.

These two families of fibers span a design space denoted by angles α and β respectively

as shown in Fig.2.2. It must be recognized that the popular configuration of contracting

McKibben actuators [24, 25] spans just a line (α = - β line shown in green in Fig.2.2. as

Antisymmetric fibers AF).

Governing Equations: The governing equations for FREEs are greatly simplified by as-
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Figure 2.3: (a)FREE undergoing extension, (b) Rotation and (c) Contraction with fiber
angles in inset

suming cylindrical geometry for both the deformed and undeformed configurations. The

deformation parameters are represented as stretch ratios λ1 and λ2 (see Fig. 2.1), which

are ratios of the deformed to undeformed length and diameters respectively. Furthermore,

it is assumed that the fibers are inextensible and this leads to two equations as shown in

Eq 2.1 that maintains this constraint in any configuration. In this equation, α and β are

the fiber angles and δ is the axial rotation of the FREE. θ and φ are the number of turns

due to each family of fiber (see [20] for more detail) . Furthermore, the volume change

in the FREE (∆V ) can be determined based on Eq. 2.2 where V is the initial volume.

Solving these three equations produces a map between the volume of fluid enclosed and
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the FREE deformation.

λ
2
1 cos2

α +λ
2
2 sin2

α(
(θ +δ )2

θ 2 ) = 1

λ
2
1 cos2

β +λ
2
2 sin2

β (
(φ +δ )2

φ 2 ) = 1 (2.1)

∆V
V

= λ
2
2 λ1−1 (2.2)

Instantaneous Kinematics: FREEs deform upon actuation from pressurized fluids ac-

cording to the governing equations in Eq. 2.1-2.2. Based on solving these equations for

an infinitesimal volume change from the initial configuration, instantaneous deformation

behavior can be mapped to the design space. Previous work [20] has shown motion pat-

terns such as pure extension (along the upper AF line in Fig. 2.2) and contraction (lower

AF line), axial rotation (along VF line) and more generally a screw motion or simultane-

ous translation and rotation. Furthermore, a unique one-dimensional manifold (known as

the locked manifold LF in Fig. 2.2) which permits no increase in cylinder volume, and

this resulting in no deformation is identified.

Configuration Memory Effect: Upon actuation by air (or liquid) pressure, the volume

of the cylinder increases causing changes in its dimensions. This in turn changes fiber an-

gles α and β . However, it was shown [20,23] that the cylinder dimensions do not change

once the deformed fiber orientations reached the locked manifold. Thus an initial config-

uration R of Fig. 2.2 terminates in a final locked configuration on locked manifold (LM).

This effect, where every FREE with any initial fiber orientation always approaches a final

orientation that belongs to the locked manifold is termed as “Configuration Memory Ef-

fect”. Similarly Fig.2.2 also shows how upon increasing volume deforms FREEs, which

start with fiber angles corresponding to Extension (E) and extension-rotation (S) approach

their locked configuration. It is to be noted that FREE starting from S location extends

and rotates till it reaches negative β fiber angle. From this point it contracts and rotates

in opposite direction before it reaches its locked configuration. The FREE deformation
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parameters can be estimated for a given pressure provided the material parameters are

known beforehand. The next section details the design and construction of a soft helical

manipulator with FREE as building block.

2.2 Design of spiral actuator

A detailed possibilities of adding single third fiber to the FREE structure has been ex-

plored in [19], where the helical actuators are obtained by selection of a base FREE from

the workspace shown in Fig. 2.2 and adding a third fiber at an angle γ . Addition of third

fiber adds an extra constraint due to which spatial motion is achieved. That is when a

straight fiber is added, the extension is converted to bending due to this single fiber con-

straint. In this work we consider only third fiber with γ = 0 in order to ease the evaluation

of curvature and torsion which will be used for the analysis proposed in Chapter 3. As

the fiber selection is farther away from the β = 0 axis, the extension is more compared

to the ones closer to the axis. This can be used to select the fiber angles based on size of

cylinder to grasp. The larger the diameter of the grasping object, the β fiber should be

larger to have a possibility of accomplishing the grasp.

Figure 2.4: (a) Design selection from the FREE workspace, (b) Semi automated fabrica-
tion and (c) Testing

9



2.3 Fabrication

The construction of the FREE pneumatic actuators start with a base layer of natural rub-

ber latex tubing with an inner diameter of 3/8 inch and 1/32 inch wall thickness(Kent

Elastomer). Fibers are then wound in a semi automated fashion with the desired angle

and orientation. Several adhesive agents are applied to cement the fibers on the latex.

Finally, this matrix is coated with a layer of liquid elastomer and cured to obtain a com-

posite structure as shown in Fig. 2.4 Finally a straight fiber is glued on this actuator in

order to convert extension to bending and is tested for any failures.

10



3 GEOMETRIC EXACT MODELING

In this section, we present the framework for the analysis of the soft actuator, where

we predict its final shape. Input pressure to the FREE actuators causes a change in its

volume. This change in volume leads to changes in FREE length, diameter and leads

to axial rotation and extension(the actuator can undergo contraction based on selection

of the fiber angle) as detailed in Section.2.1. Based on the design of the manipulator

elaborated in Section.2.2, any extension leads to bending or curvature in the actuator,

while any axial rotation leads to torsion. Their combination leads to spatial deformation

of the actuator, which will be evaluated using geometrically exact beam kinematics. The

external forces including the self weight of the manipulator are also considered and the

Cosserat beam mechanics [21] is solved to determine the exact deformed configuration.

Cosserat beam theory has been to used to get the exact shape of other continuum actuators

like OctArm [26], concentric tube manipulator [27] and other continuum robots [28] with

accuracy less than 5% error which strengthens the use of Cosserat beam theory to get the

exact shape of FREE based soft actuators.

3.1 Pressure to extension(λ1) and rotation(δ )

parameters

In Section ??sec2:FREE we have detailed the relation between volume fraction change

and the λ1 and δ parameters. In this work we envision a pneumatic actuation to circum-

vent the change in the actuators weight with input volume change( we assume zero mass

11



to the input air). For simplicity, in this work the map between pressure and λ1 and δ is

experimentally obtained. A small length of the actuator is used to get its extension and

rotation at different pressures as shown in Fig. 3.1 (a) and (b) in square dots and the

experimental data is interpolated to get the parameters in the entire range.

Figure 3.1: (a) Variation of λ1 and (b) δ with pressure for FREE with α = 60 degrees and
β = 88 degrees.

3.2 λ1,δ to curvature and torsion

As explained in Section2.2, the constraint posed by the straight fiber leads to constant

curvature bending when the FREE extends. The curvature κ of the bend can be evaluated

as in Fig . 3.2

κ = (λ1−1)/2r (3.1)

τ = δ/l (3.2)

where r and l are the radius and length of the actuator.
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Figure 3.2: Estimation of curvature and torsion from λ1 and δ

3.3 Spatial beam kinematics

In an ideal case i.e when there is no gravity, the torsion and curvature are constant through-

out the length of the manipulator, leading to spatial helical motion. The manipulator shape

can be characterized by its unstretched central axis curve as shown in Fig. 3.3.

The position of any point s ∈ [0,L] on the curve is represented by r(s) ∈R3, a local frame

(body frame) is defined which is at location s of the actuator. R(s) ∈ SO(3) is the rota-

tion matrix which converts any vector in the local frame (body frame) to global frame .

Suppose a vector pl be position in local frame, a vector in local frame is denoted by a

superscript l. The position (p) in global frame is given by:

p = Rpl (3.3)

The variables vl(s) = [vl
1 vl

2 vl
3]

T and ul(s) = [ul
1 ul

2 ul
3]

T denote the linear and angular rates

of change of r(s) and R(s) in the local frame, where vl
1,v

l
2 indicates the shear along local

x and local y axes and vl
3 indicates the elongation or compression along the local z axis.

Similarly ul
1,u

l
2 indicates the bending(curvature) about local x and y axes, ul

3 indicates the

torsion about the local z axis. The following equations can be used to determine the final
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shape of the actuator when there is no gravity:

ṙ(s) = R(s)vl(s)

Ṙ(s) = R(s)ûl(s) (3.4)

where ûl indicates skew symmetric matrix of vector ul [29].

ûl =




0 −u3 u2

u3 0 −u1

−u2 u1 0




(3.5)

Figure 3.3: A section of the manipulator considered as a rod with the distributed forces,
forces and moments

3.4 Cosserat rod mechanics

The previous section deals when there is no gravity and no other external forces acting

on the actuator. But in reality there is gravity which activates the selfweight and also the

end effector weight which needs to be considered in order to evaluate the exact shape of
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the actuator. It has been reported that without the exact model of these soft actuators the

model has close to 50% error in predicting the end position [26]. In order to estimate

the forces by the actuator on the grasping object a more exact shape is needed which is

our main objective in this work, thus necessitates the exact model in predicting the shape.

The force and moment equilibrium for a section of the rod is given by:

n(s)−n(a)+
∫ s

a
f(ε)dε = 0 (3.6)

m(s)−m(a)+ r(s)×n(s)− r(a)×n(a)+
∫ s

a
(r(ε)× f(ε)+ l(ε)dε) = 0 (3.7)

where n is the internal shear and axial forces (or stresses) m is the internal bending mo-

ment, f is the distributed self-weight per unit length. l is the body moment of the actuator.

(Refer [27], [28] for details) It is to be noted that these equations are in global frame.On

taking derivative of the equilibrium equations with respect to s we obtain:

ṅ(s)+ fb(s)+ fd(s) = 0

ṁ(s)+ ṙ(s)×n(s)+ l(s) = 0 (3.8)

where f is composed of fb and fd which are the global distributed force due to body weight

and other distributed forces acting on the section.

Linear constitutive equations are used to map the kinematic variables to the internal forces

and moments [26].

n(s) = RD(vl(s)−v0)

m(s) = RC(ul(s)−u0) (3.9)
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where C and D are defined as:

C =




EI1 0 0

0 EI2 0

0 0 GJ




(3.10)

D =




GA 0 0

0 GA 0

0 0 EA




(3.11)

E,G are Youngs and Shear modulus, I,J and A are the second moment of inertia, polar

moment of inertia and cross sectional area respectively.

Assuming zero body moments in our application, using Eq(3.4), (3.8),(3.9) we can arrive

at the following system of equations:

ṙ(s) = R(s)vl(s)

Ṙ(s) = R(s)ûl(s)

v̇l(s) =−D−1(RT fb + ûlD(vl−v0)+RT fd)

u̇l(s) = C−1(−ûC(ul−u0)− v̂lD(vl−v0)) (3.12)

where u0 and v0 are the pre-curvatures and shears along the local axis. The body force

fb = ρAgeg , where ρA is mass per unit length, g is acceleration due to gravity , eg is

direction of gravity.
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3.5 Boundary conditions

From the force balance equation for the entire length of the manipulator we have:

n(L)−n(0)+
∫ L

0
(fb(ε)+ fs(ε)dε) = 0 (3.13)

the force at s = L is the end cap weight which is ECf and body force fb integrated over the

entire length is the weight of the actuator (which is ρAgL ∗ eg). Plugging in this known

parameters into the Eq.3.13 we obtain the boundary condition for vl(s = 0):

vl(s = 0) = D−1(ECf +ρAgegL+
∫ L

0
(fd(ε)dε)) (3.14)

The boundary condition for ul(s = L) should be the pre-curvatures (u0) , r(s = 0) =

[0 0 0]T and R(s = 0) is identity matrix.

With these boundary conditions and the system of equations Eq.3.12, the positions,

Rotation, curvatures and shears can be obtained for the entire length of the actuator. Mat-

lab bvp4c command is used to obtain the solution in this work. For getting the exact

shape of the spiral actuator when actuated to a certain pressure, in the initial conditions

for vl(s= 0), fd is set to zero as there is no external distributed force acting on the actuator

other than the body force.
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4 FORCE ESTIMATION OF SPIRAL
ACTUATOR

Upon actuation to a given pressure, the spiral actuator deforms to its exact shape which

can be predicted by the Cosserat model presented in the previous chapter. In order to

further deform its current deformed shape obtained by actuation, there needs to be either

an external force or moment to be acted on the deformed spiral actuator. For the task of

grasping a cylindrical object as shown in Fig.4.1, the cylindrical object acts as a constrain

for the spiral actuator to get to its exact shape. In this particular case there are forces( fdi

) acting on the actuator due to its contact with cylinder which deforms spiral actuator’s

shape.

Figure 4.1: The object acts as a constrain for the actuator to go to its exact shape, thus a
normal force is exerted by the cylinder on the spiral actuator. fdi is the distributed force
acting on the actuator by the cylinder

In this chapter an algorithm is presented in order to get an estimate of the normal

force exerted on the spiral actuator due to its contact with the cylindrical object. Figure

4.2 shows the overall process involved starting from estimating curvature, torsion and

getting the exact shape of the spiral actuator which have been thoroughly presented in

the previous chapter. In order to estimate the forces, information about the location of

cylinder is desired and then the forces are estimated based on the contact between the
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cylindrical object and the spiral actuator.

Figure 4.2: The steps needed to estimate the distributed forces

4.1 Cylinder center calculation

Let the cylinder center be given by Cc = [xc,yc] where xc,yc are x and y coordinates of the

center. It is assumed that the radius of the cylinder Rc is known beforehand. For a given

pressure (i.e curvature and torsion) the exact shape of the spiral actuator r0(s) ∈ R3,s =

[0 : L/nt : L] is known where nt is the number of points the entire length is discretized into.

The initial point (or section) of the spiral(r0(s = 0)) should lie on the circumference of

cylinder and having the actuator in the center of the cylinder is preferred in order to have

a uniform force distribution. The above criterion can be satisfied by solving the below

optimization routine

minimize
xc,yc

w1.P+w2.Q

where P is the planar distance between the initial point (or section) and the cylinders

circumference and Q is the distance between the cylinder center and actuators exact center

which is average of the x and y coordinates of the actuator shape. w1 and w2 are the

weights in order to make both the criterion of the same order.

4.2 Distributed forces estimation

Once the information of the cylinder center and the exact shape of the spiral are known,

distributed forces acting ( fd) are to be estimated. In order to make the algorithm efficient
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the overall nonlinear problem is solved as a quasilinear problem. The following algorithm

shown in Fig.4.3 is proposed which will be explained in this section:

4.2.1 Inputs and initialization

The force estimation starts off with prior information of the following parameters:

r0 : [x,y,z] at nt points

Cc : Center of cylinder [xc,yc,0]

Rc : Radius of cylinder

np f : No. of points force is applied

nb : No of points expected to be in contact with cylinder circumference

nt : Total no of points the length is discretized into
and we initialize step = 1 and iter = 1.

4.2.2 Sensitivity matrix calculation

Next the sensitivity is calculated, that is to calculate the displacements of nt points of the

actuator when a unit force ( f0) is applied first in global x direction at np f points and then

in global y direction at np f points.

∆rstep
i = r0i− r0 (4.1)

where r0i is the new position of the actuator with force f0 applied in global x direction

∀i = [1, . . . ,np f ] and in global y direction ∀i = [np f , . . . ,2np f ]. It is to be noted that np f

are the positions corresponding to the length divided into np f points.

This is solved by solving Eq.3.12 obtained in previous chapter 2np f times.
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Inputs
r0, Rc, Cc, npf , nb, nt

Initialize
step = 1

iter = 1

fd = .01N

Sensitivity matrix
f0 = step.fd

∆rstepi = roi − r0
∀i ∈ [1, 2, 3, ..., 2npf ]

Optimization
minimize

αi

max(dist(r1, Ccir))

s.t r1 = r0 +

2npf∑

i=1

αi∆r
step
i , i = 1, . . . , 2npf

Get optimal forces
if iter = 1

df iterxi = f0.αi,
df iteryi = f0.αnpf+i; i = 1, . . . , npf

else
df iterxi = f0.αi + df iter−1

xi ,
df iteryi = f0.αnpf+i + df iter−1

yi ; i = 1, . . . , npf

Exact shape
with estimated forces

r1 : new shape with dfx, dfy
r0 = r1

Stopping
criterion

iter = iter + 1

Sensitivity
criterion

step = step + 1

Output
Case 1
Case 2
Case 3

Yes

No

Yes

No

Figure 4.3: Flowchart to estimate the distributed forces acting on the spiral actuator

21



4.2.3 Optimization for force variables

Next the force variables(α ′i s) are solved using optimization. Here the force variables are

calculated in order to minimize the maximum distance of new deformed shape (r1) and

the cylinder’s circumference (Ccir). The distance between any discretized point on the

actuator r1 and the cylinder circumference is evaluated in the direction of vector pointing

from cylinder center to the particular point on r1 as shown in Fig.4.4. The optimization is

done for the specified nb discrete points.

minimize
αi

max(dist(r1,Ccir)) (4.2)

s.t r1 = r0 +
2np f

∑
i=1

αi∆rstep
i , i = 1, . . . ,2np f

Figure 4.4: Distance between discretized points (in black squares) and cylinder circum-
ference is measured in the direction of vector from center to the discretized point (i) on
the section of the actuator

4.2.4 Optimal forces and updated exact shape

Once the force variables are evaluated, the forces needed to conform to cylinder are solved

for. The distributed forces are product of the obtained force variables and the epsilon

force applied f0 for the first iteration. For the next iterations it would be the sum of forces

obtained in previous and the current iteration because this iteration force is applied on the

deformed shape obtained in the previous iteration. The distributed force update is given
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as:

for i = 1,2, . . . ,np f (4.3)

d f iter
xi = f0.αi d f iter

yi = f0.αnp f+i if iter = 1

d f iter
xi = f0.αi +d f iter−1

xi d f iter
yi = f0.αnp f+i +d f iter−1

yi if iter > 1

It is to be noted that the current r1 is not the final exact shape obtained with these forces

as this is obtained by considering it as a linear system. In order to get the exact shape(

r1) the set of equations Eq.3.12 are solved with the obtained distributed forces. The r0 is

updated to r1 for the next iteration.

4.2.5 Stopping criterion

When the final shape r1 conforms to cylinder circumference the objective is reached. In

order to check this occurrence a stopping criterion is framed which calculates the aver-

age XY planar distance between cylinder center Cc and the final shape r1 for nb points

(meandist). The criteria is set to the absolute difference between the meandist calculated

and radius of cylindrical object Rc.

criteriaiter = |meandist−Rc|

The iterations are stopped if the following stopping criterion is met:

criteriaiter < ε1 for iter = [1,2,3] (4.4)

|criteria(iter−3)− criteraiiter|< ε2 for iter > 3 (4.5)

ε1 and ε2 are chosen such that ε2 < ε1. If there is no substantial change in the criteria over

three iterations, the process is terminated. This condition takes care of cases when it is
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stuck at a particular shape before satisfying a strict bound ε1.

4.2.6 Sensitivity calculation criterion

In the case when stopping criterion is not satisfied, then there are two ways the algorithm

can proceed. The first way is to do optimization of forces on the new shape (r1) with

the previous calculated sensitivity matrix and other option is to recalculate the sensitivity

matrix. As the algorithm is solved with a linear assumption, there are bounds on α ′i s

which restricts the search space to this bounded region. So in order to reach its true

optimal solution with the current sensitivity matrix, it may have to do more iterations on

the updated shape (r1). In this case the former one is preferred. There is a possibility

that with the applied force the change is relatively less, in these cases the convergence

of the algorithm will improve if sensitivity is calculated for a higher force, under such

circumstances second option is preferred.

The following condition when satisfied proceeds with the calculation of new sensitivity

matrix:

|
criteria(iter−3)

criteriaiter
|< ε3 for iter > 3 (4.6)

ε3 is chosen which is sightly greater than 1.

4.2.7 Outputs

When the stopping criterion is satisfied. The outputs of the final shape r1 and the dis-

tributed forces d fx and d fy and the criteriaiter are obtained. From the distributed forces

the normal force which is the component of force radially pointing outwards is calculated

along the length of the curve. The overall normal force can be found by integrating the

distributed force about the length of the actuator.

Based on these outputs, there are three possible cases listed below:
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• Case 1: Criteria satisfied and positive normal force profile

When the criteria is less than the desired threshold and has a consistent positive

normal force profile throughout implies a perfect desired wrap. From the positive

normal force profile it can be concluded that the entire length of the actuator is used

in the wrap which is plausible.

• Case 2: Criteria satisfied and partial negative normal force profile

When the criteria is less than threshold but some regions of negative normal force

along the length are observed, it can be concluded that such a case is not possible

as there is no external force or contact which will apply force on the actuator in

direction pointing radially inwards.

• Case 3: Criteria not satisfied

In this case when the criteria is not satisfied implies that there is no possibility of

conforming to the given cylinder of radius Rc with the given initial shape r0 using

its entire length.

4.3 Classification of spiral actuator gripping

It is observed that there are three phases as a sweep of pressure is done on a given cylin-

drical object which are termed as:

• Overhang region :

This occurs at low pressures before it reaches a state where the entire actuator is in

contact with the circumference of the cylinder. So it turns out that there are only

distributed forces on the actuator only till the point of contact. It is to be noted

that the distributed forces due to the manipulator weight are always present, we are

focusing on the radial distributed forces which deform the true exact shape of the

spiral actuator at a given pressure.
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This can be related to Case 2 where there are negative forces in some regions of the

actuator.

• Perfect wrap region:

This is the region where the entire actuator is in contact with the the circumference

of the cylinder which in turn implies there are distributed forces acting throughout

the actuators length to constrain the position to the circumference of the cylinder.

This can be related to Case 1 where the entire length is used for wrap and has

positive normal force profile.

• End curl region:

If the actuation pressure is gradually increased from the perfect wrap region, it is

observed that at the end the spiral actuator unwraps itself from the cylinder in order

to get to its initial shape. In this case there are forces throughout because there are

still some points which are in contact with the cylinders circumference. But portion

of end section is not exactly conforming to the cylinders circumference.

This can be related to case 3 where there isn’t a chance for using the entire length

to wrap the given cylindrical object.

The overhang and end curl cases are shown in Fig.4.5.

Figure 4.5: (a) Over hang region when conforming to a cylinder (last section is not in
contact with the circumference) and (b) End curl region when the last section is starting
to unwrap.
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4.4 Modifications in algorithm

In this section an intuitive modification in the algorithm are presented to solve for the

Case 2 and Case 3. This changes assist in predicting the overall shape and normal forces

when these scenarios occur.

• Case 2 : When there is a negative normal force profile, it indicates that in real

scenario some end section of the spiral actuator is not in contact with the cylinder

circumference and is overhanging. This is taken care by forcing the force on end

sections of the actuators to zero. As shown in the Fig.4.6 there are np f −1 number

of sections when force is acting on np f points. In the Fig. 4.6 the entire length of

the actuator is discretized to nt points. So iteratively force in global x and y direc-

tion starting from np f are set to zero and the optimization routine tries to estimate

forces to conform the actuator only to the length on which there is force acting.

For example if np f is set to zero then nb(number of points which the optimization

routine tries to conform to the cylinder) is set to nt − ceil(nt/np f ). This continues

till there is no negative force profile.

Figure 4.6: Discretization and forces acting for sensitivity calculation

• Case 3: In this case the last section curls thus a section of length doesn’t conform

to cylinder but there is force acting on it to keep the last section outside cylinders

circumference. This is solved by the above algorithm by careful choice of the

portion of the actuator confirming to the cylinder (nb). Note that the forces are still

acting in all the np f −1 sections.

27



5 RESULTS

In this chapter the first section presents the experiments conducted to get the pressure

versus extension and pressure versus rotation mapping, followed by method to estimate

Youngs modulus and then using these experimental values modeling results are presented

in the second section. In this chapter the modeling is conducted on the data obtained from

a single prototype with the following parameters : α = 88 degrees, β = 60 degrees, L =

.57m and mass per unit length = .0441kg/m.

5.1 Pressure vs λ1, Pressure vs δ mapping

In order to obtain the exact shape and/or to obtain the distributed normal forces proposed

in Chapter 3 and Chapter 4, curvature and torsion at given pressure are to be known

beforehand. In Chapter 3 the method to obtain the curvature and torsion is presented pro-

vided that the extension(λ1) and rotation (δ ) parameters are known. Here experimental

method used to obtain λ1 and δ with varying pressure is detailed.

A specimen which is a section of the fabricated actuator of length 10 cm is used. This

Figure 5.1: Experimental setup to get Pressure vs Extension(λ1) and Pressure vs
Rotation(δ ) mapping
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section is snipped before winding the straight fiber to the fabricated actuator for use in this

experiment. The experimental setup is shown in Fig.5.1 where one end of the specimen is

fixed and other end of the specimen is allowed to extend and rotate without any constraint.

The linear encoder (US Digital EM1-0-250-N, US Digital LIN-250-6-N, 250 counts per

inch) and rotary encoder (US Digital H5-1250-NE-S, 1250 counts/revolution) are used

to measure the linear and rotational displacements for a given pressure. The entire map

is obtained by varying the input pressure to the specimen from 0 psi to 24 psi (in steps

of 2 psi) and by recording the corresponding extension and rotation from the encoders.

Fig.3.1 shows the map obtained from this experiment.

5.2 Youngs modulus estimation

Soft actuators are primarily composed of materials which have less Young’s modulus

which enhances their compliance under loading [30]. Pneumatic actuators like the FREE

considered in this work has variation in their Youngs modulus with varying pressure.

FREEs are composites of a base elastomer and fibers wound at chosen angles. This com-

position of fibers also contributes in variation of Youngs modulus. Hence an experimental

method is presented here in order to estimate the Youngs modulus of FREE with given

fiber angles α and β .

Figure.5.2 shows the experimental setup to record the deflection of the specimen at dif-

ferent pressures when gravity is acting downwards. The deflection occurs due to the self

weight of the specimen and the weight of end cap. With the knowledge of the length of

the specimen at different pressures, weight of the specimen and the end cap, at a given

pressure, the following optimization problem is solved to estimate the Youngs modulus .

minimize
Ea

((xe− xa)
2 +(ye− ya)

2)1/2
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where [xe,ye] are the x, y coordinates of the end point obtained from experiments and

[xa,ya] are the x, y coordinates of the end point from FEA at a given pressure and Ea is

the Youngs modulus variable in the Finite Element Analysis. For the given prototype the

variation of Youngs modulus is less than 7% therefore the average of the Youngs modulus

which is 7e5N/m2 is the value considered for the prototype in this modeling.

Figure 5.2: Experimental setup for estimation of Youngs modulus (E)

5.3 Modeling results

In this section with the information of experimental values of Youngs modulus(E) and the

mapping of P vs λ1 and δ , the results of modeling detailed in Chapter 3 for obtaining the

geometric exact shape and Chapter 4 for estimation of the normal forces are presented

respectively.

5.3.1 Exact shape of spiral actuator

Figure 5.3 shows the spiral actuator actuated from 12 psi to 20 psi in steps of 2 psi when

there is no gravity (that is no self weight and end effector weight). It can be observed

from the Figures that they have a constant curvature and torsion thus leading to a helix

at different actuation pressures. But as detailed in Chapter 3, soft actuators unlike rigid
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robots deform due to self weight and other forces acting on them due to their intrinsic

compliance. Figure 5.4 shows the shape obtained using the geometric exact model. Here

it can be observed that due to its self weight and end cap weight the actuator is closer

to the Z axis. The difference observed between the exact model and non exact model is

significant when long actuators are considered (as in this case).

In order to confirm that the exact shape is not a helix, Fig.5.5 is presented which is the

top view of the actuator when actuated to 20 psi. For a helix, the axial top view will be a

circle.

5.3.2 Distributed force estimation

The results obtained from Chapter 4 are presented here when a cylindrical object with

diameter Rc = 13.5mm is the object of interest for grasping.

(a) Pressure = 10 psi, nt = 101, npf = 20 and nb = 101

Figure.5.6 shows the top view (5.6(a)) and 3D view (5.6(b)) with azimuth = 35 degrees

and elevation = 80 degrees. A perfect wrap is obtained as the algorithm optimizes for

forces to wrap the entire length of the actuator (nb = nt). But it can be observed that there

is negative force profile from the normal force profile shown in Fig.5.6(c). The negative

force is after 50% of length of the actuator which implies the situation in Case 2, where a

radially inward force is applied to wrap the actuator to cylinder.

Considering that with np f = 20 and nb = 101 Case 2 scenario is obtained, simulations

are run with the modifications in algorithm when Case 2 is detected. For simulations with

the following parameters [np f ,nb] = [19,95] negative force profile in the later sections of

the actuator is detected.

(b) Pressure = 10 psi, nt = 101,npf = 17 and nb = 85

For these parameters at 10 psi a positive force profile across the entire length of the actua-

tor is detected as shown in Fig.5.7(c). The top view and 3D views are shown in Fig.5.7(a)

and Fig.5.7(b). The red arrow in the 3D view points to the hanging section. There is a
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Figure 5.3: Shape of the spiral actuator actuated from 12 psi to 20 psi in steps of 2 psi.
Gravity is not considered thus leading to a helical final shape.(All axes are in cm)
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Figure 5.4: Final exact shape of the spiral actuator actuated to 12 psi to 20 psi in steps of
2 psi. Due to gravity the shape is closer to Z axis.(All axes are in cm)

Figure 5.5: Top view of exact final shape of the spiral actuator actuated to 20 psi.(All axes
are in cm)
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Figure 5.6: (a)Top view with cylindrical object (in yellow) when actuated to 10 psi with
nb = 100 points (b) View with az = 35deg. and al = 80 deg. where a perfect wrap is
obtained (All axes are in cm) but (c) The normal force along the length of the actuator has
negative force after 5% of actuator’s length thus indicating Case 2.
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negative force in the initial 5% length of the actuator, this occurs due to the position error

of the cylinder center calculated by optimization. Due to this error the circumference of

the cylinder is not exactly tangential to the actuators deformed shape in the initial section

and hence a negative force obtained in this initial region.

Figure 5.7: (a)Top view with cylindrical object (in yellow) when actuated to 10 psi with
nb = 85 points (b) View with az = 35deg. and el = 80 deg. where the arrow points to
the hanging section (All axes are in cm) and (c) The normal force along the length of the
actuator, no negative force after 5% of actuator’s length.

(c) Pressure = 12 psi, nt = 101,npf = 18 and nb = 90

Next the modeling results obtained for 12 psi with np f = 18 and nb = 90 are shown in

Fig.5.8. Similar to the previous instance at 10 psi a negative force profile was obtained

with [np f ,nb] = [20,101] and [19,95] . Fig.5.8(b) shows the hanging section. A negative
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force profile is observed in the initial section (see5.8(c)) of the actuator even in this case

which is due to the starting section not been perfectly tangential to cylinders circumfer-

ence.

Figure 5.8: (a)Top view with cylindrical object (in yellow) when actuated to 12 psi with
nb = 90 points (b) View with az = 154 deg and el = 180 deg where a perfect wrap is
obtained (All axes are in cm) and (c) The normal force along the length of the actuator
has no negative force after 5% of actuator’s length

(d) Pressure = 16 psi, nt = 101,npf = 20 and nb = 101

For 14 psi, 16 psi and 18 psi the simulation results give a perfect wrap with positive force

profile, thus indicating Case 1 where the entire actuator is used for grasping. When the

model is run for curvature and torsion values at 16 psi, the following results shown in

Fig.5.9 are obtained. Fig. 5.9(a) and (b) shows the top and 3D view( with az = -90 and el

= 60 ), here it can be observed that there is no hanging section at the end of the actuator

and moreover in Fig.5.9(c) a positive force profile throughout confirms Case 1 scenario
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for this pressure

Variation of total force with varying pressure

When the spiral actuator is actuated from low pressures to higher pressures, the actuator

final shape gets closer to its central axis. In the scenario when the actuator is given a

cylindrical object to grasp, more distributed normal force is needed at higher pressures to

keep the actuator conformed to the cylinder. As at higher pressures the distance between

actuator and cylinder circumference increases thus more force is needed for deformation.

The following Fig.5.10 shows the variation in force with increasing pressure when pres-

sure is varied from 10 psi to 18 psi in grasping a cylindrical object with Rc = 13.5 mm.

The force increases with increase in pressure. It is to be noted that at 10 psi and 12 psi the

forces are when only 85% and 90% of the actuators length is used for grasping (Case 2).

Choice of np f

In the proposed algorithm there is an important parameter selection of the number of

points the force is applied for sensitivity calculation (np f ). This dictates the computa-

tional time, larger the choice (<= 100), the more time it takes as it needs to solve the

system of equations Eq 3.12 for (2*np f ) times. Twice because a delta force is applied in

X and Y direction at each point. More number of points assists in achieving more accu-

rate force estimation as it is close to ideal where no interpolation is used (if np f = 101).

Figure.5.11(a) and (b) shows the variation in the total normal force for increasing number

of np f . Fig.5.11 (a) is the total normal force obtained at 16 psi for a cylindrical object

with Rc = 13.5mm for increasing np f and Fig.5.11.(b) is the total normal force obtained

at 12 psi for cylindrical object with Rc = 21mm for increasing np f . In this work np f = 20

is selected whose total normal force is close to the mean of the normal forces obtained

at different np f . This selection also is twice as quick when compared to the selection of

np f = 40.
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Figure 5.9: (a)Top view with cylindrical object (in yellow) when actuated to 16 psi with
nb = 101 points (b) View with az = -90 deg and el = 60 deg. where a perfect wrap is
obtained (All axes are in cm) and (c) The normal force along the length of the actuator
has no negative force after throughout actuator’s length
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Figure 5.10: The normal force increases as the pressure is increased. The normal force
for 10 psi and 12 psi is during case 2 (exhibit overhanging section)

Figure 5.11: Variation of normal force with no of points force applied for sensitivity np f
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6 CONCLUSIONS AND FUTURE
WORK

6.1 Conclusion

Soft continuum manipulators are increasingly popular as they have potential to safely

interact with humans. This work takes initial steps towards application of FREE based

spiral actuators for grasping long and slender objects and predicting whether the spiral

actuator can grasp a given cylindrical object. This concept is deemed to be useful in han-

dling delicate objects in industrial automation, space, underwater exploration and disaster

management. The highlights of this work can be summarized below:

• Design of a FREE based spiral actuator with the available design space is presented.

This can be used to convert an extending and rotating actuator to a spatial helical

manipulator.

• Cosserat beam model is used on FREE to predict the final exact shape of the spiral

actuator.

• An algorithm to estimate the normal forces exerted by the spiral actuator on the

cylindrical object and different possible scenarios in execution of such a task are

identified.

A soft spiral actuator has the capacity to carry large weights compared to its weight as

it has the advantage of using its entire length for grasping, Fig.6.1(a),(b),(c) shows a

spiral actuator with α = 60 degrees and β = 88 degrees when actuated to 20 psi grasps a

cylinder upto weight of 0.738 N.
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Figure 6.1: (a)Actuator at 0 psi with the cylindrical object placed tangentially with the
help of a support (b) Actuator actuated to 20 psi leading to a stable grip, note the support
is removed and (c) A stable grip with addition of extra load
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6.2 Future work

The results presented in this work are preliminary investigations. Future work would be

to explore the FREE design space to propose a range of diameters the spiral actuator

can grasp based on the fiber angles. Second, to verify the proposed force estimation

model, experiments need to be conducted to compare the analytical normal forces with

the experimental results on different FREE compositions. Third, to add a friction model

which can be used to predict the maximum weight of the object the actuator can grasp

with the estimated normal force.

42



References

[1] S. Neppalli, B. Jones, W. McMahan, V. Chitrakaran, I. Walker, M. Pritts, M. Csenc-
sits, C. Rahn, and M. Grissom, “Octarm-a soft robotic manipulator,” in Intelli-
gent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, pp. 2569–2569, IEEE, 2007.

[2] B. Mazzolai, L. Margheri, M. Cianchetti, P. Dario, and C. Laschi, “Soft-robotic arm
inspired by the octopus: Ii. from artificial requirements to innovative technological
solutions,” Bioinspiration & biomimetics, vol. 7, no. 2, p. 025005, 2012.

[3] R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd, R. Nunes, Z. Suo,
and G. M. Whitesides, “Robotic tentacles with three-dimensional mobility based on
flexible elastomers,” Advanced Materials, vol. 25, no. 2, pp. 205–212, 2013.

[4] K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R. J.
Wood, and D. F. Gruber, “Soft robotic grippers for biological sampling on deep
reefs,” Soft Robotics, vol. 3, no. 1, pp. 23–33, 2016.

[5] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics: Biological
inspiration, state of the art, and future research,” Applied Bionics and Biomechanics,
vol. 5, no. 3, pp. 99–117, 2008.

[6] R. J. Webster and B. A. Jones, “Design and kinematic modeling of constant curva-
ture continuum robots: A review,” The International Journal of Robotics Research,
2010.

[7] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots for medical
applications: A survey,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1261–
1280, 2015.

[8] W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker, B. A. Jones,
M. Pritts, D. Dienno, M. Grissom, and C. D. Rahn, “Field trials and testing of the oc-
tarm continuum manipulator,” in Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006., pp. 2336–2341, IEEE, 2006.

[9] S. Sanan, M. H. Ornstein, and C. G. Atkeson, “Physical human interaction for an
inflatable manipulator,” in 2011 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, pp. 7401–7404, IEEE, 2011.

43



[10] S. Sanan, J. B. Moidel, and C. G. Atkeson, “Robots with inflatable links,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4331–
4336, IEEE, 2009.

[11] M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpel-
son, R. J. Wood, and G. M. Whitesides, “A resilient, untethered soft robot,” Soft
Robotics, vol. 1, no. 3, pp. 213–223, 2014.

[12] N. W. Bartlett, M. T. Tolley, J. T. Overvelde, J. C. Weaver, B. Mosadegh, K. Bertoldi,
G. M. Whitesides, and R. J. Wood, “A 3d-printed, functionally graded soft robot
powered by combustion,” Science, vol. 349, no. 6244, pp. 161–165, 2015.

[13] R. Deimel and O. Brock, “A novel type of compliant and underactuated robotic
hand for dexterous grasping,” The International Journal of Robotics Research,
p. 0278364915592961, 2015.

[14] K. Suzumori, S. Iikura, and H. Tanaka, “Development of flexible microactuator
and its applications to robotic mechanisms,” in Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, pp. 1622–1627, IEEE, 1991.

[15] J. R. Amend, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A positive
pressure universal gripper based on the jamming of granular material,” IEEE Trans-
actions on Robotics, vol. 28, no. 2, pp. 341–350, 2012.

[16] V. Wall, R. Deimel, and O. Brock, “Selective stiffening of soft actuators based on
jamming,” in 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 252–257, IEEE, 2015.

[17] J. K. Salisbury, “Whole arm manipulation,” Proc. of the 4th Int. Sympo. Robotics
Research, 1988, 1988.

[18] J. A. Mather, “How do octopuses use their arms?,” Journal of Comparative Psychol-
ogy, vol. 112, no. 3, p. 306, 1998.

[19] J. Bishop-Moser and S. Kota, “Towards snake-like soft robots: Design of fluidic
fiber-reinforced elastomeric helical manipulators,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 5021–5026, IEEE, 2013.

[20] G. Krishnan, J. Bishop-Moser, C. Kim, and S. Kota, “Kinematics of a generalized
class of pneumatic artificial muscles,” ASME Journal of Mechanisms and Robotics,
vol. 51, p. 61801, 2015.

[21] S. S. Antman, “Nonlinear problems of elasticity, 1995.”

[22] D. C. Rucker and R. J. Webster, “Deflection-based force sensing for continuum
robots: A probabilistic approach,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3764–3769, IEEE, 2011.

44



[23] G. Krishnan, “Kinematics of a new class of smart actuators for soft robots based on
generalized pneumatic artificial muscles,” in Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on, pp. 587–592, Sept 2014.

[24] C.-P. Chou and B. Hannaford, “Measurement and modeling of mckibben pneumatic
artificial muscles,” Robotics and Automation, IEEE Transactions on, vol. 12, no. 1,
pp. 90–102, 1996.

[25] C. S. Kothera, M. Jangid, J. Sirohi, and N. M. Wereley, “Experimental characteri-
zation and static modeling of mckibben actuators,” Journal of Mechanical Design,
vol. 131, p. 091010, 2009.

[26] D. Trivedi, A. Lotfi, and C. D. Rahn, “Geometrically exact models for soft robotic
manipulators,” Robotics, IEEE Transactions on, vol. 24, no. 4, pp. 773–780, 2008.

[27] D. C. Rucker, B. A. Jones, and R. J. Webster III, “A geometrically exact model
for externally loaded concentric-tube continuum robots,” IEEE Transactions on
Robotics, vol. 26, no. 5, pp. 769–780, 2010.

[28] B. A. Jones, R. L. Gray, and K. Turlapati, “Three dimensional statics for continuum
robotics,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-
tional Conference on, pp. 2659–2664, IEEE, 2009.

[29] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 1994.

[30] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature,
vol. 521, no. 7553, pp. 467–475, 2015.

45


	List of Figures
	INTRODUCTION
	Scope
	Outline

	FREE BASED SPIRAL ACTUATOR DESIGN
	FREEs: Building blocks for soft robots
	Design of spiral actuator
	Fabrication

	GEOMETRIC EXACT MODELING
	Pressure to extension(1) and rotation() parameters
	 1,  to curvature and torsion
	Spatial beam kinematics
	Cosserat rod mechanics
	Boundary conditions

	FORCE ESTIMATION OF SPIRAL ACTUATOR
	Cylinder center calculation
	Distributed forces estimation
	Inputs and initialization
	Sensitivity matrix calculation
	Optimization for force variables
	Optimal forces and updated exact shape
	Stopping criterion
	Sensitivity calculation criterion
	Outputs

	Classification of spiral actuator gripping
	Modifications in algorithm 

	RESULTS
	Pressure vs 1, Pressure vs  mapping
	Youngs modulus estimation
	Modeling results
	Exact shape of spiral actuator
	Distributed force estimation


	CONCLUSIONS AND FUTURE WORK
	Conclusion
	Future work

	References

