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ABSTRACT 
 

Our research focuses on searching relations between entities with context constraints. In 

particular, we are interested in efficiently searching for the relations among medical entities (e.g. 

diseases, chemicals, species, genes, or mutations) in a professional medical corpus. Existing 

relation extraction systems, like OpenIE, are able to extract some relations between entities. 

However, its results are inseparable in terms of extraction contexts, which prevents it from 

being able to search for the relations of given contexts.  

To address this issue, we propose to build an entity-relation search system with an 

awareness of extraction contexts. In order to achieve this goal, we propose to extract and index 

contexts for each extracted relation. We evaluate our search model over millions of professional 

medical abstracts and show that our context indexing is effective to support the task of 

searching relations into contexts. 

Note that this rich and novel system is the product of a collaborative team effort: 

Tianxiao Zhang, Jiarui Xu and Varun Berry, and supervised by Professor Kevin Chang. While 

we separately document our individual contributions, we intentionally share some parts of our 

thesis to improve the readability of our overall system design. This thesis mainly focuses on the 

design of our context extraction and indexing method. 
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CHAPTER 1 
INTRODUCTION 

 

1.1. Motivation and Challenges 

Relation extraction systems aim to help users find relations from a large text corpus. Relations 

outputted from such systems are a set of relation phrases extracted from a mixture of contexts, 

which are matched by a strict extraction pattern. For example, such extraction system may find 

the relation between “Bill Gates” and “Microsoft” to be “founded”. 

Also, here are some scenarios where users are looking for relations with constraints. For 

example, a medical researcher may look for the relation between a specific type of disease and a 

gene, but she is interested in this subject with the limitation that it only pertains to mice. Or, a 

doctor wants to know the relation between a disease and a chemical, but only as it relates to male 

adult patients. While such query needs are important and usual, it is not possibly resolved by 

existing relation extraction systems due to their inability to differentiate contexts from which 

relations were extracted. This limitation prevents such systems from being able to provide 

context-specific results, for contexts like “mice” or “male adult patients”.  Moreover, the usage 

of a single strict pattern causes such extraction systems to overlook many extractable relations. 

To resolve such queries, a system needs to preserve context information for extracted 

relations, and efficiently use them while resolving user queries. Conventional relation extraction 

systems extract relations from the corpus and discard its context information. Thus such systems 

are not able to recover context information when a user query is inputted. We identified two 

challenges for solving this problem: 1) how to extract context information for relations, and 2) 
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how to efficiently index context information to support online search. For theses two challenges, 

we will discuss our solutions in Section 3 and Section 5. 

 

1.2. Entity-Relation Search: Problem Definition  

One of the limitations of existing relation extraction systems is that when users query the 

relationship between a pair of entities, the query result is always a combination of relations from 

a confused mixture of contexts, regardless of the level of interest of each context that it includes. 

When users are interested in relations only from a limited set of contexts, it is very difficult for 

the system to detect what relations are within the search scope due to the infeasibility to recover 

relation contexts. This is because information regarding the contexts from which relations are 

extracted was lost during the process of extraction. In order to find context-specific relations, 

users will have to navigate through all of the snippets for a relation phrase to find whether any 

snippet contains the relation phrase in the preferred set of contexts. After seeing enough snippets, 

users still need to aggregate all of the information that they saw in order to form an overall 

impression of relatedness for the query entities in the limited set of interested contexts. 

We summarize our problem in Figure 1.1. First, for input, as queries, our relation search 

system let user search for relation phrases by specifying subject and object, both as entities, and a 

list of optional context constraints in the form of entities and keywords, which indicate user’s 

intention of where the relations should be found. By design, the relation search is essentially 

search relations by context over the document collection. Context constraints intend to shape the 

search space within which the desired relations occur. For example, users could query the 

relationship between “diabetes” and “insulin” and specify the context constraint to be “mice”, 

suggesting that only the relations with “mice” involved would be interesting. 
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Entity-Relation Search Query. 
 

• Given:  Entity collection ℰ = {𝐸%, … , 𝐸(} and Relation Phrase collection ℛ =
{𝑟𝑝%, … , 𝑟𝑝-}, over Document collection 𝒟 = {𝑑%, … , 𝑑0}. 

• Input:   Query 𝑞 < 𝐸%, 𝐸3 > = 𝐸%, 𝐸3, 𝐶𝐸%, … , 𝐶𝐸6, 𝑘%, … , 𝑘8, where entity 𝐸9 ∈ ℰ,  
context entity 𝐶𝐸; ∈ ℰ, and 𝑘 is keyword. 
Output:  Ranked list of 𝑡 =< 𝑟𝑝 >, where 𝑟𝑝 ∈ ℛ, sorted by 𝑆𝑐𝑜𝑟𝑒(𝑞 𝑡 ), the query score 
of 𝑡. 

Figure 1.1 The entity-relation search problem 

 
Second, for output, the result is a ranked list of human-readable relation phrases. A 

relation phrase will be ranked higher, if it matches the query better. We denote the measure of 

how well 𝑡  matches the query 𝑞  as 𝑆𝑐𝑜𝑟𝑒(𝑞 𝑡 ), which should capture how 𝑟𝑝 describes the 

relationship for the pair of query entities, in the specified search context. 

We emphasize that, since the scoring function determines the ranking of relation phrases, 

it is the central function of our relation search system. Thus, the objective of the relation search 

is to find from the space of ℛ, the matching relation phrases in ranked order by how well they 

match query 𝑞 (i.e., how well the relation phrase captures the relationship between the given pair 

of query entities under the preferred contexts). As the focus of this paper, we will discuss how 

we developed this scoring function in the Section 3.  

 

Relation Phrase Relation phrase is a verb phrase that denotes a binary relation in a 
sentence 

Context Vector A text window convers query entity pairs and relation phrase 
candidates; will be sentences in our case 

Context Entity Entities co-occur with query entity pairs working as the context 

Context Pattern 
A pattern captures all context information needed for ranking. Foe 
example, (E VP E) means there is an <Entity, Verb Phrase, Entity> 
subsequence in the sentence. 

Table 1.1: Related terminologies and definitions used in this thesis 
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1.3. System Overview  

Followed by our problem definition, we determine a relation phrase based web search system. In 

this system, we divide it into three main components: extraction model, indexing model and 

ranking model. In the extraction section, we state our POS-Tagging sequence based approach for 

verb phrase extraction, pattern extraction and build inverted indexes for all entities and keywords. 

An overview of our entire system’s architecture may be found in Figure1.2. 

Sequentially, during offline, we will firstly do relation and context pattern extraction. 

After that, we proposed an efficient indexing model to index all relation phrases, patterns and 

context vectors. This indexing makes it possible for our system to efficiently recover context 

information for relations during online processing – and this is the focus of this thesis. 

Thus, when a query is coming, we can through Query Parser to extract its’ additional 

information such as corresponding entity types. Then, through extracting related context vectors 

via indexing and calculate ranking score for each relation candidate by combining precomputed 

span model and context pattern weights, our system can return a ranked list of relation phrases 

efficiently and effectively.  
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    Figure 1.2: Entity Relation Search System Architecture Graph 

 

Moreover, since this entire system is the product of a group project, the division of work 

we note as follows: Jiarui Xu works on the empirical studies on data insights; Varun Berry 

mostly focuses on the relation phrase clustering over context study; Tianxiao Zhang works on the 
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ranking model and I work on indexing and extraction models. Also, Tianxiao and I implement 

the online prototype together.  

 

1.4. My Focus: Context Extraction and Indexing 

To support searching relations into contexts in real-time, a system need to recover context 

information for extracted relations during online processing. Conventional relation extraction 

systems discard context information while extracting relation tuples, which makes them 

incapable of doing this task. Our system, on the other hand, extract and index contexts for 

relations, therefore make it possible to recover context information for online ranking.  

The overall Entity-Relation Search system’s documentation is organized as follows: my 

thesis concentrates on the first steps of this system: extraction and indexing of context 

information for relation search. Remaining parts of the system, including the online ranking 

model of relations, are addressed in Tianxiao’s thesis.  

While context refers to the surroundings, in particular, we are mostly interested in entities 

that appear in the nearby area of a relation tuple. We claim that information from contexts is very 

useful to characterize relations. For example, in a medical paper, the entity “mice” may appear in 

the context of a relation tuple of “diabetes” and “insulin”, suggesting that the relation described 

between disease and chemical in this paper is possibly occurred on “mice”. Our extraction model 

is designed to extract contextual entities together with relation tuples. 

 Recover contexts information efficiently during online processing is difficult. To solve 

this task, we propose to design a special indexing structure to index all the extracted entities in 

the contexts with the relation tuples. Thus when we analyze relation queries online, we will be 

able to recover context information for relation tuples efficiently right through reading our index. 
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1.5. Contributions of The Thesis 

We summarize contributions of the entire project as follows: 

1. We discover and develop a pattern-driven based ranking model that supports search 

by context. 

2. We introduce the novel ideas of entity modifier, context entity, and a systematic way 

to extract context patterns. 

3. We conduct massive fundamental experiments on properties and distributions of verb 

phrases/patterns on a professional medical corpus. 

4. We implement an online prototype on the PubMed corpus, and it outperforms the 

most popular recent work (OpenIE) effectively. 

 

Individually, my contribution in this project are as follows: 

1. I design and develop context extraction and indexing models that supports searching 

relations into contexts. 

2. I propose to use context patterns to find potential relations that could be overlooked 

by conventional relation extraction systems. 

3. I study two ways of relation phrase clustering and compare their results. 
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CHAPTER 2 
RELATED WORK 

 
There are two fields of study that are related to our entity relation search problem: including 

medical entity relation mining and entity-related search system. In the medical text-mining 

domain, there exists some prior work on the relationship among medical entities shown in the 

knowledge databases [1,2]. The most popular one is the Comparative Toxicgenomics Database 

(CTD) whose data, includes relations between Chemical-Gene, Chemical-Disease and Gene-

Disease. Unlike the specific and predefined relations between chemical and gene by the medical 

professionals, the relations between disease and chemical is very general and there are only a few 

relation types such as “therapeutic” and “mechanism” instead of phrases. Another similar 

medical knowledge base is The Pharmacogenomics Knowledgebase (PharmGKB) which focuses 

on the relationship between human genetic variation and drug. Besides the issue of using 

predefined relation types, all of these studies need professional bio-curators to manually curate 

results from the scientific literature (PubMed) which is extremely time intensive, and it is very 

difficult to cover newly discovered medical knowledge.  

In terms of the searching system side, the earliest research that proposed an entity-related 

search, instead of traditional link-based search engine, is the EntityRank [3,4]. The idea of 

returning a ranked entity list makes the assessment of unstructured a data-rich web more efficient 

and useful.  

Recent researches already proposed solutions on the relation phrase automatically 

extraction task from unstructured corpus, in [5,6,7,8]. The one closest to our method is Open 

Information Extraction (OpenIE) [7,9]. In its process, it extracts and indexes the <subject, 
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relation phrase, object> tuples offline and return relations that are ordered by occurrence 

frequency as relation query results. Although this approach is empirically effective, it fails to 

allow users to search into contexts. 

Considering the extraction and indexing parts that we are focusing on in this thesis, one 

related work is OpenIE. While both our system and OpenIE need to extract and index relation 

phrases, our approaches are quite different. OpenIE uses a strict pattern to extract relation tuples 

(i.e. <subject, relation phrase, object>), and index all the extracted tuples offline. In contrast, our 

entity-relation search system uses a set of more diversified patterns to capture potential relation 

tuples. This enables us to find relations that OpenIE would overlook. Moreover, instead of 

indexing fixed relation tuples and output them directly as relation query results, our system 

chooses to store entities and relation phrases separately, and only combine them into relation 

tuples during the online query period. This design makes it possible for our system to output 

context-specific relation search results that match user quires. Our indexing model is also related 

to EntityRank’s, the difference is that in our system we expand the inverted index for entities to 

also include context information.  
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CHAPTER 3 
EXTRACTION MODELS  

 

In this section we elaborate on the verb phrases extraction module and the context pattern set 

extraction module, as refer to Figure 1.2, that we designed for the first step of our entire system, 

which is the extraction task. Specifically, we group this section following the implementation 

order of each subtask. Note that context pattern scoring is addressed in Tianxiao’s thesis. 

 

3.1 Relation Phrase Extraction   

The verb-based phrase has served as the role of a predicate in the conventional relation 

extraction system. There are two benefits of using verb phrases to describe relation. Firstly, verb-

based phrases are human readable and can be easily understood; thus, they can be directly 

presented to users as query results. Secondly, verb-based phrases naturally exist in the original 

corpus and can be extracted by a certain set of POS patterns. Consequently, we utilize verb 

phrases to represent relation phrases. For this purpose, we adopt the same definition and 

extraction techniques as used in [9]. 

   Extracted relation phrases are required to match the POS patterns shown in Figure 3.1. 

The patterns are designed to eliminate incoherent or uninformative extractions. The patterns 

require that relation phrases be a single verb (e.g. found), a verb followed by a preposition (e.g. 

lives in), or a verb followed by nouns, adjectives, or adverbs ending in a preposition (e.g. is 

treatment of). The extractor makes a one-time scan over each sentence to extract all of the verb 

phrases. If two verb phrases are adjacent to each other, we merge them into a single phrase. This 

refinement enables the extraction of phrases that contain multiple verbs (e.g. can be treated with). 
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Verb Phrase Extraction Pattern ( VP ) = V | V+P | V+N*+P 

V = Verb 
N = Noun | Adjective | Adverb | Pronoun | Determiner 
P = Preposition | Particle 

Figure 3.1 POS-Tagging patterns used to extract relation phrases. 

As constrained by the design of the extraction patterns, all extracted relation phrases must 

be a contiguous span of words in the original sentence. For the scope of our relation search 

engine, all of the verb phrases are extracted and indexed offline to enable fast online processing. 

A big difference between our work and conventional relation extraction systems is that all pieces 

of extracted relation phrases in our system are indexed independently with given contexts. Figure 

3.2 shows some of the relation phrases that we extracted from the medical domain. 

 
Figure 3.2 Several verb phrases samples grouped by entity type pair 
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3.2 Context Pattern Extraction 

In our system, context patterns are used to capture potential relations, as we observe relations 

often appears in certain patterns. There are three types of context pattern components, including 

entity, verb phrase and entity modifier (examples in Table 3.1).  

Example Context Pattern Context Vector 

1 Entity Modifier – Entity – Verb 
Phrase – Entity Modifier – Entity 

Nocturnal(EM) asthma(E) uncontrolled 
inhaled(VP) corticosteroids(EM) 
theophylline(E). 

2 Entity Modifier – Entity – Entity 
Modifier – Verb Phrase – Entity - 

Entity Modifier 

Serum(EM) theophylline(E) 
concentrations(EM) determined(VP) 
theophylline(E) dosage(EM). 

Table 3.1: Two context vector with its context patterns 

Entity modifier is introduced to specify a sub-level of the entity or to describe a relation 

under a certain condition. Note that by adding entity modifiers, our system is able to not only 

further distinguish entity relations from general types (e.g. the only pattern in the OpenIE: E VP 

E) to find more specific ones, and it assists users to better understand the relation phrases. For 

example, an entity modifier could be used to explain the occurrence of opposite relation phrases 

for the same query (e.g. aspirin can treat a headache while aspirin with alcohol can cause a 

headache).   

According to our observation from corpus, we intentionally limit the entity modifier to be 

either an adjective or noun (not entity) that is directly before an entity or noun (not entity) and 

directly after an entity; Even though an entity modifier and entity is located close to each other, 

we allow for a jump of words between verb phrase and entities.  

We explain the detailed usage and scoring of context patterns in Tianxiao’s thesis. 
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CHAPTER 4 
RELATION CLUSTERING 

 

Similar to other medical text-mining problems, we suffer from the sparsity problem. Most 

entities co-occur only a few times in the PubMed corpus and there are often diverse ways to 

describe the same meaning relation between an entity pair. To conquer this issue and take the 

leverage of the redundancy of the corpus, we decided to cluster synonymous relation phrases.  

For relation vector based clustering, and to follow the traditional principle for such a task, 

we ran a k-means clustering method on the relation phrases, which is represented by relation 

vectors (Figure 4.1). The relation vector is basically a bag-of-words model, which contains TF-

IDF values, multiplying the occurrence frequency for each term. In addition, we observe that the 

meaning of the relation phrase becomes ambiguous without considering entity type information. 

For example, “prevent” and “treat” are of similar relations to “chemical” and “disease”, but they 

should be view differently to “gene” and “chemical”. Thus, we added the query entity pair’s type 

information to the relation vector. Finally, we take account of relation phrase polarity 

information to cluster similar the semantic sense of relation phrases. We chose the mass center 

vector of each cluster to represent the group, in order to leverage the result. 

 

Relation Vector on K-Means Clustering Formula: 

Mass of cluster j: 𝑚; = 	 |𝐶𝑉9|
(G
9H%  

Mass center vector of cluster j: 𝑥6 =
|JKL|

MG
LNO JKLP

6G
 

Figure 4.1 Relation vector definition 
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Another more sophisticated solution is to cluster based on the relation phrases’ contexts 

instead of its own content. For this approach, we suggest to cluster on experiment context vectors 

first to acquire word group information. Then, for each relation phrase, we remove it from the 

context vector and preform chunking to retrieve many consecutive words. For each substring, we 

use its word’s group information for the vector representation. Considering the level of 

efficiency for the large-scale corpus, it is recommended to use MinHash [11] and LSH on those 

sets of vectors to compute the Jaccard similarity among those relation phrases. To better explain 

this idea, we show a simple example in Figure 4.2 to elaborate the entire process. Theoretically, 

the first approach groups relation phrases (if they share common/similar terms in the phrases), 

and the second approach defines similar relation phrases by evaluating whether they coexist in a 

similar context.  

Relation Context on MinHash + Locality Sensitive Hashing example:  
 
Input:  
            Context vector 1: E1 E2 RP1 EM1 E3 
            Context vector 2: E2 E4 RP2 E5 EM1 

Step 1: Word2vec based word clustering: 
Assume result as follows: 
Group 1 – E1 E3 E4 
Group 2 – E2 EM1 E5 
 

Step 2: Relation Phrase Set Representation (Chunking by three-word shingles): 
RP1 = (122,221) RP2 = (212,122) 
 

Step 3: MinHash and LSH to compute Jaccard similarity between RP1 and RP2: 
Output: 1/3 

Figure 4.2 An example of context based relation phrase clustering 
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CHAPTER 5 
INDEXING 

 

This section describes the index module in Figure 1.2. In our system, context indexing is used to 

preserve context information for online relation search. We stress that it can be easily 

implemented based on existing search engine infrastructure for interactive online search. 

We now discuss a possible implementation for our context indexing. To begin with, we 

assume that a document collection has been transformed into an entity collection, by using entity 

extraction techniques.  

 

Figure 5.1: Indexing example 

We use the standard inverted index for indexing keywords. To index an entity with 

contexts, our system will produce a list containing all the information regarding its context. To 

be specific, the list records for each entity, the position of the extraction in the documents (e.g. 

position 42 at document 8), and the context vector ID (e.g. 476). Each context vector ID maps to 

a context vector that stores a list of extracted verb phrases and entity modifiers. If two entities 

co-occur within a small text window, they might share the same context vector, thus the same 

context vector ID. As shown in Figure 5.1, all the context information of occurrences of an entity 

is stored in a list that is ordered by document number.  

Now we examine how to efficiently perform entity-relation search upon such an index. 

The entity-relation search algorithm is demonstrated in Algorithm 5.1. Let us work through this 
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algorithm for the relation query “diabetes insulin” upon the index in Figure 5.1. First, we load 

the inverted index for “diabetes” and “insulin” (line 0). Then we iterate the two lists in parallel, 

checking for any intersecting documents in line 1. In this example, the algorithm will report the 

first intersecting document to be 𝑑Q. Then, the algorithm will further check if a tuple, forms by 

the pair of entities “diabetes” and “insulin” and any verb phrase (e.g. “treated with”) recovered 

from its context vectors, satisfies any context pattern (e.g. “E VP E”) in our pre-defined pattern 

set. If a matching tuple is found, we will then calculate the matching score for it in line 4. Finally, 

after we initiated all possible tuples, we aggregate the scores for each tuple in line 6 and output it 

as its ranking score in line 7. 

We note that the core of our Entity-Relation Search algorithm (lines 1-4) is essentially 

performing sort-merge-join over parallel ordered lists. By design, our algorithm can be run very 

efficiently. In addition, since this sort-merge-join works on a document basis, it can easily be 

fully parallelized, by partitioning the entire corpus into sub-corpuses. This parallelism provides 

superior possibilities to support real-time large-scale entity-relation search. 
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The Relation Search Algorithm: 

 
Given: 𝐿 𝐸9 , 𝐿 𝐾; : 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑙𝑖𝑠𝑡𝑠	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡ℎ𝑒	𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠	𝑎𝑛𝑑	𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠; 
            𝑆`: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑝𝑎𝑡𝑡𝑒𝑟𝑛	𝑠𝑒𝑡. 
Input: 𝑞 = 𝐸%, 𝐸3, 𝐶𝐸%, … , 𝐶𝐸6, 𝑘%, … , 𝑘8: entities, context entities and keywords. 
 
 
0:   Load inverted lists: 𝐿 𝐸% , 𝐿 𝐸3 , 𝐿 𝐶𝐸% , … , 𝐿 𝐶𝐸6 , 𝐿 𝐾% 	, … , 𝐿 𝐾8 ; 
							/	∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔	𝑙𝑖𝑠𝑡𝑠	𝑏𝑦	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑛𝑢𝑚𝑏𝑒𝑟   
1:   For each doc 𝑑 in the intersection of all lists: 
2:         Use context pattern 𝑝 ∈ 𝑆` to initiate tuples;  /∗ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔	  
3:         For each instantiated tuple 𝑡: 
4:                     Calculate 𝑝(𝑞(𝑡)|𝑑); 
5:   For each tuple 𝑡 initiated in the whole process: 
6:         calculate 𝑃 𝑞 𝑡 𝐷 = 𝑃 𝑞 𝑡 𝑑 ∗ 𝑃(𝑑)i  
7:         output 𝑆𝑐𝑜𝑟𝑒 𝑞 𝑡 = 𝑃 𝑞 𝑡 𝐷  

Algorithm 5.1: The relation search algorithm 
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CHAPTER 6 
EXPERIMENTAL RESULTS 

 
We evaluate our system on the PubMed professional medical abstracts. We take advantage of the 

entity and type information obtained from PubTator [13], an entity detection and extraction tool 

in the PubMed data set. Specifically, it provides five entity types and its occurrences in the 

PubMed – Disease, Chemical, Gene, Mutation and Species. We will present our implementation 

results in the following order: Sections 6.1 and 6.2 will present some empirical studies about 

verb phrases cover rate and verb phrases clustering. Sections 6.3 and 6.4 reveal the performance 

and interface of our online prototype. Note that the size of data used in different experiments 

could be various and the exact setting will be discussed in each separate section.  

 
 

6.1 Experiments on Verb Phrases Cover Rates 
 
We want to figure out whether a relatively small finite set of relation phrases can “cover” 

majority entities’ relationships. We define a mathematical formula to capture such impressions in 

Figure 6.1. Intuitively, we computed the expectation of a relation set covering the entire corpus. 

Not surprisingly, we conclude that a small and finite relation candidate set could approximately 

cover most of the relations from around 20 million abstracts, as shown in Figure 6.2. These two 

studies guide and support us to extract relation phrase candidate sets in a more reasonable way.  
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Figure 6.1: Definition of cover rate between a set of entity pairs and a set of verb phrases 

 

 

 

 

Figure 6.2: Relation between the size of the relation phrase set ordered by frequency and its 

cover rate 
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6.2 Relation Phrases Clustering 
 
Verb phrases clustering plays an important role in our system. In particular, it helps to alleviate 

the problem of relation sparsity, both in the extraction process and final outputs. We now 

examine the the results from two of our verb clustering approaches. This is elaborated in Section 

4, which addresses relation vector based clustering and context based clustering. We start with a 

set of relation phrases that we extracted for the entity pair “Obesity” and “Insulin”. 

In Table 6.1, clusters of verb phrases for “Obesity” and “Insulin” are presented in groups. 

In general, the second method which groups relations by its contexts produces better results in 

this case. Specifically, if we look at the second cluster generated by this method, those verb 

phrases actually refer to what the scientists do in the medical domain. 
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Table 6.1: Relation clusters 

 

Our second experiment was conducted and based on the relations associated with 

“Diabetes” and “Obesity”. Table 6.2 indicates the clustering results. Again, clusters generated by 

clustering relation vectors tend to have unbalanced cluster sizes, and relations are not clustered 

Clusters Relation Vector Clustering Context Clustering 

Cluster 1 

 
associated 
compared 

appear 
account for 

develop 
 

played a role in 
associated 

Cluster 2 

 
played a role in 

measured 
examined 

study 
investigate whether 

showed 
observed 
modulate 
improved 

help 
provide good glycaemic control in 

 

compared 
measured 
examined 

study 
investigate whether 

Cluster 3 truncated 

 
appear 
showed 

truncated 
observed 

account for 
modulate 

 

Cluster 4  

 
develop 

improved 
help 

provide good glycaemic control 
in 
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properly. In contrast, the results from context clustering captures some interesting relation phrase 

clusters. For example, Cluster 1 by context clustering reports that studies in the medical domain 

often involves a comparison of two variables. However, we note in Cluster 4, that we group 

“control” and “normalized” with other verb phrases in this cluster. This is probably because 

“control” and “normalized” appear in sentences such as, “the effect was doubled/tripled 

compared to the control…”. Here, the verb used to represent an increase in something is situated 

in the same context as words used commonly to report findings such as a 'control' group and 

'normalized' results. We believe a more careful examination of contexts would help to avoid 

these kinds of mistakes. 
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Clusters Relation Vector Clustering Context Clustering 

Cluster 1 
 

be a more important risk factor for 
 

 
be a more important risk factor 

for 
be a more important predictor of 

found a negative correlation 
between 

sought an association between 
 

Cluster 2 

 
known 

influencing 
increased 

 

 
assess the independence of 
evaluate the association of 

 

Cluster 3 

 
be a more important predictor of 

found a negative correlation between 
sought an association between 

assess the independence of 
evaluate the association of 

influenced 
reduces the development of 

be a link between 
led 

control 
depended 

rose 
doubled 
tripled 
sleep 

normalized 
 

 
control 

depended 
rose 

doubled 
tripled 
sleep 

normalized 
known 

influencing 
increased 

 

Cluster 4  

 
influenced 

reduces the development of 
be a link between 

led 
 

Table 6.2: Relation clusters for “Obesity” and “Insulin” 
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6.3 Comparison with OpenIE 
 
To evaluate the quality of our relation phrase ranking results, we compare them with the most 

famous relation extraction system - OpenIE. We observe that OpenIE does not index some of our 

medical entities, thus, their extraction result would be empty. In order to conduct a fair 

comparison, we adopted the OpenIE algorithm on our PubMed corpus. 

We compare the result qualities of Entity-Relation Search and OpenIE by showing the 

precision of ranking results at different ranks for a same set of relationship queries. As shown in 

Table 6.3, we manually collected twenty pairs of query entities, covering some popular entities 

of diseases, species, chemicals and genes. We expect the ground truth relations for the set of 

testing quires we build to cover both obvious and obscure relationships. 

As a result, Figure 6.3 shows the precision of the relation query results at each of the 

ranks for both Entity-Relation Search and OpenIE. This result is built by executing all of the 

relation queries listed in Table 6.3 on both of the two systems, and by manually inspecting 

whether each returned relation phrase holds true for its corresponding query entities. As the 

figure indicates, the precision of results generated by Entity-Relation Search generally 

outperforms those extracted by OpenIE, for the top 20 positions. Among the top five, Entity-

Relation Search achieves 18.9% improvements in precision over OpenIE, which demonstrates 

the superior performance of its ranking model. 

We also notice that, OpenIE performs better for the precision at the top-ranked result. 

Our analysis of this result is that, as we try to capture more relations by diversified context 

patterns in our Entity-Relation Search system, we tend to include in our results, some false 

positive relations that are just popular in the particular contexts. We will leave this problem for 

our future work. 
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 Query Entity Types Query Entities 
1 Disease - Chemical Obesity - Glucose 
2 Disease - Chemical Asthma - Aminophylline 
3 Disease - Gene Diabetes - Insulin 
4 Disease - Species Obesity - Children 
5 Disease - Species Cancer - Children 
6 Disease - Species Breast Cancer - Children 
7 Disease - Species Cancer - Human 
8 Disease - Species Influenza- Children 
9 Disease - Species Tumor - Mice 

10 Disease - Disease Obesity - Diabetes 
11 Disease - Disease Tumor - Cancer 
12 Chemical - Gene Oxygen - BNP 
13 Chemical - Species Calcium - Children 
14 Chemical - Species Oxygen - Dog 
15 Chemical - Chemical Glucose - Serine 
16 Chemical - Chemical Cholesterol- Glucose 
17 Species - Species Human - Rats 
18 Species - Gene BNP - Patient 
19 Species - Gene Tau - Human 
20 Species - Gene PCNA - Human 

Table 6.3: Test Queries 
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Figure 6.3: Precision at K for test queries on OpenIE and Entity-Relation Search 

 

 
Figure 6.4: Number of correct relations discovered by Entity-Relation Search and OpenIE for 

each query type pair 
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In a corpus as large as PubMed, the ground truth of all relations is hard to determine. In 

order to compare the recall from both of the two systems, we manually examine the number of 

correct relations that each system discovers and report the results in Figure 6.4, for the 20 queries 

listed in Table 6.3. Note that results in Figure 6.4 is grouped by entity type pair in queries (i.e. 

results under “Disease-Species” refer to query 4-9 in Table 6.3). This result clearly demonstrates 

that the pattern-driven relation extraction method used in Entity-Relation Search is more capable 

of extracting correct relations than OpenIE. As we can see, Entity-Relation Search is able to find 

more correct relations for all 6 type pairs. For example, for queries containing the “Disease-

Species” pair, Entity-Relation Search is able to find 24.3% more correct relations than OpenIE. 

This is because the context pattern set that we use to match relation tuples is much more 

diversified than OpenIE’s strict “E VP E” pattern. 

One significant difference between our system and OpenIE is that, we support searching 

relations between entities with context constraints. Since it is not supported OpenIE, we will only 

test it on our system. Please refer to our case studies in Section 6.4. 

 

6.4 Case Study and Demo Interface  
 

We evaluate the performance of our search system through two case studies. These studies 

should reflect the design of relation phrase grouping and ranking in our system.  

 

Case Study 1: 

Suppose a user wants to know the relations between “diabetes” and “insulin”. She inputs these 

two keywords at the top of our UI and clicks on the “search” button on the right side. The search 

engine returns a list of relation phrases as shown in the screenshot below. These human-readable 
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text phrases are ranked by our ranking model to best describe the relationships between the pair 

of query entities. The first one is “are associated with”, indicating that “diabetes” is associated 

with “insulin”. 

Immediately below the search boxes, we also provide a list of ranked sub-contexts 

represented by keywords. Users could click on “add” to add these keywords/entities to continue 

query context-specific relation results. 

Figure 6.5: Query result of the Entity-Relation Search system for “Diabetes” and “Insulin” 

If we click on a result, for instance, the second one “Need”, we will see a list of 

evidences where we extract the relationship. In this view, query entities “diabetes” and “insulin” 

are shown in BLUE, relation phrases are in RED and entity modifiers are in GREEN. They are 

all part of our extraction patterns. In this example, the three relation phrases “need”, “requiring”, 

and “require” are clustered together under the relation phrase “Need”.  
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Figure 6.6: Pattern annotated snippet evidences for relation phrase “Need”   

 
Case Study 2: 

In this example we want to find the relations between entities “diabetes” and “obesity”. The 

results are below: 
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Figure 6.7: Query result of the Entity-Relation Search system for “Diabetes” and “Obesity” 

 

If we click on the first result “Associated”, we will expend the interface and see three text 

snippets (see the screenshot below). For each piece of snippet, there is a hyper-link to its original 

source. Entities that appeared in the context but not in the query will be presented in PURPLE. In 

this example, relation phrases “associated”, “were also associated with” and “are often associated 

with” are grouped together. 
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Figure 6.8: Pattern annotated snippet evidences for relation phrase “Associated”   
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CHAPTER 7 
CONCLUSION AND FUTURE WORK 

 
In this paper, we propose the notion of context indexing, to solve the problem of searching 

relations with context constraints in an unstructured text corpus. The system preserves context 

information for each extraction of the relation phrase and restores it for online processing. Our 

online prototype proves that our context indexing is able to support efficient real-time relation 

queries. 

 We identified several promising directions that our relation search system can explore in 

the future. First of all, we plan to build a better model to improve the precision of our relation 

tuple extraction. Secondly, we would like to explore other possible ways to present our search 

results. For example, we can present search results chronologically, to reflect changes in the time 

dimension. Lastly, we will excitingly extend our method to adapt to other domains, and explore 

new and related possibilities. 

 This project is a collaborative work with Tianxiao Zhang. While we separately document 

our individual contributions, we intentionally share some parts of our thesis to improve the 

readability of our overall system design. 
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