

© 2016 Zequn Zhang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ENTITY-RELATION SEARCH: CONTEXT PATTERN DRIVEN EXTRACTION AND
INDEXING

BY

ZEQUN ZHANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Kevin C. Chang

 ii

ABSTRACT

Our research focuses on searching relations between entities with context constraints. In

particular, we are interested in efficiently searching for the relations among medical entities (e.g.

diseases, chemicals, species, genes, or mutations) in a professional medical corpus. Existing

relation extraction systems, like OpenIE, are able to extract some relations between entities.

However, its results are inseparable in terms of extraction contexts, which prevents it from

being able to search for the relations of given contexts.

To address this issue, we propose to build an entity-relation search system with an

awareness of extraction contexts. In order to achieve this goal, we propose to extract and index

contexts for each extracted relation. We evaluate our search model over millions of professional

medical abstracts and show that our context indexing is effective to support the task of

searching relations into contexts.

Note that this rich and novel system is the product of a collaborative team effort:

Tianxiao Zhang, Jiarui Xu and Varun Berry, and supervised by Professor Kevin Chang. While

we separately document our individual contributions, we intentionally share some parts of our

thesis to improve the readability of our overall system design. This thesis mainly focuses on the

design of our context extraction and indexing method.

 iii

TABLE OF CONTENTS

	

CHAPTER 1 INTRODUCTION .. 1	

1.1.	 Motivation and Challenges ..1	

1.2.	 Entity-Relation Search: Problem Definition ..2	

1.3.	 System Overview ...4	

1.4.	 My Focus: Context Extraction and Indexing ...6	

1.5.	 Contributions of The Thesis ...7	

CHAPTER 2 RELATED WORK ... 8	

CHAPTER 3 EXTRACTION MODELS ... 10	

3.1	 Relation Phrase Extraction ...10	

3.2	 Context Pattern Extraction ...12	

CHAPTER 4 RELATION CLUSTERING .. 13	

CHAPTER 5 INDEXING ... 15	

CHAPTER 6 EXPERIMENTAL RESULTS ... 18	

6.1 Experiments on Verb Phrases Cover Rates ...18	

6.2 Relation Phrases Clustering ...20	

6.3 Comparison with OpenIE ..24	

6.4 Case Study and Demo Interface ...27	

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 32	

REFERENCES ... 33	

 1

CHAPTER 1
INTRODUCTION

1.1. Motivation and Challenges

Relation extraction systems aim to help users find relations from a large text corpus. Relations

outputted from such systems are a set of relation phrases extracted from a mixture of contexts,

which are matched by a strict extraction pattern. For example, such extraction system may find

the relation between “Bill Gates” and “Microsoft” to be “founded”.

Also, here are some scenarios where users are looking for relations with constraints. For

example, a medical researcher may look for the relation between a specific type of disease and a

gene, but she is interested in this subject with the limitation that it only pertains to mice. Or, a

doctor wants to know the relation between a disease and a chemical, but only as it relates to male

adult patients. While such query needs are important and usual, it is not possibly resolved by

existing relation extraction systems due to their inability to differentiate contexts from which

relations were extracted. This limitation prevents such systems from being able to provide

context-specific results, for contexts like “mice” or “male adult patients”. Moreover, the usage

of a single strict pattern causes such extraction systems to overlook many extractable relations.

To resolve such queries, a system needs to preserve context information for extracted

relations, and efficiently use them while resolving user queries. Conventional relation extraction

systems extract relations from the corpus and discard its context information. Thus such systems

are not able to recover context information when a user query is inputted. We identified two

challenges for solving this problem: 1) how to extract context information for relations, and 2)

 2

how to efficiently index context information to support online search. For theses two challenges,

we will discuss our solutions in Section 3 and Section 5.

1.2. Entity-Relation Search: Problem Definition

One of the limitations of existing relation extraction systems is that when users query the

relationship between a pair of entities, the query result is always a combination of relations from

a confused mixture of contexts, regardless of the level of interest of each context that it includes.

When users are interested in relations only from a limited set of contexts, it is very difficult for

the system to detect what relations are within the search scope due to the infeasibility to recover

relation contexts. This is because information regarding the contexts from which relations are

extracted was lost during the process of extraction. In order to find context-specific relations,

users will have to navigate through all of the snippets for a relation phrase to find whether any

snippet contains the relation phrase in the preferred set of contexts. After seeing enough snippets,

users still need to aggregate all of the information that they saw in order to form an overall

impression of relatedness for the query entities in the limited set of interested contexts.

We summarize our problem in Figure 1.1. First, for input, as queries, our relation search

system let user search for relation phrases by specifying subject and object, both as entities, and a

list of optional context constraints in the form of entities and keywords, which indicate user’s

intention of where the relations should be found. By design, the relation search is essentially

search relations by context over the document collection. Context constraints intend to shape the

search space within which the desired relations occur. For example, users could query the

relationship between “diabetes” and “insulin” and specify the context constraint to be “mice”,

suggesting that only the relations with “mice” involved would be interesting.

 3

Entity-Relation Search Query.

• Given: Entity collection ℰ = {𝐸%, … , 𝐸(} and Relation Phrase collection ℛ =
{𝑟𝑝%, … , 𝑟𝑝-}, over Document collection 𝒟 = {𝑑%, … , 𝑑0}.

• Input: Query 𝑞 < 𝐸%, 𝐸3 > = 𝐸%, 𝐸3, 𝐶𝐸%, … , 𝐶𝐸6, 𝑘%, … , 𝑘8, where entity 𝐸9 ∈ ℰ,
context entity 𝐶𝐸; ∈ ℰ, and 𝑘 is keyword.
Output: Ranked list of 𝑡 =< 𝑟𝑝 >, where 𝑟𝑝 ∈ ℛ, sorted by 𝑆𝑐𝑜𝑟𝑒(𝑞 𝑡), the query score
of 𝑡.

Figure 1.1 The entity-relation search problem

Second, for output, the result is a ranked list of human-readable relation phrases. A

relation phrase will be ranked higher, if it matches the query better. We denote the measure of

how well 𝑡 matches the query 𝑞 as 𝑆𝑐𝑜𝑟𝑒(𝑞 𝑡), which should capture how 𝑟𝑝 describes the

relationship for the pair of query entities, in the specified search context.

We emphasize that, since the scoring function determines the ranking of relation phrases,

it is the central function of our relation search system. Thus, the objective of the relation search

is to find from the space of ℛ, the matching relation phrases in ranked order by how well they

match query 𝑞 (i.e., how well the relation phrase captures the relationship between the given pair

of query entities under the preferred contexts). As the focus of this paper, we will discuss how

we developed this scoring function in the Section 3.

Relation Phrase Relation phrase is a verb phrase that denotes a binary relation in a
sentence

Context Vector A text window convers query entity pairs and relation phrase
candidates; will be sentences in our case

Context Entity Entities co-occur with query entity pairs working as the context

Context Pattern
A pattern captures all context information needed for ranking. Foe
example, (E VP E) means there is an <Entity, Verb Phrase, Entity>
subsequence in the sentence.

Table 1.1: Related terminologies and definitions used in this thesis

 4

1.3. System Overview

Followed by our problem definition, we determine a relation phrase based web search system. In

this system, we divide it into three main components: extraction model, indexing model and

ranking model. In the extraction section, we state our POS-Tagging sequence based approach for

verb phrase extraction, pattern extraction and build inverted indexes for all entities and keywords.

An overview of our entire system’s architecture may be found in Figure1.2.

Sequentially, during offline, we will firstly do relation and context pattern extraction.

After that, we proposed an efficient indexing model to index all relation phrases, patterns and

context vectors. This indexing makes it possible for our system to efficiently recover context

information for relations during online processing – and this is the focus of this thesis.

Thus, when a query is coming, we can through Query Parser to extract its’ additional

information such as corresponding entity types. Then, through extracting related context vectors

via indexing and calculate ranking score for each relation candidate by combining precomputed

span model and context pattern weights, our system can return a ranked list of relation phrases

efficiently and effectively.

 5

 Figure 1.2: Entity Relation Search System Architecture Graph

Moreover, since this entire system is the product of a group project, the division of work

we note as follows: Jiarui Xu works on the empirical studies on data insights; Varun Berry

mostly focuses on the relation phrase clustering over context study; Tianxiao Zhang works on the

 6

ranking model and I work on indexing and extraction models. Also, Tianxiao and I implement

the online prototype together.

1.4. My Focus: Context Extraction and Indexing

To support searching relations into contexts in real-time, a system need to recover context

information for extracted relations during online processing. Conventional relation extraction

systems discard context information while extracting relation tuples, which makes them

incapable of doing this task. Our system, on the other hand, extract and index contexts for

relations, therefore make it possible to recover context information for online ranking.

The overall Entity-Relation Search system’s documentation is organized as follows: my

thesis concentrates on the first steps of this system: extraction and indexing of context

information for relation search. Remaining parts of the system, including the online ranking

model of relations, are addressed in Tianxiao’s thesis.

While context refers to the surroundings, in particular, we are mostly interested in entities

that appear in the nearby area of a relation tuple. We claim that information from contexts is very

useful to characterize relations. For example, in a medical paper, the entity “mice” may appear in

the context of a relation tuple of “diabetes” and “insulin”, suggesting that the relation described

between disease and chemical in this paper is possibly occurred on “mice”. Our extraction model

is designed to extract contextual entities together with relation tuples.

 Recover contexts information efficiently during online processing is difficult. To solve

this task, we propose to design a special indexing structure to index all the extracted entities in

the contexts with the relation tuples. Thus when we analyze relation queries online, we will be

able to recover context information for relation tuples efficiently right through reading our index.

 7

1.5. Contributions of The Thesis

We summarize contributions of the entire project as follows:

1. We discover and develop a pattern-driven based ranking model that supports search

by context.

2. We introduce the novel ideas of entity modifier, context entity, and a systematic way

to extract context patterns.

3. We conduct massive fundamental experiments on properties and distributions of verb

phrases/patterns on a professional medical corpus.

4. We implement an online prototype on the PubMed corpus, and it outperforms the

most popular recent work (OpenIE) effectively.

Individually, my contribution in this project are as follows:

1. I design and develop context extraction and indexing models that supports searching

relations into contexts.

2. I propose to use context patterns to find potential relations that could be overlooked

by conventional relation extraction systems.

3. I study two ways of relation phrase clustering and compare their results.

 8

CHAPTER 2
RELATED WORK

There are two fields of study that are related to our entity relation search problem: including

medical entity relation mining and entity-related search system. In the medical text-mining

domain, there exists some prior work on the relationship among medical entities shown in the

knowledge databases [1,2]. The most popular one is the Comparative Toxicgenomics Database

(CTD) whose data, includes relations between Chemical-Gene, Chemical-Disease and Gene-

Disease. Unlike the specific and predefined relations between chemical and gene by the medical

professionals, the relations between disease and chemical is very general and there are only a few

relation types such as “therapeutic” and “mechanism” instead of phrases. Another similar

medical knowledge base is The Pharmacogenomics Knowledgebase (PharmGKB) which focuses

on the relationship between human genetic variation and drug. Besides the issue of using

predefined relation types, all of these studies need professional bio-curators to manually curate

results from the scientific literature (PubMed) which is extremely time intensive, and it is very

difficult to cover newly discovered medical knowledge.

In terms of the searching system side, the earliest research that proposed an entity-related

search, instead of traditional link-based search engine, is the EntityRank [3,4]. The idea of

returning a ranked entity list makes the assessment of unstructured a data-rich web more efficient

and useful.

Recent researches already proposed solutions on the relation phrase automatically

extraction task from unstructured corpus, in [5,6,7,8]. The one closest to our method is Open

Information Extraction (OpenIE) [7,9]. In its process, it extracts and indexes the <subject,

 9

relation phrase, object> tuples offline and return relations that are ordered by occurrence

frequency as relation query results. Although this approach is empirically effective, it fails to

allow users to search into contexts.

Considering the extraction and indexing parts that we are focusing on in this thesis, one

related work is OpenIE. While both our system and OpenIE need to extract and index relation

phrases, our approaches are quite different. OpenIE uses a strict pattern to extract relation tuples

(i.e. <subject, relation phrase, object>), and index all the extracted tuples offline. In contrast, our

entity-relation search system uses a set of more diversified patterns to capture potential relation

tuples. This enables us to find relations that OpenIE would overlook. Moreover, instead of

indexing fixed relation tuples and output them directly as relation query results, our system

chooses to store entities and relation phrases separately, and only combine them into relation

tuples during the online query period. This design makes it possible for our system to output

context-specific relation search results that match user quires. Our indexing model is also related

to EntityRank’s, the difference is that in our system we expand the inverted index for entities to

also include context information.

 10

CHAPTER 3
EXTRACTION MODELS

In this section we elaborate on the verb phrases extraction module and the context pattern set

extraction module, as refer to Figure 1.2, that we designed for the first step of our entire system,

which is the extraction task. Specifically, we group this section following the implementation

order of each subtask. Note that context pattern scoring is addressed in Tianxiao’s thesis.

3.1 Relation Phrase Extraction

The verb-based phrase has served as the role of a predicate in the conventional relation

extraction system. There are two benefits of using verb phrases to describe relation. Firstly, verb-

based phrases are human readable and can be easily understood; thus, they can be directly

presented to users as query results. Secondly, verb-based phrases naturally exist in the original

corpus and can be extracted by a certain set of POS patterns. Consequently, we utilize verb

phrases to represent relation phrases. For this purpose, we adopt the same definition and

extraction techniques as used in [9].

 Extracted relation phrases are required to match the POS patterns shown in Figure 3.1.

The patterns are designed to eliminate incoherent or uninformative extractions. The patterns

require that relation phrases be a single verb (e.g. found), a verb followed by a preposition (e.g.

lives in), or a verb followed by nouns, adjectives, or adverbs ending in a preposition (e.g. is

treatment of). The extractor makes a one-time scan over each sentence to extract all of the verb

phrases. If two verb phrases are adjacent to each other, we merge them into a single phrase. This

refinement enables the extraction of phrases that contain multiple verbs (e.g. can be treated with).

 11

Verb Phrase Extraction Pattern (VP) = V | V+P | V+N*+P

V = Verb
N = Noun | Adjective | Adverb | Pronoun | Determiner
P = Preposition | Particle

Figure 3.1 POS-Tagging patterns used to extract relation phrases.

As constrained by the design of the extraction patterns, all extracted relation phrases must

be a contiguous span of words in the original sentence. For the scope of our relation search

engine, all of the verb phrases are extracted and indexed offline to enable fast online processing.

A big difference between our work and conventional relation extraction systems is that all pieces

of extracted relation phrases in our system are indexed independently with given contexts. Figure

3.2 shows some of the relation phrases that we extracted from the medical domain.

Figure 3.2 Several verb phrases samples grouped by entity type pair

 12

3.2 Context Pattern Extraction

In our system, context patterns are used to capture potential relations, as we observe relations

often appears in certain patterns. There are three types of context pattern components, including

entity, verb phrase and entity modifier (examples in Table 3.1).

Example Context Pattern Context Vector

1 Entity Modifier – Entity – Verb
Phrase – Entity Modifier – Entity

Nocturnal(EM) asthma(E) uncontrolled
inhaled(VP) corticosteroids(EM)
theophylline(E).

2 Entity Modifier – Entity – Entity
Modifier – Verb Phrase – Entity -

Entity Modifier

Serum(EM) theophylline(E)
concentrations(EM) determined(VP)
theophylline(E) dosage(EM).

Table 3.1: Two context vector with its context patterns

Entity modifier is introduced to specify a sub-level of the entity or to describe a relation

under a certain condition. Note that by adding entity modifiers, our system is able to not only

further distinguish entity relations from general types (e.g. the only pattern in the OpenIE: E VP

E) to find more specific ones, and it assists users to better understand the relation phrases. For

example, an entity modifier could be used to explain the occurrence of opposite relation phrases

for the same query (e.g. aspirin can treat a headache while aspirin with alcohol can cause a

headache).

According to our observation from corpus, we intentionally limit the entity modifier to be

either an adjective or noun (not entity) that is directly before an entity or noun (not entity) and

directly after an entity; Even though an entity modifier and entity is located close to each other,

we allow for a jump of words between verb phrase and entities.

We explain the detailed usage and scoring of context patterns in Tianxiao’s thesis.

 13

CHAPTER 4
RELATION CLUSTERING

Similar to other medical text-mining problems, we suffer from the sparsity problem. Most

entities co-occur only a few times in the PubMed corpus and there are often diverse ways to

describe the same meaning relation between an entity pair. To conquer this issue and take the

leverage of the redundancy of the corpus, we decided to cluster synonymous relation phrases.

For relation vector based clustering, and to follow the traditional principle for such a task,

we ran a k-means clustering method on the relation phrases, which is represented by relation

vectors (Figure 4.1). The relation vector is basically a bag-of-words model, which contains TF-

IDF values, multiplying the occurrence frequency for each term. In addition, we observe that the

meaning of the relation phrase becomes ambiguous without considering entity type information.

For example, “prevent” and “treat” are of similar relations to “chemical” and “disease”, but they

should be view differently to “gene” and “chemical”. Thus, we added the query entity pair’s type

information to the relation vector. Finally, we take account of relation phrase polarity

information to cluster similar the semantic sense of relation phrases. We chose the mass center

vector of each cluster to represent the group, in order to leverage the result.

Relation Vector on K-Means Clustering Formula:

Mass of cluster j: 𝑚; = 	 |𝐶𝑉9|
(G
9H%

Mass center vector of cluster j: 𝑥6 =
|JKL|

MG
LNO JKLP

6G

Figure 4.1 Relation vector definition

 14

Another more sophisticated solution is to cluster based on the relation phrases’ contexts

instead of its own content. For this approach, we suggest to cluster on experiment context vectors

first to acquire word group information. Then, for each relation phrase, we remove it from the

context vector and preform chunking to retrieve many consecutive words. For each substring, we

use its word’s group information for the vector representation. Considering the level of

efficiency for the large-scale corpus, it is recommended to use MinHash [11] and LSH on those

sets of vectors to compute the Jaccard similarity among those relation phrases. To better explain

this idea, we show a simple example in Figure 4.2 to elaborate the entire process. Theoretically,

the first approach groups relation phrases (if they share common/similar terms in the phrases),

and the second approach defines similar relation phrases by evaluating whether they coexist in a

similar context.

Relation Context on MinHash + Locality Sensitive Hashing example:

Input:
 Context vector 1: E1 E2 RP1 EM1 E3
 Context vector 2: E2 E4 RP2 E5 EM1

Step 1: Word2vec based word clustering:
Assume result as follows:
Group 1 – E1 E3 E4
Group 2 – E2 EM1 E5

Step 2: Relation Phrase Set Representation (Chunking by three-word shingles):
RP1 = (122,221) RP2 = (212,122)

Step 3: MinHash and LSH to compute Jaccard similarity between RP1 and RP2:
Output: 1/3

Figure 4.2 An example of context based relation phrase clustering

 15

CHAPTER 5
INDEXING

This section describes the index module in Figure 1.2. In our system, context indexing is used to

preserve context information for online relation search. We stress that it can be easily

implemented based on existing search engine infrastructure for interactive online search.

We now discuss a possible implementation for our context indexing. To begin with, we

assume that a document collection has been transformed into an entity collection, by using entity

extraction techniques.

Figure 5.1: Indexing example

We use the standard inverted index for indexing keywords. To index an entity with

contexts, our system will produce a list containing all the information regarding its context. To

be specific, the list records for each entity, the position of the extraction in the documents (e.g.

position 42 at document 8), and the context vector ID (e.g. 476). Each context vector ID maps to

a context vector that stores a list of extracted verb phrases and entity modifiers. If two entities

co-occur within a small text window, they might share the same context vector, thus the same

context vector ID. As shown in Figure 5.1, all the context information of occurrences of an entity

is stored in a list that is ordered by document number.

Now we examine how to efficiently perform entity-relation search upon such an index.

The entity-relation search algorithm is demonstrated in Algorithm 5.1. Let us work through this

 16

algorithm for the relation query “diabetes insulin” upon the index in Figure 5.1. First, we load

the inverted index for “diabetes” and “insulin” (line 0). Then we iterate the two lists in parallel,

checking for any intersecting documents in line 1. In this example, the algorithm will report the

first intersecting document to be 𝑑Q. Then, the algorithm will further check if a tuple, forms by

the pair of entities “diabetes” and “insulin” and any verb phrase (e.g. “treated with”) recovered

from its context vectors, satisfies any context pattern (e.g. “E VP E”) in our pre-defined pattern

set. If a matching tuple is found, we will then calculate the matching score for it in line 4. Finally,

after we initiated all possible tuples, we aggregate the scores for each tuple in line 6 and output it

as its ranking score in line 7.

We note that the core of our Entity-Relation Search algorithm (lines 1-4) is essentially

performing sort-merge-join over parallel ordered lists. By design, our algorithm can be run very

efficiently. In addition, since this sort-merge-join works on a document basis, it can easily be

fully parallelized, by partitioning the entire corpus into sub-corpuses. This parallelism provides

superior possibilities to support real-time large-scale entity-relation search.

 17

The Relation Search Algorithm:

Given: 𝐿 𝐸9 , 𝐿 𝐾; : 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑙𝑖𝑠𝑡𝑠	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡ℎ𝑒	𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠	𝑎𝑛𝑑	𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠;
 𝑆`: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑝𝑎𝑡𝑡𝑒𝑟𝑛	𝑠𝑒𝑡.
Input: 𝑞 = 𝐸%, 𝐸3, 𝐶𝐸%, … , 𝐶𝐸6, 𝑘%, … , 𝑘8: entities, context entities and keywords.

0: Load inverted lists: 𝐿 𝐸% , 𝐿 𝐸3 , 𝐿 𝐶𝐸% , … , 𝐿 𝐶𝐸6 , 𝐿 𝐾% 	, … , 𝐿 𝐾8 ;
							/	∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔	𝑙𝑖𝑠𝑡𝑠	𝑏𝑦	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑛𝑢𝑚𝑏𝑒𝑟
1: For each doc 𝑑 in the intersection of all lists:
2: Use context pattern 𝑝 ∈ 𝑆` to initiate tuples; /∗ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔	
3: For each instantiated tuple 𝑡:
4: Calculate 𝑝(𝑞(𝑡)|𝑑);
5: For each tuple 𝑡 initiated in the whole process:
6: calculate 𝑃 𝑞 𝑡 𝐷 = 𝑃 𝑞 𝑡 𝑑 ∗ 𝑃(𝑑)i
7: output 𝑆𝑐𝑜𝑟𝑒 𝑞 𝑡 = 𝑃 𝑞 𝑡 𝐷

Algorithm 5.1: The relation search algorithm

 18

CHAPTER 6
EXPERIMENTAL RESULTS

We evaluate our system on the PubMed professional medical abstracts. We take advantage of the

entity and type information obtained from PubTator [13], an entity detection and extraction tool

in the PubMed data set. Specifically, it provides five entity types and its occurrences in the

PubMed – Disease, Chemical, Gene, Mutation and Species. We will present our implementation

results in the following order: Sections 6.1 and 6.2 will present some empirical studies about

verb phrases cover rate and verb phrases clustering. Sections 6.3 and 6.4 reveal the performance

and interface of our online prototype. Note that the size of data used in different experiments

could be various and the exact setting will be discussed in each separate section.

6.1 Experiments on Verb Phrases Cover Rates

We want to figure out whether a relatively small finite set of relation phrases can “cover”

majority entities’ relationships. We define a mathematical formula to capture such impressions in

Figure 6.1. Intuitively, we computed the expectation of a relation set covering the entire corpus.

Not surprisingly, we conclude that a small and finite relation candidate set could approximately

cover most of the relations from around 20 million abstracts, as shown in Figure 6.2. These two

studies guide and support us to extract relation phrase candidate sets in a more reasonable way.

 19

Figure 6.1: Definition of cover rate between a set of entity pairs and a set of verb phrases

Figure 6.2: Relation between the size of the relation phrase set ordered by frequency and its

cover rate

 20

6.2 Relation Phrases Clustering

Verb phrases clustering plays an important role in our system. In particular, it helps to alleviate

the problem of relation sparsity, both in the extraction process and final outputs. We now

examine the the results from two of our verb clustering approaches. This is elaborated in Section

4, which addresses relation vector based clustering and context based clustering. We start with a

set of relation phrases that we extracted for the entity pair “Obesity” and “Insulin”.

In Table 6.1, clusters of verb phrases for “Obesity” and “Insulin” are presented in groups.

In general, the second method which groups relations by its contexts produces better results in

this case. Specifically, if we look at the second cluster generated by this method, those verb

phrases actually refer to what the scientists do in the medical domain.

 21

Table 6.1: Relation clusters

Our second experiment was conducted and based on the relations associated with

“Diabetes” and “Obesity”. Table 6.2 indicates the clustering results. Again, clusters generated by

clustering relation vectors tend to have unbalanced cluster sizes, and relations are not clustered

Clusters Relation Vector Clustering Context Clustering

Cluster 1

associated
compared

appear
account for

develop

played a role in
associated

Cluster 2

played a role in

measured
examined

study
investigate whether

showed
observed
modulate
improved

help
provide good glycaemic control in

compared
measured
examined

study
investigate whether

Cluster 3 truncated

appear
showed

truncated
observed

account for
modulate

Cluster 4

develop

improved
help

provide good glycaemic control
in

 22

properly. In contrast, the results from context clustering captures some interesting relation phrase

clusters. For example, Cluster 1 by context clustering reports that studies in the medical domain

often involves a comparison of two variables. However, we note in Cluster 4, that we group

“control” and “normalized” with other verb phrases in this cluster. This is probably because

“control” and “normalized” appear in sentences such as, “the effect was doubled/tripled

compared to the control…”. Here, the verb used to represent an increase in something is situated

in the same context as words used commonly to report findings such as a 'control' group and

'normalized' results. We believe a more careful examination of contexts would help to avoid

these kinds of mistakes.

 23

Clusters Relation Vector Clustering Context Clustering

Cluster 1

be a more important risk factor for

be a more important risk factor

for
be a more important predictor of

found a negative correlation
between

sought an association between

Cluster 2

known

influencing
increased

assess the independence of
evaluate the association of

Cluster 3

be a more important predictor of

found a negative correlation between
sought an association between

assess the independence of
evaluate the association of

influenced
reduces the development of

be a link between
led

control
depended

rose
doubled
tripled
sleep

normalized

control

depended
rose

doubled
tripled
sleep

normalized
known

influencing
increased

Cluster 4

influenced

reduces the development of
be a link between

led

Table 6.2: Relation clusters for “Obesity” and “Insulin”

 24

6.3 Comparison with OpenIE

To evaluate the quality of our relation phrase ranking results, we compare them with the most

famous relation extraction system - OpenIE. We observe that OpenIE does not index some of our

medical entities, thus, their extraction result would be empty. In order to conduct a fair

comparison, we adopted the OpenIE algorithm on our PubMed corpus.

We compare the result qualities of Entity-Relation Search and OpenIE by showing the

precision of ranking results at different ranks for a same set of relationship queries. As shown in

Table 6.3, we manually collected twenty pairs of query entities, covering some popular entities

of diseases, species, chemicals and genes. We expect the ground truth relations for the set of

testing quires we build to cover both obvious and obscure relationships.

As a result, Figure 6.3 shows the precision of the relation query results at each of the

ranks for both Entity-Relation Search and OpenIE. This result is built by executing all of the

relation queries listed in Table 6.3 on both of the two systems, and by manually inspecting

whether each returned relation phrase holds true for its corresponding query entities. As the

figure indicates, the precision of results generated by Entity-Relation Search generally

outperforms those extracted by OpenIE, for the top 20 positions. Among the top five, Entity-

Relation Search achieves 18.9% improvements in precision over OpenIE, which demonstrates

the superior performance of its ranking model.

We also notice that, OpenIE performs better for the precision at the top-ranked result.

Our analysis of this result is that, as we try to capture more relations by diversified context

patterns in our Entity-Relation Search system, we tend to include in our results, some false

positive relations that are just popular in the particular contexts. We will leave this problem for

our future work.

 25

 Query Entity Types Query Entities
1 Disease - Chemical Obesity - Glucose
2 Disease - Chemical Asthma - Aminophylline
3 Disease - Gene Diabetes - Insulin
4 Disease - Species Obesity - Children
5 Disease - Species Cancer - Children
6 Disease - Species Breast Cancer - Children
7 Disease - Species Cancer - Human
8 Disease - Species Influenza- Children
9 Disease - Species Tumor - Mice

10 Disease - Disease Obesity - Diabetes
11 Disease - Disease Tumor - Cancer
12 Chemical - Gene Oxygen - BNP
13 Chemical - Species Calcium - Children
14 Chemical - Species Oxygen - Dog
15 Chemical - Chemical Glucose - Serine
16 Chemical - Chemical Cholesterol- Glucose
17 Species - Species Human - Rats
18 Species - Gene BNP - Patient
19 Species - Gene Tau - Human
20 Species - Gene PCNA - Human

Table 6.3: Test Queries

 26

Figure 6.3: Precision at K for test queries on OpenIE and Entity-Relation Search

Figure 6.4: Number of correct relations discovered by Entity-Relation Search and OpenIE for

each query type pair

 27

In a corpus as large as PubMed, the ground truth of all relations is hard to determine. In

order to compare the recall from both of the two systems, we manually examine the number of

correct relations that each system discovers and report the results in Figure 6.4, for the 20 queries

listed in Table 6.3. Note that results in Figure 6.4 is grouped by entity type pair in queries (i.e.

results under “Disease-Species” refer to query 4-9 in Table 6.3). This result clearly demonstrates

that the pattern-driven relation extraction method used in Entity-Relation Search is more capable

of extracting correct relations than OpenIE. As we can see, Entity-Relation Search is able to find

more correct relations for all 6 type pairs. For example, for queries containing the “Disease-

Species” pair, Entity-Relation Search is able to find 24.3% more correct relations than OpenIE.

This is because the context pattern set that we use to match relation tuples is much more

diversified than OpenIE’s strict “E VP E” pattern.

One significant difference between our system and OpenIE is that, we support searching

relations between entities with context constraints. Since it is not supported OpenIE, we will only

test it on our system. Please refer to our case studies in Section 6.4.

6.4 Case Study and Demo Interface

We evaluate the performance of our search system through two case studies. These studies

should reflect the design of relation phrase grouping and ranking in our system.

Case Study 1:

Suppose a user wants to know the relations between “diabetes” and “insulin”. She inputs these

two keywords at the top of our UI and clicks on the “search” button on the right side. The search

engine returns a list of relation phrases as shown in the screenshot below. These human-readable

 28

text phrases are ranked by our ranking model to best describe the relationships between the pair

of query entities. The first one is “are associated with”, indicating that “diabetes” is associated

with “insulin”.

Immediately below the search boxes, we also provide a list of ranked sub-contexts

represented by keywords. Users could click on “add” to add these keywords/entities to continue

query context-specific relation results.

Figure 6.5: Query result of the Entity-Relation Search system for “Diabetes” and “Insulin”

If we click on a result, for instance, the second one “Need”, we will see a list of

evidences where we extract the relationship. In this view, query entities “diabetes” and “insulin”

are shown in BLUE, relation phrases are in RED and entity modifiers are in GREEN. They are

all part of our extraction patterns. In this example, the three relation phrases “need”, “requiring”,

and “require” are clustered together under the relation phrase “Need”.

 29

Figure 6.6: Pattern annotated snippet evidences for relation phrase “Need”

Case Study 2:

In this example we want to find the relations between entities “diabetes” and “obesity”. The

results are below:

 30

Figure 6.7: Query result of the Entity-Relation Search system for “Diabetes” and “Obesity”

If we click on the first result “Associated”, we will expend the interface and see three text

snippets (see the screenshot below). For each piece of snippet, there is a hyper-link to its original

source. Entities that appeared in the context but not in the query will be presented in PURPLE. In

this example, relation phrases “associated”, “were also associated with” and “are often associated

with” are grouped together.

 31

Figure 6.8: Pattern annotated snippet evidences for relation phrase “Associated”

 32

CHAPTER 7
CONCLUSION AND FUTURE WORK

In this paper, we propose the notion of context indexing, to solve the problem of searching

relations with context constraints in an unstructured text corpus. The system preserves context

information for each extraction of the relation phrase and restores it for online processing. Our

online prototype proves that our context indexing is able to support efficient real-time relation

queries.

 We identified several promising directions that our relation search system can explore in

the future. First of all, we plan to build a better model to improve the precision of our relation

tuple extraction. Secondly, we would like to explore other possible ways to present our search

results. For example, we can present search results chronologically, to reflect changes in the time

dimension. Lastly, we will excitingly extend our method to adapt to other domains, and explore

new and related possibilities.

 This project is a collaborative work with Tianxiao Zhang. While we separately document

our individual contributions, we intentionally share some parts of our thesis to improve the

readability of our overall system design.

 33

REFERENCES

[1] Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL,
Wiegers TC, Mattingly CJ. The Comparative Toxicogenomics Database's 10th year anniversary:
update 2015. Nucleic Acids Res. 2014 Oct 17; pii: gku935.

[2] M. Whirl-Carrillo, E.M. McDonagh, J. M. Hebert, L. Gong, K. Sangkuhl, C.F. Thorn, R.B.
Altman and T.E. Klein. "Pharmacogenomics Knowledge for Personalized Medicine" Clinical
Pharmacology & Therapeutics (2012) 92(4): 414-417.

[3] Cheng, Tao, and Kevin Chen-Chuan Chang. "Entity Search Engine: Towards Agile Best-
Effort Information Integration over the Web." CIDR. Vol. 2007. 2007.

[4] Cheng, Tao, Xifeng Yan, and Kevin Chen-Chuan Chang. "EntityRank: searching entities
directly and holistically." Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment, 2007.

[5] Banko, Michele, Oren Etzioni, and Turing Center. "The Tradeoffs Between Open and
Traditional Relation Extraction." ACL. Vol. 8. 2008.

[6] Wu, Fei, and Daniel S. Weld. "Open information extraction using Wikipedia."Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2010.

[7] Fader, Anthony, Stephen Soderland, and Oren Etzioni. "Identifying relations for open
information extraction." Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2011.

[8] Etzioni, Oren, et al. "Open Information Extraction: The Second Generation."IJCAI. Vol. 11.
2011.

[9] Rajaraman, Anand, and Jeffrey D. Ullman. Mining of massive datasets. Vol. 1. Cambridge:
Cambridge University Press, 2012.

[10] Radim Rehurek, and Sojka, Petr. "Software framework for topic modelling with large
corpora." InProceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks.
(2010): 45-50

[11] Miller, George A. "WordNet: a lexical database for English." Communications of the ACM
38.11 (1995): 39-41.

[12] Elasticsearch. https://www.elastic.co/products/elasticsearch

 34

[13] Wei, Chih-Hsuan, Hung-Yu Kao, and Zhiyong Lu. "PubTator: a web-based text mining tool
for assisting biocuration." Nucleic acids research (2013): gkt441.

