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Abstract

Origami has gained popularity in science and engineering because a compactly stowed sys-

tem can be folded into a transformable 3D structure with increased functionality. Origami

can also be reconfigured and programmed to change shape, function, and mechanical prop-

erties. In this thesis, we explore origami from structural and stiffness perspectives, and in

particular we study how geometry affects origami behavior and characteristics. Understand-

ing origami from a structural standpoint can allow for conceptualizing and designing feasible

applications in all scales and disciplines of engineering.

We improve, verify, and test a bar and hinge model that can analyze the elastic stiffness,

and estimate deformed shapes of origami. The model simulates three distinct behaviors:

stretching and shearing of thin sheet panels; bending of the flat panels; and bending along

prescribed fold lines. We explore the influence of panel geometry on origami stiffness, and

provide a study on fold line stiffness characteristics. The model formulation incorporates

material characteristics and provides scalable, and isotopic behavior. It is useful for practical

problems such as optimization and parametrization of geometric origami variations.

We explore the stiffness of tubular origami structures based on the Miura-ori folding pat-

tern. A unique orientation for zipper coupling of rigidly foldable origami tubes substantially

increases stiffness in higher order modes and permits only one flexible motion through which

the structure can deploy. Deployment is permitted by localized bending along folds lines,

however other deformations are over-constrained and engage the origami sheets in tension

and compression. Furthermore, we couple compatible origami tubes into a variety of cellular

assemblages that can enhance mechanical characteristics and geometric versatility. Practical

applications such as deployable slabs, roofs, and arches are also explored.

Finally, we introduce origami tubes with polygonal cross-sections that can reconfigure into

numerous geometries. The tubular structures satisfy the mathematical definitions for flat and

rigid foldability, meaning that they can fully unfold from a flattened state with deformations

occurring only at the fold lines. From a global viewpoint, the tubes do not need to be

straight, and can be constructed to follow a non-linear curved line when deployed. From a

local viewpoint, their cross-sections and kinematics can be reprogrammed by changing the

direction of folding at some folds.
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CHAPTER 1

INTRODUCTION

Origami is a traditional Japanese art of folding paper into a three dimensional model or

figurine. The art form itself has transformed tremendously and has been used as design

inspiration for fashion (Waibel, 2016), jewelry (De Ruysser, 2016), architecture (Arquitectos,

2008), and more. In recent years, origami has inspired innovation in a number of fields

beyond art, such as education, medicine, science, and engineering (Miura et al., 2015). In

its traditional art form, origami requires that a model is folded from a single piece of paper

without any cutting or tearing of the paper. However, in the world of technology and

engineering, origami has become an umbrella term defining systems that are created from

relatively thin material and can be moved or folded into different three dimensional states.

In fact, origami has proved to be a technology with numerous practical applications and the

potential for future implementations seem to be endless.

1.1 Origami in engineering

Origami brings numerous benefits and improvements to engineering philosophy and design.

Historically, origami has gained popularity because a compactly stowed or flat system can

be folded into a transformable 3D structure with increased functionality. Folding a flat

patterned sheet can reduce manufacturing costs, and can allow for rapid deployment that

is otherwise not possible with conventional systems. More recently, innovation with origami

has pivoted on its capability to create programmable and re-programmable systems that

can change shape, function, and mechanical properties. These new capabilities can lead to

applications in various scales from nanometer to meter (Cho et al., 2011); and in various

disciplines from bio-medicine to architecture (Peraza-Hernandez et al., 2014).

Some examples of possible applications at different scales are shown in Figure 1.1. At large

scales, civil engineering and architectural systems can be deployed to provide disaster relief

shelters (Thrall and Quaglia, 2014), or could be used to create façades that adapt to the

elements (Del Grosso and Basso, 2010). For space structures, solar arrays could be launched
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Figure 1.1: Potential engineering structures employing origami based design. (a) Reconfigurable
façade on the Kiefer Technic Showroom. The panels can be moved to control light and shading
within the building (Ernst Giselbrecht + Partner, 2007). (b) International Space Station. Solar
arrays can be compactly folded during launch and can deploy for a maximum surface area. The
system can also reconfigure to maximize solar insolation (NASA, 2009). (c) Actuator folded using
origami concepts can be deployed using internal pressure. Origami can allow for a compact initial
configuration, an increased stroke, and a variety of actuator shapes (from Martinez et al. (2012)).
(d-e) Robotic systems that use origami to assemble themselves. Origami concepts can also be
used to allow for motion within the robotic device (from Felton et al. (2014) and Wood (2008)).
(f) Design for a deployable origami stent graft. Biomedical devices created with origami can be
placed with minimally invasive techniques and can be deployed within the body (from
Kuribayashi et al. (2006)). (g) Nanoscale mechanisms created by folding of DNA. The systems
can have controlled reversible motion in multiple directions (from Marras et al. (2015)).

in a compact payload, yet with origami principles they can deploy to maximize surface

area and functionality (Campbell et al., 2006; Zirbel et al., 2013). Aircraft with adaptable

components could be designed to improve efficiency and flight capabilities (Barbarino et al.,

2011). In intermediate (medium) scales, origami could be used for reconfigurable robotics

(Felton et al., 2014), actuators (Martinez et al., 2012), toys, and educational tools (Lang,

2011). At much smaller scales, origami could revolutionize biomedical devices (Randall et al.,

2012), and could be used for self-assembling robots that would be difficult to construct with

conventional methods (Ma et al., 2012). Furthermore, origami inspired metamaterials and

devices can be reconfigured, and their mechanical properties can be tuned and tailored (Fuchi

et al., 2012; Schenk and Guest, 2013; Silverberg et al., 2014; Filipov et al., 2015a).

Depending on the application, a variety of materials, construction practices, and deploy-
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ment techniques may be used (see Appendix A for related literature review). For example,

microscopic sheets can be bent by inducing stress concentrations, or large hinged panels can

be moved with the use of hydraulic actuators. In this work, we focus on the structural stiff-

ness and geometric aspects of origami, but we do so in an application, scale, and material

independent manner. We explore the characteristics of origami forms and assemblages, and

aim to tailor the structural stiffness through geometric reconfiguration. The work is applica-

ble at multiple scales (Figure 1.2), and can help in making envisioned origami applications

to become a practical reality.

Figure 1.2: Scale of potential applications of the tubular origami assemblages developed in this
thesis (Filipov et al., 2015a). (a) Anisotropic metamaterial with variable stiffness. (b) Deployable
roof structure with high out-of-plane stiffness for transformable building design.

1.2 Geometric versatility of origami

Origami can typically be described as a patterned thin sheet consisting of panels (facets)

and prescribed folds (creases). The folds are assigned a polarity of mountain or valley to

indicate their direction of folding. The geometry of the pattern is crucial in understand-

ing the appearance, folding kinematics, and structural properties of the origami system. In

recent years, the theory and mathematics that govern the folding of origami patterns have

received tremendous interest. Similarly, the design of patterns with new intrinsic properties

has become an important topic of study. In this section, we briefly discuss different geomet-

ric characterizations of origami and show the importance of achieving versatile designs for

origami.
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1.2.1 Classification of origami systems

Classifying different origami systems is important for understanding their general properties

and capabilities. Origami described as flat foldable are systems that can theoretically fold

in a two dimensional plane without panels stretching or intersecting (Justin, 1986; Kawasaki,

1989; Bern and Hayes, 1996; sarah-marie Belcastro and Hull, 2002b,a). This property allows

a large system to fold down completely. Origami systems that are developable can be

created by folding of a continuous flat sheet. These systems can allow for easy manufacturing

of a three dimensional system that starts from flat sheets. As an example, we show the

popular Miura-ori pattern in Figures 1.3 and 1.4.

Figure 1.3: A unit cell of the Miura-ori folding pattern. The structure is flat foldable, rigid
foldable, developable, and has 1 DOF of folding. (a) Dimensions with mountain and valley fold
assignment of the pattern. (b) Pattern folded into a three dimensional unit cell. We use an
extension measure calculated as a percentage of the fully deployed system to define the
configuration of the structure. The extension, shown as a percentage is typically a more intuitive
way to represent the pattern configuration than using specific fold angles. (c) Four folded
configurations of the Miura-ori cell. The system can fold from one flat state to another
completely flat state (developable and flat foldable).

Rigid foldable origami are those that can deploy with deformations concentrated only

at the prescribed fold lines of the pattern (Huffman, 1976; Tachi, 2009a, 2010b; Hull, 2012).

Rigid foldability ensures that the panels of the structure do not bend and stretch during the

deployment. This property is important for creating large scale structures because distinct

hinge elements can be used to facilitate the motion of folds, and realistic materials can

be used to create thickened panels of the structure. The number of degrees of freedom

(DOF) of folding is used to describe the possible ways that a system can fold at any given

time. When in a folded configuration, a rigid origami vertex with four folds is said to have 1
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DOF of folding and can fold through only one motion. Finally, reconfigurable origami are

systems that can change their prescribed folding motion. Multi-DOF systems (# DOF >

1) are always reconfigurable, however many 1 DOF systems can also be reconfigurable. For

example, the Miura-ori cell can be folded with different fold assignments than those shown

in Figure 1.3 (a).

Figure 1.4: A Miura-ori pattern with ten panels in each direction. (a) Mountain and valley fold
assignment of the pattern. (b) Kinematic folding of the pattern into four different configurations.
(c) Twisting mode of Miura-ori pattern shows that the structure can deform in more ways than
defined purely by kinematic rigid folding. Elastic deformations are discussed in Section 1.3.

1.2.2 Geometric variations in origami

The Miura-ori pattern was first explored as a naturally occurring pattern in the buckling of

thin sheets (Miura, 2009), and has gained popularity as it is flat foldable, rigid foldable and

developable. The Miura-ori pattern has been studied in substantial detail from its physical

properties (Mahadevan and Rica, 2005; Schenk and Guest, 2011; Wei et al., 2013), its design

and arrangement (Schenk and Guest, 2013), and its nonlinear behavior (Silverberg et al.,

2014). Further research has often aimed to expand geometric variations of the pattern, while

also retaining its desirable properties (Tachi, 2009a, 2010a; Gattas et al., 2013; Xie et al.,

2015b; Dudte et al., 2016).

Being able to vary and control the origami geometry is important for several reasons.

First is the ability to create aesthetically pleasing and geometrically functional shapes. Ad-

ditionally, varied origami geometries could be useful for fitting into pre-constrained spaces

and fulfilling new functions. The geometric design can affect manufacturing and fabrication
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considerations of the system. The geometry of the origami also affects the structural and

stiffness properties of the system. Finally, systems with multi-physical aspects could have

intrinsic properties that can be tailored by geometric reconfiguration.

Figure 1.5: Tubular origami systems introduced in this thesis. All of these variations are rigid
and flat foldable. (a) A tubular system that has the cross-section of a dog (Section 6.2). (b) A
tube that follows a three dimensional spiral (Section 6.3.3). (c) An undulated canopy created
from coupled tubes (Section 5.6.2).

This thesis introduces designs for tubes and coupled tube variations that are inspired by

the Miura-ori pattern. We present tubes with different polygonal cross-sections that can

be programmed by changing the fold directions at some folds (Figure 1.5 (a) - Chapter 6).

Origami tubes can take a wide variety of curved shapes and can follow arbitrary spirals in

space (Figure 1.5 (b) - Chapters 5 and 6). When tubes are coupled together they can make

structures that are deployable, yet stiff and can be used for various practical applications

(Figure 1.5 (c) - Chapters 4 and 5). The tubular assemblages can be made in a wide variety

of geometries and can have unique and tunable mechanistic properties. We focus our work

on flat foldable and rigid foldable tubes, however, origami tubes are not developable and

they require gluing or some other connectivity for creating the complete structure. Despite

the higher complexity of manufacturing, origami tubes greatly extend the functionality of

engineered thin sheet structures. Tubular origami can be inflatable similar to actuators

and bellows. Furthermore origami tubes and coupled origami tubes have a self-constraining
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geometry that makes them suitable as stiffened structures, energy absorption devices, and

systems with enhanced mechanical characteristics.

1.3 Structural characterization of origami

The theory behind rigid origami has been studied in detail in recent years, and mathematical

definitions have been used to show rigid foldable vertices and patterns (Huffman, 1976; Tachi,

2009a, 2010b; Hull, 2012). Despite the mathematical definitions for rigid folding, origami in

the real world can bend and twist in a multitude of ways. Figure 1.4 (c), for example, shows

a twisting mode of the Miura-ori shape. The system deforms in a fashion different from

simply folding the prescribed fold lines. This means that, in reality, the Miura-ori pattern

has more than one degree of freedom for elastic deformation. In fact, this is true for origami

structures, and it is possible to deform them in a variety of ways different from the intended

kinematic motion. In this thesis, we study these deformations that include panel stretching

and shearing, panel bending, as well as fold bending. Understanding, quantifying and ana-

lyzing these motions is important for the practical design of origami systems. The geometry

of the origami has a significant effect on stiffness and deformation modes. Furthermore, by

better understanding the structural stiffness of origami, we could aim to tailor and improve

their properties, functionality, and practicality.

1.3.1 Local behavior of origami

The local physical characteristics of thin folded structures are not thoroughly understood

yet. The bending, stretching and folding of thin sheets can be complex and involve nonlinear

behavior. The thin sheet panels are prone to buckling from having large length-to-thickness

ratios, yet they are also partially braced and stiffened by the adjacent panels in the origami

pattern (Witten, 2007). Furthermore, a major issue that often occurs with origami systems

is that they are typically constructed with the assumption of “zero thickness,” meaning that

the panels have no finite thickness. In reality, however, the finite thickness leads to stress

concentrations at the fold vertices and thus thickness needs to be accounted for in practical

designs (Chen et al., 2015).
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Localized effects at the fold lines can also be important to the global structural behavior

(Vliegenthart and Gompper, 2006). The folds undergo large deformations, which are typi-

cally nonlinear for most types of creased materials (e.g. Nagasawa et al. (2003); Lechenault

et al. (2014)). Origami folds that are also bent numerous cycles may experience fatigue,

cracking, or localized failures that would affect behavior (Durney and Pendley, 2004). An

alternative to these issues may be to use rotating hinges in lieu of the fold lines, however

these may experience stick slip friction or other nonlinearities.

We explore some of the local origami effects in Chapter 2. We primarily do this to simplify,

distill and linearize the most important origami behaviors. We explore the scale dependence

of these behaviors and aim to quantify the stiffness of origami in terms of length scales and

material properties. Ultimately, we develop constitutive and phenomenological relations to

quantify the stiffness of origami for global system analysis.

1.3.2 Global analysis of origami

Beyond analyzing the local effects, characterizing the global stiffness and deformations of

the origami is important for evaluating the feasibility and practicality of full structures.

The global analysis of origami systems could be performed in several ways: 1) Analytical

solutions for elasticity problems related to origami, where typically a unit cell or a portion of

the pattern is explored empirically, e.g. Hunt and Ario (2005), Hanna et al. (2014), Qiu et al.

(2016), Brunck et al. (2016). These analytical approaches are typically suited for one specific

origami pattern and cannot be readily used for origami systems; they also often assume that

deformation only occurs as folding along the prescribed fold lines. 2) A bar and hinge method

where panel in-plane deformations are restrained using bar elements while bending of panels

and folds is modeled using rotational hinges, e.g. Schenk and Guest (2011), Wei et al. (2013).

3) Numerical methods, and particularly, finite element (FE) methods where the system is

discretized in a detailed fashion, e.g. Schenk et al. (2014a), Lv et al. (2014), Gattas and You

(2015b), Peraza Hernandez et al. (2016). The FE approach often provides higher accuracy,

however, it tends to be computationally expensive, and depending on the discretization

technique may not be suitable for studying patterns with varying geometries. In this work,

we focus on the bar and hinge modeling approach because it is simple and computationally
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efficient, yet it provides sufficient accuracy and information about the origami behavior.

When we study the various origami tubes and coupled tube assemblages, we use eigenvalue

as well as static analyses to explore and quantify behavior. The eigenvalue analyses give a

global overview of the stiff and flexible deformation modes of the origami structure. These

are characteristic properties of the actual origami system and thus are independent from

the force-displacement cases and practical applications. Eigenvalue bandgaps could also be

used for the analysis to separate desirable deformation modes, such as kinematic folding;

and non-desirable modes, such as bending and twisting. The static analyses, on the other

hand, are useful when tailoring the structures to more practical applications. For example,

we evaluate different structures as cantilevers, or beams subjected to three point bending.

These global analyses can be used to better understand the wide variety of geometric origami

variations introduced in this thesis.

1.4 Thesis scope and organization

The overarching objective of this thesis is to explore the structural properties of origami

systems, and particularly, to understand how geometric variation can be used to tailor

stiffness. We use well known origami patterns such as the Miura-ori, and explore new tubular

origami systems. The structural properties are investigated on a local as well as a global

scale, aiming to create a paradigm for characterizing stiffness of origami. The thesis explores

reconfiguring systems and other origami that have novel properties and characteristics. The

first part of the thesis discusses the modeling techniques used to simulate origami and also

establishes scaling properties for different structural behaviors. We show basic applications

of these analytical tools and discuss their abilities to rapidly evaluate geometric variations

of origami. In the remainder of the thesis, we develop new types of origami and explore how

their geometry affects the structural properties. We introduce a coupled tube system that

is easy to deploy, yet difficult to bend and twist. We explore variations and assemblages of

these coupled systems and introduce a new set of polygonal tubes. We focus on creating

generalized methods that can define origami tubes and that can simultaneously be used to

predict behavior and reconfigurable properties of the systems. A more detailed discussion

of the thesis organization follows.
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Chapter 2 explores the stiffness of thin origami type sheets with the objective of informing

the stiffness parameters used in the bar and hinge model. We first explore the in-plane

stretching and shearing of a thin sheet which is some orders of magnitude stiffer than the

bending behaviors. We introduce and show a new (so called N5B8 ) bar and hinge model

that can provide a scalable and isotropic estimate for in-plane effects. We next perform a

detailed study on the bending behaviors of the thin restrained origami panels. We explore the

behaviors for small and large displacement and show that the panel geometry significantly

affects the bending stiffness. At the end of this chapter, we perform a literature review on

experimental testing of fold line bending. We explore the experimental characteristics and

develop scalable parameters that can be used to inform bar and hinge models.

In Chapter 3, we improve, verify, and test a bar and hinge model that can be used for

analyzing elastic stiffness, and estimating deformed shapes of origami. The model simulates

three distinct behaviors: stretching and shearing of thin sheet panels; bending of the initially

flat panels; and bending along prescribed fold lines. Within our study we introduce the N5B8

model that employs five nodes and eight bars to model the system. The model is simple

and efficient, yet it can provide a realistic representation of the structural characteristics of

origami assemblages. It can be adapted for different problems and can be used to model

a variety of three dimensional origami structures. The simplicity and efficiency of this

model makes it suitable for practical problems such as optimization and parametrization of

geometric origami variations.

The so-called “zipper” coupled origami tubes are introduced in Chapter 4. The chapter

first shows the basic structural characteristics of a single origami tube, and then explores

the effect of coupling tubes in different ways. We show that the zipper tubes can deploy

with deformation localized at the flexible folds lines, however, for other motions, the system

is over-constrained and the thin sheets become engaged in tension and compression.

In Chapter 5, we develop a more generalized definition for the coupled tube systems,

such that they can be created with different cross-sections and can take on curved profiles.

We present a methodology to create slab and roof type structures that have a flat top and

have a maximum stiffness when fully deployed. We explore how geometry affects stiffness

of the structures, and we find that tubes that have more of a zig-zag geometry can have

reasonably high out-of-plane stiffness at all points during deployment.
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Chapter 6 presents origami tubes with polygonal cross-sections that can reconfigure into

numerous geometries. We develop a generalized approach to construct these tubes where

a cross-section is projected in space. We discuss the variety of tubular structures that can

be conceived and we show limitations that govern the geometric design. The cross-section

and kinematics of the tubular structures can be reprogrammed by changing the direction of

folding at some folds. Reconfiguring the cross-sections can be used to change the geometry,

volume, and stiffness characteristics of the origami tubes. We show that tubes can be

constructed such that they have a high out-of-plane stiffness similar to corrugated pipes.

In Chapter 7, we provide an overview of the main findings and conclusions from this

thesis. We also provide short and long term research ideas that can build upon this work or

are important research topics in the general field of origami engineering.

The focus of the thesis is to characterize the stiffness of origami, with a particular empha-

sis on new tubular systems. The scope of the thesis is intentionally limited in some aspects.

While we explore and point to specific applications that can be achieved with origami and

with the newly developed systems, we do not explore, design, or produce any specific appli-

cation. Our work has not explored many other phenomena that affect origami structures, for

example, the effect of finite thickness or nonlinear behavior are not studied here. We believe

that this work provides a baseline that can be used by future researchers and designers to

create physical implementations. Similarly, we have performed most of this work to be scale

and material independent as the concepts produced here are valid for a variety of sizes and

physical creations.
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CHAPTER 2

SCALABLE PROPERTIES OF ORIGAMI SYSTEMS

In this chapter, we study the deformations of typical origami components, and we explore

how origami stiffness is affected by geometry. We focus on three fundamental physical

behaviors of origami: 1) stretching and shearing of thin sheet panels, 2) bending of the

initially flat panels, and 3) bending along prescribed fold lines. This study is performed

primarily to inform the stiffness parameter definitions of a so called N5B8 bar and hinge

model discussed in detail in Chapter 3 (the name N5B8 is because the model has five nodes

and eight bars). The bar and hinge model is simple and efficient, yet it can provide realistic

representation of stiffness characteristics and deformed shapes. In this chapter, we perform

detailed finite element analyses to better understand the physical origami behaviors and

to create phenomenological relations that define stiffness of the bar and hinge model. The

stiffness of the fold lines is also informed by existing experimental research on origami type

materials. We show that the model can be made scalable, isotropic and its stiffness can be

defined using length scales and material properties.

Origami typically consists of flat thin sheet panels (or facets) that are interconnected by

fold lines (or hinges). The specific fold pattern and geometry have a large influence on

both the folding behavior and the mechanical characteristics of the folded structure. In this

chapter, we explore the stiffness of the panels and fold lines locally, so that we can inform

the bar and hinge model for global analyses of origami. Although the bar and hinge model

could be adapted for different origami structures and various elastic behaviors, we make some

preliminary assumptions so we can have a more focused approach. We assume rigid foldable

origami that can fold through a kinematic motion where panels remain flat and deformation

occurs only at the fold lines. We also also assume that the thin sheets are continuous and

no cuts are present.

The kinematics and elastic deformations of origami can be readily observed from physical

models and have been studied by many researchers (e.g. Demaine et al. (2011); Schenk and

Guest (2011); Wei et al. (2013); Evans et al. (2015); Brunck et al. (2016)). If we ignore

buckling (or crumpling) of the thin sheets, the elastic behavior of origami can typically be
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Figure 2.1: The fundamental elastic behaviors of origami are discussed in this chapter. A physical
paper model (top row), the bar and hinge placement for one panel in the N5B8 model (middle
row), and bar and hinge placement on an origami tube (bottom row). A thin sheet is significantly
stiffer in shear and stretching and can support the weight of a bag. Bending of panels results in
localized curvature about the shorter diagonal, while the fold lines are assumed to be more
flexible and bend along a prescribed line. The behavior of each origami panel and fold (simulated
using bars and hinges) can be placed into a global system model.

grouped into three distinct fundamental behaviors that are presented in Figure 2.1. This

chapter is dedicated to these three behaviors and thus it is organized as follows: In Section

2.1 we study the in-plane stretching and shear of flat thin panels ; Section 2.2 discusses the

out-of-plane bending of the initially flat panels ; and in Section 2.3 we explore the bending

along prescribed fold lines. Section 2.4 presents concluding remarks from this chapter.

The in-plane behavior of origami has been largely ignored by previous research because

the in-plane stiffness is orders of magnitude higher than the bending stiffness. However, we

believe that it is important to accurately quantify the in-plane stiffness, and capture the

corresponding behaviors. As we show in the following chapters, in-plane behaviors of the

origami could be quite important for many origami structures. The origami tubes discussed

in this thesis and cellular origami assemblages are often over-constrained, and they experience
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tension, compression and shear when loaded. We explore the in-plane deformations, quantify

the stiffness for square and skewed origami panels, and we provide a formulation for the bar

and hinge model that can efficiently capture in-plane response.

Out-of-plane bending of origami panels is important as it contributes to deformations

beyond the rigid origami kinematics (folding only at fold lines). The bending of panels has

been modeled in different ways, but most simplified origami models use a rotational hinge

to connect two triangular facets that define the panel. This is likely a valid simplification

for origami. The adjacent panels of origami have some orthogonality to the flat panel and

thus bending of the panel is restrained at the fold lines. The panel bending would thus

occur along the shorter diagonal (lower energy than the long diagonal). This phenomenon

has been verified for origami and for typical thin sheets and crumpled sheets. Due to these

added restrictions, the bending energy and thus stiffness of these restricted sheets is higher,

than unrestricted sheets (Lobkovsky et al., 1995; Vliegenthart and Gompper, 2006; Witten,

2007). In our study, we verify this increased stiffness, and we explore the effect of the panel

geometry for both small and large bending.

In the final section of this chapter, we discuss the bending along prescribed fold lines.

The true behavior of fold lines is likely highly nonlinear and dependent on the materials and

methods used to fabricate the origami structure. We make the assumptions that the fold

has an infinitesimally small width and that thickness of the panels is negligible. We model

the prescribed fold with a single rotational hinge, that has linear elastic behavior. These

assumptions are representative of current practice, but there is certainly a need and interest

to improve understanding and stiffness simulation of fold lines. We use existing experimental

results to inform the stiffness of the folds and we study the interplay between panel and fold

bending.

2.1 In-plane stretching and shear of flat thin panels

In this section, we explore the behavior and stiffness of flat thin panels when they are sub-

jected to in-plane loads (see left column of Figure 2.1). The stiffness of stretching and

shearing a thin sheet is typically several orders of magnitude greater than its bending stiff-

ness as discussed in subsequent sections. Therefore, bending stiffness of adjacent panels is

14



considered insignificant with respect to the in-plane behavior of the panel. Here we study

a single origami panel with different geometries subjected to in-plane loads. When assem-

bled into a full origami system, multiple panels would interact and combine their in-plane

responses as determined by the global geometry of the system. The bar frame is used essen-

tially as a single element to model the in-plane behavior of the panel, thus at the connection

of two panels, there will be two bars at the same location and connecting to the same two

nodes. In this work, we assume that the material properties are locally isotropic and that

the sheet behaves in the same way in all different directions. We also base our formulation

on an unbent panel; when a panel is bent out-of-plane, some of the stretching and shear-

ing behaviors may change, however we feel that the bar and hinge model would provide a

reasonable estimate of the stiffness and deformation.

2.1.1 Definition of bar stiffness for the N5B8 model

For the N5B8 model, we use an indeterminate frame consisting of five nodes and eight bars.

The bars are labeled as horizontal (X), vertical (Y), and diagonal (D) bars based on their

location in the frame (see left column of Figure 2.1). The formulation for the bar elements

is discussed in more detail in Section 3.2.2, and it requires a stiffness parameter KS for each

bar element. The bar stiffness parameters (i.e. components of the KS matrix) are defined

for each bar as

KS = EAB/LB, (2.1)

where LB is the bar length and AB is the bar area. When the indeterminate N5B8 frame

is rectangular, the bar areas can be defined such that the frame will exactly exhibit Poisson

effects for tensile loading in both directions (i.e. isotropic behavior). The bar areas are

defined as:

AX = t
H2 − νW 2

2H(1− ν2)
, (2.2)

AY = t
W 2 − νH2

2W (1− ν2)
, (2.3)

AD = t
ν(H2 +W 2)3/2

2HW (1− ν2)
, (2.4)
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Figure 2.2: Tensile test performed by applying a uniform distributed load to the top edge of a
panel (F = 1) and restraining the bottom edge with a pin and rollers. (a) Deformed shapes of a
square panel simulated with a discretized FE model (left) and the N5B8 model (right).
Deformation is scaled by 1000 and undeformed outline is shown with dotted line. (b) Deformed
shapes of skewed panels scaled by 100. (c) Normalized vertical stiffness of the panel with respect
to the skew γ. The analysis is presented for the discretized FE case, the N5B8 model, and
different FE cases using one or two elements only (S4 shell, Q4, T3A, and T3B).

for the horizontal (X), vertical (Y), and diagonal (D) bars, respectively. The isotropic

behavior for a tensile load on a square panel is shown in Figure 2.2 (a). For tensile loads,

a rectangular N5B8 frame will have a stiffness equivalent to a solid block of material (i.e.

EA/L = EWt/H). These definitions are based on square panels, however, in subsequent

sections we show that these assumptions provide reasonable estimates when the panels are

skewed.

When subjected to shear (Figure 2.3) the frame stiffness is dependent on the chosen

Poisson’s ratio. From Equation 2.4, when a low ν is used, the diagonal bars have a low area,

and the frame demonstrates a low shear stiffness. The converse is also true, and increasing

ν increases the shear stiffness. This behavior is opposite to real isotropic materials where

shear stiffness decreases as ν increases. A serendipitous case occurs when ν is set to 1/3, the

behavior of the frame model in shear is identical to that of a homogeneous, isotropic block

of material. As shown on the right of Figure 2.3 (d) the top of the frame displaces laterally

in the direction of loading and each diagonal bar carries a force of F/2 in the X direction.

The frame displacement matches the lateral displacement of a solid block with dimensions

W ×H× t loaded in simple shear, analytically defined as ∆x = FXH/GWt, where FX is the

total shear force and G is the shear modulus, defined as G = E/2(1 + ν) for a homogeneous,
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isotropic, linear elastic material. With ν = 1/3, the frame is scale independent for shear

loadings, similar to any generic FE approach. In Figures 2.3 (c) and (f), notice that the

trends of discretized FE and N5B8 are similar.

When considering skewed and irregular panels, the height (H) of the panel is calculated

as the average distance between nodes 1 to 4 and 2 to 3, while the width (W ) is the average

distance between nodes 1 to 2 and 4 to 3 (see Figure 2.1). As will be shown in the subsequent

section, these basic definitions provide a realistic behavior for the panel for various in-plane

loads. In the future, it may be possible to find more advanced definitions for the individual

bar stiffness that may improve the performance of the indeterminate N5B8 frame.

2.1.2 The shear and stretching of skewed panels

In Figure 2.2 we study a flat thin panel subjected to a tensile test, where a uniform load

of F = 1 is applied upward at the top of the panel, while the bottom is restrained in the

vertical direction. The system is fully restrained out-of-plane. In our work, we use arbitrary

units for force and length, although we could use any consistent units (e.g. newtons and

millimeters). The panel has a height and width of 1 and a thickness of 0.01. A Young’s

modulus E = 106 is chosen arbitrarily, and has units of force per length squared. A Poisson’s

ratio of ν = 1/3 is used such that the N5B8 model exhibits a simple shear behavior.

As a reference, we use a discretized FE model to study the behavior of a flat thin panel.

In this and subsequent sections of the chapter we use the Abaqus FE software (Dassault

Systemes Simulia Corp, 2010) with the S4 general purpose shell elements with finite mem-

brane strains that are appropriate for small and large deformation analyses (these elements

typically outperform other shell elements - for more information on the FE analyses, see

Section 4.2.3). We have evaluated mesh convergence for the stretching and shear examples,

and we choose a discretization of 20 x 20 elements which provides a displacement solution

for a skewed panel that is within 0.013% of a mesh with double the number of DOFs. The

displaced shapes of the discretized FE and the N5B8 models are shown for square and skewed

cases in Figure 2.2 (a) and (b) respectively. The N5B8 model is able to capture the isotropy

of the panel and the general deformed shape relatively well. The philosophy of the bar and

hinge model is similar to the FE inspired models used by Resch and Christiansen (1971),
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Figure 2.3: Shear test performed by applying a uniform distributed load to the top edge of a
panel (F = 1). In (a-c) only the bottom edge is restrained with pins, while in (d-f) the top edge is
also restrained with rollers. (a) Deformed shapes of a square panel simulated with a discretized
FE model (left) and the N5B8 model (right). Deformation is scaled by 300 and undeformed
outline is shown with dotted line. (b) Deformed shapes of skewed panels scaled by 100. (c) and
(f) Normalized horizontal stiffness of the sheet with respect to the skew γ. (d) and (e) Deformed
shapes scaled by 300. The analysis is presented for the discretized FE case, the N5B8 model, and
different FE cases using one or two elements only (S4 shell, Q4, T3A, and T3B).
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however, it is clear that the N5B8 is able to capture isotropy and stiffness better than models

that employ T3 elements.

In Figure 2.2 (c), we show the normalized vertical stiffness with respect to skew, where

the behavior of the discretized FE model is considered an accurate representation of the

real behavior. The vertical stiffness for each case is calculated as K = F/(∆Y ), where ∆Y

is the average vertical displacement at the top surface of the panel. The stiffness is then

normalized by the axial stiffness of the square piece of thin elastic sheet shown in Figure 2.2

(a) (i.e. by EWt/H). The stiffness vs. skew is approximated by the N5B8 model as well as

by conventional elements. The different models used with number of DOFs active in-plane

are: discretized FE - 1323 DOFs; N5B8 - 10 DOFs; a single shell (S4) - 12 DOFs; a quad

(Q4) - 8 DOFs; and two triangular elements (T3A and T3B) - 8 DOFs. The N5B8 model

approximates axial stretching stiffness well for various amounts of skew.

Similar analysis are performed for two cases of shear applied to the thin panel. In one

case, the element is restrained only on the bottom (Figure 2.3 a-c), and in the other it

is restrained on both the top and bottom, and is subjected to (theoretically) simple shear

(Figure 2.3 d-f). The shear stiffness is calculated as K = F/(∆X), where ∆X is the average

horizontal displacement at the top surface of the panel. The stiffness is then normalized

by the shear stiffness of a square piece of thin elastic sheet subjected to simple shear (i.e.

by GtW/H). The N5B8 and other single element models typically overestimate the shear

stiffness by about 30-80%. Of particular interest is the simple shear case with no skew

(γ = 0◦) where most models match the stiffness of a simple shear panel, while in reality

the discretized case is more flexible. The higher flexibility occurs because the material in an

actual panel experiences both tension and shear, and not theoretical simple shear.

Although the N5B8 model overestimates the shear stiffness for both cases, it follows similar

trends to the discretized FE analysis. When not restrained on top, the shear stiffness reduces

with skew, and when restrained on top the shear stiffness slightly increases and then decreases

with higher skew. The deformed shape for shear loading of the N5B8 model is similar to

the discretized FE case, however the displacements are underestimated. It should be noted

that shear in a complete origami structure would likely be more complex than the two cases

presented here, as it may be accompanied with moments and localized axial forces. In

summary, the N5B8 model is capable of capturing tensile isotropic deformations of flat thin
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panels with and without skew. The model approximates axial stiffness well, and although it

overestimates shear stiffness, the stiffness follows expected trends with respect to skew.

2.2 Out-of-plane bending of flat panels

The out-of-plane bending of origami panels presents an interesting phenomenon because

adjacent panels can be oriented orthogonally and can restrict bending (see middle column

of Figure 2.1). This restriction prevents the panel from bending with a single curvature

over the length of the long axis, and instead a more complicated bending occurs where the

panel deforms along its diagonals (Demaine et al., 2011). This phenomenon tends to be

more pronounced for large deformation bending and has been studied in previous research

(Lobkovsky et al., 1995; DiDonna, 2002; Witten, 2007). The restricted bending is related

to the conical dislocation problem where a flat circular sheet is forced to bend into a hole

with a smaller diameter (e.g. Cerda et al. (1999); Cambou and Menon (2011)). The large

deformation bending leads to crumpling of the material and localized stretching and shearing

of the thin sheet (e.g. Pereira et al. (2010)). For modeling of origami, we investigate the

stiffness of both small and large deformation bending of the thin panels. The bar and

hinge models use an angular constraint to approximate the deformation and stiffness of

panel bending. By studying the detailed bending of thin panels, we formulate analytical

expressions for the bar and hinge model that scale stiffness based on material and geometric

effects.

2.2.1 Panel bending stiffness: from small to large displacements

We explore the stiffness scaling of a thin panel that is restrained, meaning that there are

adjacent panels positioned out-of-plane along the edges (at fold lines), and thus these or-

thogonal panels limit out-of-plane deformation of the flat sheet. In Figure 2.4 (a-b) we show

a FE discretization of a restrained rhombus panel with a long diagonal DL = 1.4, a short

diagonal DS = 1.0, and four restraining panels with a vertical width of 0.4 (for more infor-

mation on the FE analyses, see Section 4.2.3). Boundary conditions are imposed on three

corners and a displacement control is placed on the fourth. We constrain the minimum six
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degrees of freedom to make the system statically determinate. With the problem set-up, it

is possible to achieve panel bending along either of the two diagonals of the restrained panel.

For different geometries of this problem, we have verified that for large displacements, bend-

ing always occurs about the shorter diagonal and thus we limit the dimensions to DS < DL.

For subsequent analyses, we apply a displacement control trajectory that follows a rotation

of the bending angle θB about the short diagonal. The vertical reaction on the left corner

(RA) is used to calculate the bending moment about the sheet as MB = RA ∗DL/2.

The problem converges successfully, and our chosen discretization of 30x30 shell elements

for the flat sheet provides solutions that are close to a FE model with double the number of

DOFs (0.12% difference for small deformations θB = 0.1◦ and 0.21% for large deformations

θB = 70◦). The moment bending relation of the entire panel can be represented as MB =

θBKB, which can subsequently be used to formulate the stiffness for the angular constraints.

The FE analysis from small to large displacements for three sheets with different geometries

is shown in Figure 2.4. In this section, we discuss different scaling properties, and basic

definitions for the N5B8 model, while in the next section we explore the geometric effects.

We use several parametric analyses to explore the bending behavior of thin restrained

panels for small and for large displacements. The in-plane stiffness of the thin adjacent

panels is high enough to prevent bending and buckling at the edge connecting two panels

(i.e. at the fold line on the perimeter of a panel). We confirm that the stiffness of restrained

bending is higher than that of unrestrained sheets that are free to bend along the edges. Some

of the stiffness scaling characteristics are the same for both small and large deformations. In

particular, in Figure 2.5 we show that bending moment scales approximately with k(DS/t)
1/3

where k is the bending modulus of the sheet, defined as k = Et3/12(1− ν2). These results

are same as those by Lobkovsky et al. (1995), where the bending energy scales with roughly

t8/3 when thickness is varied. In other words, t3 from the bending modulus times t−1/3

from the additional scaling relations. The scaling with respect to the short diagonal length

(i.e.(DS/t)
1/3) is discussed again in Figure 2.7. The relation with this length scale becomes

an important consideration when comparing the panel to fold stiffness as later discussed in

Section 2.3.

The small displacement results for restrained origami panels had not been explored in

detail previously. When a relatively small bending angle (θB < 6◦ ≈ 0.1rad) is imposed,
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Figure 2.4: Bending behavior of thin panels with restrained edges. (a) and (b) FE discretized thin
sheet with restrained edges bent about the shorter diagonal. The total energy in each element is
shown with color. (c) and (d) show the panel bending simulated with the bar and hinge model.
In (a) and (c) the sheet is bent with θB = 0.1◦, and displacements are scaled by 300. In (b) and
(d) the sheets are bent with θB = 70◦. In (a) through (d) displacements along the diagonals are
shown below the deformed structure. (e) The bending moment normalized by k vs. bending angle
for different geometries of thin restrained sheets. The numerical FE solutions (points) are plotted
together with the bar and hinge solutions (lines) defined using Equations 2.5 and 2.6.
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Figure 2.5: Bending moment of thin sheet panels with respect to thickness for (a) small
displacements (θB = 1◦) and (b) large displacements (θB = 70◦). Bending moment normalized by
the bending modulus of the sheet k is not linear and reduces with increasing thickness. The
bending moment normalized by k and by (DS/t)

1/3 results in a flat line - thus we verify that
bending moment and stiffness scale with (DS/t)

1/3 (Lobkovsky et al., 1995). See Figure 2.7 (d)
and (h) for the same scaling relation presented with respect to the length of the short diagonal
DS .

the panel experiences double curvature with bending along both diagonals (Figure 2.4 (a)).

The double curvature matches expected theoretical behavior. The bending moment relation

remains linear for small displacements, the moment scales with θB, and the energy scales

with θ2
B. There is no tension in the sheet, and bending energy is distributed throughout the

panel with higher concentration at the corners on the short diagonal (Figure 2.4 (a)). The

bending stiffness for small deformation bending is highly dependent on the geometry of the

panels which is explored in detail in Section 2.2.2. The stiffness scales with a parameter Σα

that is introduced to describe the corner geometry of the short diagonal. The parameter

Σα represents the deviation of the short diagonal corners from being flat edges where the

restraining panels on the side are collinear (see Figure 2.7). A square panel will have all

corners of 90◦ and Σα = 180◦ = π. Based on the scaling observations and the geometric

investigation (in the next section), we formulate an equation to define the bending moment

for small displacements of the panels as

MBS = θB(0.55− 0.42
Σα

π
)k

(
DS

t

)1/3

= θB(0.55− 0.42
Σα

π
)

Et3

12(1− ν2)

(
DS

t

)1/3

. (2.5)
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Figure 2.6: Bending moment of panel with respect to the bending angle. The FE analysis
presented is the same as that for the Σα = 142◦ panel in Figure 2.4. (a) The moment (MB) vs.
bending angle (θB) cannot be represented well with a linear fit. (b) The moment (MB) scales

almost linearly with the bending angle raised to the power of 4/3 (θ
4/3
B ).

The equation is suitable for panel geometries in the range of π/2 < Σα < π, which would

satisfy most origami structures.

For the large displacement analyses (θB > 23◦ ≈ 0.4rad), we observe the same global

behaviors as previous research (Lobkovsky et al., 1995). The bending becomes restricted

along the short diagonal DS (Figure 2.4 (b)). In this case, tensile forces develop over the

sheet’s surface, and flexural deformations become restricted to a small area focused at the

bending ridge. In Figure 2.6 we verify that, for large displacements, the bending moment

scales reasonably well with θ
4/3
B . This behavior differs from a linear hinge and, in contrast,

the restrained panel becomes stiffer with larger bending angles (Figure 2.4 (e)). For large

displacements, stiffness is not significantly affected by the panel geometry and boundary

conditions, which is similar to observations in previous research (DiDonna, 2002; Witten,

2007). The bending moment for large displacements can be approximated as

MBL = θ
4/3
B (1.0)k

(
DS

t

)1/3

= θ
4/3
B (1.0)

Et3

12(1− ν2)

(
DS

t

)1/3

, (2.6)

which includes the increasing stiffness with higher angles of θB.

We can further use Equations 2.5 and 2.6 to inform not only the bar and hinge models, but

also other phenomenological models aimed at simulating the structural behaviors of origami.
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As an example, we can use the small deformation relations to define each of the stiffness

components in the diagonal matrix KB (see Equation 3.1) as

KBS = (0.55− 0.42
Σα

π
)k

(
DS

t

)1/3

. (2.7)

Large displacement nonlinear cases will require an alternative formulation.

The N5B8 model can be used to capture both small and large displacements. Because

two rotational hinges are used on each diagonal of the panel, half of the appropriate stiffness

(KB/2) is placed on each rotational constraint. The deformed shape in (Figure 2.4 (c))

is obtained by using Equation 2.7 to define each angular constraint with the correspond-

ing diagonal (DS or DL). This allows for the central node to deform downward and the

deformed shape looks similar to the FE approximation where there is bending along both

diagonals. This approach also provides a good approximation for the displaced shape with

large displacements because bending occurs primarily about the short diagonal, which is

more flexible. Unfortunately, Equations 2.5 to 2.7 assume panel bending in only one direc-

tion, thus the stiffness of the N5B8 model is lower when both diagonals are defined with

these approximations. A better stiffness approximation is obtained when the short diagonal

is defined based on Equations 2.5 to 2.7, and the long diagonal is defined to be about 100

times stiffer. This adaptation provides a reasonable representation of panel bending stiffness

and the deformed shapes consist of bending about the short diagonal. Future studies could

be pursued to define both the short and long diagonals in a manner that would capture an

accurate deformed shape and stiffness simultaneously.

2.2.2 The effect of panel geometry on bending stiffness

In this section, we explore the influence of the geometry and skew on the bending stiffness

of panels. The restrained rhombus panel presented in Figure 2.4, is used as a base case for

four geometric variations: Case A - Change DS, and keep DL constant; Case B - Change

DL, and keep DS constant; Case C - Change DL and DS, and keep the panel area (A)

constant; Case D - Change DL and DS, and keep panel corner geometry Σα constant.

Cases A, B and C induce a variation of the panel corner geometry Σα which is calculated as
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Σα = α1 +α2 +α3 +α4 = 4α1 = 4 arctan(DS/DL). Cases A, B, and D induce a change in the

panel area A = DL ∗DS/2. For these analyses we calculate a normalized bending stiffness of

the sheet as KB = MB/θB/k. The results for small and large displacement cases are shown

in Figure 2.7. The bending stiffness for small displacement scales well with the geometric

parameter Σα. As is later shown in Figure 2.8, we have found that this parameter provides

a good correlation for different types of panel skew. An elongated panel with Σα = 0.6π

(DL ≈ 2DS) would have about double the stiffness of a square panel with Σα = π. This

large difference in stiffness occurs because the non-square, elongated geometry limits double

curvature, and instead the bending energy becomes concentrated at the corners of the short

diagonal. This phenomenon also occurs with skew and is represented in Figure 2.8 (a). The

stiffness scales roughly with the length to thickness ratio as (DS/t)
1/3 when the geometric

parameter Σα is held constant. The results for large deformations in Figure 2.7 (g)-(j)

show that the geometric parameter Σα does not have a significant influence on the bending

stiffness and the stiffness scales primarily with the length to thickness ratio as (DS/t)
1/3.

We also explore the geometric effect of skewed panels by performing the same bending

analysis with panels of different geometries and a constant short diagonal DS. In Figure

2.8, we show seven different geometries, with Cases 1-3 using a rhombus geometry similar

to Figure 2.4, and Cases 4-7 using a modified geometry derived from the minimal ridge

case where Σα = 0 (Witten, 2007). The geometric parameter Σα for Cases 1-3 is modified

by changing the length of the long diagonal DL. Cases 4-7 are modified by increasing the

angles α starting from the minimal ridge case. The bending stiffness for small displacements

is highly dependent on the corner geometry Σα. When the panel is a square it experiences

double curvature with uniform bending energy over the entire area of the panel. The system

is stiffer when the panel shape is more skewed, elongated, or the corners of the short diagonal

are more obtuse (e.g. Case 3 or Case 6). The stiffer cases occur because bending becomes

restricted at the obtuse corners and double curvature is limited. For the large displacement

cases the skew and geometric parameter Σα do not have a significant effect. In these cases

bending is restricted to the short diagonal of the panel, thus the elongation and skew of the

panel have little effect on the global stiffness.
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Figure 2.7: Influence of panel geometry variations on the bending stiffness of the panel. (a)
Reference geometry of a single panel. (b) Four cases where the geometric parameters are varied
(i.e. DL, DS , A, and Σα). In each case, one variable is kept constant while the other three are
varied. (c)-(f) Normalized bending stiffness vs. geometric parameter for small displacement
bending (θB = 1◦). Stiffness scales roughly as (0.55− 0.42Σα/π). The case where Σα is constant
scales roughly as (DS/t)

1/3. (g)-(j) Normalized bending stiffness vs. geometric parameter for
large bending displacement (θB = 70◦). Stiffness scales roughly as (DS/t)

1/3.
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Figure 2.8: Influence of panel skew on bending stiffness. The panels with different skewed
configurations are quantified by Σα = α1 + α2 + α3 + α4. Normalized bending stiffness vs. panel
corner geometry (Σα), for (a) small displacement bending (θB = 1◦) and (b) large displacement
bending (θB = 70◦). Skew has an influence on the bending stiffness for small displacements, but
not for large displacements.
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Figure 2.9: Energy distribution on thin restrained panel sheet for a small displacement bending
(θB = 0.1◦). The four cases have different panel corner geometries (Σα), and a single scale is
shown for the energy distributions. The square panels (high Σα) have a uniform energy
distribution with bending in both directions. The elongated panels (low Σα) have energy
concentrated at the panel corners and bending occurs primarily in the Y direction. The displaced
shapes are scaled by 300.

2.2.3 Geometric influence on panel energy distribution

In this section, we explore the energy distribution for different bent panels. The energy

distributions can help us to better understand the reasons for the stiffness scaling properties

with respect to geometry. In Figure 2.9, we show the deformed shapes and energy distribu-

tions of four restrained origami panels with different geometries (Σα). The panels are bent

about the short diagonal with a small applied displacement (θB = 0.1◦). The energy distri-

bution results for these analyses are summarized in Table 2.1 with energies organized based

on the finite element behaviors. The behaviors are shown in Figure 2.10 and are grouped

into in-plane and out-of-plane behaviors. In-plane behaviors include stretching in the two

global directions (NX and NY ), and shear (SXY ). Out-of-plane behaviors include bending

shears (SX and SY ) and bending moments in the two directions (MX and MY ), as well as

twisting moment (MXY ). The table only shows the energy of the top restrained sheet.

Although, we perform a large displacement analysis with updated geometry, the displace-

ments are small and we can observe double curvature bending in the thin sheets. For the

more square panels, there is double curvature bending and an even distribution of energy
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throughout the panel surface. The elongated panels have energy concentration at the short

diagonal corners and the curvature in the X direction is higher than that in the Y . The

influence of panel geometry on curvature and bending energies can be observed from Table

2.1 (b). The restricted deformation for the elongated (or skewed) panels explains the in-

creased stiffness observed in Figure 2.8 (a). The increase in the twisting, and shear energies

for the elongated panels (Table 2.1 (b)) occurs because twisting is required to transit from

the conical curvature at the corners to the double curvature at the center of the sheet.

The adjacent restraining panels for the small displacement simulations do not have a sig-

nificant amount of energy (Figure 2.9). Significant stretching and shear forces (and energies)

do not occur for the small displacement analyses because the deformation can be primarily

accommodated through bending of the top panel. Because there is a high concentration of

energy at the corners of the sheet, adding holes there would likely reduce the stiffness for the

skewed panels but less so for the square panels. Therefore, the observed effect that stiffness

is higher for elongated and skewed panels, would likely not be as significant in practical

applications.

Figure 2.11 shows the deformed shapes and energy distributions of the four restrained

panels for a large applied displacement (θB = 70◦). The energy distribution results for these

FE analyses are presented in Table 2.2. The deformed shapes and energy distributions are

somewhat similar for all four cases. Deformation primarily occurs as bending along the

short diagonal (i.e. bending in the X direction) with energy concentrations at the ends of

the diagonal. Stretching and shearing occur for all cases with energy being transferred to
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Figure 2.10: In-plane and out-of-plane behaviors on a thin shell element used in the FE model.
The in-plane behaviors shown in red include stretching (NX and NY ), and shear (SXY ).
Out-of-plane behaviors shown in black include bending shears (SX and SY ), bending moments
(MX and MY ), and twisting moment (MXY ).

the adjacent restricting panels. The energies presented in Table 2.2 only represent the top

restrained sheet, and not the adjacent sheet material. The square panel geometry leads

to higher stretching and shear energies as the cone at the corner of the diagonal becomes

sharper with higher curvature (≈ 25% in-plane energy for Σα = 176◦ vs ≈ 8% for Σα = 0◦).

Although the total energy in the top sheet for elongated sheets is higher, the higher stretching

for square sheets leads to higher energy in the adjacent panels and thus an overall similar

bending stiffness for all geometries (Figure 2.8 (b)). These results agree well with other

literature in the field that explores the large displacement behavior of thin sheets (e.g.

Lobkovsky et al. (1995); DiDonna (2002); Witten (2007)).

We have found that, for large displacement bending, it is important to either use the same

materials at the side panels or to use symmetric boundary conditions to restrain the top

sheet (e.g. as in Lobkovsky et al. (1995)). If we use side panels with a much higher or

infinite stiffness, there is a significant overestimation of the panel bending stiffness. This

increase occurs because the stretching and shearing at the corners is additionally restrained,

and the in-plane energies start to govern the system behavior. In reality, these in-plane

energies would not be as high because they would be mitigated by stretching and bending

in adjacent panels.
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Figure 2.11: Energy distribution on thin restrained panel sheet for a large displacement bending
(θB = 70◦). The four cases have different panel corner geometries (Σα), and a single scale is
shown for the energy distributions. The deformed shapes and energy distributions are similar for
all cases with bending and energy concentrated along the short diagonal.

32



2.3 Bending along prescribed fold lines

Fold lines (or hinges) between two origami panels, is where bending is intended to occur for

the kinematic folding of origami (see right column of Figure 2.1). With modern applications

of origami in engineering, the fold lines can be created in many different ways and from a

variety of different materials. A basic method for creating a fold is to crease the material

by using a die crease, perforating the sheet, or etching into the material. Creasing and

folding the sheet causes permanent localized damage, which leads to a more flexible fold

line (similar to a folded cardboard box). Fold lines can be engineered into composite system

where a flexible material is used at the fold line, while stiff material is used at the panels.

Composite origami can be created using additive manufacturing of multiple materials or

by sandwiching flexible materials between stiff panels. For large scale origami, physical

hinges are often used to facilitate motion between stiff panels with finite thickness. The

characterization, modeling, and behavior of the fold lines has been a wide topic of study,

and there is not a one single approach that can be used for all origami structures and

systems. In this work, we provide a summary of the crease type folds and quantify their

stiffness in scalable terms. The behavior of the composite and hinged origami would likely

be dependent on the specific design, and scalable stiffness properties can be explored on an

individual basis.

When performing detailed modeling of fold lines, it is possible to include a finite fold

width (Peraza Hernandez et al., 2016), or to account for an offset that accommodates hinges

and the material thickness (Edmondson et al., 2014; Chen et al., 2015). However, for most

origami, the fold width can be considered negligible, and the fold is assumed to lie on the

center of the adjacent panels. We make these assumptions for our model, and we are able to

simulate the bending moment behavior of the fold line by connecting adjacent panels with

a rotational hinge. In this chapter, we use a linear elastic bending moment behavior at the

fold lines, however the model can be adapted to capture nonlinearity (e.g. Giampieri et al.

(2011), Mentrasti et al. (2013b)). Origami with creased fold lines can have highly nonlinear

behavior, while those with hinges may involve friction slip-stick type phenomena.
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2.3.1 Stiffness characteristics of creased fold lines

We assume that the behavior over the length of the fold line is constant, and that the

bending moment for the fold can be obtained from MFL = θFKFL where the factor KFL

represents the rotational stiffness of the fold line. The subscript L indicates that this is the

local folding behavior over the infinitesimal small width of the fold, and that the behavior of

the adjacent panels is not included. In Section 2.3.2, we discuss the interplay between the

fold and adjacent panels and provide a stiffness scaling approach for the global fold behavior.

Based on previous research (Lechenault et al., 2014; Pradier et al., 2016), we can expect KFL

to scale with the length of the fold line (LF ) and the bending modulus of the thin sheet (k).

We can obtain the following equation for the localized stiffness of the fold line

KFL =
LF
L∗
k =

LF
L∗

Et3

12(1− ν2)
, (2.8)

where a length scale factor L∗ (in units of length, e.g. m) defines the relative stiffness

of the fold based on the material, fabrication, and geometric properties. The length scale

factor L∗ is assumed to increase with the thickness of the sheet (Lechenault et al., 2014),

however, there is currently no physical basis for determining the length scale, other than

from experimental data. Here, we follow the same methodology and use L∗, however, we

acknowledge that future research may bring about alternative methods to quantify the local

fold stiffness.

To better understand realistic values of L∗, we explore published experimental research

on creased fold lines and summarize our findings in Table 2.3. The experiments consist

of the following: 1 Beex and Peerlings (2009); 2 Huang et al. (2014); 3 Lechenault et al.

(2014); 4 (Mentrasti et al., 2013a); 5 (Nagasawa et al., 2001); 6 (Nagasawa et al., 2003);

7 (Nagasawa et al., 2008); 8 (Pradier et al., 2016); and 9 (Yasuda et al., 2013). Table

2.3 documents the material properties, testing direction for the paper based samples, the

creasing type and the general bending behavior. Several of the experiments crease and cycle

the fold before testing (3,8,9) and in one case the thickness is partially cut or a dash cut is

performed through the thickness (4ab). In the remainder of the cases (1,2,4c,5,6,7), a die

crease mechanism is used and a virgin loading (folding) of the sample is tested. From the

experimental results, we find the initial stiffness of the fold line with respect to the bending
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Figure 2.12: The length scale L∗ with respect to the thickness for the experiments in Table 2.3.
The red (gray in B&W) points are cases where the crease is cycled or pre-cut. The black points
represent cases where a virgin loading is applied to a die crease. The distribution of L∗ from the
different experiments does not show a strong correlation with thickness, and likely material,
fabrication and other properties have a more significant influence. We show representative values
of the length scale for the virgin (L∗V ) and the cyclic (L∗C) tests for a material thickness of 0.36
mm. Two outliers from the experiments (experiment 1 and 4a) are represented off the plot with
the numerical value of the central points (t,L∗).

angle (in radians) and normalize by the fold length to obtain a normalized stiffness KFL/LF

(in units of Nm/m/rad). Most cases where a virgin loading is performed exhibit a highly

nonlinear elasto-plastic type of response, and for our calculations we only use the initial

stiffness at the beginning of the experiment. For each set of experiments a range of values

of the length scale are calculated as L∗ = 1/(KFL/LF/k). The bending modulus (k), uses

thickness of the tested material (t) and the recorded elastic modulus (E) where available.

The value of E is assumed for typical materials if not available from the experimental data,

and we assume that the Poisson’s ratio is ν = 1/3 for all cases. In some of the studies the

range in L∗ resulted from sample variability (4,5,8), while in other studies the range in L∗

can be attributed to the creasing penetration depth (1,2,6,7). Cases with deeper creasing

typically result in more damage to the material and a more flexible fold line (higher values

of L∗); experiments 1, 5, 6, and 7 contain some samples where no creasing is performed.

To show the variability in fold stiffness, in Figure 2.12 we plot the length scale L∗ with
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respect to the thickness for the nine tested specimens. The cases where cyclic loading or

cutting is performed tend to have higher length scales indicating a more flexible fold line. The

cases where only the virgin loading is recorded (1,2,4c,5,6,7) would likely have much higher

length scales (be more flexible) if the fold is cycled or the entire loading curve is considered.

The results from Lechenault et al. (2014) (tests 3) show a trend that L∗ increases with

thickness, however, globally it appears that the material, fabrication, and fold properties

have a much larger effect on L∗. We do not fit the data, but as a point of reference, we

pick two points to show: 1) flexible folds typical for origami with cutting and cyclic loading

(L∗C = 80 mm), and 2) a high stiffness estimate of folds with little creasing or virgin loading

(L∗V = 25 mm). Future experiments can provide improved estimates for the scaling of L∗

with respect to thickness, and other fold characteristics.

2.3.2 Scalable stiffness parameters for fold lines

The results in the previous section provide insight on the behavior of fold lines, where the lo-

calized stiffness can be considered a function of fold length divided by a length scale (LF/L
∗).

The length scale is believed to increase with thickness of the materials thus providing a scal-

able connection to real parameters. We can use these scale independent definitions for the

fold stiffness in the bar and hinge model, as well as other simplified approaches. However,

as currently presented, Equation 2.8 can result in an unrealistically high fold stiffness as L∗

approaches zero. An infinite stiffness may be realistic on a local scale (e.g. when there is no

fold), however the global stiffness of the fold would be limited by the flexibility of adjacent

panel material.

In Figure 2.13, we explore how the local fold stiffness and adjacent material behave for

different L∗. We use 30 mm panels, with a thickness of 0.36 mm to allow a length to thickness

ratio of ≈ 100 for the short panel diagonals (DS = 35.87 mm). This thickness is also close

to many of the experiments presented in Table 2.3. We use a FE model where the panels

and adjacent panels are simulated with shell elements. In the FE model, the localized fold

line is simulated using collocated nodes that are joined in the three Cartesian directions. A

rotational spring is placed at each pair of collocated nodes to simulate the local stiffness of

the fold line (i.e. Equation 2.8).

37



Figure 2.13: Bending of a fold line that connects two restrained panels with t = 0.36 mm. Large
displacement analyses are performed with θF = 40◦. (a) Schematic of the fold and the two skewed
panels with a geometry parameter of Σα = 142◦. (b) Bending of a FE model where the localized
fold line is much stiffer than adjacent material (L∗ = 5 mm). Double curvature bending occurs
similar to a sheet with no fold line. (c) Bending of the system where the localized fold line is stiffer
than most origami (L∗ = 25 mm). Bending occurs primarily at fold line. (d) The normalized
bending stiffness of the fold and the adjacent panels. The maximum and panel stiffness (KFM

and KB) are calculated with different variables (from Equation 2.7), while the fold stiffness (KFL

and KF ) is plotted for different L∗ values (from Equations 2.8 and 2.9 respectively). We show
representative values of the length scale for the virgin (L∗V ) and the cyclic (L∗C) tests.
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We perform a large displacement analysis where the fold is bent to θF = 40◦, and we

calculate the bending stiffness similar to before. We normalize the stiffness by k, and compare

different fold definitions and the adjacent panel (KB calculate from Equation 2.7). In a case

where an unrealistically high stiffness is used for the fold (Figure 2.13 (b)), the system

deforms similar to the minimal ridge case presented in Section 2.2.2. Thus, we introduce

a maximum fold stiffness KFM that represents the stiffness of adjacent panel material. We

assume the case of a minimal ridge and calculate KFM with Equation 2.7 where we substitute

LF for DS and we assume Σα = 0. Considering that the localized fold and the adjacent

material act in series, we calculate a combined fold stiffness as

KF = 1/(1/KFL + 1/KFM). (2.9)

The introduction of KFM limits the maximum stiffness of the fold when L∗ is low (Figure

2.13 (d)). The value of KFM is not important for the analysis, and we find that the N5B8

model provides a reasonable estimate for fold stiffness when either half or double the value

of KFM is used. Bending of the adjacent panels typically has a higher stiffness than the fold

line (KB > KF ) for the typical origami range (realistically large values of L∗). In extreme

cases where a fold is intentionally restricted from folding (L∗ < L∗V ), the entire fold assembly

may be about two to three times stiffer than the adjacent panels. Thus, if the panel to fold

stiffness ratio is used for evaluating system behavior, we believe that a range of KF/KB =

1/20 to 3 would provide a realistic estimate. The ratio may change slightly for different

thickness of the material or L/t ratios.

Equation 2.9 can be used to define the fold stiffness in different bar and hinge models, as

well as other phenomenological models where fold lines are simplified to a rotational hinge

(e.g. Qiu et al. (2016)). We use a FE model and the N5B8 model to explore the asymmetric

bending of a fold and adjacent panel where only one side of the panel is displaced downward

(Figure 2.14). The connectivity of the fold line in the N5B8 model can be performed in two

ways where the panel corners (outside) and/or the panel central node (inside) are connected

to the fold element (see legend in Figure 2.14 or see Figure 3.4 for details). When only

outside or inside connectivity is used, half of the stiffness in Equation 2.9 is distributed to

each rotational constraint. If all four fold components are used, a quarter of the stiffness is
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Figure 2.14: Asymmetric bending of the fold system from Figure 2.13. (a) Bending of a FE model
with folds stiffer than typical origami (L∗ = 1 mm left and L∗ = 25 mm right). When the fold
stiffness reaches realistic origami stiffness values (L∗ > 25 mm) bending occurs primarily along
the fold. (b) The folding angle of the fold (θF - top) and the adjacent panel (θB - bottom) with
respect to the length scale parameter (L∗) for a FE model and different stiffness distributions in
the N5B8 model. (c) Fold and panel bending simulated with the N5B8 model. We show
representative values of the length scale for the virgin (L∗V ) and the cyclic (L∗C) tests.
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distributed to each constraint. The N5B8 model is able to capture the deformed state of the

system relatively well regardless of the connectivity used (when considering most realistic

values of L∗). Using only outside connectivity (which is the only option for N4B5 and N4B6

models) tends to slightly overestimate fold bending, and underestimate panel bending. For

all further analyses we use both the inside and outside connectivity as it seems to provide

the best estimate for the deformed shape of typical origami.

2.4 Concluding remarks

This chapter explores stiffness scaling of origami with an objective to inform the properties

of the bar and hinge model that is discussed in more detail in Chapter 3. The bar and

hinge model can capture three fundamental origami behaviors: 1) stretching and shearing

of thin sheet panels, 2) bending of the panels, and 3) bending of fold lines. We explore

the influence of panel geometry on the origami stiffness, and provide a study on the fold

line stiffness characteristics. We create phenomenological relations to quantify stiffness of

the different origami behaviors. All of these newly determined relations are scale dependent

and incorporate material properties of the system. Thus many of the behaviors have been

explored in the context of origami. The findings from this chapter could be used to inform

the bar and hinge model, as well as other future origami models. A summary of the findings

is presented here:

• All three of the origami stiffness behaviors captured in the N5B8 model can incorporate

length scale effects, thickness (t), Elastic Modulus (E), Poisson’s ratio (ν).

• For in-plane loading, the N5B8 model simulates tensile stiffness of the panel well, but

it overestimates the shear stiffness. It provides a reasonable estimate of stiffness for

square and skewed panels. The N5B8 model can capture isotropic material behavior.

• Panel bending stiffness can be defined to scale based on the width to thickness ratio as

(DS/t)
1/3 and with the bending modulus of the sheet k (suggested by Lobkovsky et al.

(1995)).

• The out-of-plane panel bending stiffness for small displacements is highly dependent

on panel geometry and skew (Σα). Skewed or elongated panels tend to be more stiff

than square panels as they restrict double curvature over the surface.
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• Alternative formulations for panel bending may be used for large displacement bending

of panels, because the stiffness scales with θ
4/3
B (behavior first discussed by Lobkovsky

et al. (1995)). The panel geometry does not significantly influence stiffness for large

displacements.

• Further research can provide insight on how the N5B8 formulation may be adapted

to capture the stiffness transition from small to large displacement panel bending (i.e.

from Equations 2.5 and 2.6).

• Fold line stiffness can be defined to scale with the fold length LF , the bending modulus

of the sheet k, and a length scale parameter as 1/L∗, (first suggested by Lechenault

et al. (2014)). The length scale parameter is believed to scale with thickness, but also

depends strongly on material, fabrication, and geometric characteristics of the fold.

• For origami structures fold bending is expected to dominate, and a panel to fold stiffness

ratios of KF/KB = 1/20 to 3 are expected to be realistic.
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CHAPTER 3

BAR AND HINGE MODELS FOR THE ANALYSIS OF ORIGAMI

Simulating the elastic stiffness and estimating deformed shapes of origami systems is impor-

tant for conceptualizing and designing practical engineering structures. In this chapter, we

explore a simplified bar and hinge model that can simulate essential behaviors of origami.

The model simulates three distinct behaviors: stretching and shearing of thin sheet panels;

bending of the initially flat panels; and bending along prescribed fold lines. The model is

simple and efficient, yet it can provide realistic representation of stiffness characteristics and

deformed shapes. It can be adapted for different analytical problems and can be used to

model a variety of three dimensional origami structures. The simplicity of this model makes

it well suited for the growing community of origami engineers, and its efficiency makes it suit-

able for practical problems such as optimization and parametrization of geometric origami

variations. In this chapter we introduce the model and provide examples of how it can be

used to study origami. Chapter 2 is closely related to this work as it explores stiffness scaling

of origami and provides information to define the parameters for the model.

3.1 Introduction

The field of origami has grown in the past years as it offers novel solutions to problems in both

science and engineering. Applications can range in scale and discipline from micro-robotics

to deployable architecture. A typical origami consists of flat thin sheet panels (or facets)

that are interconnected by fold lines (or hinges). There are many important aspects in the

design and fabrication of origami systems that influence their general behavior and function.

The geometry of the fold pattern determines the flat and rigid foldability of the system,

the different ways in which origami can be folded, as well as the structural stiffness. The

material and specific components used to make the origami can influence the kinematics,

stiffness, and reliability of the origami. As the field of origami has grown, so have the

theoretical, analytical, and fabrication techniques that allow for the successful simulation

and implementation of novel folding solutions.
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Characterizing the elastic and inelastic behavior of origami has become important for

evaluating the feasibility and practicality of these systems. Recently, various approaches

have emerged to model origami behaviors which may be grouped into three categories that

vary in complexity and generality: 1) Analytical solutions for elasticity problems related

to origami have been developed where typically a unit cell or a portion of the pattern is

explored empirically, e.g. Hanna et al. (2014), Qiu et al. (2016), Brunck et al. (2016). These

analytical approaches are typically suited for one specific origami pattern and cannot be

readily used for other origami systems; they also often assume that deformation only occurs

as folding along the prescribed fold lines. 2) A bar and hinge method where panel in-plane

deformations are restrained using bars elements while bending of panels and folds is modeled

using rotational hinges, e.g. Schenk and Guest (2011), Wei et al. (2013). 3) Numerical

methods, and particularly, finite element (FE) methods where the system is discretized in

a detailed fashion, e.g. Schenk et al. (2014a), Lv et al. (2014), Gattas and You (2015b),

Peraza Hernandez et al. (2016). The FE approach often provides higher accuracy, however,

it tends to be computationally expensive, and depending on the discretization technique may

not be suitable for studying patterns with different geometries. In this chapter, we develop

and explore a variation of the bar and hinge model that provides for scalable and isotropic

modeling of origami. To show the practicality of the model, a real origami deformed by a

physical load and a corresponding bar and hinge simulation are presented in Figure 3.1.

The chapter is organized as follows: Section 3.2 discusses basic ideas for modeling origami

and introduces the bar and hinge formulation used in this work. In Section 3.3, we show

examples of how eigenvalues can be used to study origami, while in Section 3.4 we use static

analyses to characterize the structures. Section 3.5 provides a discussion on the model includ-

ing its advantages and limitations, and Section 3.6 provides concluding remarks. Note that

Chapter 2 discusses the basic behaviors of origami, and provides parameters to effectively

model the stiffness.

3.2 Model variations and formulation

A typical origami consists of flat thin sheet panels (or facets) that are interconnected by

fold lines (or hinges). The specific fold pattern and geometry have a large influence on
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Figure 3.1: A Miura-ori pattern with a modified curved geometry. (a) Folding kinematics of the
origami. (b) and (c) Initial (top) and deformed (bottom) shapes of the origami from a point load
applied at the top, while the bottom of the structure is restrained vertically. (b) structural
simulation with the bar and hinge model and (c) physical model of the origami.

both the folding behavior and the mechanical characteristics of the folded structure. In

this chapter, we apply the bar and hinge approach to rigid foldable origami that can fold

through a kinematic motion where panels remain flat and deformation occurs only at the

fold lines. The in-plane behavior of panels, the bending of panels, and the folding along fold

lines can be treated as three distinct behaviors. Contributions from this work and the bar

and hinge model could be further adapted for non-rigid foldable patterns where the panels

bend to allow the origami to fold. We also limit our study to system where the thin sheets

are continuous and no cuts are present. We expect that with further study and modification

the bar and hinge models could be adapted for kirigami where cuts are present and sections

of the sheet are removed.

Although, we only explore the model for rigid foldable and continuous systems, this never-

theless allows for a tremendous variety of different origami geometries that can be explored

and parametrized. Continuous rigid origami are the most common for practical application,

because they are easier to manufacture, actuate, and deploy. The bar and hinge model can

be used to analyze both flat foldable and non-flat foldable origami. The model is also suitable

for both developable and non-developable origami (origami that can be folded and developed

starting from a flat sheet). The bar and hinge approach can be used in the study of origami
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tubes, or cellular systems where multiple origami are stacked and assembled together. The

model may also be used for the analysis of non-folding origami-like structures made of thin

sheets (e.g. boxes and cartons).

The geometric versatility, the simplicity, and the efficiency are the main motivation behind

the bar and hinge model. The approach is suitable for a wide range of origami structures and

can analyze the origami at different stages of deployment. It is possible to parametrize the

origami and explore the influence of geometry on the structural properties. The simplicity

of the model is useful in understanding the behavior of origami and adjusting the model for

different analyses or different origami structures. Because only four or five nodes are used

per panel, the bar and hinge model is much more efficient than any discretized FE approach.

Over the last several years bar and hinge models have been used for various studies, and the

model has evolved to provide more functionality and improved quality of analyses.

3.2.1 Evolution of bar and hinge models

Bar and hinge models vary in formulation and implementation. One of the earliest imple-

mentations is that by Schenk and Guest (2011) where four bars are placed on the perimeter

of the panel and one bar is placed along the shorter diagonal of the panel. The model has

four nodes and five bars, thus we designate this base of model as N4B5 (Figure 3.2). It

has become popular to use the bar and hinge model with an energy approach to find the

deformed shape of the structure (Bridson et al., 2003; Wei et al., 2013; Narain et al., 2013).

The energy approach has been modified and has been used to provide fundamental studies

on origami (Silverberg et al., 2014; Dudte et al., 2016). The N4B5 model has also been

formulated based on elasticity and kinematics of solid state lattice systems (Evans et al.,

2015). Another approach by Fuchi et al. (2015a) uses frame elements instead of bars, and

includes rotational degrees of freedom to enhance the flexibility of the model at the fold

lines. This model can potentially capture more local bending and torsion behaviors in the

origami, but the formulation becomes more complex and the number of DOFs increases

significantly. All of these approaches assume that the in-plane behavior and scalability of

stiffness can be neglected. Inspired to overcome some of the limitations of the conventional

N4B5 bar and hinge models, Filipov et al. (2016b) presented a N4B6 model that again has
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Figure 3.2: Evolution of the bar and hinge models, where different orientations of bars and nodes
are used to simulate the in-plane behavior of origami panels. The frame of bar elements can be
used as one element to model the in-plane behavior for an entire origami panel. The added
complexity from the N4B6 and N5B8 models makes it possible to include scalability, isotropy,
accuracy and more functionality to the model. The N4B5 model is from Schenk and Guest
(2011), the N4B6 is from Filipov et al. (2016b), and the N5B8 is introduced in this work.

four nodes, but has an extra bar in the system and thus the frame becomes indeterminate

for in-plane loading (Figure 3.2). By defining the bar properties, the model incorporates

scaling effects and material properties. The indeterminate frame provides symmetric and

isotropic response for in-plane loading. The model uses elastic modulus (E), Poisson’s Ratio

(ν), and thickness of the origami (t) along with length parameters to obtain scalable system

behavior. One limitation of the N4B6 model is that, because of the crossed bars, large

panel bending (large displacements) cannot be easily accommodated. Here, we introduce a

modified approach where a node is incorporated at the connection of the panel diagonals.

This model has five nodes and eight bars (N5B8), and is able to combine the benefits of

both the N4B5 and N4B6. Approaches that have were aimed at modeling origami and thin

sheets have also been formulated with scenarios where in-plane stiffness. Some approaches

for modeling of origami and thin sheets have also been formulated to account for in-plane

stiffness using triangular finite elements (Resch and Christiansen, 1971; Phaal and Calladine,

1992a). These approaches would lead to non-isotropic behavior for stretching and shear (see

comparison in Section 2.1).

3.2.2 Model formulation for the bar and hinge approach

In this section we describe the numerical modeling of thin sheets in origami systems. A

previously established model (Schenk and Guest, 2011) is used as a basis, and several im-

provements are discussed. We incorporate scaling effects for the structure and make the
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panel stiffness dependent on the thickness (t), the elastic modulus (E), and Poisson’s ration

(ν) of the material. The formulation for fold modeling is also updated, and a ratio is used to

relate the bending stiffness of panels to the bending stiffness of a fold. The model provides

an improved basis for origami stiffness simulation, while keeping the formulation simple and

modeling the origami components (panels and folds) as individual elements. The simplicity

of this model makes it a good option for origami optimization, but we also acknowledge that

it is not an ideal substitution to a detailed finite element (FE) model composed of nonlinear

shell elements. The stiffness matrix (K) for the origami structure incorporates stiffness pa-

rameters for 1) panels stretching and shearing (KS); 2) panels bending (KB); and 3) folding

(bending) along prescribed fold lines (KF ). The global stiffness matrix is constructed as

follows:

K =


C

JB

JF


T 

KS 0 0

0 KB 0

0 0 KF




C

JB

JF

 , (3.1)

where the compatibility matrix (C) and Jacobian matrices (JB and JF ) relate the stiffness

of elements to the nodal displacements as discussed in detail. Each node has three degrees of

freedom (DOFs), x, y and z displacement, and the stiffness matrix is of size (nDOFs×nDOFs),

where nDOFs is the total number of DOFs in the system.

3.2.3 Bar formulation for bar and hinge models

Each of the bars in the indeterminate frame (N5B8 frame in Figure 3.2) are defined to

result in an isotropic and scalable behavior of the entire panel. A general formulation

for bar elements is used where an equilibrium matrix (A) relates internal bar forces (t)

to nodal forces (f); a compatibility matrix(C) relates bar nodal displacements (d) to bar

extensions (e); and a diagonal matrix (KS) relates the bar extensions to the local forces.

The formulation can be written in three linear equations as

At = f, Cd = e, KSe = t. (3.2)
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Using the static-kinematic duality that C = AT , the linear system for stretching and shear

of the panels can be rewritten and is represented as the first row of Eq. 3.1. For definitions

of the bar stiffness parameters (KS) see Section 2.1.1. When constructing the full model

of the origami structure, the bar frame is used essentially as a single element to model the

in-plane behaviors of the panel. At fold lines, where two panels are connected, there will be

two bars in the same location and connecting to the same nodes.

3.2.4 Rotational hinges for out-of-plane bending

Early implementations of the bar and hinge model use two triangular segments connected by

an angular constraint along one diagonal to model the global out-of-plane displacement of the

panel (Figure 3.3 (a)). The choice of the diagonal does not influence the displacement pattern

for small displacements (Schenk and Guest, 2013), but typically the shorter diagonal (with

triangular segments 1-2-3 and 1-3-4) used to better match the expected real world behavior.

For the N5B8 model we have one additional degree of freedom out-of-plane at node 5. The

panel is divided into four triangular segments with bending possible about both diagonals.

For each panel four angular constraints are used to restrict bending between the adjacent

triangular segments (Figure 3.3 (b)). Each angular constraint, F , is formulated separately

based on the dihedral bending angle(s), θi, which can be calculated by using cross and inner

products of the vectors a, b, c and d from the nodal coordinates of the panel p. This

constraint is defined as

F = sin(θi(p)), (3.3)

and the corresponding Jacobian for panel bending, JB, is calculated as

dθi =
1

cos(θi)

∑ ∂F

∂pi
dpi = JBd, (3.4)

where d are the displacements of the panel nodes. The second row of Equation 3.1 incorpo-

rates panel bending stiffness where each element in the diagonal matrix KB corresponds to

the bending stiffness for an angular constraint. The specific parameters used to define the

bending stiffness KB are discussed in Section 2.2.

The bending definition here is the same as that used by other researchers (Schenk and
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Figure 3.3: Placement of rotational hinges in the different bar and hinge models. The hinges
provide stiffness for out-of-plane deformations of the panels.

Figure 3.4: Placement of rotational hinges to capture the fold line stiffness. The N5B8 model can
include both the outside and inside fold lines to better distribute stiffness onto the adjacent
panels.

Guest, 2011; Phaal and Calladine, 1992b). Although the N5B8 model allows for bending in

both directions, in Section 2.2 we discuss that this poses a problem for accurately capturing

the stiffness. We make a modification to restrict bending about the long diagonal by making

those rotational hinges about 100 times stiffer. This modification is not necessary for large

displacement results, however using it allows for an accurate representation of panel bending

stiffness, thus we use it for both small and large displacement cases. The deformed shapes

with this modification consist of bending about the short diagonal only, and thus the N5B8

model is essentially reduced to a N4B5 model for panel bending. Future studies could be

pursued to define both the short and long diagonals in a manner that would capture an

accurate deformed shape and stiffness simultaneously. The accurate displaced shape for

small displacements would include bending along both diagonals (see Section 2.2.1).
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3.2.5 Rotational hinges for fold line bending

The folds are modeled in a similar fashion to the bending of panels. Realistic origami

behavior does not allow for out-of-plane displacements along fold lines due to the restrictive

nature of the perpendicularly oriented sheets. Thus, it is sufficient to use this simplified

approach where the origami fold is modeled as a rotational hinge along an edge. A schematic

of the fold model contains a fold spanning nodes 2 and 3 connecting two panels (1-2-3-4 and

2-5-6-3) (Figure 3.4). In the N4B5 and N4B6 models the angular constraint formulation

(Section 3.2.4) is used to formulate two independent fold elements from the two vector sets:

(1) a, b, and c and (2) -a, d, and e. We call these the Outside hinges as they connect the

corner nodes of the panel. The initial fold angle (θ0) represents the origami at a static and

unstressed state. This angle could be different for different folds on the origami, and can be

calculated using basic geometric relations for each chosen configuration. Here, the angle θF

represents a rotation away from the initial static configuration.

The N5B8 model can use an additional set of Inside rotational constraints that connect

to the central node: (3) a, f, and g and (4) -a, h, and i. The two inside angular constraints

will have the same fold angle and are not influenced by panel bending, however the outside

hinges could have different fold angles when panel bending is involved. The different fold

angles can occur for all three variations of the bar and hinge model. In Section 2.3.2, we

explore the interaction between fold and panel bending, and we show that using only inside

or only outside hinges can provide a reasonable estimate for stiffness and displaced shape.

However, if both inside and outside hinges are used in the N5B8 model, the fold line stiffness

can be better distributed throughout the panel and a better estimate can be obtained for

the deformed shape. The bending stiffness of the fold lines is discussed in detail in Section

2.3.2.

3.3 Eigenvalue analysis of origami systems

The bar and hinge method provides a basic system for global structural analysis of origami

type systems. In this section, we show how the model can be used for both conventional

structural analysis, as well as analyses methods suited specifically to origami. The bar and

hinge framework can also be readily modified and can be used in ways beyond what is
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presented in these examples.

3.3.1 Kinematic folding of origami

The basic implementation of the bar and hinge model can be used to study the folding char-

acteristics of an origami pattern or structure, and subsequently perform folding operations.

The mathematics on foldability of origami, and the folding kinematics are an advanced topic

of study which involves the pattern geometry and the three dimensional motions that occur

through folding (e.g. Huffman (1976); sarah-marie Belcastro and Hull (2002a); Hull (2012);

Tachi and Hull (2016)). Rigorous analytical approaches for defining the folding kinematics

are often limited to patterns with one or a few vertices and are cumbersome to compute.

The bar and hinge model can provide a simple method to explore foldability of a pattern in

mechanical and physical terms.

Because the panel and fold bending are treated separately in the model, it is possible

to separate these behaviors and obtain information about the global folding characteristics

from the stiffness matrix K. One approach, as discussed by Schenk (2011) is to consider

the null space of the combined compatibility matrix and Jacobian matrix for panel bending.

This null space is equivalent to the stiffness matrix where the contribution of fold lines is not

included (last row of Eq. 3.1 is removed). A more general approach is to make the fold lines

much more flexible than the panels by using a L∗ that is unrealistically high (e.g. 10000).

Making the fold stiffness low makes the kinematic folding to be the preferred (most flexible)

method of deformation, and still allows for bending to occur along the panel diagonals. The

eigenvalue approach can be more forgiving in detecting possible fold patterns, as the null

space approach may not show a fold pattern if the updated geometry has a small error. The

eigenmodes also simultaneously provide feedback into the global stiffness and behavior of the

system (e.g. they show the most flexible method of folding. Finally, the eigenvalue method

can be useful at showing bifurcation points where the system can be reconfigured.

Having defined the geometry of the origami pattern in a completely flat or three dimen-

sional state, it is possible to explore folding motions by obtaining the eigen properties of

the stiffness matrix. In Section 3.3.2, we discuss an alternative approach where mass of the

structure is also considered. We obtain the eigenvalues λi and corresponding eigenmodes vi
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of the stiffness matrix K based on the linear equation

Kvi = λivi. (3.5)

The eigenvalues are arranged in an incremental order (i) and represent the elastic energy that

would deform the structure into a shape represented by the corresponding eigenmode. The

system is analyzed with no supports, and thus the first six eigenmodes require no energy and

represent rigid body motion of the origami (three displacements and three rotations in space).

We omit these six modes, and begin studying the subsequent modes that require elastic

deformation. The most flexible eigenmodes (lowest elastic energy) represent deformations

where folding occurs along fold lines. As the eigenmodes become stiffer folding of the panels

also begins to occur, and the much stiffer eigenmodes include stretching and shearing of

panels.

At times, it is also possible to have two or more eigenmodes with eigenvalues of the same

magnitude. This may happen with symmetric structures that have symmetric eigenmodes.

Alternatively, during optimization or a parametric analysis we can see “mode switching”

when the value (and thus order of eigenvalues) are switched. In Figure 3.5 (a), we use the

eigenmodes to find five rigid folding motions that can be performed on a Miura-ori patterned

sheet. The top horizontal folds of the Miura sheet have a sector angle of α = 70◦, while

the bottom have α = 55◦. The folding direction is shown by mountain and valley fold

assignments, and all of the patterns can be reversed (i.e. valley folds become mountain and

vice versa). These fold patterns are found after one folding iteration (see next paragraphs).

Eigenmode 9 represents the traditional folding motion for the Miura-ori sheet where all folds

of the pattern are engaged. The other folding motions shown in eigenmodes 7, 8, 10 and

11 are also valid rigid folding motions where bending occurs only at the fold lines and the

panels remain completely flat. Eigenmode number 12 and higher require bending of the

panels. When bending of the panels is considered, it is possible to find folding motions that

do not follow rigid folding definitions. Allowing folding to occur throughout the sheet has

been used to design origami based mechanisms (Fuchi et al., 2015b, 2016) where the origami

can fold starting from a flat state, but is not rigid or flat foldable.

The eigenmode analysis can also be used as a numerical method to perform the kinematic
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Figure 3.5: Folding kinematics of a Miura-ori pattern with folds of different sector angles. (a)
Eigenmodes 7-11 of the flat sheet show five valid rigid folding motions with corresponding
mountain and valley folds. The deformed modes are shown after one iteration of the folding
algorithm, and thus they limit global deformations where bending of both folds and panels
occurs. Although eigenmode 9 is typically the prescribed folding motion for Miura-ori sheets, it is
not the only possible way in which the sheet can be folded. Eigenmode 12 represents a global
bending of the sheet which is not a rigid folding mode (λ is orders of magnitude higher). (b) An
iterative approach is used to fold the sheet based on the rigid folding motion in Mode 7. A jump
in eigenvalues occurs after the first iteration because when the sheet starts folding into a rigid
motion it can no longer deform globally with both fold and panel bending. When the system
reaches another flat state at 1100 iterations, other folding motions are enabled, some with self
intersection.
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rigid folding of the origami. Using an analytical approach for folding is particularly useful for

more complicated fold patterns that have non-repetitive fold vertices (e.g. Tachi (2009a);

Gattas et al. (2013); Dudte et al. (2016)). The kinematic folding can be performed by

iteratively updating the nodal locations by adding increments of a chosen eigenmode (and

corresponding rigid folding pattern). The folding can be performed by correcting geometric

errors using the Moore-Penrose pseudo-inverse (Tachi, 2009c), or using Newton-Raphson

iterations with a sufficiently small (e.g. 1/1000) increments of the eigenmode. When we

perform folding of the structure we assume that the folds move freely, and the structure is

unstressed after folding. In other words, forces and stresses do not accumulate at the fold

lines after the kinematic motion.

In Figure 3.5 (b), we show the kinematic folding following the seventh eigenmode as

a chosen fold pattern. At the first step there is a jump in eigevalues. The value of λ7

increases because the origami enters a rigid folding mode, and the seventh mode becomes

self-restricting as global fold and panel bending is no longer possible in the newly folded

configuration. Eigenvalues λ8 − λ11 increase by several orders of magnitude. The initial

kinematic motions are no longer possible and the eigenmodes switch shape to new motions

with global system bending (similar to the initial mode 12). As the folding is performed, the

origami reaches another flat state, and the eignvalues drop again. At that point, it is possible

to explore other folding motions that are made capable by the newly folded geometry. The

order of eigenvalues can change as the kinematic folding is performed, so it is often necessary

to track the eigenmode that corresponds to the chosen folding pattern. Tracking of the xth

eigenmode can be achieved by finding the ith eigenmode that minimizes |vj+1
i ± vjx|, for

the updated geometry at step j + 1. The same results could be obtained by obtaining

the minimum dot products between the initial eigenomode and eigenmodes of the updated

configuration. With the current formulation the model does not account for self-intersection

of the panel elements and can thus suggest unrealistic folding scenarios. In future work, the

bar and hinge method may also be adopted to study the folding patterns and kinematics

of multi-DOF origami that has more than four folds per vertex and can result in multiple

folding motions (Xi and Lien, 2015).

The eigenmode and eignvalue approach for folding an origami structure has the benefit

that it can identify different folding patterns, and can subsequently perform the entire folding
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kinematics. Other folding methods typically require a pre-determined fold pattern to follow

(Tachi, 2009c). The eigenvalue approach can also identify points during the folding sequence

where the structure can be folded in different ways. Overall, the eigenvalue approach is

similar to exploring the null space of a stiffness matrix where no folds are included. However,

using some fold line stiffness with the eigenvalue approach can also provide some benefits. It

can help in differentiating folding patterns that are stiff and flexible. It also simultaneously

shows non-rigid folding motions which are useful for the structural characterization of the

origami.

3.3.2 Band-gap analysis of origami systems

Previously, natural eigenvalues and eigenvectors have been used to analyze a wide range

of problems in science and engineering. They have been used to study quantum mechanics

(Atkins and Friedman, 2011), climate (Jun et al., 2008), electrical power systems (Marszalek

and Trzaska, 2005), and many other mathematical models. The eigenvalues and eigenmodes

of the stiffness matrix discussed in Section 3.3.1 can provide significant information about

the structural characteristics of the system. For example, Schenk and Guest (2011) use these

analyses to evaluate how the structural behavior of Miura-ori and egg-box patterns is affected

by changing the relative stiffness between panel bending and fold lines. Alternatively, it is

possible to incorporate the mass matrix of the structure (M), and use the linear dynamics

system of equations

Kvi = λiMvi, (3.6)

to find λi and vi. We construct the mass matrix M by distributing 1/5 of the panel mass

to each of the panel’s nodes, however more advanced shape function approaches can be

used to distribute the mass of the panel. Including mass in the analysis can be beneficial for

performing scale dependent studies, comparing different systems, and exploring the dynamic

properties of the system.

In Figure 3.6 we use the eigenvalues and eigenmodes that incorporate mass to compare

the behavior between an eggbox pattern and an origami tube. The eggbox pattern is curved

with repetitive panels that have sector angles α = 62.9◦,117.1◦,69.3◦,110.3◦ and the left
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Figure 3.6: Eigenvalues vs. configuration (% extension) of (a) a curved eggbox form and (b) a
tube with the top section identical to (a). The deformation modes of the eggbox are more flexible
than the tube and switch at different configurations. The tube has a continuous bandgap for
different configurations indicating that it requires less energy to deploy the structure than to
deform it in other ways (e.g. twisting).

panel dimension is a unit value of 1 (Xie et al., 2015a). The model is defined with arbitrary

dimensions, although realistic values can also be used. The panels have a thickness of

t = 0.01 (L/t ≈ 100), and mass of ρ = 1. The model uses a Young’s Modulus E = 106 and

fold lines are defined with L∗ = 40. The magnitude of the eigenvalues 7-14 for the eggbox

are relatively low, indicating that the most flexible ways to deform the structure (folding,

bending, and twisting) require only deformation of the fold lines and panels. As the structure

is extended, there is mode switching, meaning that depending on the configuration, it may

be easier to deform the structure in different ways.

In Figure 3.6 (b) the eggbox is closed on the bottom to create a rigid foldable tube (Tachi,

2009b) that has a symmetric cross-section with all edges having a dimension of 1. Because

mass is used with this analysis, it is possible to compare the results between the eggbox

and the tube. When additional panels are added, both the stiffness and mass scale linearly

with the change in material. Thus any change in the eigenmodes and eigenvalues can be
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attributed to the change in geometry. When the second part of the tube is added, the

magnitude of the seventh eigenvalue does not change drastically, however mode switching

does not occur any longer, and the lowest eigenmode corresponds only to the folding and

unfolding motion. Deforming the structure in bending and twisting is stiffer than for the

eggbox, and the eight eigenmode becomes a squeezing type of motion where one side folds

and the other unfolds. The ninth and subsequent eigenvalues are substantially stiffer and

engage the panels in stretching and shear.

A bandgap (β = λ8 − λ7) separates the seventh and eight eigenvalues throughout the

extension of the structure. This separation means that it is always more flexible for the

system to be deployed than to be deformed in another fashion. The work in Chapter 4

shows that coupling multiple tubes can be used to substantially increase the structural

bandgap. The system becomes easy to deploy yet it is stiff in all other directions and can

be used as a cantilever. Analyzing the bandgap between the seventh and eight eigenvalues

is particularly important for origami, because it informs whether the origami is capable of

deploying easily per design or if other motions are possible.

Band-gaps are especially important in structures, because they define a region of frequen-

cies where the structure avoids dynamic resonance (or does not have natural energy modes).

Beyond origami, they have been used in optimizing the photonics of piezocomposite materi-

als, in creating vibration-free environments, and for constructing energy harvesting devices

(Gonella et al., 2009; Rubio et al., 2011; Vatanabe et al., 2014). bandgaps in acoustics have

lead to using disruptive properties of metamaterials to prevent the passage of sound and

limiting acoustic interference (Huang and Sun, 2010; Ahmed and Banerjee, 2013). Typically

it is of interest to maximize a bandgap such that the structure would not experience natural

resonance in that case, however at other times it may be beneficial to preserve a bandgap

for a given set of parameters.

In addition to the bandgap, another measure that can be used for the analysis of origami

structures has been the ratio between the seventh and eighth eigenmodes λ8/λ7 (Filipov

et al., 2016b). This ratio may provide a more theoretical benchmark for the origami, but it

could be potentially misleading. For example, if the seventh eigenvalue is reduced, the ratio

λ8/λ7 would increase and would indicate a more useful and stiff structure. However, the

entire change in the ratio can be driven by the lowest eigenmode which could approach zero
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when the stiffness of the folds is reduced (the ratio λ8/λ7 would approach infinity). Thus

when using the ratio, a structure could seem stiff when in fact it is only easy to fold and

unfold. The bandgap on the other hand provides a physical measure that is not affected by

extremeley low values of λ7.

Finally, the bar and hinge model and Eq. 3.6 could also be used to find the circular natural

frequency (ωi =
√
λi) or the natural period (Ti = 2π/ωi) of the structure. These parameters

could be used to investigate the dynamic characteristics and behavior of the system (e.g. if

they are to be used as mechanical systems subject to vibration). More advanced analyses

that incorporate the mass and stiffness of the structure could explore nonlinear dynamic

response using numerical time-iterating schemes.

3.4 Static analysis of origami systems

Static analyses are important for understanding specific deformations of structures and un-

derstanding their stiffness characteristics. Static analyses are useful when a specific appli-

cation of origami is explored. For example, if we choose to use an origami tube system as a

beam or cantilever we can use the static analyses to understand the structural characteristics

specifically for that application. For these types of analysis we would provide supports that

make the structure at least statically determinate - at least 6 DOFs would be restrained

for the three dimensional analysis. Indeterminate analyses with more restraints can also be

performed with the same methodology. Loads can be applied at unrestrained nodes and the

system displacement u can be calculated from the linear function

F = Ku, (3.7)

where F is a force vector, and K is the stiffness matrix.

This type of analysis is also useful to characterize the stiffness of different origami struc-

tures for loads applied in the three Cartesian coordinates. For example, we would apply a

load of FX = 1 either on one point or distributed on a portion of the origami. Then, we

use Equation 3.7 to find the system displacements, and we calculate δX to be the mean X

direction displacement of the loaded nodes. The characteristic X direction stiffness for the
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origami would then be calculated as KX = FX/δX . The results for stiffness obtained from

this approach would be consistent with the units of the stiffness matrix and would be in

units of force per length (e.g. N/mm).

3.4.1 Cantilever deformation analysis

In this section, we present a cantilever analysis of an eight-sided reconfigurable polygonal

tube that is introduced in Chapter 6 (a similar analysis is performed in Section 6.7). We

perform the analysis on the structure with the N5B8 model, and compare the results to a

discretized FE model (FE model detailed in 4.2.3). Both models are defined with the unit

dimensions based on the definitions in Chapter 6. The panels have a thickness of t = 0.01

units (L/t ≈ 50 − 100), Poisson’s ratio of ν = 1/3, Young’s Modulus of E = 106, and fold

lines are defined with L∗ = 40.

One end of the cantilever is fixed and a uniformly distributed load is applied on the other

end. We perform static, linear elastic, small displacement analyses of the structures when

they are deployed to 95% extension. Figure 3.7 (a) and (b) show the displaced shapes

obtained with the N5B8 and FE models when a load is applied in the Y direction and the

structure is in configuration I. We find the characteristic stiffness for each of the six possible

configurations (I - VI), when the tubes are deployed to 95% extension. The characteristic

stiffness is calculated orthogonal to the X axis, in a combination of the Y and Z directions.

In other words, we rotate the load in the Y − Z plane and find a corresponding stiffness

KY Z that represents the cantilever.

Both the N5B8 and the FE model provide similar displaced shapes and radial plots de-

picting the KY Z stiffness. However, the N5B8 model overestimates the global stiffness of

the polygonal tube by as much as 160%. This significant difference is partly due to the

overestimation in shear stiffness of the origami panels, and also because the N5B8 model

cannot capture localized deformations.

The large ovals in the radial plots (configurations I and V) indicate a relatively higher

stiffness in most directions. Each of the cross-section configurations has a different direction

(in Y − Z) where it has a lower or higher stiffness. This phenomenon indicates that the

tube geometry has a high influence on the anisotropy of the tube structures. Both the N5B8
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Figure 3.7: Structural analysis of cantilevered reconfigurable tube. (a) and (c) are performed with
the N5B8 model while (b) and (d) are performed with a discretized FE model. The displaced
shapes presented in (a) and (b) appear similar but are scaled to have the same maximum
displacement and do not represent stiffness. (c) and (d) are the tube stiffness for different loading
directions in the Y − Z plane represented as a radial plot. The stiffness for the six possible tube
configurations (I - VI) are shown when the system is at 95% extension. The N5B8 and FE plots
show similar behaviors but the stiffness estimated by the N5B8 model is higher.
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and the FE model predict the same type of anisotropy related to geometry (i.e. the oval

shapes look similar for both models). The global influence of geometry is accurately captured

by the bar and hinge model. Although the bar and hinge model does not provide accurate

quantitative results, it provides good qualitative and comparative analysis of different origami

geometries.

Furthermore, some local behaviors are not captured by either model. For example, both

models use the same definition for linear fold line stiffness and both models assume zero

thickness of the origami. These local phenomena may have some influence on the system

behavior, however the geometric configuration (I - VI) is likely the most important factor

that influences the global stiffness.

3.4.2 Characteristics of origami inspired materials

In recent years origami has been shown to have a tremendous potential for creating materi-

als with unique properties (Schenk and Guest, 2013; Silverberg et al., 2014; Lv et al., 2014;

Cheung et al., 2014; Filipov et al., 2015a). The origami materials are often composed of

repetitive cells, and the global system can have anisotropy, negative Poisson’s ratios, high

stiffness to weight ratios, high energy dissipation and other properties useful for engineering

application. The characteristics of origami metamaterials may also be tuned by reconfigur-

ing the structure. The analysis of the metamaterials is often performed as local unit cell

exploration aimed to characterize the mechanical properties of the system. When a larger

material specimen is to be investigated the bar and hinge model can be a useful tool that can

characterize behavior and explore geometric and other specimen variations. The mechanical

properties of the origami system depend on the fold pattern, fold angles, material proper-

ties, material thickness and other properties which can be easily scaled and parametrically

explored using the bar and hinge model.

In Figure 3.8 we use the N5B8 model to study the mechanical properties of the interleaved

tube cellular material explored by (Cheung et al., 2014) and inspired by the Flip-Flip origami

(Yenn, 2000). The panels are rhombi with sector angle of φ = 2 arctan(
√

2/2) ≈ 70.53◦. For

this analysis, we use panels with unit dimensions (height = width = 1), thickness of t = 0.01

units, a Poisson’s ratio of ν = 1/3, Young’s Modulus of E = 106, and the fold lines are
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Figure 3.8: Structural linear elastic analysis of interleaved tube cellular material. (a) Four folding
states of the cellular material; the system can fold flat in both the X and Y directions. (b)
Stiffness of the material in three directions at different folding states. (c) The analytical Poisson’s
ratio (ν) simulated with the bar and hinge model. (d) Four deformed states of the structure when
compressed at different configurations and in different directions. Cases 1 and 4 have positive ν,
Case 3 has ν ≈ 0 and Case 2 has a negative ν. These results are based on infinitesimally small
displacements, and would differ for large displacement simulations.
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defined with L∗ = 10. For this metamaterial simulation we use a low length scale factor L∗

that represent folds that are about as stiff as the panels. This behavior would be realistic

for a metamaterial created through additive manufacturing where the fold lines are not

explicitly defined.

We perform a static analysis on the assemblage by applying a uniform load at both the

bottom and top of the system. The characteristic stiffness for each direction is calculated

based on the mean displacement of the loaded surfaces. Figure 3.8 shows that the stiffness

of the assemblage can be tuned by changing the configuration. The maximum stiffness in

the X and Y directions is obtained when the structure becomes flattened in the opposite

plane (e.g. in the Y − Z plane for X loads). In the Z direction the stiffness has three

maxima, with the intermediate on occurring at a deployed symmetric state. We also show

that the Poisson’s ratio in the three Cartesian directions can be tuned with reconfiguration.

We calculate the Poisson’s ratio as a resultant of the Y displacement with respect to a load

applied in the X direction as νyx = −(dy/ly)/(dx/lx), where dy and dx are the displacements

in the two directions and ly and lx are the corresponding initial lengths of the metamaterial.

Due to the kinematic deformation motion of the origami assemblage, the material can take

on Poisson’s ratios that are much larger or smaller than conventional materials. Extremely

high or low Poisson’s ratios can be achieved for infinitesimally small displacements at some

configurations (Figure 3.8(c,d)).

3.5 Discussion

We discuss the advantages of bar and hinge models in general and, in particular, the advan-

tages associated with the N5B8 model. Afterwards, we discuss the limitations of of those

models and present an outlook on future developments.

3.5.1 Advantages of bar and hinge models

• The bar and hinge models are simple to understand, implement, modify and use. This

makes them valuable to the growing community of origami researchers and enthusiasts.

• The models distill structural behavior of origami into three intuitive components: 1)
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bending of creases, 2) bending of flat panels, and 3) stretching/shearing of the paper.

This makes the model and methodology especially useful when describing structural

behaviors of different origami systems.

• The simplicity and versatility of models allows us to explore and show some of the

more intricate behaviors of origami (e.g. Section 3.3.1).

• The bar and hinge models use few nodes per each panel and are thus much faster than

a discretized FE approach.

• The speed and versatility of the models makes them suitable for various extensions

such as: i) Parametric variations for geometric design; ii) Optimization of cellular

origami type structures; iii) Large displacement simulations; iv) Exploring the effect

of different nonlinear fold line models.

3.5.2 Advantages of the specific N5B8 model

• The N5B8 model is scalable as it includes length and thickness (t) to define the stiffness

and mass of the system.

• The model can approximate in-plane stretching and shearing for both regular and

skewed panels. Although shear stiffness is overestimated, the model behaves similar to

expected trends when skew is incorporated.

• In-plane behaviors exhibit symmetry and isotropy which is not possible with N4B5

models.

• Mass can be distributed more realistically in the N5B8 model than in the N4B5 and

N4B6 models.

• Stiffness parameters now include material properties E and ν.

• The N5B8 model can effectively differentiate a deformed shape where bending of both

panels and fold lines occurs. The model can distribute stiffness to fold lines and ap-

proximate deformed shapes well.

• The model is simple and efficient while allowing for a surprising level of detail and

accuracy.
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3.5.3 Limitations

• The bar and hinge model cannot capture localized effects accurately.

• This and most other origami modeling techniques neglect the effect of thickness (e.g.

localized stress concentration at vertices).

• Stiffness for shearing of the panels is overestimated in comparison to the stretching and

bending deformations.

• The model is currently only capable of simulating origami with quadrilateral panels.

• Bar and hinge models are not currently available in easy to use software packages and

are thus not easily accessible for wide-spread use.

3.5.4 An outlook on future developments

• Developing a generalized bar and hinge implementation that can model non-quadrilateral

panels. Origami patterns can be constructed with polygonal panels, and both in and

out-of-plane formulations would need to be revised. The generalized geometry could

be adapted to simulate non-rigid foldable panels.

• An in-depth verification of the panel bending stiffness and global behaviors can be per-

formed by comparing eigenvalue analyses with a detailed FE model. The N5B8 model

can be formulated to capture double curvature in the panel for small deformations.

• The model can be further verified, validated, and calibrated against experimental find-

ings.

• Enhanced in-plane formulations could be explored to improve the stiffness approxima-

tion for shear of the panels.

• The panel bending definitions can be refined to better capture stiffness and to allow for

bending along the long diagonal which may be necessary for some large displacement

analyses.

• The N5B8 formulation may be adapted to capture the stiffness transition from small

to large displacement panel bending (i.e. from Equations 2.5 and 2.6 in Chapter 2).

• The fold line formulation could be enhanced to incorporate nonlinear material charac-

teristics of fold lines bending.

• Fold and panel bending formulations could be adapted to prevent bending with θ >
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180◦, as this type of bending would result in self-intersection.

• Panels that are not restrained with orthogonal panels on all four sides may experience

different bending characteristics and stiffness; an extension of the study in Section 2.2

could give more information on these behaviors. Findings could be used to adapt the

model for kirigami type systems.

• The bar and hinge method could be modified to explore adhesive or other connectiv-

ity between different origami components. Preliminary work exploring connectivity

between two tubes is shown in Chapter 4.

• Bar and hinge methods could be used to consider localized structural effects. For

example, high loads that would lead to buckling could be detected and predicted using

the model.

3.6 Concluding Remarks

This chapter discusses bar and hinge models for the mechanical and structural simulation

of origami type systems. We introduce a bar and hinge model where five nodes and eight

bars (N5B8 model) are used to simulate the in-plane stiffness of origami panels. Rota-

tional hinges are used to simulate the out-of-plane bending of the panels, as well as the

moment-rotation behavior of prescribed fold lines. The model parameters incorporate real-

istic material characteristics, and the model is formulated to provide a scalable, isotropic,

and realistic system behaviors. The bar and hinge models have various applications for the

characterization and design of origami type structures and systems. Folding pattern char-

acteristics and kinematic rigid folding can be performed using eigenvalues and eigenmodes

of the stiffness matrix. When mass is incorporated with the eigen-analysis, it can provide

a scalable basis for comparing the mechanical characteristics of origami structures. Static

analyses can be used for stiffness characterization of origami inspired deployable structures

or mechanical metamaterials. The bar and hinge model cannot capture localized phenomena

of origami, but has the benefits that it is versatile, efficient, and adaptable for a wide range

of applications. The bar and hinge model can be a useful analytical and design tool that

facilitates practical application of origami in science and engineering.
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CHAPTER 4

TAILORING STIFFNESS BY COUPLING ORIGAMI TUBES

Thin sheets have long been known to experience an increase in stiffness when they are bent,

buckled, or assembled into smaller interlocking structures. In this chapter, we introduce

a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that

substantially increases the system stiffness and permits only one flexible deformation mode

through which the structure can deploy. The flexible deployment of the tubular structures

is permitted by localized bending of the origami along prescribed folds lines. All other

deformation modes, such as global bending and twisting of the structural configuration,

are substantially stiffer because the tubular assemblages are over-constrained and the thin

sheets become engaged in tension and compression. The zipper-coupled tubes yield an

unusually large eigenvalue bandgap that represents the unique difference in stiffness between

deformation modes. The enhanced mechanical properties, versatility, and adaptivity of these

thin sheet systems can provide practical solutions of varying geometric scales in science and

engineering.

4.1 Introduction

Introducing folds into a thin sheet can restrict its boundaries, cause self-interaction, and

reduce the effective length for bending and buckling of the material (Lobkovsky et al.,

1995; Vliegenthart and Gompper, 2006; Cambou and Menon, 2011; Witten, 2007). These

phenomena make thin sheets practical for stiff and lightweight corrugated assemblies (Côté

et al., 2006; Yokozeki et al., 2006); however, such systems tend to be static, i.e., functional in

only one configuration. For creating dynamic structures, origami has emerged as a practical

method in which continuous thin sheet panels (facets) are interconnected by prescribed fold

lines (creases). Existing origami patterns and assemblages can easily be deployed, however

they tend to be flexible and need to be braced or locked into a fixed configuration for a

high stiffness to weight ratio to be achieved (Schenk and Guest, 2013; Heimbs, 2013; Cheung

et al., 2014; Gattas and You, 2015a). The zipper-coupled system is different because it is
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Figure 4.1: Deployment and retraction sequence of a “zipper”-coupled tube system. This origami
has only one flexible motion through which it can deform, and thus it is deployed by actuating
only on the right end.

stiff throughout its deployment without having to be locked into a particular configuration.

Origami principles have broad and varied applications, from solar arrays (Campbell et al.,

2006; Zirbel et al., 2013) and building façades (Del Grosso and Basso, 2010) to robotics (Fel-

ton et al., 2014), mechanisms in stent grafts (Kuribayashi et al., 2006), and DNA sized boxes

(Andersen et al., 2009). The materials and methods used for fabricating, actuating, and as-

sembling these systems can vary greatly with length scale. On the micro scale, metallic and

polymer films, or more often, layered composites consisting of stiff and flexible materials,

can be folded by inducing current, heat, or a chemical reaction (Gracias et al., 2002; Peraza-

Hernandez et al., 2014). Large scale origami structures can be constructed from thickened

panels connected by hinges, and can be actuated with mechanical forces (Zirbel et al., 2013;

Hoberman, 2010; Tachi, 2011). The kinematic motion, functionality, and mechanical proper-

ties of the origami are governed largely by the folding pattern geometry. For example, rigid

origami systems are defined as those having a kinematic deformation mode in which move-

ment is concentrated along the fold lines, while the panels remain flat (Huffman, 1976; Hull,

2012). Among various rigid folding patterns, the Miura-ori has attracted attention for its

folding characteristics (Mahadevan and Rica, 2005; Miura, 2009), elastic stiffness properties

beyond rigid folding (Schenk and Guest, 2011; Wei et al., 2013), geometric versatility (Tachi,

2009a; Gattas et al., 2013), and intrinsic material-like characteristics (Silverberg et al., 2014;

Lv et al., 2014).

The zipper-coupled tubes introduced here are derived from the Miura-ori pattern, and can
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undergo the same type of rigid kinematic deployment. All other deformations are restrained

as they require stretching and shear of the thin sheets. Thus, the structure is light, and

retains a high stiffness throughout its deployment. It has only one flexible degree of freedom,

and can be actuated by applying a force at any point (Figure 4.1). To explore the zipper

tubes’ unique mechanical properties, we introduce concepts of eigenvalue bandgaps and

cantilever analyses to the field of origami engineering. Zipper assemblages can be fabricated

with a variety of materials and methods. We envision applications of these assemblages will

range in size from micro-scale metamaterials that harness the novel mechanical properties,

to large-scale deployable systems in engineering and architecture.

The chapter is organized as follows: first, in Section 4.2 we discuss the stiffness properties

of basic Miura-ori tubes. Section 4.3 introduces possible methods for coupling the origami

tubes and discusses the unusual behavior of the zipper coupled tubes. In Section 4.4, we

explore the origins of the enhanced zipper stiffness. In Section 4.5, we study the influence of

tube geometry on the eigenvalue bandgap. Section 4.6 discusses cantilever analyses of zipper

and other coupled tubes. Cellular variations are discussed in Section 4.7, and Section 4.8

shows further geometric variations of the zipper tubes. Section 4.9 concludes this chapter.

4.2 Stiffness properties of Miura-ori tube structures

4.2.1 Basic definitions for rigid and flat foldable origami tubes

The Miura-ori pattern is composed of vertices connected with four folds and four panels.

Rigid and flat foldability have been studied with some success in the past years. Flat folding

at a single vertex was theorized by Kawasaki (1989) and Justin (1986), and more robust

proofs and necessary conditions for flat folding have been shown in Bern and Hayes (1996);

sarah-marie Belcastro and Hull (2002b,a). Proving rigid origami at a single vertex, was first

shown using a Gaussian curvature approach in Huffman (1976). A simple presentation for

rigid folding using spherical trigonometry and the spherical law of cosines is also presented in

Hull (2012). Based on these approaches it is shown that a single four fold non-singular vertex

will always be at least partially rigid foldable. Finally, some interesting generalizations, a

study of entire rigid foldable patterns, and pattern degrees of freedom is discussed in Tachi
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Figure 4.2: Construction of a rigid and flat foldable origami tube: (a) definition of a single
Miura-ori cell, (b) folding definition for the Miura-ori cell, (c) dihedral angle θ vs. tube length as
a percent(%) of the maximum extension length for tubes with α = 55◦, α = 70◦, and α = 85◦.
The tube with α = 55◦ is shown folded at θ = 2◦, 35◦, 90◦, and 170◦.

(2010b).

In this chapter, we restrict our study to a simple subset of the origami tubes that is

available in the literature. Figure 4.2 shows the definition of a Miura-ori cell in our study.

The acute vertex angle α along with the dimensions a and c are sufficient to define the

Miura-ori cell, and the dihedral angle θ can be used to define the folded configuration of the

cell. The Miura-ori cell is then repeated, and reflected to create a tube. For example, Figure

4.2 (c) shows a tube that is 10 panels (5 cells) long and is folded in different configurations.

The tube is flat foldable in both directions, and the total extended length of the tube LExt

can be calculated as:

LExt = Nc
tan(α) sin(θ/2)

sin(α)
√

1 + tan(α)2 sin(θ/2)2
(4.1)

where N is the number of panels repeating in the direction of c. The maximum (full) length

(LMax) that the tube can reach (when θ = 180◦) stays constant if the parameters c and N are

fixed, and the total area of the panels will also remain constant if the parameters a and c are

fixed. Figure 4.2 (c) shows how different structures (α = 85◦;α = 70◦;andα = 55◦) expand

at different rates when related to the dihedral angle. Thus, it is also useful to consider

the percentage of the the maximum extended length when comparing the configuration of

different structures. The extension gives a physical definition that is easy to visualize and
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gives a specific location of the current deployment of the structure.

4.2.2 Eigenvalue analysis of tube structures

In this chapter, we use the N4B6 model presented in Chapter 3. The model stiffness is

defined based on preliminary estimates for the structural stiffness and does not incorporate

all of the findings presented in Chapter 2. The bar element stiffness (KS) for stretching

and shearing is defined in the same manner as discussed in Section 2.1.1. The same bar

area definitions are used, and thus the panels exhibit an isotropic and scalable behavior

similar to the N5B8 model. Here, we define the panel bending stiffness of the panels to be

the same regardless of panel geometry. We incorporate the phenomenon where the elastic

energy scales as k(DS/t)
1/3 where DS is the length of the short diagonal of the panel, and

k is the bending modulus of the sheet, defined as k = Et3/12(1 − ν2). The panel bending

stiffness is thus defined as

KB = CB
Et3

12(1− ν2)

(
DS

t

)1/3

, (4.2)

where we use a scaling factor CB = 0.441 that provides an approximate estimate for the

panel stiffness. This approximation is about double of the more refined estimates obtained

in Chapter 2, but is within a close and realistic range when compared to the panel stretching

stiffness.

In this chapter, we also use an approximate method to define the fold bending stiffness as

a ratio of the panel bending stiffness. We introduce a parameter RFP to relate the stiffness

between the bending of a fold with length LF = 1 and the bending of a panel with a diagonal

of DS = 1. For the analyses, we assume that the folds are less stiff than the panels, and we

use an arbitrary choice of RFP = 1/10 based on visual observations of our physical models.

In Section 4.3.3, we show that RFP influences the magnitude of eigenvalues associated with

fold bending, however, it does not influence the overall behavior and the qualitative results

presented in the chapter. For our implementation, the stiffness for each of the two fold
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elements (i.e. a,b,c and -a,d,e in Figure 3.4) is calculated similarly to Equation 4.2, as

KF = RFP
LF
2
CB

Et3

12(1− ν2)

(
DX

t

)1/3

, (4.3)

where DX = 1 units long, indicating a panel with short diagonal with of one unit. This

function scales linearly with the fold length LF and incorporates the ratio between fold and

panel stiffness RFP . These assumptions and the stiffness formulation are consistent with the

findings presented in Chapter 2.

Eigenvalue analyses are used to study the stiffness and flexibility of the origami structures.

The linear dynamics system is used to solve the underlying eigenvalue problem formulated

as:

Kvi = λiMvi, i = 1, ..., Ndof (4.4)

where λi is the ith eigenvalue and vi is the corresponding eigen-mode of the structure. A

base case of the analysis is shown in Figure 4.3 for a tube where α = 55◦ and N = 10, and

a = c = 1. The thickness of the material is t = 0.01, the Young’s modulus is E = 106,

the Poisson’s ratio is ν = 1/4, the density is ρ = 1, and the factor relating fold to panel

stiffness is RFP = 1/10. The first six eigen-modes correspond to rigid body motion of the

structure in 3 dimensional space so they are omitted in our study. The linear elastic structure

can be modeled at different configurations meaning that the starting configuration can be

defined either with the dihedral angle (θ) or based on the percent extension of the (%) of

maximum extended length that the tube can reach. For the majority of our analysis we

will use the percent of the maximum extended length because this provides a more realistic

representation of the physical configuration in which the structure is situated.

Performing the analysis in different configurations we can plot an eigenvalue spectrum

(Figure 4.3 (a)) that shows the eigenvalues as a function of the configuration. Figure 4.3

(b) shows representative eigenmodes corresponding to the seventh to 10th eigenvalues of the

structure when deployed to 70% of the maximum extension length.The rigid folding motion

corresponds to the seventh mode of the structure where the system can fold and unfold

without deforming the panel elements, and thus deformation occurs primarily in the more
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Figure 4.3: (a) Eigenvalue spectrum for the α = 55◦ tube structure through the extension
(0%− 100% of the maximum extension length), (b) normalized mode shapes #7 to #10 when
tube is at 70% of the maximum extension length (undeformed outline in red).

flexible fold elements. The eighth mode is a type of “squeezing” mode, where one end of

the structure is folded while the other end is unfolded. This mode results in bending of

the fold and the panel elements, however, the panels do not stretch or shear, and thus the

total energy is only slightly higher than that of the seventh eigen-mode. Subsequent modes

contain stretching and shearing of the panels which require much higher energy than the

bending deformations. Note that in Figure 4.3 (a) there is substantial mode switching for

higher modes and at the extreme ends of the spectrum. The mode switching is a result of

the changing geometry of the structure, for example, when the structure reaches a nearly

flattened state θ ≈ 180◦, bending of the structure globally becomes easier than folding or

squeezing of the structure.

Figure 4.4 (a) shows the same spectrum as above, and also shows the effect of reducing

the factor RFP (Figure 4.4 (b)). Keeping all other parameters of the analysis the same,

only the fold elements become, much more flexible, and the seventh and eighth eigenvalues

drop. Since the seventh mode depends only on the fold elements, its eigenvalue drops more

substantially and the gap λ7 and λ8 is effectively enlarged. In practice this type of behavior

can be achieved through making the panels out of thick rigid material, while making the folds

from thinner and more flexible material e.g. cloth. In Figure 4.4 (c) we show the behavior

of the structure with the thickness reduced to t = 0.001, but all parameter are kept the
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Figure 4.4: (a) Eigenvalue spectrum for the yellow tube structure (α = 55◦, a = c = 1, N = 10,
t = 0.01, E = 106, ν = 1/4, ρ = 1, and RFP = 1/10) through the deployment (0%-100%
extension), (b) eigenvalue spectrum for the structure now with RFP = 1/1000, (c) eigenvalue
spectrum for the structure now with t = 0.001.

same as before. Reducing the thickness of the material reduces the axial and shear stiffness

linearly, but the bending stiffness of the panels and folds is reduced at a much higher rate

with t2
2
3 (i.e. Equations 4.2 and 4.3). Due to this both the seventh and eighth eigenvalues

drop substantially. Note that since the mass and axial/shear stiffness both vary linearly

with the thickness, modes 9 and higher are not substantially influenced by this change.

Figure 4.5 shows the eigenvalue spectrum and the representative modes at 70% extension

for a tube structure with a sector angle of α = 85◦ and all other properties kept the same as

for the α = 55◦ tube. The eigenvalues for this structure are much lower for most extension

lengths and mode switching occurs for the seventh and eighth eigenvalues even at interme-

diate configurations. At 70% extension the seventh eigenvalue is the global bending of the

structure, this form of bending has low stiffness since at this configuration the structure is

shallow. As one can see this type of bending requires more energy (higher eigenvalue) as the

structure extends and takes on a more quadratic shape. The eighth mode corresponds to the

rigid body folding and after the mode switching at about 80% extension, this becomes the

seventh eigenmode. The ninth mode is a second degree manifestation of the bending mode

where the structural deformation now has one point of zero curvature considering the de-

formation map globally. Mode 10 at the 70% extension length corresponds to the squeezing

mode where one end is folded while the other end is unfolded.
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Figure 4.5: (a) Eigenvalue spectrum for the α = 85◦ tube structure through the extension
(0%− 100% of the maximum extension length), (b) normalized mode shapes #7 to #10 when
tube is at 70% of the maximum extension length (undeformed outline in red).

4.2.3 Model verification

In this section, we verify and explore the benefits and shortcomings of the simplified model

for elastic origami. We do this by comparing the results from the bar and hinge model to

a detailed finite element (FE) shell model created using the software ABAQUS (Dassault

Systemes Simulia Corp, 2010). Details of the FE implementation are shown in Figure 4.6 (a)

for a single Miura-ori cell. For the FE model we discretize each panel into D segments in each

direction, such that each panel will now be modeled using D2 shell elements (for Figure 4.6

(a) D = 5). Standard S4 general-purpose square shell elements with finite membrane strains

are used and are connected with one node at each corner. The S4 elements do not have

hourglass modes in either the membrane or bending response of the element. The element

has four integration locations, which makes it more computationally expensive, however, this

also provides greater accuracy. The S4 element typically outperforms other shell elements

(e.g. S4R) in cases where membrane or bending hourglassing may occur. A 3 dimensional

model is built in FE, and thus each node has 6 DOFs 3 displacements and 3 rotations. The

shell elements take into account all of the 6 DOFs at each of the attached nodes. Mass in

the model is distributed based on the volume and the density ρ of the shell elements.

At the fold lines, overlapping (collocated) nodes are placed with one node on each of the
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Figure 4.6: FE model used for verification (a) Miura-ori cell discretized with D = 5 elements for
each panel, and cut-out showing local zero-length connectivity at fold lines. (b) Discretization of
single tube with D = 8.

adjoining panels. These nodes, indicated on the cut-out of Figure 4.6 are then connected

using a “JOIN” connection element that restricts the collocated nodes to remain in the

same XY Z coordinates throughout the analysis. At the same location, the fold stiffness is

modeled as an elastic rotational spring that resists rotations between the adjacent panels.

The spring is placed locally on each pair of collocated nodes, and resists rotations about the

local a vector shown on the cut out of Figure 4.6 (a). The stiffness of the fold is assigned

based on the dimensions of attached shell elements as:

KF FE =
(LS1 + LS2)/2

LF
KF (LF ) (4.5)

where LS1 and LS2 are the lengths of the attached shell element parallel to the fold line,

LF is the length of the entire fold and the KF is a function of stiffness based on the fold

length and the standard material properties as defined in Equation (4.2). Equation (4.5)

distributes the stiffness of the fold (as calculated for the bar and hinge model) based on the

tributary length of the shells elements used. Naturally, collocated nodes that are at the end

of a fold or at a vertex will only have one adjacent shell element and thus the stiffness will

be based only on LS1/2 or LS2/2.

In the FE model bending stiffness of the shell elements is estimated based on the thickness

(t), the Poisson’s ratio (ν), and the elastic modulus (E). For small deformations (and
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eigenvalue analysis) the shells are assumed to exhibit double curvature bending, and thus

the stiffness of the shells is less than if we were to use a single curvature bending definition.

The yellow tube with α = 55◦ and a = b = 1 presented in Section 4.2.2 is used for

comparing the bar and hinge, and FE models. The tube properties are defined as previously,

i.e. t = 0.01, E = 106, ν = 1/4, ρ = 1, and RFP = 1/10. A discretized tube model with

D = 8 (Figure 4.6 (b)) is formulated in the FE model as shown above and a natural

eigenfrequency extraction is performed. The eigenfrequency spectrum for the FE model

and the bar and hinge model is presented in Figure 4.7 (a). The mode shapes for the FE

model when analyzing the tube at 70% extension are shown in Figure 4.7 (b). At 70%

of the maximum extension length the mode shapes from the FE model are identical when

considering the global deformation of the structure. The seventh mode is the rigid body

folding, the eighth is the global squeezing mode, and the ninth and tenth modes are the

same squeezing type modes that require stretching and shear of the panels. The magnitude

of the eigenvalues λ7 and λ8 from the FE and the bar and hinge models are about equal

(within 5% difference) for most of the extension spectrum. The fold lines have the same

amount of stiffness for the bar and hinge and the FE models, and since the rigid body

folding requires deformation primarily in the flexible fold lines then it is to be expected that

λ7 will be the same for both models. The squeezing deformation mode requires bending of

the folds and bending of the panels and since these are again defined to behave in a similar

fashion, then λ8 is similar for both modeling approaches.

The eigenvalues λ9 and λ10 are lower in magnitude for the FE than the bar and hinge

model, but they follow the same general trend over the extension length. The difference in

magnitude for these eigenvalues can be attributed to the localized deformations and stress

concentrations that can be evaluated with the FE discretization, but cannot be captured

using the bar and hinge model. For example in mode #9 the Miura-ori cell in the middle

of the tube experiences bending, stretching, and shear localized at the vertex. The FE

model can capture the localized effects and individual shell elements can deform more than

others. On the other hand in the simplified model stretching shear and bending can only

be captured as global phenomena over the entire panel. In a sense this is the same problem

that occurs with finite element meshes that are not discretized sufficiently. The stiffness is

over estimated, and with element refinement we are able to achieve a more realistic solution
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Figure 4.7: (a) Eigenvalue spectrum from bar and hinge and FE analyses for the α = 55◦ tube
structure through the extension (0%− 100% of the maximum extension length), (b) normalized
mode shapes #7 to #10 of the FE tube model when tube is at 70% of the maximum extension
length (undeformed outline in red).

This FE verification allows us to better understand when the bar and hinge model is

sufficient vs. when it may provide misleading or inaccurate results. We can also better

appreciate some of the advantages and disadvantages of the simplified model.

4.3 Coupling of two tubes

Stacking of the tube structures can be performed in a variety of ways while maintaining

the rigid and flat foldability. Figure 4.8 shows three variations in which these origami tubes

can be combined. The zipper type coupling (Figure 4.8 (a)) involves rotating one of the

tubes about the x axis and placing two opposing faces of the tubes adjacent to each other.

This can be repeated in the z direction and the flat and rigid foldability of the system

will be preserved. However, if zipper coupling is performed in the z and the y directions

simultaneously, then the structure will only be flat foldable in one direction, and will self

intersect if folded in the other direction. The aligned coupling (Figure 4.8 (b)) is performed

by simply translating a structure in the y or z direction and aligning the parallel faces of

the two tubes together. This can be repeated in both the z and y directions infinitely and

the structures will preserve flat and rigid foldability. In the presented form, both the zipper

and the aligned coupling configuration allow the structure to go from a flat folded stowed
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configuration (when θ = 0◦) to a flat configuration when the structure is fully deployed

(when θ = 180◦). Figure 4.8 (a) and (b) each use two tubes where the sector angle is

α = 55◦, however, these types of coupling remain rigid and flat foldable even when we use

tubes where α is different for each of the coupled tubes. Finally, the internal tube coupling

is similar to the stacked Miura-ori configurations shown by (Schenk and Guest, 2013). This

type of tube coupling requires an internal tube that specifically conforms to the geometry of

the external tube, and the entire system can only extend up to the point where the internal

tube becomes flat in the x−y plane (θ = 180◦ for the internal tube). We can define all of the

internal tube dimension (aI , bI , and αI) if we decide the maximum extended length of the

internal tube (EXTI)to be a fraction (EXTI/EXTE) of the maximum possible extended

length of the external tube (EXTE). Then:

cI =
EXTI
EXTE

cE (4.6)

aI =
aE ∗ cos(αE)√

1− (EXTI/EXTE)2 ∗ sin(αE)2
(4.7)

and

αI = sin−1

(
EXTI
EXTE

sin(αE)

)
(4.8)

where aE, aE, and αE are the dimensions of the external tube. Finally, the different stacking

types can also be used together, for example, we can stack tubes in the zipper fashion in the

Z axis, and can simultaneously stack more tubes in the aligned fashion in the Y direction.

4.3.1 Zipper coupled tubes

The different types of tubes (e.g. α), and the type of tube coupling can have a significant

effect on the structural behavior of the entire system. The thin origami sheets are composed

of a system of panels inter-connected by prescribed fold lines. The panels are much thinner

in comparison to their length, so they are much more flexible for bending out-of-plane than

they are for stretching or shearing in-plane. The prescribed fold lines can be created by

perforating the base material or by placing individual hinges to connect the panels, and are

assumed to be more flexible in relation to the bending of the panel. The material properties
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Figure 4.8: Basic configurations for coupling Miura-ori tubes. (a) Zipper coupled tubes. A tube is
translated and rotated in the Y − Z plane until the opposing faces of the two tubes align. For
clarity a different shade is used for one of the zipper tubes, but both tubes are identical to the
previous definitions. (b) Aligned coupled tubes. A tube is translated in the Y − Z plane and
coupled with the tube in the initial configuration. (c) Internally coupled tubes inspired by Schenk
and Guest (2013). External tube is the same as in before, and the internal tube parameters are
defined so that it reaches a flat configuration when the external tube is at 80% extension.

of the tubes are the same as those used in Section 4.2.2, namely the thickness of the material

is t = 0.01, the Young’s modulus is E = 106, the Poisson’s ratio is ν = 1/4, the density is

ρ = 1, and the factor relating fold to panel stiffness is RFP = 1/10.

Figure 4.9 shows the structural behavior of a single sheet, a single tube and the zipper

coupled tubes. The eigenvalues, are plotted vs the percent of the maximum extended length

that the structure can reach, and representative deformation modes are shown for each

structure when it is extended to 70% of the maximum length. A single Miura-ori sheet

(Figure 4.9 (a)) is quite flexible and can bend, and twist in a variety of configurations. The

schematic modes #7 and #8 of the single sheet exhibit a global bending in two directions.

These deformation modes are primarily a product of the panels and the folds bending. In

mode #9 we can observe the rigid folding mode, where only the folds deform, and the panels

remain essentially flat through the deformation. Finally, mode #10 represents a global

twisting of the sheet. When observing the eigenvalues plotted vs. the configuration, we can

see that the eigenvalues change, and that there is mode switching, meaning that depending

on the configuration, it may be easier to bend or twist the structure in different ways. For

practical purposes, we would typically prefer that the eigenfrequency corresponding to the

rigid body folding to be low, meaning it is easy to fold and unfold the structure, while

subsequent eigenfrequencies are high, meaning it is difficult to bend and twist the structure.

This would mean that the rigid body folding corresponds to eigenvalue #7 and subsequent

eigenvalues are higher, thus creating a bandgap between (λ7 and λ8). A structure with a
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Figure 4.9: (a) to (c) Eigenvalue vs. the structural configuration (% extension) for the sheet,
single tube and zipper coupled tubes respectively. The FE model verification is only shown for
the zipper coupled tubes. (d) to (f) seventh, eighth, and ninth deformation eigen-modes when
structures are at 70% extension (undeformed outline in red).

large bandgap would be flexible and easy to deploy, yet it would be stiff for other external

loadings. A trivial method to achieve a larger bandgap is to make the panels much stiffer

in relation to the folds (i.e. the factor RFP is reduced), as this would restrict the structure

to deploy based on the prescribed rigid body folding. Alternatively, Figure 4.9 (b) and (c)

show how the bandgap can be created and increased simply by combining the thin sheets.

When in a tube configuration the rigid folding motion corresponds to the seventh mode of

the structure where the system can fold and unfold without deforming the panel elements,

and thus deformation occurs primarily in the more flexible fold elements. The eighth mode,

is a type of “squeezing” mode, where one end of the structure is folded while the other end
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is unfolded. This mode results in bending of the fold and the panel elements, however, the

panels do not stretch or shear, and thus the eigenvalue is only slightly higher than that of the

seventh eigen-mode. Subsequent modes contain stretching and shearing of the panels which

requires much higher energy than the bending deformations. The tube has a continuous

bandgap between (λ7 and λ8), while mode switching occurs at the extreme configurations

(fully folded or fully unfolded) and for the higher modes. The continuous bandgap means

that it would always be easier to deploy the structure than it would be to twist it or bend it

in another configuration. A problematic point however, is that the eigenvalue corresponding

to the squeezing mode (λ8) is only slightly higher than the rigid body folding eigenfrequency

(λ7). As such, the structure is prone to squeezing when loads are applied to one of the ends:

e.g. if the tube is used like a cantilever, or if a one tries to deploy the entire structure by

controlling only one end. Mode #9 of the structure is another manifestation of the squeezing

mode, except here the structure is unfolded at the two ends and is folded in the center. This

deformation requires some stretching and shear of the panels, so the ninth eigenvalue is

higher. Similarly, the tenth mode requires more energy since it is a global bending of the

structure meaning that one side will be in compression and the other in tension.

The aligned and the internal tube coupling configurations are also prone to the squeezing

deformation modes, and the bandgap is not increased as discussed in Section 4.3.4. However,

when coupling the tubes in the zipper fashion we observe an unusual behavior, in that the

coupled structure has a substantial bandgap between the rigid body folding and subsequent

eigenmodes. At a 70% extension the rigid-body folding mode has an eigenvalue of λ7 = 4.99

while the subsequent, squeezing mode has an eigenvalue of λ8 = 1203 that is roughly two

hundred and fifty times larger. The next two modes require a global bending of the structure,

which requires stretching and shear of the material and thus higher energy. When comparing

the single tube and the coupled tubes, the magnitude of the eigenvalues λ7 changes only

slightly. This occurs since we double the mass of the system and we also introduce twice the

number of elements, and thus both the total element stiffness and total mass scale linearly.

Therefore, any change in the eigenvalues can be attributed to changes in the stiffness caused

from the coupling, because the mass will always increase linearly with the number of tubes

coupled.

In Figure 4.10, we use the FE model presented in Section 4.2.3 to perform energy analy-
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Figure 4.10: (a) to (c) Eigen-mode energy of the sheet, the single tube and the zipper coupled
tubes respectively, using the FE model. Energy distributions (as a percentage and as a total
amount) are presented in stacked bar graphs indicating energy in the different sets of components
(i.e. fold bending (F), panel bending (B), and panel stretching (S)). The energy within the
structure is shown by relative shading of elements to show concentrations of energy. The color
scale indicates the magnitude of energy.
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ses for the Miura-ori sheet, the single tube, and the zipper-coupled tubes. To connect the

zipper tubes in the FE model we first find the ten planes where the panels of the two tubes

connect. We then identify the nodes that are adjacent to both tubes, and connect these

nodes to the respective planes using tie elements. The energies are calculated based on the

structural deformation for the normalized mode shapes (Figure 4.9(d-f)). Percentage distri-

bution between the different sets of element deformations (i.e. fold bending, panel bending,

and panel stretching/shear), and the total energy for each mode are shown. The total en-

ergy for eigenvalues of the single sheet are relatively low, because deformations consist of

localized bending in panels and folds. The distribution of energy for the seventh and eighth

deformation modes (Figure 4.10 (a) Mode 7 and 8) illustrate that bending occurs in the cen-

tral panels and folds while the remainder of the structure remains unstressed. As expected,

the bending energy in the panels is highest at the vertices, where the curvature approaches

infinity (Lobkovsky et al., 1995; Cerda et al., 1999). These energies are relatively low, while

the eighth and ninth modes of the zipper-coupled tubes require much more energy, because

the thin sheets are engaged in stretching and shearing. The rigid folding modes, ninth for

the sheet, and seventh for the tube structures, primarily engage the fold lines in bending

as previously expected. The ninth mode of the sheet and the seventh mode of the tube

represent a rigid folding motion where bending is primarily concentrated in the folds and

the panels remain essentially flat throughout the deformation (Figure 4.9(d-f))

4.3.2 Coupling elements for zipper tubes

In the bar and hinge model, the coupling of the zipper structures is realized by inserting

coupling elements that restrict relative movement between the adjacent panels of the two

tubes. These coupling elements can be thought of as an adhesive joint between the adjacent

faces of the tube. The relative local coordinates (X ′ and Z ′) are different for the odd

and even panels of the structure (Figure 4.11). The X ′ coupling elements restrain relative

movement between panels along the length of the tube (relative to the local X ′ axes) and the

Y ′ coupling elements restrain differential orthogonal movement in the Y ′(= Y ) axis. The X ′

and Y ′ coupling elements are formulated using a compatibility relation where bar elements
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Figure 4.11: Configuration of (a) X ′, (b) Y ′, and (c) Z ′ coupling elements for a segment of zipper
coupled tubes. The local axes are shown for the left most and right most panels. Only
representative coupling configurations are shown for the Z ′ coupling elements. The sensitivity of
the system eigenvalues vs. magnitude of each of the coupling coefficients (d) CX′ , (e) CY ′ , and (f)
CZ′ while the other coupling coefficients remain at a value of 1.

are used to restrain relative movement between two nodes. The stiffness for the coupling

elements is defined as:

KX′ = CX′
EA

L
= CX′

E0.5t

1
, (4.9)

and

KY ′ = CY ′
EA

L
= CY ′

E0.5t

1
, (4.10)

where E is the Young’s modulus, and t is the thickness of the thin sheet, and the coupling

coefficients (CX′ and CY ′) can be used to vary the total stiffness of the coupling elements.

When these coupling coefficients are set to 1, each coupling element has the same axial
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stiffness as a 0.5 unit wide, 1 unit long, and t thick piece of panel material. Finally, Z ′

coupling elements are used to prevent nodes which lay on the same plane (on a panel), from

moving out-of-plane (in the relative Z ′ direction). The Z ′ coupling elements are defined in

the same fashion as the out-of-plane rotational stiffness for folds and panel bending. Here,

we consider a node on one of the zipper tubes that overlaps a panel on the opposite tube,

indicated as a red/white triangle in Figure 4.11 c. A rotational hinge element is constructed

which restricts out-of-plane movement between each of these overlapping nodes and the 3

corresponding nodes on the opposing tube. For clarity, only two sample corresponding node

sets are illustrated in Figure 4.11 (c). The vectors groups (a, b & c) and (d, e & f) can

be used to define the rotational hinge for each set. The stiffness for each of these rotational

hinges is defined as:

KZ′ = CZ′CB
Et3

12(1− ν2)

(
1

t

)1/3

, (4.11)

where the parameters are the same as the panel definition in Equation 4.2, and the coupling

coefficient CZ′ can be used to vary the total stiffness of the coupling elements. With this

formulation, the stiffness of each Z ′ coupling element is equal to the stiffness of a panel

element with a diagonal length, DS, of 1. Since the equation for KZ′ is based on bending of

the thin sheet, the value of this stiffness is substantially lower than that of the X ′ and Y ′

coupling elements.

The sensitivity of the model eigenvalues vs. the magnitude of each of the coupling coeffi-

cients, is explored for the zipper coupled tubes deployed to 70% extension (Figure 4.11). The

rigid folding mode (λ7) of the coupled tube is not affected by any of the coupling elements,

i.e. it is neither easier nor harder to fold and unfold the structure due to the coupling.

When the coupling coefficient CX′ is substantially reduced (lower than 10−2), the eighth

and subsequent eigenvalues experience a drop in magnitude from approximately 1200 to

approximately 500. This drop occurs because the tubes are not restrained in the relative

X ′ direction, and thus the eighth mode switches to a deformation mode in which the tubes

begin to separate. Due to the presence of the Z ′ coupling elements, the magnitude of this

eigenvalue remains relatively high even when CX′ = 10−5 (λ8 = 560 vs. λ8 = 20.7 for a single

tube). When decreasing the value of the CY ′ coupling coefficient, there is a more signifi-

cant effect on λ8 and the subsequent eigenvalues. The eigenvalue corresponding to bending
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reduces to λ8 = 590, when CY ′ = 10−3, and experiences a mode switch for lower coupling

coefficients. When CY ′ is substantially reduced, the tubes are free to slide apart in the Y

direction. The CZ′ coupling coefficients on the other hand have essentially no influence on

any of the eigenvalues. This is due to the zig-zag geometry of the tubes, which causes the

axial members to restrain global out-of-plane movement between the two tubes. In other

words, the Z ′ coupling elements can be removed and the tubes would still be effectively

connected. When any of the coupling coefficients are increased past a value of 1, there is

negligible increase in the eighth and subsequent eigenvalues of the structure.

When changing the value of the vertex angle α, or the maximum extension length of

the zipper coupled tubes, there is little change in the sensitivity of the different coupling

elements, however the general trends remain. The tubes are effectively coupled when the

coupling coefficients are about equal to 1. The X ′ and Y ′ coupling elements have a higher

influence on the coupling and maintaining a large bandgap (β = λ8 − λ7), while the Z ′

coupling elements have little influence on the eigenvalues.

4.3.3 Sensitivity of model and analysis

In Figure 4.12 we show differences in scaling of eigenvalues, for the tube and zipper-coupled

tubes, with respect to different model parameters. The seventh eigenvalue for both the single

and the zipper-coupled tubes corresponds to the rigid folding mode, in which deformation

primarily occurs as bending of the prescribed folds (Figure 4.10). The eighth mode for

the single tube corresponds to squeezing, in which bending occurs in the fold and panel

elements. However, the eighth mode for the zipper-coupled tubes requires stretching and

shearing of the thin sheet, which requires much more energy than bending, and results in

drastic differences for the scaling of eigenvalues.

All eigenvalues (λ7 and λ8 for both systems) scale proportionally with the Young’s Mod-

ulus E (i.e. doubling E, doubles the eigenvalue), and inversely proportionally with the

material density ρ (Figure 4.12 (a,b,e,f)). This is expected because E scales the stiffness

proportionally, and ρ scales the mass proportionally in equation Kvi = λiMvi. Scaling

of other parameters, however, does not necessarily influence all eigenvalues proportionally.

When changing the sheet’s thickness, t, its stretching/shearing stiffness and the system’s
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Figure 4.12: Eigenvalue sensitivity for a single tube and the zipper-coupled tubes. (a-d) Scaling
of λ7 with respect to E, ρ, t, and RFP . (e-h) Scaling of λ8 for the same cases. These relations
directly govern the scaling sensitivity of the bandgap.

mass scale proportionally (i.e. scaling with 1). On the other hand, the bending stiffness

for both the panels and the folds scale as 8/3 based on Equations 4.2 and 4.3. Therefore,

when scaling the thickness, the eigenvalues scale as 5/3 for both tubes’ rigid folding modes

(λ7) and the single tube’s squeezing mode (λ8) (Figure 4.12 (c) and (g)). The eighth eigen-

value for the zipper-coupled tubes does not change because both mass and stretching/shear

stiffness scale proportionally (both are defined by t). When scaling the fold stiffness ratio,

RFP , λ7 scales proportionally for both structures, λ8 scales as 0.8 for the single tube, and

λ8 remains constant for the zipper tubes (Figure 4.12 (d) and (h)). The system behaviors

that lead to these scaling relations are complemented by the energy distributions shown in

Figure 4.10.

In summary, the Young’s Modulus E and material density ρ directly scale all system eigen-

values, while the material thickness t and fold stiffness ratio RFP scale eigenvalues influenced

by panel and fold bending. The scaling of different parameters does not cause mode switch-

ing and the order of eigen-modes remain the same as shown in Figure 4.9. Scaling different
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parameters can change the quantitative results (e.g. magnitude of λ7), however it does not

influence the qualitative results presented here. The eighth eigenvalue for the zipper-coupled

tubes remains substantially higher than the seventh, ensuring a large band-gap (β = λ8−λ7)

regardless of the parameter values used. The results presented in this paper are independent

of length scale, making the zipper-coupled tubes applicable across scales.

4.3.4 Aligned and internally coupled tubes

The eigenvalue vs. configuration plots and representative eigen modes at 70% extension

are illustrated for the zipper, aligned, and internally coupled tubes in Figure 4.13. Aligned

and internal coupling of tubes is much simpler to formulate than the zipper coulpled cases.

The nodes of these coupled tubes conveniently fall in the same location for these tubes.

Therefore, the same DOFs are used for both tubes, and only one of the overlapping nodes

is used in the model. This approach is stiffer than the element based approach used for the

zipper coupling tubes. The behavior of the aligned coupled tubes for λ7 and λ8 is almost

identical to that of the single tube, and again this can be attributed to the fact that when

tubes are coupled we double the mass of the system, and we simultaneously add an identical

set of elements to the system. Mode #9 is a similar squeezing as that in the single tube but

the eigenvalue has doubled. In Mode #10 the aligned coupled tubes bend in the X-Y axis

which is in contrast to the single tube which bends in the Y and the diagonal between the

Y and Z axes. The eigenvalue increase can be attributed to the linear coupling.

Figure 4.13 (b) shows the behavior of the internal coupled tubes which can only extend

up to 80% of the external tube maximum extension, since at that point the internal tube

will become completely flat. The coupling configuration also influences the modal behavior

of the structure, as compared to a α = 55◦ tube used alone. The rigid body folding and the

squeezing mode are still λ7 and λ8 respectively, however at larger deployment configurations

(60 to 80% of the maximum extension length) these eigenfrequencies increase significantly. At

80% extension length λ7 = 280 in contrast to the single or other tube coupling configurations

where λ7 reaches values of about 45 at most. At the 80% extension length the internal

tube is essentially flat and it is difficult for the structure to deform in the prescribed rigid
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Figure 4.13: Eigenvalue comparison for the different coupling assemblies. (a) to (c) Eigenvalue vs.
the structural configuration for the zipper, aligned, and internally coupled structures respectively.
(d) to (f) seventh, eighth, and ninth deformation eigen-modes when structures are at 70% of the
maximum extension length (undeformed outline in red).
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folding mode. In other coupling configurations the eigenvalues typically drop rapidly at high

extension configurations since the structure becomes essentially flat (θ = 180◦) and is thus

easy to bend. The large increase of λ7 for the internally coupled tubes could be useful for

systems that would need to lock and stay in a deployed configuration.

4.4 Origins of the zipper coupling effect

When two tubes are coupled into a zipper geometry the folding kinematics remain unre-

stricted, however there is a significant increase in stiffness for other deformation motions.

The thin sheet panels become engaged in tension and shear for other deformations and there

are no other global motions that engage primarily fold and panel bending. In Figure 4.14,

we show the deformation associated with the squeezing of different tubes. The squeezing

of the single tube is the second most flexible mode of deformation, so we explore why this

motion is not possible with the zipper coupled tubes. The squeezing requires continuous

bending of the panels from one end of the tube to the other, and this essentially leads to

type of rotation of the panels over the length of the tube (Figure 4.14 (b)). All squeezing

deformations in Figure 4.14 are shown with the near side of the tube unfolding (approaching

a flattened state) and the far side folding (approaching a collapsed tube). When coupled

tubes go through squeezing, it is necessary that the ends of both tubes go through the same

type of folding or unfolding motion (e.g. the near end of both tubes is unfolding). For

aligned tubes (Figure 4.14 (d)) the squeezing motion in the two tubes is compatible. The

coupled side of both aligned tubes rotates in the same direction and there is no separation

between the deformed modes. On the other hand, the zipper coupled tubes (Figure 4.14

(c)) have a non-compatible motion when squeezing. The coupled side of the tubes rotate in

opposite directions, and there is differential movement between the two tubes.

Another way of exploring the source of the large band-gap increase, is to investigate

the squeezing deformation mode as it is restrained by the new geometry. We perform an

eigenvalue analysis on two tubes arranged in a zipper coupling fashion, when the stiffness

of all coupling elements is substantially reduced (CX′ = CY ′ = CZ′ = 0.0005). In this

scenario the tubes can simultaneously undergo the squeezing deformation mode where the

tubes fold on the left side and unfold on the right (Figure 4.15 (a-c)). However, this motion
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Figure 4.14: Tube with squeezing deformations (image from Filipov et al. (2015b)). (a)
Undeformed configuration of a single Miura-ori origami tube. (b) Squeezing of a single tube, with
panel rotations indicated on each side of the tube. The cross section view shows the near side
unfolding - into a flat sheet; and the far side folding - into a collapsed tube. (c) Squeezing of two
tubes that are oriented in a zipper coupling configuration. The coupled surfaces on the two tubes
rotate in different directions. (d) Squeezing of two tubes oriented in an aligned direction. The
coupled surfaces rotate in the same direction and remain compatible.

is incompatible for an effectively coupled zipper system. On the left side, the first vertex of

the bottom tube moves downward (point I on Figure 4.15 (a)), while the first vertex on the

top tube moves upward (point II on Figure 4.15 (b)) and vice versa on the right side. This

transverse motion between the two tubes can be quantified by tracking the distance between

adjacent panel-edge center points on the two tubes (Figure 4.15 (d)). In an undeformed (or

effectively coupled) system the distance between adjacent edge center points is uniform at

0.7 units. The squeezing of the loosely-coupled system results in separation on the left side

(distance increases up to 0.9 units), and a closing on the right side (distance decrease down

to 0.5 units). In an effectively coupled zipper system these in-plane motions are restrained,

and it would be necessary to stretch and shear the thin sheet to achieve a squeezing type

deformation.

4.5 Influence of tube geometry on eigenvalue bandgaps

As it is briefly discussed in Section 4.3 it is possible to couple tubes where the geometry of

the individual tubes is different e.g. the sector angle α or the panel height a do not need to

be the same for the two coupled tubes. Furthermore, as we showed in Section 4.2.2 tubes
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Figure 4.15: Squeezing deformation of zipper-coupled tubes when the coupling coefficients are
reduced to CX′ = CY ′ = CZ′ = 0.0005. (a) Top view of only the deformed bottom tube with an
outline of its initial configuration. The x-marks indicate the panel-edge center points on the side
of the tube which is attached. (b) Only the deformed top tube. (c) The squeezing deformation of
the zipper-coupled assembly with low coupling. (d) Change in the distance between the
panel-edge center points of the two tubes. Initial distance before deformation is 0.7 units for all
locations; the squeezing results in separation on the left side and closing on the right side of the
coupled tubes.

of different geometries have different characteristics at different deployment configurations,

and thus it may be useful to couple different geometry tubes. Here we study two tubes

with different α in the zipper coupled configuration, and we investigate how the bandgap

between (λ7 and λ8) is influenced by the different geometries. Firstly, in 4.16 we can see

the different eigenvalue response achieved by coupling different tubes. The α = 55◦ yellow

tube is coupled with a α = 70◦ red tube (Figure 4.16 (a)) and also with a α = 85◦ green

tube (Figure 4.16 (b)). The (αA = 55◦ - αB = 70◦) tube combination has a large gap for the

lower extension lengths, while the (αA = 55◦ - αB = 85◦) tube combination only has a large

bandgap for some of the higher extension lengths. The gap in the (αA = 55◦ - αB = 85◦)

combination is substantially larger than that of either a α = 55◦ tube or a α = 85◦ tube

alone. This property could be of benefit if for example one needs to use the α = 85◦ tube

due to its geometric (i.e. it results in a square tube with a direct opening), but would like

to have a bandgap through the entire deployment sequence which was not possible for the

single α = 85◦ tube (Figure 4.5).

Next we study the response of different zipper tube pairs by performing a parametric study

on the sector angles αA and αB of the tubes. Figure 4.17 shows the bandgap between (λ7 and
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Figure 4.16: Eigenvalue response of zipper coupled tubes with different geometries: (a) αA = 55◦

yellow tube coupled with a αB = 70◦ red tube, and (b) αA = 55◦ yellow tube coupled with a
αB = 85◦ green tube.

λ8) of the αA and αB zipper coupled tubes when they are analyzed at three different extension

lengths. In Figure 4.17 (a) the zipper tube combinations are analyzed at a configuration of

50% of the maximum extension length, and the (β = λ8 − λ7) bandgap is plotted for the

different tube pairs. Coupling two identical tubes with αA = αB = 51◦ results in the highest

gap for zipper coupled tubes at the 50% of the maximum extension length configuration.

For higher extension length configurations (80% in Figure 4.17 (b) and 95% in Figure 4.17

(c)) the sector angles of the tube pairs with maximum bandgap are higher and this is similar

to the single tube behaviors e.g. α = 85◦ tubes experience low bending eigen modes in

low extension configurations. For all of the extension lengths the maximum bandgap occurs

when two of the same tubes are coupled together (αA = αB). This is interesting since

it shows that there is no benefit in coupling two different tubes even for different system

configurations. Finally, the value of the actual bandgap tends to be higher for configurations

at a higher extension length.

The response was studied for lower extension lengths as well, and the zipper coupled tubes

that resulted in the maximum gap ranged from pairs αA = αB = 42◦ for near 0% extension

to αA = αB = 87◦ for 99% extension. This however does not give an encompassing answer to
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Figure 4.17: The bandgap (β = λ8 − λ7) for zipper coupled tubes pairs αA and αB at
configurations (a) 50%, (b) 80%, and (c) 95% of the maximum extension length.

what tube geometries are best to use to achieve a large bandgap. To capture the cumulative

tube response for different configurations, we can study the integral of the bandgap between

(λ7 and λ8). For each tube pair αA and αB, we take an integral over the extension length

as: ∫ %EXT=100%

%EXT=0%

β = λ8 − λ7 (4.12)

The value of this integral is plotted for the different tube pairs in Figure 4.18. This figure,

similar to those showing the bandgap at a single extension length is also symmetric, and the

maximum integral of the bandgap vs. extension length occurs for a tube pair of αA = αB =

60◦. Furthermore, Figure 4.18 shows the maximum integral of the bandgap that can be

achieved when one of the tube sector angles (αA) is initially prescribed. This way a designer

that would like to use a specific tube can choose the geometry (αB) of the second tube so

that the structure has the maximum possible bandgap for different configurations.

4.6 Structural cantilever analysis

Coupled tube systems can be applicable as deployable cantilever structures, when restrained

on one end (Figure 4.19). A mechanism can be used to deploy the system or to fix it on

one end for practical utilization . In this configuration the tube systems exhibit behavior

similar to that of an I beam, wherein the second moment of area (or area moment of inertia)

is increased by distributing material away from the centroid. The aligned and internally

coupled tube systems often experience squeezing type deformation when loaded on one end,
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Figure 4.18: The integral of the bandgap (β = λ8 − λ7) over the extension length, for different
tube pairs αA and αB.

whereas the zipper coupled tubes experience a more uniform deformation (Figure 4.19).

The support and loading conditions for the cantilevers are shown in Figure 4.20. At the

supported end, all nodes are fully fixed (X,Y ,and Z displacements). A total load of 1 is

distributed on the other end of the structure, by placing 1/8 of the load at each of the 8

nodes. Double the load (1/4), is placed on the collocated nodes occurring in the aligned and

internally coupled systems. The fixed end of the cantilevers may also be constrained in a

different fashion, so that a mechanism could be used to fold and deploy the entire structure.

Figure 4.20 (g) to (i) shows a new constraint pattern, where a mechanism is used to control

the rigid folding mode of the system. When the mechanism is contracted the structure will

deploy, and when it is extended the structure will fold. When the length of the mechanism

is fixed, the cantilever will behave much like if the support is fully fixed.

We compute the stiffness in different directions for the coupled tube structures, and nor-

malize it with respect to the total material used in the system (Figure 4.21 (a-f)). The

stiffness of the structures is calculated for the three Cartesian directions for different exten-

sion configurations (Figure 4.21 a-c). The distributed loads are applied for each individual

case, and the resultant displacements (∆X , ∆Y , and ∆Z) are calculated from the linear

function F = K∆, where F is a force vector, and K is the stiffness matrix from Equation

3.1. A quantitative stiffness is then calculated as K = F/δ = 1/δ based on the maximum

system displacement (δ = max(∆)) in the direction of the applied load.

The results for stiffness presented here show the general system behavior, and are in

consistent units of force per length (e.g. N/mm). A realistic length scale and elastic modulus
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Figure 4.19: Zipper, aligned and internally coupled tubes used as cantilevers. Initial (red line) and
deformed geometry of the structures at 70% extension when the left end is fixed and a uniform
load is applied on the right end. The deformed shapes are scaled so the maximum displacement
for each case is equal to the panel height (a = 1), and do not necessarily represent stiffness.

can be substituted to find quantitative results for the cantilevers.

The stiffness for different directions of load application, orthogonal to the X axis, is also

investigated, by rotating a load in the Y − Z plane. At three different configurations (40%,

70%, and 95% extension), the stiffness for each structure is calculated, and presented as a

radial plot showing the direction of load application (Figure 4.19 (d-f)). The structure is

analyzed with the same constraint and load distributions, and only the direction of the load

vector (equating to 1) is rotated in the Y −Z plane. The aligned and internally coupled tube

systems demonstrate anisotropic behavior, wherein one loading direction (in the Y −Z plane)

displays high stiffness, whereas the zipper coupled tubes tend to be stiff for all directions of

loading (Figure 4.19 (d-f)).

4.7 Cellular systems

Cellular origami can permit self-assembly of engineered hierarchical materials (Côté et al.,

2006; Fratzl and Weinkamer, 2007), whose mechanical properties depend on the micro-

structure geometry. The structural stiffness and energy absorption properties of cellular

origami can be optimized to complement and improve naturally-occurring materials (Gibson
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Figure 4.20: Support and loading conditions of origami cantilever structures. (a) to (c) Initial
configurations for the zipper, aligned, and internally coupled structures respectively. (d) to (f)
Support conditions (left), and loading conditions (right), used in the analyses of the three
cantilever systems. The total load of 1 is distributed by placing 1/8 of the load at each of the 8
nodes, while double the load (1/4), is placed on collocated nodes occurring in the aligned and
internally-coupled systems. (g) to (i) Support conditions (left) for the cantilevers, if a mechanism
is installed to deploy the system. Cantilever configurations (right) for different levels of system
extensions/contractions.
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Figure 4.21: (a) to (c) The stiffness (force/length) of the cantilevers in the three Cartesian
directions. The internally coupled tube cannot extend beyond 80% extension of the external tube.
(d) to (f) The stiffness for loads in the Y − Z plane represented as a radial plot at extensions of
40%, 70%, and 95% respectively. Stiffness is shown as distance from the origin.
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et al., 2010). Zipper-coupled tubes can be integrated with aligned or internal coupling

to create layered foldable assemblages (Figure 4.22). Structures that incorporate zipper

coupling inherit the large band-gap, while also retaining properties from the other coupling

techniques (e.g. space filling from aligned or locking from internal coupling). In Figure 4.22

(b-e), we study a zipper/aligned metamaterial consisting of 36 developable tubes constructed

with square unit cross-sections, projections of φZ = φY T = −φY B = 35◦ and six equivalent

segments of l1 = l2 = li. For the analysis, we use the N4B6 model and the same parameter

as discussed in Section 4.2.2. For these analyses the fold to panel stiffness ratio is set to

RFP = 1, to simulate an assemblage constructed by additive manufacturing (Figure 4.22

(f-g)). Origami metamaterials created with 3D printing do not fold like traditional origami,

but possess novel characteristics such as the single flexible mode of zipper coupling.

We analyze the assemblage in Figure 4.22 by applying symmetric uniform forces (summing

to 1) on opposing faces of the system, and calculate the compression stiffness as K = F/δ =

1/δ where δ is the mean total displacement in the direction of loading. We reconfigure the

structure based on the folding kinematics and analyze the model at different extensions. The

analysis is performed with the folds not accumulating stresses during the reconfiguration.

Because of the zipper geometry, the system is primarily flexible in the X direction at lower

extensions (0-70%), and in the Y direction at higher extensions (70-100%). The peak in the

Y direction stiffness (at 96.4% extension) corresponds to a bifurcation point, where the tube

cross-section is square, and can transition to a different rhombus depending on the direction

of folding. In addition to the stiffness, the deformation characteristics of the material are also

anisotropic. The perceived Poisson’s ratio is negative in the Y direction when compressed

in X, while it is positive in the Z direction when compressed in Y (Figure 4.22 (c-d)).

The structure is substantially stiffer in the Z direction, and deformations do not follow the

kinematic folding mode. In Figure 4.22 (f-g), we show how additive manufacturing can be

used to create cellular metamaterials with characteristics inherited from the zipper tubes.

4.8 Other variations

In this section, we briefly discuss other possible methods for coupling origami tubes. We show

several physical models that were used for demonstrating the new mechanical characteristics
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Figure 4.22: Cellular origami metamaterial consisting of 36 tubes arranged as zipper in the
horizontal Y direction and as aligned in the vertical Z direction. (a) Kinematic folding sequence
of the assemblage. (b) Compression stiffness of the metamaterial in the three Cartesian directions
vs. extension. (c-e) Initial (red line) and deformed geometry of the assemblage at 90% extension
for uniform compression tests in the X, Y , and Z directions respectively. The deformed shapes
are scaled so the mean displacement of the loaded surfaces is equal to the panel height (a = 1)
and do not represent stiffness. (f-g) Metamaterial prototypes constructed with additive
manufacturing, cannot undergo the full folding motion in (a), but inherit the anisotropic
mechanical properties of the cellular zipper assemblages. In (f) a soft metamaterial made with
Digital Light Processing of an AR-M2 transparent resin with a wall thickness of 0.09 mm can be
deformed by hand. In (g) a polyamide (PA 2200 material) assemblage with a wall thickness of 0.8
mm was created by Selective Laser Sintering and is substantially stiffer.
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Figure 4.23: Physical prototype of Zipper coupling of a reconfigurable tube with a polygonal
cross-section. The six-sided pilygonal tube has two possible shapes (I and II). Generalizations of
the Miura-ori sheets can be employed to create a variety of tubular structures with varying
polygonal geometries.

and for showing the kinematic folding of the different assemblages. The origami assemblages

were created from perforated paper that is folded and adhered together. The Miura-ori

sheets were created from 160 g/m2 paper by perforating along the fold lines with cuts of

length 0.5 mm spaced evenly at 1 mm intervals. Because each tube cannot be developed

from a single flat piece of paper, it is assembled by connecting two Miura-ori sheets. One of

the sheets is constructed with perforated tabs at the edge, which can be folded and attached

with standard paper adhesive to a mirror image Miura-ori sheet. When connecting two tubes

into either the zipper or aligned assemblage, the adjacent facets are adhered together on the

coupling surface.

4.8.1 Zipper coupling of tubes with different cross-sections

In Figure 4.23, we show the extension and reconfiguration of a physical polygonal tube

coupled with a developable tube in the zipper orientation. The internal (blue) panels of the

polygonal tube are defined to reach a flat configuration when external panels (yellow) are at

80% extension. The structure is only flat foldable in one direction, but the internal folds (in

blue) can change their polarity, and can reconfigure the overall structural shape. In Chapter

6, we perform a detailed study on the possible variations of polygonal tubes that can be

created. The cross-sections of the polygonal tubes can have many different geometries, and

many of the tubes can also be reconfigurable.
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Figure 4.24: Variations of horizontally coupled tubes. Approximate percentage of extension
shown. (a) Deployable architectural canopy with a high out-of-plane stiffness for transformable
building design. (b) Bridge structure from zipper -coupling tubes of different geometries. The
structure is flat foldable in two directions and stiff for out-of-plane bending.

4.8.2 Coupling of tubes in multiple directions

There are numerous ways in which rigid foldable tubes can be defined, combined, and cou-

pled. The arch in Figure 4.24 (a) is designed with thirty two alternating tubes with φZ = φY

varying between 32◦ and 6◦. All tubes have panels with dimensions a = c = 0.3 m and are

32 segments long. All tubes are coupled in the zipper orientation. The projection angles

φZ = φY are calculated so the overall cross-section follows a smooth planar curve (e.g.

α = 32◦, 6◦, 30◦, 7◦, 28◦, 8◦ for the first six tubes). This structure covers an area of 8.1× 9.3

m with a 2.6 m rise when deployed to 97% extension, and can fold down to a size of 5.1×0.8×

1.3 m at 5% extension. The prototype bridge in Figure 4.24 (b) is constructed with a dis-

tinct deck and parapets . When deployed the bridge structure is stiff in bending and can

allow for traffic to pass, this could be useful for disaster relief in areas that have lost road

access or could be used to construct new temporary bridges when there is a need. Two tubes

with φZ = φY = 35◦ (yellow) and six with φZ = φY = 5◦ (green). All tubes have square

cross-sections with sides of 25 mm, segment lengths of 25 mm and ten segments. Zipper

coupling is continued in one direction only, where each tube is coupled on two opposite faces.

The system remains rigid and can fold down completely flat in two different planes. The

structure has a high out-of-plane stiffness.
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Figure 4.25: Extension (percent deployment) of structure that interlocks into a fully conforming
shape. Each edge of the structure is composed of four tubes coupled in a zipper orientation.

If the zipper coupling is repeated in more than one direction, the structure will self-

interlock during the deployment, creating a stiff array of coupled thin sheets (Figure 4.25).

The side of the the self-interlocking structure can be composed of any number of zipper cou-

pled tubes together (of same θ). Furthermore, the interlocking structure does not necessarily

need to have a square final cross-section (four segments of zipper coupled tubes), but can

be any radially symmetric shape with n sides as long as there is no self intersection. The

structure will interlock when an angle (γ) between the two faces on the Y −Z cross-section

the Miura-ori cell are at γ = 360◦/n. Thus the structure will interlock at an extension of:

Ext. = 100%

√
1− cos(γ/2)2/ sin(θ)2

sin(γ/2)
. (4.13)

The tube presented in Figure 4.25 have projection angles of φZ = φY = 25◦ square cross-

sections with sides of 25 mm, segment lengths of 25 mm and ten segments (red tubes).

Zipper coupling continued in one direction for each side of the structure. The tubes at the

corners have zipper coupling in orthogonal directions (i.e. on two adjacent faces of the tube).

The system is flat foldable in one direction, and interlocks into a stiff conforming assembly

at an extension of 96.3%.
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4.8.3 Local geometric variations

There are other methods for coupling and combining tubes beyond what is covered here (e.g.

stacked sheets (Schenk and Guest, 2013) or interleaved (Cheung et al., 2014)), and perhaps,

more methods will be discovered in the future. In this section, we briefly discuss local

variations that can be made to the zipper coupled tube systems. One local variation is to

only couple specific portions of a tube. The long tube in Figure 4.26 has zipper-coupling only

in the middle portion to restrict the global squeezing and bending of the system. The ends

remain uncoupled, allowing for a rigid connection to the outside edge while still permitting

the system to fold and unfold. Applications would be to use these types of tubes as actuators

or deployable booms. Origami has already been used and tested for theses applications, and

is again especially suitable due to the pre-configured small stowing configurations (Martinez

et al., 2012; Schenk et al., 2014b; Fernandez et al., 2014). Gases or liquids could be pumped

in at one of the ends and can lead the structure to deploy. The zipper coupling in the middle

section of the actuator is also beneficial, since it prevents localized squeezing to occur in the

middle of the actuator and it also reinforces the structure for out-of-plane loadings.

Finally, using available techniques for thick origami (Hoberman, 2010; Tachi, 2011), we

can create structures of thick panels adjoined with physical hinge elements. With these

techniques cost-effective materials (e.g. thin wood panels with metal hinges) can be used to

create large structures that can be easily deployed, but possess large global stiffness from the

zipper-coupling framework (Figure 4.26 (b)). The thickened tubes have panel dimensions

a = 80 mm, c = 40 mm, and the thickness is t = 5 mm on the thin and t = 10 mm on

the thick part of the panels. A technique of cutting out material is adopted, allowing the

structure to fold down completely to the minimal feasible thickness of 2Nt = 80 mm. The

structure cannot extend to 100% extension because intersection of the thick material will

occur.

4.9 Concluding remarks

This chapter explores single origami tubes and introduces a new approach for coupling tubes

together in a zipper fashion. We explore the unique mechanical characteristics of the cou-

pled systems through eigenvalue and structural analysis. The zipper coupling configuration
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Figure 4.26: Local variations for possible future extensions of coupled tube structures. Different
stages of deployment are shown with approximate percentage of extension. (a) Actuator system
from zipper coupling of two tubes of different length. The edges of the long tube are restrained,
but squeezing can occur on the uncoupled sections allowing the system to fold. (b) Computer
visualization of zipper tubes from thick material (thick origami).

results in a large bandgap between the the rigid body folding (seventh) mode and subse-

quent squeezing and bending modes (eighth and larger). The origami tubes engage the thin

sheets in tension, compression, and shear for any deformation mode that does not follow the

kinematic deployment sequence. Therefore these systems are easy to deploy yet are stiff for

any other motion. The increase in stiffness of the eighth mode is several orders of magnitude

with the zipper coupling. This increase is much larger than could be achieved with other

coupling methods or with variations in the fold pattern geometry.

The zipper tubes increase the structural stiffness while still maintaining the rigid and flat

foldability of the origami. These properties are especially appealing because the structures

can be stowed in small spaces, they can be constructed of panels and hinges and can extend

into stiff practical structures. The zipper structure is analyzed as a deployable cantilever

where one end is constrained and can be actuated with a deployment mechanism, while

the other end of the cantilever can resist perpendicularly applied loads. The cantilever is

useful between 30 to 90% of its extension length, because at that range it can be deployed

easily and it is stiff in other directions. We also explore variations to the coupled tube

geometry, and show possible local and general coupling variations. The tube could be used

to create a variety of cellular assemblages that can have tunable stiffness and other enhanced

mechanical characteristics. In Chapter 5, we discuss how the zipper-coupled origami tubes

can be generalized to create assemblages that have flat tops and are curved to create new

functional forms.
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As origami becomes more widely used in science and engineering, the coupled tube as-

semblages will serve as an important component that allows flexible deployment while si-

multaneously retaining a high global stiffness. The zipper tubes could be useful for large

scale applications such as buildings or space structures, and potentially at much smaller

scales such as in micro robotics or metamaterials. Further study of the hierarchical system

properties with respect to fabrication, scale, and materials will be needed to inform poten-

tial applications. Extensions and refinements of this work could improve stiffness to weight

ratios, impact energy dissipation, and other mechanical properties.
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CHAPTER 5

DEPLOYABLE CANOPIES AND ROOFS WITH HIGH OUT-OF-PLANE
STIFFNESS

In this chapter, we develop a generalized definition for coupled tube systems such that they

can be created with different cross-sections and can take on curved profiles. We explore how

geometry affects stiffness and present a methodology to create usable slab, arch, and roof type

structures. We find that the deployable systems have a high out-of-plane stiffness when at an

extended configuration, however the cross-sectional geometry significantly influences stiffness

during deployment. Typically structures that have a more zig-zagged initial geometry can

have a reasonably high stiffness during deployment.

5.1 Introduction

In Chapter 4, we introduce the idea of zipper coupled tubes and explore their stiffness char-

acteristics. We show that this new type of coupling can provide unique structural properties

where the structure is easy to deploy yet it is substantially stiffer for any type of bending,

twisting or other deformation mode. In Chapter 4, we focus primarily on one specific ge-

ometry of origami tubes that is symmetric and developable. In this chapter, we explore the

geometry variations of coupled tubes, building upon the interesting characteristics of the

zipper coupled systems.

Varying the geometry of the tubes can be used to tune and tailor the stiffness and other

structural characteristics of the tubes. Additionally, geometric versatility can open up ad-

ditional capabilities and advantages of the origami tubes, such as reconfigurability where

the structure can be folded and re-folded in different ways. Varying the geometry of the

structures is also particularly important when aiming to apply the origami tubes to specific

applications. For example, it is possible to create tubes that would be curved or that could

have a continuous flat surface when deployed. It is also possible to use the tubes as inflatable

systems that can be actuated through internal pressures, or to use them as cellular meta-

materials with unique characteristics. Changing the geometry can allow a designer greater

versatility to enhance functionality and aesthetics of the deployable system. This versatil-
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ity can also be used for improving structural properties of the system such as strategically

increasing the stiffness in specific directions.

In this chapter, we introduce a generalized projection method to create the coupled origami

tubes. This method is an extension of the generalized surface approach discussed by Tachi

et al. (2015) to create coupled tube systems that have a non-straight profile (e.g. see deploy-

able canopy in Figure 5.1). In addition to curved coupled systems in this work, we discuss

cross-section variations of the tube systems, such that, straight tubes can be constructed

with two distinctly different tubes. We use eignevalues to verify the rigid foldability of the

coupld tubes and we show that tubes can be made reconfigurable. The kinematics show that

depending on the tube geometry, some tubes can have two distinct folding paths.

We explore the stiffness of the coupled tubes through three point bending tests, and

investigate the influence of projection and cross-section geometry on stiffness. We study

the stiffness of the systems not only at a fully deployed state, but at intermediate states of

deployment as well. An increase in stiffness from zipper coupling can be observed, and we

find that tubes that are more zig-zagged tend to have a higher out-of-plane stiffness during

deployment.

Using the generalized approach, we construct tubes with flattened tops that could be

aesthetically pleasing and functional for applications such as deployable slabs, decks, walls,

bridges or walkways. We also explore possible extensions of such systems into non-straight

variations. In particular, we explore tubes that can deploy into conventional roof types

including gable, barn (gambrel), and arched shapes. We explore the stiffness of the different

variations and show that they can be stacked in sequence to form a deployable surface.

The chapter is organized as follows: Section 5.2 discusses a generalized projection approach

for defining the geometry of single and coupled tube structures. In Section 5.3 we explore

the kinematics, rigid foldability, and geometric properties that limit the generalized coupling

definitions. Section 5.4 discusses how the geometric properties affect stiffness of coupled

tubes. Section 5.5 explores the stiffness of slabs and beams with a flat top surface, and gives

insight to how different cross-sections affect stiffness. Deployable roof and arch systems are

discussed in Sections 5.6, and Section 5.7 provides concluding remarks.
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Figure 5.1: Canopy structures. (a) The roof of the Connecticut Science Center by Csar Pelli &
Associates (image from Woodruff and Brown (2009)). Deployment sequence of a curved canopy
constructed with zipper coupled origami tubes shown in (b) isometric and (c) side views.

5.2 Generalized projection definition for single and coupled tubes

We introduce a simplified projection based technique to define the geometry of the origami

tubes. In this chapter, we use cross-sections that are simple squares or rhombuses (four

equal edges). However, the techniques and concepts presented here can be extended to any

type of parallelogram cross-section. Tubes with a parallelogram cross-sections would be flat

and rigid foldable, and also allow for the valid and effective coupling of multiple tubes (as

discussed in Section 5.2.2). In Chapter 6, we extend the projection methodologies to tubes

with arbitrary polygonal cross-sections. These tubes can be flat and rigid foldable, however

the polygonal cross-sections could limit some of the coupling capabilities presented in Section

5.2.2.

5.2.1 Origami tubes with quadrilateral cross-sections

We start by constructing a tube cross-section in the Y − Z plane. We define the rhombus

cross-section such that all sides have a unit length (1). The bottom of the cross-section is

placed to be parallel with the Y axis, and an angle of θ counterclockwise from the Z axis

defines the rotation of the cross-section into a rhombus. We use two angles φY and φZ

to guide the direction of the projection. The angle φY relates the projection from the X

towards the Y axis, while the φZ angle relates the projection from the X towards the Z

axis (see Figure 5.2). For a straight tube, we project the cross-section in the X direction

onto a projection plane that remains parallel to the Y − Z plane. We use a segment length
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Figure 5.2: Generalized projection approach to define a straight tube inspired by the Miura-ori
pattern. The tube is constructed by starting with a cross-section in the Y − Z plane and
projecting the cross-section in the X direction. The rhombus cross-section has unit (1)
dimensions and is defined by an angle θ. The projection is guided by the angles φY and φZ with
respect to the X axis. The cross-section is projected by a distance li in the X − Z plane. The
tube in this figure has dimensions φY = 30◦; φZ = 30◦; θ = 15◦, and l1 = l2 = li = 1.

parameter li to define the distance between the ith and the i+1th projection plane where the

first plane is at X = 0 and defines the initial cross-section. The segment length li is defined

in the X − Z plane only. Thus the distance between projection planes in the X direction

can be calculated as li cos(φZ). This definition is later important for coupling of multiple

tubes.

This projection creates a new cross-section that again lies only in the Y − Z plane and

is parallel with the initial cross-section when looked at from above (X − Y plane). The

corresponding edges of the two cross-sections are connected with thin origami sheets creating

a system of fold lines and panels. At the subsequent projection plane, we mirror the tube

locally, or in other words we use the opposite projection angles to find the subsequent

projection (−φY and −φZ). This mirroring ensures flat foldability of the origami tube. In

Figure 5.2 we show a basic tube generated using this projection scheme. For subsequent

discussions we define fold lines at the projection planes as either top/bottom folds or as side

nodes. The top/bottom folds are the folds that are symmetric to the Y axis, while side folds

are rotated θ from the Z axis. The projection lengths can be varied, and as long as the

projection planes remain in the Y − Z plane, we characterize this set of tubes as straight.

When a square cross-section is used, and the angles φY and φZ are equal (φ = φY = φZ),
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this projection approach generates the same tubes as those discussed previously in Chapter

4. In this scenario the panel sector angle is α = π−φ, the panel height a is the cross-section

dimension, and the panel width c is li cos(φ). These tubes can be developed from two flat

sheets folded into a Miura-ori pattern. Although the entire system is not developable, we call

these tubes to be partially developable meaning that parts of the tube are developable. With

this projection approach it is also possible to construct the same tube by using different

parameters. For example, a rhombus cross-section where θ 6= 0 and φY 6= φZ could be

used to create the same partially developable tubes from Chapter 4, but just in a different

configuration. As a reference see the kinematics of the tubes in Section 5.3.

The tube projections do not need to be straight and it is possible to create a wide variety

of curved (or non-straight) origami tube structures. Curved tubes can be constructed by

projecting onto planes that are rotated. In this chapter, we focus on tubes that can be

coupled and thus we limit the projections to rotate only in the X − Z plane. In Chapter 6,

we show some other possible projection methodologies that can be used to create tubes that

curve in three directions or that do not necessarily follow the same mirroring approaches.

In Figure 5.3, we show a tube where the ith projection plane is rotated in the X − Z plane

by an angle εi. The rotation occurs about the bottom of the newly projected bottom edge

of the cross-section. In other words, the bottom edge of the cross-section is translated by

li cos(φZi) in the X direction and li sin(φZi) in the Z direction; and the projection plane is

rotated about this new line (which is parallel to the Y axis). The tube is again mirrored

locally about the projection plane, and the projection angle φZ is updated based on the

projection plane rotation, e.g. φZ2 = φZ1 + 2ε2.

The imposed symmetry from mirroring ensures that all vertices will be locally flat foldable

(Tachi, 2009a). Moreover, due to the global symmetry and rigid foldability of the tube, the

kinematics do not result in intersection and the tube is globally flat foldable. We verify the

flat foldability and the kinematic properties in more detail in Section 5.3.

5.2.2 Coupling of two tubes

In this section, we use the generalized projection scheme to construct two tubes that are

coupled along a common coupling surface. With the projection methodology it is possible
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Figure 5.3: Generalized projection approach to define a curved (non-straight) tube. The tube is
constructed by starting with cross-section in the Y-Z plane and projecting the cross-section in the
X direction. Subsequent projection planes can be rotated in the X-Z plane by an angle ε. The
distance between projection planes li is measured along the bottom of the tube in the X-Z plane.
The tube in this figure has dimensions φY = 30◦; φZ1 = 10◦; θ = 15◦; ε2 = ε3 = εi = 7.5◦, and
l1 = l2 = li = 1.

to construct the aligned and zipper tubes discussed previously; but also a larger variety of

curved and non-symmetric coupled tubes. The curved tubes employ the symmetry plane

definitions introduced by Tachi et al. (2015). We first discuss the basic geometric definition

of the coupling of tubes and only note what are valid coupled systems that can allow for the

kinematic folding of the systems. The kinematics of the different tube systems are discussed

in more detail in Section 5.3.

In Figure 5.4 we show a schematic of two tubes that are generated using the same cross-

section and projection technique discussed above. We designate the tubes as a top (T) and

a bottom (B) tube depending on their location along the Z axis. The two tubes always

follow the same coupling surface defined by the projection in the X −Z direction, however,

it is possible for the tubes to have different cross-sections and different Y projections. The

Y projections are defined by φY T and φY B, while the cross-section rotations are defined by

θT and θB, for the top and bottom tubes respectively. The angles φY and θ are measured

counterclockwise from the X and Z axes respectively. With this definition the bottom tube

shown in Figure 5.4 has a negative φY B and a negative θB.

The definitions can be extended similar to before, with the segment length li varied at
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Figure 5.4: Geometric definition of a zipper coupled tube system. Two separate tubes are
constructed by projecting the cross-section in the X direction. The top (T) and bottom (B) tube
can have different projection angles in the Y direction (φY T and φY B) and can also have different
cross-sections (θT and θB). The two tubes must have the same projection characteristics in the
Z-X plane (angles φZ and lengths li). The zipper tube system in this figure has dimensions
φY T = 30◦; φY B = −30◦; φZ = 30◦; θT = 30◦; θB = −10◦ and l1 = l2 = li = 1.

different segments, so long as li is measured at the coupling surface and is the same for both

tubes. Changing the segment length does not affect foldability of the tube. The coupled

tubes can be made curved similar to Figure 5.3 where an angle εi is used to rotate the

projection plane for both tubes. For non-straight zipper coupled tubes (i.e. εi 6= 0◦) to be

valid and foldable φY T must equal −φY B and θT must equal −θB. The other alternative is

an aligned coupled system where φY T = φY B and θT = θB. The kinematics and foldability of

the curved tubes are explored in the next section. Finally, it is also possible to couple tubes

in multiple directions and create systems of coupled tubes as discussed further in Sections

5.5.

5.3 Folding kinematics of tube variations

In this section, we discuss the general kinematic properties of the Miura-ori tubes and

the variations of coupled tubes. Origami patterns with four folds per vertex are one-DOF

folding mechanisms, where the entire geometry of the folds and panels can be calculated

from a single variable such as one of the fold angles (Hull, 2012). In a generic case, if
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additional and arbitrary constraints are added to the system, the system will become an

over-constrained mechanism and will no longer be rigidly foldable. However, there exist ways

to add additional components (and constraints) such that the origami system maintains the

rigid folding mechanism.

Origami patterns such as the Miura-ori use repetition to connect multiple one-DOF ver-

tices into a system that preserves the rigid foldability (the entire system remains a one-DOF

folding origami). More advanced origami structures such as the Miura-ori tube use symme-

try to connect multiple patterns together while maintaining rigid folding properties (Tachi,

2009b). In Chapter 4, we showed that it is possible to couple multiple tubes together, and

while this coupling does not restrict rigid foldability it restrains the origami from flexible

motions that engage panel bending. Coupling and adding compatible components to origami

system is a non-trivial task.

In Tachi et al. (2015), we explore the two basic geometric families of allowable coupling

methods for the rigid foldable origami tubes. These families allow for compatibility between

the coupled structures to permit the rigid folding motion. The two families are: (1) Coupling

on an arbitrary straight or curved surface where the fold lines are parallel and mirroring is

used between the bottom and top tubes to ensure rigid foldability; (2) Coupling on a flat

developable surface with non-symmetric fold lines, with arbitrary fold angles calculated to

preserve rigid folding motion (Tachi et al., 2015). The basic zipper coupled tube in Chapter 4

belongs to both families, (i.e. they use a straight and developable surface). The generalized

approach used in this chapter, makes use of the first family, where we use an arbitrary

coupling surface (defined by φZ and ε). We then enforce symmetry on the top and bottom

of the structure by limiting the cross-section and projection variations (i.e. φY T = −φY B
and θT = −θB).

5.3.1 Verifying folding kinematics with eigenvalue analyses

The kinematics of folding an origami vertex with four fold lines can be computed using ana-

lytical approaches (Huffman, 1976; Hull, 2012; sarah-marie Belcastro and Hull, 2002b,a) or

numerical methods (Tachi, 2009c; Schenk, 2011) (see Section 3.3.1). Subsequently the fold-

ing of the entire system can be performed by changing a fold angle in one vertex, calculating
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the other angles in the vertex, and cycling through the adjacent vertices of the fold pattern

until all fold angles, and the new geometric shape are calculated. These methodologies can

be used for rigid foldable sheets or tubes where the initially flat panels remain flat through-

out the folding sequence, and deformation occurs only by rotation along the fold lines. An

issue that arises with some of these approaches is that they cannot detect if a system is not

rigidly foldable and may thus give misleading results from a folding simulation. For example,

they may simulate a folding motion where the panels stretch or bend and are not noticed

graphically by the user. Also, these analytical approaches are not typically suited to capture

fold reversal where a fold may switch from a mountain to a valley fold.

In this chapter, we perform all of the kinematic folding using an eigenvalue approach

suggested by Schenk (2011) and discussed in more detail in Section 3.3.1. With the eigenvalue

approach we can check different origami structures if they are rigidly foldable as we perform

the folding simulation. Although eigenvalue analysis cannot guarantee the rigid foldability

of the system it can determine the number of (infinitesimal) rigid folding motions and can

capture reconfiguration in the tubes.

We perform an eigenvalue analysis of the individual tube or the coupled tube system and

can detect if the system is rigid foldable based on the magnitude of the eigenvalues. For these

analyses we set the stiffness of fold lines to be 10−6 the stiffness of the panels. We evaluate the

systems with no constraints and explore the seventh eigenvalue which is the first to engage

the elastic deformations of the system. If the seventh eigenvalue (λ7) is low (<≈ 10−4),

the system is rigid foldable and deformation occurs only at the fold lines. However if λ7 is

relatively high (>≈ 10−1) the eigenmode deformation also engages the panels in bending,

stretching and/or shear.

In Figure 5.5, we show the eigenvalues and eigenmodes of six different coupled tube struc-

tures. Three of the coupled systems are straight tubes and three are curved tubes. The

eigenvalue analyses show that the straight tubes are foldable regardless of the cross-section

and the projection angle. The seventh eigenvalues for these cases are six orders of magni-

tude lower than the eight eigenvalue (λ7 << λ8). From the curved origami cases, only one

case is rigid foldable, while in the two other cases the seventh and eight eigenvalues have

magnitudes that are only two orders of magnitude apart. The example verifies that relative

symmetry is needed between the top and bottom tube if the system is to be curved and
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Figure 5.5: Eigenvalues and eigenmodes of coupled origami tubes. Low eigenvalues (<≈ 10−4)
represent rigid folding motions of the origami, while high ones (>≈ 10−1) represent bending and
stretching of the origami sheets. Each subfigure contains a schematic cross-section, definition
parameters, isometric view, eigenmode 7 and eigenmode 8. (a-c) straight origami tubes. (d-e)
curved origami tubes. (a and d) Equivalent top and bottom projection and cross-section. (b and
e) Equivalent top and bottom projections, but different top and bottom cross-sections. (c)
Different top and bottom cross-sections, and different top and bottom projections. (f) Equivalent
top and bottom cross-sections, but different top and bottom projections.
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Figure 5.6: Eigenvalues of coupled curved tube with respect to length of the system (measured at
the coupling surface on the two farthest ends). The configuration is represented as the tube
length, and we use both an increasing and decreasing horizontal axis to represent the
reconfiguration of the tube structure. When the tube reaches a maximum length at 3.81 the top
and bottom folds switch from mountain to valley folds and the structure folds down.

rigid foldable. We have verified that zipper tubes where φY T = −φY B and θT = −θB are

rigid foldable however, non-symmetric curved zipper cases where φY T 6= −φY B or θT 6= θB

are not rigid foldable. The verification with eigenvalues presented here is not a proof of the

kinematic compatibility between these systems. More thorough studies on the kinematics

would be needed to prove these cases and to show other possible coupling variations beyond

what is presented here and in Tachi et al. (2015).

5.3.2 Reconfiguration kinematics of generalized tubes

Having verified the rigid foldability of the origami tubes, we can also use the eigenvalues to

perform the finite folding motion and reconfiguration of the coupled origami. In Figure 5.6,

we show the folding sequence along with the eigenvalues versus configuration for the origami

tubes shown in Figure 5.5(d). Because the seventh eigenvalue does not increase drastically,
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Figure 5.7: Initial geometries (left) and folding kinematics (right) of different rigid foldable tubes.
A thick dotted line parallel to the Y axis is shown as a reference for all configurations. (a) Tube
created with φZ = φY = 30◦ and a square cross-section. This tube is partially developable and
flat foldable. Tubes shown in (b) - (d) are not partially developable, but are flat foldable and can
fold down through two different kinematic motions. (b) Tube with φZ = 10◦ < φY = 30◦; the
tube reconfigures when the fold on the top and bottom surface change from mountain to valley
folds. (c) Tube with φZ = 30◦ < φY = 10◦; the tube reconfigures when folds on the sides change
from mountain to valley folds. (d) Tube with φZ = φY = 30◦ and a rhombus cross-section
(θ = 30◦), this tube follows kinematics similar to (c).

the system does not become significantly stiffer or more difficult to fold. In other words, it

can fold through the entire sequence and does not cease to be rigid foldable.

Figure 5.6 shows the eigenvalues of the structure for the entire folding sequence of the

tube, which involves (1) an extension to full deployment - Configuration I, (2) a switching

reconfiguration at a full deployment length of 3.81, and (3) another extension through which

the system can retract - Configuration II. The reconfiguration in this structure occurs when

the top and bottom sheets reach their full extensions, at this point the top and bottom folds

switch from being mountain to valley folds and vice versa. The structure can follow two

distinct folding paths and we can also note that the eigenvalues change somewhat for these

two folding paths. We discuss the influence that each of these folding motions have on the

structural stiffness characteristics in Section 5.5.1.
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The folding kinematics and reconfiguration characteristics of the coupled tubes is directly

influenced by the characteristics of each of the two coupled tubes. It is useful to investigate

the kinematics of individual tubes first to understand how the geometric definitions affect the

global kinematics. In Figure 5.7 we show the kinematics of four origami tubes with different

projection angles and cross-sections. When a square cross-section is used with φY = φZ we

create a partially developable tube that can fold into a fully deployed and flat state in the

X − Y axis (bottom right of Figure 5.7(a)). This tube has only one folding sequence that

preserves the tubular shape. When the tube reaches the completely flattened state in the

X − Y axis the tube can reconfigure, but the system can reconfigure into multiple different

folding motions similar to a basic Miura-ori pattern (see Figure 3.5). Tube variations created

with the projection methodology that are not partially developable cannot reach a flat state

in the X−Y plane (see (b)-(d) in Figure 5.7). However, these non partially developable tubes

also have the reconfigurable type of kinematics observed in Figure 5.6 where the structure

can extend and retract through two different motions.

Origami tubes with square cross-sections and φZ < φY reconfigure with the top and bottom

fold lines switching (Figure 5.7(b)). On the other hand, tubes with square cross-sections and

φZ > φY reconfigure with the side fold lines switching (Figure 5.7(c)). Changing the cross-

section also influences the global kinematics in similar ways, with an increase in θ tending

towards side folds switching (Figure 5.7(d)), and a decrease in θ tending towards top/bottom

folds switching. The projection and cross-section effects can counteract each other and it is

possible to construct a partially developable tube with φZ < φY and θ > 0. For example,

one of the folded configurations in Figure 5.7 (a) could be the initial geometry of a tube

(defined with φZ < φY and θ > 0)

5.3.3 Reconfiguration kinematics of coupled tubes

When two tubes are coupled, it is possible to have different types of reconfiguration occur

with either one or both of the tubes reconfiguring. The deployment sequence and kinematic

properties are determined by the geometry of each tube’s projection and cross-section. The

coupled tubes reconfigurations have many of the same characteristics as those shown in

Figure 5.7. If we assume that the cross-sections of both tubes are square, then possible
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Figure 5.8: Initial geometries (left) and folding kinematics (right) of two zipper coupled tubes. A
thick dotted line parallel to the Y axis is shown as a reference for all configurations. (a) Straight
zipper tube with φY T = −φY B = −30◦; φZ = 30◦; θT = 0◦ and θB = −20◦. Because of the
rhombus cross-section, the side folds of the bottom tube switch leading to two different folding
motions (similar to Figure 5.7 (d)). (b) Non-straight tube with φY T = −φY B = 30◦; φZ = 0◦;
θT = θB = 0◦; ε2 = ε3 = εi = 7.5◦. Because φZ < φY the top and bottom folds can switch leading
to two different folding motions (similar to Figure 5.7 (b)). The length of the projections for both
zipper tubes is not constant: l1 = l2 = l4 = 1 and l3 = 1.2.

122



reconfiguration kinematics can be grouped into four categories:

1. No switching - φZ = φY T = −φY B - When all projection angles are equivalent (or negative

and equal magnitude) both tubes are partially developable and the system can reach a

flat state in the X − Z plane (same as Figure 5.7 (a)).

2. Top/bottom folds switch - φZ < min(φY T ,−φY B) - If the Z projection is the smallest of

the three, then the top and bottom folds of both tubes reconfigure (see Figure 5.8 (b)).

3. Side folds of one tube switch - φY T < min(φZ ,−φY B) or −φY B < min(φZ , φY T ) - If one

tube has a Y projection smaller than the Z projection, the side folds of the tube with the

smallest Y projection will reconfigure (see Figure 5.8 (a)).

4. Side folds of both tubes switch - φY T = φY B < φZ - Both tubes have equivalent Y projec-

tion angles (or negative and equal magnitude), each tube can reconfigure independently

at its side folds when the system reaches a fully deployed state.

The kinematics of two common coupled tube cases are shown in Figure 5.8. When the

cross-sections are changed into rhombuses the switching cases remain the same as the four

discussed above, but the projection angles alone would not determine the case. For tubes

that have curvature, it is possible to have multiple cases occur over the length of the tube.

The tube shown in Figure 5.8 (b) has a curve with all top and bottom folds reconfiguring

simultaneously. If the curvature of the system is varied, it is possible that only one portion

of the tubes’ folds would be able to flatten (in a position for a switch). Such a tube would

only have one folding motion.

5.4 Stiffness of tube variations

In this section, we evaluate the tube stiffness using static analyses to evaluate the influence

of the tube geometry. We use the N5B8 model introduced in Chapter 2 with the stiffness

characteristic enhancements introduced in Chapter 3. We use arbitrary dimensions and

material properties that are within a realistic range. For most of the dimensions of the

origami structures we use unit dimensions (1), for example the cross-sections and projection

dimensions are 1. The thickness of the material is defined as t = 0.01 such that the length to
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thickness ratio is generally L/t ≈ 100. We use an arbitrary elastic modulus of E = 106 and a

Poisson’s ratio of ν = 1/3. The fold line stiffness is defined with a length scale parameter of

L∗ = 4 which would result in a panel to fold stiffness ratio of about KF/KB ≈ 1/5 (similar to

a length scale of L∗ = 120 mm for the 30 mm panels in Figure 2.13). All tubes investigated

in this section are straight and have ten segment lengths of l1 = l2 = li = 1.

5.4.1 Static analysis of two coupled tubes

In the following static analyses, we investigate the bending characteristics of two coupled

tubes using a three point bending test. We perform an analysis where the tube ends are closed

off with thin sheet panels, and are thus restricted from folding. The coupled tube is supported

on both ends, while it is free to expand lengthwise and orthogonally. A perpendicular load

is applied at the middle of the tube in the Z direction, and a second test is performed in the

Y direction. We distribute a unit load (FZ = 1 or FY = 1) to the middle nodes of the beam,

and we calculate the displacement in the direction of loading (∆Z and ∆Y respectively).

Subsequently, a representative stiffness of the structure for the Z direction can be calculated

as KZ = FZ/∆Z = 1/∆Z .

In Figure 5.9, we show static analysis for three beams defined by the geometric properties

discussed in Section 5.2.2. Two of the tube systems specifically correspond to the zipper and

aligned tubes discussed in Chapter 4. The third tube is an intermediate beam where the

top tube is the same, but the bottom tube has a shallower Y projection (φY = −10◦). The

deformed shapes, show that the aligned tubes have some squeezing type motions occurring,

where the middle of the tube is unfolding and the entire system is elongating. The other

two scenarios have more uniform deformed shapes. Although the folding and unfolding of

the systems is restrained the squeezing likely has an influence on the structural stiffness.

The vertical (KZ) and horizontal (KY ) stiffness versus configuration of the structure, are

shown in Figure 5.9 (d) and (e) respectively. The configuration of the tube is presented as

the current length of the tube. When the aligned and zipper tube extend fully they lay

flat in the X − Y plane, reaching the maximum length of the flattened coupling surface (10

units). On the other hand, the intermediate tube can only reach a length of 8.9, at which

point its side folds switch, and the structure retracts. This leads the system to have two
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Figure 5.9: Static analysis of origami tube beams. Tubes are subjected to a three point bending
test where the ends are restrained from folding and a load is applied in the middle of the beam .
Initial (red outline) and deformed geometry for Y and Z direction tests of the (a) aligned
(φY T = φY B = 30◦), (b) intermediate (φY T = 30◦, φY B = −10◦) and (c) zipper tube
(φY T = −φY B = 30◦). The deformed shapes are scaled so that the maximum displacement is
equal to the cross-section width (=1) and do not necessarily represent stiffness. (d) Stiffness in
the vertical direction (KZ) versus folding configuration (length of structure). The intermediate
tube has a different stiffness for the two folding directions (I versus II). (c) Stiffness in the
horizontal direction (KY ) versus folding configuration (length of structure). Stiffness values of
interest for the zipper tube are indicated (e.g. KY 5 horizontal stiffness at length 5).

125



Figure 5.10: Influence of the bottom tube geometry on stiffness at different points of deployment.
The vertical (a) KZ and horizontal (b) KY stiffness are presented for different values of φY B,
while φY T and φZ are kept constant. The peak stiffness (KMAX) and stiffness at different points
of the configuration are shown (e.g. KY 5 horizontal stiffness at length 5). The zipper coupled
tubes with φY B ≈ 30◦ have higher stiffness in Y and Z than other coupling geometries.

separate curves for stiffness, that each correspond to one of the folding sequences (I or II).

In most scenarios the zipper coupled tubes had a higher stiffness than the other two tubes,

except around the maximum extension of the intermediate tube. At that point the lower

tube (φY = −10◦) has a square cross-section and is able to brace the structure in both

directions.

To more generally compare different structures we use points of interest on the stiffness

curves for each direction of testing. For vertical stiffness analyses, we obtain the points

KZ2, KZ5, KZ8, and KZMAX , representing the stiffness at configuration lengths of 2, 5,

8, and the maximum vertical stiffness at any configuration. Figure 5.9 (e) shows that the

maximum stiffness may at times provide misleading results. At a configuration length of 10

both the aligned and zipper tubes have a maximum horizontal stiffness (KYMAX), but at

this configuration the systems are flat in X − Y , and have no stiffness in the Z direction, so

they may not be usable. Similarly, although the intermediate tube has the highest KZMAX ,

its vertical stiffness is about 1/4th the stiffness of the zipper tubes when at configuration

length of 2 in the II folding sequence.

In Figure 5.10, we use the stiffness points of interest for the tubes to compare the influence
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of the lower tube projection angle (φY B). The projection angles φY T = 30◦ and φZ = 30◦

are kept constant while projection of the bottom tube φY B is changed. Overall, zipper type

of coupling where φY B < 0◦ has a higher stiffness than the aligned coupled tubes where

φY B > 0◦. The peak vertical stiffness is for an intermediate tube (φY B ≈ −15◦), and the

peak horizontal stiffness is for the zipper tube (φY B = −30◦). At intermediate points of

deployment 2, 5, and 8, tube systems near the zipper configuration (φY B ≈ −30◦) have high

stiffens in both the Z and Y direction.

The stiffness of both deployment paths are shown in Figure 5.10. Typically the same path

has a higher Z and Y stiffness, path I for the zipper type tubes and path II for the aligned

type tubes. The higher stiffness folding sequence typically has more “open” tubes with a

higher cross-sectional area and bending modulus (see Figure 5.9 (d)). In cases beyond the

intermediate range φY B < −30 and φY B > 30, the top tube controls the maximum extension

of the system as it flattens completely in the X − Y plane. We only consider one path of

deployment for these cases, however it is also possible to refold the system where the partially

developable tube is folded in an accordion fashion. This second folding sequence would be

substantially more flexible than the original.

Comparing Figure 5.10 (a) and (b), it is interesting that both the maximum and interme-

diate stiffness in the Y direction is typically higher than that in the Z direction. Typically

one would expect a higher stiffness in the Z direction because the combined bending modulus

of the two tubes is greater. However, as we noted earlier the maximum stiffness in the Y

direction is often due to a case where system comes close to flattening and panels lie close to

the X − Y plane. At intermediate points, the coupling plane, as well as the corresponding

top and bottom planes, are kept perpendicular to the X − Z plane; these perpendicularly

placed elements have high shear stiffness and thus increase the stiffness for loads applied in

the Y direction.

In Figure 5.11, we show the effect of different projection definitions on the coupled tubes

structural stiffness. For clarity, we only show the folding path that provides higher stiffness

(i.e the maximum KZ5 from paths I and II is shown). We use the zipper tube as a base

where φZ = φY T = −φY B = 30◦, and we use a variable φV AR to change different parameters

in the the tube geometry. We use four different cases: Case 1 - φV AR = −φY B which varies

the bottom tube projection, resulting in the same variation as shown in Figure 5.10; Case 2
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Figure 5.11: Influence of projection angles to the zipper tube stiffness. (a) Four cases that depict
variations of the projection angles. Case 1 is the same as that presented in Figure 5.10 . A
variable φV AR is used to vary a single or multiple projection angles for each case. For example, in
Case 4 all projection angles are varied as φV AR = φZ = φY T = −φY B, thus these tubes are all
partially developable. (b) Vertical stiffness presented as the peak stiffness (KZMAX) and at
different points of the configuration (e.g KZ5 vertical stiffness at length 5). (c) Horizontal
stiffness presented as the peak stiffness (KYMAX) and at different points of the configuration (e.g
KY 5 horizontal stiffness at length 5).
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- φV AR = φY T = −φY B, the top and bottom tubes’ Y projections are varied symmetrically;

Case 3 - φV AR = φZ , only the Z projection of the coupling surface is varied; and Case 4 -

φV AR = φZ = φY T = −φY B, all projections are varied together, and the systems are always

partially developable.

Figure 5.11 (b) shows that the maximum vertical stiffness (KZ) can typically be increased

by making the tubes more square and less zig-zaged (by reducing φV AR). This increase

in especially pronounced in Cases 2 and 4 where as φV AR approaches zero, and the cross-

sections have elements that lie close to the Z direction. However, as φV AR approaches zero the

vertical stiffness at deployment configurations (especially lengths of 2 and 5) is significantly

decreased. In other words, tubes that are more zig-zaged and have higher φV AR can have high

vertical stiffness during the deployment sequence (e.g. Case 4 with φV AR > 30◦ at length 2).

In horizontal direction the maximum stiffness occurs for tubes that can completely flatten in

the X−Y plane (i.e at φV AR = 30◦ and all tubes in Case 4). The horizontal stiffness during

deployment follows similar trends to the vertical, where typically more zig-zaged tubes are

stiffer.

5.5 Flat deployable beams and slabs

In this section, we investigate the zipper type tubes with the intention to make them better

suited for practical applications. We explore the stiffness of beams that when fully deployed

have a flat top. This property would be useful in creating deployable slabs, decks, walls, and

other structures. Having a flattened surface could be aesthetically pleasing, and it would be

functional for applications such as bridges or walkways. We perform the same type of three

point bending analyses to evaluate the stiffness in the Y and the Z directions.

First, we investigate straight tubes defined with a Z projection of φZ = 0◦ with ten segment

lengths of l1 = l2 = li = 1. The tubes are defined such that in their initial configuration

they are fully deployed and have a flat top surface. Because the tubes are straight we have

freedom to have non-symmetric top and bottom tube projections and cross-sections. We

have verified that increasing the φY projections can increase the stiffness during deployment

(see Figure 5.11), so here we explore the influence of the cross-section variations. We keep

the Y projections the same (φY T = −φY B = 30◦), and vary the cross-section angles with a

129



parameter θV AR.

Figure 5.12 presents three cross-section variations: Case 1 - θV AR = −θB, only the bottom

tube cross-section is varied; Case 2 - θV AR = θT = θB, the top and bottom cross-sections are

rotated in the same direction; and Case 3 - θV AR = θT = −θB, the top and bottom cross-

sections are rotated in opposite directions, (appear mirrored about Y −X). All cross-section

variations reduce the peak vertical stiffness (KZMAX) of the system, but they increase the

stiffness during deployment. In particular, Case 3 substantially increases the vertical stiffness

at intermediate deployment configurations. In the horizontal direction, Case 2 reduces the

intermediate stiffness while Case 3 increases the stiffness for all deployment configurations.

Case 3 where the tube cross-sections are rotated in opposite directions would likely be the

best design alternative for slab type systems where a flat surface is needed. This system

would provide a high orthogonal stiffness during deployment, and would not substantially

reduce the peak vertical stiffness.

5.5.1 Influence of profile geometry on stiffness properties

In this section, we explore the influence of reconfiguration and profile geometry on the

stiffness at various points of deployment. In Figure 5.13, we compare the stiffness and

kinematics of three tubes with different Z projections and cross-section geometries (all tubes

have the same Y projection φY T = −φY B = 30◦). The first tube is a Zipper tube, identical

to the tube presented in Figure 5.9 (c) - φZ = 30◦. The second case is a tube with a Flat top

and square cross-sections - φZ = 0◦. The last case is a tube with a flat top and a Skewed

cross-section - θT = −θB = −30◦. The results for the second and third cases are presented

as points on the graphs in Figure 5.12.

The kinematic motion of the three cases presented in Figure 5.13 are different. The zipper

coupled tube does not reconfigure and follows essentially one continuous motion from a

folded system in Y −Z to a flattened system in X −Y . Over most of the motion the zipper

tubes have a wide and deep profile (i.e. section view in X−Z). Due to this cross-section the

structure typically has higher vertical and horizontal stiffness when compared to the other

two structures.

The flat top system with a square cross-section is initially defined at a fully deployed
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Figure 5.12: Influence of cross-section geometry on stiffness for zipper tubes where the top surface
is flat (φZ = 0◦). (a) Three cases that depict variations of the cross-section angles. (b) Vertical
stiffness presented as the peak stiffness (KZMAX) and at different points of the configuration (e.g
KZ5 vertical stiffness at length 5). (c) Horizontal stiffness presented as the peak stiffness
(KYMAX) and at different points of the configuration (e.g (KY 5) horizontal stiffness at length 5).
Case 3 where the cross-section is mirrored about the Y axis presents a significant increase in
stiffness during the deployment sequence.
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Figure 5.13: The influence of profile geometry on beam stiffness. Zipper coupled tubes
(φZ = 30◦); tube with a Flat top and square cross-section; and a tube with a flat top and a
Skewed cross-section (θT = −θB = −30◦) are compared. The horizontal projection is the same for
all three cases (φY T = −φY B = 30◦). (a) Vertical and (b) horizontal stiffness of straight tubes
with ten segment lengths. Solid and dotted lines are used to show the kinematic motion starting
from the initial state. Isometric and section views depicting the motion of unit cells of (c) Zipper,
(d) Square, and (e) Skewed tubes. The views are shown at initial configurations (A and B), as
well as 2.5 (C), 7.5 (D), and 9.9 (E) deployment.
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state. When fully deployed it has the highest vertical stiffness because the side panels are

orthogonal to the applied load. The structure can retract in two symmetric motions. The

vertical stiffness for these two motions is the same, and it is close to zero when the system

approaches a stowed configuration (length ¡ 6). The profile (in X − Z) of the tube is more

shallow than the zipper, and it approaches a triangular, accordion-like shape when stowed.

The skewed cross-section system has two different reconfiguration motions. Motion I has

a deeper profile (in X−Z) and higher stiffness in both the horizontal and vertical directions.

The profile through motion I deployment is deeper and wider than the tube with a square

cross-section, however shallower than the zipper tube in the same configurations. Motion

II has a narrow profile in X − Z and low out-of-plane stiffness. Although the cross-section

in the Y direction is deep (section Y − X in Figure 5.13 (e)), the structure is flexible in

the horizontal direction. This flexibility is because the structure can deform similar to a

folding hand fan for Y direction loading (i.e. imagine moments in Z applied to the section

in X − Z).

The observations from Figure 5.13 show that deeper profiles in the X−Z direction lead to

higher stiffness in both directions. This behavior can be explained by looking at the system

as a three dimensional beam where a deeper section leads to a higher bending modulus. The

deployable structures are stiffest when they are close to fully deployed. At deployed config-

urations their cross-sections are open and they behave like deep beams. When retracting all

tubes become more flexible because their profile approaches more of a triangular wave and

accordion-like shape. The narrow profiles and triangular geometry lead to lower bending

stiffness. Finally, reconfigurable tubes (such as the skewed tube) can be designed to have

one motion of high out-of-plane stiffness.

5.6 Roof systems from coupled tubes

In this section, we investigate the stiffness of different roof geometries that can span a

distance and provide a clearance. First we compare three roof shapes and explore the

influence of increasing clearance on total stiffness. In the next section, we explore arch

systems and evaluate if changing the cross-sectional properties leads to similar effects as

those observed for straight beams above.
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Figure 5.14: Geometry of different deployable roof structures. (a) Straight tube with a skewed
cross-section that is used as an initial basis for the modified roofs. (b) Gable, barn (gmabrel), and
arch roof structures shown with increasing clearance - c from left to right. (c) The clearance
versus the span for the different structures. The length of the coupling surface is the same for all
geometries and this leads to the different clearance to span relations.

We study gable, barn (gambrel), and arched shaped roof structures. All systems are

created with an initially flat top (Z projection of φZ = 0◦) and with skewed cross-sections

(θT = −θB = −30◦). The tubes have twelve segments with a constant segment length of

l1 = l2 = li = 1. The gable roof is constructed with two straight tube sections and with one

cross-section rotation in the middle of the span (ε7 6= 0). By increasing the cross-section

plane rotation, we increase the clearance and reduce the span of the structure. The barn

(gambrel) roof consists of four straight tube sections, with three equivalent plane rotations

(ε4 = ε7 = ε10 6= 0). The arch is defined with the projection plane rotated equivalently over

the length with ε2 = ε3 = εi. Schematics and the span versus clearance relations for the

three structures are shown in Figure 5.14.

We explore the stiffness of the roof structures using a three point bending test similar

to that done in previous sections. The analysis is linear elastic and we only explore small

deformations of the structures. In Figure 5.15, we show the vertical stiffness of the roof

structures with respect to their deployment. Because all structures have different dimensions

we show intermediate stiffness with respect to the maximum span dimension, for example

KZ1/4s corresponds to the vertical stiffness when the deployment is at quarter span. For

clarity, we do not show the horizontal stiffness because in practice multiple tubes will be

sequentially coupled together and will have a high horizontal stiffness (see Section 5.6.2).
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Figure 5.15: Static, linear elastic analysis of the gable, barn (gambrel), and arch roofs. (a)
Deformed shapes for the three roofs with a clearance of two (2) shown at configurations of full
span, three quarters span, and half span. Initial shape is shown with a red outline, and deformed
shapes are scaled so that the maximum displacement is equal to one twelfth of the span (s/12)
and do not necessarily represent stiffness. (b) Vertical stiffness of the roof structures shown with
respect to the clearance - c. The dimensions of the structures change with increasing clearance,
thus stiffness is shown at different configurations defined as portion of span (i.e. KZMAX - peak
stiffness - typically at full span; stiffness at three quarters span KZ3/4s; at half span KZ1/2s; at
quarter span KZ1/4s. Peak stiffness increases for the barn and arch roof as they become more
curved (higher clearance), however the intermediate stiffness decreases for clearence for all cases.
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As the clearance of barn and arch systems is increased they have a higher maximum vertical

stiffness KZMAX . This increase is likely because the curved geometry better distributes the

in-plane loads from the load to the support. Curved geometries are well known to be efficient

at carrying vertical loads between two supports (e.g. Tyas et al. (2011)). When loaded at

a fully deployed state the structures experience a spread with the two ends moving apart.

If both ends are fixed, the maximum stiffness would likely be much greater. The gable has

a lower peak stiffness for a clearance higher than about 1, this may be due to the observed

spreading behavior.

All three roof systems have a peak stiffness near their full deployment, and the vertical

stiffness is much lower in intermediate deployment stages (similar to the behavior of straight

tube structures). In the intermediate deployment stages the vertical stiffness decreases

with increased clearance. We believe this effect to be similar to the influence of cross-

section changes discussed in Section 5.5.1. The curved geometry leads to a more accordion-

like geometry during deployment. The gable roof tends to have a higher stiffness during

deployment, this is likely because the cross-section projection is only rotated in one point. In

practice, the gable geometry presented here may pose problems as high stress concentrations

would develop at the apex of the gable.

5.6.1 Cross-sectional influence on curved arch stiffness

In this section, we explore the influence of cross-section geometry on the stiffness of the

curved arch structure. The arch is defined as before with the projection plane rotated

equivalently over the length with ε2 = ε3 = εi = 4◦. We use twelve equal segment lengths

of l1 = l2 = li = 1, and thus the structure makes approximately a quarter circle. The tubes

are defined such that in their initial configuration they are fully deployed and have a flat

top surface (the surface is curved, but all folds are mountain and are equivalent thus we

classify it as flat). Because the tubes are curved the projections and cross-sections need to

be defined as φY T = −φY B and θT = −θB.

In Figure 5.16 we show the stiffness analysis of two different arches. Arch A has square

cross-sections and shallow projections (φY T = −φY B = 20◦), on the other hand, Arch B

has sharper projections and skewed cross-sections. Both arches can fold and unfold through
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Figure 5.16: Static, linear elastic, small deformation analysis of arched tubes. The arches are
shown at both fully deployed states and at a configuration of length 6. Initial (red outline) and
deformed geometry for Y and Z direction tests of the (a) Arch A (φY T = −φY B = 20◦ and
θT = −θB = 0◦), (b) Arch B (φY T = −φY B = 45◦ and θT = −θB = −30◦). The deformed shapes
are scaled so that the maximum displacement is equal to the cross-section width (=1) and do not
necessarily represent stiffness. (d) Stiffness in the vertical direction (KZ) versus folding
configuration (length of structure). (c) Stiffness in the horizontal direction (KY ) versus folding
configuration (length of structure). Stiffness values of interest for the two tubes are indicated (e.g.
KY 6 horizontal stiffness at length 6).
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Figure 5.17: Influence of projections and cross-section geometry on stiffness for arched tubes
where the top surface is flat (φZ = 0◦). The maximum stiffness and stiffness at a configuration of
6 are shown with respect to the cross-section rotation (θ = θT = −θB), and the projection angle
(φ = φY T = −φY B). (a) KZMAX , (b) KYMAX , (c) KZ6 (d) KY 6. The magnitude of stiffness is
shown using colorbars. Results on the stiffness of arch cases A and B discussed in Figure 5.16 are
pointed out in the plots.

two different motions, and each motion has a different stiffness. The vertical stiffness of

both systems reaches its maximum at the fully deployed state, and Arch A with the square

cross-section has a substantially higher KZMAX . However, Arch A and one of the motions

of Arch B have virtually no vertical stiffness during deployment. We measure the stiffness

at an extension length of 6 (KZ6 and KY 6). The deformed shapes of the stiffer configuration

at an extension length of 6 are shown for the two arches in Figure 5.16 (a) and (b). Note

that during deployment Arch B has a much deeper section and thus a higher stiffness.

Stiffness results for different projections and cross-sections are shown in Figure 5.17. The

results from Arch A and Arch B are pointed out on the plots. The horizontal stiffness is not
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Figure 5.18: (a) Canopy system from repeated arches, and (b) Slab system from coupled and
repeated tubes.

significantly influenced by the cross-section or projection. The maximum vertical stiffness

(KZMAX) is high for square cross-sections with a less zig-zagged projection. However, higher

stiffness during deployment can be achieved with rhombus cross-sections and more zig-zagged

projections.

5.6.2 Continuous coupled systems

The coupled tube systems can be repeated in the Y direction without restricting foldability.

By repetition, we can create slabs, decks, and canopy systems that are continuous and

consist of multiple tubes in Y . With this additional bracing, the horizontal stiffness (KY )

of the repeated tube systems would be much higher than discussed above. However the

vertical stiffness would not be significantly increased. Therefore, to create slab and canopy

systems that are stiff throughout their deployment, higher projection angles (more zig-zag)

and rotated rhombus cross-sections should be used. In Figure 5.18 we show a concept of a

deployable canopy and slab structures.
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5.7 Concluding remarks

In this chapter, we provide a generalized framework for creating coupled origami tubes. We

use an approach where a cross-section is projected onto corresponding projection surfaces.

The framework allows for the construction of both straight and curved tubes that can have

segments of different lengths, and their cross-sections can be varied. Depending on the cross-

section projection properties the tubes could be partially developable meaning that parts

of them could be made by folding a flat sheet. While other tubes could be reconfigurable

meaning that they can deploy and retract through two different motions. The folding motions

have different kinematics and could influence the stiffness of the tubes.

We explore the orthogonal stiffness of the coupled tubes by performing three point bending

tests. We find that zipper coupled tubes have higher bending stiffness than aligned tubes,

as was expected from Chapter 4. Tubes that are straighter and have square cross-sections

typically have a higher maximum bending stiffness. However, these tubes are flexible during

their deployment. Alternatively, tubes that are more zig-zagged and have rhombus cross-

sections can have higher bending stiffness during their deployment at the cost of a slightly

reduced maximum stiffness. These behaviors are also true for tube system that can deploy

into a beam or slab with a flat top. For the flat top systems to maintain a high out-of-

plane stiffness during deployment, the tubes need to have skewed cross-sections. We explore

the stiffness of roof structures with a clearance including shapes of gable, barn (gambrel),

and arch roofs. If constructed with a high clearance (higher curvature) the barn and arch

systems have a high peak stiffness but reduced intermediate stiffness. Finally, we show that

the coupled tube structures can be repeated sequentially to create slab or larger arched

canopy structures.
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CHAPTER 6

ORIGAMI TUBES WITH RECONFIGURABLE POLYGONAL
CROSS-SECTIONS

In this chapter, we introduce and explore origami tubes with polygonal, translational sym-

metric cross-sections, that can reconfigure into numerous geometries. The tubular structures

satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully

unfold from a flattened state with deformations occurring only at the fold lines. The tubes

do not need to be straight, and can be constructed to follow a non-linear curved line when

deployed. The cross-section and kinematics of the tubular structures can be reprogrammed

by changing the direction of folding at some folds. We discuss the variety of tubular struc-

tures that can be conceived and we show limitations that govern the geometric design. We

quantify the global stiffness of the origami tubes through eigenvalue and structural anal-

yses and highlight the mechanical characteristics of these systems. The two-scale nature

of the present work indicates that, from a local viewpoint, the cross-section of the polyg-

onal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired

shapes are achieved. This class of tubes has potential applications ranging from pipes and

micro-robotics to deployable architecture in buildings.

6.1 Introduction

Historically, origami has gained popularity in science and engineering because a compactly

stowed or flat system can be folded into a transformable 3D structure with increased func-

tionality. Folding structures can have practical applications ranging in scale and discipline

from biomedical devices to deployable architecture. More recently, innovation with origami

has pivoted on its capability to create programmable and re-programmable systems that

can change shape, function, and mechanical properties. For example, Hawkes et al. (2010)

created a sheet with pre-defined fold lines that can reshape autonomously into different three

dimensional structures. Marras et al. (2015) showed that DNA can be folded to create nano-

scale mechanisms with programmable mechanical function. Origami metamaterials that can

be reconfigured, and whose mechanical properties can be tuned and tailored have also be-
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come a popular subject of study (Fuchi et al., 2012; Schenk and Guest, 2013; Silverberg

et al., 2014; Filipov et al., 2015a).

Thin walled origami tubes have been created by folding thin sheets, but they typically

differ from the fundamental definitions of origami. In particular: entire origami tubes are

not developable, meaning they cannot be created from a continuous flat sheet; and they

require gluing or some other connectivity for creating the complete tube. Despite the higher

complexity of manufacturing, origami tubes greatly extend the functionality of engineered

thin sheet structures. For example, they can be be used as deployable stents in biomedicine

(Kuribayashi et al., 2006), as inflatable structural booms for space structures (Schenk et al.,

2013, 2014a), or as actuators and bellows (Martinez et al., 2012; Yasuda et al., 2013; Francis

et al., 2014). Origami tubes have a self-constraining geometry that makes them suitable for

energy absorption devices (Song et al., 2012; Ma et al., 2013; Ma and You, 2013; Gattas

and You, 2015b). Stacking and coupling of origami tubes into more complex geometries can

lead to stiffening of the system and enhanced mechanical characteristics (Schenk and Guest,

2013; Cheung et al., 2014; Filipov et al., 2015a; Li and Wang, 2015).

Figure 6.1: A reconfigurable origami tube with a polygonal cross-section. (a) The tube and
cross-section shown at a fully extended state. (b) Folding sequence of the tube, where the
cross-section is reconfigured using the four initially flat panels or switches (n = 4). (c) Four other
possible cross-sections into which the tube can be reconfigured. Appendix B shows all 70 of the
possible cross-section configurations.

A variety of origami inspired tubes exist including the Miura-Tachi polyhedron (Miura

and Tachi, 2010; Yasuda et al., 2013; Yasuda and Yang, 2015), and variations inspired by

the Yoshimura pattern (Tsunoda, Hiroaki et al., 2005). In this chapter, we explore and

extend upon origami tubes that employ the Miura-ori pattern, that were first introduced by

Tachi and Miura (Tachi, 2009b; Tachi and Miura, 2012). We generalize these into a new set
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of polygonal cross-section tubes that possess the following properties and advantages:

1. Tube cross-sections can take a variety of polygonal shapes.

2. The cross-sections can be made reconfigurable to allow for programmable functionality.

3. A wide variety of new curved tubular forms are possible.

4. The tubes are compatible and can be coupled into a variety of assemblages.

5. The mechanical properties of the tubes can be tuned through reconfiguration.

6. Out-of-plane compression stiffness is enhanced similar to corrugated pipe systems.

7. The perimeter of the tubes is continuous, allowing for deployment by inflation and for

the potential capability to carry liquids and gases.

8. Based on idealized zero-thickness kinematics, the tubes are flat foldable meaning that

they can fold down to a completely flat state allowing for compact stowage.

9. These systems are rigid foldable, meaning the origami can fold and unfold with deforma-

tion concentrated only along the fold lines (creases), while the panels (facets) remain flat.

This capability could allow the structures to be constructed with panels of finite thickness

(Hoberman, 2010; Tachi, 2011; Chen et al., 2015), and to fold in a controlled motion.

Properties 1, 2, 3, 5, and 6 are possible with the new polygonal tube definitions presented

herein. Some of the advantages are motivated by Figure 6.1 that shows a curved tube that

can fold in a variety of different cross-sections. Appendix B shows all 70 of the possible ge-

ometries into which this tube can be reconfigured. The versatility, mechanical characteristics

and reconfigurability of theses tubes could result in numerous applications as pipelines, archi-

tectural structures, robotic components, bellows, metamaterials, and other reprogrammable

systems.

The chapter is organized as follows: Section 6.2 introduces the cross-sections, and Section

6.3 provides the full three dimensional definition for admissible polygonal tubes. Section 6.4

explains folding characteristics of the idealized tubes assuming zero-thickness. The system

kinematics and reconfigurable characteristics of different tubes are discussed in Section 6.5.

In Section 6.6 we extend the tubular definitions to cellular assemblages that can also be
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reconfigured. In Section 6.7 we discuss the elastic modeling and explore the mechanical

properties of the tubes through eigenvalue and structural analyses. Tubes with circular

cross-sections are investigated in Section 6.8, and Section 6.9 gives an outlook for practical

implementations and future extensions of the proposed systems. Section 6.10 provides a

discussion and concluding remarks. The polygonal tubes discussed in this chapter were in a

large part presented in a journal publication (Filipov et al., 2016a).

6.2 Cross-section definitions for polygonal tubes

The popular Miura-ori pattern has inspired the development of rigid foldable origami tubes

discussed in several recent articles (Tachi, 2009b; Tachi and Miura, 2012; Miura and Tachi,

2010; Cheung et al., 2014; Filipov et al., 2016b, 2015a; Li and Wang, 2015). The cross-

sections of these tubes are symmetric, with the most fundamental tube consisting of two

equal symmetric Miura-ori strips placed opposite from each other. More advanced cross-

sections follow isotropic, anisotropic, or star shaped cylindrical variations (Tachi, 2009b;

Tachi and Miura, 2012; Miura and Tachi, 2010). In this work, we go beyond the previous tube

variations and introduce a translational symmetry method to create a variety of polygonal

shaped tubes. The basic cross-section variations for the polygonal tubes are defined in the

Y − Z axis, as demonstrated by Figure 6.2. For our definition, we divide the geometry

of the cross-section into an upper (U) and a lower (L) section. The names of these two

sections are only representative and their location may in fact be side by side as shown later

in Figures 6.3 and 6.4. The two opposing sections of the tube have to be continuous and can

be composed of m ≥ 2 edge groups. The edge groups are identified by a unique slope angle

θ, and denoted by a lower-case letter (a, b, c ...). The slope angle is taken clockwise from the

Z axis of the cross-section, and has the admissible range of −180◦ < θ < 180◦. Each edge

group on the upper section can be composed of p ≥ 1 edges, and the corresponding lower

edge group can be composed of q ≥ 1 edges. The length of the ith edge in the b edge group

on the upper (U) section is denoted as bUi.

To create a valid cross-section, each edge group on the upper section must have a corre-

sponding edge group on the lower section with the same total length and slope angle. This
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Figure 6.2: Valid cross-section definitions and basic variations. (a) Six-sided tube cross-section
with m = 3 edge groups each having a unique slope angle θ. (b) Folding sequence of a tube
created from the cross-section in (a). The cross-section corresponds to the fully-extended
configuration. (c) Six-sided cross-section with the same edge groups as in (a), arranged in a
different order. (d) The upper edge group bU is divided in two (p = 2) and rearranged. The
corresponding lower edge group bL can be composed of a single, two, or more corresponding edges
with an equal total length (q 6= p).

definition can be written mathematically as:

p∑
i=1

aUi =

q∑
i=1

aLi;

p∑
i=1

bUi =

q∑
i=1

bLi ...

p∑
i=1

mUi =

q∑
i=1

mLi, (6.1)

This property ensures that the cross-section will be closed, thus creating a foldable origami

tube with a continuous un-interrupted circumference. The logic of Equation 6.1 can also

be though of as a sum of two groups (sections) of equal direction vectors (edge groups),

segmented (into edges) and re-arranged to create the cross-section. The re-arrangement of

the individual edges can be performed in any logical manner (e.g. Figure 6.2(c)), so long

as the lower and upper sections do not intersect. As shown in Figure 6.2(d), when an edge

group is segmented into several edges, the number of edges on the upper and lower sections
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do not need to be the same (i.e. p 6= q). A non-trivial cross-sections with a negative θ is

shown in Figure 6.3 and one with a complex outline is shown in Figure 6.4.

Figure 6.3: (a) Cross-section with a negative slope angle θ. (b) A tube with that cross-section
shown fully extended, and folded to 95% and 10% extension.

The fundamental tube that was previously studied (Tachi, 2009b; Filipov et al., 2016b) is

a unique case of the generalization proposed here. The tube is created from only four edges

that are symmetric about the Y and Z axes; that is θB = 180◦ − θA, and the edge lengths

are aU1 = aL1 = bU1 = bL1. This tube can be fully flattened in the X − Y plane and can

also be folded into a flat state in the Y − Z plane. However, as will be shown in Section

6.5, this most fundamental tube case is not reconfigurable. To create a reconfigurable tube,

the cross-section must have at least three edge groups (m > 2) each with a unique slope

angle θ. Although the slope angles can be arbitrary, in our work we define reconfigurable

cross-sections with one edge group where θ = 90◦. When this cross-section is projected in

the X−Y plane per Section 6.3.1, the θ = 90◦ edge group will be completely flat. As defined,

the tube is at a fully extended state (100% extension), because from this state the flat edge

group can only fold down. When folding, the θ = 90◦ edges serve as programmable bits or

switches to reconfigure the tube cross-section. The fold lines on the switch segments can

change from mountain to valley folds and can reshape the geometry of the tube (see Section

6.5). A m > 2 cross-section that has no edge group with θ = 90◦, is not fully extended when

initially defined, and the edges with θ closest to 90◦ serve as the switches.

6.3 Three dimensional profile definitions

In this section, we discuss the complete three dimensional definition of the tubes when a

previously defined Y − Z cross-section is used as a basis. The cross-section is projected in
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Figure 6.4: (a) An admissible cross-section with the shape of a dog, created with six different
edge groups. The upper section has 22 edges, while the lower section has 29. (b) Dog tube fully
extended, and folded to 95% and 10% extension.

X − Y − Z space, to create a closed continuous tube. The tube definitions assume that

the origami sheets have an infinitesimally small or zero-thickness. In practice, there is a

technique that allows for thickness to be incorporated into the design of rigid foldable tubes

(Tachi, 2011), however we do not take these details into account. In Section 6.3.1 we discuss

the basic projection geometries that preserve the rigid and flat foldability of the polygonal

origami tubes. With these definitions the capability to reconfigure the cross-section is pre-

served allowing for a programmable system. The projection discussed in Section 6.3.2 violates

flat foldability conditions, but maintains rigid foldability and the programmable characteris-

tics. The projection presented in Section 6.3.3 is the most geometrically unrestricted, but it

restricts folding for non-square, non-symmetric tubes. The programmable characteristics of

the tubes are discussed in Section 6.5, and the folding properties are summarized in Section

6.4.

6.3.1 Admissible projections for rigid and flat foldable polygonal origami
tubes

The first geometric variation for the tubes is to project the the cross-section in the X − Y

plane with a constant projection angle as shown in Figure 6.5(a-d). The projection is defined

by an angle φ and length l. This projection creates a new cross-section that again lies only

in the Y − Z plane and is parallel with the initial cross-section when looked at from above

(X − Y plane). The corresponding edges of the two cross-sections are connected with thin
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origami sheets creating a system of fold lines and panels. A different projection angle φ

can be used to create a distinctly different structure (Figure 6.5(b) and (c)). The length of

individual projected segments can also be varied (Figure 6.5(d)). When the base projection

with no length variation is used, all panels are parallelograms and are the same for each cross-

section edge. The left vertex angle (α) of each panel (internal angle of the parallelogram)

can be calculated as αL = arccos(− sin(θ) ∗ cos(φ)). For other more complex projections

discussed herein we leave the geometric derivations to the reader.

Figure 6.5: (a) Cross-section projection in the X-Y direction using a constant projection angle i.e.
φ = φ1 = φ2 = φ3 = 60◦. (b) Constant φ = 80◦ projection. (c) Constant φ = 40◦ projection. (d)
Constant φ = 60◦ projection, with lengths of segment i defined as: li = 0.4 + 0.2 ∗ i. (e)
Projection with angle variation. Symmetry between the cross-section and projection vector is
preserved in the X-Y plane. (f) A rigid foldable S-shaped tube constructed by following
symmetry rules in (g). All tubes of this figure use the cross-section in Figure 6.2 (a).

The basic type of projection is further extended by allowing an angle shift to occur, where

the projection angles are not equal throughout (i.e. φ1 6= φ2 6= φ3...). Figure 6.5(e) shows

the projection where the angle is varied in the X−Y plane. Symmetry is enforced such that

the adjacent vertex angles (α) about the cross-section are kept symmetric. This projection

can be used to create an arbitrary geometry in the X−Y plane that is flat and rigid foldable.
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6.3.2 Projections for rigid, but non-flat foldable origami tubes

Figure 6.6: (a) Cross-section projection in the X-Y direction that does not preserve symmetry
about the cross-section i.e. φ2A 6= φ2B. (b) The folding sequence of the non-symmetric projection
shown in top and isometric views. The structure cannot fold completely flat.

Projection in X−Y space can also be performed without following the symmetry about the

cross-section. In Figure 6.6 we show a projection where the projection angles are φ2A 6= φ2B,

and thus the adjacent vertex angles are also not symmetric. The system can undergo rigid

folding, but in this case the folding sequence is restricted and the system cannot fold into a

completely flat space (Figure 6.6(b) and Section 6.4).

6.3.3 Extended projections for origami tubes

The final form of projection discussed here is the most general, where the projection is per-

formed arbitrarily in all three dimensions (X − Y − Z). The vector can be varied in all

directions simultaneously, by using an angle φ to describe the projection vector in X − Y ,

and γ to vary the projection vector in X − Z. Symmetry of the projection is preserved,

such that the adjacent vertex angles on opposing sides of a cross-section are equal. This

symmetry can be visualized as mirroring the structure locally, which is shown using trans-

parent planes in Figure 6.7(a-c). For the polygonal cross-section, when this projection is

used, the resulting structure is not foldable, and so it is essentially no longer origami, but a

static fully restrained structure (Section 6.4). However, if a simple symmetric cross-section

is used, the structure remains rigid and flat foldable. When simple four sided tubes are

projected in three directions, and the symmetry of the cross-section is preserved, this also

ensures symmetry at all vertices (flat foldability) and symmetric kinematics on both sides

of the tube (rigid foldability). The structure in Figure 6.7(d) follows an arbitrary spiral in

149



three dimensional space.

Figure 6.7: Cross-section projection varied in the X-Y-Z directions simultaneously while
preserving symmetry of the structure about the cross-section. Projection of six-sided polygon
shown in (a) top, (b) side, and (c) isometric views. This polygonal tube cannot fold. (d) Folding
sequence of four-sided origami tube constructed by projecting along a spiral in three dimensional
space. This tube is rigid and flat foldable.

6.4 Foldability of polygonal origami tubes

In this section we verify the developability, flat foldability and initial rigid foldability using

the approach introduced by Tachi (Tachi, 2009a). We assume that the origami panels have an

infinitesimally small or zero-thickness to satisfy the mathematical definitions. The origami

tubes defined by Sections 6.2 and 6.3 contain a total number of nvert internal vertices where

four fold lines meet, and a number of npanel four-sided panels. The folding characteristics of

the origami can be explored by performing the following vector calculations for the vertices

and panels:

cdev =

[
2π −

4∑
k=1

αk,i

]
nvert×1

= 0, (6.2)
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cflat =

[
4∑

k=1

(−1)kαk,i

]
nvert×1

= 0, (6.3)

cplanar = [ρj]npanel×1 = 0, (6.4)

where αk,i represents the k-th vertex angle in the i-th vertex, and ρj represents the dihedral

angle between the normals of two triangles that together create the j-th panel of the tube.

The vector cdev is of size nvert× 1, meaning that there is one entry for each of the vertices in

the origami. When cdev = 0 for all vertices, then the origami is developable, meaning it can

be created from a single flat piece of material. The origami tubes presented here have mostly

non-developable vertices, and thus they cannot be folded from a single flat piece of material.

However, some of the vertices may be developable and thus a portion of the tube may be

constructed from an initially flat sheet (e.g. the single four-sided tube can be constructed

from two flat sheets (Tachi, 2009b)). When cflat = 0, then all vertices of the origami

are locally flat foldable meaning that, they can fold down to a flat 2 dimensional state.

The definitions in Section 6.3.1 and 6.3.3 intentionally ensure symmetry when preforming a

projection of the cross-section, thus they ensure that all vertices are flat foldable. However,

in Section 6.3.2 where symmetry is not preserved, we lose the flat foldability (cflat 6= 0).

Equation 6.4 indicates that all panels are planar or flat for a given configuration. The

dihedral angle (ρj) can be calculated using the four nodes on the corners of the panel, and

will always equal 0 at the initial projected configurations defined using Section 6.3. Thus all

tubes satisfy cplanar = 0, however, this is only a necessary condition for rigid foldability and

is not sufficient. For rigid foldability, folding along fold lines should permit the structure to

transition between states while cplanar = 0 is continuously satisfied. Analytical derivations of

the kinematics and geometric characteristics of foldability (including rigid foldability) have

been previously discussed (Huffman, 1976; sarah-marie Belcastro and Hull, 2002b,a; Hull,

2012), however these tend to be cumbersome for verifying the rigid foldability of complex

origami systems.

The methodology used to perform kinematic folding in this chapter (Tachi, 2009c) performs

well for patterns that are rigid foldable, but it fails if they are not. This deviation from rigid

folding behavior is not intuitive and can be misleading. A more straightforward and intuitive

method to check if a structure is rigid foldable, is to perform the eigenvalue analyses described
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Figure 6.8: Schematic (top row), seventh mode (middle row) , and eighth mode (bottom row), of
basic projection definitions. (a) Constant angle projection in X − Y . (b) Projection in X − Y
with symmetry enforced. (c) Projection in X −Y without preserving symmetry. (d) Simultaneous
projection in X − Y − Z. Low eigenvalues correspond to a soft, rigid folding mode of the origami.

in Section 6.7 with the fold stiffness (Kρ) substantially reduced (e.g. to 10−7) representing

fold lines with no stiffness. In these analyses, the seventh and possibly higher eigenvalues

will be near zero, indicating a rigid folding motion where a kinematic transition is permitted

by folding along the fold lines. Subsequent deformation modes will indicate motions that

are not rigi foldable and include other deformations in the origami. Figure 6.8 shows the

eigenvalues and eigen-modes for the basic origami assemblies studied in this chapter. All

cases except symmetric X − Y − Z projection have a λ7 that is low (≈ 10−2), indicating a

rigid folding motion. For the X−Y −Z projection case, λ7 is of much higher order indicating

that bending of the panels must occur to deform the structure, and that the tube does not

have a rigid folding mode. For the structures in Figure 6.8(a-c), λ8 is substantially higher

than λ7 indicating that only one rigid folding motion exists, these systems can be classified

as one degree of freedom for rigid folding.

In Figure 6.9 we show the eigenvalue and eigen-modes of the eight-sided tube with two

switches (n = 2). Curiously, for this case, the system has three soft modes where the

rigid folding can occur, and the tenth mode is the first to engage the origami panels in
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Figure 6.9: The seventh to tenth eigenvalues and eigen-modes of the eight-sided tube when it is at
a fully extended state. Mode seven corresponds to configuration II and is the symmetric inverse to
configuration I; Mode eight is corresponds to configuration IV and is symmetric to V; and Mode
nine corresponds to configuration VI and is symmetric to III. Mode ten is the squeezing mode.

bending. These rigid folding modes each correspond to one of the system configurations

shown in Figure 6.11, and each one of them also has a symmetric inverse that corresponds

to another system configuration. These results indicate that the system has three non-

symmetric degrees of freedom for rigid folding. However, once the structure enters one of

the folding configurations (extension < 100%), it behaves like a one degree of freedom system,

where it only has a single flexible mode for rigid folding (Figure 6.14). This phenomenon

of the eight-sided tube is similar to a flat sheet that can enter numerous different folding

patterns when initially folded. Future, research could investigate differences in rigid folding

configurations, the symmetric inverse eigen-modes, and the varying programmability possible

with the polygonal tubes.

6.5 Kinematics in reconfiguring polygonal tubes

The folding of the tube can be preformed through an analytical (Huffman, 1976; Hull, 2012;

sarah-marie Belcastro and Hull, 2002b,a) or numerical method (Tachi, 2009c), by changing a

fold angle in one vertex, calculating the other angles in the vertex, and cycling through all of

the vertices in the pattern until all fold angles, and the new geometric shape are calculated.

Other methods that use the global properties of the structure (for example the eigenvalues)

can also be used in an iterative folding scheme (Schenk2011b). Here, we use the numerical

method in (Tachi, 2009c) to perform the kinematic folding, because with this method it

is easier to specify a folding motion by assigning mountain and valley fold directions. In

contrast to more simple tube structures, the geometry of the tubes presented here can be

reconfigured, and thus picking a specific fold pattern is helpful. Figure 6.10 shows the
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two basic geometry reconfigurations that can be obtained from the simple six-sided origami

tube. The initially flat in Y −Z segments, can be used as switches to change the structural

geometry.

Figure 6.10: The six-sided tube can be folded into two different configurations by changing the
polarity of folds (valley or mountain) on the single flat segment (n = 1). A cross-section schematic
with positive or negative slopes is used to inform the fold assignment for the first/last fold (0 =
valley, 1 = mountain). The folded cross-sections of the two configurations are not symmetric
because edge groups a and c in the cross-section definition are not symmetric (Figure 6.2(a)).

A binary system is used to inform the directional change in cross-section and new geometry.

The upper and lower switches are defined as a 0 or a 1 and indicate negative or positive

slope change in the cross-section respectively (valley or mountain fold respectively between

the first and second panels). The assignment on the upper and lower segments must match

to preserve the translational symmetry in Equation 6.1, thus if the [U: 1] then [L: 1] as well.

In Figure 6.11(a) we extend these definitions to the eight-sided tube from Figure 6.2(d).

The eight-sided tube has two switches of equal length on both the upper and lower sections.

The number of positive switches (1s) on the upper section has to correspond to the number

of positive switches on the lower section of the tube. Thus the sum (k) of the L and U

switches must match. Figure 6.11(a) shows the six possible switch variations for the eight-

sided tube. The number of possible ways to reconfigure the upper section only, follows a
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Figure 6.11: Variations in reconfiguring polygonal tubes. (a) An eight-sided tube with two equal
length segments (switches) can reconfigure into six unique configurations. The three dimensional
models are shown at 10% and 95% extension. (b) Possible switch variations for the upper section
only, with n = 2 and n = 3 switches. The variable k corresponds to the sum of the of switch
assignments. (c) A Pascal’s triangle shows the number of variations for the upper section of the
tube only. This is the binomial coefficient with n representing the rows and k the columns. (d)
The total number of possible cross-section configurations. This is equivalent to the central
binomial coefficient.

binomial coefficient as:  n

k

 =
n!

k!(n− k)!
, (6.5)

where we have n available switches and we want exactly k of them to be positive. For

example in Figure 6.11(a) there is only one possible way to reach a total of either k = 2 or

k = 0, configurations I and II respectively. However, there are two possible ways to reach

a total of k = 1, i.e. [U: 1 0] and [U: 0 1]. Because each variation of the upper section

can be coupled with a corresponding lower section with the same polarity sum (k), we need

to take the square of these possibilities, and sum them to find the total number of possible
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variations for the cross-section. This results in the central binomial coefficient:

n∑
k=0

(
n!

k!(n− k)!

)2

=
(2n)!

(n!)2
. (6.6)

This function gives the total number of unique cross-section variations that can be obtained

when folding a reconfigurable tube with n flat segments or switches. The possible upper

section assignments for a n = 2 and n = 3 tube are shown in Figure 6.11(b). The number

of possible upper section variations follow Pascal’s triangle (Figure 6.11(c)), and the total

number of possible configurations follow the central binomial coefficient (Figure 6.11(d)).

The most basic, four sided tube cross-section (e.g. Figure 6.7(d)) has no switches (n = 0),

and thus has only one possible cross-section configuration. On the other hand, the tube

with four symmetric switches (n = 4) shown in Figure 6.1 can reconfigure into 70 distinct

cross-sections. Appendix B of the thesis shows all 70 possible cross-section configurations

that can be obtained from that tube.

6.6 Cellular extensions for reconfigurable origami tubes

The projection technique for creating polygonal tubes can be extended to creating cellular

assemblages that have similar geometric characteristics. When the translational symmetry

is used in the cross-section(s) and an admissible projection is followed to construct the three

dimensional structure, the folding and reconfigurable characteristics remain similar to be-

fore. In Figure 6.12 we show two assemblages that use a constant angle projection, although

it is possible to use more advanced curved projections as well. The cross-section in Figure

6.12 (a) is created by discretizing the cross-section into smaller sections. All of the internal

cross-sections, as well as the global external cross-section, follow the translational symmet-

ric rules in Equation 6.1. This assemblage can still be reconfigured as shown in Figure

6.10. In Figure 6.12 (b) we combine four tubes together, two of which have reconfigurable

cross-sections. This assemblage can now be reconfigured into four different cross-sections,

with configurations III and IV being rotationally symmetric. A variety of new assemblages

can be constructed using these ideas, however the initial cross-sections cannot have over-

lapping components, and the kinematics of reconfigurations should be carefully analyzed.
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When multiple tubes and cross-sections are reconfigured, it may be possible for different

components to experience interaction or contact, and some of the reconfigurations may be

obstructed.

Figure 6.12: Cross-sections, isometric folding sequence and possible reconfigured cross-sections of
cellular origami assemblages. (a) The basic six-sided polygon has four smaller parallelogram
tubes inserted within. This assemblage has two possible configurations similar to before. (b)
Assemblage consisting of two six-sided and two four-sided tubes together. This structure can
reconfigure into four states.

Polygonal origami assemblages can be further enhanced by using different projection an-

gles and projection directions, for the different tubes within the assemblage Filipov et al.

(2015a); Tachi et al. (2015). The polygonal assemblages could be coupled in the zipper fash-

ion to significantly stiffen the origami structures. Zipper coupling between the polygonal and

regular square tube can be done on any of the polygonal tube faces. The assemblages can

be generalized in numerous ways, but they also limit some of the projection directions that

can be used to create the system Tachi et al. (2015). Furthermore, it is possible to introduce

techniques for locking the origami configuration into a sandwich-like structure Schenk and

Guest (2013); Gattas and You (2015a). These additions can enhance the structural rigidity

of the systems, but can restrict the deployment and reconfigurable kinematics of the polyg-

onal tubes. Future research can explore the numerous assemblage variations proposed and

determine useful methods for enhancing the mechanical characteristics of the structures.
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6.7 Elastic behavior of polygonal tubes

Figure 6.13: A portion of the eight-sided reconfigurable tube with the corresponding FE
discretization. The inset shows the localized zero-length connectivity at the fold lines.

In this section, we explore the global mechanical characteristics of the tubes with a finite-

element (FE) analysis software (Abaqus (Dassault Systemes Simulia Corp, 2010)). Each of

the origami panels is discretized with 8 × 8 shell elements and the folds are modeled using

rotational hinges as shown in Figure 6.13. The model uses standard S4 general purpose

shell elements with finite membrane strains that are appropriate for the small deformation

analyses of the thin sheet origami structures. We have also performed these analyses with the

bar and hinge approach and we obtain similar qualitative results (see Figure 3.7 and Chapter

3). However, in this chapter, we use converged versions of the FE model to provide more

quantitative results for the behavior. Quantitative estimates are required for comparing the

origami tubes to analytical expressions for the behavior of uniform pipes in Section 6.8.

We model the eight-sided reconfigurable tube from Figure 6.2(d). The cross-section edges

for the upper section have slopes of [θa, θb, θc] = [30, 90, 125]◦, and lengths of [bU1, aU1, bU2, cU1] =

[0.5, 0.7, 0.5, 1] cm. The tube is ten segments long, and is created with constant projection

of φ = 60◦ and l = 1 cm. The configuration of the structure is defined based on the idealized

zero-thickness rigid kinematics, however, to define the stiffness of the structure we assign a

thickness of 0.1 mm which translates to roughly L/t ≈ 50− 100. The model does not how-

ever account for detailed effects of the thickness such as intersection that may occur when

we attempt to fold an origami with finite thickness. Other model parameters are defined as

Young’s modulus E = 5 GPa, Poisson’s ratio ν = 0.33, and density ρ = 650 kg/cm3. In

reality the behavior and stiffness of the fold lines can depend on the material and fabrication

used to make the origami. Here, we assume linear elastic folds where the stiffness for a
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rotation of ρ radians is specified as Kρ = 0.0164 N*cm/rad per one centimeter of fold line.

The fold lines are assumed to be more flexible in bending than the panels, and thus Kρ is

specified to be one tenth (1/10) the bending stiffness of an origami panel with a diagonal

length of one centimeter. The dimensions and units used here are chosen arbitrarily but

within a realistic range to give qualitative insight to the origami behavior. Quantitative re-

sults for engineered origami systems could be obtained using known dimensions and material

properties. The analytical model captures the elastic behaviors of origami type structures:

1) panels stretching and shearing, 2) panels bending, and 3) bending along prescribed fold

lines. We have evaluated the mesh convergence for the tube when it is loaded as a can-

tilever later in this section. The 8× 8 shell mesh approximates displacements within 4% of

a significantly finer mesh discretized with 32 × 32 shell elements per panel. In this chap-

ter, we use elastic and small displacement approximations for all analyses. Future research

will be needed to understand localized behaviors in origami structures, as well as the large

displacement behaviors which could be of significant importance.

We perform the eigenvalue analysis as discussed in Chapter 3 to evaluate the structural

characteristics of the polygonal tubes. The eigenvalues (λi) are arranged in an incremental

order (i) and represent the excitation frequencies that would deform the structure into the

corresponding eigen-mode (vi). For the eight-sided reconfigurable tube the seventh eigen-

mode follows the kinematic folding and unfolding of the structure (Figure 6.14(a-b)). The

seventh mode has the least energy indicating that it is easiest to deform the structure by fol-

lowing the prescribed folding sequence. The eight mode is a squeezing mode, where one end

of the tube is folding and the other end is unfolding. By changing the geometry or through

tube coupling described in Chapters 4 and 5 it could be possible to substantially increase the

band-gap λ8 − λ7, creating a structure that is easy to deploy, but is substantially stiffer for

other deformations. The ninth mode of the structure is another manifestation of squeezing

with the centre unfolding and the ends folding . The tenth mode is a localized mode, where

the panels at the end of the tube fold. The ninth and tenth eigenvalues are substantially

higher, meaning the structure is stiffer for these and other types of deformations.

Because the geometry of the system changes, the magnitudes of the eigenvalues also change

with respect to the extension of the system. Extension here is defined as a percentage of

the fully extended length. When the structure is at 0% extension it is completely folded
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Figure 6.14: Eigenvalue analyses of eight-sided reconfigurable tube with two switches presented in
Figure 6.11. (a) Eigenvalue versus the extension of the tube in configuration I. (b) Corresponding
eigen-modes at 75% extension. (c) Eigenvalues seven through ten presented for each of the six
possible geometric reconfigurations of the tube.

down, while at a 100% extension the switches flatten and the system can be reconfigured.

The eigenvalues for rigid folding and squeezing remain essentially the same regardless of the

folded configuration, although there are some small differences in magnitude. However, the

ninth and tenth mode are greatly affected by the different folding configurations (Figure

6.14(c)). This is because the cross-sectional geometry has a higher influence in determining

the more complex localized and global bending modes.

In Figure 6.15 we present a cantilever analysis of the eight-sided tube in different configura-

tions. One end of the cantilever is fixed and a small uniformly distributed load (summing to

a total of 0.001 N, e.g. FX = 0.001 N) is applied on the other end. We perform static, linear

elastic, small displacement analyses of the structures, with the main objective of exploring

the global behaviors and anisotropy of the tubes. The system displacements (∆X , ∆Y , ∆Z)

are calculated using the equation F = K∆, where F is a vector of forces. Subsequently, the
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Figure 6.15: Structural cantilever analyses of eight-sided tube. (a) Representative deformed
shapes scaled ×1000 for the tube in configuration I at 95% extension. (b) The stiffness of
different tube configurations in the three Cartesian directions with respect to the extension. (c)
The tube stiffness for different loading directions in the Y − Z plane represented as a radial plot.
The tubes are at an extension of 95%.

system stiffness is calculated as KX = FX/δX , where δX is the mean X direction displace-

ment of the loaded nodes. A squeezing type deformation occurs for some of the loaded cases,

and this is believed to result in lower stiffness than if the origami was engaged in stretching

and shearing.

Different cross-section configurations, can have drastically varying stiffness characteristics,

with up to an order of magnitude between different cross-sections (Figure 6.15 (b)). Typ-

ically, configurations I and V are the stiffest while configurations II and IV are the most

flexible. We also show the stiffness perpendicular to the X axis, as a radial plot in Figure

6.15(c). The I and V configurations have large oval plots, meaning they have relatively higher

stiffness in most directions. Each of the cross-sections also has a different direction (in Y −Z)

where it has a lower or higher stiffness. This phenomenon indicates that the reconfigurable

tubes have a highly adjustable anisotropy when used as cantilevers. The behaviors observed

in this section show that the cross-section geometry can have a significant influence on the

mechanical properties of the system. Thus, the reconfigurable polygonal tubes can be used

to create highly tunable and adaptive structural systems. Detailed research is needed in this

area to determine the influence of different cross-section geometries, as well as the tunability
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achieved from each reconfiguration.

6.8 Cylindrical origami tubes

We explore a uniform circular pipe (made from a thin sheet) experiencing uniform out-of-

plane loading and compare it with similar origami tubes. Figure 6.16(a) shows the pipe that

is L = 10 cm long, loaded in space with symmetric out-of-plane distributed load equal to

F/L. In this section, we use a total force of F = 0.001 N, and we assume linear elastic,

small displacement behaviors. The radius of the pipe is r = 2 cm, and all other parameters

(i.e. t and E) are the same as for the origami analysis in Section 6.7. An analytical solution

for this problem is found using Castigliano’s theorem where the pipe is simplified to a two

dimensional bending of a thin beam (Section 6.8.1). The analytical solution matches well

with a converged FE model where a uniform pipe is discretized with 120 shell elements along

the diameter and 100 elements lengthwise. The total diametric deflection (δd), coaxial with

the applied load, is found to be

δd =

(
π

4
− 2

π

)
12Fr3

ELt3
= 0.00286 cm. (6.7)

Subsequently, we perform similar analyses on the origami tubes with the same parameters,

and dimensions defined to match the pipe as closely as possible. All cross-sectional edge

lengths are defined as 2πr/NEdge where NEdge are the total number of edges on the circular

tube. As such, the tube perimeter is the same as the analytical case. The edges are arranged

in a symmetric fashion so that the cross-section becomes a regular polygon (Figure 6.16 (b)).

Three cases with NEdge = 6, 10, and 14 are used, such that there is a single flat segment in the

initial configuration, meaning that the initial configuration is the fully deployed state. The

number of panels in the X direction is chosen as 6, 8 and 12 for the three cases respectively,

so that the structure is symmetric and the panels are approximately square. The projection

angle defining the three dimensional shape is varied, and a consistent projection length is

used so that the origami tube is L = 10 cm long in the fully deployed (same as initial)

configuration. We perform a static analysis by loading the vertices on the top flat segment

with a downward force, such that the edge vertices carry half the load of the internal vertices
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Figure 6.16: Out-of-plane compression on a pipe. (a) Problem definition and analytical
approximations (Section 6.8.1). (b) Origami tubes with NEdge = 6, 10, and 14. The origami tube
cross-sections are overlayed with a r = 2 cm circle. The loading is only shown for the NEdge = 6
tube. (c) A φ = 65◦ tube, and (d) a φ = 85◦ tube with NEdge = 10. The top (X-Y) view is shown
as a reference and the lower views show the deformed shapes. The deformed shapes are scaled
×10000 for the stiffer φ = 65◦ tube and ×200 for the more flexible φ = 85◦ tube. (e) The
out-of-plane stiffness of tubes versus the projection angle φ. (f-h) Physical models of a uniform
sheet, φ = 65◦, and φ = 85◦ tubes respectively, loaded out-of-plane with 400 grams. The φ = 85◦

tube is only loaded with one 100 gram weight due to the much larger deformation.

(grey versus black triangles in Figure 6.16 (b)). The loads are defined such that the total

applied load sums to F = 0.001 N. The bottom vertices of the tubes are restrained in the Z

direction, representing a symmetric loading similar to Figure 6.16 (a).

We use static, linear elastic, small displacement analyses to evaluate the mechanical prop-
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erties of the origami tubes. Scaled deformed shapes of NEdge = 10 tubes with two different

projection angles are shown in Figure 6.16(c-d). The tube with φ = 65◦ is much stiffer and

has an irregular deformed shape where panels bend and stretch. The tube with φ = 85◦ has

a more regular deformed shape, similar to what we would expect from a thin pipe, and in

this case, deformation occurs primarily by bending along the longitudinal fold lines. Stiffness

with respect to the projection angle φ, of the tubes with different NEdge is shown in Figure

6.16(e). The origami stiffness is calculated as in Section 6.7, and the analytical stiffness

solution for the circular pipe is calculated as F/δd.

Similar to the deformed shapes, tubes with lower projection angles have lower displacement

and are stiffer, while tubes with a projection angle close to 90◦ are more flexible because they

permit folding along the longitudinally oriented fold lines. The origami tubes with projection

angles between φ = 45◦−75◦ are stiffer than the analytical solution for a circular pipe. This

behavior is similar to that of corrugated pipes and sheets (Briassoulis, 1986). Corrugated

pipes have a higher stiffness for out-of-plane loadings, which makes them suitable for many

applications such as culverts. The polygonal tubes may also have properties similar to the

non-folding pseuo-cylindrical concave polyhedral (PCCP) shells inspired from the Yoshimura

pattern (Miura, 1969, 2002). Due to their patterned nature, PCCP shells posses an increased

buckling capacity for external hydrostatic pressures.

Polygonal tubes with more edges e.g. NEdge = 14 have more fold lines along their cross-

section perimeter, making them more flexible. The results are verified with physical models

(Figure 6.16(f-h)). The stiffness of the fold lines RFP factor, does not influence the deflection

significantly for cases with lower projection angle φ < 75◦. However, for higher φ the fold

lines are the primary location of deflections, and thus their stiffness greatly affects the tube

stiffness.

6.8.1 Analytical solution for a pipe loaded out-of-plane

The exact analytical solution for the out-of-plane bending of a pipe can be calculated using

Castigliano’s theorem where we simplify the problem to a two dimensional bending of a thin

curved beam. The theorem states that the displacement δq at the point where a load Q is
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applied can be found by

δq =
∂U

∂Q
=

∫ l

0

Mx

EI

∂Mx

∂Q
dx, (6.8)

where U is the elastic strain energy, Mx is the bending moment, I is the area moment

of inertia, and x is the distance along the beam. By using symmetry, we only consider a

quadrant of the pipe’s cross-section which is loaded with a force V = F/2 (Figure 6.16(a)).

The idealized thin beam has a width equal to the length of the pipe L (X direction), and a

depth of t in the bending axis (perpendicular to X), resulting in the area moment of inertia

I = Lt3/12. A point along the beam is defined as a function of the angle θ, and the bending

moment (Mθ) and the partial derivatives are calculated as

Mθ = V r sin θ −M0,
∂Mθ

∂V
= r sin θ,

∂Mθ

∂M0

= −1. (6.9)

Using the theorem we can now calculate

δM0 =

∫ l

0

Mx

EI

∂Mx

∂M0

dx =
1

EI

∫ π/2

0

(V r sin θ −M0) ∗ (−1) ∗ rdθ =
(π

2
M0 − V r

) r

EI
, (6.10)

δV =

∫ l

0

Mx

EI

∂Mx

∂V
dx =

1

EI

∫ π/2

0

(V r sin θ −M0) ∗ r sin θ ∗ rdθ =
(π

4
V r −M0

) r2

EI
. (6.11)

By enforcing symmetry, the rotation at the unrestrained end of the beam will be M0 = 0,

and using Equation 6.10 we find that M0 = 2V r/π. Substituting M0 into Equation 6.11,

the total diametric deflection coaxial with the applied load is found to be

2δV = 2

(
π

4
− 2

π

)
V r3

EI
=

(
π

4
− 2

π

)
12Fr3

ELt3
. (6.12)

If we wish to find the total diametric deflection perpendicular with the applied load, we can

use a fictitious load H applied horizontally at the free end of the curved beam, and use the

same methodology to find

2δH = 2

(
2

π
− 1

2

)
V r3

EI
=

(
2

π
− 1

2

)
12Fr3

ELt3
. (6.13)
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6.9 Practical considerations and extensions of reconfigurable origami tubes

In this section, we propose future research on the reconfigurable tubes to explore practical

applications, considerations for physical fabrication, and non-linear behaviors that can ex-

tended capabilities. This section is meant to inform and motivate future research, rather

than to provide a holistic discussion on the different topics.

6.9.1 Practical applications

The polygonal cross-section origami tubes discussed in this chapter open up a variety of

applications in science and engineering. The continuous perimeter of the cross-sections

could enable the tubes to be used in fluid flow applications. More traditional applications

would involve primarily using these tubular origami as deployable pipe-like (Martinez et al.,

2012; Schenk et al., 2013, 2014a) or bellow systems (Yasuda et al., 2013; Francis et al., 2014).

These could have wide and varied applications including deployable pipes for construction,

biomedical devices, or inflatable space structure components. The new projection definitions

introduced in Section 6.3, provide a new capability where the origami tubes can follow a

curved profile when deployed, versus the straight profile of previously introduced tubes.

An instance taking advantage of this benefit, would be constructing a ventilation system,

where the entire origami tube is deployed to carry air through a congested area, rather than

connecting multiple straight and curved pipe segments. The properties studied in Section

6.8, show added benefits where the polygonal tubes have more stiffness for out-of-plane

loading, than a conventional pipe with a constant cross-section. This property could allow

for the deployable construction of culverts, or other pipes that need to carry large loads.

The programmable capability of the tube cross-sections offers novel applications where

the structure can morph and adapt. The tubes can have an adaptable volume, surface

properties, mechanical characteristics and more, simply through reconfiguring the polygonal

cross-section. For example, components placed inside aircraft wing could be used to change

the lift and drag properties of the wing for different stages of flight (Barbarino et al., 2011).

The variable stiffness properties of the origami tubes discussed in Section 6.7 could allow for

new devices in aerospace, mechanical, and civil engineering. Robotic components, such as

the deployable and reconfigurable arm in Figure 6.17 could be designed to simultaneously
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Figure 6.17: Potential application of origami tubes used as a robotic arm with reconfigurable
components. The cross-section shown on the bottom reduces in area and could be used as a
gripper when the tube is retracting.

fulfil multiple functions. A griper can be used with the reconfigurable cross-section, while the

cellular divisions could add stiffness and carry electrical wiring, pneumatic tubes, or other

utilities (e.g. similar to multi-functional dental tools). Although these applications are

still far from reality, they offer many potential advancements from current day engineering

approaches.

6.9.2 Design and fabrication

There is currently a tremendous amount of research aimed at making origami feasible for

real world applications. The geometric origami design, fabrication methods, materials, and

deployment mechanisms, all depend on the scale and function of the origami system. For

small applications, origami can be 3D printed with living hinges (Deng and Chen, 2013).

More simply however, it is possible to cut out the origami from a flat sheet and fold the

system along perforated or etched fold lines. As a proof of concept, we have fabricated several

small (≈ 30 cm) paper models (Figures 6.16, 6.18, and 6.19) to highlight the capabilities of

the reconfigurable polygonal tubes. All models are manufactured from 160 g/m2 paper that

has an approximate thickness of 0.25 mm. Panel heights and widths vary from 1 to 3 cm, thus

maintaining a relatively high length/thickness ratio that is typical for origami. The folds are

created by perforating the paper with 0.5 mm cuts spaced evenly at 1 mm. Because the tubes

are not developable, we cut out a flat sheet for each of the cross-section edges, and use tabs

to adhere the multiple sheets together (Figure 6.18(a)). This or a similar methodology would

need to be used for manufacturing the polygonal origami out of flat sheets. When extending
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Figure 6.18: (a) Strips of panels cut out from flat sheets can be used to construct the three
dimensional, non-developable tube. Dashed lines indicate fold lines, and the tabs at the sides of
the sheets can be used to attach sheets together. (b) Physical model of a six-sided polygonal tube
that forms a star when fully deployed (c) Physical model of the reconfigurable origami from
Figure 6.1 is shown in different configurations. The tabs for attachment are visible on the bottom.

origami to the medium scales it is possible to use layered composites where a flexible sheet

that allows folding is sandwiched between more rigid panels (Hawkes et al., 2010; Ma et al.,

2012; Peraza-Hernandez et al., 2014). Large origami structures could be constructed by using

thickened panels interconnected by hinges rather than fold lines. For various applications

in the real world the finite thickness of origami sheets begins to affect the system behavior,

and the idealized zero-thickness assumptions are no longer valid. Current research aims to

account for thickness in kinematics and manufacturing in order to prevent self-intersection

while minimizing the size of the stowed structure (Hoberman, 2010; Tachi, 2011; Chen et al.,

2015). To make the reconfigurable polygonal tubes reliable and cost effective for industrial

applications more innovation will still be needed. In particular, research should explore:

materials and systems to allow multiple folding/unfolding cycles; rapid fabrication methods;

mechanisms to facilitate deployment; and incorporating thickness into the tube design. The

programmable switches of the polygonal tubes may also require new methods for rapid or

remote actuation and reconfiguration.
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6.9.3 Non-linear deformations and extensions

Figure 6.19: Localized distortion in the six-sided origami tube (left) can bring about new
non-linear behaviors similar to those of bendable drinking straws (right). (a) Unfolding of the
structures in the prescribed straight direction. (b) A single transition point indicated by a T is
introduced in the origami tube. At this point a panel of the reconfigurable segment bends across
its diagonal, allowing for a change in configuration to occur in the middle of the tube. (c)
Multiple transition points lead to a global curvature over the length of the tube.

Most research on origami, as well as most of this thesis, take advantage of only the rigid and

prescribed folding mechanisms of the system. However, some recent findings have shown that

there exists a wide range of origami deformations where bending in the panels is encouraged

(Silverberg et al., 2014, 2015). These deformations could be substantially more complex

than the rigid kinematics, and could correspond to highly non-linear behaviors of the thin

sheet origami. In Figure 6.19 (b) we show localized bending that occurs on one of the

switch panels of a polygonal tube with six edges. This allows the tube to have different

cross-section configurations at different locations of the tube, i.e. Configuration I: below the

transition point T and Configuration II: above it. The tube is initially constructed straight

with 30 constant angle projections, but with the transition point there is a shift in the

direction that the tube follows. Although each transition points causes a localized change

in direction, as more transition points are included, the origami tube can go from a straight

to a curved structure. This phenomenon is similar to conventional bending drinking straws

(Figure 6.19 (c)). The physical models of the polygonal tubes also showed some bistable
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and multi-stable effects, similar to other origami structures (Silverberg et al., 2015; Hanna

et al., 2014; Waitukaitis et al., 2015). Multi-stability with the reconfigurable tubes could

provide new ideas and applications. More complex tube cross-sections where more switches

could be augmented, or longer tubes could lead to other interesting bending and non-linear

effects.

6.10 Concluding remarks

We introduce a new category of origami tubes that have reconfigurable polygonal cross-

sections. The tubes are rigid and flat foldable, and have a continuous perimeter. The

cross-sections of the tubes can be a wide variety of convex or non-convex polygonal shapes

that follow translational symmetry. Projection is used to define the three dimensional shape

of the tube, but non-admissible (e.g. non-symmetric) projections, may limit the flat and

rigid foldability of the system. The cross-section geometry can contain any number of n

switches that can be used like binary bits to program the geometric reconfiguration of the

cross-section. We show that the total number of possible cross-section variations for a tube

follow the central binomial coefficient of n. A cellular cross-section or coupling of multiple

tubes can be used to create a new variety of assemblages that enhance the functionality and

reconfigurable properties of the tubes.

In addition to the geometric variations and reconfigurable kinematics, this chapter also

explores some mechanical properties of the polygonal tubes. We show that the tubes have

only one flexible mode for kinematic deployment for which the stiffness is not significantly

influenced by reconfiguring the cross-section. On the other hand, the cross-section config-

uration can influence other deformation modes and the out-of-plane stiffness of the tubes.

This property can be used to make tunable structures that can change their mechanical

properties. If the origami tubes are used as circular pipes, they can be designed to have a

high out-of-plane stiffness similar to that of corrugated pipes. Finally, we propose future

research directions on applications, fabrication, and non-linear deformations, all of which

will enhance the practicality, functionality and capability of the reconfigurable tubes. We

envision that the physical attributes, versatility, and programmable characteristics of the

polygonal origami tubes will enable solutions of varying scale in science and engineering.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis makes contributions to origami engineering in several different aspects. In our

work, we explore and quantify the stiffness of local origami behaviors such as bending of

panels and fold lines. We improve and verify analytical models that can use the local stiffness

characteristics for performing global simulation of origami structures. We use eigenvalues,

bandgaps, and structural analyses to explore and characterize different origami strictures.

New methods of coupling origami tubes into assemblages are introduced, and generalized

methods are developed for creating tubes of desired shapes. We explore the unique mechan-

ical characteristics of the different origami tubes and explore how the structural behaviors

can be modified and tuned. In summary, this thesis explores how geometry can be used to

tailor the stiffness of origami type structures. This chapter summarizes the main findings

and developments from our work, and provides directions for future research.

7.1 Summary

The main topics covered in this thesis are introduced in Chapter 1. We discuss the potential

of origami for engineering applications, and we introduce the objectives of our work, which

lie at the intersection of the origami geometry and structural behavior. The origami folding

pattern can determine the folding characteristics, possible fabrication methods, and the

structural behavior of the system. Origami can be used to create a rich variety of three

dimensional shapes that can be deployed and possibly reconfigured. The geometry of the

origami significantly affects stiffness both on a local and on a global scale. In Chapters 2

and 3 of the thesis, we explore, verify, and inform a bar and hinge approach that can be used

for the structural analysis of origami. In Chapters 4, 5 and 6 we introduce new variations of

tubular origami structures and investigate their structural and mechanical characteristics.

Chapter 2 explores stiffness scaling of origami with an objective of informing the param-

eters of the N5B8 model that is later explored in Chapter 3. We create scale and material

dependent phenomenological relations to quantify stiffness of the different origami behaviors.
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For in-plane loads, the N5B8 model provides an isotropic behavior, and can estimate the

stiffness of square and skewed panels. The model overestimates shear stiffness, but captures

tensile stiffness well. We verify that the results of Lobkovsky et al. (1995) are appropriate

for quantifying out-of-plane panel bending stiffness for large displacements. For small dis-

placement panel bending, we show that the panel geometries that are skewed and elongated

increase the origami stiffness. For fold line bending, we explore existing experimental results

and verify that stiffness likely scales with the fold length, bending modulus of the sheet,

and with the inverse of a length scale parameter (i.e. 1/L∗) (Lechenault et al., 2014). The

length scale parameter is believed to scale with thickness but is also highly dependent on

the material, fabrication, and geometric characteristics of the fold. We find that for most

origami, bending occurs primarily at the fold lines, with typical fold to panel stiffness ratios

of 1/20 to 3.

In Chapter 3, we explore and discuss the improved bar and hinge model that can be used for

the global structural analysis of origami systems. The model uses five nodes and eight bars

(N5B8 model) to simulate in-plane behavior of origami panels, while rotational hinges are

used for out-of-plane bending of the panels and fold lines. The model improves upon existing

origami models because it is scalable, isotopic, and incorporates realistic material properties.

The model is easy to use and understand, it is versatile, efficient and can be adapted for a

wide range of applications. We show possible applications of the model, including simulating

rigid folding kinematics, evaluating eigenvalue bandgaps, cantilever analyses, and origami

metamaterial characterization. The bar and hinge model cannot capture local effects in

origami, but it can be a useful analytical and design tool to facilitate application of origami.

The remainder of the thesis introduces several new types of origami tubes and explores

their structural characteristics. In Chapter 4, we study single and coupled origami tubes. We

show that tubes coupled in a zipper fashion have a unique property, in that they are easy to

deploy yet they are stiff for any other type of bending or twisting motion. The zipper coupled

tubes yield an unusually large eigenvalue bandgap that represents the difference in stiffness

between the rigid body folding and subsequent deformation modes. The stiffness increase

is much larger from the zipper arrangement than could be achieved with other coupling

methods or with variations in the fold pattern geometry. The zipper coupled origami tubes

engage the thin sheets in tension, compression, and shear for any deformation mode that
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does not follow the kinematic deployment sequence. We show local and global variations in

obtaining zipper coupling and explore the possibility of using these tubes to create cellular

assemblages with adjustable properties.

Chapter 5 provides a more generalized framework for constructing the zipper coupled

tubes. The tubes can have different cross-sections, straight or curved profiles, and depending

on their definitions they could be reconfigurable (fold through different motions). We explore

the coupled tubes by performing three point bending tests, and we evaluate the influence

of geometry on the orthogonal stiffness of the structures. We find that straight tubes with

square cross-sections typically have the highest maximum stiffness. While tubes that are

more zig-zagged and have rhombus cross-sections have higher stiffness during deployment

at the cost of a slightly reduced maximum stiffness. We show that the tubes can be used to

construct flat slabs, arches, and roof like structures consisting of coupled tubes.

In Chapter 6, we introduce and explore origami tubes with polygonal cross-sections that

can be reconfigured into numerous new geometries. The tubes do not need to be straight,

and can be constructed to follow a non-linear curved line when deployed. The cross-section,

kinematics, and mechanical characteristics of the tubular structures can be reprogrammed by

changing the direction of folding at some folds. We discuss the rich variety of structures that

can be conceived with the polygonal tubes, and we show limitations that govern the global

geometric design. We quantify the global stiffness of the origami tubes through eigenvalue

and structural analyses and highlight the interesting mechanical characteristics of these new

systems. We show that if the origami tubes are used as a circular pipe, they can be designed

to have a high out-of-plane stiffness similar to corrugated pipes.

7.2 Suggestions for future work

Because origami engineering is a relatively young field, there are numerous viable directions

for future exploration. This section provides both specific and more broad ideas for future

research in the field. Some of the ideas are direct extensions of this thesis while others are

somewhat unrelated, yet they are pressing problems in the field of origami research. Some

more specific ideas for extending this work are also contained within the discussions and

concluding remarks of each of the previous chapters.
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7.2.1 Geometric variation beyond the Miura-ori

One of the most interesting problems in the field of origami engineering is extending beyond

known patterns and discovering new origami that may posses new and interesting charac-

teristics. Discovery of new patterns can result in novel folding/deployment mechanisms,

advanced and tunable mechanical characteristics, adaptable systems with multiple folding

motions, new origami-like three dimensional systems.

The overwhelming research in the field, including this thesis, have built upon and extended

the well known Miura-ori pattern. Within Miura-ori patterns there have been a variety of

pattern explorations and generalizations (Tachi, 2009a, 2010a; Gattas et al., 2013; Xie et al.,

2015b). In Chapters 5 and 6, we developed generalized methods for defining single and

coupled origami tubes, however these methods still follow many of the same concepts as

previous research. The most generalized extensions of the Miura-ori pattern has likely been

by Dudte et al. (2016) where a Miura-ori inspired pattern can be developed to match an

arbitrary three dimensional surface (although these origami may be non-rigid and non-flat

foldable). There are certainly further extensions of the Miura-ori, and there are other existing

patterns, however there lies potential in breaking away from these known geometries and

exploring entirely new folded systems.

One direction of future pursuit could be to explore origami patterns through optimization

or other form finding algorithms. In Section 3.3.1, we briefly discuss how the bar and hinge

model could be used to find possible rigid folding motions starting from a known pattern.

Other methods have looked at non-rigid folding patterns to design origami based mechanisms

(Fuchi et al., 2015b, 2016). There is a potential to explore existing form finding schemes and

adapting them for origami pattern discovery, and it would be worthwhile to develop new

schemes tailored specifically for origami discovery.

When pursuing new pattern discovery, it would be worthwhile to consider the geometric

constraints of origami patterns (flat foldability, rigid foldability, developability, etc...). An

interesting concept would be to study and develop new patterns with more than four folds

per vertex. As an example, the Ron Resch pattern has six folds per vertex and has entirely

different characteristics from the Miura-ori. Many other patterns could similarly be devel-

oped and explored, and would be unique as they would have multiple degrees of freedom for
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rigid folding. The generality of fold placement around a vertex would greatly influence the

system kinematics and would change multiple of the system’s properties. These patterns

would also allow for much more reconfigurability and adaptability than current methods.

Coupling multiples of these patterns together could further enhance their characteristics

and applications.

7.2.2 Simple and efficient multiphysical models for origami

The analytical bar and hinge model presented in Chapters 2 and 3 can provide a good

estimate for the folding kinematics, the three dimensional geometry of origami components

(location of folds and panels), and the global elastic behavior. Furthermore, the model is

easy to use and efficient (in comparison to detailed FE formulations). Specific extensions

of the model are discussed in Section 3.5.3. In addition to those improvements, it would be

useful to incorporate multiphysical behaviors within the bar and hinge methodology such

that kinematics, elasticity, and other phenomena are considered simultaneously. As origami

becomes common in different fields of engineering thermal, acoustic, electromagnetic, and

other physical models can be combined and modeled using the simplified framework.

The bar and hinge approach can fill the gap in simulation capabilities between local be-

haviors and detailed global models. In other words, the bar and hinge model can incorporate

local phenomenological behaviors within a global system analysis. The multiphysical behav-

iors can first be studied on a local scale of the folds and panels and can be appropriately

incorporated within the same framework. Reasonable estimates of multiphysical characteris-

tics would be sufficient in understanding the overall global behavior of origami systems. The

simple and efficient models could be used to explore how multiphysical behaviors interact

with geometry, kinematics, and the elastic behavior of origami.

For example, modeling thermal effects in origami structures could be useful at multiple

scales and for different applications. Origami systems with heat actuated hinges would re-

quire modeling of the thermal gradients to predict deployment. The deployment kinematics

and elastic behavior could also be tailored to minimize the force, and thermal input require-

ment to achieve actuation. Thermal effects in large scale deployable structures may also

be of significant importance. It is possible that due to thermal expansion and contraction
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the deployment characteristics of the system become constrained and it is not possible to

deploy or actuate a system. The thermal conductivity of origami cellular assemblages could

also be explored to develop origami with high insulation or adaptable components with vari-

able thermal conductivity. Another example would be incorporating electromagnetic effects

with the origami to use for preliminary research on reconfiguring of antenna components.

Electromagnetic systems that employ origami designs can allow for tunable electromagnetic

properties along with the other benefits of origami. Other multiphysical analyses could lead

to new applications of origami in engineering.

7.2.3 Harnessing stiffness from crumpling origami

Bending, crumpling and connecting thin sheets into cellular assemblages can significantly

increases the global stiffness of the system (Vliegenthart and Gompper, 2006; Cambou and

Menon, 2011). As we discuss in Chapter 4, we can harness some of these benefits through

the zipper coupling, and cellular assemblages. However, our work has focused on small

displacement linear analyses, and there is potential for harnessing beneficial effects associated

with large displacements, crumpling, and nonlinearity of origami. Firstly, there is more to

explore and study about the nonlinear behaviors of thin sheets, and there may be ways to

harness their properties for engineering applications. The novel properties could be applied

to origami structures or they could be used for other types of assembled thin sheet systems.

As an example, consider the restrained panel bending explored in Section 2.2. We verified

that the bending stiffness of the thin sheets increases with large displacements with θ4/3

(Lobkovsky et al., 1995). Being able to capture this stiffening effect in a controlled manner

could be used to create metamaterials that stiffen or loose stiffness when compressed (if

deformed initially). This property could also be used to store mechanical energy in thin

sheet structures. An origami with pre-deformed panels could use the internal energy to

snap-open into a deployed configuration where the panels are straight.

The energy dissipative property of crumpling thin sheets has been used and explored for

various types of cellular and origami assemblages (e.g. Heimbs (2013); Schenk et al. (2014a)).

The multiple energy states associated with the buckling could be built into an origami system

to create multi-stable structures. These multi-stable properties could be used for designing
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energy storage or energy harvesting devices. Alternatively, crumpling could be used to affix

a deploying origami structure such that it would lock into position and not fold back or

reconfigure.

7.2.4 Optimization of cellular origami assemblages

In Chapter 5, we present a generalized methodology for zipper coupling of origami tubes. We

also show several additional methods in which tubes can be coupled and stacked into cellular

systems. We have primarily focused our research on studying the stiffness characteristic of

a single or of two coupled tubes. It would be useful to explore and optimize larger systems

where multiple tubes are connected and interact together. One specific topic of interests

would be to further explore and optimize the properties of arch and slab type systems

created by zipper coupling in the horizontal direction (i.e. Figure 4.25). Another topic

would be to further explore cellular systems with more generalized geometries. The cellular

assemblage presented in this work uses the same tube geometry throughout, however, the

generalized cross-sections and projection angles could be applied to generate new cellular

systems.

Optimization could be performed to maximize the eigenvalue bandgap or improve stiffness

characteristics of the origami. Beyond these it would be useful to begin exploring localized

effects in the cellular systems such as crumpling, buckling, and other failure mechanisms

(e.g. see Section 7.2.3 above). Optimization for such localized phenomena can be done on a

unit cell, before the global geometry of the assemblage is considered. Origami assemblages

may be optimized to increase weight-to-stiffness ratios, impact energy dissipation, and other

mechanical properties. Cellular origami metamaterials that have multiphysical functions

could be optimized to improve tunability and reliability during reconfiguration.

7.2.5 Connecting structural mechanics with the materials and fabrication of
origami

The materials and manufacturing of origami is beyond the focus of this work, however, it

is a fundamental field of study for moving the field forward. Appendix A of the thesis

provides a brief review on applications, materials, and the fabrication of origami. The
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intersection between the practical aspects of origami and structural mechanics can provide

many interesting and fruitful directions for future research. Both local and global phenomena

in origami engineered systems are just now being discovered, and approaching them in the

context of mechanics could be useful.

As an example, the presence of non-zero thickness in folding structures can pose problems

as stress concentrations occur at the vertices. Some techniques have explored ways to create

hinged systems with adapted kinematics that can accommodate the finite thickness (e.g.

Hoberman (2010); Tachi (2011); Chen et al. (2015)). Using structural mechanics, it may be

possible to explore the origami pattern, vertex design, or the entire fold line system to find

solutions that reduce the stress concentrations to an acceptable range.

Structural mechanics could also be used to address issues that occur with fabricating or

deploying origami structures. In some origami systems (e.g. hinge and panel structures)

the deployment and mobility may be affected by design imperfections or thermal variations.

To mitigate these effects the global structure could be redesigned to accommodate larger

imperfections or to allow for alternative motions that allow deployment. Locally, folds and

hinge geometries may be adapted to reduce adverse deployment scenarios. As the community

continues to pursue new applications of origami in engineering, the structural mechanics can

provide solutions and receive inspiration for future study.
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APPENDIX A

LITERATURE REVIEW: APPLICATIONS, MATERIALS, AND
FABRICATION FOR ORIGAMI STRUCTURES

Origami structures can be constructed in a multitude of ways ranging from crumpling a

piece of paper to creating a system of panels and hinges that move in a predefined fashion.

For our study, we primarily focus on the latter set of origami systems, where at the least

there are a predefined set of folds and panels. The materials and fabrication of these types of

structures depends highly on the scale of the system. Applications can range in size with the

largest possibly being civil engineering mega-structures to small structures in the millimeter

or even molecular range. This Appendix focuses more on medium to large scales and is

provided to give context of how we can use origami in real world engineering applications.

We acknowledge that this is not an all-encompassing review, however it discusses practices

and discusses ideas that can make origami engineering a practical and cost effective reality.

The contents of this Appendix are: Section A.1 discusses state-of-the-art conceptions and

existing applications of origami structures with respect to the scale of the system; Section

A.2 explores materials and the systems that can be used to create origami structures; finally,

methods for fabricating and deploying origami structures are discussed in Section A.3.

A.1 Applications of origami structures in engineering

Origami can be used to create structures that have adaptable characteristics, for example a

building façade could be made more stiff in cases of high winds or snow loads, yet it could be

made more flexible to accommodate large displacements in the the event of an earthquake.

On the small scale, we could construct material with novel properties, and microscopic

devices that can be used for biomedical applications. The ways that the origami structures

can be applied in engineering can vary widely as well. We envision that the origami structure

will fit in one of the following categories: : (a) folding of initially flat systems to adapt to

new space constraints or to serve an alternative function; (b) deployment of initially folded

assemblies such that the new structures would fulfill some set of requirements or fill some

prescribed space; (c) scenarios where (a) and (b) are coupled; and (d) cases where a structure
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would fold and unfold numerous times during its design life to fulfill a single or a multitude

of tasks.

Figure A.1: (a) Shading façade system on the Al Bahr towers designed by Aedas architects,
photo courtesy of Inhabitat-Blog (2012), (b) Origami bellows model by Joseph Wu (Wu, 2008),
(c) Microscopic nanoinjector using origami techniques by Aten et al. (2014), photo courtesy of
BYU-News-Release (2014).

A.1.1 Large scale applications

Here we discuss the use of origami in large scale structures for example two or more meters

in length. Due to the scale, these systems are also likely to require rather thick materials,

and are likely to use the hinge and panel type system discussed in Section A.2.1. Various

origami patterns have been used for inspiring and conceptualizing the architecture of build-

ing structures . The origami forms add interesting form and aesthetic quality to the building

façade and other elements. Some prominent examples include the United States Air Force

Academy Cadet Chapel in Colorado designed by Skidmore, Owings and Merrill (Skidmore

Owings and Merrill, 1962); the Basque Health Department Headquarters in Bilbao, Spain de-

signed by COLL-BARREU ARQUITECTOS (Arquitectos, 2008); and recently the Barclays

headquarters building in Paris, France designed by Manuelle Gautrand (Gautrand, 2011).

For the most part these designs are static and do not have the capability of changing their

configuration. In some cases however, the origami structures are designed with a variable

geometry so that they can morph and adapt to different purposes. (Del Grosso and Basso,

2010) discusses some possible advantages that could be achieved by dynamically adapting

building skins, and introduces a method for improving the acoustic properties of a facility

depending on the usage space. Researchers have also explored the characteristics of folded

plate structures are in detail with the objective of using these systems as a building envelopes
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(Falk and Von Buelow, 2011; Falk et al., 2012). An adaptive origami based shading façade

system (Fig. A.1 a) was adopted by Aedas architects on the Al Bahr building. For civil

engineering, origami engineering can be used in the following methods:

• Deployable shelters for use following natural disasters and other emergencies.

• Draw bridges that can carry land vehicles and can reconfigure to allow passage of water

traffic as well.

• Deployable systems for large structures (e.g. deployable column and façade assemblies).

• Prefabricated systems that can be stowed tightly for transportation on a truck (e.g.

tower structures).

• Façade or other structural elements that can move to change the stiffness of the struc-

ture.

• Deployable pipelines, retaining walls, culverts, and other structures that could be de-

ployed.

For large scale architectural purposes we can envision the following potential advantages

to be achieved by using origami structures in design:

• Artistic enhancement to the façade, walls, decorations, and other aesthetic elements.

• Shading systems where façade elements can move to reduce the heat gain of the building

during sunny days

• Wall and ceiling panels that can adapt to enhance acoustics properties of a concert hall

or multifunctional meeting room

• Partition walls that can reconfigure depending on the necessary usage

• Window and panels that can automatically open or close to provide appropriate ven-

tilation for the structure.

Outside of the civil engineering community large scale origami structures could also be used

in mechanical and the aerospace industries. Machines that have a multitude of tasks often

need to have transformable sections for example recreational and vendor type vehicles need

to have expanding components to allow for more room for occupants. In the space industry

origami has also become a study of interest since a structure can be launched in a small

compartment and can expand into a large functional system. Researchers have developed,

181



studied, and tested a variety of deployable space array structures ((e.g. Miura, 1985; Malone

and Williams, 1996; Jenkins, 2001; Campbell et al., 2006; Zirbel et al., 2013) and many

others). The origami type array can deploy to have a much larger surface area, and this

allows for a large solar power source. Due to the lack of air in space, a thin membrane can

be used for these structures, and it would not experience large forces as may be common on

earth. Large scale mechanical, aerospace, and multidisciplinary applications could include:

• Vehicles with deployable sections to increase occupancy.

• Covers for truck and train cars.

• Crane structures that need to change shape and size rapidly to fulfill their function.

• Construction equipment, gantry cranes, and other heavy machines that need adjustable

moving components.

• Solar panel arrays that can be deployed in space.

• Space station compartments for astronauts.

A.1.2 Medium scale applications

Medium size origami structures could range in order from a few centimeters to perhaps a

meter or so in length. Due to improvements in materials and fabrication methods, we believe

that in the future these medium size structures could be constructed using any of the the

three systems discussed in Section A.2. Potential applications of origami structures in the

medium scale include:

• Robotic arms, legs, and other components.

• Actuators and deployable booms.

• Foldable furniture.

• Deployable cantilevers.

• Devices and systems that can permit thermal expansion or movement of a larger struc-

ture (e.g. bellow of a bus or thermal joint in a highway bridge)

• Toys for amusement and entertainment.

• Devices for education in origami, mathematics, and engineering.

Origami has already made groundbreaking advancements in robotics. Origami can allow

for easy manufacture and kinetically functional, multi-degree of freedom systems that can
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move. The Harvard Microrobotics Lab (Wood and Others, 2014) have made large strides in

producing working robotics through the use of origami. For example, they have developed

a working flying robot that is assembled from a laser cut plate and is snapped into a three

dimensional configuration by folding and bending the thin material at specific locations (e.g.

Ma et al., 2012, 2013). A method for folding a reprogrammable material is shown by Hawkes

et al. (2010), where heat can be applied to to reconfigure a planar sheet into a 3-dimensional

folded object that is several centimeters long. More recently Felton et al. (2014) introduced

a walking robot prototype that can be created by cutting a layered sheet and then heating

the folds to create a three dimensional walking robot. Larger applications of origami have

not yet been realized, but there is a tremendous amount of potential for future applications.

For example, the coupled folding tubes discussed in this document have the potential to

be used as deployable cantilevers. These could be used to construct transforming legs and

deployable arms for humanoid size robots.

In addition to robotics, origami has already been used in more traditional forms of me-

chanical engineering. Origami techniques have already been used successfully to create tubes

that act as actuators or deployable booms. Origami is especially suitable for these applica-

tion due to the pre-configured small stowing configuration, and thus these systems have seen

a tremendous amount of recent study and testing (e.g. Martinez et al., 2012; Schenk et al.,

2013, 2014b; Fernandez et al., 2014). Gases or liquids could be pumped in at one of the ends

of these structures and can lead the structure to deploy. These types of deployabe boom

structures could also be considered as “large” and can be on the order of several meters.

In contrast to most other large applications however, these structures can be built from

flexible materials and do not need to use thick material or rigid origami kinematics. For

completeness we note that there exist a variety of other deployable structures such as scissor

trusses, deployable tensegrity structures and many more. For brevity we do not discuss

these structures here, but we note that the kinematic considerations for truss structures are

similar to those of rigid origami and it is often possible to use a origami in parallel with

other deployable mechanisms.

The transformable origami could lend itself to numerous uses in everyday objects and

devices. For example tables and chairs that have variable height control can take advantage

of origami structures in creating lifting mechanisms and side covers or perhaps counter tops

183



can increase in area by having folding origami extensions. Bellows and similar origami

systems are already common and used in industry, a paper schematic is shown in Fig. A.1 b.

In the construction of bellows, however, we note that rigid foldable polyhedra cannot be used,

and cannot follow rigid folding motion. Instead bellows would require some form of elastic

or plastic deformation, beyond that defined by the kinematics of the system (Connelly et al.,

1997). Use of folding and origami in furniture can even be traced in the most traditional

folding chairs and tables available on the market. These devices use folding as the backbone

in design, to produce a versatile product that can be stowed away compactly when not in

use. Some origami furniture has already been made available (e.g. Origami-Resource-Center,

2014; Fuchs and Funke, 2104), and we can expect that it will become more common as these

products decrease in cost and simultaneously increase in functionality.

A.1.3 Small scale applications

Small origami in the scale of a centimeter or much less can often take advantage of material

and local flexibility to achieve folding of the structure. Micro and nano origami structures do

not require rigid folding motions and and can accommodate bending in the panel segments.

These structures do not require thickened panels, so it is more common that they would

be constructed either from composite type systems (Section A.2.2) or from a homogeneous

system (Section A.2.3). The small scale applications are somewhat beyond the global scope

of this research, and thus only a brief literature summary is provided here. When considering

micro and nano applications we believe that origami has the potential to revolutionize the

following topics:

• Biomedical devices.

• Micro and nano robotics and devices.

• Electronics manufacturing and assembly.

• Synthetic material design.

• Molecular and DNA folding for improvements in biochemistry.

An interesting biomedical application was introduced by Kuribayashi et al. (2006) who

showed the possibility of using origami titanium/nickel stent grafts to open up blocked arter-

ies. Small robotics have been studied by the Harvard Microrobotics Lab (Wood and Others,
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2014) with a potential for various new devices. Guo et al. (2009) have shown methods for

folding thin Silicon sheets into cells with the potential of improved photovoltaic properties.

Microscopic nanoinjector using origami techniques were created by Aten et al. (2014) (shown

in Fig. A.1) can be used for injecting mouse zygotes. Methods for manufacturing micro and

nano scale structures that can be used for electronic and optical functionality were recently

introduced by Pique et al. (2011) and others. Metamaterials have also become a popular

topic in origami, since cellular arrays of patterned origami can behave in unusual ways. Ex-

amples of the structured metamaterials developed by origami are discussed in Fuchi et al.

(2012); Schenk and Guest (2013); Wei et al. (2013); Lv et al. (2014); Silverberg et al. (2014);

Waitukaitis et al. (2015) and others. The mechanics of origami have even been used in the

molecular scale to model and tailor the characteristics of molecules and DNA (e.g. Andersen

et al., 2009; Schmidt et al., 2011; Han et al., 2011; Yoo and Aksimentiev, 2013). For example,

a novel idea has been discussed by Jiang et al. (2012) where origami techniques are used to

fold a DNA structure so it can be used to deliver drugs to cancer cells in the body.

A.2 Materials for origami inspired structures

The choice of material and the type of assembly system would depend on several factors

such as: scale, purpose of the structure, number of expected folding-unfolding cycles, al-

lowed kinematics, cost, deployment mechanism, and others. In this chapter we discuss three

general origami assembly systems, and the materials that are assumed feasible for each of

the systems. We show (1) a distinct hinge and panel system; (2) an assembly composed of

sandwiched layers, and (3) a homogeneous material system. We believe that large applica-

tions will be possible only with hinge and panel systems; small applications are feasibly with

sandwich and homogeneous systems; and medium size applications can be created with any

of the three discussed methods.

A.2.1 Panel and hinge systems

With rigid foldable structures it is often possible to use thickened panels that will not undergo

bending during the operational deployment. For large structures it would be possible to

185



Figure A.2: Section view of the folding kinematics for: (a) a hinge and panel type system, (b) a
composite system (“sandwich system”) with stiff material on the top and bottom and a flexible
layer in between, (c) Homogeneous material systems with a etched living hinge.

use thickened panels interconnected by strong metallic hinges that would act in the same

way as the folds do in a simple origami model (Fig. A.2 a). This technique introduces

several advantages such as: (i) the hinges can accommodate a large number of folding-

unfolding cycles without a change in characteristics; (ii) the thickened panels can serve

as structural and architectural elements (e.g. insulation); (iii) other components such as

actuating systems or electronic equipment can be accommodated with the thickened panels.

The hinges can permit for the deployment of the structure and will transfer loads between

the panels. However, although theoretically appealing, the thickened panels pose problems

since they cannot follow the rigid body kinematics of zero-thickness origami structures. Some

recent research has shown possible realizations for how to create origami structures where

the panels have finite thickness (e.g Hoberman, 2004; Tachi, 2009b; Hoberman, 2010; Tachi,

2011; Zirbel et al., 2013). These methods involve placing the hinges on the ends of the

panels; inserting additional thin elements to permit kinematics of the thickened material,

and designing the global array of panels and folds in a fashion that permits continuous rigid

motion of the system. These methods also sometimes discuss the placement of the actual

hinge connection, this often needs to be considered for the kinematics and also because the

hinges have finite thickness that is in addition to the panel thickness.

The panel-hinge systems can often be constructed with cost effective materials that are

commonly available. We believe that the hinges will need to be constructed with stiff metals

to be able to carry the large forces. Bearings may also be incorporated in the hinges to

allow easy deployment with reduced hinge friction forces. The panels could be constructed
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from plastics, wood, metal, concrete, and a variety of engineered composite materials. Metal,

wood, and plastic prototypes have already been used for practical applications in architecture

and product design (see Section A.1), and there is tremendous potential for innovation of

the panel materiality.

A.2.2 Composite systems

Composite material systems have also been used for manufacturing origami prototypes, and

although these have a potential for large scale application they currently are mostly used

on medium and small scale applications. The systems mostly use some form of sandwiched

structure similar to Fig. A.2 b where stiff material layers are attached to a much more

flexible material. At the fold lines the stiff material is removed and the flexible material can

bend allowing fold rotation. A simple example of this system is the use of stiff panels glued

to a cloth. The cloth allows rotation between the two panels, but the panels are mostly

restrained from moving apart. The panels in these types of systems can be created from a

variety of materials, and depending on the construction method it would also be possible

to accommodate finite thickness in these designs. Kinematic considerations may need to be

updated similarly to those of the panel and hinge systems.

A wide array of traditional and newly developed materials can be used for both the flexible

and the stiff materials. The folds can take advantage of fabrics, polymers, and flexible alloys,

while the panels can use metals, engineered plastics, and corrugated material assemblies.

Peraza-Hernandez et al. (2014) provide a review of different composite material systems

used to create active systems. Zirbel et al. (2013) use Garolite (a type of fiberglass-epoxy

laminate) panels placed on a thin Kapton film that is used as backing to connect the thin

panels. Lee et al. (2013) use acrylic plates and facilitate the folding using a polyimide film.

There is a variety of other methods for these composite systems as well (e.g. Hawkes et al.,

2010; Onal et al., 2011; Ryu et al., 2012; Felton et al., 2014).

A.2.3 Homogeneous material systems

These systems are composed of a single material and the bending takes place by deforming

the same base material that is used throughout the structure. These types of system do not
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necessarily need to take advantage of rigid folding motions, and it is common that the panel

segment will be rather flexible. The bending along fold lines of the homogeneous systems

can be facilitated either by reducing the cross section along the fold line or changing the

mechanical characteristics at that segment.

Reducing the cross section of the material can be achieved in several methods. In typical

corrugated cardboard box manufacturing, it is common to pre-crease or score the material

(compress the material at the fold line to reduce the cross section). This method for folding

thin homogeneous materials has been around for decades and is used in numerous appli-

cations for manufacturing and product packaging. Recently Perego and Giampieri (2006),

Giampieri et al. (2011), Mentrasti et al. (2013b), Mentrasti et al. (2013a), and others have

studied the constitutive relations and behaviors associated with this type of fold creation.

Another common method to encourage bending along a specific fold line is to perforate the

material along the fold line. The perforation method was used for creating the paper pro-

totypes pictured in this document, and can be achieved easily with a variety of roller and

flatbed cutting or punching machines (e.g. Onal et al., 2011). Perforation patterns, meth-

ods, and techniques are also being studied in detail for industrial applications of origami

(e.g. Industrial-Origami, 2014). Etching and physically reducing the section of the material

is also a possible method for prescribing a fold to a specific location. Fig. A.2 c shows

a living hinge where the material is cut down at the fold to allow localized bending and

rotation of the structural elements (e.g. Mraz, 2004; Deng and Chen, 2013). Living hinges

are often made of flexible polymers and can thus facilitate numerous cycles of bending and

deformation. The cross section reduction method, is however typically prone to fatigue and

fracture of the base material. It is often the case that the material experiences irreversible

plastic deformations (e.g. crease lines in most types of paper cannot be removed).

Plastic deformation and micro-fractures along a fold line will reduce the stiffness of the

material and often times the fold will become more flexible over time (perhaps experiencing

a full fracture and failure after some cycles). Prescribing the fold line can also be done in

a similar fashion by creating a localized stress concentration bending the material without

prescribing a fold line by removing material. This can be thought of as bending a piece of

paper without scoring, or etching it initially. This type of fold is more difficult to prescribe

accuratley since its location is more dependent on the global structure geometry and on
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the actuation forces. This type of behavior can also be achieved by applying heat, light,

electric fields or chemicals to obtain local stresses and bending. Stellman et al. (2007); Pique

et al. (2011); Arora et al. (2007) have discussed patterning thin sheets, and applying stress in

specific locations to achieve the folding of thin continuous membranes. This does not require

that the material is etched or perforated prior to manufacture, and simply concentrating

stresses on a line is sufficient to cause the fold to bend. This type of folding can be used

with numerous types of traditional and novel materials including metals, polymers, papers,

cloth and many more (e.g. Corning, 2014). Recently there have even been promising results

in bending and folding of graphene structures (e.g. Cranford et al., 2009; Shenoy and Gracias,

2012; Zhu and Li, 2014).

A.3 Methods for fabrication and deployment

The fabrication and the deployment method could be made different depending on the type

of structure, and could be govered by the scale of the structure. Section A.2 discusses the

materials and systems that can be used for different origami structures, and often times

the type of system, as well as the specific material used are a byproduct of the type of

deployment scheme that is implemented for the system. The methods for fabrication and

deployment are also similarly affected by the scale of the structure and thus not all different

methods are feasible for all scales.

When considering the fabrication of origami structures, there are multiple ways of obtain-

ing the same final result. The hinge and panel systems for example can be assembled in a

folded, unfolded, or in an in-between configuration. It is possible to construct the structure

in a completely flattened case and then proceed with the deployment, or we can begin with

part of the structure and then add on hinges and panels sequentially. Similarly, sandwiched

and layered structures could be constructed using one single sheet for the internal flexible

layer, or they could also be constructed by using the flexible material only at the specific

fold locations. With layered sandwich type systems, it is possible to machine and remove

material layers at the prescribed fold line; in this way, the sandwiched structure could be

manufactured in a fashion similar to that of the homogenous material systems. The differ-

ent papers presented in this literature review discuss numerous techniques, materials and
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methods in which the different type of systems can be manufactured.

In the past several decades additive manufacturing (commonly known as 3D printing) has

become a novel and effective method for creating practical objects (France, 2013; Lipson and

Kurman, 2013). The appeal of additive manufacturing is that the user can create an discrete,

stiff (or flexible), possibly multi-material, 3 dimensional object by only using a machine

with only raw material and computational input. The process does not require any molds,

specific fixtures and can create arbitrary objects. Additive manufacturing has already been

used successfully in structural engineering to print out structures that have been designed

with topology optimization (Zegard, 2014). For the design of origami structures additive

manufacturing has been used in several applications. Deng and Chen (2013) introduces

additive manufacturing integrated with “shrink dinky film” that can be heated to achieve self

actuation. In this process the more stiff panels can be created using additive manufacturing

to achieve a sandwich type system. Waitukaitis et al. (2015) used 3D printing to create

origami patterns interconnected with springs that have multiple stable states. Additive

manufacturing has a large potential for revolutionizing the manufacturing and assembly of

origami structures. Although multi-material manufacturing is still in its early phases it could

be used in constructing the composite type systems. More readily, homogeneous material

systems or components of the other systems can be created using additive manufacturing.

Additive type processes often have the necessary accuracy, and can easily produce unique

patterns.

For large scales, we envision that large forces would need to be applied to the structure,

and thus mostly mechanical sources of energy will be necessary to obtain deployment. For

example we would need to use external cranes or actuators inside of the structure to obtain a

global expansion of the system. These systems may be pre-assembled by simply connecting

panels with hinged elements. Recently advancements in robotics, computer science, and au-

tomation have made it possible to use computer operated robots to fold simple paper origami

patterns (Balkcom and Mason, 2004; Tanaka et al., 2007; Balkcom and Mason, 2008). For

larger scales Epps (2014) has also been able to use robotics to bend thin sheet metal into

architectural forms. These larger robots (similar to those used in the car assembly indus-

try) could pave the future for large scale structural origami fabrication and manufacturing.

Actuation of large systems may also be achieved with vacuumatics where air pressure in a
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double membrane system is used to stiffen the structural fold lines (Tachi et al., 2011).

Ongoing research involving shape memory alloys (SMAs) also has the potential for use

in large structures. Peraza-Hernandez et al. (2013) show how SMAs can be heated along

specific fold lines, and how this can result in relatively large rotations from an initially flat

sheet. Tolley et al. (2014) show how pre-manufactured origami patterns with SMAs can

simply be uniformly heated and can then transition from a flat to a fully deployed state.

SMAs have also been used to facilitate the connections to create folding reprogrammable

sheets (Hawkes et al., 2010).

For medium to small scale structures researchers have taken an interest in applying energy

in non-mechanical forms to achieve the bending along fold lines and global deployment of

the structure. For example Liu et al. (2012) and Ryu et al. (2012) use multi-layered pre-

strained polymers and apply light (and thus heat) along specific fold lines to achieve strain

on one face of the structure and thus obtain folding of the structure. Gracias (2013) further

discusses biochemically responsive materials and possibilities in deploying thin structures

using light, heat, application of electrical current and chemical stimulation. A review paper

by Peraza-Hernandez et al. (2014) provides a detailed literature review on methods for

actuating origami systems. For micro scale structures there has been a variety of methods

to achieve bending and deployment of the structure. For example Birnbaum and Pique

(2011) use laser induced extraplanar propulsion to fold micro scale nanofilms out of plane

to create folded structures. Arora et al. (2007) use ion implantation to induce stress on one

side of a silicon nitride cantilever to cause folding at specific locations of a structure. As

a summary we provide the following incomplete list of methods for deployment of origami

structures:

• Structures deployed using external actuation (e.g. façade panels deployed with a crane).

• Using a system of actuators placed inside of the structure to apply forces.

• Using body and fictitious forces of the structure itself to achieve deployment (e.g.

gravity, centrifugal, or electromagnetic forces).

• Internal volume change (e.g. using the origami as a deployable boom/cylinder or using

vaccumatics).

• Release of internally stored forces (e.g. pre-stressed fold and panel elements).
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• Applying heat, light or using a chemical reaction to cause fold rotation and structural

deployment.

In accordance with structural deployment we also note that with some origami designs

it may be possible to achieve flexible enough systems where only a minimal amount of

energy needs to be applied for the structure to reach a deployed or stowed state. This could

be especially beneficial since only a small deployment mechanism may be needed for the

structural deployment. These types of systems are referred to as zero-stiffness structures

that can have multiple stable configurations and virtually no energy change between the

states.
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APPENDIX B

SEVENTY CROSS-SECTION RECONFIGURATIONS OF A POLYGONAL
ORIGAMI TUBE

This appendix shows the reconfiguration capability of one specific origami polygonal tube.

This tube was briefly presented as an example in Figures 6.1 and 6.18 in Chapter 6. The

initial cross-section and one of the seventy possible configurations are presented in Figure

B.1. The cross-section of the tube has fourteen sides (edges) of which eight have an equal

length. The top and bottom portions of the cross-section each have four translationally

symmetric edges that can be classified as switches (n = 4).

Figure B.1: The reconfigurable polygonal tube with n = 4 switches. (a) The tube and
cross-section shown at a fully extended state. The tube reconfigures into one of the possible
seventy configurations starting from this state. (b) The folding sequence of the tube into
configuration XXXVII where the upper switch assignment is [U:1 1 0 0] and the lower section
assignment is [L:1 0 0 1], both assignments sum to k = 2.

The reconfiguration capabilities of the polygonal tubes are discussed in more detail in

Section 6.5. We used a binary assignment to define the switch direction, and we showed that

the possible upper section assignments followed the binomial coefficient. The upper section

has n switches where the assignment of these switches sum to k and the corresponding lower

section had to have an equivalent sum k. The possible upper section assignments for tubes

with a n = 2, n = 3, and n = 4 are shown in Figure B.2 (a). The number of possible upper

section variations follow Pascal’s triangle (Figure B.2 (b)), and the total number of possible

configurations follow the central binomial coefficient (Figure B.2 (c)). The tube presented in

this appendix has n = 4 switches and can thus reconfigure into 70 different configurations.
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Figure B.2: Variations in reconfiguring polygonal tubes. (a) Possible switch variations for the
upper section only, with n = 2, n = 3, and n = 4 switches. The variable k corresponds to the sum
of the switch assignments. (b) A Pascal’s triangle shows the number of variations for the upper
section of the tube only. This is the binomial coefficient with n representing the rows and k the
columns. (c) The total number of possible cross-section configurations. This is equivalent to the
central binomial coefficient.

The remainder of this Appendix presents the seventy possible cross-section variations.

Figure B.3 shows a summary of all the possible switch assignments for the upper and lower

sections of the tube. The folding sequence and corresponding cross-sections for the seventy

cases are shown in Figures B.4 to B.10. The sum of the switch assignments k is used to

organize the cross-sections: k = 0 is configuration I; k = 4 is configuration II; k = 1 are

configurations III-XVIII (16 cases); k = 3 are configurations XIX-XXXIV (16 cases); and

k = 2 are configurations XXXV-LXX (36 cases).
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Figure B.3: Summary of the upper (U) and lower (L) switch assignments that can be used to
reconfigure the tube. Because there are n = 4 switches, it is possible to obtain 70 different
cross-sectional variations.
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Figure B.4: Folding sequence and cross-section variations I to X for the polygonal tube with four
switches.
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Figure B.5: Folding sequence and cross-section variations XI to XX for the polygonal tube with
four switches.
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Figure B.6: Folding sequence and cross-section variations XXI to XXX for the polygonal tube
with four switches.
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Figure B.7: Folding sequence and cross-section variations XXXI to XL for the polygonal tube
with four switches.
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Figure B.8: Folding sequence and cross-section variations XLI to L for the polygonal tube with
four switches.
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Figure B.9: Folding sequence and cross-section variations LI to LX for the polygonal tube with
four switches.
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Figure B.10: Folding sequence and cross-section variations LXI to LXX for the polygonal tube
with four switches.
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