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Abstract

The objectives of my thesis were to interrogate electrocatalytic mechanisms and develop
new nano-porous catalysts for energy conversion reactions including the oxygen evolution reaction
(OER) and carbon dioxide reduction reaction (CRR). First, 1 examined the oxygen evolution
reaction in basic electrolytes using in situ electrochemical surface stress measurements. Second, |
developed a new electrolyte additive-controlled electrodeposition method for the preparation of
porous films of Ni and NiFe catalysts with high OER activity. Third, | exploited the additive-
controlled electrodeposition method to synthesize Cu and CuAg films with high surface area and

tunable morphology for high activity and selectivity of CRR to ethylene.

In Chapter 1, | provide background information to the electrochemical energy conversion

reaction and lay out the challenges and potential approaches at present in the field.

In Chapter 2, | describe our effort to determine the relationship between changes in the
OER catalyst surface and activity. In situ electrochemical surface stress measurements were
utilized to interrogate oxide formation before and during OER on several common catalysts,
including Ir, Ni, Co, Au, and Pt. The stress measurements report directly on changes in oxidation
state and phase of the electrode material as the potential is varied. Hysteresis observed in the
potential-dependent stress with Ir, Au and Pt electrodes is associated with irreversible composition
and roughness changes in the electrode. The stress data also quantitatively reports on the in-plane
change in strain developing in bonding during oxide oxidation. The magnitude of the surface stress
is nearly identical to that the predicted from bond strains obtained from reported XAS data.
Interestingly, there is a rough linear relationship between the change in stress and the amount of

oxide formed. More importantly, the stress data shows that metals with higher activity exhibit



larger stress and more oxide formation. The origin of this relationship could be explained by

differences in conductivity and porosity of different oxides.

In Chapter 3, | focus on developing a stable and effective OER catalyst using an additive-
controlled electrodeposition. We find that 3,5-diamino-1,2,4-triazole (DAT) acts as a deposition
inhibitor that dramatically changes Ni morphology resulting in black Ni films, a phenomenon
indicative of small particle formation. Ni films electrodeposited with DAT (NiDAT) exhibit much
higher active surface areas with fractal-like behavior. Correspondingly, NiDAT films show a much
larger oxidation wave and higher OER rates compared to the Ni film deposited without the DAT
additive. Co-electrodeposition of Ni and Fe in the presence of DAT (NiFeDAT) is also explored
as Fe is known to increase the OER activity from Ni films. NiFeDAT films are very active toward
OER exhibiting 100 mA/cm? with high stability > 72 hours at 1.50V vs RHE in 1 M NaOH. These
metrics make NiFeDAT among the most active OER electrocatalyst reported to date. Equally
important, the high activity can be tuned to nearly any arbitrary value by altering the amount of

NiFe electrodeposited without film degradation.

In Chapter 4, | present electrochemical measurements that examine the effect of deuteration
on the OER with Ni and Co catalysts, and an effort to identify the rate-determining step (RDS) of
these intricate electrocatalytic reactions involving multiple proton-coupled electron transfer
(PCET) processes. The OER Tafel slope and kinetic isotope effect (KIE) calculated from
electrochemical data shows that both Ni and Co exhibits inverse secondary KIE, which is never
observed before in an electrochemical experiment. These results contribute to a more complete
understanding of the OER mechanism and allow for the future development of improved

nonprecious-metal catalysts.



In Chapter 5, I discuss exploiting the additive-controlled electrodeposition method to
synthesize Cu films with high surface area and tunable morphology for high activity and selectivity
of CRR to ethylene. Electrodeposition of Cu films from plating baths containing DAT (CuDAT)
as an inhibitor exhibit high surface area and high CO2 reduction activities. By changing pH and
deposition current density, the morphologies of the Cu films are varied to exhibit wires, dots, or
amorphous structures. Among these Cu films, the CuDAT-wire samples exhibit the best CO>
reduction activity with a Faradaic efficiency (FE) of the C2H4 product formation reaching 41% at
-0.47 V vs. RHE, a FE for CoHsOH formation reaching 22% at -0.55 V vs. RHE, and a mass

activity for CO2 reduction at -0.65V vs. RHE of ~ 720 A/g.

In Chapter 6, | present our strategy to enhance C2 production from CO2 electroreduction
by doping low Ag contents (<10%) into Cu-wire film. The CuAg-wire catalyst with nanoporous
structure and homogenous mixed of Cu and Ag atoms was fabricated by additive-controlled
electrodeposition method using DAT. The CuAg-wire catalyst exhibits large active surface and
high selectivity of CO2 reduction to C2H4 (~60% Faradaic efficiency - FE) and C2H50H (~25%

FE) at relatively low overpotential (~ -0.7V vs RHE).
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Chapter 1

Introduction

1.1. Renewable energy and energy conversion

Over the past decades, large quantities of greenhouse gas, especially CO», have been
emitted and accumulated into the atmosphere, mostly as a result of human activities involving the
burning of fossil fuels for electricity, heat and transportation. The elevated level of greenhouse gas
in the atmosphere has been contributed to global climate change, including but not limited to global
warming, rising sea levels, and more erratic weather patterns. With increasing pressure to reduce
greenhouse gas emissions, clean renewable energy sources such as wind and solar are attracting
increased attention. The intermittency inherent in these sources means that efficient energy

conversion and energy storage systems must be coupled to energy generation.

Several approaches to convert and store excess electricity from renewable energy to other
forms of energy, such as potential energy (pumped hydro and compressed air) or chemical energy
(batteries and electrolysis), have been proposed. The most common strategies to store energy in
the U.S. are pumped hydro and compressed air, however, these methods are only capable of
discharge over a few days at most and have very specific geographic requirements. Alternatively,
energy storage in an energy-rich molecule is less dependent on geographic location and is more
flexible with respect to discharge requirements. Ha with its high mass specific energy density is
considered to be a promising energy storage molecule that releases energy in fuel cells with only
water as byproduct. H> can be produced via electrochemical splitting of water, which converts

excess electricity from renewable sources into Hz and O and is an attractive way to store energy



in carbon-free H,. The alternative method to both minimize CO; levels and utilize excess
electricity from renewable sources is to capture CO2 and convert it to value-added chemicals or

synthetic fuels.

1.2.  The electrochemical water splitting and oxygen evolution reaction

Electrochemical water splitting comprises two half reactions, the cathodic hydrogen
evolution reaction (HER) at the cathode and the anodic oxygen evolution reaction (OER) at the

anode:
Cathode 2H " +2e > H> Erer (vs RHE) =0V
Anode 4 OH— 2 H20 +4 e + Oz in alkaline Eoer (vs RHE) =1.23 V
or2H0 - 02+4H"+4¢ inacid
The overall voltage Eoveran required for the water splitting reaction is given by:
Eoveral = E° + MHer| + Noer + Mir

where E° is the thermodynamic potential for the water splitting reaction, which is 1.23 V under
standard conditions; nHer and moer are overpotentials for each half-reaction; and nir is the
overpotential due to solution and contact resistances causing ohmic losses in the device. The HER
is a fast two proton-two electron reaction occurring at low overpotentials (ranging from 1-10
mA/cm? at ~ 50 mV)*? and the overpotential arising from ohmic losses can be minimized by
engineering approaches of the cell design. Therefore, the efficiency of the overall reaction scheme
is limited primarily by the OER overpotential and catalyst stability at the anode. The OER is a
slow four proton-four electron reaction with high overpotential requiring a catalyst to facilitate the

reduction. While Ru- and Ir-based catalysts exhibit low OER overpotentials in both acid and
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base,®* they are prohibitively expensive. Alternative OER catalysts in base are non-precious
metals such as Ni, Co and their alloys, since these material are abundant and cheap, with high
corrosion resistance.>” However, Ni and Co catalysts exhibit relatively high overpotentials ranging
from ca. 300 to 400 mV.>® High stability and activity of nonprecious metal catalysts remain

formidable challenges for the OER.

1.3.  The COz2 reduction reaction

There are several methods that can be used to convert CO; to various value-added
chemicals and fuels including photochemical, biochemical, and electrochemical processes.>*! One
promising approach is electrochemical conversion of CO> value-added chemicals, which has
attracted increasing attention for decades due to its potential to facilitate a redox cycle that not
only consumes COy, but also utilizes excess electricity from renewable sources.!?4

In a CO: electrolyzer, CO; is reduced at the cathode while water is oxidized to form oxygen
at the anode. Possible products from the CO> reduction include CO, HCOOH, HCHO, CH30H,
CH4, C2H4, CoHsOH and CsH7OH. The thermodynamic CO- reduction potentials in a pH 7

aqueous solution versus the Normal Hydrogen Electrode (NHE) to these products are as

follows:141°
CO2 +2H" + 2¢° — CO + H20 E°=-0.52V
CO2 + 2H" + 2¢- — HCOOH E°=-0.61V
CO2 + 4H" + 4¢° — HCHO + H20 E°=-0.48V
CO2 + 6H" + 66" — CH30H + H,0 E°=-0.38 V
CO2 + 8H" + 8¢" — CHa + 2H20 E°=-0.24V
2C0O2 + 12H* + 12¢" — C2H4 + 4H20 E°=-0.34V
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2CO2 + 12H" + 12" — C2HsOH +3H,0  E°=-0.33V

3CO2 + 18H" + 18" — C3H;OH +5H,0  E°=-0.32V
Electrocatalysts for the electroreduction of CO- are typically metal-based and are classified
into four main groups.'#® The first group contains metals such as Pt, Ni, Fe and Ti that are not
active catalysts for CO> reduction due to the strong binding and poisoning of the CO
intermediate.’*” The second group contains Pb, Hg, TI, In, Sn, Cd, and Bi which are active
primarily for the production of formic acid or formate. The third group containing Ag, Au, Zn, Pd,
and Ga primarily produces CO as the reduction product.1*!8 Lastly, the most interesting group
contains Cu, which is the only known metal catalyst able to generate a variety of products,
particularly hydrocarbons and oxygenates such as methane, ethylene and ethanol.1314.16.19-28 For
large scale implementation of the CO: electrolyzer, high energy efficiencies, reaction rates,

product selectivity, and stability must be achieved.

1.4.  Additive controlled electrodeposition for nano porous metal film

As mentioned above, in order to commercialize electrochemical energy conversion, a key
challenge is developing electrocatalysts with low cost, high activity, high selectivity and high
stability. Many studies have focused on tuning reactivity and selectivity by controlling the
morphology and composition of the catalysts.!%232%33 Fabrication of nanoparticles, for example,
is one well-known approach to increase the number of electrocatalytic active sites. Nanoparticles
both increase the activity and decrease the material usage. However, nanoparticles are difficult to
fabricate and require a binder such as Nafion when utilized in a real electrolyzer. These ‘glued’

nanoparticles exhibit poor stability, particularly when accompanied by substantial gas and/or



product evolution.3* 3> The presence of binders can also decrease contact sites and conductivity of
the electrode leading to diminished reactivity.3®

Electrodeposition is a conventional deposition technique to prepare smooth and bright
polycrystalline metal films that do not require binders.®” Additives in the electrodeposition bath
can affect the roughness and morphology of electrode surface and thus play an important role in
determining the catalytic activity of the electrodeposited films. Many additives have been studied,
mostly to accelerate metal deposition for different applications such as corrosion protection,
decoration, and electrical circuit preparation.®” In this work, we introduce new electrodeposition
class where additives act as inhibitor resulting in the formation of nanoporous metal films for

application in electrocatalysis.

The mechanism by which additives, particularly 3,5-diamino-1,2,4-triazole (DAT) in this
work, modify the electrodeposition process to yield the rough and porous metal surfaces can be
explained by invoking a diffusion-limited aggregation (DLA) process in which the material
accretion onto the surface is limited by diffusion and deposition occurs preferentially on
protuberances.*®*’ One way to produce porous structures via electrodeposition with DLA is using
high voltage (4 V to 20 V) to control diffusion.*! However, this techniques is limited by stability
of the film, especially at high loading. In this work, DAT binds to the substrate surface, reducing
the number of nucleation sites for metal deposition, thus initiating roughness. These rough areas
experience a high local current density and grow exponentially, while other areas are still DAT-
covered and diffusion inhibited. The deposit acquires a nanoporous structure in the presence of

DAT even without high voltage.

The additive-controlled electrodeposited film with porous structure exhibits a fractal-like

structure, which has a power-law relationship between the number of active or surface sites and



the number of deposited particles. The effect of DAT on the morphology of the deposit was
essentially independent of substrate and can be applied to the electrodeposition of various metals
such as Ni, Fe, Cu, and their alloys.** These features open a wide range of catalytic applications
for this type of electrodeposited film where reactivity increases exponentially with material

loading.
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Chapter 2

In-Situ Electrochemical Stress Measurements Examining the Oxygen Evolution Reaction

in Basic Electrolytes

Reprinted with permission from Hoang, T. T. H.; Cohen, Y.; Gewirth, A. A. Analytical Chemistry

2014, 86 (22), 11290-11297.Copyright 2014 American Chemical Society.

2.1. Introduction

The electrochemical splitting of water using electricity from renewable sources offers an
attractive way to provide a carbon free source of hydrogen.!” Electrochemical water splitting
comprises two half reactions: the anodic oxygen evolution reaction (OER, 4OH— 2H,0 + 4¢” +
O in alkaline or 2 H2O — O>+4 H" + 4 ¢ in acid), and the cathodic hydrogen evolution reaction
(HER, 2 H" + 2 ¢ — H)). The efficiency of the overall reaction is limited primarily by the

overpotential of the OER and stability of electrode material.*

In acid electrolyte, Ru and Ir based materials are among the best anodes with low
overpotentials.” However, the high cost and poor long-term stability of these precious metal
catalysts are impediments to their widespread application. In alkaline electrolyte, non-precious
metals such as Ni, Co, and their alloys are used as the electrocatalysts for OER, since these
materials are abundant and relatively cheap, with high corrosion resistance in alkaline solution.%*
However, overpotentials for the OER using Ni and Co range from ca. 300 to 400 mV relative to

the thermodynamic value of 1.23 V vs. RHE.*¢8
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An important challenge for the OER is to discover and develop catalysts that can reduce
the overpotential to at least the thermoneutral potential of 1.48 V vs. RHE.2? Moreover, the catalyst
must be cheap and stable at practical current densities (at least 10 mA/cm?). Real-world
thermodynamic efficiencies for water splitting are only ca. 75% with currently available Ni-based
catalysts.? However, catalyst design to eliminate the high OER overpotential is still limited because

insight into the OER mechanism is lacking.

Mechanistic studies of the OER focus on the electrode materials, which are now known to
be surface oxides and oxyhydroxides formed on the metal prior to the OER.!® OER mechanism
and activity depends on the composition and oxidation state of the oxide layer. Density functional
theory (DFT) studies predicted that the binding energy of surface oxygen species such as *O, *OH,
*OOH is the activity controlling parameter.>*!° Additionally, compositionally identical oxides
may give rise to disparate electrochemical activities, with strong dependencies found for the
thickness, bond distance, morphology and interaction with anions of the oxide layer.%!! In order to
understand the OER mechanism on oxidized metals, it is important to interrogate the nature of the

oxide layers formed due to phase changes and oxidation processes prior to and during the OER.

Extensive voltammetric studies of the OER on metal and oxide electrodes have been
reported. >'>!3 Film oxidation state and compositional and structural changes upon redox cycling
have been studied using a variety of techniques, including Raman,'*!7 XPS,'¥2! XRD,*** and
XAS.?*?¢ Morphological examination of oxidized metals has been accomplished by using SEM
and TEM,?*?” STM,?® ellipsometry,?®*° and AFM>"3? techniques. Evolution of the oxide lattice
during redox processes has been studied EQCM.**3¢ A direct in situ method to interrogate the

oxide film during potential cycling, along with its evolution over time and multiple
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electrochemical cycles would help provide a more comprehensive description of the oxide before

and during the OER process.

In situ electrochemical surface stress measurements are a useful technique to investigate
surface interactions and electrode evolution during electrochemical processes.’’*#3%4! The
technique has also been applied to study metal electrode oxidation and reduction including the
stress-potential behavior of Pt and Au electrodes during oxygen reduction,*? the changes in surface
stress of Pt electrodes in acidic and alkaline solutions,** and the surface stress-charge response of

a Pt electrode in the double layer region,* and during hydrogen adsorption/desorption and surface

oxidation/reduction.*’

In this section, we use in situ electrochemical stress measurements to interrogate oxide
evolution before and during the OER in several common electrodes, including those exhibiting
high activity for the OER such as Ir, Ni, and Co, along with those exhibiting much less activity,
such as Au and Pt. The stress measurements report on the state of the electrode during the OER,

along with electrode stability.

2.2. Experimental section

Cantilever fabrication: Au cantilevers for stress measurements were fabricated from glass
microscope cover-slips (Gold Seal No.1, 150 um thick) modified on one side by electron beam
deposition of 20 nm Ti followed by 100 nm Au. Pt cantilevers were fabricated from glass
microscope cover-slips modified on one side by DC magnetron sputter deposition of 20 nm Ti
followed by 200 nm Pt. The Ni, Co, and Ir cantilevers were prepared by electrodeposition of 300

nm of the appropriate metal onto Au cantilevers. The Ni, Co, and Ir cantilevers were prepared by
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electrodeposition of 300 nm of the appropriate metal onto Au cantilevers. The bath compositions
were as follows: (a) Ni plating bath: 199 g/L NiSO.-6H20, 25 g/L H3BOs, and 1 g/L Saccharin;*
(b) Co plating bath: 213 g/L CoSO4-7H20, 25 g/L H3BO3;* (c) Ir plating bath: 0.5 M H,SOa, and
1 mM NazlrCls.*® Ni and Co were deposited galvanostatically at current density of 4.33 mA/cm?2,
Ir was deposited potentiostatically at constant potential of 0.2 V vs. Ag/AgCl. Cantilever with
dimensions approximately 30 x 4 mm were then cut from the modified cover-slips. All cantilevers
were rinsed and stored in Milli-Q water (>18 MQ cm) until used. The Au and Pt cantilever were

annealed with a Hz flame prior to use.*’

In-Situ electrochemical stress measurements: In situ stress data was collected by using an
electrochemical cell and optical stress measurement setup described previously.*”* Surface stress
was measured using the bending-beam method and the cantilever curvature was calculated using
Stoney’s equation®. Cyclic voltammetry (CV) was conducted using the glass/metal cantilever as
the working electrode, a Pt mesh counter electrode, and an Ag/AgCl reference electrode. Potentials
are reported with respect to RHE. CV was measured at room temperature in Ar saturated 1 M
NaOH (>99%, Sigma) at 10 mV/s. Both the surface stress changes and the electrochemical data
was recorded using a home-built program written using LabVIEW (National Instruments). The
refractive index of 1 M NaOH was measured on a Refracto 30GS (Mettler Toledo) and were found

to be 1.3439+0.0001.

Nanoindentation and Young’s modulus calculation: Ni(OH). and Co(OH). samples for
nanoindentation were prepared on microscope glass slide by using the following steps. First, a
glass microscope slide was modified on one side by electron beam deposition of 20 nm Ti followed
by 150 nm Au. 300 nm Ni or Co was electrodeposited on the Au surface to provide better adhesion

for the Ni(OH). or Co(OH). overlayer. This step also helps to imitate the effect of the metal
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underlayer on the hydroxide modulus that may be present in the stress measurement samples. Ca.
1 um Ni(OH)2 was electrodeposited on Ni at 0.9 V vs Ag/AgCl in 0.01M of Ni(NOz). Ca. 1 um
Co(OH). was electrodeposited on Co at 1.0 V vs Ag/AgCl in 0.01M of Co(NOz3),. After
preparation, samples were rinsed with Milli-Q water (>18 MQ cm™) and stored in 1M NaOH until
the measurement. Samples were maintained wet during the measurement. Dry samples were found
to flake and were unstable.

A Hysitron T1 950 Tribolndenter was used to perform nanoindentation tests to calculate
the Young’s modulus of Ni(OH), and Co(OH).. A three-sided pyramidal diamond (Berkovich)
tip was used for the indentation. The applied peak load was 3000 - 10000 puN. The nanoindenter
monitors and records the load and displacement of the indenter during indentation. Young’s
modulus is calculated from the load-displacement curves by the following equations:

Unloading stiffness (S) was obtained from the slope of unloading part in load (P)-
displacement (h) curve by the equation:

dP

S=%

Reduced Young’s modulus can be calculated from stiffness (S) by the equation:

E_SJﬁ
T 2BNA

Where B is a constant that depends on the geometry of the indenter, f=1.034 for a Berkovich

indenter. A is the projected contact area of the indenter. >

E: is the reduced Young’s modulus, which accounts the fact that elastic deformation occurs

in both the sample and the indenter. E; is related to Young’s modulus (E) of sample by the equation:

1 1-9% 1-97

+
E, E E;
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Where ¥ is Poisson’s ratio of the sample and 9; = 0.07 is Poisson’s ratio of the tip. For

diamond tip, Young’s modulus E; =1141 GPa.

Oxidation charge and oxide thickness calculation: Oxidation charge (Q) of electrode
surface is equal to integrated oxidation current divided by scan rate (10mV/s). Thickness (s) of
oxyhydroxide films of Ni and Co electrode are calculated by the following equation:

oM
ST hFdA

Where Q is oxidation charge (C); M is molecular weight of the oxyhydroxide (g/mol), n is the
number of electrons transfer, F is Faraday constant (96500 C/mol), A is electrode area (cm?), and
d is density of the oxide product (g.cm®) (density of B-NiOOH is 4.68 g/cm?®, and density of

CoOOH is 3.60 g/cm?3).

2.3.  Results
2.3.1. OER and stress from Ni electrodes

Figure 2.1a shows CV obtained from a Ni(poly) electrode in 1 M NaOH, cycled between
0.55Vand 1.60 V vs. RHE. After immersion in the alkaline solution, the Ni metal is spontaneously
oxidized to Ni(OH),.22-! Ni(OH), is oxidized to form NiOOH at 1.4 V on the anodic sweep. OER
occurs at ca. 1.5 V. Reduction of the NiIOOH film to Ni(OH)> occurs at 1.3 V on the cathodic
sweep. Two features are observed in the reduction, which are associated with y- and B-NiOOH,
from positive to negative potentials, respectively. This voltammetry is identical with that reported

previously. 323
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Figure 2.1. (a) CV of Ni(poly) in 1 M NaOH at 10 mV/s (b) corresponding in situ stress data of

Ni and (c) first derivative of surface stress change with respect to the surface potential.

Figure 2.1b shows the corresponding surface stress changes occurring during the
voltammetry. The stress becomes tensile as the potential is swept to more anodic values. The
increasing tensile stress between 0.6 V and 1.3 V is associated with changes in the Ni(OH): film.
At 0.6 V, 0-Ni(OH); exhibits a distorted rhombic structure with unit cell parameters ap = 5.42 A
and co = 8.05 A.2>%* At higher potential the a-Ni(OH), converts partially to hexagonal B-Ni(OH),

3336 with ap = 3.13 A and co = 4.59 A .?*>* The conversion to the denser B-Ni(OH); is the origin of

the tensile stress observed.

Figure 2.1b shows that the rate of increase in the tensile stress accelerates from 1.3 Vto 1.5V,
when Ni(OH): is oxidized to form NiOOH. Both y and - NiOOH has ao = 2.82 A, smaller than

that found in the Ni(OH)> form and the conversion between the two is the origin of the tensile
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stress.>>>* In the region where the OER occurs (above 1.5 V) the tensile stress continues to
increase, albeit at rates slower than found in the previous region. The B—~NiOOH may convert to
y—NiOOH in this region,>* but they have the same ao- 2.82 A, thus no change in stress due to this
phenomenon is observed. As the potential is cycled back to 0.55 V the film converts back to
Ni(OH) and the stress returns to its original value. The lack of hysteresis in the stress at the and
of each cycle means that the film has fully converted back to its original Ni(OH)> phases consistent

with prior work.282%31:35,

The 1% derivative of the stress with respect to the potential (Figure 2.1¢) mimics the
voltammetry shown in Figure 21a. The largest change in slope, between 1.3 and 1.5 V on the
anodic sweep, and 1.4 V and 1.2 V on the cathodic sweep are associated with the reversible -

Ni(OH)2 conversion to NiOOH.

2.3.2. OER and stress from Co electrodes

Figure 2.2a shows CV obtained from a Co(poly) electrode in 1 M NaOH, cycled between
0.3 V and 1.60 V vs. RHE. After immersion in the alkaline solution, the Co metal is oxidized to
form Co(OH): film on the electrode surface, albeit at a rate slower than that found for Ni.!®37 The
CV shows three anodic features. The large peak at 0.87 V is associated with the oxidation of
Co(OH)2 to CoOOH."*-*® The broad oxidation region from 1.0 V to 1.3 V with a small peak at 1.11
V is associated with deeper oxidation of Co(OH), and transformations between different Co(IlI)
oxides.’®> The peak at 1.43 V is attributed to the oxidation of Co(Ill)-based oxides to Co(IV)
species. #6961 OER occurs at ca. 1.5 V. On the cathodic sweep, three reduction peaks observed at

142 V, 1.10 V and ca. 0.7 V are associated with reduction of Co(IV) species to Co(IIl),
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transformations between different Co(IIl) oxides, and reduction of CoOOH to Co(OH),

respectively. This CV is similar to those reported.®!324
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Figure 2.2. (a) CV of Co(poly) in 1M NaOH at 10 mV/s (b) corresponding in situ stress data of

Co and (c) first derivative of surface stress change with respect to the surface potential.

The first cycle of Co in base®® shows a peak at 1.1 V which evolves over time to yield the
voltammetry shown in Figure 2.2a. EXAFS?* showed this wave was associated with changes in
Co-Co distances which were different on the first cycle relative to the second. Consequently, the
voltammetry and stress reported here is for the fourth cycle. Figure 2.2b shows the corresponding
surface stress changes. In general, the stress becomes tensile as the potential is swept to more
anodic values. The increasing tensile stress between 0.6 V and 1.0 V is associated with the
oxidation of Co(OH), to CoOOH. Co(OH), exhibits a Co-O distance of 2.09 A and a Co-Co
distance of 3.17 A. CoOOH, on the other hand, exhibits a Co-O distance of 1.92 A and a Co-Co

distance of 2.85 A, which are smaller than that found in Co(OH).2!*>?* Figure 2.2b also shows
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that the rate of tensile stress change decreases (i.e. exhibits smaller slope) between 1.0 V and 1.3
V, where deeper oxidation of Co(OH)> to COOH and transformations between different Co(III)
oxides take place. CoOOOH could change to C0203, which has Co-O distance of 1.90 A, and Co-
Co of 2.64 A,%% smaller than that found in the CoOOH form. The conversion between the two is
the origin of the tensile stress. From 1.3 V to 1.5 V, where Co(IlI)-based oxides (mostly CoOOH)
are oxidized to Co(IV) species, the tensile stress continues to increase, but with a lower rate. There
are suggestions that the Co(IV) species present in this potential region.'*>*® The loss of hydrogen
from CoOOH to form CoO> could be the origin of the tensile stress. The three different regions are

clearly seen in the derivative in Fig. 2c.

In OER region (ca. 1.5 V), the stress is potential independent, suggesting that further film
transformation does not occur. As cycling back to 0.3 V, the tensile strain is removed, the film
converts back to Co(OH): and the stress returns to its original value. The lack of hysteresis in the
stress means that the film has fully converted back to its original Co(OH), phases.?* We note,
however, that the path taken by the stress in the anodic sweep differs from that taken in the cathodic
sweep, in contrast to the Ni case. The origin of this behavior is likely related to the hysteresis in

the cathodic and anodic waves (at ca. 0.8V) associated with Co(OH). oxidation.

Figure 2.2¢ reports the first derivative of the stress with respect to the applied potential.
The three oxidation features in the CV appear as steps in the derivative of the stress. The largest
change in slope, between 0.6 V and 1V, is associated with the reversible Co(OH)2 conversion to
CoOOH. The second change in slope, between 1 V and 1.3 V, is associated with transformations
between different Co(III) oxides. And the last change, between 1.3 V and 1.5V, is associated with

the oxidation to Co(IV). 30
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2.3.3. OER and stress from Ir electrodes
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Figure 2.3. (a) CV of Ir(poly) in 1M NaOH at 10 mV/s (b) corresponding in situ stress data of Ir

and (c) first derivative of surface stress change with respect to the surface potential.

Figure 2.3a shows CV obtained from a Ir(poly) electrode immersed in 1 M NaOH and
cycled between -0.1 V and 1.55 V vs. RHE. In the anodic sweep, hydrogen desorption from the Ir
surface occurs between -0.1 V and 0.3 V. The double layer region starts at 0.3 V. Above 0.4 V, the
voltammetry shows an ill-defined wave, which is associated oxidation of Ir. From 0.4 V t0 0.7 V,
oxygen is chemisorbed on Ir to form Ir(OH)3.!%** From 0.7 V to 1.2 V, oxidation of Ir principally
and Ir(OH)s; secondarily to Ir(IV) takes place.>* Above 1.2 V, further oxidation to Ir(IV) and Ir(V)
along with nascent oxygen evolution causes a rise in current density.'> OER occurs at 1.46 V. In
the cathodic sweep, the CV also shows a series of ill-defined waves associated with Ir oxide
reduction. In particular, reductions are observed for Ir(V) to Ir(IV) (ca. 1.4 V), for Ir(IV) to Ir(III)

(ca. 0.9 V), and for Ir(IIl) to Ir metal (between 0.8 V and 0.2 V). From 0.2 V to -0.05 V, the
20



voltammetry exhibits a large peak associated with hydrogen adsorption on the Ir surface, during
which continued reduction of Ir(IIl) to Ir also occurs. Hydrogen evolution occurs at -0.05 V. This
voltammetry is similar to that reported previously.!>?*3%%* We note that Ir voltammetry is a
sensitive to cycle history, with pronounced peaks associated with Ir(IV) formation found only after

extended high rate cycling in dilute solution.%*>

Figure 2.3b shows the corresponding surface stress changes occurring during the
voltammetry. In contrast to the surface stress exhibited by both Co and Ni, the stress is generally
compressive during the anodic sweep. The Ir surface exhibits four activity regions. First, the stress
is tensile as the potential is swept from -0.1 V to 0.3 V. This tensile stress is assigned to surface
contraction resulting from hydrogen removal from Ir surface.'? At ca. 0.3 V, the stress abruptly
becomes compressive because of Ir oxidation. While the voltammetry in the Co and Ni cases is
consistent with a well-defined change to different metal oxidation states (corresponding to
dehydrogenation of the initially hydrous Ni or Co material), the changes here occur as a result of
oxidation of the zero valent Ir metal. The compressive stress observed between 0.3 V and 0.8 V is
associated with the surface expansion during oxidation of Ir metal to [r(OH)3. Between 0.8 V and
1.2V, the stress remains compressive, which is associated with the oxidation of Ir metal to Ir(IV)
(the species could be IrO(OH), or IrO, '?). Above 1.2 V, the compressive stress continues to
increase, albeit at rates slower than found in the previous region, associated with continued
oxidation of the Ir film. The continuous increasing in compressive stress due to the continuous
oxidation of Ir metal to Ir oxides is consistent with the continuous increase in Ir electrode mass

studied by EQCM previously.>*

When the potential is cycled back to negative values, the stress returns back to its original

value, but not via the same path as during the anodic sweep. Initially, the stress is compressive as
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the potential is swept from 1.55 V to 0.8 V. This compressive stress could be explained by the
addition of hydrogen to IrO(OH); and/or IrO2 to form Ir(OH)3. At 0.8 V on the cathodic sweep, the
stress turns from compressive to tensile, which is associated with the removal of oxygen when
Ir(OH); is reduced to Ir metal. The stress remains tensile with a constant slope until ca. 0.2 V when
Ir(IIT) reduction and hydrogen chemisorption occur simultaneously. The Ir(III) reduction (causing
surface contraction) competes with the hydrogen adsorptionon Ir surface (causing surface
expansion). Thus, the rate of tensile stress starts decreasing at 0.2 V and the stress turns
compressive at 0.1 V - the peak of hydrogen adsorption. After each cycle, the stress returns to
almost the same value, which means that the film has mostly been converted back to Ir metal. A
small drift after each cycle was observed at -0.1 V and could be due to limited dissolution of Ir

oxides which was reported previously.>33-3*

The first derivative of the stress with respect to the applied potential (Fig. 3¢) mimics the

voltammetry shown in Fig. 3a.

2.3.4. OER and stress from Au electrodes

As the potential is cycled back to 0.3 V, the film is reduced and Au metal is recovered. The
stress becomes more tensile as the potential is swept to more cathodic values, but in contrast to the
Ni, Co, and Ir cases, it does not return to the original value. Initially, from 1.6 V to 1.2V, the stress
is slightly tensile which may be a consequence of place exchange - known to occur in this region.®¢
However, the lack of current in the voltammetry excludes Faradaic processes. Between 1.2 V and
1.0 V, Au(Ill) is reduced to AuOH and the tensile stress increase accelerates. The removal of
oxygen and/or hydroxide from the Au oxide layer is the origin of this tensile stress. Between 1.0

V and 0.3 V, reduction of AuOH to Au occurs. The removal of surface hydroxide should yield
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tensile stress on the electrode. Interestingly, this tensile stress is not observed; instead, the stress
becomes slightly compressive. This compressive stress could be the result of Au oxide dissolution
during Au hydroxide reduction, follow Au oxidation peak.®”-*® The dissolution causes a rougher
Au surface. Stronger absorption of ions on this roughened Au relative to the smoother surface prior

to oxidation would be the origin of compressive stress at 1.0 V to 0.3 V.
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Figure 2.4. (a) CV of Au(poly) in 1 M NaOH at 10 mV/s (b) corresponding in situ stress data of

Au and (c) first derivative of surface stress change with respect to the surface potential.

Figure 2.4c reports the first derivative of the stress with respect to the applied potential.
The largest change in slope, between 1.0 and 1.2 V on the anodic and cathodic sweep is associated

with the reversible AuOH conversion to Au(OH)3 and mimics the voltammetry shown in Figure

2.4a.
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2.3.5. OER and stress from Pt electrodes
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Figure 2.5. (a) CV of Pt(poly) in 1M NaOH at 10 mV/s (b) corresponding in situ stress data of Pt

and (c) first derivative of surface stress change with respect to the surface potential.

Figure 2.5a shows CV obtained from a Pt(poly) electrode 1 M NaOH and cycled between
0.4 Vand 1.6 V vs. RHE. The CV shows OH™ chemisorption on Pt at ca. 0.7 V. The main oxidation
peak occurs at ca. 0.9 V. This peak is followed by a current plateau which extends up to OER at
ca. 1.6 V. The cathodic peak at 0.80 V and 0.66 V is associated with reduction of the Pt oxides film
to Pt, and reduction of the oxygen generated during the OER is reduced The voltammetry is similar

to that reported previously.*%7

Figure 2.5b shows the corresponding surface stress changes of Pt occurring during the
voltammetry. Generally, the stress becomes compressive as the potential is swept to more anodic

values, which is associated with Pt oxidation. The adsorption of OH- in the prepeak region and the
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addition of oxygen and hydrogen into the Pt adlayer is the origin of this compressive stress. As the
potential is cycled back to 0.4 V, the compressive strain is removed, the film converts back to Pt
and the stress returns to its original value. The lack of hysteresis in the stress means that the film

has fully converted back to its original Pt.

Figure 2.5¢ reports the first derivative of the stress with respect to the applied potential,
which mimics the voltammetry (Figure 2.5a). Two derivative peaks at ca. 0.8 V (anodic) and ca.

0.6 V (cathodic) are associated with the reversible Pt redox.

2.3.6. Evolution of stress after cycling of Ir

The stress observed for Ni and Co was generally invariant with cycle number. However,
Pt, Au, and Ir exhibited evolution of the stress with cycling. Figure 2.6a shows CV obtained from
a Ir(poly) electrode in 1 M NaOH and cycled between 0.3 V (which is more anodic than the Ir
hydrogen adsorption region) and 1.60 V vs. RHE (where OER occurs). During the 10 cycles
(Figure 2.6a), the OER current drops by 40% and the oxide reduction peak intensity at 0.4 V loses
60%. The change in these peaks with cycle number has previously been associated with surface
deactivation by strong anodization in the OER region resulting in surface corrosion and loss of

material.®*
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Figure 2.6. a) CV of Ir in 1M NaOH at 10 mV/s from 0.3 V to 1.5V, (b) corresponding in situ

stress data of Ir.

The charge passed reducing the oxide film (Q.) is only 68% of the oxidation charge (Q.)
in the first cycle, and gradually increases to 97% during the 10" cycle. A similar effect has been
reported by Burke et al** where the ratio Q./Q, is approximately 1:2 and decreases in subsequent
cycling to values approaching 1:1. The ratio of Q./Qa < 1 suggests that some oxides are retained
on the surface, even at negative potentials. The irreversibility in oxidation and reduction of the Ir
is associated with slow migration of oxygen and hydroxide through a thick oxide film. On the other
hand, the ratio Q./Q. approaching 1:1 after cycling suggests that redox of the Ir oxide film (after
cycling Ir) is more reversible than Iridium. This effect is associated with migration of hydrogen

into and out of the oxide film, which is more likely to be faster.

Figure 2.6b shows the corresponding surface stress changes of Ir occurring during the
voltammetry. During the first cycle, the stress is similar to that reported above during the OER —

the stress becomes compressive with anodic potential sweep. With additional cycling, the stress at
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1.5 V slightly becomes more tensile, which could be explained by surface corrosion in the OER
region.%* The stress value at more cathodic potentials becomes more compressive in subsequent
cycles, which could be explained by the accumulation of Ir oxides on the electrode surface. Ir(OH)3

is not fully converted back to Ir at 0.3 V.3347!

After 10 cycles, the potential-dependent stress observed for the Ir electrode has evolved to
exhibit a slope opposite to its initial value. The tensile stress on the anodic sweep, which is
observed clearly after the 10" cycle, is associated with oxidation of Ir(OH); — now present at
cathodic potentials on the electrode surface — to IrO(OH), and/or IrO,. EXAFS measurements on
Ir(OH); films showed that the Ir-O and Ir-Ir distances decreased about 0.1 A when the surface is
oxidized from 0.4 V to 1.5 V*>?° As with the Co and Ni cases, the oxidation of Ir(OH)s to denser
oxides is the origin of the tensile stress observed. As the potential is cycled back to 0.3 V, the
tensile strain is removed, the film converts back to Ir(OH)s leading to compressive stress through

the cathodic sweep.

This stress evolution suggests that redox cycling of the Ir electrode between 0.6 V and 0.5
V, respectively, is irreversible. During the first cycle, the stress features are associated with
oxidation of Ir(0). After 10 cycles, the stress features are associated with oxidation of a Ir(OH);3
film. The rate of change in the stress after each cycle becomes smaller and smaller. Since the anodic
and cathodic stress sweeps of Ir(OH)3 film follows the same path, we suggest that electrochemical

reaction of Ir(OH); film is reversible.> ">
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2.3.7. Evolution of stress after cycling of Au electrode
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Figure 2.7. a) CV of Au(poly) in 1M NaOH at 10 mV/s from 0.3 V to 1.5 V (b) in situ stress data

of Au in 1M NaOH.

Figure 2.7a shows CV obtained from an Au(poly) electrode in 1 M NaOH and cycled
between 0.3V and 1.65 V vs. RHE after 11 full cycles. Figure 2.7b shows the corresponding surface
stress changes of Au occurring during the voltammetry. The shape and magnitude of stress of single
cycle is similar to that shown in Figure 2.4. The stress becomes more compressive in subsequent
cycles. Two possibilities could contribute to this compressive evolution. The first cause is place
exchange of oxygen atoms from surface to sub-surface positions.®”-”> Those sub-surface oxygen
atoms cannot be removed when potential is swept back to more negative values. With increased
cycling there would then be increased oxygen diffusion into the bulk of the Au electrode, leading
to more compressive stress. The second possible cause is dissolution of Au oxides at high
potentials following surface oxidation.®”%® In this case increased cycling leads to a rougher surface

which then leads to increased anion absorption which in turn leads to development of more
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compressive stress. Increasing roughness of the Au surface was estimated by analyzing the
evolution of oxide stripping in the Au voltammetry. We found that the cathodic peak feature at 1.1

V increases by 10% of its initial current density.

2.3.8. Evolution of stress after cycling Pt electrodes
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Figure 2.8. a) CV of Pt(poly) in I M NaOH at 10 mV/s from 0.3 V to 1.5 V (b) in situ stress data

of Pt in 1M NaOH.

Figure 2.8a shows CV obtained from a Pt(poly) electrode in 1 M NaOH and cycled between
0.3 Vand 1.65 V vs. RHE for 10 full cycles. The anodic sweep shows hydrogen desorption between
0 V and 0.4 V, the double layer region between 0.4 V and 0.6 V, OH™ chemisorption at ca. 0.7 V,
Pt oxidation at ca. 0.9 V, and OER at above 1.6 V. The cathodic sweep shows oxide stripping
merging with oxygen reduction between 0.9 to 0.5 V, hydrogen absorption associated features

below 0.3 V, and hydrogen evolution at 0 V.
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Figure 2.8b shows the corresponding surface stress changes from Pt occurring during the
voltammetry. The 1% cycle starts at ca. 0.4 V in the double layer region, and scans to the OER
region. The stress during the 1% cycle is similar to that shown in Figure 2.5. The stress exhibits a
compressive change during Pt oxidation, and returns to more tensile values during the reduction
of Pt oxides, as explained in Section 3.5. In the double layer region, the stress changes little. In the
potential range between 0.2 V to 0.0 V during the cathodic sweep, the stress abruptly becomes
more compressive. This compressive stress is associated with adsorption of upd H" and H>
evolution, in which newly generated H> species on the Pt surface repel each other. When potential
is cycled back to more positive potentials, the stress abruptly becomes tensile again. This tensile

stress is assigned to surface contraction resulting from Ho> release.

Interestingly, the stress after one cycle does not come back to its original value but rather
becomes more compressive in subsequent cycles. Two possible reasons to explain this compressive

7476 and/or irreversibly adsorbed hydrogen on the Pt

evolution are place-exchanged oxygen
surface.”” We note that if the potential reversal occurs more positive of the hydrogen region, then
the stress is reversible upon cycling as shown in Figure 2.5. Therefore, the compressive evolution
of stress shown in Figure 2.8b is not associated with Pt surface oxidation and is likely not explained
by the place exchange mechanism. On the other hand, Figure 2.8b shows that the compressive
stress resulting from H»> adsorption does not return even when cycling the potential up to OER.
This strongly suggests that hydrogen adsorption/desorption occurring at potentials more negative
than the double layer region (< 0.4 V) is irreversible, and some H» remains on Pt surface even at
high positive potential. Hence, residual H> — possibly subsurface — is the main origin of

compressive evolution of Pt after cycling. The compressive difference in stress of the 1% and the

2™ cycle is largely due to a large number of available Pt sites for H, absorption. The difference
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between 2 consecutive cycles becomes smaller as the number of cycle increases and becomes
negligible after 8 cycles. The stress of cycle 8 - 10 are identical (Figure 2.8b), suggesting that H»
adsorption reaches critical coverage on the Pt surface. However, the voltammetry does not evolve

with stress, suggesting that the surface properties of Pt are unaffected.”®8°

Figure 2.8b also shows that in the 1% cycle, the cathodic stress is more compressive than
the anodic stress. This data agrees with that shown in Figure 2.5b when Pt is cycled between the
double layer region and OER. This difference in cathodic and anodic stress could be explained by
surface repulsion caused by place-exchanged oxygen (Oecx), and/or adsorption of Oz (O2-ad)
generated at OER on the Pt surface. Those strains release when potential is swept back to the
double layer region. Thus the stress returns back to its original value, as seen the crossing at ca.
0.5 V in Figure 2.8 and Figure 2.5. From the 2™ cycle, there is no large gap in stress between the
anodic and cathodic sweeps (between 0.5 V and 1.5 V), as seen in the 1% cycle. Cathodic and

anodic stress here are identical and overlapped.

In another words, after H» is generated and adsobed for the first time, no evidence of Oex,
and/or O»-a4 could be found in the oxygen region. This result suggests that residual H> blocks Oex
and/or Oz-aq from happening on the Pt electrode. This result might also suggest that two processes
with opposite effects (H> desorption causing tensile stress, and Oex and/or Oz..4 causing
compressive stress) occur at the same time, resulting in no net change in stress. . However, if the
exchange between H> and Oex or Ozaq occurs, differences in size of these species should cause

some change in the measured stress.
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2.4. Discussion

The data presented above show that each electrode studied is dynamic, with a variety of
different processes occurring during redox cycling. The derivative of the stress with respect to
potential generally correlates well with the voltammetry, and shows that there are no stress
changes during the OER itself, demonstrating that the oxidation state of the electrode material

present just prior to the OER is maintained during the OER.

Long term cycling studies show that some of the electrodes studied here are dynamic.
While Ni and Co exhibit reversible stress-potential behavior, such is not true for Pt, Au, or Ir,
where the stress develops with time. For Au, this evolution might be a result of electrode
dissolution or place exchange occurring during electrode surface oxidation. For Pt and Ir,
however, the exact stress evolution depends on electrode history, with slow reduction of oxides

found for Ir and hysteresis associated with the HER found for Pt.

2.4.1. Calculation of strain from the stress measurements

We next examined whether the stress measurement coupled with the voltammetry could

provide quantitative insight into the strain associated with electrode oxidation itself.

Stress is proportional to the (elastic) strain via the Young’s modulus of a material:

—=0g=¢€Y
S

where Af is the stress (N/m), s is the thickness of the oxide film (m), ¢ is the stress/thickness in
the film (Pa), € is the strain in the film, and Y is the Young’s modulus of the film (Pa). The

interatomic expansion/contraction is related to the strain:
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where AD is the change in interatomic distance and a is the interatomic distance (A).

The potential range where oxidation of Ni and Co electrode from hydroxide to
oxyhydroxide was interrogated. The thickness of the oxyhydroxide film was calculated from the
integrated oxidation current as described in the experimental section. Assuming that only f-
oxyhydroxide is produced over the range of the interrogated potential with 100% current
efficiency, the thickness (s) of the oxyhydroxide layer is reported in Table 2.1. Young’s modulus
of Ni(OH)2 sample was found to be 6.5 GPa and Young’s modulus of Co(OH), sample was found
to be 14.9 GPa by nanoindentation measurements. We assume here that the Young’s modulus is
isotropic, as is likely given the thickness of the film probed during the Young’s modulus
determination. We also assume that the Young’s modulus of the oxide film is constant over the
range of interrogated potential. Pt, Ir, and Au were not considered due to the difficulty encountered
in distinguishing oxidation peaks, calculating oxide product thickness and measuring the Young’s
modulus of the thin oxide on these metals formed at high potentials. These values are additionally

not reported in the literature.

Table 2.1 reports the contraction calculated from the experimentally determined stress,
oxide thickness, and Young’s modulus. The table shows that the in-plane contractions going from
the hydroxide to the oxyhydroxide so determined range from 0.2 to 0.3 A. These numbers can be
compared with those determined by the in-plane change in unit cell parameters between the two
oxide forms. Both the hydroxide and the oxyhydroxide forms are thought to grow with the c-axis
perpendicular to the electrode surface,®2®2 so only the a-axis change is considered here. The table

shows that the value obtained by the ao (i.e M-M bond) change between the hydroxide and

33



oxyhydroxide forms agrees well with that determined from the stress, electrochemistry, and
nanoindentation measurements. The agreement provides an indication that the stress
measurements are in both qualitative and quantitative agreement with known changes in oxide

strain.

Table 2.1. Calculation of bond contraction from changes in electrochemical stress.

In plane M-M bond distance

. Contraction
IAf] |s o Y o, | contraction (A) .
€% calculated from unit
(N/m) | (A) (GPa) | (GPa) calculated from Mz g B Form | cell change* (A )

stress AD* (A)
Ni | 0.72 | 211 045 |6.5 7.0% | 0.22

Ni(OH)2 | NiOOH
3.13235¢ | 2822354
Co(OH)2 | CoOOH
3.17% | 2.85%

0.31 (9.9%)

Co| 205 |163.3 126 |149 |8.4%|0.27 0.32 (10.0%)

2.4.2. Correlation of oxidation charge density and absolute change in stress
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Figure 2.9. Correlation of oxidation charge density and absolute change in stress of Au, Pt, Ni,

Co, and Ir.

We next compare the measured stress change with the amount of oxide formed during
electrode oxidation. Figure 2.9 shows the correlation between oxidation charge density and the
absolute change in stress during this process. The figure shows that there is a roughly linear
relationship between the change in stress and the amount of oxide formed. Ir exhibits the greatest
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amount of charge formed during oxidation and correspondingly exhibits the largest stress change
(first cycle). Au and Pt, on the other hand, form only a surface oxide during electrode oxidation
and exhibit relatively little stress change. Thus, change in stress is simply proportional to the

amount of material that is further oxidized.

Oxidation charge density was calculated from oxidation current curve from CV and
geometric area of each electrode. The surface roughness for each electrode is assumed to be
similar. Moreover, the differences in charge density relate to differing degrees of bulk oxidation

of the material, which is only weakly affected by the surface roughness.

Differences in the amount of oxide formed going from Au to Ir are related to differences
in the properties of the oxide itself. A model of the oxide film growing on Ir is proposed by
Conway®* based on the change of conductivity and porosity of oxide layers. At low anodic
potential Ir metal is oxidized to Ir(l1l), which is poorly conductive, but exhibits a highly porous
structure and is loosely bound to the Ir metal surface. The porous structure leads to significant
electrolyte availability at metal/oxide interface, thus allowing numerous hydroxide layers to grow.
As the potential becomes more positive, Ir metal and Ir(111) are oxidized to Ir(I1V), which is less
porous but very conductive.®>8 This conductivity facilitates the electron transfer process with
which the electrode itself is bulk oxidized. Au and Pt only form a few oxide monolayers because
of the low conductivity of their oxides.®” Additionally, during the growth process dipolar
(Au®"OH?® and Pt**OH?®) species are produced. At appreciable coverage, they repel one another
and this repulsion raises the energy required to generate additional oxides.®® The hydroxide and
oxyhydroxide of Co and Ni are less conductive®®® than Ir oxides, so they form fewer layers

relative to those formed by Ir. However, Co and Ni hydroxides and oxyhydroxides exhibit a loose,
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layered structure with weak interaction between layers. This allows electrolyte intercalation, which

facilitates bulk oxide formation.232

2.4.3. Correlation of OER activity and the amount of oxide formed
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Figure 2.10. Correlation of potential at 1 mA/cm? of OER and oxidation charge density of Au,

Pt, Ni, Co, Ir.

We next compare the amount of oxide formed during electrode oxidation with their OER
activities. Figure 2.10 shows the correlation between potential at 1 mA/cm? of OER and oxidation
charge density. The figure shows that there is a trend that metal with larger amount of oxide formed
prior to OER show higher activity (lower potential is required to drive OER to 1 mA/cm?). The
origin of this trend is likely related to similarities between the mechanism of water and hydroxide
activation required to form the oxide in the first place, and the mechanism of the OER, thought to

involve formation of M-OH and M=0 species.3*8
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2.5. Conclusions

In this work, the changes in surface stress of Ir, Ni, Co, Au and Pt electrode in alkaline
solution were measured by the bending-beam method. Each electrode studied is dynamic, with a
variety of different processes occurring as the electrode during redox cycling. The stress
measurements report directly on changes in oxidation state of the electrode as the potential is
moved from cathodic to anodic values and back again. Hysteresis in the stress relates to
irreversibility in electrode composition, particularly for Ir. The stress measurements also show that
the oxide formed just prior to the OER onset does not change substantially (at least in-plane) during
the OER, a result which shows that water oxidation deep in the film during the OER is unlikely.
At least in systems where the Young’s modulus can be measured, the stress quantitatively reports
on the in plane change in strain during oxide oxidation, which provides further utility to these
measurements. We also show that the magnitude of the change in stress is proportional to the
amount of material that is further oxidized. The similarity between processes yielding higher
oxides and those involved with the OER mechanism yields are rough correlation between film

thickness and OER onset.
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Chapter 3

High Activity Oxygen Evolution Reaction Catalysts from Additive-Controlled

Electrodeposited Ni and NiFe Films

Reprinted with permission from Hoang, T. T. H.; Gewirth, A. A. ACS Catalysis 2016, 6, 1159—

1164. Copyright 2016 American Chemical Society.

3.1. Introduction

The electrochemical splitting of water offers an attractive way to provide a carbon-free
source of hydrogen.!? Water splitting efficiency is limited primarily by the high overpotential (1)
required by the anodic oxygen evolution reaction (OER, 40H— 2H;0 + 4e” + Oz in alkaline or 2
H,0 — O2+ 4 H* + 4 e"in acid).?® In alkaline electrolyte, non-precious metals such as Ni, Co, and
their alloys (NiFe, CoFe, etc.) are used as electrocatalysts for the OER, since they are abundant,
cheap, and exhibit high corrosion resistance. However, these materials still exhibit n = 350-450
mV relative to the thermodynamic value of 1.23 V vs.*® at a nominal 10 mA/cm? current density

(j).>5" Stability and reasonable activity at high j (500 mA/cm?) remains a challenge.®

Tremendous amount of effort has been invested to develop active and stable non-precious
metal catalysts for OER in alkaline solutions. One way is to introduce Fe into Ni-containing
materials.®*® To further enhance the OER activity of Ni, NiFe and Co-based materials, another
strategy is to fabricate them into nanoparticles to increase the number of active sites per geometric
area. Currently, most high activity catalysts for the OER in alkaline electrolyte are nanostructured

C0xOy, Ni(OH)2, and NixFey(OH). powders,**® which are glued on electrode surface by binders
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such as Nafion. However, these ‘glued’ nanoparticles exhibit poor stability under conditions of
high OER current density where vigorous gas evolution occurs. Additionally, the use of binders
decreases contact between and conductivity of the electrode and electrolyte, leading to diminished

activity.1

Another active Ni OER catalyst is formed from Raney Ni - a Ni alloy with Al or Zn.1"18 In
alkaline solution, Al and Zn is leached from the Ni to produce a high surface area material. Raney
Ni exhibits a 50 mV decrease in n relative to Ni foil, i.e. ~1.53 V vs RHE, for the OER at j =1

mA/cm2.Y7

Precipitation of Ni(OH)., and NixFey(OH)2 from nitrate solution onto electrode surfaces has
long been used to yield porous catalysts exhibiting high OER activity.'*-? In this method, Ni(OH)
and/or NixFey(OH)2 is formed and precipitated from a metal salt near the electrode by OH"
produced during NOs™ reduction. While active at low loadings, these materials exhibit poor
stability at high loadings because the precipitated hydroxide is loosely bound to the underlying
electrode. Additionally, thick precipitates limit access to underlying material and inhibit charge
and electrolyte transfer between substrate and hydroxide.*%® A recent application of this method
used thin layer of NixFey(OH). precipitated on macroporous Ni foam substrates to yield j = 100
mA/cm?at ~ 1.6 V vs RHE in 1 M NaOH.*8 For thicker deposits, pulse-deposition improves the

adhesion between the deposited layers and the substrate as well as conductivity of the whole film.?2

In this chapter, we present a simple, single-step electrodeposition method with which to
fabricate nanostructured, fractal-like Ni, and NiFe catalysts exhibiting high OER activity. Using
electrodeposition we constructed a NiFe film exhibiting an OER j = 100 mA/cm? , i.e mass activity
~ 1200 A/g of catalyst at 1 = 300 mV (1.53V vs RHE) in 1M NaOH which is among the most
active OER electrocatalyst in alkaline electrolyte reported to date. Moreover, we can tune this
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current density to nearly any arbitrary value by altering amount of NiFe electrodeposited, without

any evidence of material or activity degradation due to the metallic nature of the initial deposit.

3.2.  Experimental section

Deposition of metal: Ni, NiFe, and Co were electrodeposited galvanostatically at a constant
current density of -4 mA/cm? until a final deposition charge was reached (typically 2 C/cm? unless
otherwise stated). A 10 sec resting time after passage of each 0.8 - 1 C/cm? was applied in order
to minimize formation of deleterious concentration gradients. Au, Pt, Ni foil, Ni foam, stainless
steel, and Fluorine-doped Tin Oxide (FTO) were used as the deposition substrates. Pt or glassy
carbon were used as counter electrodes and separated from the working electrode by a glass frit in
an electrochemical H-cell. A ‘leakless’ Ag/AgCl (eDAQ) electrode was placed near the working

to measure the deposition potential.

Substrates for electrodeposition were cleaned just before used. Au (200 nm thickness,
fabricated on one side of glass coverslips by e-beam deposition) was rinsed with Milli-Q water,
and then flamed under H>. Stainless steel disks were mechanically polished with sand paper,
immersed in 0.1 M H>SO4 for 2 minutes to remove the native oxide layer, and then rinsed
thoroughly with Milli-Q water. Ni foil (Sigma Aldrich, thickness 0.125 mm, purity 99.9%) and Ni
foam (MT]I corporation, purity 99.99%, density 346 g/m?, 80-110 pores per inch, average hole
diameter 0.25mm) were immersed in 0.1 M H2SO4 for 2 minutes to remove the native oxide layer,
and then rinsed thoroughly with Milli-Q water. Deposition current was calculated from the
geometric area of each substrate, which was typically ~ 1 cm?. Each deposition bath contained

typically ~ 15 ml solution.
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The Ni plating baths were made from 0.5 M NiSO4.6H>0 + 0.4 M H3BO3 adjusted to pH
3 with H2SO4 and plating was performed either without an additive, or with 4 mM of 3,5-diamino-
1,2,4-triazole (DAT), 10 mM of 3-Amino-1,2,4-triazole (AT), or 30 mM of 1,2,4-triazole-3,4,5-
triamine (TAT). The Ni and NiFe plating baths were made from (0.5 M - 0.25 M) NiSO4.6H.0 +
0.4 M H3BO3 + FeS04.7H20 (0 M - 0.25 M), adjusted to pH 3 with H.SO4 and plating was
performed either without an additive, or with 3,5-diamino-1,2,4-triazole (DAT). Concentration of
metal ions (Ni?* and Fe?") in deposition solutions equaled to 0.5 M in total. The ratio of Ni/Fe is
measured by ICP-OES (Table 1). The Co plating baths were made from 0.5 M C0S04.7H20 + 0.4
M H3BOs3, adjusted to pH 3 with H.SO4 and plating was performed either without an additive, or

with 4 mM of 3,5-diamino-1,2,4-triazole (DAT).

Table 3.1. Composition of NiFe platting bath and film composition measured by ICP-OES.

NiSO4 FeSO4 NiFe film composition (£5%)
0.5M oM Ni

0475 M 0.025M NigoFero

0.375M 0.125M NisoFeso

0.25M 0.25M NizoFe7o

Material characterization: The amount of Ni, Co, and NiFe electrodeposited on Au
substrate was measured by ICP-OES, which was carried out on a PerkinElmer 2000 DV, optical
emission spectrometer in the UIUC SCS microanalysis laboratory. Scanning electron microscope
(SEM) images were obtained from a Hitachi A-4700 high resolution microscope with an emission

gun capable of 2.5 nm resolution. The Ni, Fe and N in the electrodeposited samples was determined
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by using X-Ray Photoelectron Spectroscopy (XPS) (Physical Electronics PHI 5400). Atomic force

microscopy (AFM) images were obtained in tapping mode using Asylum Research MFP-3D AFM.

Electrochemical measurements: Cyclic voltammetry (CV), chronoamperometry (CA) and
chronopotentiometry (CP) were performed at room temperature using a CHI 760D or Biologic SP-
150 with a Pt mesh counter electrode and an AgQ/AgCI reference electrode. Before the
electrochemical measurement, the electrolyte (1 M NaOH, pH=14) was purged by Ar. The
Ag/AgCI reference electrode was calibrated before each experiment with an RHE in 1M NaOH.
Potential are reported with respect to RHE, unless otherwise stated. The voltammetry was IR
corrected. Mass activity (A/g of catalyst) was calculated from the measured current (A) and the
amount of catalyst that electrodeposited (g). Turnover frequency of catalysts (TOF) was calculated

using the following equation:

. A
J('cmzc
mol of 0, generated/sec 4 X F(_mol)
TOF = =
mol of metal mol of total metal

where the mol of metal was calculated by integrating the oxidation peak of the M(11)/M(I11) wave.
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3.3. Results

3.3.1. Electrodeposition of Ni-nanostructures
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Figure 3.1. a) Chronopotentiometry at —4mA/cm?; and b) CV at scan rate 10 mV/s of Au electrode

in Ni-deposition solutions with and without DAT.

Figure 3.1a shows the electrodeposition profile of Ni with DAT as additive (Ni-DAT film),
and without DAT (Ni film) on an Au substrate. A deposition current of —4 mA/cm? was obtained
at~—-0.9 Vand- 0.6 V vs NHE, respectively. Figure 3.1b shows CVs obtained from Au substrates
in the Ni deposition solutions with and without DAT from — 0.2 V to — 1.3 VV where H2 evolution
and Ni deposition occur simultaneously. With the same concentration of Ni?*, the current density
in the additive-free solution is higher than in the presence of DAT. Chronopotentiometry and CV
both indicate that DAT inhibits Ni deposition and/or the hydrogen evolution reaction. ICP-OES
data shows that the Coulombic efficiency of Ni electrodeposited in the additive-free solution is 91
+ 3 %, while the Coulombic efficiency of Ni electrodeposited with DAT is 14 = 3 %. Low
deposition efficiency of solution containing DAT once again indicates that DAT inhibits Ni

electrodeposition.
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a) Ni b) Ni-DAT

Figure 3.2. SEM images of a) Ni and b) Ni-DAT film electrodeposited on Au substrate. The photos

show an optical image of the electrodeposited films.

Figure 3.2 shows SEM images of the Ni film electrodeposited with and without DAT.
Without the additive, the Ni film exhibits a shiny metallic color (Figure 3.2a, inset). SEM (Figure

3.2a) and AFM (Figure 3.3a) show that the film is smooth with roughness of 7.6 nm = 2.1 nm.

52



Analysis of the AFM image shows that the measured and geometric surface area are roughly the
same (Ameasured/ Ageometric = 1.02 + 0.01). In contrast, the Ni film deposited with DAT (Ni-DAT)
exhibits a black color (Figure 3.2b, inset). SEM images of Ni-DAT film at different magnifications
(Figure 3.2b) show that the Ni-DAT film exhibits a cracked and porous surface with apparent
agglomerated clusters of particles. The roughness of the Ni-DAT film from AFM (Figure 3.3b) is
226 nm = 70 nm. The ratio of the measured and geometric surface area iS Ameasured/ Ageometric = 1.80
+0.12. Interestingly, XPS measurements (Figure 3.4) evince no detectible N on the electrode after
cycling, which suggests that any retained DAT is oxidized and removed from the electrode during

the OER.

15.0 nm
75

0.0

-75

-15.0

300 nm

-150

Figure 3.3. AFM of a) Ni film electrodeposited on Au substrate (without additive); and b) Ni-

DAT film electrodeposited on Au substrate (with DAT).
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Figure 3.4. XPS spectra of N 1s in Ni and Ni-DAT films.

3.3.2. OER activity of Ni films

Figure 3.5a shows an iR corrected CV obtained from Ni or Ni-DAT deposited on Au in 1
M NaOH. In alkaline solution the Ni surface is spontaneously oxidized to Ni(OH)2.23?* Following
first cycle oxidation of Ni to Ni(OH)2,%* Ni(OH): is oxidized to form NiOOH at ~1.4 V. The inset
of Figure 3.5a shows the CV of a Ni film electrodeposited from additive-free solution in NaOH,
which is similar to that reported previously.®>?4?° The red line in Figure 3.5a shows the CV of the
Ni-DAT film. The CV shows the substantially larger current density associated with the Ni-DAT
film relative to Ni alone. The charge associated with the Ni(OH)2/NiOOH wave of Ni-DAT film
is 113 + 18 times larger than the corresponding wave for the Ni film. Interestingly, the amount of

Ni in the NiDAT film is only ~ 15% of that in the Ni film.
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Figure 3.5. a) CV at scan rate 10mV/s (iR corrected); b) Chronopotentiometry (iR corrected) at
constant j = 10 mA/cm? in 1M NaOH from electrodeposited Ni and Ni-DAT. Inset a) shows the
Ni(ID/(111) redox waves of Ni film; ¢) CV at scan rate 10mV/s (iR corrected) in 1 M NaOH of Ni
foil, Ni film on Au, and Ni-DAT film with deposition charge of 2 C/cm?, 4 C/cm?, 6 C/cm? and 8
C/cm?; and d) Correlation of current density of OER at 1.6V vs RHE and Ni(OH)2/NiOOH redox

charge of Ni-DAT films with different thickness (measured by charge passed during deposition).

The OER occurs above 1.5V for both Ni and Ni-DAT. However, Ni-DAT exhibits a much

higher OER current than does the Ni film. The OER current at 1.6 V vs. RHE taken from the CV
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(Figure 3.5a) of Ni-DAT is j ~ 10 mA/cm?, while on Ni, j ~ 1 mA/cm?2. Chronopotentiometry
measurements carried out at a constant current of 10 mA/cm? (iR corrected) in 1M NaOH (Figure
3.5b) show that the voltage at which the Ni-DAT film can support this current density is 1.60 V
while the corresponding voltage for the Ni film alone is > 1.9 V. The figure shows that the film
maintains the 1.60 V potential over 180 min of continuous operation, suggesting the Ni-DAT

catalyst is very durable.

The integrated current associated with the Ni oxidation peaks shows that ~ 80% of total Ni
atoms (the total amount of Ni is quantified by ICP-OES) are electrochemically active. The ratio of
oxidation charge and reduction charge ~ 1 for all cycles (even in the 1% cycle), suggests high
electrochemical reversibility of the Ni-DAT film, even following extensive OER testing. The
TOFs of Ni-DAT are ~ 0.005 5%, ~0.015 st and ~ 0.041 st at = 300 mV, 350 mV, and 400 mV,

respectively, which are consistent with prior reports examining other Ni nanoparticle catalysts.'*

We next evaluate the effect of deposition time on the OER rate. Figure 3.5¢ and 3.5d shows
that a Ni film electrodepsited to 2 C/cm? (estimated thickness ~ 600 nm), and Ni foil (thickness ~
0.125 mm) exhibit similar OER activity, indicating that OER activity is independent of Ni film
thickness. In contrast, the OER activity of the Ni-DAT film is related to deposition charge, i.e. the
amount of Ni electrodeposited. Figure 3.5¢ and 3.5d shows that as the charge used to deposit Ni-

DAT is increased, the Ni(OH)2/NiOOH wave and OER current density also increase.

3.3.3. OER activity of Co films

Co electrodeposited in the presence of DAT (CO-DAT film) yeilds a film which also

exhibits a black color. This similarity with the Ni-DAT film may indicate a similar rough surface
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structure. Figure 3.6 shows CVs obtained from a Co and a Co-DAT electrode in 1 M NaOH. The
1% oxidation peak (from 0 to 0.4 V vs RHE for Co-DAT, and from 0.2 to 0.6 V vs RHE for Co) is
associated to oxidation of Co to Co(OH).. Reduction of Co(OH)2 back to Co on the cathodic sweep
gives a wave much smaller than the associated oxidation peak, suggesting that the reaction is
irreversible. The 2" oxidation wave starting at ca. 0.9 V vs RHE is associated with the oxidation

of Co(ll) to Co(lll) and Co(IV). The OER occurs above 1.5V for both Co and Co-DAT.
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Figure 3.6. CV of the 1% cycle in 1 M NaOH of Co electrodeposited on Au substrate with and

without DAT in deposition solution. (scan rate 10mV/s. iR corrected)

The first cycle CV shows that both the oxidation current which ultimately makes CoOOH
and the OER current from the Co-DAT film are greater in magnitude than the corresponding waves
from the Co film deposited absent DAT. Interestingly, while the oxidation wave starting at ca.
0.9 V is ~ 100 times greater in CoDAT relative to Co, the OER current density at 1.6 V is only ~
3 times greater, substantially less than the increase found for NiDAT relative to Ni. Additionally,

material was observed to flake off of the electrode during the oxidation process. While activity
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for Co-DAT was slightly larger on the first scan relative to Co, such was not the case on subsequent
scans, likely due to instability of the deposit during oxidation and under OER conditions. In
particular, we note that while the Ni-DAT film was found to crack during electrodeposition, such
was not the case with Co-DAT. The lack of cracking in the Co-DAT film likely leads to more
intrinsic stress upon oxidation, making the film unstable. The higher potential of Co deposition
relative to Ni means among other things that there will be less H> production for Co relative to Ni.

The lower H2 production could allow the Co-DAT film to be more continuous.

3.3.4. Effect of substrate on Ni-DAT film and OER activity
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Figure 3.7. CV of Ni-DAT on different substrate in 1 M NaOH at scan rate 10mV/s.

We found that Ni-DAT could be electrodeposited various substrates, including FTO, Pt,
Ni foil and Ni foam, in addition to Au. Ni-DAT films on all type of substrates exhibits the black
color indicative of rough Ni films. Figure 3.7 shows that activities of Ni-DAT films are somewhat

related to the properties of substrate.
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Ni-DAT on FTO exhibits a broad oxidation peak, higher OER onset and lower OER current

density than those on other substrates due to the lower conductivity of FTO.

Ni-DAT on Pt exhibits a smaller Ni oxidation peak and diminished OER current relative
to that on Au because the HER current during Ni-DAT deposition on Pt is higher than that on Au,

i.e. the Coulombic efficiency of Ni-DAT on Pt is smaller than that on Au.

Ni-DAT on Ni foil and Ni foam exhibits a higher Ni(OH). oxidation current and higher
OER current relative to Au likely due to participation of the Ni substrate in the OER process. Ni-
DAT on Ni foam shows higher activity than on Ni foil because Ni foam has higher surface area

than Ni foil.

Interestingly, Ni-DAT on stainless steel substrate exhibits a very high OER activity, with
earlier onset and higher OER current density than Ni-DAT on the other substrates. The origin of
this enhancement is associated with exposure of Fe in the stainless steel substrate to the electrolyte,
subsequent dissolution of Fe, and its redeposition into the Ni film, which converts the Ni-DAT
film into a NiFe-DAT film. We discuss the enhanced activity of NiFe-DAT relative to Ni-DAT

in the next sections.
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3.3.5. Similar additives to DAT
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Figure 3.8. CV of Ni electrodes electrodeposited without TAT, DAT, and AT in 1 M NaOH at

scan rate 10mV/s, with with iR compensations.

Compounds similar to DAT, such as 3-Amino-1,2,4-triazole (AT), and 1,2,4-triazole-
3,4,5-triamine (TAT) also show inhibition activity during Ni electrodeposition and produced black
Ni films. However, we found both TAT and AT are weaker inhibitors of Ni electrodeposition
relative to DAT, at least under the conditions used in this study (deposition at - 4mA/cm?, pH 3,
room temperature). ~ 4 mM of DAT is required to obtain visible and uniform inhibition (i.e. a
black, rough Ni film), while ~ 10 mM of AT and ~ 30 mM of TAT are required to achieve similar
results. Figure 3.8 shows CVs obtained from Ni electrodes electrodeposited with DAT (4 mM),
AT (10 mM) and TAT (30 mM). All Ni electrodes electrodeposited with additives shows higher
Ni(I)/Ni(111) oxidation wave and also exhibit higher OER current density than the Ni

electrodeposited without additives.
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3.3.6. Electrodeposition and OER activity of NiFe-DAT
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Figure 3.9. a) CV of Ni-DAT, NiFe-DAT films in 1M NaOH at scan rate 10mV/s (iR corrected);
b) Chronopotentiometry (iR corrected) at constant j = 100 mA/cm? in 1 M NaOH from

electrodeposited NiFe-DAT. Inset shows SEM image of a NisoFeso-DAT film.

Addition of Fe is known to increase the OER activity from Ni films.%1%-20.2627 \We wondered
whether codeposition of Ni and Fe in the presence of DAT (NiFe-DAT) could produce high OER
activity materials. Figure 3.9 shows CVs of NiFe-DAT films with varying Ni/Fe ratios (Table 3.1).
The CVs for NiFe-DAT films are noticeably different in their Ni(OH)2/NiOOH redox waves and
OER activities. As more Fe is incorporated into the NiFe-DAT film, the Ni(OH)2/NiOOH redox
couple shifts to higher potentials, consistent with previous reports.®1%2° At a Fe content of ~ 70%,
the oxidation wave merges with OER current. The shift in the redox potential implies that the
electrochemical oxidation of Ni(OH). to NiOOH is thermodynamically less favorable in the
presence of Fe. The Ni(OH)2/NiOOH redox peak area in the NiFe-DAT film is slightly smaller
than that found in the Ni-DAT film. This behaviour is similar to that found with smooth films of

NiFe in which the peak area decreases with increases of % Fe. However, small decrease in peak

61



area of NiFe-DAT film implies that the number of Ni active sites does not vary much with

increasing Fe content. This suggests the NiFe-DAT film is very porous.

The OER activity from NiFe-DAT films increases with increasing of Fe content in the film
as Fe content varies from 0% to ~ 50%, and then decreases when the Fe content is at 70%. NisoFeso-
DAT exhibits the highest OER activity among the films produced here, giving OER current density
of 100 mA/cm? at 1.53V (n = 300 mV), which is among the most active OER electrocatalyst in
alkaline electrolytes reported so far, to the best of our knowledge. The mass activity of this
NisoFeso-DAT is ~1200 A/g of catalyst at n = 300 mV, which is higher than RuO nanoparticle
IrO2 nanoparticle (range from 20 to 60 A/g at 1 = 300 mV).2%28 Chronopotentiometry was carried
out at a constant j = 100 mA/cm? in 1M NaOH. Figure 3.9b shows this current density can be

maintained for at least 72 hours at ~ 1.53 V vs RHE.

The integrated current associated with the metal oxidation peaks of NiFe-DAT films shows
that ~ 50% of total metal atoms (the total amount of metal is quantified by ICP-OES) are
electrochemically active. The TOF from a NiFe-DAT film at n = 300 mV is ~ 0.42 s, which is
similar to other reports from this type of catalyst.?22%2° The correspondence of TOFs indicates that
the intrinsic activity of our Ni-DAT and NiFe-DAT catalysts are unchanged relative to other Ni
and NiFe catalyst reported previously, but the increased activity we observed originates from the

enhancement in surface area of the catalyst film.
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Figure 3.10. SEM and corresponding EDS maps obtained from a NisoFeso-DAT electrode

deposited on Au.

Figure 3.10a shows the presence of a rough, cracked surface as described in section 3.3.1.
Figure 3.10b shows the presence of the underlying Au substrate. The EDS obtained from Fe
(Figure 3.10c) and Ni (Figure 3.10d) exhibit a good correspondance with the SEM, showing that

both Ni and Fe are well-mixed in the deposit.
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3.4. Discussion
3.4.1. Niand NiFe electrodeposition

Conventional additives developed for Ni electrodeposition usually contain aromatic
sulphones, or unsaturated groups. Among the most prominent are saccharin, benzene sulfonic acid,
coumarin, and picoline, all of which produce smooth and bright Ni deposits. The mechanism by
which organic additives modify the electrodeposition process to yield a bright Ni surface involves
adsorption of the organic compound and subsequent growth rate alteration on different crystal

faces.30-33

Some Ni plating additives, such as thiourea,® and mixture of sodium naphthalene-2-
sulphonate and acrylamide, can produce dull or black Ni deposits exhibiting rough surfaces. The
high surface roughness of Ni-DAT and NiFe-DAT is a consequence of both inhibition of
electrodeposition by DAT and H» adsorption on the electrode surface. Inhibition through DAT and
H> adsorption on the electrode surface lowers the number of nucleation sites for Ni, each of which
however will experience a high local current density. A consequence is the rapid growth of small
crystals and development of a rough surface. Similar mechanisms are invoked in a Ag
electrodeposition system yielding powdery films.*® A rough Ni film could also be produced using
electrodeposition in the presence of other additives similar to DAT and on different types of

substrates (Figure 3.7, 3.8).

3.4.2. Effects of DAT on OER activity

To evaluate whether DAT remain in the deposited films, we conducted XPS measurements

on N 1s of Ni samples. Figure 3.4 shows XPS spectra obtained in the N region from Ni and Ni-
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DAT films. As-deposited Ni-DAT film exhibits a peak at 399 eV associated with N, which is likely
due to DAT retained in or on the Ni deposit. However, after 30 min of OER, there is no detectible
N found on the Ni-DAT electrode immersed from solution, which suggests that any retained DAT

is oxidized and removed from the electrode during the OER.
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Figure 3.11. a) CV of Ni electrodeposited without DAT in electrolyte of 1M NaOH and 5 mM

DAT.

To evaluate whether DAT in the solution could enhance the OER, we tested a Ni film in 1
M NaOH with and without the presence of DAT (5 mM). Figure 3.11 shows a CV of Ni
electrodeposited without DAT in electrolyte containing 1M NaOH with and without 5mM DAT.
The insets shows that the low potential CV of Ni in 1 M NaOH containing DAT exhibits an
oxidation wave between 1.1 and 1.5 V which must be associated with DAT oxidation. Additonally,
the voltammetry shows that the presence of DAT moves the Ni(OH)2/NiOOH wave to more
positive potentials, showing that further oxidation of Ni is inihibited by this additive. The main

CV shows that no enhancement in OER activity was observed with the presence of DAT in the
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electrolyte. Thus, both XPS and CV data suggest that DAT has no role in the high OER activity

of the Ni-DAT film.

3.4.3. Fractal-like behaviour of Ni-DAT
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Figure 3.12. Power-law relationship between a) Ni(OH)2/NiOOH redox charge and Ni-DAT

deposition charge; and b) OER current density and Ni-DAT deposition charge.

Our results show that by electrodepositing Ni in the presence of DAT we can produce a
very active OER catalyst in alkaline passed in forming NiOOH and OER activity, for Ni deposits

of different thicknesses (or differing amounts of charge passed during electrodeposition).

Figure 3.12a shows that the redox charge associated with the Ni(OH)2/NiOOH wave
increases linearly with increasing charge associated with Ni-DAT deposition; the slope of the log-
log graph is 1.10 + 0.03 (R? = 0.999). The NiOOH formation wave is a measure of Ni accessibility
on the electrodeposited Ni surface, i.e. reports on the number of Ni active sites. The deposition
charge represents the number of deposited particles since the deposition efficiency is constant at ~

14%. Thus, figure 3.12a also shows that Ni-DAT film exhibits a power-law relationship between
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the number of active sites and the number of deposited particles. Such behaviour is evidence that

the Ni-DAT films exhibit a fractal-like structure.3"8

Formation of a fractal-like Ni-DAT deposit could be explained by diffusion-limited
aggregation growth in which fractal structures occur when the material accretion onto the surface
is limited by diffusion, and deposition occurs preferentially on protuberances.**! High voltage (4
V to 20 V) has been used to reduce diffusion in fractal structure electrodeposition.*? In our
research, DAT binds to substrate surface, initiating roughness, following which these rough areas
grow exponentially while other areas on the electrode are still DAT and diffusion inhibited. The

deposit acquires fractal character in the presence of DAT even without high voltage.

Figure 3.12b shows that Ni-DAT films also exhibits a power-law relationship between
OER activity and deposition charge. In this case, however, the slope is 0.71 + 0.04 (R? = 0.997)
which is smaller than that of Figure 3.12a. The power law relationship suggest that Ni-DAT films
still exhibit a fractal-like structure even during the OER. OER activity is controlled by diffusion
of OH" and O into and out of the porous Ni-DAT films, while Ni(OH)2/NiOOH redox reactions
(described above) are controlled by diffusion of H* in and out of the film. Slower diffusion of OH"
and O during OER could be the origin of the smaller slope in the power-law graph relating OER
activity and deposition charge relative to that relating NiOOH/Ni(OH). charge to deposition

charge.

3.4.4. NiFe-DAT

We found that the same protocol which produced an OER active Ni film could be translated

to the Ni/Fe system. The origin of increased activity in Ni/Fe relative to Ni is thought to be
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associated with high OER activity of Fe, where the Ni both inhibits Fe dissolution and enhances
the conductivity of Fe hydroxide/oxyhydroxide films.2%?" In our work, we demonstrate that, as
with the Ni case, rougher films give rise to increased activity. However, by increasing the Fe
content in the codeposited NiFe film we show that we can increase the OER activity to a very high
level. NisoFeso-DAT exhibits the highest OER activity the films studied here, yielding current
densities of 100 mA/cm? at 1.53V, which is among the most active OER electrocatalyst in alkaline

electrolyte reported to date.

3.5. Conclusion

We developed a simple method to make Ni, Co, and NiFe films exhibiting fractal-like
behavior with nano-size clusters by using 3,5-diamino-1,2,4-triazole (DAT) as additive for the

metal electrodeposition processes.

NiFe-DAT electrodeposited by this method exhibits very high activity for the OER, stable
activity as high as 100 mA/cm? (geometric area), mass activity as high as 1200 A/g of catalyst at
1.53 V was found. This activity is among the highest reported for this material or for the OER in
base. Equally important, we found that we could in part tune this activity by changing the amount
of metal electrodeposited. The effect was essentially independent of substrate. Interestingly, we
found that electrodeposition of Ni onto steel produced a NiFe film exhibiting very high activity
without any further Fe incorporation. The origin of this high activity is fractal-like behavior i.e

film roughness, caused by inhibition of electrodeposition by the DAT additive.
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Chapter 4

Observation of an Inverse Kinetic Isotope Effect in Oxygen Evolution Electrochemistry

Reprinted with permission from Tse, E. C. M.; Hoang, T. T. H.; Varnell. A. J.; Gewirth, A. A. ACS

Catalysis 2016, 6, 5706-5714. Copyright 2016 American Chemical Society.

4.1. Introduction

Redox reactions involving multiple proton-coupled electron transfer (PCET) steps are
ubiquitous and have gathered a significant amount of interest toward understanding biological
systems and developing alternative energy conversion schemes over the past decades.® Using
renewable sources of energy to power water-splitting electrolyzers offers a promising system to
generate H, with almost no carbon footprint.?%12 An electrolyzer is an energy conversion device
that splits water into Hz and O> via the following two half-cell reactions: the cathodic hydrogen
evolution reaction (HER, 2H" + 2e- — Hj) and the anodic oxygen evolution reaction (OER,
40H™ — 2H,0 + 4e” + O2),*® also known as the water oxidation reaction.}* The performance of
an electrolyzer is not limited by the reaction involving hydrogen,**'>17 put is limited by the
sluggish kinetics of the reaction involving oxygen which requires a large OER overpotential at the
anode.'®% Ir and Ru are the anodes of choice in acidic electrolyte with low OER overpotentials.?
However, the widespread application of Ir/Ru-based anodes is hindered by the prohibitive high
cost and poor long-term stability of these precious metal catalysts. Ni, Co, and their alloys are
attractive electrocatalysts for OER in alkaline electrolyte, because these relatively inexpensive

non-precious metal (NPM) materials are abundant and durable in basic conditions.?*?® However,

OER overpotentials using Ni/Co-based materials range from ca. 300 to 400 mV relative to the
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thermodynamic potential of 1.23 V versus RHE.X%?* Real-world thermodynamic efficiencies for
water splitting are only ~75% with currently available Ni-based catalysts.'® However, catalyst
design to eliminate the high OER overpotential is still limited because insight into the OER

mechanism is missing.?2

Currently, tremendous effort is invested to elucidate the identity and surface structure of
the bulk anode materials used to facilitate the OER.?>?° Reports suggest that surface oxides and
oxyhydroxides, which are formed on the metal prior to the OER, are the active catalytic species.?®
Compositional and morphological changes upon redox cycling of these porous thin film OER
catalysts have been investigated using various techniques, including but not limited to
voltammetric studies,?®%"2° Raman spectroscopy,®=® X-ray photoelectron spectroscopy (XPS),3*
37 X-ray diffraction (XRD),*% X-ray absorption spectroscopy (XAS),*>4? scanning electron
microscopy (SEM) and transmission electron microscopy (TEM),3*# scanning tunneling
microscopy (STM),* ellipsometry,*>#® atomic force microscopy (AFM),*"“® electrochemical
quartz crystal microbalance (EQCM),*-2 and in situ stress measurement.>> EQCM experiments
corroborate that the catalyst film does not dissolve during electrocatalysis and remains stable in
basic conditions.> Despite the extensive effort expended in these areas,®™ a complete

understanding of the reaction mechanism has not been achieved.

In order to understand the OER mechanism on oxidized metals, it is important to
interrogate the OER process at the molecular level. Density functional theory (DFT) calculations
predicted that the binding energy of surface oxygen species such as “O, "OH, "OOH controls the
OER activity.'?226 However, the use of computational methods to interrogate the kinetics of
heterogeneous catalytic systems is extremely challenging,®>*® and the explicit role of protons in

OER remains poorly understood. The use of the kinetic isotope effect (KIE) is an established
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experimental technique to study chemical reactions involving protons.®”*® Specifically, the
substitution of hydrogen with deuterium has been carried out extensively due to the large
differences in reaction rates arising from the reduced mass differences between the isotopes.>%®
For electrocatalysis involving protons, Conway et al. investigated KIE of the HER catalyzed by
Pt, and Yeager et al. conducted a similar KIE study on oxygen reduction reaction catalyzed by
Pt.51%% For OER, only several systems involving precious metals have been reported.?865%7 180
labeling experiments were performed on Ni and other metal surfaces to rule out soluble hydrated
metal species as the active catalyst material.%® Therefore, we seek to expand the use of KIE studies

to further understand the OER on NPM catalysts at the molecular level.

Here, we launched comprehensive and comparative KIE studies of several precious and
NPM OER catalysts to gain direct mechanistic insight into these intricate reactions involving
multiple PCET steps. In particular, we interrogated the difference in OER response of NPM OER
catalysts in the condition at which they are stable and active. We envision these results to provide
unique information that will allow the development of next-generation, high-performance,
durable, and affordable OER catalysts for practical energy conversion devices under operation

conditions in the near future.

4.2.  Experimental section

Chemicals were obtained from commercial sources and used without further purification
unless otherwise specified. All proteo and deutero aqueous solutions were prepared freshly each
day using Milli-Q water (> 18 MQ c¢m) and D20, respectively. NaOH (1 M) and NaOD (1 M)

solutions were used as electrolytes to maintain a sufficiently high ionic conductivity for accurate
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electrochemical measurements and subsequent analyses.®® Solutions were sparged with Ar, which

was dried using a drying tube, for 30 min prior to each experiment.

Electrochemical studies were carried out using a CH Instruments 760 D Electrochemical
Workstation (Austin, TX) at room temperature (24 °C to 26 °C). OER experiments were performed
in a sealed cell with a Pt mesh counter electrode and a “no leak” Ag/AgCl reference electrode.
Electrochemical impedance spectra (EIS) for iR correction were collected using a SP-150
potentiostat (Bio-Logic). The resistance, R, was typically ca. 3 Q, and iR correction was done
following published procedures.®®"* Unless otherwise stated, the scan rate was 10 mV s™. The
measured potential by the Ag/AgCI reference electrode did not shift in proteo and deutero
solutions, as confirmed by the peak position of the Fe(ll/lll) wave of KsFe(CN)s.'2"
Electrochemical potentials are reported relative to the reversible hydrogen electrode (RHE), the
value of which was measured by sparging the solution with Hz (1 atm) and monitoring the open
circuit potential between the AgQ/AgCI reference and a Pt wire introduced following the
measurement.”*" All experiments performed were at least quadruplicated. Voltammograms

shown are from representative trials. Error bars presented represent standard deviations of all trials.

For cyclic voltammetry studies, Ni films (~ 300 nm) were electrodeposited onto Au
substrates in an aqueous bath of NiSO4 (0.5 M) and H3BOs (0.4 M) adjusted to pH 3 using H2SO4
using a pulse deposition method: held at =4 mA cm2 for 100 s followed by 10 s of resting time,
and repeated for two more times.>® For studies in deutero solutions, the bath was prepared using
D3BO3 (0.4 M) in D20 and adjusted to pD 3 using D2SOa. Co films (~ 300 nm) were prepared in
an analogous manner using CoSO4 (0.5 M) instead. Au substrates were fabricated from glass
microscope coverslips (Gold Seal No. 1, 150 um thick) modified on one side by electron beam

deposition of 20 nm Ti followed by 200 nm Au. The geometric areas of the electrodes were
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typically ca. 1 cm?. The Au electrodes were annealed for ca. 1 min using a H flame to clean the

Au surfaces prior to use.2’°376.77

Rotating ring-disk electrode (RRDE) experiments were performed using a ring-disk
assembly with an interchangeable disk (E5 series, Pine instruments) connected to a MSRX rotator
(Pine Instruments). A Au disk electrode (A = 0.196 cm?) was polished sequentially with 0.25um
and 0.05 um diameter diamond polish (Buehler), and sonicated in water after each polishing step.
A Ni film was electrodeposited onto the Au disk electrode in a manner analogous to the procedure
described above. The Pt ring electrode (Pine Instruments) was cleaned electrochemically by
cycling from —0.4 V to +1.7 V vs. Ag/AgCl reference at 100 mV/s in an aqueous solution of HCIO4

(0.1 M) until the oxide stripping feature at ~+0.35 V vs. Ag/AgCl reference remained constant.”™

Raman Studies were performed using a polycrystalline Au disk working electrode which
was sequentially polished using 9 um, 3 um, 1 um, 0.25 um, and 0.05 um diamond suspensions to
a mirror finish. After each 5-min polishing step, the electrode was sonicated in Milli-Q water for
5 min and thoroughly rinsed. The Au disk was flamed using a H> torch for ca. 1 min and quenched
in Milli-Q water. The flamed Au electrode was then electrochemically roughened in a cell
consisting of an aqueous Ag/AgCl reference electrode, a Au counter electrode, and a KCI (0.5 M)
electrolyte by cycling between —0.25 V and +1.3 V vs. Ag/AgCl for 50 roughening cycles as
previously described.”®’” For deuterated studies, the flamed Au disk was quenched in D2O and
electrochemically roughened in D20 containing KCI (0.5 M). Electrodeposition of metal thin films
was performed as described above with the exception that a current density of =3 mA cm 2 was

held for 40 s.

In situ surface-enhanced Raman spectroscopy (SERS) measurements were conducted

using a spectroelectrochemical cell described previously.”® A He-Ne laser (50 mW, 632.8 nm,
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Meredith Instruments) was utilized to provide sample excitation at an incident angle of
approximately 45° relative to an 85 mm /1.2 collection lens (Canon). The scattered radiation was
then focused using an f/1.2 lens to the 10 pum slit of a SpectraPro 2300i monochromator (Princeton
Instruments) with grating of 1200 grooves per mm. The estimated spectral resolution was 2-3 cm 2.
The CCD detector (Andor) was thermoelectrically cooled to —80 °C. Acquisition time for the

spectra reported was 30 s.

Calculating Kinetic isotope effect from Tafel slope analysis.

RT Ini RT
naFn]0 ang F

overpotential =1n = Inj

where R = ideal gas constant, T = temperature, a = transfer coefficient, n, = number of electrons
transferred during the rate-determining step, F = Faraday’s constant, and j = current density.

Plotting y = n and x = In gives:

l _ RT
slope = anF
int t = RT Inj
intercept = o F n j,

intercept = (—slope)In j,

intercept
jO =e —slope

Exchange current density (j,) is described by the following equation:?
Jo = nFkyC*
where n = total number of electrons transferred, k, = standard heterogeneous rate constant, and
C™ = bulk concentration of species.

Dividing j{ obtained in proteo solution by j& obtained in deutero solution gives:
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U _nkgc

j§  nPkgCeP
c*H = C*P because the experiments were conducted in pH 14 and pD 14 solutions, i.e. the
hydroxide and deuteroxide concentrations are the same.

Assuming n remains unchanged in proteo and deutero solutions:

Jo kg

Using Tafel slope analysis to calculate kinetic isotope effect is not meaningful at high
overpotential because the reaction is limited by mass transport. Therefore, to obtain meaningful
interpretation of the kinetic isotope effect of OER catalyzed by Ni and Co, we utilize Tafel slope
analysis at overpotentials less than 0.5 V where the reaction is not limited by mass transport.®

To maintain consistency in Tafel slope analysis, Tafel slopes are obtained in the same
potential window for both proteo and deutero solutions where the second derivatives of the CV
traces are zero. The Tafel slopes measured for proteo solutions at both low and high overpotentials
match with literature reported values. Recent Tafel slope values for the OER on Ni at high
overpotential range from 126 to 132 mV dect.* However, we focus our attention to the low
overpotential region where the kinetics of the reaction is not plagued by mass diffusion from bulk
solution to the electrode surface then through the layered-structure of the metal
oxides/oxyhydroxides/hydroxides.

For porous thin films with complex layered structures, interlayer water diffusion is
expected to be much slower. In fact, the diffusion coefficient of water in confined spaces such as
those found in artificial membranes (like Nafion and ionomers) and natural channels (like cellulose
membranes) is at least an order of magnitude lower than the self-diffusion coefficient of bulk

water.>® The significant smaller diffusion coefficient is explained by the strong first solvation shell
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hydrogen-bonding interaction with surface species,®!° a scenario similar to the porous structure

featured in Ni and Co oxyhydroxide thin films.

4.3. Results and discussion

4.3.1. Electrodeposited Ni OER catalysts in proteo and deutero solutions
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Figure 4.1. (a) IR-corrected CVs of Ni in NaOH (1 M) and NaOD (1 M) solutions. Inset displays

the OER onset region. (b) Tafel plots of Ni in (top) 1 M NaOH and (bottom) 1 M NaOD solutions.

To investigate the effect of protons on the OER, we utilized Au electrodes as a platform to
study the KIE both electrochemically and spectroscopically. The well-established Au system
exhibits a normal KIE during OER by inspection of reported voltammograms,”® and a
corresponding redshift of the potential-dependent Au-OH band using in situ surface-enhanced
Raman spectroscopy (SERS) upon deuteration.® Leveraging the stability and the SERS capability
of Au surfaces, we examined transition metal films electrochemically deposited on Au. First, we

consider the Ni film on Au system. Figure 4.1a shows cyclic voltammograms (CVs) obtained from
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Ni in basic proteo and deutero solutions starting with the anodic sweep. Similar to previous reports
in alkaline solutions,'2882 Ni metal is spontaneously oxidized to Ni(ll) hydroxide upon
immersion,®83 and is then further oxidized to generate Ni(I11) oxyhydroxide at 1.362 V. At 1.600

V, the electrodeposited Ni electrode delivers an OER current density of 0.5 mA cm™,
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Figure 4.2. (a) Anodic, cathodic, and midpoint potentials of the Ni(OH)2/NiOOH wave in 1 M
NaOH (black) and 1 M NaOD (red). (b) IR-uncorrected CVs of Ni in NaOH (1 M) and NaOD (1

M) solutions. Inset displays the OER onset region.

The black line in Figure 4.1a displays the Ni(OH)2/NiOOH redox wave with a midpoint
potential (E12) of 1.333 V. The red line displays the Ni(OD)2/NiOOD redox wave with a E1/, of
1.388 V. The position of the redox wave in deutero solution is ca. 55 mV more positive than that
obtained in proteo solution, indicating that the oxidation of Ni(OD), to NiOOD is

thermodynamically more difficult than the oxidation of Ni(OH). to NiOOH.

Figure 4.2a summarizes anodic, cathodic and midpoint potentials of the Ni(ll/111) redox
wave. Without iR-correction (Figure 4.2b, we observe more OER current in proteo solution than

deutero solution at potentials greater than 1.66 V for the case of Ni, likely because the diffusion

81



coefficient of H2O is larger than that of D,0.}*> At potentials lower than 1.66 V, OER occurs at
a slower rate and the interlayer H(D)20 inside the NiOOH(D) film is preferentially oxidized. At
high potentials, interlayer H(D)-O is depleted and the gaps are replenished by bulk H(D)2O. This
bulk-to-interlayer diffusion process of H(D).O likely limits the OER rates. We note that Co
exhibits the same crossing behavior as Ni (vide infra), suggesting that this feature is likely not
dependent on the identity of the OER catalysts, but rather a general phenomenon when running

experiments in and comparing results between proteo and deutero solutions.
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Figure 4.3. CVs of Ni foil in 1 M NaOH (black) and 1 M NaOD (red) solutions.

To confirm the shift in the Ni(ll/l111) wave upon deuteration, we carried out similar
experiments using Ni foil in proteo and deutero solutions and observed a 40 mV positive shift in
deutero solution similar to the case using electrodeposited Ni (Figure 4.3). We note that these shifts
in potential are not due to reference electrode effects, as confirmed by experiments with KsFe(CN)e
which demonstrated identical potentials for the Fe(11/111) wave in both proteo and deutero media.’
The difference in current observed in Figure 4.3 could be due to many reasons, one of which could
be the difference in surface roughness of the Ni foil used. The Ni foil was polished with sand paper

and dipped into H>SO4 or D>SO;4 to expose fresh Ni surfaces prior to electrochemical studies, so
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the geometric area used to calculate current density does not reflect the actual electrochemical
active surface area. We would like to stress that the point of this experiment is to check whether
the Ni(l1/111) peak shifts depending on the bulk solution content—in particular H versus D. This
experiment clearly demonstrates that the Ni(l1/111) peak in deutero solution is more positive than

the case in proteo solution.

Similar positive potential shifts upon deuteration have been observed for a variety of
cationic transition metal complexes and are explained in two ways.’>#8 First, because the O-D
bond is stronger than the O-H bond,® breaking the O-D bond is energetically more costly and the
anodic wave shifts positive. Second, Ni(lll) has a tighter solvation shell than Ni(ll) and D20 forms
a stronger deuterium bonding network relative to the hydrogen bonding network of H,O.”
Therefore, there is a greater increase in entropy when the deuterated solvent structure relaxes
during the reduction of Ni(l11) to Ni(I1).8* Due to the more favorable change in entropy that occurs
upon reducing Ni(Il) to Ni(ll) in deutero solutions, the cathodic wave shifts positive. Since both

the anodic and cathodic waves shift positive, the E1. shifts positive accordingly.
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Figure 4.4. CVs of Ni prepared in proteo solution and ran CVs in NaOD (1 M) solution and

prepared in deutero solution and ran in NaOH (1 M) solution.
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Figure 4.4 shows the CVs of Ni prepared in proteo solution and interrogated in deutero
solution and CVs of Ni prepared in deutero solution and interrogated in proteo solutions. The CVs
show that Ni metal film prepared in H solution and interrogated in D solution exhibit a Ni(ll/111)
redox wave more positive than that found using a Ni metal film prepared in D solution and
interrogated in H solution. This result confirms that the shift in redox potential does not depend on
the solution in which the film is prepared. Instead, the shift depends upon the solution in which
the voltammetry is recorded, a condition analogous to the case presented in Figure 4.1. This “cross”
experiment further demonstrates that preparing Ni metal film in H and D solution does not leave
a detectable trace amount of H or D residual in the electrodeposited film. Therefore, pulse
deposition of Ni in pH- or pD-controlled solution likely leads to electrodeposits consisting of pure
Ni metal films absent hydroxide, deuteroxide, oxyhydroxide, and/or oxydeuteroxide

contamination.

The inset to Figure 4.1a shows a blowup of the OER onset region in both proteo and deutero
solutions. Interestingly, the inset shows that the OER in D20 exhibits a more negative onset and a
lower overpotential at 0.5 mA cm relative to the same system in H,O. Figure 4.1b shows the
Tafel slopes of OER catalyzed by Ni in proteo and deutero basic solutions. The Tafel slope found
in NaOD at the low overpotential region (where n ranges between 0.3 and 0.4 V) is 59 mV dec™*
(Figure 4.1b, top), a value that is somewhat greater than the corresponding slope (53 mV dec™)
found in NaOH (Figure 4.1b, bottom). Recent Tafel slope values for the OER in NaOH on Ni at
the low overpotential range from 51 to 54 mV dec™.8” At higher overpotentials, the NaOH and
NaOD OER traces cross at 1.65 V versus RHE, likely due to the faster interlayer diffusion rate of
H>0 relative to D20 in between the confined structure of the electrochemically deposited metal

thin films during OER.%8° The contribution of differential diffusion rates at low overpotential is
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insignificant because there are enough reactants between the oxide layers when the rate of OER is
low. Therefore, for the KIE analysis, we focus at the low overpotential region where the kinetics
of the reaction are not dominated by the diffusion of reactants from the bulk solution to the catalytic

sites located inside the layered structure of the complex metal electrocatalysts.

Table 4.1. Summary of the overpotential at 0.5 mA cm2, Tafel slope and kinetic isotope effect of

OER catalyzed by Ni and Co in 1 M NaOH and 1 M NaOD solutions.

Condition Overpotential at 0.5 mA cm? (V) Tafel Slope (mV dec?)  kn/kp
Ni in 1 M NaOH 0.370 £ 0.006 53x1
06x0.1
Ni in 1 M NaOD 0.337 £ 0.006 59+1
Coin1 M NaOH 0.330 + 0.007 57 +1
05201
Coin1 M NaOD 0.285 + 0.002 63+1

Tafel analysis is a widely accepted technique to interrogate the intrinsic kinetic parameters
of electrocatalytic processes.” Table 1 lists the OER activity of Ni found in Figure 4.1a, the OER
Tafel slope obtained at the low overpotential region from Tafel analysis (Figure 4.1b), and kn/ko
of Ni in proteo and deutero solutions. The KIE of OER was determined from the voltammograms

using the Tafel equation:

_ RT RT
77_oznaFn]O aFn]
joankoc*
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where n = overpotential, R = ideal das constant, T = temperature, a = transfer coefficient, n, =

number of electrons transferred during the rate-determining step, F = Faraday’s constant, j, =

exchange current density, j = current density, n = total number of electrons transferred, k,
standard heterogeneous rate constant, and C* = bulk concentration of species. Using the Tafel
slopes found, the calculated KIE is 0.6. A kn/kp value of below 1 is indicative of an inverse

KIE 59,60,91

4.3.2. Electrodeposited Co OER catalysts in proteo and deutero solutions

To test the generality of the inverse KIE in alkaline OER catalysis, we next evaluate the
effect of deuteration on the OER on Co electrodes. Figures 4.5a-d display the iR-corrected CVs of
Co obtained in basic proteo and deutero solutions and Figures S4a-d shows the corresponding
uncorrected data. Our Co OER results match with previous reports.® Figure 4.5¢c compares the
anodic peak positions of the Co(ll/111) wave in proteo and deutero basic solutions. Comparing to
the Ni case (vide supra), the Co(ll/111) anodic peak in 1 M NaOD is at 0.987 V versus RHE, which
is slightly more positive relative to that found in 1 M NaOH (0.978 V versus RHE). The difference
between the OER current densities measured at high overpotential between proteo and deutero
solutions found for Co is less apparent as compared to the Ni case. Although Ni and Co exhibit
the same qualitative trends, the dissimilarities in the magnitude observed is likely due to the fact
that Co forms multiple types of oxides and hydroxides before and during OER,® while Ni only
forms Ni(OH). and NiOOH in alkaline conditions.? Table 4.1 lists the OER overpotentials of Co
at 0.5 mA cm obtained in proteo and deutero basic solutions, which are similar to those found

using Ni as the OER catalyst. Figure 4.6 shows the Tafel plots of Co at the low overpotential
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region. The calculated KIE is about 0.5 (Table 4.1), which is similar to the KIE value found for

the Ni case.
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Figure 4.5. (a) IR-corrected CVs of Co in NaOH (1 M) and NaOD (1 M) solutions. (b), (c), and

(d) display the blowups of the diffusion-controlled OER region, the Co(ll/111) redox region, and

the OER onset region, respectively.
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Figure 4.6. Tafel plots of Co in (top) 1 M NaOH and (bottom) 1 M NaOD solutions.

4.3.3. Au OER catalysts in proteo and deutero solutions

In order to confirm that these KIE less than 1 were a result of the catalysts being studied,

we carried out similar experiments on a Au electrode.
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Figure 4.7. IR-uncorrected CVs of Au in NaOH (1 M) and NaOD (1 M) solutions at OER region.
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Figure 4.8. Tafel plots of Auin (a) 1 M NaOH and (b) 1 M NaOD solutions.

Figure 4.7 shows that OER activity of Au in 1M NaOH (black) is higher than Auin 1 M
NaOD (red). The Tafel slope found in NaOH (Figure 4.8a) is (73 + 1) mV dec®, which is larger
than the corresponding slope (67 + 2) mV dec™ found in NaOD (Figure 4.8b). Using the Tafel

slopes found, the calculated KIE is 1.09. A kun/kp value of above 1 is indicative of a normal KIE

(Table 4.2).

Table 4.2. Summary of the overpotential at 0.5 mA cm?, Tafel slope and kinetic isotope effect of

OER catalyzed by Au in 1 M NaOH and 1 M NaOD solutions.

Overpotential at 0.5 mA cm? Tafel Slope

Condition kn/kp
(V) (mV dec?)
Auin 1M NaOH 0.428 £ 0.006 73+1
1.09 +0.05
Auin 1M NaOD 0.484 £ 0.026 67 +2

The normal KIE of Au in alkaline solution is in agreement with previous reports.” The

normal KIE found in the Au case indicates that the RDS of the OER of Au involves forming or
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breaking of O-H or O-D bonds (Scheme 4.1). This result agrees with OER mechanism of Au

suggested previously.6:17

Au(IID(OH); — [Au(IIN)(OH)5]* + e~ (1)
[Au(1I) (OH)3]* + OH™ - [Au(1I)(OH)(00H)]* + H,0 + e~ (2)
[Au(IID)(OH)(00H)]* + OH™ - [Au(lI)(OH)]?** + H,0 + 0, + 2~  (3)

[Au(III) (OH)]?* + 20H™ — Au(III) (OH),4 (4)

Scheme 4.1. An OER mechanism that involves Au. A plausible RDS is denoted in red.

4.3.4. Raman of a Ni, Co and Au OER catalysts in proteo and deutero solutions

To further investigate the KIE, we studied electrodeposited thin films of Ni and Co on
roughened Au surfaces using potential-dependent SERS. Figure 4.9a shows potential-dependent
Raman spectra of a Ni thin film electrodeposited on Au acquired in 1 M NaOH. The two distinct
bands at 480 cm™ and 560 cm™ which can be assigned to M-O bands are consistent with previous
results.3>3! We compared the location of these bands in 1 M NaOH and 1 M NaOD and did not
observe a redshift, which if observed would indicate strongly bound metal-hydroxide/deuteroxide
species (Table 4.3). The absence of an apparent redshift has been confirmed previously for several
studies using similar systems.3>°2% Figure 4.9c displays Raman spectra of a Co thin film
electrodeposited on Au collected in 1 M NaOH under potential control. The two bands at 489 cm-
1 and 616 cm™ match with values reported in the literature.® Analogous to the Ni case, these Co-
related bands do not redshift significantly upon deuteration (Figure 4.9d), suggesting that the
phenomenon could be a common feature for transition metal oxyhydroxide thin films. The lack of

a redshift in NPM thin films is explained by the absence of strongly associated protons in the
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layered structure of the porous first-row transition metal electrocatalysts.®>°" By contrast, for
precious third-row transition metal catalysts, such as Au, we observed a redshift in their

corresponding OH™ associated Raman band upon deuteration (Figure 4.10).%
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Figure 4.9. In situ SERS of Ni on Au in (a) 1 M NaOH and (b) 1 M NaOD, and Co on Au in (c)

1 M NaOH and (d) 1 M NaOD.
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Table 4.3. Expected Raman shift upon deuteration of alkaline solution for Ni, Co and Au
electrodes.

Ni Co Au
M 58.7 58.9 197
OH 17.0 17.0 17.0
oD 18.0 18.0 18.0
MM-OH 13.2 13.2 15.7
MM-OD 13.8 13.8 16.5
UM'OH (Cm-l) 48018-20 56018-20 48720’21 61820,21 42522,23 55522,23
vM-OD (cm™Y) 470 548 476 605 414 541
Shift Av (cm™) 10 12 11 13 11 14
(a) Bare roughened Au in NaOH (b) Bare roughened Au in NaOD
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Figure 4.10. In situ SERS of Au in (a) 1 M NaOH and (b) 1 M NaOD.
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4.3.5. Origins of the inverse KIE during the OER

We next address the possible origins of the inverse KIE found for the OER on Ni and Co
in basic solutions. First, inverse KIEs are usually associated with differences in the steric
environment of the active site caused by deuteration during the rate-determining step (RDS).%° For
example, interconversions of sterically-hindered biaryls typically exhibit inverse KIEs of ca.
0.8.5099-102 A comparison between the racemization rates of 2,2’-dibromo-4,4’-dicarboxybiphenyl
and its 6,6’-dideutero derivative gives an inverse KIE of 0.85.1%31%> Another comparison of the
inversion rates of 9,10-dihydroxy-4,5-dimethylphenanthrene and its derivative with the two
methyl groups fully deuterated yields an inverse KIE of 0.86.191%7 Translating this steric argument
to the OER leads to a possible scenario shown in Figures 4.11a and 4.11b where surface crowding
could lead to an inverse KIE. Literature study reveals that a O-D bond is shorter than a O-H
bond,'% meaning that the O-D bond in MO(OD) is likely shorter than the O-H bond in MO(OH),
where M = Ni or Co. The shorter O-D bond could lead to a less occluded active site, resulting in a
less hindered pathway for reactants to diffuse to the MO(OD) surface as compared to the MO(OH)
surface. As a result, the less bulky MO(OD) structure would exhibit faster OER kinetics. Our
model shows a particular case in which a single metal center is the locus of reactivity, but this idea
could easily be extended to a multi-metallic active site, as has been proposed in other

Work.18,19,23,109-111
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Figure 4.11. A possible scenario of the OER process catalyzed by M (Ni or Co) surface
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change in coordination environment and the corresponding rehybridization of the metal center
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A second origin of an inverse KIE results from a change from a less hybridized state to a
more hybridized state (e.g. sp? to sp®) during the RDS.®° The typical observed KIE relating to this
type of rehybridization is about 0.9. For example, solvolyses of methyl esters containing iodide
and their deuterated derivatives lead to inverse KIEs of ca. 0.87.112 A change in the hybridization
state during the RDS leads to a larger difference in the A zero point energy (A ZPE) of the transition
state than in the AZPE in the ground state. Figure 4.11c displays a possible scenario where a change
in the coordination environment of M (Ni or Co) could result in an inverse KIE. In this model, the
MO(OH) changes hybridization state upon binding of a OH". Therefore, the AZPE for the case

involving OD™ as the incoming species may be larger than that for the OH™ case.
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A third explanation for an inverse KIE invokes an electronic argument.®® The magnitude
of an inductive KIE is typically about 0.95, a less significant effect than the two types of inverse
KIEs previously discussed.®®!'® Deuterium substitution at a position more remote than S to the
reaction center along an alkyl chain yields an inverse KIE of 0.97.1411 D is more electropositive
than H, meaning that D is more electron releasing.!!%'” Due to the difference in electron donating
ability, OD™is more polar than OH™, resulting in a higher OD~ flux towards the positively charged

metal centers.

Each of the previously reported explanations has an inverse KIE with a value c.a. 0.9.
However, our observations of the KIE on Ni and Co for the OER indicate a value much lower at
0.5. At this point, it is not possible to distinguish between the different origins of the inverse KIE
as it applies to the OER but the relatively large inverse KIEs that we report here might suggest that

multiple effects could be present, as has been demonstrated in other systems.>%114

4.3.6. Mechanistic implications for the OER

Next, we evaluate possible OER mechanisms in the context of the inverse KIE based on
the many OER mechanisms which have been proposed in literature.!'! The lack of a primary
normal KIE indicates that O-H or O-D bonds are not cleaved during the RDS of the OER. Instead,
by applying the rationales presented in Section 4.3.5, the observed inverse KIE suggests that the
RDS involves forming or breaking of a bond (1) without a direct involvement of H or D, (2) within
the vicinity of an OH or OD moiety, and/or (3) with a change of the metal center or the bound

oxygen atom from a less hybridized state to a more hybridized state.
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The question of whether oxygen contained in the metal oxide surface participates directly
in the formation of molecular Oz is still controversial. Therefore, in literature, there are two
categories of mechanism, one only focusing on the adsorbed species and ignoring metal oxides on
the surface, and the second involving the evolution of metal oxides during the catalytic cycle. The
observation of an inverse KIE indicates that there must be bond breaking/forming with a proton
adjacent. Thus, the reaction of weakly adsorbed species, particularly OH™ might not be strong
enough to show effects on KIE of the OER. Metal oxyhydroxide, which is widely accepted as the
active material for the OER, should be the starting species in the OER catalytic cycle. In

consideration of this information, we believe that one feasible pathway for OER is as follows:
M(II)O(OH) + OH™ — M(IV)O(OH), + e~ (1)
M(IV)0(OH), — [M(IV)O(OH),]* + e~ (2)
[M(IV)O(OH),]* + 20H™ - [M(IDO]* + 0, + 2H,0 +2¢~ (3)
[M(IIDO]* + OH~ — M(II)O(OH) (4)

Scheme 4.2. An OER mechanism that involves metal oxides (M = Ni or Co).181%%118 A plausible
RDS is denoted in red. A proton that imparts an inverse KIE on the adjacent bond forming or

breaking site is denoted in green.

Scheme 4.2 shows an OER mechanism that involves the addition of a OH™ to the metal
center coupled with electron transfer, a so-called electrochemical-chemical (EC) step, which
changes the geometry and the coordination number of the metal center.'®199118 The expected Tafel
slope for step 1 is 60 mV/dec, which is consistent with the ~54 mV/dec Tafel slope observed
experimentally. Step 1 is a plausible RDS because this EC step involves the formation of a M-O

bond next to an existing OH moiety, which provides the steric crowding required for the observed
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inverse KIE.®%19 We emphasize that the new data we provide here does not uniquely specify the
mechanism of the OER on Ni and Co, but certainly provides constraints consistent with Eqs 1-4
above. For example, the results from our KIE studies cannot differentiate between the mechanism
with a coupled EC step in concert and the mechanism with sequential electrochemical (E) and
chemical (C) steps in tandem. It is noteworthy to point out that a flip in the order of the reaction,
i.e. a C step followed by an E step, would not yield the observed Tafel slope regardless of whether
C or E is rate-limiting.!*° Step 2 is a E step that does not satisfy the KIE requirement.*?° A rate-
limiting E step preceded by a EC step would result in a Tafel slope different from the
experimentally observed value.! Step 3 cannot be the RDS because it contains a deprotonation
step and direct cleavage of an O-H bond should give a measurable normal KIE.*® Step 4 is not a

RDS because it involves the addition of a OH™ to M without neighboring OH functionalities.
M(II)O(OH) + OH™ — M(IV)O(OH), + e~ (5)
M(IV)O(OH), - [M(IV)O]*H,0, + e~ (6)
[M(IV)O]*H,0, + 20H™ = [M(I)O]* + 0, + 2H,0 + 2~ (7)
[M(IIDO]* + OH~ — M(II))O(OH) (8)

Scheme 4.3. An OER mechanism that entails a H20> intermediate species. 3919 A plausible RDS
is represented in red. A proton that imparts KIE on the adjacent bond forming or breaking site is

represented in green.

Scheme 4.3 shows an intriguing pathway that invokes the involvement of a H20:
intermediate.81%1%° Analogous to step 1 in Scheme 4.2, step 5 in Scheme 4.3 is a plausible RDS
because the formation of a M-O bond close to an existing OH group fits the criteria required to

yield an inverse KIE and the observed Tafel slope.®® Similar to step 2 in Scheme 4.2, step 6 in
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Scheme 4.3 is likely not rate-limiting because the step involves a single electron transfer which is
not consistent with the results from both the KIE study and the Tafel slope analysis. Step 7 includes
a deprotonation step, and step 8 entails the addition of a OH™ to M without neighboring OH

functionalities. Therefore, the likelihood of steps 7 and 8 to be rate-limiting is low.
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Figure 4.12. Rotating ring-disk electrode voltammograms recorded using a Ni disk and a Pt ring
in 1 M NaOH at 1600 r.p.m. (a) disk current density at a scan rate of 10 mV/s, and (b) ring current

at constant 1.3 V vs. RHE.

A question remains as to whether the H202 generated in situ stays bound on the catalyst
active site. A release of H20: likely results in a change of the metal center from a more hybridized
state to a less hybridized step, which would lead to a normal KIE if it was the RDS.%® To further
investigate the possibility of H2O- dissolution, we performed rotating ring-disk electrode (RRDE)
experiments using a Ni disk and a Pt ring to detect any free peroxide produced during the OER.
Figure 4.12 shows that over a wide range of Ni electrode potentials from 1.0 V to 1.7 V vs. RHE
involving the oxidation of Ni and water, no H20. was detected as evidenced by the lack of ring
current at the Pt ring held at 1.3 V vs. RHE. This result indicates that no H>O: is released into the

bulk solution as a side product suggesting that any mechanism involving H2O generation (such
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as that suggested in Scheme 4.3) must require the H20> bound adduct to be oxidized efficiently so

that it is not released.

"OH —> (OH)yqs + € (1)

(OH)ags + OH — (0 )ags + H20 (2)
(07 )ads —> (Olaus *+ € (3)
2(07)ags —> Oy (4)

Scheme 4.4. An OER mechanism focusing on the adsorbed species.¢87

We further examined a mechanism that focuses primarily on the adsorbates and applied the
insights we gained from this KIE study to exclude this mechanism as a plausible OER mechanism
on Ni and Co electrodes (see Scheme 4.4). Given the evidence presented here, Schemes 4.2 and
4.3 are plausible mechanisms for the OER on Ni and Co catalysts. Both schemes satisfy the main
requirements of the observed Tafel slope and an inverse KIE, namely the forming or breaking of

a bond that is adjacent to OH/OD with a change from a less to a more hybridized state on the metal

or oxygen center but that does not involve H or D directly.

4.4. Conclusions

In this report, we investigated the effect of deuteration on the OER activities of NPM
catalysts. We found inverse KIEs of 0.6 and 0.5 for OER on Ni and Co, respectively. The KIE
results suggest that a rate-limiting bond breaking or forming event, which does not involve the
direct cleavage of an O-H bond, likely occurs at an occluded site on the electrode surface with
adjacent OH functionalities. Additionally, our RRDE experiments suggest that H>O is not
released as a stable intermediate during OER. Our results, including KIE experiments, Tafel slope

analyses, RRDE data, and Raman spectroscopy, provide important constraints for the nature of the
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RDS during the OER, which must be considered during the search for more competent OER
catalysts. The mechanistic insight gained from the KIE in our OER experiments will be useful to
the broad community interested in both the fundamental aspects of PCET processes and the

development of active, robust, and inexpensive electrocatalysts.

45. References
1) Costentin, C.; Robert, M.; Savéant, J.-M. Chem. Rev. 2010, 110, PR1-PR40.
2 Mayer, J. M.; Rhile, I. J. BBA-Bioenergetics 2004, 1655, 51-58.

3) Hammes-Schiffer, S.; Soudackov, A. V. J. Phys. Chem. B 2008, 112, 14108-

14123.

4) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.;
Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Chem. Rev. 2012, 112,

4016-4093.

(5) Barile, C. J.; Tse, E. C. M.; Li, Y.; Sobyra, T. B.; Zimmerman, S. C.; Hosseini,

A.; Gewirth, A. A. Nat. Mater. 2014, 13, 619-623.
(6) Jiang, J.; Zhang, A.; Li, L.; Ai, L. J. Power Sources 2015, 278, 445-451.
(7 Song, F.; Hu, X. Nat. Commun. 2014, 5, 4477.
(8) Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Mater. Today 2016, 19, 213-226.

9) Mavros, M. G.; Tsuchimochi, T.; Kowalczyk, T.; Mclsaac, A.; Wang, L.-P.;

Voorhis, T. V. Inorg. Chem. 2014, 53, 6386-6397.

100



(10) Laguna-Bercero, M. A. J. Power Sources 2012, 203, 4-16.

(11) Man, I. C.; Su, H.-Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N.
G.; Kitchin, J.; Jaramillo, T. F.; Narskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3, 1159-

1165.

(12) Doyle, R. L.; Godwin, I. J.; Brandon, M. P.; Lyons, M. E. G. Phys. Chem. Chem.

Phys. 2013, 15, 13737-13783.

(13) Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. Int. J. Hydrogen Energy 2013, 38,

4901-4934.
(14) Han, N.; Zhao, F.; Li, Y. J. Mater. Chem. A 2015, 3, 16348-16353.

(15) Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Angew.

Chem. Int. Ed. 2014, 53, 102-121.

(16) Zhang, J.; Xie, Z.; Zhang, J.; Tang, Y.; Song, C.; Navessin, T.; Shi, Z.; Song, D.;

Wang, H.; Wilkinson, D. P.; Liu, Z.-S.; Holdcroft, S. J. Power Sources 2006, 160, 872-891.
(17) Gewirth, A. A.; Thorum, M. S. Inorg. Chem. 2010, 49, 3557-3566.
(18) Lyons, M. E. G.; Brandon, M. P. Int. J. Electrochem. Sci. 2008, 3, 1386-1424.
(19) Lyons, M. E. G.; Brandon, M. P. Int. J. Electrochem. Sci. 2008, 3, 1425-1462.
(20)  Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2, 1765-1772.
(21) Hall, D. E. J. Electrochem. Soc. 1985, 132, 41C-48C.

(22) Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P.

ChemCatChem 2010, 2, 724-761.

(23) Lyons, M. E. G.; Brandon, M. P. J. Electroanal. Chem. 2010, 641, 119-130.

101



(24)

123, 332-336.
(25)
(26)
(27)

(28)

335.

(29)

63-75.
(30)
(31)

(32)

885-892.

(33)

175.
(34)
(35)
(36)

(37)

Miles, M. H.; Kissel, G.; Lu, P. W. T.; Srinivasan, S. J. Electrochem. Soc. 1976,

Godwin, 1. J.; Lyons, M. E. G. Electrochem. Commun. 2013, 32, 39-42.
Rossmeisl, J.; Logadottir, A.; Nagrskov, J. K. Chem. Phys. 2005, 319, 178-184.
Hoang, T. T. H.; Gewirth, A. A. ACS Catal. 2016, 6, 1159-1164.

Jaksic, M. M.; Johansen, B.; Tunold, R. Int. J. Hydrogen Energy 1994, 19, 321-

Behl, W. K.; Toni, J. E. J. Electroanal. Chem. Interfacial Electrochem. 1971, 31,

Yeo, B. S.; Bell, A. T. J. Phys. Chem. C 2012, 116, 8394-8400.
Melendres, C. A.; Xu, S. J. Electrochem. Soc. 1984, 131, 2239-2243.

Desilvestro, J.; Corrigan, D. A.; Weaver, M. J. J. Electrochem. Soc. 1988, 135,

Bewick, A.; Gutiérrez, C.; Larramona, G. J. Electroanal. Chem. 1992, 333, 165-

Ismail, K. M.; Badawy, W. A. J. Appl. Electrochem. 2000, 30, 1303-1311.
Kotz, R.; Neff, H.; Stucki, S. J. Electrochem. Soc. 1984, 131, 72-77.
Peuckert, M. Electrochim. Acta 1984, 29, 1315-1320.

Foelske, A.; Strehblow, H.-H. Surf. Interface Anal. 2002, 34, 125-129.

102



(38) Medway, S. L.; Lucas, C. A.; Kowal, A.; Nichols, R. J.; Johnson, D. J.

Electroanal. Chem. 2006, 587, 172-181.

(39) Pralong, V.; Delahaye-Vidal, A.; Beaudoin, B.; Gerand, B.; Tarascon, J. M. J.

Mater. Chem. 1999, 9, 955-960.

(40) Hillman, A. R.; Skopek, M. A.; Gurman, S. J. Phys. Chem. Chem. Phys. 2011, 13,

5252-5263.

(41) Totir, D.; Mo, Y.; Kim, S.; Antonio, M. R.; Scherson, D. A. J. Electrochem. Soc.

2000, 147, 4594-4597.

(42) Mo, Y.; Stefan, I. C.; Cai, W.-B.; Dong, J.; Carey, P.; Scherson, D. A. J. Phys.

Chem. B 2002, 106, 3681-3686.
(43) Li, X.; Walsh, F. C.; Pletcher, D. Phys. Chem. Chem. Phys. 2011, 13, 1162-1167.

(44) Yau, S.-L.; Fan, F.-R. F.; Moffat, T. P.; Bard, A. J. J. Phys. Chem. 1994, 98,

5493-5499.

(45) Kong, F.; Kostecki, R.; McLarnon, F.; Muller, R. H. Thin Solid Films 1998, 313—

314, 775-780.
(46) Lu, P. W.T.; Srinivasan, S. J. Electrochem. Soc. 1978, 125, 1416-1422.
(47)  Hu, Y.; Scherson, D. A. J. Phys. Chem. B 1997, 101, 5370-5376.

(48) Kowal, A.; Niewiara, R.; Peronczyk, B.; Haber, J. Langmuir 1996, 12, 2332-

2333.

(49) Mo, Y.; Hwang, E.; Scherson, D. A. J. Electrochem. Soc. 1996, 143, 37-43.

103



(50) Birss, V. I.; Elzanowska, H.; Gottesfeld, S. J. Electroanal. Chem. Interfacial

Electrochem. 1991, 318, 327-333.

(51)  Juodkazyté, J.; Sebeka, B.; Stalnionis, G.; Juodkazis, K. Electroanalysis 2005, 17,

1734-1739.

(52) Zhen, C.-H.; Sun, S.-G.; Fan, C.-J.; Chen, S.-P.; Mao, B.-W.; Fan, Y.-J.

Electrochim. Acta 2004, 49, 1249-1255.
(53) Hoang, T. T. H.; Cohen, Y.; Gewirth, A. A. Anal. Chem. 2014, 86, 11290-11297.

(54) Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S.; Boettcher, S. W. Chem.

Mater. 2015, 27, 7549-7558.

(55) Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de

Araujo, J. F.; Reier, T.; Dau, H.; Strasser, P. Nat. Commun. 2015, 6, 8625.
(56) Christensen, N. J.; Fristrup, P. Synlett 2015, 26, 508-513.
(57) Klinman, J. P. FEBS Journal 2014, 281, 489-497.
(58) Nelson, S. D.; Trager, W. F. Drug Metab. Dispos. 2003, 31, 1481-1497.
(59) Gobmez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857-4963.

(60)  Saunders, W. H.; Melander, L. R. Reaction Rates of Isotopic Molecules; Wiley:

New York, 1980.
(61) Conway, B. E.; Salomon, M. J. Chem. Phys. 1964, 41, 3169-3177.
(62) Salomon, M.; Conway, B. E. Ber. Bunsen-Ges. Phys. Chem. 1965, 69, 669-674.

(63) Kirishtalik, L. I. Electrochim. Acta 2001, 46, 2949-2960.

104



(64) Ghoneim, M. M.; Clouser, S.; Yeager, E. J. Electrochem. Soc. 1985, 132, 1160-

1162.

(65) Jaksic, M. M.; Johansen, B.; Tunold, R. Int. J. Hydrogen Energy 1993, 18, 817-
837.

(66) Jaksic, M. M.; Johansen, B.; Tunold, R. Int. J. Hydrogen Energy 1993, 18, 111-
124,

(67) Jaksic, M. M.; Johansen, B.; Tunold, R. Int. J. Hydrogen Energy 1994, 19, 35-51.

(68) Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. Chem. Sci. 2016, 7,
2639-2645.

(69) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and

Applications, 2nd Edition; Wiley: New York, 2000.

(70)  van der Vliet, D.; Strmcnik, D. S.; Wang, C.; Stamenkovic, V. R.; Markovic, N.

M.; Koper, M. T. M. J. Electroanal. Chem. 2010, 647, 29-34.
(71) Tse, E. C. M.; Gewirth, A. A. J. Phys. Chem. A 2015, 119, 1246-1255.
(72)  Weaver, M. J.; Nettles, S. M. Inorg. Chem. 1980, 19, 1641-1646.

(73) Tse, E. C. M.; Barile, C. J.; Kirchschlager, N. A.; Li, Y.; Gewargis, J. P.;

Zimmerman, S. C.; Hosseini, A.; Gewirth, A. A. Nat. Mater. 2016, 15, 754-759.

(74) Tse, E. C. M.; Schilter, D.; Gray, D. L.; Rauchfuss, T. B.; Gewirth, A. A. Inorg.

Chem. 2014, 53, 8505-8516.

(75) Thorseth, M. A.; Letko, C. S.; Tse, E. C. M.; Rauchfuss, T. B.; Gewirth, A. A.

Inorg. Chem. 2012, 52, 628-634.

105



(76) Gao, P.; Gosztola, D.; Leung, L.-W. H.; Weaver, M. J. J. Electroanal. Chem.

Interfacial Electrochem. 1987, 233, 211-222.

(77)  Thorum, M. S.; Anderson, C. A.; Hatch, J. J.; Campbell, A. S.; Marshall, N. M.;

Zimmerman, S. C.; Lu, Y.; Gewirth, A. A. J. Phys. Chem. Lett. 2010, 1, 2251-2254.

(78) Schultz, Z. D.; Feng, Z. V.; Biggin, M. E.; Gewirth, A. A. J. Electrochem. Soc.

2006, 153, C97-C107.

(79) Jaksic, M. M.; Johansen, B.; Tunold, R. Int. J. Hydrogen Energy 1993, 18, 91-

110.
(80) Zhang, Y.; Gao, X.; Weaver, M. J. J. Phys. Chem. 1993, 97, 8656-8663.

(81) Lyons, M. E. G.; Doyle, R. L.; Godwin, I.; O’Brien, M.; Russell, L. J.

Electrochem. Soc. 2012, 159, H932-H944.

(82) Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. J. Am. Chem.

Soc. 2012, 134, 17253-17261.

(83) Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National

Association of Corrosion Engineers: Houston, 1974.

(84) Weaver, M. J.; Tyma, P. D.; Nettles, S. M. J. Electroanal. Chem. 1980, 114, 53-

72.
(85) Frank, H. S.; Wen, W.-Y. Discuss. Faraday Soc. 1957, 24, 133-140.

(86) Boyarkin, O. V.; Koshelev, M. A.; Aseev, O.; Maksyutenko, P.; Rizzo, T. R,;

Zobov, N. F.; Lodi, L.; Tennyson, J.; Polyansky, O. L. Chem. Phys. Lett. 2013, 568-569, 14-20.

106



(87) Lyons, M. E. G.; Cakara, A.; O’Brien, P.; Godwin, L.; Doyle, R. L. Int. J.

Electrochem. Sci. 2012, 7, 11768-11795.

(88) Franks, F. The Physics and Physical Chemistry of Water; Springer: New York,

2012.
(89) Liu, H.; Macedo, E. A. J. Supercrit. Fluids 1995, 8, 310-317.

(90) Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. J. Am. Chem. Soc. 2012,

134, 11235-11242.
(91) Solomon, E. I.; Augustine, A. J.; Yoon, J. Dalton Trans. 2008, 3921-3932.

(92) Desilvestro, J.; Corrigan, D. A.; Weaver, M. J. J. Phys. Chem. 1986, 90, 6408-

6411.

(93) Oblonsky, L. J.; Devine, T. M. J. Electrochem. Soc. 1995, 142, 3677-3682.

(94) Yeo, B.S.; Bell, A. T. J. Am. Chem. Soc. 2011, 133, 5587-5593.

(95) Melendres, C. A.; Paden, W.; Tani, B.; Walczak, W. J. Electrochem. Soc. 1987,
134, 762-763.

(96) Kostecki, R.; McLarnon, F. J. Electrochem. Soc. 1997, 144, 485-493.

(97) Johnston, C.; Graves, P. R. Appl. Spectrosc. 1990, 44, 105-115.

(98) Zou, S.; Chan, H. Y. H.; Williams, C. T.; Weaver, M. J. Langmuir 2000, 16, 754-
763.

(99) Carter, R. E.; Dahlgren, L. Acta Chem. Scand. 1969, 23, 504-514.

(100) Bartell, L. S. J. Am. Chem. Soc. 1961, 83, 3567-3571.

107



(101) Bartell, L. S. Tetrahedron Lett. 1960, 1, 13-16.

(102) Carter, R. E.; Dahlgren, L. Acta Chem. Scand. 1970, 24, 633-643.
(103) Melander, L.; Carter, R. E. Acta Chem. Scand. 1964, 18, 1138-1149.
(104) Westheimer, F. H. J. Chem. Phys. 1947, 15, 252-260.

(105) Westheimer, F. H.; Mayer, J. E. J. Chem. Phys. 1946, 14, 733-738.

(106) Mislow, K.; Graeve, R.; Gordon, A. J.; Wahl, G. H. J. Am. Chem. Soc. 1964, 86,

1733-1741.

(107) Mislow, K.; Graeve, R.; Gordon, A. J.; Wahl, G. H. J. Am. Chem. Soc. 1963, 85,

1199-1200.
(108) Soper, A. K.; Benmore, C. J. Phys. Rev. Lett. 2008, 101, 065502.

(109) Juodkazis, K.; Juodkazyté, J.; Vilkauskaité, R.; Jasulaitiené, V. J. Solid State

Electrochem. 2008, 12, 1469-1479.
(110) Bocca, C.; Barbucci, A.; Cerisola, G. Int. J. Hydrogen Energy 1998, 23, 247-252.

(111) Mom, R. V.; Cheng, J.; Koper, M. T. M.; Sprik, M. J. Phys. Chem. C 2014, 118,

4095-4102.

(112) Llewellyn, J. A.; Robertson, R. E.; Scott, J. M. W. Can. J. Chem. 1960, 38, 222-

232.
(113) Shiner, V. J.; Humphrey, J. S. J. Am. Chem. Soc. 1963, 85, 2416-2419.

(114) Collins, C. J.; Bowman, N. S. Isotope Effects in Chemical Reactions; Van

Nostrand Reinhold: New York, 1970.

108



(115) Jewett, J. G.: Dunlap, R. P. J. Am. Chem. Soc. 1968, 90, 809-810.

(116) Clough, S. A.; Beers, Y.; Klein, G. P.; Rothman, L. S. J. Chem. Phys. 1973, 59,

2254-22509.

(117) Brittain, A. H.; Cox, A. P.; Duxbury, G.; Hersey, T. G.; Jones, R. G. Mol. Phys.

1972, 24, 843-851.

(118) Cibrev, D.; Jankulovska, M.; Lana-Villarreal, T.; Gémez, R. Int. J. Hydrogen

Energy 2013, 38, 2746-2753.
(119) Fletcher, S. J. Solid State Electrochem. 2008, 13, 537-549.

(120) Bakac, A. Physical Inorganic Chemistry: Reactions, Processes, and Applications;

Wiley: New Jersey, 2010.

109



Chapter 5
Nano Porous Copper Films by Additive-Controlled Electrodeposition:

CO2 Reduction Catalysis

The work in this chapter was accomplished in collaboration with Sichao Ma, Jake I. Gold,

Professor Paul J.A. Kenis, and Professor Andrew A. Gewirth.

5.1. Introduction

In a transition from fossil fuels to renewable energy, electrochemical energy conversion
and energy storage play a critical role. A key challenge to commercializing electrochemical energy
conversion and storage systems is developing electrocatalysts with low cost, high activity, and
high stability.! Many studies have focused on designing and controlling morphology and
compositions of either bulk catalyst (foil, disk, foam)?* or nano particle catalyst**’. While a bulk
catalyst is easy to obtain, its activity is low due to the intrinsically small active surface area.
Nanoparticles, while useful for schemes that seek to minimize precious metal usage and increase
active surface area, are harder to fabricate, and require a binder when utilized in a real electrolyzer,
the presence of which can inhibit reactivity, particularly when accompanied by substantial gas

and/or product evolution.®®

Recently, we fabricated Ni and NiFe catalysts for the oxygen evolution reaction (OER) by
electrodepositing these materials in the presence of 3,5-diamino-1,2,4-triazole (DAT) as a
deposition additive. The resulting nanostructured electrodeposit is a very active catalyst for

OER.% However, these ‘additive-controlled’ electrodeposited Ni and NiFe films do not exhibit a
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well-defined morphology because the electrodeposition process occurs simultaneously with
vigorous H> evolution. We wondered whether our electrodeposition method could be used to
control the morphology of a nanostructured film produced under gentler conditions. We also
wondered whether our electrodeposition method could be suitable for other transition metals

exhibiting electrocatalytic activity.

A promising transition metal for both electrodeposition and electrocatalysis is Cu. Cu has
long history of electrodeposition in microelectronics contexts.!2  Cu is also used as an
electrocatalyst for CO, and NOs™ reduction.®*?? Substantial effort has been extended to fabricate
Cu nanoparticles and Cu foams, some of which exhibit high catalytic activity for CO-
reduction.2®2 While nanoparticles exhibit high active surface area hence high activity, their
activity and stability are limited by the requirement for a binder to adhere the particles to an
electrode. Metal foams with high porosity could be a way to provide high surface area catalyst
without requirement of any binder.?® However, most metal foams are made by either a
metallization process on a foam substrate,?* or by electrodeposition using hydrogen bubbles as the
template.2232526 Metal foams made by metallization on foam substrate are expensive and limited
to the structures of available foam substrates. While the hydrogen bubble templating method has
advantages of simplicity and low cost, the presence of vigorous hydrogen bubble evolution and
the fast rate of deposition under high potential or current during foam synthesis puts constraints
on the tunability of the film structure, and potentially compromises film stability, particularly at
high loading. 2% 23 A new method of fabricating metal foams for electrocatalysis applications is

desired.

Electrochemical reduction of CO: into value-added chemicals has attracted increasing

attention for decades due to its potential to facilitate a sustainable redox cycle for intermittent
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renewable energy conversion and storage.®*%?° Among the many catalysts for CO2 reduction, Cu
is the only known metal catalyst able to generate various products — particularly hydrocarbons and
oxygenates -- and tune their relative quantities and Faradaic efficiencies (FEs) by changing
structure and morphology of Cu catalysts.36192027-32 Recently, Cu nanofoams have been reported
that showed interesting results i for CO reduction.? These Cu nanofoams exhibited enhancement
in Faradaic efficiency of HCOOH (up to 37%) than those obtained from smooth Cu. However, the
main product is Hz (50-90% FE), leading to a low total CO; reduction efficiency to desirable
products of 10-50%. While these Cu nanofoams were shown to be highly porous, the total observed

reduction current density was only 2-2.6 times higher than those obtained from smooth Cu.?

In this work, we exploit our electrodeposition method to synthesize Cu films with high
surface area and tunable morphology. We evaluate the ability of these films as catalysts for CO>
electrodreduction. Remarkably we find these films to be among the most active for CO> reduction

on a Cu catalyst.

5.2. Experimental section
5.2.1. Electrodeposition of metal

The Cu plating baths were made from 0.1 M CuSQO4.5H20 and 10 mM of additive, pH
adjusted between pH 1-3 by using H>SO4. Additives tested were 3,5-diamino-1,2,4-triazole
(DAT), dodecyltrimethyl ammonium bromide (DTAB), and thonzonium bromide (ThonB -
hexadecyl-[2-[(4-methoxyphenyl)methyl-pyrimidin-2-ylamino]ethyl]-dimethylazanium
bromide), all of which were obtained from Sigma Aldrich. Cu was electrodeposited

galvanostatically at a constant current density ranging from 1 - 4 mA/cm? until a final deposition
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charge was reached (typically 2 C/cm? unless otherwise stated). Pt wire was used as the counter
electrode. The counter electrode was separated from the working electrode by using an ion
exchange membrane (Fumatech® FAP-375-PP) in a two compartment electrochemical cell to avoid
oxidation of additives at the counter electrode. A ‘leakless’ Ag/AgCl (eDAQ) electrode was placed

near the working electrode to measure the potential.

Substrates for electrodeposition were cleaned just before used. Au (200 nm thickness,
fabricated on one side of glass coverslips by e-beam deposition) was rinsed with Milli-Q water,
and then flamed under H». Cu foil (Sigma Aldrich, thickness 0.125 mm, purity 99.9) was rinsed
thoroughly with Milli-Q water. Carbon paper (GDL, Sigracet 35 BC, lon Power) was activated
either by immersing in conc. HNO; for 1h or sputter coated with ~ 10 nm of Cu (~ 0.01 mg/cm?).
Carbon paper pretreated by both methods exhibits similar morphologies and electrochemical

activities.

For flow cell electrolysis experiments, Cu was electrodeposited on carbon paper and used
as a gas diffusion electrode. However, HNO3s treatment makes both side of the carbon paper
become hydrophilic and allows liquid to easily pass through, which causes flooding of electrolyte
into the gas chamber. Thus, the carbon paper was sputter coated with Cu instead of treated with
HNO3 before electrodeposition. Then 2 C/cm? of Cu was electrodeposited on the 1 x 2.5 cm?

section of carbon paper.
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5.2.2. Materials characterization

The amount of Cu electrodeposited was measured by ICP-OES (PerkinElmer 2000 DV
optical emission spectrometer). Scanning electron microscope (SEM) images were obtained from
a Hitachi A-4700 high resolution microscope. X-Ray Photoelectron Spectroscopy (XPS) was
performed with a Physical Electronics PHI 5400. The thickness of the electrodeposited film was

measured by surface profilometry (Sloan Dektak).?

5.2.3. Electrochemical measurements for CO> reduction

Cyclic voltammetry (CV), chronoamperometry (CA), and chronopotentiometry (CP)
evaluating COz reduction were performed at room temperature using a CHI 760D or Biologic SP-
150 potentiostat with a Pt mesh counter electrode and an Ag/AgCl reference electrode. Before the
electrochemical measurement, the electrolyte (1 M KHCO3) was saturated with CO». The Ag/AgCl
reference electrode was calibrated before each experiment with a normal hydrogen electrode
(NHE) in 1M HCIOa4. Potentials are reported with respect to reversible hydrogen electrode (RHE),
unless otherwise stated. All voltammetry data was IR corrected. Flow cell measurements and

product characterization were performed as previously reported.®

5.3.  Results and discussion
5.3.1. Effects of additives on Cu deposition

Figure 5.1a shows CVs obtained from Au substrates in solutions containing 0.1 M CuSO4
at pH 2 with and without 0.01 M of different additives. In absence of the additive, the voltammetry
shows a strong cathodic feature commencing at ~ 0.11 V vs. RHE associated with the onset of
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bulk Cu deposition. Upon addition of 0.01 M DAT, Cu deposition is inhibited until a potential of
-0.18 V vs. RHE is reached (n = 0.25 V). The reverse scan exhibits negligible hysteresis, showing
that the inhibitor does not break down at negative potentials. At positive potentials, voltammetry
obtained in absence of DAT shows a substantial anodic feature associated with oxidation of the
deposited Cu. Addition of DAT leads to a slightly higher overpotential for Cu oxidation, indicating

that DAT is adsorbed on the surface at these potentials.
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Figure 5.1. Influence of additives (a) on the CV of Cu redox reaction (scan rate 10 mV/s), and (b)
on the Chronopotentiometry at — 4 mA/cm? of a Au substrate in a copper electrodeposition bath of

0.1 M CuSOq at pH 2 with and without 0.01 M additives (DAT, ThonB, DTAB).

Figure 5.1b shows the electrodeposition profile of Cu on Au substrates in solutions
containing 0.1 M CuSO4 at pH 2 with and without DAT for 500 seconds. A deposition current of
— 4 mA/cm? was maintained at ~ -0.2 V without DAT and -0.5 V vs. RHE with DAT. CP and CV
both indicate that DAT inhibits Cu deposition. ICP-OES data shows that the Coulombic efficiency
of Cu electrodeposited in the additive-free solution is ~ 80 %, while the Coulombic efficiency of
Cu electrodeposited with DAT is 44 + 5 %. The low deposition efficiency of solutions containing

DAT once again indicates that DAT inhibits Cu electrodeposition.

115



a) Cu without additive

c)Cu-DTAB d) Cu - ThonB

Figure 5.2. SEM of Cu electrodeposited (a) without additive, (b) with DTAB, and (c) with ThonB.

Upon the addition of ThonB and DTAB, Cu deposition is inhibited at an overpotential of
0.35V and 0.15 V, respectively.® ThonB exhibits the strongest inhibitive effect on Cu deposition
among the three additives, showing both a large overpotential and low deposition/stripping current
density. In contrast, DTAB exhibits a higher current density and a lower overpotential for

deposition onset.

Figure 5.2 shows SEM micrographs of Cu films electrodeposited with and without additives.
Interestingly, while the Cu films electrodeposited with DAT (Figure 5.2b) exhibit a rough and
porous surface, Cu films electrodeposited without additive (Figure 5.2a), with DTAB (Figure

5.2¢), and with ThonB (Figure 5.2d) all exhibit smooth surfaces. In the presence of DTAB and
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ThonB, Cu films exhibit an even smoother surface than in the absence of additives. All three
additives inhibit Cu deposition, but ThonB and DTAB apparently act as deposition levelers as
expected,® while DAT addition results in a rough surface. Interestingly, while UV-vis spectra
obtained from solutions containing DAT and Cu exhibit the presence of what is likely a Ligand-
to-metal Charge Transfer (LMCT) band confirming DAT-Cu coordination, such a feature is not
present for solutions containing either DTAB or ThonB and Cu (Figure 5.3). The more facile
coordination between Cu and DAT likely results from the presence of N coordination sites in DAT
that are absent in the other two additives. Thus, while all three additives inhibit Cu deposition,

only DAT coordinates to Cu, inhibiting surface diffusivity.

| I' | ! | ! | ! | ! |
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Figure 5.3. UV-Vis spectra of 10 mM CuSO4 and 10 mM additive (DAT, or DTAB, or ThonB)
solutions.
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5.3.2. Effects of pH and deposition current on electrodeposition of Cu with DAT

00—
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Figure 5.4. Influence of pH on deposition of Cu on Au substrate in electrodeposition bath

containing 0.1 M CuSOs + 0.01 M DAT at i = -4 mA/cm?.

In order to evaluate the effect of DAT protonation on Cu electrodeposition, we examined
Cu deposition with DAT at different pH values. Figure 5.4 shows the electrodeposition profile of
Cu on Au substrates in solutions containing 0.1 M CuSO4 and 0.01M DAT atpH =1, 1.5, 2, 2.5,
and 3, values less than the pKa of DAT = 4.43.3* Increasing the pH from 1 to 3 resulted in an
increase of ~ 0.9 V in deposition potential. This phenomenon suggests that inhibition of DAT
increases with increasing pH. A solution of 0.1 M CuSO4 and 0.01M DAT at pH 1 exhibits a blue
color similar to that found in a solution containing CuSO4 without DAT. As the pH is raised from
pH 1 to pH 3, the color of the solution changes from blue to green. Additionally, the solution starts
to become cloudy at pH 3, indicating the presence of precipitates in the solution. Thus, the
increased inhibition of DAT with increasing pH likely results from more facile formation of Cu-
DAT complexes, a result corroborated by UV-vis spectroscopy (Figure 5.5). Deposition solutions

at pH higher than 3 did not yield reproducible and uniform deposits.
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Figure 5.5. UV-Vis spectra of 10 mM CuSO4 and 10 mM DAT solutions at different pHs.

Figure 5.6 shows SEM micrographs of Cu electrodeposits obtained with DAT at (a) pH 2.5
at -4 mA/cm?, (b) pH 2.5 at -8 mA/cm?, (c) pH 1.5 at -4 mA/cm?, (d) pH 1.5 at -8 mA/cm?, (e) pH
1 at -4 mA/cm?, and (f) pH 1 at -8 mA/cm?. Clearly different types of deposits are formed as a
function of different pH and current density. At pH 2.5, the Cu deposit exhibits particles of ill-
defined shape at deposition currents of -4 and -8 mA/cm? (Figure 5.6a, b). At pH 1.5 (Figure 5.6c,
d), the deposit exhibits a wire-like shape, with wire diameters of 50-70 nm. At pH 1 the Cu films
exhibit a dot shape (Figure 5.6f) or a mixture of wire and dot shapes (Figure 5.6e). Thus, pH has
a strong effect on nanostructure shape and density of the whole film, a result likely explained by
the differences in Cu coordination at these different pH values. At low pH where the deposited
Cu particles exhibit a well-defined shape (pH 1.5 and pH 1), deposition currents show clear effects
on particle size. Comparing the Cu film deposited at 4 mA/cm?, pH 1 (Figure 5.6¢) and the one
deposited at 8 mA/cm?, pH 1 (Figure 5.6d), the Cu film deposited at 4 mA/cm? shows larger and

longer wire-like particles than the film deposited at 8 mA/cm2. This result suggests that higher
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deposition currents increase the nucleation density of Cu, resulting in smaller size Cu

nanostructures.®

c) pH 1.5 at -4 mA/cm?

—rcam e

e) pH 1 at -4 mA/cm?

=W
W

.1 M CuSO4 and 0.01M DAT solution at
(a) pH 2.5 at -4 mA/cm?, (b) pH 2.5 at -8 mA/cm?, (c) pH 1.5-2 at -4 mA/cm?, (d) pH 1.5-2 at -8

mA/cm?, (e) pH 1 at -4 mA/cm?, (f) pH 1 at -8 mA/cm?.

The mechanism by which DAT modifies the electrodeposition process to yield the rough

and porous Cu surfaces observed can be explained by invoking a diffusion-limited aggregation
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(DLA) process,*®-8 similar to what we reported for NiDAT and NiFeDAT deposits recently.’® In
the Cu case, DAT binds to the substrate surface, reducing the number of nucleation sites for Cu
deposition, thus initiating roughness. These rough areas experience a high local current density
and grow exponentially, while other areas are still DAT-covered and diffusion inhibited. The
growth of the deposit is further inhibited by the coordination of DAT to Cu, limiting subsequent
diffusion both before and after reduction. As shown above, the inhibition of DAT is controlled by

changing the pH of the deposition solution along with the deposition current density.

In the previously reported NiDAT and NiFeDAT cases,° the high surface roughness arises
as a consequence of both inhibition of electrodeposition by DAT and H> adsorption on the
electrode surface. In the Cu case studied here, however, the high surface roughness involves only
DAT coordination, without formation and adsorption of Hz. The absence of vigorous Hz bubbling
during CuDAT electrodeposition could explain why cracks — clearly in evidence with the NiDAT

and NiFeDAT films!® — are not found in the Cu films reported here.

Through SEM images of the electrodeposited films obtained from different pH and different
deposition current density, we found that by controlling these parameters, we could control the
morphology of the Cu films. When the pH decreases from 2.5 to 1, DAT association to the
substrate surface is weaker resulting in a dense film with larger particle sizes relative to films
deposited at higher pH (Table 5.1). At pH 2.5 (Figure 5.6e and 5.6f), DAT binds strongly on the
substrate surface, resulting in smaller particle size (Table 5.1). However, Cu and Cu oxides formed
at the same time at this pH caused ill-defined shape of the film. At higher current density, the
growth is faster so thinner wire structures are obtained. The morphology of the CuDAT films is

not dependent on substrates.
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5.3.3. Characterization of Cu films
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Figure 5.7. (a) XRD and (b) XPS patterns of Cu-poly, and CuDAT-dot, CuDAT-wire, and

CuDAT-amorphous.

Figure 5.7a shows the XRD patterns of Cu-poly electrodeposited without DAT, as well as
CuDAT-dot, CuDAT-wire, and CuDAT-amorphous, all electrodeposited with DAT. While Cu-
poly, CuDAT-dot, and CuDAT-wire samples show only Cu peaks at 20 = 43.46° (from Cu (111)),
50.62° (from Cu (200)), and 74.40° (from Cu (220)), CuDAT-amorphous samples electrodeposited
at higher pH than other samples show an extra peak at 20 = 36°, which is associated with Cu oxides
(Cu20 and/or CuQ). The presence of Cu oxides in CuDAT-amorphous is also evident from a

series of satellite peaks®®#! in the XPS pattern shown in Figure 5.7b.

The Cu peaks in XRD patterns of CUuDAT samples are broader and lower intensity than
Cu-poly sample, indicating that CUDAT samples exhibit a smaller crystallite size than Cu-poly.
The specific crystallite size of each sample, determined by the Scherer equation, is summarized in
Table 5.1. The density (loading/ (area x thickness)) of Cu-poly samples is similar to Cu foil. In
contrast, the density of CUDAT-dot samples is ~ 50% of the Cu foil density, while the density of

CuDAT-wire and CuDAT-amorphous is ~ 18% of that of Cu foil. The electro-active surface area
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of the different Cu samples was measured by using Pb underpotential deposition (PbUPD) to form
a conformal coat on the accessible Cu deposit.*>#* The results (Table 5.1) show that the Cu-poly
sample electrodeposited without DAT exhibits a PbUPD charge similar to that from Cu bulk
samples, i.e., the electro-active surface area is close to the geometric area.*® The CUDAT samples
exhibit a higher active surface area than Cu-poly, while the CuDAT-wire samples exhibit the

highest active surface area among tested samples, around 7 times higher than the Cu-poly samples.

The low density and high surface areas found for the CuDAT samples suggest that they
could be considering thin metallic foams. However, pore density and pore size are difficult to
determine for these materials. The active surface area of these materials is significantly higher
than their geometric area, suggesting that these materials are open-cell foams, which allow gas and

electrolyte to transfer through the material to interact with deeper layers.

Table 5.1. Parameters of Cu samples obtained from 0.1 M CuSO4 deposition baths.

DAT ldepo Loading® | Thickness? Density®| Crystallite | _4active s
Name mM pH m,g\/(:m2 Morphology mg/cmg pm glcm? / siz>(/e4 nm | Ageometric
Cu foil - - smooth - - 8.96 - 1
Cu-poly - 20| -4 smooth 0.53+0.03 | 0.60+0.05 | ~.8.8 19.5#3.0 | ~1
CUDAT- 10 25| -4 amorphous | 0.29+0.04 | 180+0.25 | ~ 1.6 2.2+15 ~6
amorphous
CuDAT-dot | 10 1.0 -8 dot 0.31+0.03 | 0.70+0.10 | ~4.4 9.5+13 ~5
CuDAT-wire | 10 15|-4 wire 0.28+0.03 | 1.75+0.20 | ~1.6 4.6+9 ~7

! Loading measured by ICP-OES

2 Thickness of electrodeposited film was measured by surface profilometry

% Density was calculated from loading per cm? and thickness of the film

4 Crystallite size was calculated from XRD patterns using the Scherer equation

® Active surface area was calculated from Lead UPD experiments
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5.3.4. CO:- reduction reaction activity of Cu films in H-cell

o
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Figure 5.8. CV in H-cell at a scan rate 50 mV/s (iR corrected) in 1 M KHCO3 saturated with CO>
(@) from Cu foil, Cu-poly electrodeposited without DAT, CuDAT-dot, CuDAT-amorphous and
CuDAT-wire; and (b) Cu foil, Cu film electrodeposited without DAT, and CuDAT-wire samples

with a deposition charge of 1 C/cm?, 2 C/cm?, 4 Clcm?.

Open-cell metallic foam is known to increase the catalytic activity of electrochemical
systems due to their high surface area and permeability.**#> We evaluated the catalytic activity of
our CuDAT samples for CO> reduction reaction. Figure 5.8a shows an iR corrected CV obtained
from Cu and CuDAT samples in 1 M KHCOs3 saturated with CO> using an electrochemical H-cell.
Reduction currents are associated with CO> reduction and H. evolution. The Cu foil and Cu-poly
films electrodeposited without DAT (control samples) exhibit low activity in this potential region.
In contrast, CUDAT samples exhibit lower onset and much higher reduction currents than the Cu-
poly or Cu foil. CuDAT samples exhibit reduction onset at around -0.6V vs. RHE, while the onset
of the Cu-poly and Cu foil are around -0.8V vs. RHE. The CuDAT-wire sample exhibits the
highest reduction current density. Stability tests show that CUDAT samples maintain their catalytic

activity for at least 8 hours (Figure 5.9).
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Figure 5.9. Stability test of Cu electrodeposited without DAT, CuDAT-dot and CuDAT-wire at

30mA/cm? in 1M KHCOj3 continuously sparged with CO,.

The increased activity of the CUDAT samples compared to the Cu-poly sample might be
explained by the increase in surface area of the catalysts. In particular, the current density exhibited
by the CuDAT-wire sample is 6 times (at low potential) to 9 times (at high potential) larger than
the current density from Cu-poly. The overall increase is consistent with the Pby,d measurements
where the active surface of the CUDAT-wire sample is shown to be 7 times larger than that of the
Cu-poly. The small mismatch here suggests that (a) the current densities of the catalysts are
dependent on not only surface area, but also on diffusion of CO; in and products out of catalyst
(which is different with different catalysts and different at different potentials) and/or (b) Pbypd is
not a perfect method with which to measure surface area for porous materials (In particular, Pb
diffusion is slow and the lower Pb concentration in confined areas might result in a shifting

potential for upd).4®

Next we evaluated the effects of Cu loading on the CO> reduction rate. Figure 5.8b shows
that a Cu-poly electrodeposited without DAT and Cu foil both exhibit similar CO2 reduction

activity, indicating that CO> reduction is a surface process and independent of Cu film thickness.
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However, the CO> reduction activity of CUDAT-wire samples is related to the deposition charge,
i.e., Cu loading. Figure 5.8b shows that as the loading is increased (from 1 C/cm? to 4 C/cm?), the
CO2 reduction current density also increases. This behavior suggests that the surface area of the
CuDAT-wire film increases while they maintain porosity and permeability with high loading.
CuDAT-wire reaches -90 mA/cm? at ~ -0.8 V vs. RHE, which is 6-10 times higher than the current

density observed for Cu foam catalysts reported previously.??3

5.3.5. CO:- reduction reaction activity and product distribution of Cu films in a flow cell

To evaluate the gas permeability of the CuDAT film and the relationship between its
catalytic activity and product distribution during CO> reduction, we also tested CUDAT samples
in a flow cell.® Figure 5.10 shows the Faradaic efficiency (FE) and partial current density for total
CO:z reduction and all major products (CO, CzHa, and C2HsOH) using Cu-poly electrodeposited
without DAT, CuDAT-amorphous, CuDAT-dot, and CuDAT-wire in a 1 M KOH electrolyte as a
function of cathode potential. In this study the CuDAT-wire sample exhibits a relatively high total
COz reduction current density as well as partial current density and FE for CO, C2H4, and C.HsOH

at low cathode overpotentials.

Furthermore, CuDAT-wire exhibits a higher total CO> reduction FE and current density
relative to CuDAT-amorphous, CuDAT-dot, and Cu-poly (Figure 5.10a, 5.10b). During CO>
reduction measurements the CuDAT-wire (with high porosity, low density, see Figure 5.11d) little
or no gas bubbles emerged from the electrolyte chamber, suggesting that the CUDAT-wire samples
have good gas permeability for CO. into and products out of the electrolyte chamber. Cu-poly
samples, in which particles do not cover the whole electrode surface (Figure 5.11a), also show

good gas permeability. However, a large portion of the current is associated with H> evolution

126



and non-Faradic processes from that part of the carbon substrate not covered by the Cu-poly
catalyst, leading to low total FE in this case. Both CuDAT-amorphous and CuDAT-dot catalysts
cover the whole electrode surface as a low porosity film (Figure 5.11b and 5.11c). Consequently,
these materials have poor gas permeability, which explains both the low CO> reduction current

and low FE these catalysts relative to the CUDAT-wire films.

Figure 5.10c and 5.10d shows that for all catalysts, CO formation starts at ~ -0.2V and
increases at more negative cathodic overpotentials. The FE for CO of CUDAT-wire and CuDAT-
amorphous reaches a maximum value of ~ 40% at ~ -0.3V vs. RHE, which is much better than that
found for the Cu-poly and CuDAT-dot samples. At potentials < -0.3 V the FE for CO production
decreases while the FEs associated with C2 products including C2H4 (Figure 5.10e, 5.10f) and
C2HsOH (Figure 5.10g, 5.10h) starts to increase. A possible explanation for this trend is that
adsorbed CO is an important intermediate for the formation of C2 products, as has been suggested
previously.518-204748  The FE for C;H4 production (Figure 5.10e) for the CUuDAT-wire catalyst
reaches and maintains a maximum value of 41% at a potential of —0.47V vs. RHE, which is a
higher FE at a smaller overpotential relative to what is observed for the other Cu samples
considered here. The CuDAT-wire catalyst also exhibits the highest FE and current density for
C2HsOH production (Figure 5.109) at lower overpotential than the other catalysts. The high
activity for C2 products of CUDAT-wire is comparable to Cu-Cu oxide nanoparticle catalysts we
reported recently®, and at least one order of magnitude higher than what is found when using other
Cu catalysts under similar potentials and conditions.?33%4% Interestingly, the CUDAT samples
utilized here feature about three times lower Cu loading (~ 0.3 mg/cm?) relative to the loadings
utilized in other Cu systems (typically ~ 1 mg/cm?) suggesting that the mass activity of the CUDAT

systems studied here is very high.>® In particular the mass activity for CO> reduction of CUDAT-

127



wire at -0.65V vs. RHE is ~ 720 A per gram of Cu, which to the best of our knowledge is among

the best mass activities found from a Cu catalyst performing CO> reduction.
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Figure 5.11. SEM of a) Cu-poly electrode

¥

ﬁ‘:!(“‘ @ ', ) ‘ A.. .
posited without DAT, b) CuDAT-amorphous, c)

CuDAT-dot, and d) CuDAT-wire electrodeposited with DAT on carbon paper.

While the enhancement in current density of the CuDAT samples compared to the Cu-poly
sample is related to the larger surface areas of the former, the enhancement in C2 product formation
(both FE and current density) probably can be explained by the effect of ‘nanosize’ CuDAT
particles. The nano porous CuDAT surfaces give rise to steps and edges with low-coordinated Cu
atoms which have been postulated to be more active toward the reduction of CO, to C2 products:
Steps and edges promote adsorption of C1 intermediates and facilitate their dimerization to form

C2 productsl3.19,47,50.52
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5.4.  Conclusion

We developed a facile method to electrodeposit high surface area Cu films onto conductive
substrates. Our method relies on the inhibition of nucleation through the presence of an additive,
DAT, the degree of which is controlled by pH and current density. The films exhibit active areas
many times larger than that found absent the deposition additive. In contrast to porous Cu films
made by exploiting H2 bubbling during electrodeposition, our films exhibit small and stable pores
and the resulting structures are tunable depending on deposition conditions. We showed that the
electrodeposited Cu films exhibit high activity for CO2 reduction, resulting in facile production of
C2Hs and C2HsOH. Moreover, the films are stable and maintain their activity over a several hour
timescale. Mass activity for CO, reduction of CuDAT-wire is as high as 720 A/g at -0.65 V vs.
RHE. While we focused on CO; reduction activity here, the ability to tune the nature of the Cu
electrodeposit raises interesting possibilities to control and enhance the (electro) catalytic activity

of other metals.
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Chapter 6

Nano Porous Copper-Silver Alloys by Additive-Controlled Electrodeposition

for High Selectivity of CO2 Reduction to Ethylene

The work in this chapter was accomplished in collaboration with Sumit Verma, Sichao Ma, Tim
T. Fister, Janis Timoshenko, Professor Anatoly I. Frenkel, Professor Paul J.A. Kenis, and Professor

Andrew A. Gewirth.

6.1. Introduction

CO2, mostly as a result of human activities involving the burning of fossil fuels for
electricity, heat and transportation, has been emitted and increased exponentially in the
atmosphere. The elevated level of CO> in the atmosphere has been linked to many serious
environmental threats including but not limited to global warming, rising sea levels, and more
erratic weather patterns. A common method to decrease the CO> level in the atmosphere is to
capture then sequester it underground or under sea,™ or convert it into value-added chemicals.*
® Another method to minimize the emission of COx is to utilize clean renewable energy such as
wind and solar, which are attracting increasing attention. However, renewable energy output and
energy consumption are intermittent, thus requiring efficient energy conversion and energy storage
systems to be coupled to energy generation. A promising approach to both mitigate CO: levels and
utilize excess electricity from renewable sources is to capture CO> and electrochemically reduce

it to value-added chemicals or synthetic fuels.®®
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While Cu is the only known metal catalyst that is able to generate various products for the
electroreduction of CO2, and it is by far the most active one for generating CoHs and C2HsOH, Cu
is generally unselective. In the past few years, several studies have been focusing on tuning
activities and selectivities of CO. reduction on Cu catalyst by changing composition and
morphology of Cu catalysts.”?° For example, Cu20 or “oxide-derived” Cu catalysts have been
reported to enhance reduction of CO; to C2 products (including C,Hs and C,HsOH).11122L Single
crystal Cu catalysts such as Cu(100)?2 and Cu (100) terrace surface with introduction of Cu(111)
or Cu(110) steps have been also reported to promote ethylene formation.?® Recently, many studies
have reported that addition of other metals in Cu catalysts could promote adsorption of different
intermediates, leading to enhancement in selectivity of CO- reduction toward various products; for
instance, high selectivity toward CO formation on CuAg'® and CuAu*®?°, or HCOOH formation

on CuSn and CuPb,?* or C,HsOH formation on Cuzn.’

In this study, our strategy to enhance C2 production from CO- electroreduction focus on
fabricating CuAg catalyst with nanoporous structure and low Ag contents (<10%) using additive-
controlled electrodeposition method. The CuAg catalyst exhibits wire structure with large active
surface and high selectivity of CO2 reduction to C;Hs (~60% Faradaic efficiency - FE) and

C2HsOH (~25% FE) at relatively low overpotential (~ -0.7V vs RHE).

6.2.  Experimental section
6.2.1. Preparation of catalysts

Cu and CuAg samples were electrodeposited in a plating bath made from 0.1 M

CuS04.5H0 + 10 mM of 3,5-diamino-1,2,4-triazole (DAT), with or without 0.5-1.5 mM Ag2SOs,
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at pH = 1.5 adjusted by using H2SO4. All chemicals were obtained from Sigma Aldrich. Cu was
electrodeposited galvanostatically at a constant current density of 4 mA/cm? until a final deposition
charge of 2 C/cm? was reached unless otherwise stated). Pt wire was used as the counter electrode,
separated from the working electrode by using an ion exchange membrane (Fumatech® FAP-375-
PP) in a two compartment electrochemical cell to avoid oxidation of additives. A ‘leakless’
Ag/AgCI (eDAQ) electrode was placed near the working electrode to measure the potential.

Substrates for electrodeposition were cleaned or pretreated just before used.

For CO- reduction in flow cell measurements, Cu and CuAg were electrodeposited on
carbon paper and used as a gas diffusion electrode. Carbon paper (GDL, Sigracet 35 BC, lon
Power) was activated either by immersing in conc. HNO3 for 1h or sputter coated with ~ 10 nm of
Cu (~ 0.01 mg/cm?) before the electrodeposition step. Carbon paper pretreated by both methods
exhibits similar morphologies and electrochemical activities. However, the HNOgz treatment makes
both side of the carbon paper hydrophilic, allowing liquid transport through the paper, which
occasionally results in flooding of electrolyte into the gas chamber. Thus, the carbon paper coated
with Cu was used as the substrate, then 2 C/cm? of Cu or CuAg was electrodeposited on the 1 x

2.5 cm? section of the coated carbon paper.

6.2.2. Materials characterization

The amount of Cu and Ag electrodeposited was measured by using a ICP-OES
(PerkinEImer 2000 DV optical emission spectrometer). Scanning electron microscope (SEM)
images were obtained from a Hitachi A-4700 high resolution microscope. X-Ray Photoelectron

Spectroscopy (XPS) was performed with a Physical Electronics PHI 5400. The %Ag in the CuAg
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samples was measured by using Energy Dispersive Spectroscopy (EDS) during SEM and by using

XPS.

X-ray absorption spectroscopy was carried out at sector 9 beamline sector (BM) at the
Advanced Photon Source at Argonne National Laboratory with a beam cross section of 2.6 x
0.75 mm. Samples were studied ex situ by layering 12 sheets of carbon paper electrodeposited
with sample. All measurements were recorded in transmission mode using a double-crystal Si
(111) monochromator run at 50% detuning and ion chamber detectors filled with a mixture of

He/Ns>.

Pb upd was used to determine electroactive surface areas.?® Measurements were
obtained from electrodeposits on both Au and carbon paper. While the results were similar
between the two substrates, the error in repeat measurements was higher using the carbon paper
relative to the Au substrate, presumably due to the smoother and more reproducible surface

presented by the freshly flamed Au.

6.2.3. CO> reduction in flow cell

Electrochemical measurements and product detection were conducted in flow cell set up
described previously.!! The activity of each catalyst for CO2 reduction was measure by controlling
the cell potential (-1.6 V, -1.75V, -2V, -2.25V, -25V, -2.75V, -3 V, -3.5 V) using an Autolab
PGSTAT-30, EcoChemie potentiostat. The electrolyte was 1 M KOH. Potentials were reported
with respect to reversible hydrogen electrode (RHE): E (vs. RHE) = E (vs. Ag/AgCl) + 0.209 V +
0.0591 V/pH x pH — nirdrop. The gaseous product stream was sampled automatically and diverted

and analyzed in a gas chromatograph (Thermo Finnegan Trace GC) equipped with both the thermal
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conductivity detection (TCD) and flame ionization detector (FID). The exit electrolyte containing
liquid products was collected and analyzed using *H NMR technique as described previously. 1!
For normal CO: reduction reaction, flow rate of CO, was set at 7 SCCM. For CO: reduction

reaction in the presence of CO, flow rate of CO2and CO were 7 SCCM and 1 SCCM, respectively.

6.3. Results and discussion

6.3.1. Characterization of Cu films

B ; 4}

Figure 6.1. SEM of a) Cu-wire (Og) electrodéosited with DAT, ()Cug-poly (6% AQ)

electrodeposited without DAT, and (c) CuAg-wire (6% Ag) electrodeposited with DAT.

Cu and bimetallic CuAg samples with various quantities of Ag dopant were prepared by
electrodeposition with and without the present of additive DAT. Previously we showed that
electrodeposition of Cu in the presence of DAT at pH = 1.5 leads to a wire-like morphology for
the Cu deposit, shown in Figure 6.1a. We wondered how added Ag might change the deposit
morphology. Figure 6.1b shows a CuAg film (CuAg poly) containing nominally 6% Ag deposited
without DAT in solution. The film exhibits large particles, similar to deposits reported previously.
Addition of DAT to the Cu-Ag plating bath leads to a different morphology. Figure 6.1c shows a

CuAg-wire deposit containing a nominal 6% Ag. The image shows the presence of wire-like
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deposit exhibiting substantial porosity. The wires are approximately a factor of ~ 2 smaller in

diameter relative to the deposit formed from Cu alone.
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Figure 6.2. (a) XRD and (b) XPS patterns of CuAg-poly (6% AQ) electrodeposited without

DAT, Cu-wire (0% Ag) electrodeposited with DAT, and CuAg-wire (6% Ag) electrodeposited

with DAT.

Figure 6.2a shows XRD patterns obtained from CuAg-poly (6% Ag) electrodeposited
without DAT, Cu-wire (0% Ag) electrodeposited with DAT, and CuAg-wire (6% AQ)
electrodeposited with DAT. The XRD shows the presence of mostly metallic Cu with Cu peaks at
20 = 43.46° (from Cu (111)), 50.62° (from Cu (200)), and 74.40° (from Cu (220)). No Ag-related
peaks are found, due to the relatively small amount of Ag present. The CuAg-wire sample also
exhibits a small peak at 20 = 36.95 © associated with the presence of Cu>O. The Cu peaks in XRD
patterns of CuAg-wire and Cu-wire samples are broader and lower intensity than that found in the
Cu-poly sample, indicating that CUAgDAT and CuDAT samples exhibit a smaller crystallite size
than Cu-poly. The crystallite size of CuAg, CUuDAT, CuAgDAT samples calculated from XRD

patterns using the Scherer equation are 21.1nm, 4.6 nm and 3.7 nm respectively, as given in Table

6.1.
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Figure 6.2b shows the XPS patterns obtained from the CuAg, CUuDAT, CuAgDAT samples.
While CuDAT and CuAgDAT show only 2 main peaks of Cu (0), the CuAg poly material exhibits
a series of satellite peaks?28 from CuO, suggesting that CuAg poly contains more oxide (at least
on the surface) than the others. While the XRD reported on the presence of Cu20 for the CuAg

wire sample, peaks associated with Cu(l) are difficult to distinguish from those for Cu(0) in XPS.

Table 6.1. Parameters obtained from Cu and CuAg samples.

Aqctive Crystalline size nm | Loading mg/cm?
Ageometric
CuAg 1.3 21.1 ~0.5
CuDAT 7.3 4.6 ~0.3
CuAgDAT-6%Ag 8.1 3.7 ~0.3

The electro-active surface area of the different Cu and CuAg samples was measured by
using Pb underpotential deposition (PbUPD) to form a conformal Pb coat on the accessible part
of the Cu deposit?®?° The results (Table 6.1) show that CuAg sample electrodeposited without
DAT exhibits an electro-active surface area similar to the geometric area, as expected due to the
large particles seen in the SEM. Alternatively, the Cu wire and CuAg (6%) wire samples exhibit
electro-active surface area 7-8 times larger than geometric area. CuAg wire exhibits ~10% larger

surface area than the Cu samples (Figure 6.1, Table 6.1).

Cu and Ag K-edge EXAFS and XANES spectra and analysis (Figure 6.3 and Table 1) were
utilized to determine the local bonding environment of Cu and Ag in the samples containing Ag.
The data shows that both CuAg-wire and CuAg-poly samples appear to be metallic since both the
XANES spectra and Fourier transforms (FT) of EXAFS spectra for CuAg samples are similar to

those for corresponding metallic foil.
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For CuAg-poly samples, the contribution of Ag-Cu bonds to the total EXAFS spectra is
not significant, and cannot be detected within the uncertainties of our analysis (Figure 6.3). The
structure parameters of CuAg-poly (Table 6.2) that characterize the environment around Ag, as
well as AEq parameter that characterizes the electronic state of Ag atoms within error bars coincide
with those for bulk silver material. Similarly, the average interatomic distances of Cu-Cu are the
same as in bulk copper metal. These findings indicate that Cu and Ag atoms are completely

segregated in the CuAg-poly samples.
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Figure 6.3. Best fit for Ag K-edge and Cu K-edge EXAFS data for CuAg-wire and CuAg-poly

samples and Cu and Ag foils: Fourier transforms (FTs) for experimental and modelled EXAFS

data.
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CuAg-wire, in turn, exhibits Ag-Cu bonds (Figure 6.3) with distance value between those
for pure copper and pure silver (Table 6.2), as expected for alloys. Also the Ag-Ag distance is
slightly reduced in CuAg-wire sample, suggesting at least partial alloying of Ag atoms with smaller
Cu atoms. The average interatomic distance for Cu-Cu is close to those in bulk material, which is

reasonable with large contents of Cu comparing to Ag in the CuAg-wire samples.

Table 6.2. Values of structural parameters for the first coordination shell of Cu and Ag atoms in

CuAg-wire and CuAg-poly samples, obtained from the fits of Cu K-edge and Ag K-edge EXAFS

data.

Ag foil Cu foil CuAgDAT CuAg
AEy (ev), Ag K-edge -8.6(1) - -10.2(4) -8.8(1)
AEp (ev), Cu K-edge -1.1(4) - 0.5(6) -0.4(5)
Nag-Ag 12 11.0(4) 12
Nag-cu - - 2.0(6) 0
Neu-cu - 12 4.6(2) 8.6(4)
Neu-o - - 0.8(1) 0.4(2)
(R)ag-ag (A) 2.864(1) - 2.822(6) 2.858(2)
(Ryagcu (A) - - 2.641(7) ;
(RYcu-cu (A) - 2.537(2) 2.542(4) 2.540(4)
(R)cu-o (A) - - 1.87(1) 1.85(2)
o’ag-ag (A?) 0.0104(2) - 0.0156(8) | 0.0106(1)
o?ag-cu (A?) - - 0.011(4) -
ocu-cu (A?) - 0.0086(2) | 0.0087(5) | 0.0086(4)
c?cu-o (A?) - - 0.003(2) 0.003(5)
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6.3.2. CO2 reduction in flow cell

120 T T T T T T T

L3 1 0H /—- 5
100 | 4 < ol A ]
2 I '\\ | g 50 I /
s 3 80fF Hg E-100F -
3% 4l 7 1% 3 150
[T - - -
g5 °r 7 N 182
2 o L 18 §-200 ]
ow 'E 40 - w - ON o
o 3% ! {0 E-250 F -
& 20 F 1 5 -300fF N
L L (&) L
0 1 N 1 n 1 N 1 _350 1 " 1 " 1 " 1
60 T T T T T T T T T T T T T T
L. e T |d
- I —_\ ] s 0F .
o <
8 40k 1 E /
e z
s { § -0t :
2 — a —
T 20 1 5
& &
S | o 1 8 200 No- T
00 1 n 1 " 1 n 1 o 1 N 1 i 1 N 1
T T T T T T T — _f T T T T
.5: 60 e _ ,_E_ 0 /,___-- -
g T
g -E; 50 | / .
= 40 | — £ L .
& — 5
2 T { &-100} -
g 20t 108 | -
5 i | E-150} -
I“ (J‘ L i
o 0F R .
1 1 1 n 1 n 1 1 i 1 i 1 i 1
o 30 I T T T | T T -~ 1 1 v 1 T 1
B; g . e 0 Lh s
o i K
E Va % 20 | -
g § 40| .
% 10 = =
5 5
:o 1 Eof ;
Q 4
S o0k ] 2 /
Z 5 -80fF -
1 \ 1 \ 1 \ 1 I: 1 . ] . ] . ]
0.8 0.6 0.4 0.2 o 0.8 -0.6 0.4 0.2
Potential vs RHE (V) Potential vs RHE (V)

—=— CuAg-poly —s=—Cu-wire —=— CuAg-wire

Figure 6.4. Faradaic efficiencies and corresponding current densities for (a,b) total CO; reduction,
(c,d) CO production, (e,f) CoH4 production, and (g,h) C2HsOH production from CuAg-poly (6%

Ag) (black), Cu-wire (0% Ag), and CuAg-wire (6% Ag)samples.
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To evaluate the catalytic activity and product distribution during CO2 reduction of Cu and
CuAg samples, we also tested them in a flow electrolysis system. Figure 6.4 shows Faradaic
efficiency (FE) and partial current density for CO- reduction reaction and all major products (CO,
CoHa, and CyHsOH) using CuAg-poly electrodeposited without DAT, Cu-wire (0% AQ)
electrodeposited with DAT and CuAg-wire (6% Ag) electrodeposited with DAT ina 1 M KOH

electrolyte as a function of cathode potential.

Figure 6.4a-b show that, the Cu-wire and CuAg-wire electrodeposited with DAT exhibits
~ 5-6 times higher CO- reduction current densities than that from CuAg-poly electrodeposited
without DAT. This enhancement in activity could be explained by differences in their surface areas
(Table 6.1). Particularly, CO2 reduction current densities of CuAg-poly, Cu-wire and CuAg-wire
at ~ -0.7V are ~ -50 mA/cm?, ~-180 mA/ cm?, and ~-300 mA/ cm?, respectively. Interestingly,
while the active surface area of CuAg-wire is only ~ 10% higher than that of Cu-wire (Table 6.1),
the current density of CuAg-wire is ~ 60% higher than that obtained from Cu-wire. This
phenomenon suggests that differences in active surface area is not the only reason for enhancement

in CO; reduction activity between Cu-wire and CuAg-wire.

Figure 6.4c-d show that for all catalysts, CO formation starts at ~ -0.2V vs. RHE. The FE
for CO production decreases with increases of the FEs associated with C2 products including C2Ha
(Figure 6.4e-f) and C2HsOH (Figure 6.4g-h). A possible explanation for this trend is that adsorbed
CO is an important intermediate for the formation of C2 products, as has been suggested

previously.’81130-32

Figure 6.4e-h show that CuAg-poly samples exhibit lowest Faradaic efficiency and current
density for C, formation among CuAg-poly, Cu-wire and CuAg-wire, which probably can be

explained by the effect of ‘nanosize’ Cu-wire and CuAg-wire particles. The nano porous surfaces
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of Cu-wire and CuAg-wire give rise to steps and edges with low-coordinated metal atoms which
have been postulated to be more active toward the reduction of CO2 to C2 products: Steps and
edges promote adsorption of C1 intermediates and facilitate their dimerization to form C2

prOdUCtS 8,9,31,33-35

Figure 6.4e-h also show that both Cu-wire and CuAg-wire exhibit high Faradaic efficiency
and current density for C, formation. While Cu-wire samples reach 40% FE for C.H4 and 20% FE
for CoHsOH at relatively low potential (~ -0.5V vs. RHE), the FE maintains at this level even at
more negative potential. On the other hand, the CuAg-wire reach the same FE for C2 products at
~ -0.6 V vs. RHE, their FE continuously increases with increasing negative potential.
Consequently, at high negative potential, CuAg-wire exhibits higher activity and selectivity for C2
products (C2H4 and C2HsOH) than those obtained from Cu-wire. Particularly, at ~-0.7 V vs. RHE,
the FE for CoHs4 of CuAg-wire (~ 60%) is higher than that of Cu-wire (~ 40%), and the current
density for C.H4 of CuAg-wire (~180 mA/cm?) is approximately a factor of ~ 2 higher than that
obtained from Cu-wire (~90 mA/cm?). Similarly, at ~ -0.7 V vs. RHE, the FE for C,HsOH of
CuAg-wire (~ 25%) is higher than that of Cu-wire (~ 20%), and the current density for CoHsOH

of CuAg-wire (~80 mA/cm?) is higher than that obtained from Cu-wire (=55 mA/cm?).

6.4. Conclusion

In this work, we developed a facile method to co-electrodeposit high surface area CuAg
alloys, resulting from the inhibition of nucleation through the presence of an additive, DAT.
EXAFS data demonstrated that while Cu and Ag atoms in CuAg-poly samples that are

electrodeposited without DAT are completely segregated, those in CuAg-wire samples are more
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homogeneously mixed. Flow cell experiments show that the CuAg-wire samples exhibit higher
high activity and selectivity of CO> reduction to C2 products (C2Hs and C2HsOH) than CuAg-poly

and Cu-wire samples.
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Appendix A

Experimental procedures and cell designs

A.1. Cantilever fabrication

Cantilevers used for stress measurements (Chapter 2), and for electrochemical experiments
(Chapter 3, 4, 5) were fabricated from glass microscope cover-slips modified on one side by
physical vapor deposition (electron beam deposition or sputter deposition) of Ti (as adhesion layer)
followed by the metal of interest (Au, Ni or Cu). Glass microscope cover-slips were obtained from
Gold Seal No.1, 150 um thick and used without further cleaning. Glass cover-slips were secured

to sample holders by carbon tape.

Figure A.1. Glass microscope cover-slips (Gold Seal No.1, 150 um thick).

Au, Ni and Cu cantilevers were fabricated by electron beam deposition using the “E-beam

evaporator 2” instrument in the Material research lab (MRL). First, Ti, as an adhesion layer
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between glass substrate and the metal of interest, was e-beamed at deposition rate of 0.3 A/s until
reaching 20 nm thickness. Then Au, or Ni, or Cu was e-beamed at rate of 0.3 A/s for first 10 nm,
then increased to 0.5 A/s until the desired thickness was achieved (100-150 nm). After the ebeam
process, cantilevers were cooled down in the deposition chamber for at least 30 minutes before

they were exposed to air (to prevent oxidation process of metal at high temperature).

Pt cantilevers were fabricated by DC magnetron sputter using “AJA Sputter Coater 2”
instrument in MRL with the following parameter: sample height = 30 mm, rotation rate 50 rpm,
Ar gas flow = 3 sccm, baratron gauge pressure =3 mTorr. Ti, as an adhesion layer, was sputtered
at 100 W with 5 mins of pre-sputter (shutter was closed) and 10 mins of sputter (shutter was open).
The thickness of Ti layer was ~ 10 nm. Pt was sputtered at 35 W with 5 mins of pre-sputter and 20
mins of sputter. The thickness of Pt layer was ~ 100 nm. After sputtered, cantilevers were cooled

down in the deposition chamber for at least 30 minutes before they were exposed to air.

A.2. Electrodeposition with DAT additive
A.2.1. Electrodeposition of Ni and NiFe in sulfate bath with DAT additive

Ni, NiFe, and Co were electrodeposited galvanostatically at a constant current density of -
4 mA/cm? until a final deposition charge was reached (typically 2 C/cm? unless otherwise stated).
A 10 sec resting time after passage of each 0.8 - 1 C/cm? was applied in order to minimize
formation of deleterious concentration gradients. Au, Pt, Ni foil, Ni foam, stainless steel, and
Fluorine-doped Tin Oxide (FTO) were used as the deposition substrates. Pt or glassy carbon were

used as counter electrodes and separated from the working electrode by a glass frit in an
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electrochemical H-cell (Figure A.2). A ‘leakless’ Ag/AgCl (eDAQ) electrode was placed near the

working to measure the deposition potential.

L | ‘ =
'\Norking Counte“l!
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Reference
electrode
Rt N
Glass frit

Figure A.2. Electrochemical H-cell with a glass frit for electrodeposition.

Substrates for electrodeposition were cleaned just before used. Au (200 nm thickness,
fabricated on one side of glass coverslips by e-beam deposition) was rinsed with Milli-Q water,
and then flamed under H;. Stainless steel disk was mechanically polished with sand paper,
immersed in 0.1 M H>SO4 for 2 minutes to remove the native oxide layer, and then rinsed
thoroughly with Milli-Q water. Ni foil (Sigma Aldrich, thickness 0.125 mm, purity 99.9%) and Ni
foam (MTI corporation, purity 99.99%, density 346 g/m?, 80-110 pores per inch, average hole
diameter 0.25mm) were immersed in 0.1 M H2SO4 for 2 minutes to remove the native oxide layer,
and then rinsed thoroughly with Milli-Q water. Deposition current was calculated from the
geometric area of each substrate, which was typically ~ 1 cm?. Each deposition bath contained
typically ~ 15 ml solution.

The Ni plating baths were made from 0.5 M NiSO4.6H20 + 0.4 M H3;BOj3 adjusted to pH
3 with H2SO4 and plating was performed either without an additive, or with 4 mM of 3,5-diamino-
1,2,4-triazole (DAT), 10 mM of 3-Amino-1,2,4-triazole (AT), or 30 mM of 1,2,4-triazole-3,4,5-
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triamine (TAT). The Ni and NiFe plating baths were made from (0.5 M - 0.25 M) NiSO4.6H20 +
0.4 M H3BO3 + FeSO4.7H>0 (0 M - 0.25 M), adjusted to pH 3 with H>SO4 and plating was
performed either without an additive, or with 3,5-diamino-1,2,4-triazole (DAT). Concentration of
metal ions (Ni*" and Fe?") in deposition solutions equaled to 0.5 M in total. The Co plating baths
were made from 0.5 M CoS04.7H,0 + 0.4 M H3BO3, adjusted to pH 3 with H2SO4 and plating

was performed either without an additive, or with 4 mM of 3,5-diamino-1,2,4-triazole (DAT).

A.2.2. Electrodeposition of Cu in sulfate bath with DAT additive

Figure A.3. a) Two-compartment cell for CuDAT elecrodeposition, b) Counter electrode chamber
with anion-exchange membrane, c) Carbon electrode taped on a piece of glass slide, d) hooked
pipet to remove bubble trapped between 2 chambers, d) Electrochemical set up for CuDAT

electrodeposition.
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The Cu plating baths were made from 0.1 M CuSO4.5H>0 and 10 mM of 3,5-diamino-
1,2,4-triazole (DAT) additive, pH adjusted between pH 1-3 by using H>SO4. Cu was
electrodeposited galvanostatically at a constant current density ranging from 1 - 4 mA/cm? until a
final deposition charge was reached (typically 2 C/cm? unless otherwise stated). Pt wire was used
as the counter electrode. The counter electrode was separated from the working electrode by using
an ion exchange membrane (Fumatech® FAP-375-PP) in a two compartment electrochemical cell
to avoid oxidation of additives at the counter electrode (Figure A.3). A ‘leakless’ Ag/AgCl (eDAQ)
electrode was placed near the working electrode to measure the potential.

Substrates for electrodeposition were cleaned just before used. Au (200 nm thickness,
fabricated on one side of glass coverslips by e-beam deposition) was rinsed with Milli-Q water,
and then flamed under H». Cu foil (Sigma Aldrich, thickness 0.125 mm, purity 99.9) was rinsed
thoroughly with Milli-Q water. Carbon paper (GDL, Sigracet 35 BC, Ion Power) was activated
either by immersing in conc. HNO3 for 1h or electron beam coated with ~ 10 nm of Cu (~ 0.01
mg/cm?). Carbon paper was used immediately after pretreated either by HNO3 or e-beam or sputter.
Carbon paper pretreated by both methods exhibits similar morphologies and electrochemical
activities.

For flow cell electrolysis experiments, Cu was electrodeposited on carbon paper and used as a gas
diffusion electrode. However, HNO; treatment makes both side of the carbon paper become
hydrophilic and allows liquid to easily pass through, which causes flooding of electrolyte into the
gas chamber. Thus, the carbon paper was sputter coated with Cu instead of treated with HNO3
before electrodeposition. Then 2 C/cm? of Cu was electrodeposited on the 1 x 2.5 cm? section of

carbon paper.
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A.2.3 General notes for electrodeposition with DAT additive to fabricate nanoporous film

Formation of nanoporous deposit from DAT deposition bath could be explained by
diffusion-limited aggregation growth in which nano structures occur when the material accretion
onto the surface is limited by diffusion, and deposition occurs preferentially on protuberances. It
IS importance to avoid the presence of any other factors that could affect diffusion of metal ions in

the deposition bath.

The presence of strong accelerator factors in the deposition bath, such as CI, stirring, and
high temperature, can counter the inhibition effects of DAT and lead to smooth metal film.
Therefore, there should be no heating, stirring solution or moving electrodes during the
electrodeposition process. Deposition solutions after sonicated need to be cooled down to room
temperature before using. A ‘leakless’ Ag/AgCl (eDAQ) reference electrode is used instead of

conventional Ag/AgCI to avoid CI” contamination.

NOs if presenting in the deposition bath will cause the formation of unwanted metal
hydroxides from metal ions near the electrode and OH" produced during NOz™ reduction.
Therefore, glassware for electrodeposition should not be cleaned in HNO3 bath. The glassware
should be cleaned in a bath of H.SO4 with Nochromix for at least 2 hours, then rinsed thoroughly

with DI water and boiling MiliQ water.

Fumatech anion-exchange membrane is used to separate counter electrode from the main
deposition chamber, avoiding DAT to be oxidized at the counter. Fumatech® FAP-375-PP
membrane, which has no counter ion, is used instead of other membranes with CI- or Br™ counter

ions to avoid the contamination.
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