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ABSTRACT 

Nucleic acids, including DNA and RNA, are one of the most important biomacromolecules 

inside the cell. DNA stores genetic information, while RNA has more versatile roles including 

conveying and deciphering genetic information, catalyzing biological reactions, conducting post-

transcriptional regulation, and even storing genetic information. To understand the functioning 

principles of cells and living organisms, it is very important to study DNA- and RNA-involved 

biochemical reactions as well as the molecular mechanisms behind them, which is quite 

challenging due to the small size and high metabolism rate of cells. Thanks to the technology 

advancement in the past several decades, we are able to develop research methods to achieve 

high-rate, high-resolution and high-throughput study on DNA and RNA. Here we developed 

several fluorescence-based high-resolution assays to study DNA and RNA dynamics in vitro and 

in vivo.  

First, we established a single molecule FRET assay to study homodimeric single-stranded 

binding protein (Thermus thermophilus SSB) specifically binding and protecting single-stranded 

DNA during DNA metabolism. With the help of specifically designed DNA constructs and total 

internal reflection microscopy, we discovered that homodimeric SSB showed similar one-

dimensional diffusion and salt-dependent binding mode transition behavior which was confirmed 

for intensively studied homotetrameric SSB, suggesting that those behaviors might be universal 

among SSB homologues from different organisms. 

Second, we developed a live cell RNA labeling and imaging method based on an aptamer-

fluorogen system called “Spinach”, which contains an RNA sequence that binds a fluorogen 

DFHBI and induces its fluorescence. We constructed a Spinach array with tandem Spinach 

repeats and it greatly enhanced the cellular fluorescence signal, and we could easily visualize 

mRNAs in the cell. We further characterized the Spinach RNA imaging method and found that 

either single Spinach or Spinach arrays do not affect RNA transcription, protein translation or 

RNA degradation. Therefore we proposed that aptamer/fluorogen imaging and aptamer array 

construction could be a generalizable strategy for high performance and low perturbation live 

cell RNA imaging.  

ii 



   

Finally, we expanded the research to gene expression regulation. Our research target, sgrS, is a 

bacterial small RNA that regulates several target genes at post-transcriptional level in response to 

sugar-phosphate stress. It is known that sgrS anneals target transcripts via basepairing interaction 

with the guide of Hfq protein. Nevertheless, how individual nucleotides within sgrS sequence 

contribute to the regulation process is not clear. Here we utilized the recently developed Sort-Seq 

method combining fluorescence-activated cell sorting (FACS) and high-throughput DNA 

sequencing to study sequence-dependent sgrS regulation on its primary target, ptsG. We 

constructed a target-reporter system with ptsG 5’ UTR, which is responsible for sgrS annealing, 

fused to GFP, whose expression level is indicated by fluorescence level and is capable of being 

regulated by sgrS. By introducing an sgrS random mutation library, cells show various 

fluorescence levels due to diverse regulation capabilities of sgrS mutants. By sorting the cells 

into different groups based on its fluorescence signal followed by extracting the sgrS mutation 

distribution among sorted groups, we could find out which mutations totally abolished sgrS 

function. Results showed that 2 nucleotides involved in ptsG/sgrS annealing, G176 and G178, 

are extremely significant; other 24 nucleotides are equally significant, but they are involved in 

sgrS binding by Hfq. The study suggested important nucleotides within the sgrS/ptsG annealing 

region, and emphasized the significance of Hfq in maintaining sgrS function.  
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CHAPTER 1 

INTRODUCTION 

1.1 Single-molecule FRET 

1.1.1 FRET 

Förster (or fluorescence) Resonance Energy Transfer (FRET) is the phenomenon where an 

excited fluorescent molecule (the donor) transfers its energy to another fluorescent molecule (the 

acceptor) in close proximity through a dipole-dipole interaction[1]. Due to the non-radiative 

energy transfer, the acceptor could be excited and emit fluorescence. The extent of energy 

transfer, usually described by FRET efficiency or E, can be given by the formula below and is 

usually determined by the distance, the spectral overlap and the relative dipole-dipole orientation 

between the donor and the acceptor molecule. 

𝐸 =
1

1 + (
𝑅
𝑅0)

6
 

In the formula, R indicates the distance between donor and acceptor, R0 is the Förster distance 

dependent on donor-acceptor pair and is the distance at which 50% energy transfer takes place. 

For a typical FRET pair Cy3 and Cy5, R0 is ~60 Å, and the FRET efficiency shows significant 

change as a function of Cy3-Cy5 distance within 4 - 7 nm[2]. Since detectable energy transfer 

for a donor-acceptor pair usually takes place within nanometer range, which is the length scale 

for a lot of biomolecule interaction or intramolecular conformation change to happen, by labeling 

the biomolecules of interest with FRET pairs people are able to study inter- and intra-molecular 

dynamics by measuring the donor and acceptor fluorescence as well as calculating the FRET 

efficiency.  

1.1.2 Single-molecule fluorescence spectroscopy and single-molecule FRET 

Despite its usefulness in biological study, people could only obtain limited information by 

conducting traditional ensemble FRET measurements. Overwhelmed by the big population of 
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molecules, it is very difficult to observe biomolecular conformational changes as molecules are 

not synchronized and only averaged behavior could be observed; moreover, short-lived or rare 

events taking place in the process of conformational change are not easy to be detected. To 

overcome the obstacle, people combined FRET with single molecule techniques[2,3]. Single 

molecule observation allows real-time tracking and manipulation on individual molecules and 

therefore circumvents averaging effect, nor is the molecular synchronization required anymore. 

In addition, single molecule study provides rich information on understanding molecular 

heterogeneity, which has been well appreciated in the past decade. 

Compared to other single molecule techniques, including single molecule tracking, single 

molecule force spectroscopy, etc., single molecule FRET has its particular advantages in 

studying molecular dynamics and interaction[2]. First, single molecule FRET is very useful for 

measuring relative movements between molecules at an extremely small length scale (usually 4 -

7 nm) while maintaining a very high precision, due to the principle of the energy transfer. 

Second, it allows detection of rare and short-lived events which will be undoubtedly 

overwhelmed by the background signal and noise in ensemble measurement. Moreover, single 

molecule FRET is not as vulnerable to system noise sometimes as other single molecule 

detection methods are, because what people ultimately measure is the ratio between donor and 

acceptor fluorescence signal, instead of direct measurement result; in this case some sources of 

system errors such as excitation light source fluctuation, imaging stage drift are less perturbative. 

Until now, single molecule FRET has become one of the very useful ways to thoroughly study 

intramolecular conformation change, molecular dynamics and intermolecular interaction. 

1.2 Single-stranded DNA binding protein* 

Single-stranded DNA binding (SSB) proteins are ubiquitous and found in prokaryotic and 

eukaryotic cells, mitochondria, phages and viruses [4-7]. SSB proteins bind specifically to 

single-stranded (ss) DNA with high affinity in a sequence-independent manner,  protect ssDNA 

from nucleolytic digestion and prevent intrastrand pairing (i.e., hairpin formation), in order to  

___________________________________________ 

*Chapter 1.2 was excerpted from a published work: 

Zhang, J. et al. “Single molecule analysis of Thermus thermophilus SSB protein dynamics on single-stranded DNA” 

Nucl. Acids. Res. doi:10.1093/nar/gkt1316 (2013) 
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keep ssDNA in a suitable conformation for the action of enzymes involved in DNA replication, 

repair and recombination[8].                                                      

SSB proteins are characterized by the presence of structurally conserved oligosaccharide/oligo-

nucleotide binding (OB)-fold domains [9-11] for ssDNA binding. Escherichia coli (Eco) SSB 

proteins have a single OB fold per polypeptide and function as homotetramers. In contrast, 

replication protein A (RPA), the major SSB proteins in eukaryotes, is a heterotrimeric protein 

complex composed of three distinct subunits and contains six OB.  

In addition to ssDNA binding, SSB proteins control the accessibility of ssDNA and can 

physically interact with a variety of cellular genome maintenance proteins, including nucleases, 

helicases, polymerases, DNA damage signaling and strand-exchange proteins [6-8], to stimulate 

their activities. For instance, EcoSSB is able to interact directly with at least 14 other proteins, 

including DNA Polymerase II, III and V, primase, RecQ, RecO, RecJ, RecG, PriA, PriB, 

Exonuclease I and IX, Uracil DNA Glycosylase and phage N4 RNA polymerase [8], bringing 

them to their sites of function. 

1.3 RNA imaging* 

Ribonucleic acids, or RNAs, are biopolymers composed of four types of ribonucleotides, A, U, G 

and C. RNAs play diverse functions in living cells, including delivering genetic information, 

catalyzing chemical reactions and regulating gene expression at multiple levels[12,13]. Recent 

genome-wide analysis has suggested that inhomogeneous RNA localization within different 

cellular compartments might be more prevalent than previously appreciated[14,15], resulting in 

highly localized spatio-temporal modulations in gene expression levels within those subcellular 

compartments. Compared to biochemical approaches, such as northern blot, quantitative reverse 

transcription PCR (qPCR), high-throughput RNA sequencing, etc., direct visualization of RNAs 

by fluorescence imaging allows spatial and temporal RNA tracking and is capable of correlating 

transcription, localization, translation and degradation of RNAs and simultaneously revealing 

___________________________________________ 

*Chapter 3 was excerpted from a published work: 

Zhang, J. et al. “Tandem Spinach array for RNA imaging in living bacterial cells” Sci. Rep. doi:10.1038/srep17295 

(2015) 
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cell-to-cell heterogeneity[16-18]. Nevertheless, unlike imaging proteins, there are not many tools 

for imaging RNAs. Fluorescence in situ hybridization (FISH) utilizes fluorescent dye-conjugated 

oligonucleotides (fluorescent probes) complementary to target RNAs to directly label RNA 

molecules and has been widely applied to accurately quantify the expression level and to localize 

distribution of mRNAs in biological samples[19,20]. Introduction of the fluorescence probes 

usually requires permeabilization of the fixed cell[19]. Alternative delivery methods compatible 

with live cell imaging include microinjection[21,22], electroporation[14], or transfection using 

polycationic molecules such as liposomes and dendrimers[23], and membrane permeabilization 

via cell-penetrating peptides[24] and streptolysin O[25,26]. However, these methods sometimes 

lead to problems such as cell damage, inhomogeneous probe delivery and inefficient probe 

annealing to target RNAs[23]. 

The second type of RNA imaging utilizes indirect labeling and employs fluorescent fusion 

proteins and specific protein-RNA interactions, such as the RNA bacteriophage MS2 coat protein 

system[27-29], the PP7 bacteriophage system[30,31], the bacteriophage λ N coat protein 

system[32], etc.[33,34]. In those strategies, RNAs of interest are tagged with a “cognate” RNA 

sequence, often in a tandem array, recognized and bound by interacting proteins with fluorescent 

protein fusion. There are several potential limitations associated with this type of methods: (1) 

usually the overexpressed unbound proteins generate high fluorescent background[35], unless 

specific measures are taken to reduce the background[33,34,36]; (2) the resulting large 

ribonucleoprotein complex has been reported to affect the RNA endogenous degradation in some 

cases[37,38], and may potentially affect trafficking and localization[22]; (3) the conditions 

required for maturation of the fluorescent proteins prohibit the application of these approaches to 

certain biological systems, such as anaerobic species[39-41]. 

More direct ways for RNA labeling in living cells mostly use RNA aptamers that can bind small 

ligands (or “fluorogens”) and activate their fluorescence[42-44]. Aptamers are generally short 

RNA sequences that can fold into specific tertiary structure and thus bind small molecules called 

ligands. If the fluorescence of the ligand shows great enhancement upon binding to the aptamer, 

the binding complex might have the potential to be a labeling reagent for cellular RNA imaging. 

Due to the much smaller size of ligand (or fluorogen) compared to regular proteins, the 
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aptamer/fluorogen imaging method might have potential advantages over the RNA binding 

protein-fluorescent protein labeling strategy.  

1.4 Bacterial small non-coding RNA 

Small regulatory RNAs (sRNAs) are universal post-transcriptional gene expression regulators in 

all domains of life. In bacteria, sRNAs are generally 50 - 300 nt non-coding RNAs that play 

diverse and critical roles in bacterial metabolism and stress response[45,46], pathogen virulence 

and infection[47], and quorum sensing[48,49]. In a typical case of negative regulation of mRNA 

by sRNA, the sRNA anneals to its target mRNA through basepairing interaction[46,50,51]. 

Sometimes the association of the sRNA occludes the ribosome binding site (RBS) of target 

mRNA and thus prevent translation initiation, resulting in target repression; in some other cases, 

sRNA annealing influences the stability of target mRNA and promotes its decay by bacterial 

RNA degradation machinery. In many cases, bacterial sRNA binds to Hfq, a hexameric RNA 

chaperone, to function[52]. Hfq binding not only enhances the stability of sRNAs in vivo, but 

also promotes interaction between sRNA and its target mRNAs. 

In the past several decades, people have discovered hundreds of sRNAs in bacteria. For example, 

in Escherichia coli, more than 100 sRNAs have been identified, many of which play central roles 

in E. coli stress response. Examples include dsrA involved in osmotic and acid stress 

response[53], oxyS involved in oxidative stress response[54], and sgrS involved in sugar-

phosphate stress response[50]. 

1.5 Flow cytometry and fluorescence-activated cell sorting 

Flow cytometry is one of the most common and useful way to study single cells. The 

instrumentation which conducts flow cytometry, usually called flow cytometer, is made up of 

three main parts: the fluidics system, the optics system, and the electronics system. When the 

liquid sample containing cell or particle suspension is sent into the flow cytometer, the fluidics 

system will generate an ultrathin flow which helps align the cells or particles one by one. The 

flow will pass a nozzle and become discrete droplets, some of which include a single cell. The 

droplets will flow through the optics system and illuminated by a laser, and the incorporated cell 

will scatter light or be excited to emit fluorescence. The signal of the scattered light or the 
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fluorescence will be collected and a signal conversion will be conducted by the electronics 

system, and diverse physical properties (size, granularity, etc.) and biological properties, usually 

conveyed by various fluorescence markers, could be acquired. In addition to single cell analysis, 

the electronics system could also match the obtained information with the initial setting in the 

program, and charge the droplets with accordingly; the electrical properties are used to decide 

the future flowing direction of the droplets, and to separate droplets fulfilling different selection 

criteria to diverse collecting tubes. The great advantages of using flow cytometry for single cell 

analysis is that advanced flow cytometry can simultaneously detect tens of physical or 

fluorescence properties, allowing subtle and comprehensive analysis of the sample. 

Fluorescence-activated cell sorting, or FACS, is the widely appreciated method to identify and 

sort one or more populations of cells from a collection of mixed cells, according to the 

fluorescence signal of the cell. The sorted cells can be collected and used for further study and 

manipulation. Since fluorescence labeling can be used to qualify or quantify cell viability, gene 

expression, protein marking, etc., FACS allows a quick and convenient characterization of cell 

activities. More powerfully, the sophisticated fluidics system of flow cytometer makes it very 

easy to pass tens of thousands of droplets through the nozzle, and thus enables very high-

throughput analysis of the sample. 
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CHAPTER 2 

SINGLE MOLECULE STUDY ON Thermus thermophilus 

SINGLE-STRANDED BINDING PROTEIN*  

2.1 Introduction 

Single-stranded DNA binding (SSB) proteins are ubiquitously extant in all kinds of organisms 

from virus to bacteria to eukaryotes. It specifically binds and protects single-stranded (ss) DNA 

with high affinity via oligosaccharide/oligonucleotide binding (OB)-fold domains [9-11]. 

The majority of bacterial SSB proteins have a single OB fold per polypeptide and function as 

homotetramers, including the best studied example, Escherichia coli (Eco) SSB [4,55,56]. 

Eukaryotic human mitochondrial SSB, like EcoSSB, also encodes a single OB fold per monomer 

and functions as stable homotetramers [57]. In contrast, replication protein A (RPA), the major 

SSB proteins in eukaryotes, is a heterotrimeric protein complex composed of three distinct 

subunits and contains six OB folds per heterotrimer [5,58]. Interestingly, SSB proteins from the 

Thermus-Deinococcus genera of bacteria were recently identified as stable homodimers in 

solution with two OB folds per monomer, contrary to the homotetrameric form so far found in 

bacteria [59-64]. Thermus thermophilus (Tth) SSB is a representative homodimeric SSB in the 

Thermus-Deinococcus group. Structural analysis of homodimeric SSBs has indicated that 

although homodimeric SSBs share a similar tertiary arrangement within each OB fold as is seen 

in homotetrameric SSBs, the quaternary arrangement of the four OB-folds in the protein’s active 

form is considerably different from that in homotetrameric SSBs [61,63,64]. Escherichia coli 

maintains 200-3,000 EcoSSB tetramers per cell and do not increase SSB levels significantly in 

response to DNA damaging conditions, whereas in Deinococcus radiodurans the 20,000 

DraSSB dimers per cell increase to 56,000 dimers in response to ionizing radiation, indicating 

that the homodimeric SSBs found in extremeophiles may have an expanded role in DNA 

metabolism [61]. 

___________________________________________ 

*Chapter 2 was excerpted from a published work: 

Zhang, J. et al. “Single molecule analysis of Thermus thermophilus SSB protein dynamics on single-stranded DNA” 

Nucl. Acids. Res. doi:10.1093/nar/gkt1316 (2013) 
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Using EcoSSB as the prototypical SSB protein, we previously showed that EcoSSB can diffuse 

(or slide) on ssDNA spontaneously with an estimated diffusion coefficient of 300 nucleotide
2
/s at 

37 ℃, and that diffusional migration of EcoSSB transiently melts DNA hairpin structures and 

stimulates RecA filament elongation [65]. We also showed that EcoSSB interacting proteins 

slow EcoSSB diffusion on ssDNA by physically interacting with the last 8-10 amino acids within 

the conserved SSB C-terminal tail, raising the possibility that SSB acts as a mobile platform on 

ssDNA for the replication, repair and recombination machinery [66]. However, it is not clear 

whether the diffusion activity observed for homotetrameric SSBs is general for other types of 

SSBs. 

SSB binds ssDNA in different binding modes characterized by the length of ssDNA that it 

contacts and the number of ssDNA-binding domains involved [4,58,67,68]. For EcoSSB, the 

relative stabilities of these binding modes largely depend on salt concentration and protein 

binding density: 1) At low monovalent salt concentrations (< 20mM NaCl) and high protein to 

DNA ratios, an EcoSSB tetramer occlude ~35 nucleotides (nt) with high inter-tetramer 

cooperativity using only two out of four OB-folds (termed the (SSB)35 mode); 2) At high salt 

concentrations (≥ 200mM NaCl), an EcoSSB tetramer occlude ~65 nt with low cooperativity 

using all four OB-folds (termed the (SSB)65 mode) [4,67]. Furthermore, we previously observed 

direct transitions between the (SSB)35 and (SSB)65 binding modes in the presence of 10-100 nM 

EcoSSB and at low or intermediate salt concentrations (≤200 mM NaCl), and that 70-nt ssDNA 

with two EcoSSB tetramers bound can undergo dynamic structural rearrangement between two 

conformations (termed (SSB)35and (SSB)35b modes) while two EcoSSB tetramers remain bound 

to the 70-ntssDNA [69]. In contrast, the occluded site size of a homodimeric SSB from the 

Thermus-Deinococcus group shows much more reduced dependence on salt concentration than 

that of an EcoSSB tetramer [59,67,70-76]. For example, the occluded site size of a DraSSB 

dimer is 45-47 nt at low salt concentrations (< 20mM NaCl) and increases to 50-55 nt at high salt 

concentrations (≥ 200mM NaCl) [67,75,76]. Therefore, it is unclear whether homodimeric SSBs 

can undergo similar binding mode transitions as seen in EcoSSB. 

Here we use single molecule fluorescence resonance energy transfer (FRET) [2,77] to study 

TthSSB binding, diffusion and binding mode transition on ssDNA. 
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2.2 Results 

2.2.1 TthSSB binding site size estimation using smFRET 

We used single-molecule FRET, a single-molecule method to sensitively monitor the 

redistribution and changes of distance between a donor and an acceptor fluorophore in the range 

of 3–8 nm [2],to examine the binding of a single TthSSB dimer to a short stretch of ssDNA. A 

partial duplex DNA substrate containing a 3’60-nt Poly(T) overhang (referred to as (dT)60) was 

immobilized on a surface passivated with polyethylene glycol (PEG). A donor (Cy3) and an 

acceptor (Cy5) were attached near the two ends of the 60-nt ssDNA overhang respectively so 

that the FRET efficiency between them reports on the conformations of the 60-nt ssDNA (Figure 

2.1A). The occluded site size of a TthSSB dimer should be around 45-55 nt with a slight 

dependence on salt concentration, similar to other homodimeric SSBs in the Thermus-

Deinococcus group [67,74,75]. The 60-nt ssDNA overhang can hence accommodate only one 

TthSSB dimer in its fully wrapped binding mode. Indeed, previous studies using gel mobility 

shift assays have shown that (dT)60 can efficiently accommodate only one TthSSB dimer [60].  

Before adding the proteins, a low FRET peak was observed for (dT)60 in the single-molecule (sm) 

FRET histograms (Figure 2.1B) due to the large end-to-end distance of the 60-nt ssDNA region. 

As we increased salt concentration from 20 to 500 mM NaCl, the FRET peak position for (dT)60 

alone moved from ~0.05 to ~0.2 due to the increased ssDNA flexibility (or compaction) at higher 

salt concentrations[78].1 nM TthSSB dimers were then added into the sample chamber and 

incubated with the surface-tethered DNA substrates for 5 min at 500 mM NaCl, followed by a 

buffer wash to flush out the excess unbound TthSSB proteins. Upon TthSSB binding, a much 

higher FRET peak centered at ~0.8 was observed at 500 mM NaCl even after the buffer wash 

(Figure 2.1B). As TthSSB can remain bound to (dT)60 for 2 hours in the absence of unbound 

proteins (koff < 10
-4 

s
-1

; data not shown), we subsequently flowed in buffers containing different 

salt concentrations (with no proteins) for data acquisition. The observed FRET peak values were 

~0.74 and ~0.63 for 100 and 20 mM NaCl respectively (Figure 2.1B).  The significantly 

increased FRET efficiencies observed upon TthSSB binding in a broad range of salt 

concentrations (20-500 mM NaCl) indicate that the binding of a TthSSB dimer brings the two 

ends of the TthSSB -bound ssDNA region into close proximity, as seen in homotetrameric SSBs 
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[56,69,79].The slight decrease in FRET at decreased salt concentrations may result from either a 

difference in the TthSSB occluded site size [67,74,75], a difference in the flexibility of unbound 

ssDNA regions [78], or both. 

2.2.2 Probing TthSSB diffusion using smFRET 

2.2.2.1 TthSSB is capable of diffusion along ssDNA 

To test whether TthSSB can diffuse along ssDNA, we used the single-molecule diffusion 

detection assay previously developed for EcoSSB based on DNA hybridization [65,80]. In this 

assay, we used a partial duplex DNA with a 5’ 72-nt ssDNA overhang which consists of a (dT)60 

region and a 12-nt extension of mixed sequence (referred to as (dT)60+12m). Cy3 and Cy5 were 

attached near the two ends of the (dT)60 region (Figure 2.2A). Before adding the proteins, a low 

FRET peak centered at ~0.15 was observed for (dT)60+12m in the smFRET histogram (Figure 

2.2B). Upon TthSSB binding to (dT)60+12m, a broad FRET peak centered at ~0.43 was observed 

(Figure 2.2B) and FRET-time traces obtained from single TthSSB-DNA complexes displayed 

fast FRET fluctuations beyond measurement noise (Figure 2.2A), as previously observed for 

EcoSSB diffusion on (dT)69+12m [65]. These FRET fluctuations were markedly suppressed and a 

steady FRET value (~0.7) was observed when the 12-nt mixed sequence within the 72-nt ssDNA 

overhang was hybridized to its complementary DNA strand (Figures 2.2A and 2.2B). To exclude 

binding and dissociation of additional TthSSB molecules as the cause of fluctuations, excess 

unbound TthSSB was removed by a buffer wash step as described above for (dT)60. We also 

ruled out local melting of the duplex portion as a source of FRET fluctuations (Figure 2.3). 

Therefore, the FRET fluctuations are likely caused by transient excursions of TthSSB from the 

(dT)60 region to the 12-nt extension, i.e. one-dimensional TthSSB diffusion.  

To further quantify the time scale of FRET fluctuations, we calculated the average cross-

correlation of the donor and acceptor fluorescence intensities from >100 fluorescence intensity 

time traces of single (dT)60+12m molecules in each condition [66,81]. Anti-correlation between 

Cy3 and Cy5 intensities was only observed for TthSSB-bound (dT)60+12m without hybridization 

of the 12-nt extension, and the single exponential fit to the average cross-correlation curve yields 

a time scale of FRET fluctuations, τ = 61±11 ms (Figure 2.2C). Cross-correlation analysis 
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showed no significant anti-correlation between Cy3 and Cy5 fluorescence intensities for either 

unbound (dT)60+12m or TthSSB-bound hybridized (dT)60+12m (Figure 2.2C). 

2.2.2.2 TthSSB appears to be positioned at the center of short Poly(T) ssDNA through rapid 

diffusion 

To further test TthSSB diffusion on ssDNA, we designed a series of partial duplex DNA 

substrates containing 3’ Poly(T) overhangs of different lengths (referred to as (dT)60+n). The 

ssDNA overhang is slightly longer than the occluded site size of a DraSSB dimer, and consists 

of a (dT)60 region with Cy3 and Cy5 attached near its ends (Figure 2.4A) and a (dT)n extension 

(n = 0, 4, 8, 12 or 16). When n=0, (dT)60+n is the substrate we used in Figure 2.1. Before adding 

the protein, all the (dT)60+n substrates showed a single low FRET peak centered at ~0.2 in the 

smFRET histograms at 500 mM NaCl (Figure 2.4B). After incubation with 1 nM TthSSB dimer 

in 500 mM NaCl and the buffer wash step, a single peak centered at a higher FRET value was 

observed in the smFRET histograms for all five DNA substrates (Figure 2.4C). Interestingly, the 

average cross-correlation curves determined from >100 fluorescence intensity time traces of 

single TthSSB-bound (dT)60+n molecules showed no significant anti-correlation between Cy3 and 

Cy5 fluorescence intensities (Figure 2.4D), indicating that FRET fluctuations, which are 

expected from TthSSB diffusion, could not be well detected with our experimental time 

resolution (~30 ms). We considered two possible mechanisms to account for this observation: 1) 

After its initial binding to a random location of the ssDNA overhang, TthSSB is unable to move 

along(dT)60+n, resulting in a time-independent single FRET state for each TthSSB-bound (dT)60+n 

molecule; 2) After its initial binding to a random location, TthSSB is able to move along (dT)60+n, 

but the movement is too fast to be detected within our 30 ms time resolution, resulting in a time-

averaged FRET value for each TthSSB-bound (dT)60+n molecule. For the first mechanism, one 

would expect that the FRET efficiency distribution of (dT)60+n with a larger n value should be 

broader with TthSSB bound and should include all the FRET efficiencies observed for TthSSB-

bound (dT)60+n with a smaller n value, because a longer overhang would provide more possible 

binding positions for TthSSB and hence result in a broader distribution of FRET efficiency. 

However, the single peak of the smFRET histogram, instead of becoming broader, is shifted 

towards a lower FRET value as n increases (Figure 2.4C), disfavoring the first mechanism. 

Therefore, we favor the second mechanism in which TthSSB rapidly diffuses along the entire 
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length of the ssDNA overhang and appears to be positioned at the center of the overhang within 

our time resolution. This time-averaging effect has also been observed in other single molecule 

FRET studies [82,83] . 

2.2.2.3 TthSSB diffusion on Poly(T) ssDNA could be directly observed at lower temperature 

All of the measurements above for (dT)60+n were conducted at room temperature (23 ℃) and in 

500 mM NaCl. As a further test for the second mechanism, we repeated the experiments at room 

temperature (23 ℃) and lower temperatures (18, 14 and 11 ℃) and in 100 mM NaCl for (dT)60+4 

(Figure 2.5A). Previously, we demonstrated that lowering the temperature slows EcoSSB 

diffusion on ssDNA [65]. Indeed, we were able to observe FRET fluctuations beyond 

measurement noise in the FRET time traces of TthSSB-bound (dT)60+4 at 18 and 11 ℃ (Figures 

2.5A and 2.5B). We excluded the possibility of local wrapping-unwrapping of ssDNA on 

TthSSB by conducting the experiment at the same condition (100 mM NaCl, 11℃) on the (dT)60 

substrate with Cy3 and Cy5 attached near the two ends of the ssDNA overhang. FRET 

fluctuations were due to anti-correlated fluctuations of the donor and acceptor intensities, as 

confirmed by the cross-correlation analysis (Figure 2.5C), which yields the fluctuation time 

scales τ(23 ℃) = 67±28 ms, τ(18 ℃) = 77±14 ms and τ(11 ℃) = 88±13 ms. The Arrhenius fit of 

ln(1/τ) vs. 1/T (Figure 2.5D) gave an apparent activation energy of Ea = 15±3 kJ/mol for TthSSB 

diffusion, which is smaller than the Ea determined for EcoSSB diffusion on ssDNA (~81±7 

kJ/mol) [65]. 

Having demonstrated that TthSSB is capable of diffusion on (dT)60+n under high and 

intermediate salt condition (500 and 100 mM NaCl), we next tested TthSSB diffusion at low salt 

concentrations. After loading a TthSSB dimer onto surface-tethered (dT)60+n in 500 mM NaCl, 

we flushed out unbound proteins with a buffer also containing 500 mM NaCl. A buffer 

containing either 100 or 20 mM NaCl was subsequently flowed into the sample chamber before 

data acquisition. At both 100 and 20 mM NaCl, we observed similar results as at 500 mM NaCl: 

a single narrow peak was observed in the smFRET histogram (data not shown) and is shifted 

towards a lower FRET value as n increases (Figure 2.4E), suggesting that TthSSB diffuses on 

(dT)60+n in a wide range of salt concentrations (20-500 mM NaCl). As discussed above for (dT)60, 

the slight decrease in FRET efficiency at decreased salt concentrations for each (dT)60+n substrate 
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(Figure 2.4F) may result from either a difference in the TthSSB occluded site size [67,74,75], a 

difference in the flexibility of unbound ssDNA regions [78], or both. 

2.2.2.4 TthSSB diffusion transiently melts short DNA hairpin structures 

Single molecule studies have shown homotetrameric SSBs are able to transiently disrupt short 

DNA hairpin structures [65,84].To further demonstrate the functional role of TthSSB diffusion, 

we examined whether TthSSB can use its diffusion activity to transiently melt DNA hairpin 

structures. We designed a partial duplex DNA containing a 3’ (dT)65 ssDNA overhang with a 7 

base-pair internal hairpin located at the 3’ end of the overhang (referred to as (dT)65+hp+3).Cy3 

and Cy5 were attached to the ends of the hairpin sequence such that FRET reports the formation 

or melting of the hairpin (Figure 1.6A). Before adding the proteins, (dT)65+hp+3 exhibited steady 

high FRET (~0.9) in the single molecule FRET time traces obtained at 500 mM NaCl, 

suggesting that the hairpin itself is stably formed at room temperature (Tm > 60 ℃, 500 mM 

NaCl)  (Figure 2.6A). After incubation with 1 nM TthSSB dimer in 500 mM NaCl and the buffer 

wash step, a number of brief excursions to a low FRET state (~0.5) were observed in FRET-time 

traces, indicating transient unzipping and reformation of the hairpin. Cross-correlation analysis 

yielded the time scale of FRET fluctuations τ = 420±36 ms (Figure 2.6B). As the (dT)65 region is 

slightly larger than the occluded site size of a TthSSB dimer, one TthSSB dimer is expected to 

remain bound to the (dT)65 region after the buffer wash. Since the unbound proteins were flushed 

out before the data acquisition, the transient melting of the hairpin must be due to TthSSB 

invasion to the hairpin segment. 

2.2.3 TthSSB shows binding mode transitions in the presence of proteins in solution 

Previous ensemble studies have suggested that homodimeric SSBs, like homotetrameric SSBs, 

may undergo a transition between different binding modes, although the occluded site size of a 

homodimeric SSB showed much more reduced salt concentration-dependence than that of a 

homotetrameric SSB [67,74]. Using smFRET, we previously showed that a partial duplex DNA 

substrate containing a (dT)70 overhang may accommodate either one EcoSSB tetramer in the 

(SSB)65 mode or two EcoSSB tetramers in the (SSB)35 mode, and that a (dT)70 molecule 

undergoes transitions between these two scenarios in the presence of EcoSSB proteins in 

solution [69]. Given that TthSSB dimers have a smaller occluded size (45-55 nt), we asked 
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whether similar results can be obtained for TthSSB on (dT)60. Instead of flushing out the 

unbound proteins, we kept 1 or 10 nM TthSSB and acquired the data at 20, 100 or 500 mM NaCl 

accordingly. Figure 2.7A shows representative FRET-time traces obtained from single TthSSB-

bound (dT)60 molecules. Clear fluctuations between two discrete FRET states (referred to as the 

high/low FRET state) were observed at 20 and 100 mM NaCl, but not at 500 mM NaCl. We 

determined the average transition rates between the two FRET states. Previous biochemical 

studies have shown that a homodimeric SSB binds up to two ssDNA molecules of (dT)25 with a 

salt concentration-dependent negative cooperativity:  at both 20 and 200 mM NaCl, the second 

molecule of (dT)25 has a weaker affinity to DraSSB than the first (dT)25 molecule, but such 

negative cooperativity (i.e. the difference in the affinities of the first and the second bound (dT)25) 

is much larger at 20 mM NaCl than at 200 mM NaCl [67]. The salt concentration-dependent 

negative cooperativity observed for homodimeric SSBs predicts that the decrease in salt 

concentration would favor the transition from single bound protein to two bound proteins per 

(dT)60 because larger negative cooperativity would make it easier for partial unwrapping of 

(dT)60 from a single TthSSB dimer and thus a second TthSSB dimer has the chance to bind the 

released ssDNA region. Indeed, the transition rate from high to low FRET states (kH→L) is larger 

at higher TthSSB concentrations and at lower salt concentrations, whereas the transition rate 

from low to high FRET states (kL→H) does not depend on TthSSB concentration but is smaller at 

lower salt concentrations (Figure 2.7A and 2.7B). We hence assigned the high FRET state to 

(dT)60 with one TthSSB dimer bound and the low FRET state to (dT)60 with two TthSSB dimers 

bound. In the low FRET state, two TthSSB dimers bind to the same (dT)60 molecule, with each 

TthSSB dimer occupying 30-nt ssDNA region on average. 

Next, we tested another DNA substrate with a longer ssDNA overhang (dT)60+16 in the presence 

of 0.5-4 nM TthSSB dimers in solution. Two-state transitions were also observed in the single 

molecule FRET-time traces at 20 and 100 mM NaCl, but not at 500 mM NaCl (Figures 2.8A and 

Figure 2.9). However, one of the two states in the FRET-time traces displayed fast FRET 

fluctuations (referred to as the ‘dynamic’ state), whereas the other state displayed a steady FRET 

value (referred to as the ‘static’ state). We determined the average transition rates between the 

‘dynamic’ and ‘static’ states, 1/ΔTdynamic and 1/ΔTstatic (ΔTdynamic and ΔTstatic represent average 

durations in the ‘dynamic’ and ‘static’ states, respectively). We found 1/ΔTstatic, similar to kH→L, 

displays a linear dependence on TthSSB concentration, whereas 1/ΔTdynamic, similar to kL→H, is 
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independent of TthSSB concentration (Figure 2.8B). Therefore, we assigned the ‘static’ state to 

(dT)60+16 with one TthSSB dimer bound and the ‘dynamic’ state to (dT)60+16 with two TthSSB 

dimers bound. 1/ΔTstatic and 1/ΔTdynamic hence gave an association rate of (2.1±0.1)×10
7 

M
-1 

·s
-1 

and a dissociation rate of 0.26±0.07 s
-1

 for the second TthSSB dimer binding and dissociation 

to/from (dT)60+16, respectively. Furthermore, we quantified the FRET fluctuations within the 

‘dynamic’ state using a hidden Markov model (HMM) based statistical approach that determines 

the most likely time sequence of FRET states (Figure 2.8C) [85]. FRET-efficiency distributions 

within the ‘dynamic’ state can be fit well to a double-Gaussian function (Figure 2.8D), indicating 

the existence of two distinct FRET substates (~0.3 and 0.6 FRET, respectively). The transition 

rate from the 0.3 FRET to 0.6 FRET states was determined to be 5.3±1.7s
-1

, and the transition 

rate from the 0.6 FRET to 0.3 FRET states was determined to be 3.7±1.5s
-1

, both of which are 

independent of TthSSB concentration (Figure 2.8E). We therefore assigned the two FRET states 

to two distinct structural arrangements of (dT)60+16 with two TthSSB dimers bound. The 

association of the second TthSSB dimers results in a fast ‘dynamic’ FRET state for (dT)60+16 but 

not for (dT)60, probably because the dynamic structural rearrangement from the DNA molecule 

with two TthSSB dimers bound requires the (dT)16 extension. 

2.3 Discussion 

In this study, we employed smFRET to study the dynamics of TthSSB, a representative 

homodimeric SSB, binding to short ssDNA molecules ranging from 60 to 81 nt. Although their 

quaternary arrangements of the OB-folds are different [61,63,64], both homotetrameric and 

homodimeric SSBs bind ssDNA in a way that brings the two ends of bound DNA in close 

proximity under high salt conditions, and they are both capable of rapid diffusion along ssDNA. 

Previously, we have shown that even when the SSB-ssDNA structure is not fully wrapped and a 

small force (1-5 pN) is used to unwrap some ssDNA from the protein surface, EcoSSB diffusion 

on ssDNA still persists. Our results imply that the diffusion activity may be a shared property for 

different types of ssDNA binding proteins.  

Similar to homotetrameric SSBs, TthSSB can diffuse continually as long as there is an available 

extension of ssDNA beyond its occluded site size. The activation energy for TthSSB diffusion is 

~ 15±3 kJ/mol, smaller than that of EcoSSB diffusion (~81±7 kJ/mol) under the same condition 
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[65]. Additionally, TthSSB diffusion appears to be faster than that of EcoSSB, and is too fast to 

be detected for some DNA substrates (e.g. (dT)60+n) within the 30 ms time resolution. This is 

consistent with the previous observation that binding affinity of ssDNA for homodimeric SSBs is 

weaker than for EcoSSB [67], because SSB diffusion requires breakage and reformation of SSB-

DNA interactions [66]. 

SSB diffusion may have multiple functional roles. First, rapid SSB diffusion along DNA should 

be important in redistributing SSB on ssDNA after its initial binding to a random DNA location, 

because for proteins with such high affinities, redistribution would be difficult if it required 

complete dissociation and reassociation. Second, SSB diffusion can transiently melt short DNA 

hairpin structures. We have shown that the hairpin removal by EcoSSB diffusion is responsible 

for the facilitated RecA filament growth [65]. For TthSSB, it has been shown that TthSSB 

stimulates the synthesis rate of DNA polymerases from Tth and Pyrococcus [86], and many 

different types of SSBs have been used to increase the amplification efficiency for the 

polymerase chain reaction (PCR) [87]. Because specific interactions between polymerases and 

SSBs are not required for the stimulated activity, the observation was presumably due to SSB 

diffusion that removes DNA hairpin structures. Third, SSB diffusion may provide a mechanism 

for how SSBs recruit other SSB-interacting enzymes onto ssDNA for subsequent DNA 

processing. We previously showed that the specific interactions between EcoSSB and EcoRecO 

do not abolish but moderately slows EcoSSB diffusion on ssDNA [66].  

Furthermore, we presented direct evidence that TthSSB undergoes rapid binding mode 

transitions in the presence of free proteins in solution. Although the occluded site size of a 

homodimeric SSB displays a more reduced dependence on the salt concentration than that of an 

EcoSSB tetramer and ranges from 45 to 55 nt with increase in salt concentration [59,67,70-76], 

we observed transitions between a single bound protein and two bound proteins per ssDNA on 

(dT)60 and (dT)60+16 at low and moderate salt concentrations (20-100 mM NaCl). When two 

TthSSB dimers bind to the same 60-nt or 76-nt ssDNA molecule, the second TthSSB has a 

weaker affinity to DNA than the first bound TthSSB.Additionally,76-nt ssDNA with two TthSSB 

dimers bound may undergo dynamic structural rearrangement between two conformations while 

the two TthSSB dimers remain bound to the 76-ntssDNA (Figure 2.10). Similar observations 

were made previously for EcoSSB binding to (dT)70 [69]. 
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In summary, the data presented in this study extends our previous observations on 

homotetrameric EcoSSBs to homodimeric SSBs, and suggest that TthSSB/DNA complexes are 

highly dynamic (Figure 2.10). Importantly, the covalent linkage between multiple, non-identical 

OB-fold domains in TthSSB dimers, which is also the signature of eukaryotic RPAs, does not 

preclude SSB diffusion or binding mode transitions. When only one TthSSB dimer binds to an 

ssDNA region that is slightly longer than its occluded site size, it diffuses rapidly while 

remaining stably bound, which should be useful to cover and protect even small ssDNA gaps 

between two bound TthSSBs and remove DNA hairpin structures. Additionally, TthSSB/DNA 

complexes undergo dynamic interconversions among different binding modes and/or structural 

rearrangements if there are unbound proteins nearby. These dynamic features of SSB/complex 

should be important for the functional roles of SSBs in genome maintenance and arepossibly 

shared among different types of SSBs. 

2.4 Experimental procedure 

2.4.1 DNA sequences and annealing procedures 

DNA oligonucleotides used for the single molecule experiments are listed below:  

(1) 5’-/Cy5/ GCC TCG CTG CCG TCG CCA -/biotin/-3’.  

(2) 5’-TGG CGA CGG CAG CGA GGC (T)60-/Cy3/-3’. 

(3) 5’-TGG CGA CGG CAG CGA GGC (T)59 / iAmMC6T/(T)n -3’, where n=4, 8, 12,or 16. 

(4) 5’- TGG CGA CGG CAG CGA GGC-/Cy3/-(T)58 -3’ 

(5) 5'- /biotin/ TGG CGA CGG CAG CGA GGC /Cy5/-3' 

(6) 5'-/5Phos/ GGG CGG CGA CCT /iAmMC6T/ (T)60 GCC TCG CTG CCG TCG CCA-3' 

(7) 5’-AGG TCG CCG CCC - 3’ 

(8) 5’-TGG CGA CGG CAG CGA GGC (T)65 / iAmMC6T/ TGT GAC TGA GAC AGT CAC 

TT-/Cy5/-3’ 
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‘/iAmMC6T/’ represents amine-modified thymine that is used to label the DNA with Cy3. 

‘/biotin/’ represents biotin modification which was used for the surface immobilization. /5Phos/ 

represents 5’ phosphorylation. ‘/Cy3/’and ‘/Cy5/’represents the Cy3 and Cy5 fluorophores 

respectively that were attached directly to the DNA backbone using phosphoramidite chemistry. 

The partial duplex DNA substrates carrying Cy3 and Cy5 were annealed by mixing ~5μM of 

biotinylated strand and ~7 μM of non-biotinylated strand in 10 mM Tris:HCl (pH 8.0) and 

50mM NaCl, followed by slow cooling from 90°C to room temperature for ~ 2 hours. 

2.4.2 Protein expression and purification 

Thermus thermophilus (Tth) HB8 SSB proteins were expressed and purified as previously 

described [88,89]. All protein concentrations cited in the text refer to TthSSB dimers. 

2.4.3 Sample assembly and data acquisition 

Single molecule FRET experiments were performed at 23 ± 1℃ unless specified otherwise. 50-

100 pM of partial duplex DNA substrates were immobilized on a quartz slide surface which is 

coated with polyethylene glycol (mPEG-SC, Laysan Bio) in order to eliminate nonspecific 

surface adsorption of proteins[2]. The immobilization was mediated by biotin-Neutravidin 

binding between biotinylated DNA, Neutravidin (Pierce), and biotinylated polyethylene glycol 

(Bio-PEG-SC, Laysan Bio). For the experiments shown in Figures 2.1 - 2.6, 1 nM TthSSB were 

added into the sample chamber and incubated with the surface-tethered DNA substrates for 5 

min in Buffer A containing 20 mM Tris:HCl (pH 8.0), 500 mM NaCl and 0.1 mg/ml BSA. A 

buffer wash step was then performed using Buffer A to flush out the excess unbound proteins. 

Finally, Buffer B containing 20 mM Tris:HCl (pH 8.0), 0.1 mg/ml BSA, 2% (v/v) glycerol, 0.5 % 

(w/v) D-glucose, 165 U/ml glucose oxidase, 2170 U/ml catalase, 3 mM Trolox and indicated 

amounts of NaCl was injected into the sample chamber before data acquisition. For the 

experiments shown in Figures 2.7 - 2.9, buffer B with desired TthSSB concentration was directly 

injected into the sample chamber for data acquisition after immobilizing the DNA substrates. 

Single molecule data were acquired using total internal reflection fluorescence (TIRF) 

microscope [80] with a time resolution of ~ 30 ms. In some circumstances where the experiment 

needs to be performed at lower temperatures, a water-circulating bath circulator (NESLAB RTE-

7 Digital One, Thermo Scientific) was used to cool down the sample stage, objective and prism-
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holder all together. The temperature of the outer surface of the sample chamber was measured by 

a handhold digital thermometer (Omega) as the best estimation of the experimental temperature 

inside the sample chamber. 

2.4.4 FRET efficiency calculation 

Apparent FRET efficiency was calculated from the fluorescence intensities of the donor (ID) and 

acceptor (IA) using the formula EFRET=IA / (IA+ ID). The background and the cross-talk between 

the donor and acceptor were corrected as described previously[2].Single-molecule FRET 

histograms were built from more than 5000 surface-tethered DNA molecules. 

2.4.5 Cross-correlation analysis 

The cross-correlation analysis was performed as described previously [81,90]. The cross-

correlation curves were calculated between donor and acceptor fluorescence intensity time traces 

obtained from each DNA molecule carrying a donor and an acceptor, and were then averaged 

over more than 100 DNA molecules.  All cross-correlation curves presented are average curves. 

We determined the characteristic time,, by fitting the average cross-correlation curve to a single 

exponential function. 
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2.5 Figures  

Figure 2.1 

 

Figure 2.1. Single molecule FRET assays that report the conformations of TthSSB-bound ssDNA. (A) A schematic 

illustration of our single molecule FRET experimental design for TthSSB. A partial duplex DNA substrate ((dT)60) 

was immobilized on a PEG-coated surface. Cy5 and Cy3 were attached to the ss-dsDNA junction and the end of the 

ssDNA overhang, respectively. (B) Single molecule (sm) FRET histograms for (dT)60 DNA alone and TthSSB 

binding to (dT)60 at different salt concentrations. TthSSB proteins were loaded onto (dT)60  under high salt condition 

(500 mM NaCl) and unbound proteins were removed before data acquisition. 
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Figure 2.2 

 

Figure 2.2. Protein diffusion detection assays based on DNA hybridization. (A-C) Representative single molecule 

time traces (A), smFRET histograms (B), and average cross-correlation curves (C), for(dT)69+12m DNA alone and 

TthSSB-bound (dT)69+12m with and without the hybridization to the 12-nt mixture sequence ssDNA region. FRET 

fluctuations beyond measurement noise were detected only when the 12-nt extension is available for TthSSB 

binding. Unbound proteins were removed before data acquisition such that the FRET flucatuations reflect only the 

repositioning of the bound TthSSB along (dT)69+12m. For simplification, the 18-bp duplex DNA region is not shown 

for TthSSB-bound (dT)69+12m in (A). The solid line in (C) is a fit to a single exponential function. 
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Figure 2.3 

  

Figure 2.3. Test for duplex destabilization by TthSSB. A partial duplex DNA substrate containing a 3’ (dT)58 

overhang was used. Cy3 and Cy5 were attached near the ss-dsDNA junction such that FRET reports the 

destabilization (or unwinding) of the duplex DNA region.  No change was detected in the single molecule FRET 

histogram before and after adding 10 nM TthSSB at 500 mM NaCl, indicating that TthSSB binding does not 

destabilize the 18-bp duplex region. 
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Figure 2.4 
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Figure 2.4 (continued) 

Figure 2.4. TthSSB appears to be positioned at the center of the (dT)60+n ssDNA overhangs though rapid diffusion. 

(A) A schematic illustration of our experimental design for (dT)60+n (n=0, 4, 8, 12 or 16). Cy3 and Cy5 were 

attached to the ss-dsDNA junction and the middle of the ssDNA overhang, respectively, separated by (dT)60. (B) 

Single molecule FRET histograms of (dT)60+n DNA in the absence of proteins, obtained at 500 mM NaCl.  (C) 

smFRET histograms for TthSSB-bound (dT)60+n, obtained at 500 mM NaCl, showing a single narrow FRET peak. 

(D) Average cross-correlation curves for TthSSB-bound (dT)60+n, obtained at 500 mM NaCl, indicating no 

significant FRET fluctuations. (E) The FRET value at the FRET peak position versus the n value in (dT)60+n, 

obtained at 20, 100, or 500 mM NaCl. (F) The FRET value at the FRET peak position versus the salt concentration 

for different (dT)60+n substrates. TthSSB proteins were loaded onto (dT)60 under high salt condition (500 mM NaCl) 

and unbound proteins were removed before the buffer containing a lower NaCl concentration was added to the 

sample chamber.   
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Figure 2.5 
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Figure 2.5 (continued) 

 

Figure 2.5. Lower temperatures slow TthSSB diffusion on (dT)60+4. (A) Representative single molecule time traces 

for TthSSB-bound (dT)60+4 obtained at different temperatures (23, 18 and 11 ℃) and at 100 mM NaCl. (B) A 

schematic illustration of our experimental design, showing how TthSSB diffusion may result in FRET fluctuations. 

(C) Average cross-correlation curves for TthSSB-bound (dT)60+4 obtained at different temperatures and at 100 mM 

NaCl. More significant FRET fluctuations beyond measurement noise were detected at lower temperatures. The 

time scales of the FRET fluctuations were determined from fits to a single exponential function (solid lines). 

Unbound proteins were removed before data acquisition. (D) Arrhenius plot of apparent rates as a function of 1/T. 
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Figure 2.6 

 

 

Figure 2.6. TthSSB diffusion can transiently melt short DNA hairpin structures. (A and B) Representative single 

molecule time traces (A) and average cross-correlation curves (B), for (dT)65+hp+3 alone and TthSSB-bound 

(dT)65+hp+3, obtained at 500 mM NaCl. Unbound proteins were removed before data acquisition. The solid line in (B) 

is a fit to a single exponential function.  
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Figure 2.7 
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Figure 2.7 (continued) 

 

Figure 2.7. Transitions between different binding modes for TthSSB binding to (dT)60 in the presence of proteins in 

solution. (A) Representative single molecule FRET-time traces for TthSSB-bound (dT)60, obtained at 500 and 100 

mM NaCl when 10 nM TthSSB were present, and those obtained at 20 mM NaCl and when 10 or 1 nM TthSSB 

were present in the sample camber. 1 nM TthSSB were first incubated with the surface-tethered (dT)60 in 500 mM 

NaCl, followed by a buffer wash to remove the unbound TthSSB. The buffer containing the indicated TthSSB and 

NaCl concentration was then injected into the chamber for data acquisition. ΔTH and ΔTL represent the durations for 

the high and low FRET states, respectively. (B) Transtion rates of the interconversions between high and low FRET 

states (1/ΔTH and 1/ΔTL represent the high to low FRET state transiton and the low to high FRET state transition, 

respectively), as a function of the TthSSB concentration. Solid lines are the linear fits for high to low FRET state 

transition rate as a function of TthSSB concentration.  
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Figure 2.8 
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Figure 2.8 (continued) 

 

Figure 2.8. Transitions between different binding modes for TthSSB binding to (dT)60+16 in the presence of proteins 

in solution. (A) Representative single molecule FRET-time traces for TthSSB-bound (dT)60+16, obtained at 100 mM 

NaCl and when 0, 0.5, 1, 2 or 4 nM TthSSB were present in the sample camber. ΔTdynamic and ΔTstatic represent the 

durations for the ‘dynamic’ and ‘static’ states, respectively. (B) Association and dissociation rates of the second 

TthSSB to/from (dT)60+16 (1/ΔTstatic and 1/ΔTdynamic, respectively), as a function of the TthSSB concentration. (C) 

Hidden Markov Model (HMM)-derived idealized FRET trajectory (red) superimposed on the FRET-time trace 

(blue), for a selected time period during which the molecule is in the ‘dynamic’ state. Two FRET states were 

determined from the HMM fit (~0.3 and ~0.6 FRET). (D) FRET-efficiency distributions within the ‘dynamic’ state 

at different TthSSB concentrations (averaged from >50 molecules).Solid lines are the fits to a double-Gaussian 

function. (E) Transition rates between the 0.3 and 0.6 FRET states, determined from the HMM fit at different 

TthSSB concentrations. 
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Figure 2.9 

 

Figure 2.9. Representative single molecule FRET-time traces for TthSSB-bound (dT)60+16, obtained at 500 or 20mM 

NaCl and when 1 nM TthSSB were present in the sample chamber. Fast FRET fluctuations were observed at 20 mM 

but not at 500 mM NaCl, indicating that binding mode transition takes place at 20 mM but not at 500 mM NaCl for 

(dT)60+16 DNA substrate. 
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Figure 2.10 

 

Figure 2.10. Model of TthSSB dynamics on ssDNA. (dT)60+16 is illustrated as the ssDNA template for TthSSB 

binding. For simplification, only the ssDNA region is shown in the cartoon for TthSSB-bound (dT)60+16. 
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CHAPTER 3 

CONSTRUCTION AND IN VITRO 

CHARACTERIZATION OF SPINACH ARRAY* 

3.1 Introduction 

RNAs play diverse important roles inside the cell. To study RNA biology, one of the most 

straightforward and useful ways is to directly visualize RNA molecules by fluorescence imaging. 

As we mentioned before, one of the most commonly used method is fluorescence in situ 

hybridization (FISH) targets RNAs with fluorescence dye-labeled complementary DNA oligos. 

FISH method does not require target RNA modification and performs greatly for in situ RNA 

imaging and quantification but is usually not compatible with live cell RNA imaging. An 

alternative RNA imaging method utilizes RNA binding protein-fluorescent protein fusion and 

target RNAs were recognized and labeled after modification with specific “cognate” sequence. 

One of the most widely applied systems is the RNA bacteriophage MS2 coat protein system, and 

this imaging strategy allows live cell visualization and tracking of RNAs. However, protein 

association to RNAs might affect original RNA localization and metabolism. 

More direct ways for RNA labeling in living cells mostly use RNA aptamers that can bind small 

ligands (or “fluorogens”) and activate their fluorescence. Among several aptamer-ligand 

combinations, “Spinach” and analogous systems (Spinach[91], Spinach 2[92], RNA Mango[93], 

Broccoli[94], etc.) have shown the greatest potential in biochemical assay and live cell 

imaging[91-95]. Spinach uses a short RNA aptamer (24-2 and 24-2-min RNA sequences, 

reported by Paige and coworkers[91]; ~100 nucleotides) that exhibits EGFP-like green 

fluorescence upon binding of 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), a 

fluorogenic ligand that is structurally similar to the EGFP chromophore and is membrane-

permeable and nontoxic. Spinch RNA folds into an RNA G-quadruplex structure providing a 

___________________________________________ 

*Chapter 3 was excerpted from a published work: 

Zhang, J. et al. “Tandem Spinach array for RNA imaging in living bacterial cells” Sci. Rep. doi:10.1038/srep17295 

(2015) 
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binding site for the fluorogen[96-98], and structural stabilization of the fluorogen bound to the 

G-quadruplex structure is likely responsible for its strong fluorescence enhancement. Although 

the Spinach system has been used for imaging highly abundant nontranslated RNAs (tRNAs[91], 

rRNAs[91,92,94] and trinucleotide repeats[92]) and further applied to detect cellular metabolites 

and proteins[99,100], there have been very few studies on the utility of Spinach in imaging 

cellular mRNA[92], and the fluorescence signal was only barely above cellular autofluorescence 

level, likely due to low abundance of mRNA and the low brightness of a single fluorogen-bound 

RNA aptamer. To amplify the signal, making a tandem array of these RNA aptamers, as was used 

for MS2 and PP7 systems[38,101], could be a general solution to improve the brightness of the 

aptamer-fluorogen systems. However, it remains to be tested whether this strategy is suitable for 

RNA imaging because making tandem arrays of these RNA aptamers would significantly 

increase the RNA length which may potentially affect mRNA metabolism. 

Here we use Spinach as our model system and constructed Spinach arrays where we fused 

multiple repeats of the Spinach aptamer on a single RNA molecule. In this chapter we measured 

the in vitro fluorescence of Spinach arrays, characterized its folding efficiency and fluorogen-

binding binding kinetics, before applying Spinach arrays to RNA imaging.  

3.2 Results 

3.2.1 Construction of Spinach array 

We designed a series of Spinach arrays containing different numbers of tandem Spinach 

aptamers (Spi-nR, n = 8, 16, 32, 64). Between two adjacent aptamer repeats we inserted 17-nt 

randomized spacer sequence, which was used for constructing tandem repeats of MS2 RNA 

sequence[37,38]. The 8-repeat Spinach array (Spi-8R) DNA sequence was ordered from 

Genscript, and 16-, 32- and 64-repeat Spinach arrays (Spi-16R, -32R and -64R) were constructed 

based on Spi-8R (Methods and Materials). The Spinach array DNA sequence was inserted into 

pET28a plasmid with the embedded T7 promoter and lac operator system which can be used for 

either in vitro transcription or cellular expression of the Spinach array RNA (Figure 3.1A). The 

Spinach array RNA used for in vitro measurement and test was obtained via in vitro transcription 

using T7 RNA polymerase (Methods and Materials). 
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3.2.2 Spinach arrays significantly enhance fluorescence intensities of single Spinach 

Fluorescence intensities of in vitro transcribed Spinach arrays (100 nM RNA) were measured by 

fluorometer after RNA folding and incubation with DFHBI (20 µM) (Methods and Materials). 

Compared to single Spinach aptamer (Spi), Spi-nR shows greatly enhanced fluorescence signal 

with the same maximum excitation/emission wavelengths at 460/505 nm (Figure 3.1B). The 

fluorescence intensity increases with the repeat number: it changes approximately 17-fold when 

the aptamer repeat number increases 64-fold (Figure 3.1C). We calculated how the fluorescence 

intensity of Spi-nR increases upon duplication of the aptamer number within the array, described 

by fluorescence enhancement efficiency (Methods and Materials). We found that for Spinach 

arrays, upon aptamer repeat number duplication, the fluorescence intensity showed ~1.59-fold 

enhancement on average (Figure 3.2). 

3.2.3 Spinach arrays show relatively low folding efficiency 

We noticed that the duplication of the number of Spinach aptamers within the Spinach array does 

not lead to doubling of the fluorescence intensity. There are two possible explanations for the 

less than 2-fold increase in the brightness when the aptamer number was doubled: fluorescence 

quenching between adjacent aptamers, and misfolding/incomplete folding of multiple 

aptamers[38]. To test inter-aptamer quenching, we measured the fluorescence lifetimes of single 

Spinach and Spinach arrays. The average fluorescence lifetime of Spi, Spi-8R and Spi-32R was 

4.0, 3.91 and 3.63 ns, respectively. By calculating the extent of quenching using the measured 

average fluorescence lifetime (Methods and Materials), we estimated that quenching can account 

for only up to 10% in fluorescence reduction even in the worst case. To test whether Spinach 

arrays have folding problems, we used a previously reported assay to estimate the folding 

efficiency[92,94] and found that the relative folding efficiency of Spi-8R compared to Spi is 43.5 

± 1.6 % and the value drops further to 34.6 ± 2.0 % for Spi-32R (Table 3.1). In previous 

literature people have reported that single Spinach is subject to misfolding[92]. Spinach arrays 

may misfold more extensively since in addition to the relatively low thermostability of Spinach 

aptamer which brings about its susceptibility to misfolding, the tandem aptamer sequence within 

a Spinach array might encounter inter-aptamer misfolding, similar to the example where proteins 

consisting repetitive domains are known to misfold due to interdomain interactions[102]. Our 
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measurement showed that the folding efficiencies of Spinach arrays are significantly lower than 

that of single Spinach, suggesting that inter-aptamer misfolding possibly takes place. 

Incorporating the single Spinach aptamer into a tRNA scaffold could slightly increase its 

fluorescing likely through improving the folding of the Spinach sequence (Table 3.1). 

Nevertheless this strategy might not be applicable to Spinach arrays: on one hand, it does not 

solve the problem of inter-aptamer misfolding; on the other hand, recent study showed that the 

RNA aptamer incorporated into tRNA scaffold suffered endonucleolytic cleavage due to tRNA 

sequence recognition by RNases in bacteria and mammalian cells[94], disfavoring the extensive 

use of tRNA scaffold in Spinach imaging. 

3.2.4 Kinetics measurement of DFHBI binding onto Spinach arrays 

We measured the binding kinetics of DFHBI onto Spinach aptamer within a Spinach array and 

tested whether incorporating Spinach aptamers into an array significantly influences the binding 

kinetics. During our measurement, certain concentrations of pre-folded single Spinach (Spi) or 

Spinach arrays (Spi-nR) were quickly mixed with certain concentrations of DFHBI to measure 

the fluorescence intensity of the solution as a function of time, which can be further analyzed to 

resolve the binding kinetics. 

Compared to the binding kinetics of DFHBI binding to Spi which is relatively easy to resolve 

and has been discussed in previous literature (Kyu Young, Samie Jaffrey and French group), the 

binding kinetics of DFHBI binding to Spi-nR is much more complex, not only because Spi-nR 

has multiple DFHBI binding sites, but also due to the misfolding of Spinach arrays. In order to 

simplify the binding kinetics resolving, we only consider the binding reaction between DFHBI 

and Spinach aptamers, regardless of single Spinach or Spinach arrays. In this case the binding 

reaction would be described as below: 

Spinach + DFHBI ⇌ Spinach − DFHBI 

To measure the binding kinetics between DFHBI and Spinach aptamers, we transformed the 

concentrations of single Spinach or Spinach arrays into that of Spinach aptamers. For single 

Spinach, we assumed that the Spinach aptamer concentration is identical to that of Spi, and then 

we used the previously measured relative folding efficiency of Spinach arrays (43.5% for Spi-8R 



38 
 

and 34.6% for Spi-32R, compared to Spi) to calculate the Spinach aptamer concentration for Spi-

8R and Spi-32R. To estimate the concentration of Spinach/DFHBI binding complex 

concentration, we compared the acquired fluorescence intensity of the sample to the equilibrium 

fluorescence intensity of the mixed solution of 100 nM Spi and 20 µM DFHBI, where we 

considered 100 nM Spinach/DFHBI complex formed upon reaction equilibrium.  

In our experiments, the initial concentrations of the RNA, the effective Spinach aptamers and 

DFHBI in the experiments were: Spi, 40 nM, 40 nM Spinach aptamer; Spi-8R, 10 nM RNA, 

34.8 nM Spinach aptamer; Spi-32R, 5 nM, 55.4 nM Spinach aptamer; DFHBI, 200 - 700 nM. 

We recorded the fluorescence intensity within 1800 s upon mixing, and transform the 

fluorescence intensity into binding complex concentration, to describe the binding complex 

formation as a function of time. Here we showed representative binding curves showing real-

time binding reaction between DFHBI and Spi, Spi-8R and Spi-32R. We could notice that the 

binding complex formation, due to the binding reaction between DFHBI and either single 

Spinach or Spinach arrays, showed a fast increase state followed by a much slower increase state, 

before reaching the plateau, if there is any. 

In order to analyze the data and retrieve binding kinetics information (kon, koff and KD), we used a 

Matlab code to simulate our experimental data and determine the most probable kon and koff 

value (Methods and Materials) based on a simple kinetic model that could be described as below: 

Spinach + DFHBI ⇌ Spinach − DFHBI 

d[Spinach − DFHBI]

dt
= kon × [Spinach] × [DFHBI] − koff × [Spinach − DFHBI] 

d[Spinach]

dt
=
d[DFHBI]

dt
= koff × [Spinach − DFHBI] − kon × [Spinach] × [DFHBI] 

Initially we simulated the whole binding curve (1800 s), obtained the most probable kon and koff 

value for the specific experimental condition, and applied the predicted kinetic information to 

draw a simulated binding curve. We found that the result always showed great deviation from the 

experimental data at a very early stage (within 100 s, data not shown), suggesting that the 

binding curve could not be well described by our simplified kinetic model. Perhaps the existence 
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of the slow increase state of the binding complex formation shown in the binding curve could not 

be explained by our proposed kinetic model.  

In this case we selectively simulated the first 100 s of the binding curve (Figure 3.4A), which is 

part of the fast increase state, and determined the corresponding most probable kon, koff and KD 

value. We found that for the first 100 s of the binding curve, the simulated data fitted the 

experimental data quite well (Figure 3.4A), suggesting that our proposed kinetic model might be 

a good approximation to describe the fast increase state. We then used the predicted kon, koff and 

KD value we obtained from the simulation of the first 100 s data from the binding curve to draw a 

predicted binding curve for the whole time window (1800 s) for our measurement (Figure 3.4B). 

We found that the simulated binding curve predicted a smaller DFHBI/Spinach concentration 

than the experimentally measured value at the plateau region (Figure 3.4B). Nevertheless, the 

predicted equilibrium binding complex concentration is still as high as 85% of measured 

equilibrium DFHBI/Spinach concentration for Spi and 80% for Spi-8R and Spi-32R. We 

hypothesized that additional conformational change of the aptamer resulted in a second slower 

binding state with potentially altered kon and koff. However, with the single observable in our 

experiment, we were unable to determine the parameters for the additional kinetic steps. 

We found from our simulation result that for Spi, Spi-8R and Spi-32R, the kon, koff and KD value 

were quite consistent at various DFHBI concentrations (200 - 700 nM). The average value of the 

kon and koff we calculated (Spi, kon = (8.3 ± 0.1)× 10
4
 M

-1
∙s

-1
, koff = (2.5 ± 0.4)× 10

-2
 s

-1
; Spi-8R, 

kon = (9.3 ± 0.6)× 10
4
 M

-1
∙s

-1
, koff = (2.3 ± 0.6)× 10

-2
 s

-1
; Spi-32R, kon = (6.6 ± 0.8)× 10

4
 M

-1
∙s

-1
, 

koff = (3.3 ± 0.3)× 10
-2

 s
-1

) also indicated that the binding kinetics between DFHBI and the 

Spinach aptamer did not alter significantly between single Spinach (Spi) and tandem Spinach 

arrays (Spi-8R and Spi-32R). 

We have included the calculated kon, koff and KD value in Table 3.2.  

3.3 Discussion 

We constructed Spinach arrays and conducted in vitro characterization. We found that Spinach 

arrays could significantly increase fluorescence intensity of single Spinach aptamer. According 

to our result Spinach arrays could be useful for live cell RNA imaging. 
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3.4 Experimental procedure 

3.4.1 Chemical synthesis of DFHBI 

DFHBI was synthesized according to the procedure introduced by Paige and coworkers[91], and 

was dissolved in DMSO to 10 mM final concentration and the solution was stored at -20 °C. 

3.4.2 Spi-tRNA and Spi sequence for in vitro fluorescence measurement 

Spi-tRNA, containing one repeat of the 24-2 aptamer inside a tRNA
Lys

 scaffold in the pET28c 

vector was given as a kind gift by Prof. Samie Jaffrey (Weill Cornell Medical College)[91]. The 

24-2 sequence was amplified by PCR from pET28c-Spi-tRNA and inserted into pET28a plasmid 

(Novagen) between XbaI and HindIII restriction sites to create plasmid pET28a-Spi. Plasmids 

were transformed into E. coli strain BL21-DH5α (Promega) for DNA cloning. 

3.4.3 Design and construction of Spinach arrays 

The Spi-8R sequence was synthesized by Genscript as double-stranded DNA and was inserted 

into pUC57 plasmid (Genscript) between the EcoRI and HindIII restriction sites to generate the 

plasmid pUC57-Spi-8R. Each repeat sequence contains the Spinach (minimal) sequence, or 24-

2-min sequence reported by Paige and coworkers[91], plus a 17 nt randomized linker sequence. 

The plasmid was digested with restriction endonuclease XbaI and HindIII to generate Spi-8R 

sequence, which was then inserted into pET28a plasmid between the XbaI and HindIII restriction 

sites to generate the plasmid pET28a-Spi-8R. 

The construction method of Spi-16R, -32R and -64R was previously described by Golding and 

coworkers[91]. Briefly, we digested the pET28a-Spi-8R plasmid in two separate reactions- XbaI 

and HindIII were used to generate the insert fragment Spi-8R, and it was inserted into the 

pET28a-Spi-8R vector generated from NheI and HindIII digestion of pET-Spi-8R plasmid. As 

XbaI and NheI are isocaudomers and would generate the same sticky ends during restriction 

digestion, the Spi-8R fragment could be ligated with the pET28a-Spi-8R vector to obtain 

pET28a-Spi-16R. The similar cycle was repeated to create pET28a-Spi-32R and -64R.  

3.4.4 In vitro transcription and RNA folding 
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Spi and Spi-nR (n = 8, 16, 32, 64) RNA were synthesized by in vitro transcription using 

MEGAshortscript T7 kit (Life Technologies) and MEGAscript T7 Kit (Life Technologies), 

respectively, following the protocol. pET28a-Spi and pET28a-Spi-nR DNA sequence linearized 

by HindIII were used as in vitro transcription template. The transcribed RNA underwent buffer 

exchange twice using P-6 micro bio-spin column (Bio-Rad) into RNA storage buffer (10 mM 

Tris acetate (pH 8.0), 0.1 mM EDTA and 10 mM KCl) to remove unreacted nucleotides. The 

RNA was folded in selection buffer (40 mM K-HEPES (pH 7.5) and 125mM KCl[91]) by 

incubation at 90 °C in water bath for 2 min, followed by slow cooling down to 65 °C, then 

supplemented with 5 mM MgCl2 to assist RNA folding and further cooling down to room 

temperature. 

3.4.5 Fluorescence measurement of in vitro transcribed RNA 

Folded Spi and Spi-nR (n = 8, 16, 32, 64) RNA was diluted in selection buffer (40 mM K-

HEPES (pH 7.5), 125 mM KCl) supplemented with 5 mM MgCl2 and incubated with 20 µM 

DFHBI at room temperature (23 °C) for 5 min. Fluorescence measurement of the RNA/DFHBI 

complex was performed with a fluorometer (Cary Eclipse Fluorescence Spectrophotometer, 

Agilent Technologies) using the following instrument parameters: “Scan” mode; excitation 

wavelength 460 nm, excitation slit width 5 nm; emission wavelength 480 - 600 nm, emission slit 

width 5 nm.  

To obtain the excitation and emission spectrum of Spi and Spi-nR RNA, the following 

instrument parameters were applied: (1) excitation spectrum, emission wavelength 505 nm and 

emission slit width 5 nm, excitation wavelength 400 - 480 nm and excitation slit width 5 nm; (2) 

emission spectrum, excitation wavelength 460 nm and excitation slit width 5 nm, emission 

wavelength 480 - 580 nm and emission slit width 5 nm.  

3.4.6 Fluorescence enhancement efficiency measurement for Spinach arrays 

We defined the fluorescence enhancement efficiency as the relative fluorescence intensity 

increment when the aptamer repeat number is doubled within the Spinach array. For example, 

upon aptamer number duplication, the value of the fluorescence enhancement efficiency for the 

Spinach array would be 0 if the fluorescence intensity remains unchanged and would be 1 if the 
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fluorescence intensity is doubled. The fluorescence intensity of Spi-nR, ISpi-nR, as a function of 

the fluorescence enhancement efficiency, can be formulated as: 

ISpi-nR = ISpi × (1+eff)
log2(n) 

In the equation ISpi-nR is the in-vitro fluorescence of Spi-nR (Figure 3.1C), ISpi is the in-vitro 

fluorescence of Spi (Figure 3.1C), “eff” is the fluorescence enhancement efficiency, and log2(n) 

is the value of logarithms base 2 of n, which we further defined as duplication round, or the 

number of repeat duplication required to construct Spi-nR from Spi. We can transform the 

formula into: 

log2(ISpi-nR) = log2(1+eff) × log2(n) + log2(ISpi) 

The enhancement efficiency value can be obtained by plotting log2(ISpi-nR) as a function of log2(n) 

and conducting linear fitting to obtain the slope value, which is the log2(1+eff) in the equation. 

Then the enhancement efficiency can be calculated with the slope value. We put the data plot 

and linear fitting in Figure 3.2, and had the slope value 0.67 and the fluorescence enhancement 

efficiency value 0.59. 

3.4.7 Relative aptamer folding efficiency measurement of Spi-nR compared to Spi  

To measure the relative folding efficiencies of Spi, Spi-8R and Spi-32R compared to Spi-tRNA, 

we kept the aptamer amount identical for Spi-tRNA, Spi, Spi-8R and Spi-32R, and incubated the 

RNA with excess amount of DFHBI. The solution was sent for fluorescence measurement and 

the fluorescence of Spi, Spi-8R and Spi-32R was compared with that of Spi-tRNA to calculate 

the relative folding efficiencies of Spi, Spi-8R and Spi-32R compared to Spi-tRNA. In the 

experiment we incubated 100 nM Spi-tRNA, 100 nM Spi, 12.5 nM Spi-8R or 3.125 nM Spi-32R 

with 10 µM DFHBI, respectively, making the aptamer concentration in each solution 100 nM 

and DFHBI 100 times the concentration of the aptamer. 

3.4.8 Spinach binding kinetics measurement 

The fluorescence increase was recorded with a fluorometer (Cary Eclipse) after rapid mixing of 

certain concentrations of Spi or Spi-nR with different concentrations of DFHBI to obtain a total 

volume of 100 µL in a cuvette for fluorescence measurement. The fluorescence intensity was 
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recorded as a function of time using excitation and emission wavelengths of 460 and 510 nm, 

respectively. The illumination intensity was estimated to be 1−5 W/cm
2
. 

3.4.9 Time-resolved fluorescence measurement and fluorescence lifetime calculation 

The fluorescence lifetime measurements were performed by a custom built confocal microscope 

as described elsewhere[103]. An excitation light (473 ± 5 nm; ~ 10 ps pulse duration) was 

generated from an ultrafast laser (MaiTai HP, Spectra Physics) with the use of a photonic crystal 

fiber (FemtoWhite 800, NKT Photonics) and a pre-stretcher (N-SF57, CASIX). The fluorescence 

signal was detected by an avalanche photo diode (Micro Photon Devices) and registered by a 

time correlated single photon counting module (SPC630, Becker Hickl).  

The extent of quenching (η) of Spi-nR compared with Spi-tRNA was calculated as follows. η = 1 

- QY(Spi-nR)/QY(Spi-tRNA) = 1- τf(Spi-tRNA)/τf(Spi-nR), where QY and τf denote quantum 

yield and fluorescence lifetime, respectively. 

3.4.10 Sequence information 

Spi 

gacgcaactgaatgaaatggtgaaggacgggtccaggtgtggctgcttcggcagtgcagcttgttgagtagagtgtgagctccgtaactag

tcgcgtc 

Spi-tRNA 

gcccggatagctcagtcggtagagcagcggccggacgcaactgaatgaaatggtgaaggacgggtccaggtgtggctgcttcggcagtg

cagcttgttgagtagagtgtgagctccgtaactagtcgcgtccggccgcgggtccagggttcaagtccctgttcgggcgcca 

(red letters refer to tRNA sequence; green letters refer to Spinach aptamer sequence, or 24-2 

sequence) 

Spi-8R 

tagacggcatggggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtc

gcgtcacgtaagatgctccggttagggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagc

tccgtaactggtcgcgtcactgatgtaccgttgagcagggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttga

gtagagtgtgagctccgtaactggtcgcgtcactcgctagagcatggtttgggagacgcgaccgaaatggtgaaggacgggtccagtgctt

cggcactgttgagtagagtgtgagctccgtaactggtcgcgtcactggggcacgccgtctgggggagacgcgaccgaaatggtgaagga

cgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcgcgtcacttactgcgaccgcaatagggagacgcgaccga

aatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcgcgtcacgcgcgcaaccgggtagagg
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gagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcgcgtcacgtaactc

acggcgctatgggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcg

cgtc 

(black letters refer to linker sequence between Spinach aptamers; green letters refer to Spinach 

aptamer (minimal) sequence, or 24-2-min sequence) 

T7 promoter-lac operator 

taatacgactcactataggggaattgtgagcggataacaattc 

(red letters refer to T7 promoter sequence, and green letters refer to lac operator sequence) 
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3.5 Figures and tables 

Figure 3.1 

 

Figure 3.1. (A) Sketch of in vitro transcription system for Spinach arrays (Spi-nR). (B) Excitation and emission 

spectra of single Spinach aptamer and Spinach arrays (100 nM RNA + 20 µM DFHBI). (C) Fluorescence intensity 

of Spi and Spi-nR, measured by fluorometer. 
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Figure 3.2 

 

 

Figure 3.2. The plot of the in-vitro Spi-nR (ISpi-nR) fluorescence intensity as a function of the aptamer repeat 

number (n), after taking base 2 logarithm of both the fluorescence intensity and the repeat number value. The green 

line is the linear fitting of the data. The slope of the fitting curve, which is 0.67 here, is used to calculate the 

fluorescence enhancement efficiency value, which is used to describe the in-vitro fluorescence fold enhancement 

upon aptamer repeat number duplication within the Spinach array. The calculated efficiency value is 0.59 here. 
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Figure 3.3 

 

 

 

Figure 3.3. Representative Spinach/DFHBI binding curve for single Spinach aptamer (Spi) and tandem Spinach 

arrays (Spi-8R and Spi-32R). 

 

 

 

 

 

 



48 
 

Figure 3.4 

 

 

Figure 3.4. Representative Spinach/DFHBI binding curve (200 nM DFHBI + 40 nM Spi; red line) and the fitting 

curve using the estimated most probable kon and koff value (black line). (A) First 100 s of the binding curve and the 

fitting curve generated by simulating the first 100 s of the binding curve. (B) The full binding curve (1800 s) and the 

fitting curve using the estimated most probable kon and koff value generated from simulating the first 100 s of the 

binding curve. 

Table 3.1 

 RNA concentration 

(nM) 

Aptamer concentration 

(nM) 

Fluorescence  

(A. U.) 

Relative folding 

efficiency 

Spi 100 100 10.6 ± 0.9 100% 

Spi-8R 12.5 100 4.61 ± 0.17 43.5 ± 1.6% 

Spi-32R 3.125 100 3.67 ± 0.21 34.6 ± 2.0% 

Table 3.1. The relative folding efficiencies of Spi and Spi-nR compared to Spi-tRNA. 
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Table 3.2 

 kon (M
-1

∙s
-1

) koff (s
-1

) KD (nM) 

5 nM Spi-32R, 200 nM DFHBI 7.9×10
4
 3.1×10

-2
 392 

5 nM Spi-32R, 300 nM DFHBI 8.7×10
4
 2.7×10

-2
 310 

5 nM Spi-32R, 400 nM DFHBI 6.7×10
4
 2.1×10

-2
 313 

5 nM Spi-32R, 500 nM DFHBI 7.7×10
4
 3.5×10

-2
 455 

5 nM Spi-32R, 600 nM DFHBI 5.7×10
4
 3.5×10

-2
 614 

5 nM Spi-32R, 700 nM DFHBI 6.9×10
4
 2.9×10

-2
 420 

Mean ± SD (7.3 ± 1.1)×10
4
 (3.0 ± 0.5)×10

-2
 417 ± 112 

10 nM Spi-8R, 200 nM DFHBI 10.1×10
4
 2.7×10

-2
 267 

10 nM Spi-8R, 300 nM DFHBI 9.8×10
4
 2.8×10

-2
 286 

10 nM Spi-8R, 400 nM DFHBI 8.9×10
4
 2.9×10

-2
 326 

10 nM Spi-8R, 500 nM DFHBI 9.3×10
4
 1.7×10

-2
 183 

10 nM Spi-8R, 600 nM DFHBI 8.8×10
4
 1.5×10

-2
 170 

Mean ± SD (9.4 ± 0.6)×10
4
 (2.3 ± 0.7)×10

-2
 246 ± 67 

40 nM Spi, 200 nM DFHBI 9.9×10
4
 3.1×10

-2
 313 

40 nM Spi, 400 nM DFHBI 7.7×10
4
 2.3×10

-2
 299 

40 nM Spi, 500 nM DFHBI 7.7×10
4
 2.5×10

-2
 325 

40 nM Spi, 600 nM DFHBI 7.7×10
4
 2.1×10

-2
 273 

Mean ± SD (8.3 ± 1.1)×10
4
 (2.5 ± 0.4)×10

-2
 303 ± 22 

Table 3.2. The kon, koff and KD of DFHBI binding onto the Spinach aptamer within Spi, Spi-8R and Spi-32R, 

measured under various DFHBI concentration conditions. 
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CHAPTER 4 

LIVE CELL IMAGING USING SPINACH ARRAY* 

4.1 Introduction 

In this chapter we continued our study on Spinach systems by applying the Spinach arrays we 

constructed and tested in vitro to live cell RNA imaging. Upon introduction of Spinach arrays 

into the cell and fusing Spinach arrays to a protein-coding sequence, we also characterized 

whether Spinach arrays affect RNA transcription, protein translation or RNA degradation.   

4.2 Results 

4.2.1 Construction of RNA expression system in E. coli 

In order to measure the fluorescence enhancement of Spinach array-tagged mRNA in living cells 

and characterize its influence on mRNA transcription, translation and degradation, we inserted 

Spinach arrays in the 3’ UTR (untranslated region) of the monomeric red fluorescent protein, 

mRFP1, coding sequence (henceforth called RFP-Spi-nR (n = 8, 16, 32, 64) (Figure 4.1A). For 

comparison, we also prepared two constructs: RFP-Spi in which Spinach aptamer was directly 

linked to RFP sequence, and RFP-Spi-tRNA in which Spinach aptamer was incorporated into a 

human tRNA
Lys

 scaffold as previously reported[91,104] and then linked to RFP sequence. The 

mRFP1 coding sequence without any Spinach tag, RFP, was used as a negative control.  

4.2.2 Spinach arrays significantly enhance live cell RNA imaging fluorescence 

We then measured how much brighter Spinach arrays are compared to single Spinach in living 

cells. Live cell imaging of E. coli transcribing RFP-Spi showed no fluorescence enhancement in 

the Spinach fluorescence channel over the background autofluorescence level of cells expressing 

___________________________________________ 

*Chapter 4 was excerpted from a published work: 

Zhang, J. et al. “Tandem Spinach array for RNA imaging in living bacterial cells” Sci. Rep. doi:10.1038/srep17295 

(2015) 
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untagged RFP (Figure 4.2). In comparison, cells transcribing RFP-Spi-tRNA showed 

homogenously distributed Spinach fluorescence with a slight enhancement over the 

autofluorescence level (Figures 4.1C, 4.1D and 4.2). The fluorescence deficiency in cells 

transcribing RFP-Spi probably results from misfolding of the Spinach aptamer when fused to an 

mRNA. In contrast, E. coli transcribing RFP-Spi-nR showed strong Spinach fluorescence. The 

increase in average fluorescence intensity per cell as a function of n (~17 fold enhancement from 

RFP-Spi-tRNA to RFP-Spi-64R, after autofluorescence subtraction) generally reflects the in 

vitro trend (~17 fold enhancement from Spi to Spi-64R). 

Interestingly, we found that unlike the homogenously distributed cellular fluorescence observed 

for E. coli expressing RFP-Spi-tRNA, the fluorescence for E. coli expressing RFP-Spi-nR 

preferentially accumulated at cell poles. In order to determine whether the apparent difference in 

cellular fluorescence distribution is caused by Spinach arrays, we conducted an RNA 

fluorescence in situ hybridization (FISH) experiment, which is a widely applied method to 

characterize target RNA localization and expression level, on cells expressing RFP, RFP-Spi-

tRNA and RFP-Spi-nR (n = 8, 32). We used Cy5-labeled oligonucleotide probes targeting the 

mRFP1 (Figure 4.3) or the Spinach array (Figure 4.4) in different sets of FISH experiments. 

Fluorescence images of the FISH samples indicated that upon IPTG induction, target mRNAs 

preferentially accumulated at the cell poles where mRNAs transcribed from plasmid DNA are 

typically observed in E.coli[105], regardless of the presence or the types of the Spinach tag at the 

3’ UTR (Figure 4.3). Therefore, we conclude that the low fluorescence from single Spinach 

failed to reveal accurate mRNA localization (Figures 4.1 and 4.5) and the Spinach array could 

address the problem by greatly enhancing fluorescence signal for cellular mRNA imaging. 

4.2.3 Spinach array does not affect mRNA transcription and protein translation 

Quantitative reverse transcription PCR (qPCR) was conducted to quantify the expression level of 

mRFP1-coding mRNA for cells transcribing RFP, RFP-Spi-tRNA and RFP-Spi-nR. We found in 

qPCR data that the cellular level of Spinach-tagged mRNA under induction (1 mM IPTG, 60 

min), either by a single Spinach (RFP-Spi-tRNA) or by an array (RFP-Spi-nR), is similar to that 

of untagged mRNA (Figure 4.1B), suggesting that mRNA transcription is unperturbed by the 

Spinach tag even with the longest array (Spi-64R) tested.  
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In addition, we measured the average fluorescence intensities of mRFP1 protein per cell, 

translated from Spinach-tagged or untagged mRNAs, in cells expressing RFP, RFP-Spi-tRNA 

and RFP-Spi-nR, and all types of cells showed comparable mRFP1 protein fluorescence (Figures 

4.1C and 4.1D), indicating that mRNA translation is not affected by Spinach tag either as a 

single aptamer or as an array. 

4.2.4 Spinach array does not affect mRNA degradation 

Here we examined the effect of Spinach arrays on RNA degradation. We conducted an mRNA 

decay assay for E. coli cells expressing RFP-Spi-32R or untagged RFP. We monitored the 

fluorescence of RFP-Spi-32R mRNA and mRFP1 protein after IPTG removal which would stop 

synthesis of new RNA.  Spinach fluorescence levels greatly decreased within 30 min and were 

depleted by 90 min after withdrawal of IPTG, suggesting mRNA degradation (Figures 4.6A and 

4.6B). We also compared mRFP1 fluorescence between E. coli expressing RFP-Spi-32R and 

untagged RFP (Figures 4.6A and 4.7). In both cases the fluorescence drop showed a significant 

time lag behind Spinach fluorescence change, which is possibly resulted from the combination of 

the following: (1) continuous translation of mRFP1 from the remaining mRNA after IPTG 

removal, (2) much longer lifetime of protein compared to that of mRNA[106-108], and/or (3) 

mRFP1 maturation[109,110] before fluorescing. We observed very similar trends of mRFP1 

fluorescence intensity change in cells expressing RFP-Spi-32R vs. RFP (Figure 4.7), indicating 

that the Spinach tag does not affect mRNA degradation or translation kinetics. To further 

confirm the effect of Spinach array on mRNA degradation, we conducted qPCR experiment to 

measure the abundance of untagged RFP mRNA and RFP-Spi-nR (n = 8, 32) as a function of 

time after IPTG removal (Figure 4.6C). qPCR data showed that RFP-Spi-nR mRNA level was 

decreased by approximately 60% and 90% 30 and 120 min after IPTG removal, respectively, 

with the same trend observed for the untagged RFP. We therefore conclude that Spinach tag even 

with multiple repeats does not influence mRNA decay.  

4.2.5 Image cellular mRNA at low expression level using laser excitation and pulsed 

illumination strategy 
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As the Spinach array effectively enhanced the fluorescence signal compared to single Spinach 

tag and performed well in quantitatively reporting the mRNA abundance in live cells through 

imaging, we then tuned the mRNA transcription level to further characterize the imaging 

sensitivity of the Spinach array. We replaced the T7 promoter (PT7-RFP-Spi-32R) with a native 

lacZYA promoter (Plac) for RFP-Spi-32R transcription (Plac-RFP-Spi-32R). RNA synthesis by 

endogenous E. coli RNA polymerase instead of T7 polymerase reduced the mRNA expression 

level by approximately two orders of magnitude according to qPCR quantification (Figure 4.8B). 

Using 16S ribosomal RNA (16S rRNA) (~20,000 - 70,000 copies per E. coli cell[38,111]) as a 

reference, we estimated the copy number of RFP-Spi-32R mRNA transcribed under the control 

of Plac and PT7 to be ~50 - 180 and ~3,000 - 11,000 per cell (Figure 4.8B), respectively, which is 

consistent with the transcription levels for the two expression systems[112,113]. We first 

conducted epifluorescence microscopy on cells expressing Plac-RFP-Spi-32R with the same 

imaging condition applied for PT7-RFP-Spi-32R. Plac-RFP-Spi-32R did not show any 

fluorescence signal in Spinach fluorescence channel beyond background autofluorescence level 

of uninduced Plac-RFP-Spi-32R (Figure 4.9), indicating that the epifluorescence microscope we 

used here is not sensitive enough to detect fluorescence signal from Spinach array with ~50 - 180 

RNA copies per cell.  

In order to obtain higher fluorescence signal from the Spinach array, we used a 473 nm laser 

instead of the lamp light as the excitation source. Previous study showed that the DFHBI bound 

to the Spinach aptamer quickly dissociates (within ~ 100 ms) upon strong excitation, causing the 

loss of fluorescence[103]. To address the problem, we utilized pulsed laser excitation to allow 

for Spinach to rebind DFHBI after light-induced DFHBI dissociation and regain fluorescence 

(Figure 4.8A). An automatically controlled mechanical shutter was applied to the generate a 0.2 

Hz repetitive laser pulse with 50 ms pulse width[103] (Experimental Procedure). 

During sample imaging, we first used continuous-wave (CW) laser to illuminate the sample for 

10 s to reduce the cellular autofluorescence level (pre-photobeaching, or pre-PB) (Figure 4.8A 

and 4.10)[114]. Afterwards we used the pulsed laser to illuminate the sample and acquire the 

imaging data. With the help of pulsed illumination, we could observe clear distinction between 

uninduced Plac-RFP-Spi-32R (~4 - 15 mRNA copies per E. coli cell), where we hardly observed 

any fluorescence signal (Figure 4.8D), and induced Plac-RFP-Spi-32R (~ 50 - 180 mRNA copies 
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per E. coli cell), where we found bright spots in many cells residing at cell poles (Figure 4.8C 

and 4.8D). We attribute the bright spots to transcription sites containing multiple mRNAs. The 

bright spots disappeared within a very short illumination time (< 500 ms) and reemerged upon 

illumination reinstatement after its withdrawal (> 5 s) (Figure 4.8C), which is a typical optical 

characteristics of Spinach fluorescence[103], suggesting that the fluorescence originated from 

the Spinach array. If we superposed multiple cell images from repeated cycles to achieve 

stronger fluorescence, we could clearly find that fluorescence signal showed preferential 

localization at cell poles (Figure 4.8D). The fluorescence consistent with the observed mRNA 

localization of induced Plac-RFP-Spi-32R verified by RNA FISH (Figure 4.11). Overall, with the 

help of the pulsed illumination method, we further enhanced the performance of the Spinach 

array and showed the potential to apply the system to image lower abundance cellular RNA.  

4.3 Discussion 

The Spinach system is a recently developed RNA labeling and imaging method based on 

aptamer binding and fluorescence induction of the fluorogenic small molecule DFHBI[91]. It has 

many potential advantages over widely applied RNA labeling methods using fluorescent protein-

fused RNA binding proteins, such as low fluorescence background, elimination of separate 

introduction of RNA binding proteins, and evasion of perturbation on target RNAs by protein 

binding. However, there were few reports on single Spinach aptamer labeling for cellular mRNA 

imaging[95], likely due to its low fluorescence brightness suggested by our experimental data 

(Figure 4.1D). To address this problem, we employed a tandem Spinach array to tag a single 

mRNA molecule and demonstrated that the Spinach array containing 64 aptamer repeats can 

enhance the fluorescence by 17-fold in live cells compared to a single Spinach aptamer. The 

fluorescence enhancement by the Spinach array allowed us to greatly improve mRNA imaging 

quality comparing to using the single Spinach tag. In particular, we observed inhomogenous 

RNA distribution and distinct RNA loci in E. coli (Figures 4.5D and 4.8D) using the Spinach 

array, whereas single Spinach tag suffered from low fluorescent signal and failed to report 

correct RNA localizations in cells. For cells with a lower mRNA level (~120 - 180 mRNAs per E. 

coli.), we further applied pulsed illumination strategy to effectively boost the fluorescence of the 

Spinach array such that we could observe mRNA localizations. Despite the 17-fold fluorescence 

enhancement achieved by constructing the aptamer array, we also noted that the average 



55 
 

efficiency for an aptamer to correctly fold seems to decrease with the increase of the aptamer 

repeat number. One possible reason for this is the crosstalk and mispairing between adjacent or 

spatially close aptamers in a tandem array, which were reported and discussed for tandem arrays 

in previous RNA and protein folding studies[115-118]. In addition, the intrinsic instability of the 

Spinach aptamer may also play a role (~32% folded, 25°C[92]). Future introduction of several 

recently reported aptamers with improved folding efficiency (for example, Spinach 2, ~58%[92]; 

Broccoli, ~60%[94]) may enhance the fluorescence of the aptamer array. It is also possible that 

optimizing linker sequences may improve the performance although mispairing-based 

misfolding may not be avoided by changing linker sequences alone. 

With a series of characterizations on the aptamer tandem array, we demonstrated that in E. coli, 

Spinach array-tagged mRNA had no significant alterations on transcription, translation or 

degradation. This may be attributed to the small size and high dissociation constant (KD) of the 

fluorogen. In contrast, the MS2/PP7 coat protein labeling method has been reported to impede 

RNA degradation in bacteria in previous studiess[37,38], likely due to the stable association of 

many MS2/PP7 proteins to mRNA, which prevents the bacterial RNA degradation machinery 

from functioning. In addition, the Spinach array did not alter mRNA localization. When applied 

to eukaryotic cell imaging, in order to decrease the fluorescence background introduced by the 

MS2 coat protein-fluorescent protein fusion (MS2-FP) in cytosol, the MS2-FP proteins are 

usually fused with a nuclear localization sequence (NLS) to guide excess unbound proteins to the 

nucleus[22,98]. Although the strategy increases the signal-to-noise ratio, it might potentially 

perturb the endogenous RNA localization.  In contrast, DFHBI remains non-fluorescent until 

binding to the Spinach aptamer, which circumvents extra modifications that decrease background 

fluorescence but could possibly affect target RNA localization.  

In conclusion, we constructed a tandem Spinach aptamer array that could enhance fluorescence 

imaging quality of the Spinach/DFHBI system for live cell RNA imaging while introducing 

minimal perturbation to the target RNA. Nevertheless, Spinach arrays still show several 

limitations, including relatively low brightness and large size, making them ill-suited for 

studying mammalian cells, where autofluorescence is stronger and RNAs are more dispersedly 

distributed and undergo intensive motor-driven transport. Several recently developed 

fluorogen/aptamer systems, including RNA Mango, Spinach 2, Broccoli, etc, showed the 
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potential to further enhance the performance. All of those newly discovered fluorogen/aptamer 

systems have similar fluorescing mechanisms as that of the Spinach aptamer while showing 

higher brightness, shorter length or more robust folding behavior. We envision that incorporating 

the newly reported aptamers into a tandem array could also enhance their fluorescence signals 

per RNA molecule. Furthermore, we expect the tandem arrays derived from those aptamers 

would be very likely to bring minimal perturbation to their target RNAs, due to their similarities 

to the Spinach aptamer. 

4.4 Experimental procedure 

4.4.1 Design and construction of Spinach arrays and RFP-Spi, -Spi-tRNA and -Spi-nR 

The mRFP1-coding sequence was amplified by PCR from pTRUEBLUE-BAC2-Plac/ara-mRFP1-

96BS constructed by Golding and coworkers[38] , and was inserted into pET28a between NcoI 

and NdeI to generate pET28a-RFP plasmid. The further construction of pET28a-RFP-Spi, -Spi-

tRNA, -Spi-nR plasmid was accomplished by inserting the Spinach sequence flanking XbaI and 

HindIII sticky ends into pET28a-RFP plasmid between NheI and HindIII restriction sites. 

Plasmids were transformed into BL21-DH5α (Promega) and BL21-DE3-Rosetta (Novagen) E. 

coli strains for DNA cloning and live cell imaging, respectively.  

To replace T7 promoter in pET28a-RFP-Spi-32R plasmid, a lacZYA (lac) promoter-lac operator 

sequence, amplified by PCR from pUC57-Spi-8R (Genscript), flanking BglII and XbaI sticky 

ends was inserted into the plasmid between BglII and XbaI restriction sites. 

4.4.2 Bacteria growth and induction 

E. coli cells were grown at 37 °C with antibiotics according to the plasmid selection markers 

(100 μg/mL ampicillin (Gold Biotechnology, Inc) for pUC57 and pUC57-Simple plasmid, 50 

μg/mL Kanamycin (Roche Diagnostics) for pET28a and pET28c plasmid, 30 μg/mL 

Chloramphenicol (Sigma-Aldrich) for pTRUEBLUE-BAC2 plasmid, and 30 μg/mL 

Chloramphenicol for E. coli Rosetta strain) in Lysogeny Broth (LB) (LB Broth Miller, EMD 

Millipore) liquid and solid media. To gauge cell density, optical density (OD) of the medium was 

assayed at 600 nm using a plastic cuvette in a Spectramax Plus 384 Microplate Reader 
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(Molecular Devices, Inc.). For RNA and protein induction, Rosetta cells transformed with a 

given plasmid were grown at 37 °C in LB medium overnight from a single colony, and diluted 

1000-fold into fresh LB medium and kept growing until at OD600 = 0.2. IPTG (Sigma-Aldrich) 

was then supplemented with 1 mM final concentration to induce RNA and protein production 

under T7 promoter-lac operator control. To maintain exponential growth of the cells, pre-

warmed medium was added to dilute the cell culture to OD600 = 0.3 whenever OD600 of the 

culture exceeded 0.5. 

4.4.3 RNA decay assay 

Cells were grown in LB medium and induced by IPTG as described above. After 60 min 

induction by 1 mM IPTG, the cells were centrifuged to a pellet and the supernatant was carefully 

aspirated and the cell pellet was resuspended in fresh pre-warmed LB medium without IPTG. 

The centrifugation and resuspension process was performed twice to remove the remaining IPTG, 

and the cell pellet was finally resuspended in LB medium without IPTG. The cells were grown at 

37 °C, and at different time points after IPTG removal, a bit of cell culture was taken out for 

imaging. 

4.4.4 Epifluorescence microscopy and image analysis 

To prepare the imaging sample, 1 mL of cell culture was supplemented with DFHBI to 100 μM 

final concentration 10 min before imaging, and was kept growing at 37 °C for DFHBI 

permeation and binding to Spinach aptamer. The cells were then centrifuged and supernatant was 

removed. After cell resuspension in pre-warmed M9 minimal medium (M9, Minimal Salts, 5X; 

Sigma-Aldrich) supplemented with 2mM MgCl2 and 100 µM DFHBI, a few µL were 

sandwiched between a glass coverslip (No. 1.5) and a thin slab of 1.5 % (w/v) agarose gel. M9 

minimum medium containing 2mM MgCl2 and 100 µM DFHBI or 1x PBS medium was used to 

dissolve the agarose and make the gel for live cell imaging or FISH imaging, respectively. 

All epifluorescence images were taken with a Nikon Eclipse (TE-2000-U, Nikon) microscope 

equipped an oil immersion objective (1.3 NA 100x) and an epifluorescence system. The 

epifluorescence system used a lamp light source (X-Cite Series 1200, Excelitas Technologies) to 

illuminate the sample and an emCCD camera (iXon3 897, Andor Technology) to acquire the 
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fluorescence image. The filter sets applied were: Brightfield (exposure time 100 ms), Spinach 

(Ex 450-490 nm, Em 500-550 nm, exposure time 200 ms), mRFP1 protein (Ex 540-580 nm, Em 

593-668 nm, exposure time 10 ms), Cy5 FISH probe (Ex 590-650 nm, Em 663-738 nm, 

exposure time 100 ms). The images were processed and analyzed using a MATLAB code 

reported by Golding and coworkers[38], which is able to identify single cells and measure the 

average fluorescence level of each cell in different fluorescence channels.  

4.4.5 Pulsed illumination microscopy and image analysis 

Pulsed illumination imaging was conducted by a home-built objective-TIRF microscope with an 

oil immersion objective (1.4 NA 100x, Olympus) equipped with an emCCD camera (iXon DU-

887, Andor Technology). Illumination with a 473 nm laser (MLL-III-473, Opto Engine LLC) 

was controlled by a mechanical shutter (UniBlitz VMM-D3) through a National Instruments NI-

6503 digital I/O controller card and synchronized to CCD via home-built software 

(cplc.illinois.edu/software)[2], and the data acquisition and analysis procedures conducted. The 

recorded movie was processed by a MATLAB code to generate a collection of fluorescence 

images of consecutive single frames. The superposed image was conducted by stacking selected 

frames in ImageJ. 

4.4.6 Total RNA extraction and purification 

For each sample, the cell culture was measured OD600. We took out appropriate volume of the 

cell culture which contained the same total cell number of 1 mL 0.5 OD600 cells. The cells were 

centrifuged at 5,000 g and 4 °C for 5 min, and the supernatant was carefully aspirated. The cell 

pellet was lysed by 1 mM lysozyme/TE buffer (10 mM Tris:HCl, 1 mM EDTA, pH = 8.0) and 

total RNA was extracted and purified from the cell lysate through RNeasy Mini Kit (Qiagen) 

according to the protocol. 10 µg extracted RNA were further treated with DNase using Turbo 

DNA-free kit (Life Technologies) to remove remaining DNA which interfered with qPCR 

experiments. Afterwards reverse transcription reaction was conducted with 100 ng RNA in a 20 

µL reaction volume to synthesize cDNA required for qRT-PCR experiments using iScript cDNA 

Synthesis Kit (Bio-Rad) from the DNAse-treated RNA, according to the protocol. 

4.4.7 Quantitative reverse transcription PCR (qPCR) and transcript number estimation 
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1 µL reverse-transcribed cDNA were taken out of the 20 µL total volume of each reverse 

transcription reaction, and were diluted to 10 µL. Regular PCR reactions were first conducted 

using the diluted cDNA and designed qPCR primers to confirm that proper cDNA products were 

generated. After that 1 µL of the diluted cDNA were supplemented with qPCR primer and 

reaction and detection SsoAdvanced SYBR Green Supermix (Bio-Rad) to a 20 µL reaction 

volume and qPCR reactions were assembled in a 96-well PCR plate (Bio-Rad). qPCR primers 

targeting the mRFP1-coding sequence were used to quantify RFP-Spi-nR RNA, and primers 

targeting 16S ribosomal RNA were used to quantify 16S ribosomal RNA as the internal standard. 

The qPCR reactions were conducted and monitored by Bio-Rad CFX96 Touch Real-Time PCR 

Detection System.  

The expression level and the cellular transcript number of RFP or RFP-Spi-nR mRNA were 

roughly estimated by calculating the relative RNA expression level compared to that of 16S 

rRNA, using ∆CT Method[119]. We have made a series of known dilutions of the cDNA samples 

and created standard curves of mRFP1 and 16S rRNA qPCR primers by plotting the threshold-

crossing cycle number (CT) of the amplification curves, to estimate the amplification efficiencies 

of both primer pairs, and to confirm that their amplification efficiencies are similar and reliable 

(between 90% and 105%). The relative expression level of a specific sample between RFP (-Spi-

nR) mRNA compared to that of 16S rRNA can be calculated simply with the primer 

amplification efficiencies extrapolated from the standard curves and the CT values measured by 

the qPCR experiments. The approximate RNA copy numbers per cell for RFP (-Spi-nR) mRNA 

were estimated by translating the relative value into absolute copy number using the value of 

20,000 - 70,000 16S rRNA molecules reported by previous study[38,111,120].  

4.4.8 RNA fluorescence in situ hybridization (FISH) 

The FISH probes, which are DNA oligonucleotides with 3’ amine modification, were designed 

and ordered from Biosearch Technologies, and labeled with Cy5 NHS (GE Healthcare). The 

protocol of RNA FISH, including probe design and labeling, cell fixation and permeabilization, 

and probe hybridization, were reported by So and coworkers[19,121]. Cell preparation and 

sample hybridization are briefly described below.        
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After cell harvest (equivalent to 15 mL OD600 = 0.4) and centrifugation (4 °C, 4500x g, 8 min), 

supernatant was removed and cells were resuspended in 1 mL freshly prepared fixation solution 

(1x PBS, 3.7% (w/w) formaldehyde) and gently shaken at room temperature for 30 min. 

Centrifuge (400x g, 8 min) the cell suspension, remove supernatant, and then wash twice in 1 mL 

1x PBS. Resuspend the cells in 70% (w/v) Ethanol, and leave the cell suspension at room 

temperature for at least 1h to permeate the cell. Afterwards centrifuge (600x g, 7 min) and 

remove supernatant. Resuspend cells in 1 mL 40% wash buffer (40% formamide (v/v), 2x SSC) 

and leave at room temperature for a few minutes, and then centrifuge (600x g, 7 min) and 

remove supernatant. Resuspend the cells well in 50 µL hybridization solution, which is mixed 

with 195 ng probes (15 ng for each probe, 13 probes in total) and 50 µL 40% hybridization 

buffer (10% dextran sulfate (w/v), 40% formamide (v/v), 1 mg/mL E. coli tRNA, 2x SSC, 0.2 

mg/mL BSA, 2 mM Ribonucleoside Vanadyl Complex), and leave at 30 °C overnight. On the 

next day, take a few µL of hybridization sample, add 20 volumes of 40% wash buffer, followed 

by mixing and centrifugation (600x g, 7 min). Afterwards repeat the following steps 3 times: 

resuspend the cells with 20 volumes 40% wash buffer after removing supernatant, incubate for 

30 min at 30 °C, and centrifuge and remove supernatant. Finally resuspend the cells in 1 volume 

of 2x SSC and the cell resuspension are ready to image. Prepare 1.5% (w/v) agarose/PBS gel for 

imaging sample preparation, as described before. Cell sample was imaged using epifluorescence 

microscopy with the filter set mentioned above for Cy5 FISH probe. 

4.4.9 Sequence information 

Spi 

gacgcaactgaatgaaatggtgaaggacgggtccaggtgtggctgcttcggcagtgcagcttgttgagtagagtgtgagctccgtaactag

tcgcgtc 

Spi-tRNA 

gcccggatagctcagtcggtagagcagcggccggacgcaactgaatgaaatggtgaaggacgggtccaggtgtggctgcttcggcagtg

cagcttgttgagtagagtgtgagctccgtaactagtcgcgtccggccgcgggtccagggttcaagtccctgttcgggcgcca 

(red letters refer to tRNA sequence; green letters refer to Spinach aptamer sequence, or 24-2 

sequence) 

Spi-8R 
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tagacggcatggggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtc

gcgtcacgtaagatgctccggttagggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagc

tccgtaactggtcgcgtcactgatgtaccgttgagcagggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttga

gtagagtgtgagctccgtaactggtcgcgtcactcgctagagcatggtttgggagacgcgaccgaaatggtgaaggacgggtccagtgctt

cggcactgttgagtagagtgtgagctccgtaactggtcgcgtcactggggcacgccgtctgggggagacgcgaccgaaatggtgaagga

cgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcgcgtcacttactgcgaccgcaatagggagacgcgaccga

aatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcgcgtcacgcgcgcaaccgggtagagg

gagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcgcgtcacgtaactc

acggcgctatgggagacgcgaccgaaatggtgaaggacgggtccagtgcttcggcactgttgagtagagtgtgagctccgtaactggtcg

cgtc 

(black letters refer to linker sequence between Spinach aptamers; green letters refer to Spinach 

aptamer (minimal) sequence, or 24-2-min sequence) 

mRFP1 

atggcctcctccgaggacgtcatcaaggagttcatgcgcttcaaggtgcgcatggagggctccgtgacacgagttcgagatcagagggcg

agggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggcggccccctgcccttcgcctgggacatcctgtcccc

tcagttccagtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctgtccttccccgagggcttcaagtgg

gagcgcgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaa

gctgcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggctgggaggcctccaccgagcggatgtacccc

gaggacggcgccctgaagggcgagatcaagatgaggctgaagctgaaggacggcggccactacgacgccgaggtcaagaccaccta

catggccaagaagcccgtgcagctgcccggcgcctacaagaccgacatcaagctggacatcacctcccacaacgaggactacaccatcg

tggaacagtacgagcgcgccgagggccgccactccaccggcgcctaa 

T7 promoter-lac operator 

taatacgactcactataggggaattgtgagcggataacaattc 

(red letters refer to T7 promoter sequence, and green letters refer to lac operator sequence) 

lac promoter-lac operator 

tttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttc 

(blue letters refer to lacZYA promoter sequence, and green letters refer to lac operator sequence) 

RNA FISH probes 

 

mRFP1 coding sequence 

5’-tgatgacgtcctcggaggag-3’ 

5’-accttgaagcgcatgaactc-3’ 

5’-tgatctcgaactcgtgtcac-3’ 

5’-tactggaactgaggggacag-3’ 

5’-gggaaggacagcttcaagta-3’ 
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5’-cgtcctcgaagttcatcacg-3’ 

5’-gcttcaccttgtagatgaac-3’ 

5’-atggtcttcttctgcattac-3’ 

5’-ttcagcctcatcttgatctc-3’ 

5’-atgtaggtggtcttgacctc-3’ 

5’-cttgatgtcggtcttgtagg-3’ 

5’-tcgttgtgggaggtgatgtc-3’ 

3’-atgtaggtggtcttgacctc-3’ 

Spinach aptamer 

5’-aagcactggacccgtccttc-3’ 

5’-cacactctactcaacagtgc-3’ 

5’-tgacgcgaccagttacggag-3’ 

 

qPCR primers 

 

mRFP1 

Forward: 5’-tgaggctgaagctgaaggac-3’ 

Reverse: 5’-tgtccagcttgatgtcggtc-3’ 

16S rRNA 
Forward: 5’-aggccttcgggttgtaaagt-3’ 

Reverse: 5’-attccgattaacgcttgcac-3’ 
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4.5 Figures 

Figure 4.1 

 

Figure 4.1. (A) Sketch of RFP-Spi-nR expression system in E. coli. (B) mRNA expression level of RFP or RFP-Spi-

nR in E. coli after 60 min of 1 mM IPTG induction, measured by qPCR and normalized by the mRNA level of 

unmodified RFP in E. coli . (C) mRNA (Spinach) and protein (mRFP1) fluorescence in E. coli expressing RFP or 

RFP-Spi-nR upon induction, measured via epifluorescence imaging. (D) Representative fluorescence images of E. 

coli expressing RFP or RFP-Spi-nR upon induction. 
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Figure 4.2 

 

Figure 4.2. Representative fluorescence images of E. coli expressing RFP, RFP-Spi and RFP-Spi-tRNA 

 

Figure 4.3 

 

Figure 4.3. FISH validation of the localization of Spinach-tagged RFP mRNA, compared to that of unmodified RFP 

mRNA. 
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Figure 4.4 

 

 

Figure 4.4. FISH validation of the localization of Spinach-tagged RFP mRNA, using FISH probes against the 

Spinach aptamer. 

 

Figure 4.5 

 

 

Figure 4.5. Representative fluorescence images of E. coli expressing mRNA tagged by Spi-tRNA and Spi-8R. 
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Figure 4.6 

 

 

 

Figure 4.6. (A) mRNA (Spinach) and protein (mRFP1) fluorescence of E. coli expressing RFP-Spi-32R and RFP 0 

min and 30 min after IPTG removal. (B) Spinach fluorescence as a function of time in the decay assay for RFP-Spi-

32R, compared with the autofluorescence measured from E. coli expressing RFP. (C) RNA level in E. coli 

expressing RFP, RFP-Spi-8R and RFP-Spi-32R as a function of time in the decay assay, measured by qPCR. 
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Figure 4.7 

 

Figure 4.7. mRFP1 protein fluorescence level as a function of time in the decay assay, in E. coli expressing RFP-

Spi-32R and unmodified RFP mRNA. 
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Figure 4.8 

 

 

Figure 4.8. (A) The pulsed illumination strategy to observe Spinach fluorescence, in which a 10 s continuous-wave 

(CW) illumination was applied to pre-photobleach (pre-PB) cellular autofluorescence, with a 10 s wait period after 

illumination withdrawal, and then pulsed laser (power 0.2 mW, frequency 0.2 Hz, pulse duration 50 ms) was sent to 

illuminate the sample. (B) Expression level of RFP-Spi-32R mRNA under different promoters and induction 

conditions, measured by qPCR. (C) Representative fluorescence images of induced Plac-RFP-Spi-32R cells under 

CW or pulsed illumination. (D) Fluorescence images of induced and uninduced P lac-RFP-Spi-32R cells, shown in 

single frame (50 ms exposure time) or the superposition of 15 frames under pulsed illumination. 
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Figure 4.9 

 

Figure 4.9. Representative epifluorescence images of E. coli expressing Plac-RFP-Spi-32R, before and after IPTG 

induction. 

 

Figure 4.10 

 

 

Figure 4.10. Fluorescence images of Plac-RFP-Spi-32R cells before and after pre-photobleaching (pre-PB; CW 

illumination, 10 s) of autofluorescence. 
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Figure 4.11 

 

 

Figure 4.11. (A) FISH images indicating RFP-Spi-32R mRNA localization and expression level under the control of 

different promoters in E. coli. (B) Average FISH fluorescence intensity in E. coli expressing Plac-RFP-Spi-32R and 

PT7-RFP-Spi-32R. 
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CHAPTER 5 

SORT-SEQ STUDY ON ptsG REGULATION BY sgrS 

5.1 Introduction 

Bacterial small RNAs (sRNAs) play an important role in regulating gene expression at post-

transcriptional level, especially in stress response[45,116,122]. Certain examples include ryhB in 

iron limitation stress response[123], dsrA in osmotic and acid stress response[53] and oxyS in 

oxidative stress response[54]. One of the sRNAs we have particular interest in is sgrS sRNA 

synthesized in response to sugar-phosphate stress[50]. Although sugar is the most important 

carbon and energy source for bacteria, the accumulation of sugar-phosphate, generated during 

sugar intake by specific sugar transporters, will lead to production of detrimental cellular 

metabolites, resulting in growth inhibition and cell damage. The sugar-phosphate accumulation 

can be relieved by sgrS regulation. As a 227-nt sRNA, sgrS primarily targets ptsG mRNA[124], 

coding for the EIICB domain of glucose phosphotransferase as the main membrane transporter 

for glucose. With the help of Hfq protein, sgrS anneals to ptsG mRNA, and thus blocks the 

ribosomal binding site (RBS), inhibiting translation initiation to synthesize new glucose 

transporter. At the same time, the sRNA/mRNA binding complex would be targeted and 

degraded by RNaseE[50], significantly decreasing the cellular level of ptsG mRNA. Negative 

regulation is also applied to manXYZ[50,125], coding for another type of sugar transporter. sgrS 

could simultaneously enhance the cellular level of a protein YigL which removes the phosphate 

group from sugar-phosphate[50,126], to relieve the stress. In addition to target mRNAs 

regulation, either positively or negatively, sgrS sequence even contains an open reading frame 

coding for SgrT protein[127], which functions to deactivate sugar transporter, slowing down 

further accumulation of sugar-phosphate. 

In Escherichia coli (E. coli), the 227-nt sgrS sRNA can be functionally divided into 3 

segments[124], the sgrT-coding sequence, the seed region, and 3’ Hfq-binding region, counted 

from 5’ to 3’ on the RNA sequence (Figure 5.1). The seed region is a stretch of sequence that has 

partial complementarity with diverse target RNAs and thus is responsible for annealing to target 

RNAs for further regulation. As an example, for ptsG and sgrS interaction in E. coli, sgrS 
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nucleotides 169 - 177 partially anneal with ptsG 5’ UTR sequence, shielding the ribosomal 

binding site (RBS) and inhibiting translation initiation. Unlike the seed region that directly 

interacts with target mRNA, 3’ Hfq-binding region contains a GC-rich sequence followed by a 

U-rich sequence; the GC-rich sequence is predicted to fold into multiple stem-loops, and along 

with the U-rich sequence, is recognized by Hfq protein in bacteria. Though biochemistry 

experiments showed that sgrS could solely bind target RNAs and trigger further regulation, in 

the cell Hfq is required for sgrS function[52]. It is thought that Hfq binds sgrS to increase its 

stability and to guide it to target RNAs, which were also shown to bind Hfq. 

Our Lab has previously studied the in vivo target search kinetics for sgrS regulation on ptsG 

using super-resolution imaging combined with computational biology[128], and we briefly 

discussed the contributions of some parameters including Hfq binding, RNaseE participation and 

sequence complementarity. To further study the ptsG and sgrS interaction, we are interested in 

understanding how the function of sgrS is determined by its sequence. To answer the question, 

an interpretation of the sgrS segmentation and identification of key nucleotides within each 

segment is required. A usual way to achieve that is to generate site-directed or random mutations 

within the sgrS sequence, and by screening, interesting mutations that significantly change sgrS 

regulation on its target RNAs could be selected. Further characterization can be conducted to 

find out the mechanism through which the mutation alters sgrS function. As a pretty typical 

genetics method to study the relationship between RNA sequence and function, it is quite tedious 

to introduce and screen hundreds of mutations individually.  

A high-throughput way to study the sRNA sequence-dependent function, Sort-Seq, was 

developed recently[129-131]. The basic principle was to construct a target-reporter system which 

fused the sRNA-regulated target sequence with a fluorescent protein-coding sequence (Figure 

5.2), and the expression level of the system was characterized by the protein level, measured by 

cellular fluorescence; in addition, the expression system is under the control of certain inducers 

(Isopropyl β-D-1-thiogalactopyranoside, or IPTG, here); besides, the expression level could be 

well regulated by certain sRNAs, due to the interaction between target sequence and the sRNA. 

With the controllable target-reporter system, to study the sRNA sequence-dependent regulation, 

a library containing different sRNA sequence mutations generated by mutagenesis PCR was 

introduced (Figure 5.2); different mutations were introduced into a collection of cells expressing 

https://en.wikipedia.org/wiki/Isopropyl_%CE%B2-D-1-thiogalactopyranoside
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the target-reporter, meanwhile the expression of the mutation library was also controlled by 

certain inducers (Anhyrotetracycline, or aTc, here). With the co-expression of the target-reporter 

and the sRNA mutation library, cells would show very diverse fluorescence signal, since 

different sRNA mutations would have arious regulation efficiencies on the target sequence, 

resulting in fluorescence discrepancy among cells.  The great part of the Sort-Seq method is that 

the collection of cells with different fluorescence signal can be arranged into different groups 

using fluorescence-activated cell sorting (FACS). Afterwards by extracting the mutation 

sequence information of cells from different sorted groups by sample preparation and high-

throughput sequencing, the sgrS mutant distribution in each sorted group would be measured and 

be correlated with regulation efficiency calculated based on average fluorescence signal. The 

single round of FACS-Sequencing experiment can provide the regulation efficiency information 

for hundreds of different mutations, avoiding the tedious construction and screening process. 

Previous studies have applied Sort-Seq to understand the sequence-function relationship for 

sRNAs including dsrA[131], ryhB[131], Qrr1-5[129] etc., and to identify important single 

nucleotide for sRNA function maintenance. Here we developed a Sort-Seq assay to study the 

regulation of sgrS on ptsG, and tried to find interesting sgrS mutations for further understanding 

of the regulation principles of sgrS. 

5.2 Results 

5.2.1 Construction of the target-reporter system for sgrS regulation on ptsG 

To construct the reporter system which monitors target gene expression and regulation, we 

subcloned a fusion sequence containing partial ptsG sequence (105 nt 5’ UTR plus the first 30 nt 

coding sequence of ptsG mRNA) and superfolder GFP-coding sequence (named ptsG-sfGFP), 

from pZEMB8 plasmid (a gift from Carin Vanderpool Lab), and further inserted the sequence 

into pAS05 (Amp
R
) (a gift from Erel Levine Lab), a low-copy plasmid. The generated plasmid, 

named pAS06 (Figure 5.2), was transformed into E. coli strain MB1 (∆ptsG, ∆sgrS, LacIQ, 

TetR), for further imaging and cell sorting experiments. Another plasmid, pZAMB1 (Cm
R
) (a 

gift from Carin Vanderpool Lab), consisting of sgrS-coding sequence, was co-transformed into 

MB1 strain to study sgrS regulation on the target-reporter system (Figure 5.2). The expression of 
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ptsG-sfGFP and sgrS, under the control of PLlac-O1 and PLtet-O1, respectively, can be induced by 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) and Anhyrotetracycline (aTc). 

5.2.2 sgrS mutation library construction  

The sgrS mutation library was generated by mutagenesis PCR followed by plasmid ligation, 

transformation, and bacterial culture-based amplification (Figure 5.2), as described in details in 

Experimental Procedure. The mutation library was transformed into MB1 strain carrying pAS06 

plasmid (consisting of ptsG-sfGFP) and the transformed cells were aliquoted into frozen stocks 

for the following imaging, cell sorting and qPCR experiments. 

5.2.3 Characterization of the target-reporter system and its regulation by sgrS 

The target-reporter system was evaluated to confirm its applicability and usefulness for Sort-Seq 

experiments for ptsG and sgrS. The evaluation was conducted based on two simple criteria:  

(1) Cells transformed with the target-reporter system should show significant fluorescence 

enhancement compared to empty cells under induction conditions, suggesting successful 

expression and function of the fluorescence reporter (superfolder GFP) under our experimental 

conditions. In some cases fluorescent proteins lose its function once fused to another protein due 

to misfolding. Although superfolder GFP has been optimized to maintain the correct folding in 

the context of protein fusion, a test is still needed to ensure that fluorescence protein reporter 

works well to indicate the expression of fused target.   

(2) Cells co-transformed with the target-reporter system and the regulatory sRNA should show 

significant fluorescence decrease compared to those only transformed with the target-reporter 

system, suggesting observable sRNA regulation on the target-reporter system.  Since the target-

reporter system would be used in Sort-Seq experiments to qualify and quantify sRNA regulation 

on the target, the reporter fluorescence level should show considerable difference in the presence 

and absence of the sRNA. Usually when the expression level of the sRNA is too low and that of 

the reporter is too high, the target-reporter system would overwhelm the regulatory sRNA. The 

system (target-reporter and sRNA) can be optimized by adjusting the average copy-number of 

the plasmids carrying the target-reporter sequence and the sRNA sequence, and the induction 

https://en.wikipedia.org/wiki/Isopropyl_%CE%B2-D-1-thiogalactopyranoside
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conditions under which the target-reporter and the sRNA are expressed. Since we constructed the 

regulation system (ptsG-sfGFP/sgrS) based on a previously reported one which has already been 

well optimized, we simply used the previously reported induction conditions to test the 

regulation system we constructed. 

In terms of the target-reporter system we constructed, the expression of ptsG-sfGFP and its 

regulation can be characterized reporter protein translation. Traditionally we could use western 

blotting to quantify the protein level. Nevertheless, since we used a fluorescent protein as the 

reporter, we could directly measure the reporter fluorescence via fluorescence imaging or flow 

cytometry to quantify the protein level upon induction and sRNA regulation. 

5.2.3.1 Cell imaging indicated that the target-reporter system was well optimized under our 

induction conditions 

Three types of cells were imaged under fluorescence microscopy: cells expressing ptsG-sfGFP, 

with no induction; cells expressing ptsG-sfGFP, with IPTG induction; cells expressing ptsG-

sfGFP and sgrS, with IPTG and aTc induction (Figure 5.3). The GFP fluorescence level of the 

listed three types of cells was useful for us to evaluate whether the target-reporter system was 

induced efficiently, and whether it could be efficiently repressed by the sRNA. 

According to the fluorescent images, we found that upon IPTG induction of ptsG-sfGFP, cells 

showed bright GFP fluorescence (Figure 5.3), while with IPTG and aTc co-induction, cellular 

fluorescence signal was quite weak (Figure 5.3), indicating that sgrS induction repressed the 

expression of the reporter at translation level. Therefore it seems that the reporter system (ptsG-

sfGFP) we constructed was useful for sgrS regulation study. 

5.2.3.2 Flow cytometry analysis quantified reporter induction and regulation 

Although we found that cells expressing ptsG-sfGFP could show significant fluorescence 

enhancement upon induction and were well regulated by sgrS, it is still important to check the 

cellular fluorescence using flow cytometry before we conduct Sort-Seq experiments, since the 

excitation light source used by the flow cytometry was not optimized for the fluorescent protein 

reporter, or the detection side of the flow cytometry instrument was not as sensitive as was the 
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fluorescent microscopy. Therefore we performed flow cytometry analysis on cells expressing 

ptsG-sfGFP and co-expressing ptsG-sfGFP and sgrS. We found that the reporter system we 

constructed showed great performance in the flow cytometry instruments (Figure 5.4), both for 

cells induced for ptsG-sfGFP expression, and for cells co-induced for ptsG-sfGFP and SgrS 

expression. The average cellular fluorescence level (center position of the fluorescence 

distribution histogram in Figure 5.4) decreased ~7-fold (from ~7×10
3
 (black curve) to ~1×10

3
 

(red curve)) (Figure 5.4) with sgrS co-induction, compared to the condition where only ptsG-

sfGFP was induced, showing that sgrS regulation could be efficiently detected using flow 

cytometry. 

5.2.4 Cells transformed with sgrS mutation library showed various sRNA regulation 

efficiencies on the target-reporter system from cell to cell 

We transformed plasmids carrying sgrS mutation library into MB1 strain (ptsG-sfGFP was co-

transformed), and induced the expression of ptsG-sfGFP and sgrS mutation library. Cells were 

first imaged under fluorescence microscopy (Figure 5.3). We found that unlike cells co-

expressing ptsG-sfGFP and wild-type (WT) sgrS, which showed low cellular fluorescence 

suggesting sgrS repression on ptsG-sfGFP expression, cells transformed with the mutation 

library of sgrS showed very different cellular fluorescence level (Figure 5.3): some showed 

similar low fluorescence to those expressing WT sgrS, while some showed high fluorescence. 

The difference of cellular fluorescence level suggested that cells transformed with different sgrS 

mutants showed very different repression extent on ptsG-sfGFP. 

We further sent the cells to flow cytometry analysis and found that the cells showed very broad 

distribution of fluorescence (Figure 5.4), consistent with the cell imaging result. We could find 

from the flow cytometry analysis result that the average fluorescence intensity of cells 

transformed with sgrS mutation library, upon IPTG and aTc induction, spun from similar 

fluorescence level of cells expressing only ptsG-sfGFP, to that of cells expressing ptsG-sfGFP 

and WT sgrS. The broad distribution made it applicable for fluorescence-activated cell sorting 

(FACS), and therefore we further sent the cells for Sort-Seq experiments, where cells were 

distributed into different groups based on its average cellular fluorescence measured by flow 

cytometry.  
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5.2.5 Cell sorting and Next-Gen sequencing 

Based on the flow cytometry analysis result (cell number as a function of average fluorescence), 

we set up 7 sorting bins with identical size (in log-scale) to sort the cells into 7 groups, named 

D1-D7 (Figure 5.5). Cells from group D1 showed the lowest average cellular fluorescence, 

suggesting sgrS mutants from this group have similar regulation efficiency on ptsG-sfGFP 

compared to that of WT sgrS, while cells from group D7 showing the highest average cellular 

fluorescence indicated that sgrS mutants from those cells have its regulation function severely 

perturbed. Cells from each sorted group were sent for plasmid collection (pZAMB1-sgrS mutant). 

The mutated sgrS sequence within the plasmid were amplified and further adapted and barcoded 

for Next-Gen sequencing. 

5.2.6 Sequencing data analysis 

We used a Matlab code to process the FASTQ file (the raw sequencing data) and extracted the 

sequencing reads. Individual reads were compared with the standard sequence, where the WT 

sgrS sequence plus the adaptor sequence were used, to generate the mutation information of the 

sgrS mutant. 

5.2.6.1 Sequencing data quality evaluation 

In the sequencing experiment, we used Illumina MiSeq Reagent Kit v3 (600-cycle) (Illumina), 

which allowed 300-nt reading length from both ends of the sequencing sample, for total length of 

600 nt. Since 300-nt reading length from one end allowed the full coverage of the sgrS sequence 

we applied (254 nt) plus the adaptor length, initially we planned to use the 300-nt paired reading 

to sequence our sample from forward and reverse directions. In this case we could select the data 

with identical reading results by forward and reverse sequencing, to decrease the occurrence 

possibility of false reading. To test the applicability of paired reading, we first evaluate the data 

qualify for forward and reverse sequencing result, respectively. 

The first step was to filter out the sequencing data that had less than 300-nt reading length, i.e. 

the sequencing process failed to complete the full-length reading. Surprisingly, we found that 

although forward reading data showed high percentage of qualified reads (~100%), reverse 
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reading data showed much less successful rate (<50%) to achieve 300-nt reading length (Figure 

5.6).  

Since reverse reading was initiated after the completion of the forward reading, it was possible 

that at the late stage of the sequencing experiment, where the reverse reading was conducted, the 

sample quality was much lower compared to that at the initial stage, leading to lower completion 

percentage for reverse sequencing.  

Furthermore, for those sequencing reads that achieved 300-nt reading length, we analyzed the 

average Q-score for each nucleotide position within the total sequence, and compared the 

average quality of forward and reverse sequencing data, at single-nucleotide resolution. 

We found that for forward sequencing data, within the 300-nt reading length, the average Q-

score remained quite high (Q-score ≥ 27) (Figure 5.7). Nucleotide positions 6 - 258 showed 

stable high average Q-score (Q-score ≥ 32); nucleotide positions 1 - 5 showed a little lower 

average Q-score, but the value was still higher than 32; the average Q-score became lower 

starting from nucleotide position 259, but generally the value remained higher than 27. 

According to the nucleotide-specific Q-score plot, we concluded that the forward sequencing 

data were quite reliable. In a big contrast, for reverse sequencing data, from nucleotide position 

144, the average Q-score started decreasing (Figure 5.7); the value decreased dramatically along 

the sequencing direction and at nucleotide position 209, the average Q-score value was 

significantly smaller than 27[132]; at nucleotide 300, which was the final sequencing read, the 

Q-score was just barely larger than 10. In this case we could not confirm the accuracy of reverse 

sequencing data. 

According to the analysis, we found that for our paired reading sequencing data, the quality of 

forward sequencing data was quite fine, while reverse sequencing data were not quite reliable. 

Since forward sequencing data were long enough to cover the total sgrS mutation sequence, we 

discarded the reverse sequencing data and only analyzed the forward sequencing data for our 

Sort-Seq experiments.  

5.2.6.2 Percentage of multi-mutation sequence increases from D1 to D7 sorted group 
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We did simple statistics on the sequencing data to find out the occurrence rate of non-mutation, 

mutation and single-mutation sequence for the sgrS sequence, in different sorted groups (Figure 

5.8). We expected that sequences from D7 group, which showed the highest fluorescence and 

thus suggested the lowest regulation efficiencies of sgrS mutants on ptsG-sfGFP, should have the 

lowest percentage of non-mutation sequence and the highest percentage of multiple-mutation 

sequence, because generally the more mutations within the sequence, the higher possibility for 

that specific sRNA mutation to show lower binding affinity to target mRNAs or to suffer 

misfolding problems. The analysis result accorded with our expectation. From D1 to D7, the 

occurrence rate of non-mutation sequence (WT sgrS) decreased, while that of multiple-mutation 

sequence (more than one mutated nucleotide within the sgrS sequence) increased; the occurrence 

rate of single mutation sequence was generally unchanged, perhaps due to a compensation effect. 

5.2.6.3 Mutual information analysis revealed important nucleotides for sgrS regulation on 

ptsG 

We conducted mutual information analysis on sequencing data[129,130] (Figure 5.9). We only 

analyzed those sequencing readings showing single nucleotide mutation within the sgrS 

sequence, as it helped us identify the nucleotides too critical to be altered. Mutual information 

analysis gave each nucleotide position a mutual information value, and the larger the value is, the 

stronger the sgrS regulation efficiency is perturbed upon single mutation taking place at this 

nucleotide position. 

The mutual information analysis suggested several important nucleotides: G176, G178, G183, 

G184, C199, C200, U222, U223, U224, etc. Next we would generate a heat map showing the 

mutual information value for each nucleotide within the sgrS sequence and discuss the effect of 

each single mutation in the context of the secondary structure and functional segmentation of 

sgrS. 

5.2.6.4 Mapping of single nucleotides important for SgrS regulatory ability 

To show the positions of important nucleotides within the sequence and to better understand how 

individual nucleotides affect sgrS function structurally, we constructed a heat map where we 

showed the predicted sgrS secondary structure and colored each nucleotide according to the 
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calculated mutual information value (Figure 5.10 and Figure 5.11). The redder the color was, the 

stronger the regulation efficiency was perturbed once the nucleotide was mutated (Figure 5.10 

and Figure 5.11). 

The fact that G176 and G178 are very important for sgrS regulation on ptsG, is consistent with 

previous study showing that mutating either G to C totally abolished sgrS regulation over ptsG. 

Some other discoveries in the Sort-Seq experiment are: the 3’ U-rich sequence of sgrS, 

containing 8 U nucleotides, is very important for sgrS function, and 5 out of the 8 U nucleotides 

showed strong effect; the 3’ GC-rich sequence, forming 2 stem-loop structures, is also very 

important, as for the 24 nucleotides forming base-pairs, 19 of them showed strong perturbation 

upon mutation (Figure 5.10 and Figure 5.11). Since both the U-rich and GC-rich sequence were 

suggested to play a role in Hfq binding, it confirmed that Hfq interaction is extremely important 

to maintain the sgrS function in the cell. It is not clear whether the significance of those 

individual nucleotides is due to its direct interaction with Hfq, or its possible role in maintaining 

the stem-loop structure.  

5.3 Discussion 

In this chapter, we constructed a Sort-Seq assay to study sequence-dependent sgrS regulation on 

target mRNAs, more specifically, ptsG. Unlike commonly used genetics methods where people 

would generate random mutations on sgrS sequence, and conducted various biochemistry or 

genetics assays to screen various mutations and identify interesting mutations, which is time-

consuming and tedious, Sort-Seq allows simultaneously quantification of hundreds of mutations 

using two high-throughput technologies, fluorescence-activated cell sorting and next-generation 

sequencing. By co-introduction of the target-reporter system, which is the fusion of ptsG 5’ UTR 

and superfolder GFP-coding sequence, and the mutation library of the sgrS, we acquired a 

collection of cells carrying different sgrS mutations, and thus lead to regulation efficiency 

discrepancy. The power of flow cytometry enables the separation of cells carrying weak 

mutations and strong mutations by sorting cells with different fluorescence levels into multiple 

groups. Further application of the Next-Gen Sequencing enables extraction of the mutation 

distribution among different groups, thus informing us how the hundreds of mutations within the 

library affect sgrS regulation efficiency individually. 
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With our Sort-Seq experiment result, we identified several nucleotides that are very important for 

sgrS regulation on ptsG (Figure 5.12). G176 and G178 belong to sgrS/ptsG basepairing region. 

Although during sgrS/ptsG annealing, 15 Watson-Crick pairs will form spanning 19 bp, only 

G176 and G178 have been reported to be extremely important for the annealing process as 

mutation of either nucleotide would deprive sgrS regulation on ptsG[124,128]. Our Sort-Seq 

result is consistent with the report. Interestingly, other identified significant nucleotides all 

belong to the 3’ region responsible for Hfq interaction, including 5 nucleotides from the first 

short stem-loop, 14 nucleotides from the second long stem-loop, and 5 U nucleotides from the 

poly-U sequence. The single mutations of those nucleotides within either stem-loop might affect 

the formation of the secondary structure, as all of those nucleotides are predicted to basepair with 

another nucleotide, and the structure breakage might affect or even abolish Hfq binding. The 

poly-U sequence, though important for Hfq binding also, might be recognized by Hfq via the U-

rich sequence instead of the structure, as poly-U usually does not participate in secondary 

structure formation. It would be helpful to introduce a second mutation to regenerate the 

basepairing with the first mutation within the stem-loop region. If the sgrS function is recovered, 

the effect of the original single mutation might function structurally instead of sequence-wise. 

In addition to plan more experiments to confirm the Sort-Seq result, we can also select 

interesting mutations to conduct in vivo kinetics measurement, as we did before for WT sgrS and 

ptsG. Since kinetics measurement is able to extract binding and dissociation coefficients for all 

level of interactions[128], including ptsG/sgrS binding/dissociation and sgrS/Hfq 

binding/dissociation, using sgrS mutations to conduct in vivo kinetics measurement will help us 

understand how different components involved in sgrS regulation play their roles and influence 

the overall regulation process.      

5.4 Experimental procedure 

5.4.1 Construction of plasmids 

The reporter system, ptsG-sfGFP sequence, including 105 nt 5’ UTR and 30 nt coding sequence 

(coding first 10 amino acids of PtsG protein) of PtsG mRNA was fused by 42 nt linker sequence 

and superfolder GFP coding sequence, was subcloned from the plasmid pZEMB8 (a gift from 
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Carin Vanderpool Lab). It was inserted into the low-copy plasmid pAS05 (a gift from Erel 

Levine Lab) between XhoI and XbaI restriction sites to make the plasmid pAS06. The 

expression of ptsG-sfGFP was under the control of PLlac-O1. 

A medium-copy plasmid pZAMB1 (a gift from Carin Vanderpool Lab) was applied for the 

expression of the sRNA, sgrS, whose sequence was inserted between NdeI and BamHI 

restriction sites. The expression was under the control of PLtet-O1. The plasmid pZAMB1 was also 

utilized as the template of mutagenesis PCR to construct sgrS mutation library, and as the vector 

to insert the sgrS mutation sequence. 

5.4.2 Cell growth and induction condition 

The E. coli MB1 strain (∆PtsG, ∆SgrS, LacIq, TetR) was used for fluorescence imaging, flow 

cytometry and sequencing sample preparation experiments. E. coli cells were grown at 37 °C in 

Lysogeny Broth (LB) (LB Broth Miller, EMD Millipore) liquid media with antibiotics as 

plasmid selection markers. 100 μg/mL ampicillin (Gold Biotechnology, Inc) was applied for 

pZEMB8, pAS05 and pAS06 plasmid, and 30 μg/mL Chloramphenicol (Sigma-Aldrich) was 

applied for pZAMB1 plasmid and derivative SgrS mutation library. Cell density was 

characterized using optical density (OD) at 600 nm using a plastic cuvette in a Fisher Scientific 

Educational Spectrophotometer (Fisher Science Education).  

To induce the expression of the reporter system (ptsG-sfGFP) and/or the regulatory sRNA (sgrS), 

E. coli MB1 cells transformed with certain plasmids (pAS06 for ptsG-sfGFP and pZAMB1 for 

sgrS or its mutation library) were grown at 37 °C in LB medium overnight with specific 

antibiotics from a single colony or frozen liquid stock (for sgrS mutation library expression). The 

liquid culture was diluted 200-fold into fresh LB medium and kept growing until at OD600 = 0.1-

0.2. The liquid culture was diluted to OD600 = 0.001 and was supplemented with 1 mM IPTG 

(Sigma-Aldrich) and/or 50 ng/mL aTc to induce the expression of PtsG-sfGFP and/or SgrS or 

SgrS mutation library. When OD600 = 0.1-0.2, the E. coli cells were collected and further treated 

for fluorescence imaging, flow cytometry analysis and cell sorting, or RNA extraction and 

quantitative PCR (qPCR) analysis. 

5.4.3 sgrS sRNA mutagenesis 
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Mutagenesis PCR was conducted on SgrS using Agilent Genemorph II Random Mutagenesis Kit 

(Agilent Technologies). The protocol was adapted from Erel Levine paper[131]. Mutagenesis 

PCR was performed with 1.8 ng pZAMB1 plasmid (sgrS sequence included) for 30 cycles. The 

product was purified by gel electrophoresis and 5 ng was amplified using standard Taq PCR 

(SureStart Taq DNA Polymerase, Agilent Technologies) to increase the yield of individual 

mutants. PCR products were digested with NdeI and BamHI followed by gel purification. Along 

with the pZAMB1 vector generated by NdeI and BamHI digestion and gel purification, 5 ligation 

reactions were set up for pZAMB1 vector and the prepared PCR insert (sgrS mutation sequence 

library) using T4 Ligase (New England BioLabs). 

The ligation products from the 5 reactions were combined and purified using P-6 micro bio-spin 

column (Bio-Rad) into water. 4 μL ligation products were transformed into 100 μL 5-alpha 

Electrocompetent E. coli (New England BioLabs), and the transformed cells were recovered for 

1 hr in 2 mL Super Optimal Broth (SOB) medium (New England BioLabs). 1 mL of the culture 

(representing 50% of the transformed cells) were diluted into LB medium supplemented with 30 

μg/mL Chloramphenicol to select cells successfully carrying plasmid ligation. Miniprep was 

conducted to collect the plasmids, which made up of the sgrS mutation library, from the 

overnight culture.  

To generate the cells with sgrS mutation library for Sort-Seq experiments, 10 ng collected 

plasmids (sgrS mutation library) was transformed into MB1 strain pre-transformed with pAS06 

plasmid and expressing ptsG-sfGFP. The transformed cells were recovered and were diluted into 

LB medium supplemented with 100 μg/mL Ampicillin (pAS06 selection) and 30 μg/mL 

Chloramphenicol (pZAMB1-sgrS mutant selection) for overnight culture. The liquid culture 

were spun down and aliquoted as frozen stocks for the following imaging and flow cytometry 

experiments. 

5.4.4 Fluorescence microscopy imaging 

The protocol of epifluorescence imaging was adapted from that described in Chapter 4, Methods 

and Materials Section. 1 mL E. coli liquid culture (OD600 = 0.1-0.2) were chilled on ice followed 



84 
 

by centrifugation (6,000 g, 4 °C, 1 min) to form a cell pellet. The cells were washed by ice-cold 

1X PBS twice, and were then resuspended in 100 µL 1X PBS. 

To image the sample, a few µL of cell suspension was sandwiched between a glass coverslip (No. 

1.5) and a thin slab of 1.5 % (w/v) agarose gel, by dissolving the agarose in 1X PBS. 

All epifluorescence images were taken with a Zeiss Axiovert 200M with the Apotome Structured 

Illumination Optical Sectioning System. An oil immersion objective (1.46 NA 100x) was used 

for DIC and fluorescence imaging. A lamp light source (X-Cite 120Q, Excelitas Technologies) 

was applied to illuminate the sample and an emCCD camera (iXon3 DV887, Andor Technology) 

to acquire the fluorescence image. The filter sets applied were: DIC (no filter, autoexposure), 

sfGFP (Ex 480-500 nm, Em 509-547 nm, exposure time 200 ms). The images were acquired and 

processed by the software ZEN provided by Zeiss.  

5.4.5 Cell sorting 

Flow cytometry analysis and cell sorting was conducted by Sony SH 800 Cell Sorter (Sony 

Biotechnology). To prepare the flow cytometry or cell sorting sample, cells were cultured 

overnight in LB medium with antibiotics; the liquid culture were dilute 200-fold and were kept 

culturing until OD600 reached ~0.1 - 0.2; the cells were further diluted to OD600 = 0.001 in LB 

medium with antibiotics, and 1mM IPTG and/or 50 ng/mL aTc were added according to the E. 

coli strain and its carrying plasmids; cells kept growing until OD600 reached ~0.1 - 0.2, and the 

cells were washed twice with ice-cold 1x PBS, and were kept on ice before flow cytometry 

analysis or cell sorting experiments.      

5.4.6 Sequencing sample preparation 

Sorted cells were grown in LB medium supplemented with 30 μg/mL Chloramphenicol to 

saturation, and Miniprep was conducted to collect the plasmids. Three rounds of PCR 

amplification were conducted before we obtained the prepared sequencing library: in the first 

round, we used primers annealing to the flanking region of the sgrS sequence and amplified the 

sgrS mutation sequence from the extracted plasmids; in the second and third round, adapters 

specific for Illumina MiSeq sequencing were added onto the originally amplified sequence. The 

http://www.biotech.illinois.edu/flowcytometry/bd-lsr-ii-analysers-264-roger-adams-laboratory-and-231-edward-r-madigan-laboratory
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primer design and experimental protocol could be found in the description of 16S Metagenomic 

Sequencing Library Preparation provided by Illumina (http://www.illumina.com/content/dam/illumina-

support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-

b.pdf). 

5.4.7 Illumina Next-Gen sequencing 

The sequencing samples prepared from different sorted groups were barcoded with dual-index 

adapters (Illumina Nextera Index Kit), and were mixed and treated with Illumina MiSeq Reagent 

Kit v3 (600-cycle) according to the protocol. Since the samples had very low sequence diversity, 

we spiked in 40% PhiX DNA (PhiX Control v3, Illumina). The samples were sent to Illumina 

MiSeq Sequencer for sequencing, and sequencing data were distributed into different sets 

suggesting samples prepared from different sorted groups, according to the adaptors added to the 

prepared samples. 

5.4.8 Mutual information analysis 

Mutual information analysis was conducted using the protocol described in the literature 

introducing Sort-Seq method[129,130]. 
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5.5 Figures 

Figure 5.1 

 

Figure 5.1. The scheme of sgrS functional segments. 

 

Figure 5.2 

 

 

Figure 5.2. The scheme of target-reporter system, WT sgrS expression system, and sgrS mutation library 

construction. 
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Figure 5.3 

 

 

Figure 5.3. Epifluorescence imaging of cells expressing only ptsG-sfGFP, ptsG-sfGFP and WT sgrS, and ptsG-

sfGFP and sgrS mutation library. 
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Figure 5.4 

 

Figure 5.4. Flow cytometry analysis on three types of cell collection, which showed the cell number distribution as a 

function of cellular fluorescence (log-scale on cellular fluorescence intensity). 
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Figure 5.5 

 

Figure 5.5. The cells were sorted into 7 groups (D1 - D7). The occupancy percentages of each sorted group in the 

total cell collection are: 1.03% for D1, 6.92% for D2, 28.55% for D3, 29.45% for D4, 18.45% for D5, 13.58% for 

D6 and 2.62% for D7. 
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Figure 5.6 
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Figure 5.6. Percentage of sequences having 300-nt length, from Illumina sequencing data. The value for sequencing 

data from sorted group D1 - D7, either achieved by forward or reverse reading, is shown in the figure. 
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Figure 5.7 
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Figure 5.7. The average Q-score for the sequencing results from 7 sorted groups (D1 - D7) for each reading position 

for forward and reverse reading, respectively. 
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Figure 5.8 
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Figure 5.8. Percentage of WT sgrS, single-mutation sgrS and mult-mutation sgrS, respectively, from sorted group 

D1 - D7, achieved by calculating forward sequencing data. 

 

 

 

 

 

 

 



93 
 

Figure 5.9 
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Figure 5.9. Mutual information value for nucleotide 1 - 227 for the applied sgrS calculated from Sort-Seq data.  
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Figure 5.10 

 

Figure 5.10. A heat map showing how significant individual nucleotides are in maintaining sgrS regulation function 

on ptsG in the context of predicted sgrS secondary structure. Individual nucleotides are colored and the redder the 

color is, the more perturbation is brought about when mutations take place on the specific nucleotide. 
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Figure 5.11 

 

Figure 5.11. A zoom-in figure of the seed region and the Hfq-binding region of sgrS which underlines the identified 

significant individual nucleotides for ptsG regulation. 

 

Figure 5.12 

 

Figure 5.12. The scheme of ptsG and SgrS interaction and annealing. 
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