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ABSTRACT

Deep learning models have had tremendous impacts in recent years, while a ques-
tion has been raised by many: Is deep learning just a triumph of empiricism?
There has been emerging interest in reducing the gap between the theoretical
soundness and interpretability, and the empirical success of deep models. This
dissertation provides a comprehensive discussion on bridging traditional model-
based learning approaches that emphasize problem-specific reasoning, and deep
models that allow for larger learning capacity. The overall goal is to devise the
next-generation feature learning architectures that are: 1) task-specific, namely,
optimizing the entire pipeline from end to end while taking advantage of available
prior knowledge and domain expertise; and 2) interpretable, namely, being able to
learn a representation consisting of semantically sensible variables, and to display
predictable behaviors.

This dissertation starts by showing how the classical sparse coding models
could be improved in a task-specific way, by formulating the entire pipeline as
bi-level optimization. Then, it mainly illustrates how to incorporate the struc-
ture of classical learning models, e.g., sparse coding, into the design of deep ar-
chitectures. A few concrete model examples are presented, ranging from the `0

and `1 sparse approximation models, to the `∞ constrained model and the dual-
sparsity model. The analytic tools in the optimization problems can be translated
to guide the architecture design and performance analysis of deep models. As
a result, those customized deep models demonstrate improved performance, in-
tuitive interpretation, and efficient parameter initialization. On the other hand,
deep networks are shown to be analogous to brain mechanisms. They exhibit the
ability to describe semantic content from the primitive level to the abstract level.
This dissertation thus also presents a preliminary investigation of the synergy be-
tween feature learning with cognitive science and neuroscience. Two novel ap-
plication domains, image aesthetics assessment and brain encoding, are explored,
with promising preliminary results achieved.
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CHAPTER 1

INTRODUCTION

Seeking meaningful feature representations is one of the fundamental problems in
signal processing, machine learning and pattern recognition. Feature learning is a
set of techniques that automatically learn a transformation of raw data input to an
effective representation for subsequent tasks. Many traditional model-based fea-
ture learning approaches, such as Principal Component Analysis (PCA) [16], sup-
port vector machine (SVM) [40] and sparse coding [96], rely on simple priors and
concise architectures, and have proven effective in solving many well-constrained
and well-formulated problems. Despite their extensive theoretical and algorithm
results, the limited representation power of traditional methods appears insuffi-
cient for modeling the emerging Big Data. In addition, most of their inference
algorithms have to rely on inefficient iterative solutions.

Lately, deep learning [89]1 has attracted great attention for its tremendous rep-
resentation power. A deep feed-forward network adopts multiple layers of non-
linear feature transformations, and could be naturally tuned with a task-driven
loss. However, generic deep architectures, sometimes referred to as “black-box”

methods, largely ignore the problem-specific formulations and prior knowledge.
Instead, they rely on stacking somewhat ad-hoc modules and an explosive amount
of parameters.2 Despite a few hypotheses and intuitions, it remains difficult to
understand and interpret the working mechanism of deep models, as well as to
relate them with prior wisdom of traditional models.

The thesis recognizes the existing gap between deep models with large repre-
sentation capacity, and traditional models that emphasize problem-specific prior
and interpretability. To reduce the gap, rather than applying off-the-shelf models
as “black boxes”, we aim to devise novel feature learning architectures that are:

1Throughout the thesis, “deep network” and “deep model” are interchangeably used, both of
which refer to deep feed-forward neural networks by default.

2An interesting reference as reported: a Google search for “neural network black box” yields
2,410,000 results. By comparison, “logistic regression black box” yields 600,000 results. Most of
the latter articles seem to position logistic regression as opposite to neural networks.
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• Task-specific, namely, optimizing the entire pipeline from end to end while
taking advantage of available prior knowledge and domain expertise.

• Interpretable, namely, being able to learn a representation consisting of
semantically sensible variables, and to display predictable behaviors.

This dissertation starts with the discussion on sparse coding, a representative
example of traditional model-based feature learning approaches, in Chapter 2.
Sparse coding is believed, by many researchers, to have an outstanding inter-
pretability. The sensory processing in the brain suggests a sparse coding strategy
over a highly over-complete basis, when finding stimuli that effectively activate
the neurons [126]. Given a proper basis, sparse linear models are also well known
to be a feature selection tool (a.k.a., LASSO). In particular, this dissertation illus-
trates how the interpretable sparse coding model could be further improved in a
task-specific way, by formulating the end-to-end pipeline as bi-level optimization.

In Chapter 3, we demonstrate how to incorporate the structure of classical prob-
lems, e.g., sparse coding, into the design of deep architectures. Despite the re-
markable effectiveness and interpretability of sparse coding, the bottlenecks in
both efficiency and scalability limit its practical usage. We exploit deep net-
works as fast trainable regressors to approximate the sparse coding inference,
and perform the end-to-end training with the specific loss function. Such deep
architectures benefit from their problem-specific regularizations and interpretable
pipelines, and achieve improved performance. The resulting framework is also
capable of interpreting the empirical success of many deep learning techniques.

On the other hand, deep networks are shown to be analogous to brain mecha-
nisms. They also exhibit the ability to describe semantic content from the prim-
itive level to the abstract level. Chapter 4 presents a preliminary investigation
on the synergy between feature learning with cognitive science and neuroscience.
Deep models can be customized by the knowledge of the cognitive and neural
underpinnings of human perception. Those models describe and estimate human
preference better, and may in turn help understand the complex neural mecha-
nisms underlying human perception. Finally, Chapter 6 concludes this dissertation
with a summary and future directions.
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CHAPTER 2

TASK-SPECIFIC SPARSE CODING

In this chapter, we refer to two concrete examples: 1) hyperspectral image classifi-
cation; 2) sparse coding-based image clustering as a concrete example, to demon-
strate how to develop task-specific sparse coding models, by formulating the end-
to-end pipeline as bi-level optimization.

2.1 Bi-Level Sparse Coding for Hyperspectral Image
Classification

We present a semi-supervised method for single pixel classification of hyperspec-
tral images. The proposed method is designed to address the special problematic
characteristics of hyperspectral images, namely, high dimensionality of hyper-
spectral pixels, lack of labeled samples, and spatial variability of spectral signa-
tures. To alleviate these problems, the proposed method features the following
components. First, being a semi-supervised approach, it exploits the wealth of
unlabeled samples in the image by evaluating the confidence probability of the
predicted labels, for each unlabeled sample. Second, we propose to jointly opti-
mize the classifier parameters and the dictionary atoms by a task-specific formu-
lation, in order to ensure that the learned features (sparse codes) are optimal for
the trained classifier. Finally, it incorporates spatial information through adding a
Laplacian smoothness regularization to the output of the classifier, rather than the
sparse codes, making the spatial constraint more flexible. The proposed method
is compared to a few comparable methods for classification of several popular
datasets, and it produces significantly better classification results.
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2.1.1 Introduction

The spectral information contained in hyperspectral imagery allows characteriza-
tion, identification, and classification of land-covers with improved accuracy and
robustness. However, several critical issues should be addressed in the classifica-
tion of hyperspectral data [48, 129]: 1) small amount of available labeled data;
2) high dimensionality of each spectral sample; 3) spatial variability of spectral
signatures; 4) high cost of sample labeling. In particular, the large number of
spectral channels and small number of labeled training samples pose the problem
of the curse of dimensionality and as a consequence result in the risk of overfit-
ting the training data. For these reasons, desirable properties of a hyperspectral
image classifier should be its ability to produce accurate land-cover maps when
working within a high-dimensional feature space, low-sized training datasets, and
high levels of spatial spectral signature variability.

Many supervised and unsupervised classifiers have been developed to tackle
the hyperspectral data classification problem [132]. Classical supervised methods,
such as artificial neural networks [15, 175] and support vector machines (SVMs)
[42, 138, 40, 8], were readily revealed to be inefficient when dealing with a high
number of spectral bands and lack of labeled data. In [66], SVM was regular-
ized with an unnormalized graph Laplacian, thus leading to the Laplacian SVM
(LapSVM) that adopts the manifold assumption for semi-supervised classifica-
tion. Another framework based on neural networks was presented in [131]. It
consists of adding a flexible embedding regularizer to the loss function used for
training neural networks, and leads to improvements in both classification accu-
racy and scalability on several hyperspectral image classification problems. In
recent years, kernel-based methods have often been adopted for hyperspectral im-
age classification [25, 77, 24, 23]. They are certainly able to handle efficiently the
high-dimensional input feature space and deal with the noisy samples in a robust
way [140]. More recently, sparse representation has been increasingly popular for
image classification. The sparse representation-based classification (SRC) [170]
is mainly based on the observation that despite the high dimensionality of natu-
ral signals, signals belonging to the same class usually lie in a low-dimensional
subspace. In [33], an SRC-based algorithm for hyperspectral classification was
presented that utilizes the sparsity of the input sample with respect to a given over-
complete training dictionary. It is based on a sparsity model where a test spectral
pixel is approximately represented by a few training samples (atoms) among the
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entire atoms from a dictionary. The weightings associated with the atoms are
called the sparse code. The class label of the test pixel is then determined by the
characteristics of the recovered sparse code. Experimental results show remark-
able improvements in discriminative effects. However, the main difficulty with
all supervised methods is that the learning process heavily depends on the quality
of the training dataset. Even worse, labeled hyperspectral training samples are
only available in a very limited number due to the cost of sample labeling. On the
other hand, unsupervised methods are not sensitive to the number of labeled sam-
ples since they operate on the whole dataset, but the relationships between clusters
and class labels are not ensured [13]. Moreover, typically in hyperspectral classifi-
cation, a preliminary feature selection/extraction step is undertaken to reduce the
high input space dimensionality, which is time-consuming, scenario-dependent,
and needs prior knowledge.

As a trade-off, semi-supervised classification methods become a natural alter-
native to yield better performance. In semi-supervised learning literature, the al-
gorithms are provided with some available supervised information in the form of
labeled data in addition to the wealth of unlabeled data. Such a framework has re-
cently attracted a considerable amount of research in remote sensing, such as the
Laplacian SVM (LapSVM) [8, 66], transductive SVM [22], biased-SVM [120]
and graph-based methods [71]. Even though the above mentioned algorithms
exhibit good performance in classifying hyperspectral images, most of them are
based on the assumption that spectrally similar instances should share the same
label. However in practice, we may have very different spectra corresponding to
the same material, which sometimes makes the above strict assumption no longer
valid. Moreover, in most recent hyperspectral classification approaches [99, 117],
the spatial information is exploited together with the spectral features, encourag-
ing pixels in the local neighborhood to have similar labels. The spatial smooth-
ness assumption holds well in the homogeneous regions of hyperspectral images.
However, conventional approaches often fail to capture the spatial variability of
spectral signatures, e.g., on the border of regions of different classes.

In this section, we introduce a hyperspectral image classification method, tack-
ling the problems imposed by the special characteristics of hyperspectral images,
namely, high-input dimension of pixels, low number of labeled samples, and spa-
tial variability of the spectral signatures. To this end, the proposed method has the
following characteristics and technical contributions:
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• Semi-supervised: Extending the task-specific dictionary learning formula-
tion in [113] to the semi-supervised framework for hyperspectral classifi-
cation, the huge number of unlabeled samples in the image are exploited
together with a limited amount of labeled samples to improve the classifi-
cation performance in a task-specific setting.

• Joint optimization of feature extraction and classification: Almost all
prior research on hyperspectral classifier design can be viewed as the com-
binations of two independent parts: 1) extraction of features; 2) a training
procedure for designing the classifier. Although in some prior work raw
spectral pixels are used directly, it is widely recognized that features ex-
tracted from the input pixels, such as the sparse code, often promote a more
discriminative and robust classification [170]. However, to consider the two
stages separately typically leads to a sub-optimal performance, because the
extracted features are not optimized for the best performance of the fol-
lowing classification step. In this section, we jointly optimize the classi-
fier parameters and dictionary atoms. This is different from the classical
data-driven feature extraction approach [33] that only tries to reconstruct
the training samples well. Our joint task-specific formulation ensures that
the learned sparse code features are optimal for the classifier.

• Incorporation of spatial information: We incorporate spatial information
by adding a spatial Laplacian regularization [8] to the probabilistic outputs
of the classifier, i.e., the likelihood of the predicted labels. This is more flex-
ible than the popular “naive” Laplacian smoothness constraint, that simply
forces all pixels in a local window to have similar learned features.

A novel formulation of bi-level optimization is designed to meet our requirements
[39, 176], which is solved by a stochastic gradient descent algorithm [21]. The
proposed method is then evaluated on three popular datasets and we see an impres-
sive improvement in performance on all of them. Even for quite ill-posed classi-
fication problems, i.e., very small number of high dimensional labeled samples,
the proposed method gains a remarkable and stable improvement in performance
over comparable methods.

Section 2.1.2 manifests a step-by-step construction of our formulation in de-
tail, followed by the optimization algorithm to solve it. Section 2.1.3 discusses
the classification results of the proposed method in comparison to several other
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competitive methods, with a wide range of available labeled samples. It also in-
vestigates the influences of both the unlabeled samples and dictionary atoms on
the classifier’s performance, as well as the discriminability of the obtained dictio-
nary. Section 2.1.4 includes some concluding remarks and the future work.

2.1.2 Formulation and Algorithm

Notations

Consider a hyperspectral image X ∈ Rm×n of n pixels, each consisting of an
m-dimensional spectral vector. Let X = [x1,x2, · · · ,xn] denote the pixel set in a
hyperspectral image, with each spectral pixel xi ∈ Rm×1, i = 1, 2, · · · , n. For all
the corresponding labels y = [y1, y2, · · · , yn], we assume l labels [y1, y2, · · · , yl]
are known, constituting a labeled training set Xl = [x1,x2, · · · ,xl], while making
Xu = [xl+1,xl+2, · · · ,xn] the unlabeled training set with u = n− l. We assume
that the number of labeled samples is uniformly selected for each class. This
means for a K-class classification, each class has lc = l

K
labeled samples.

Without loss of generality, we let all yi ∈ {−1, 1} to focus on discussing a
binary classification. However, the proposed classifier can be naturally extended
to a multi-class case, by either replacing the binary classifier with the multi-class
classifier (e.g., soft-max classifier [58]), or adopting the well-known one-versus-
one or one-versus-all strategy.

Our goal is to jointly learn a dictionary D consisting of a set of basis for ex-
tracting the sparse code (feature vector), and the classification parameter w for a
binary classifier applied to the extracted feature vector, while guaranteeing them
to be optimal to each other.

Joint Feature Extraction and Classification

Sparse Coding for Feature Extraction In [33], the authors suggest that the
spectral signatures of pixels belonging to the same class are assumed to approx-
imately lie in a low-dimensional subspace. Pixels can be compactly represented
by only a few sparse coefficients (sparse code). In this part, we adopt the sparse
code as the input features, since extensive literature has examined the outstanding
effect of SRC for a more discriminative and robust classification [170].

7



We assume that all the data samples X = [x1,x2, · · · ,xn],xi ∈ Rm×1, i =

1, 2, · · · , n, are encoded into their corresponding sparse codes A = [a1, a2, · · · , an],
ai ∈ Rp×1, i = 1, 2, · · · , n, using a learned dictionary D = [d1,d2, · · · ,dp],
where di ∈ Rm×1, i = 1, 2, · · · , p are the learned atoms. It should be noted that
the initial dictionary is generated by assigning equal number of atoms to each
class. That means for a K-class classification, there are pc = p

K
atoms assigned to

each class in a dictionary consisting of p atoms.
The sparse representation is obtained by the following convex optimization

A = arg minA
1
2
||X−DA||2F + λ1

∑
i ||ai||1 + λ2||A||2F , (2.1)

or rewritten in a separate form for each xi

ai = arg minai
1
2
||xi −Dai||22 + λ1||ai||1 + λ2||ai||22. (2.2)

Note λ2 > 0 is necessary for proving the differentiability of the objective function
(see [2.1.1] in Section 2.1.5). However, setting λ2 = 0 work well in practice
[113].

Obviously, the effect of sparse coding (3.13) largely depends on the quality of
dictionary D. The authors in [33] suggest constructing the dictionary by directly
selecting atoms from the training samples. More sophisticated methods are widely
used in SRC literature, discussing how to learn a more compact and effective
dictionary from a given training dataset, e.g., the K-SVD algorithm [3].

We recognize that many structured sparsity constraints (priors) [33, 152] can
also be considered for dictionary learning. They usually exploit the correlations
among the neighboring pixels or their features. For example, the SRC dictionary
has an inherent group-structured property since it is composed of several class-
wise sub-dictionaries, i.e., the atoms belonging to the same class are grouped to-
gether to form a sub-dictionary. Therefore, it would be reasonable to enforce each
pixel to be compactly represented by groups of atoms instead of individual ones.
This could be accomplished by encouraging coefficients of only certain groups to
be active, like the Group Lasso [144]. While the performance may be improved
by enforcing structured sparsity priors, the algorithm will be considerably more
complicated. Therefore, we do not take into account any structured sparsity prior
here, and leave them for our future study.
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Task-Specific Loss Functions for Classification Classical loss functions in
SRC are often defined by the reconstruction error of data samples [33, 96]. The
performances of such learned classifiers highly hinge on the quality of the input
features, which is only sub-optimal without the joint optimization with classifier
parameters. In [128], the authors study a straightforward joint representation and
classification framework, by adding a penalty term to the classification error in
addition to the reconstruction error. The authors in [80, 182] propose to enhance
the dictionary’s representative and discriminative power by integrating both the
discriminative sparse-code error and the classification error into a single objective
function. The approach jointly learns a single dictionary and a predictive linear
classifier. However, being a semi-supervised method, the unlabeled data does not
contribute much to promoting the discriminative effect in [182], as only the re-
construction error is considered on the unlabeled set except for an “expansion”
strategy applied to a small set of highly-confident unlabeled samples.

In order to obtain an optimal classifier with regard to the input feature, we ex-
ploit a task-specific formulation which aims to minimize a classification-oriented
loss [113]. We incorporate the sparse codes ai, which are dependent on the atoms
of the dictionary D that are to be learned, into the training of the classifier pa-
rameter w. The logistic loss is used in the objective function for the classifier.
We recognize that the proposed formulation can be easily extended to other clas-
sifiers, e.g., SVM. The loss function for the labeled samples is directly defined by
the logistic loss

L(A,w,xi, yi) =
∑l

i=1 log(1 + e−yiw
T ai). (2.3)

For unlabeled samples, the label of each xi is unknown. We propose to introduce
the predicted confidence probability pij that sample xi has label yj (yj=1 or -1),
which is naturally set as the likelihood of the logistic regression

pij = p(yj|w, ai,xi) = 1

1+e−yjw
T ai
, yj = 1 orquad− 1. (2.4)

The loss function for the unlabeled samples then turns into an entropy-like form

U(A,w,xi) =
∑l+u

i=l+1

∑
yj
pijL(ai,w,xi, yj), (2.5)

which is a weighted sum of loss under different classification outputs yj .
Furthermore, we can similarly define pij for the labeled sample xi, that is 1
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when yj is the given correct label yi and 0 elsewhere. The joint loss functions for
all the training samples can thus be written into a unified form

T (A,w) =
∑l+u

i=1

∑
yj
pijL(ai,w,xi, yj). (2.6)

A semi-supervised task-specific formulation has also been proposed in [113].
However, it is posed as a naive combination of supervised and unsupervised steps.
The unlabeled data are only used to minimize the reconstruction loss, without
contributing to promoting the discriminative effect. In contrast, our formulation
(2.6) clearly distinguishes itself by assigning an adaptive confidence weight (2.25)
to each unlabeled sample, and minimizes a classification-oriented loss over both
labeled and unlabeled samples. By doing so, unlabeled samples also contribute to
improving the discriminability of learned features and classifier, jointly with the
labeled samples, rather than only optimized for reconstruction loss.

Spatial Laplacian Regularization We first introduce the weighting matrix G,
where Gik characterizes the similarity between a pair of pixels xi and xk. We
define Gik in the form of shift-invariant bilateral Gaussian filtering [155] (with
controlling parameters σd and σs)

Gik = exp(−d(xi,xk)

2σ2
d

) · exp(− ||xi−xk||
2
2

2σ2
s

), (2.7)

which measures both the spatial Euclidean distance (d(xi,xk)) and the spectral
similarity between an arbitrary pair of pixels in a hyperspectral image. Larger Gik

represents higher similarity and vice versa. Further, rather than simply enforcing
pixels within a local window to share the same label,Gik is defined over the whole
image and encourages both spatially neighboring and spectrally similar pixels to
have similar classification outputs. It makes our spatial constraints much more
flexible and effective. Using the above similarity weights, we define the spatial
Laplacian regularization function

S(A,w) =
∑l+u

i=1

∑
yj

∑l+u
k Gik||pij − pkj||22). (2.8)

Bi-level Optimization Formulation

Finally, the objective cost function for the joint minimization formulation can be
expressed by the following bi-level optimization (the quadratic term of w is to
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avoid overfitting):

min
D,w

T (A,w) + S(A,w) + λ
2
||w||22

s.t. A = arg minA
1
2
||X−DA||2F + λ1

∑
i ||ai||1 + λ2||A||2F .

(2.9)

Bi-level optimization [39] has been investigated in both theory and application
sides. In [176], the authors propose a general bi-level sparse coding model for
learning dictionaries across coupled signal spaces. Another similar formulation
has been studied in [113] for general regression tasks.

In the testing stage, each test sample is first represented by solving (2.2) over
the learned D. The resulting sparse coefficients are fed to the trained logistic
classifier with the previously learned w. The test sample is classified into the
class of the highest output probability (2.25).

Algorithm

Built on the methodologies similar to [113] and [176], we solve (2.9) using a
projected first order stochastic gradient descent (SGD) algorithm, whose detailed
steps are outlined in Algorithm 1. At a high level overview, it consists of an outer
stochastic gradient descent loop that incrementally samples the training data. It
uses each sample to approximate gradients with respect to the classifier parameter
w and the dictionary D, which are then used to update them. Next, we briefly
explain a few key technical points of the Algorithm 1.

Stochastic Gradient Descent The stochastic gradient descent (SGD) algorithm
[21] is an iterative, “on-line” approach for optimizing an objective function, based
on a sequence of approximate gradients obtained by randomly sampling from the
training data set. In the simplest case, SGD estimates the objective function gra-
dient on the basis of a single randomly selected example xt

wt+1 = wt − ρt∇wF (xt, wt), (2.10)

where F is a loss function, w is a weight being optimized and ρt is a step size
known as the “learning rate”. The stochastic process {wt, t = 1, · · · } depends
upon the sequence of randomly selected examples xt from the training data. It
thus optimizes the empirical cost, as a good proxy for the expected cost.
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Following the derivations in [113], we can show that the objective function in
(2.9), denoted as B(A,w) for simplicity, is differentiable on D×w, and that

∇wB(A,w) = Ex,y[∇wT (A,w) +∇wS(A,w) + λw]

∇DB(A,w) = Ex,y[−Dβ∗AT + (Xt −DA)β∗T ],
(2.11)

where β∗ is a vector defined by the following property:

β∗SC = 0

β∗S = (DT
SDS + λ2I)−1∇AS

[T (A,w) + S(A,w)],
(2.12)

and S are the indices of the nonzero coefficients of A. The proof of the above
equations is given in the Section 2.1.5.

Sparse Reconstruction The most computationally intensive step in Algorithm
1 is solving the sparse coding (step 3). We adopt the Feature-Sign algorithm [96]
for efficiently solving the exact solution to sparse coding.

Algorithm 1 Stochastic gradient descent algorithm for solving (2.9)
Require: X,Y; λ, λ1, λ2, σd and σs; D0 and w0 (initial dictionary and classifier

parameter); ITER (number of iterations); t0, ρ (learning rate)
1: FOR t=1 to ITER DO
2: Draw a subset (Xt,Yt) from (X,Y)
3: Sparse coding: computer A∗ using Feature-Sign algorithm:

A∗ = arg minA
1
2
||Xt −DA||22 + λ1

∑
i ||ai||1 + λ2

2
||A||22

4: Compute the active set S (the nonzero support of A)
5: Compute β∗: Set β∗SC = 0 and β∗S = (DT

SDS + λ2I)−1∇AS
[T (A,w) +

S(A,w)]
6: Choose the learning rate ρt = min(ρ, ρ t0

t
)

7: Update D and W by a projected gradient step:
w =

∏
w[w − ρt(∇wT (A,w) +∇wS(A,w) + λw)]

D =
∏

D[D− ρt(∇D(−Dβ∗AT + (Xt −DA)β∗T )]
where

∏
w and

∏
D are respectively orthogonal projections on the embedding

spaces of w and D.
8: END FOR

Ensure: D and w

Remark on SGD convergence and sampling strategy: The convergence proof
of SGD [137] for non-convex problems indeed assumes three times differentiable
cost functions. As a typical case in machine learning, we use SGD in a setting
where it is not guaranteed to converge in theory, but behaves well in practice.
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SGD algorithms are typically designed to minimize functions whose gradients
have the form of an expectation. While an i.i.d. (independent and identically
distributed) sampling process is required, it cannot be computed in a batch mode.
In our algorithm, instead of sampling one per iteration, we adopt a mini-batch
strategy by drawing more samples at a time. Authors in [113] further pointed
out that solving multiple elastic-net problems with the same dictionary D can be
accelerated by the pre-computation of the matrix DTD. In practice, we draw a set
of 200 samples in each iteration, which produces steadily good results in all our
experiments under universal settings.

Strictly speaking, drawing samples from the distribution of training data should
be made i.i.d. (step 2 in Algorithm 1). However, this is practically difficult since
the distribution itself is typically unknown. As an approximation, samples are
instead drawn by iterating over random permutations of the training set [137].

2.1.3 Experiments

In this part, we evaluate the proposed method on three popular datasets, and com-
pare it with some related approaches in the literature, including:

• Laplacian Support Vector Machine (LapSVM) [8, 66], that is a semi-supervised
extension of the SVM and applies the spatial manifold assumption to SVM.
The classification is directly executed on raw pixels without any feature ex-
traction, which follows the original setting in [10].

• Semi-supervised Classification (SSC) approach [161] that employs a modi-
fied clustering assumption.

• Semi-supervised hyperspectral image segmentation that adopts Multino-
mial Logistic Regression with Active Learning (MLR-AL) [98].

Regarding parameter choices of the three methods, we try our best to follow the
settings in their original papers. For LapSVM, the regularization parameters γ1, γ2

are selected from [10−5, 105] according to a five-fold cross-validation procedure.
In SSC, the width parameter of the Gaussian function is tuned using a five-fold
cross-validation procedure. The parameter setting in MLR-AL follows that of the
original paper [98].
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Besides the above mentioned three algorithms, we also include the following
algorithms in the comparison, in order to illustrate the merits of both joint opti-
mization and spatial Laplacian regularization on the classifier outputs:

• Non-joint optimization of feature extraction and classification (Non-Joint).
It refers to conducting the following two stages sequentially:

1. Feature extraction:
A = arg minA

1
2
||X−DA||2F + λ1

∑
i ||ai||1 + λ2||A||2F .

2. Learning a classifier:
min
w

T (A,w) + λ
2
||w||22.

(2.13)

The training of D is independent of the learning of the classifier parame-
ter w. This is different from the joint optimization of the dictionary and
classifier as is done in (2.9) by the task-specific formulation.

• Non-joint optimization of feature extraction and classification, with spa-
tial Laplacian regularization (Non-Joint + Laplacian). It is the same as the
Non-Joint method except for adding a spatial Laplacian regularization term
S(A,w) to the second subproblem:

1. Feature extraction:
A = arg minA

1
2
||X−DA||2F + λ1

∑
i ||ai||1 + λ2||A||2F .

2. Learning a classifier:
min
w

T (A,w) + S(A,w) + λ
2
||w||22.

(2.14)

• The proposed joint method without spatial Laplacian regularization (Joint),
which is done by dropping the S(A,W) term in (2.9)

min
D,W

T (A,w) + λ
2
||w||22

s.t. A = arg minA
1
2
||X−DA||2F + λ1

∑
i ||ai||1 + λ2||A||2F .

(2.15)

• The proposed joint method with spatial Laplacian regularization (Joint +
Laplacian), by minimizing our proposed bi-level formulation (2.9).

Parameter Setting For the proposed method, the regularization parameter λ in
(2.9) is fixed to be 10−2, and λ2 in (2.2) is set to 0 to exploit sparsity. The elastic-
net parameter λ1 in (2.2) is generated by a cross-validation procedure, which is
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similar to the one in [113]. The values of λ1 are 0.225, 0.25, and 0.15 for the
first three experiments, respectively. σd and σs in (2.7) are fixed as 3 and 3,000,
respectively. The learning rate ρ is set as 1, and maximum number ITER is set as
1000 for all. Although we have verified that these choices of parameters work well
in extensive experiments, we recognize that a finer tuning may further improve the
performance.

In particular, we would like to mention the initializations of D and w. For the
two non-joint methods, D is initialized by solving the first subproblem (feature
extraction) in (2.13) or (2.14). In this subproblem, for each class, we initialize
its sub-dictionary atoms randomly. We then employ several iterations of K-SVD
using only the available labeled data for that class, and finally combine all the out-
put class-wise sub-dictionaries into a single initial dictionary D. Next, we solve
A based on D, and continue to feed A into the second subproblems (learning
a classifier) in (2.13) and (2.14) for good initializations of w, for Non-Joint and
Non-Joint + Laplacian, respectively. For the two joint methods, we use the results
of Non-Joint, and Non-Joint + Laplacian, to initialize D and w of Joint and Joint
+ Laplacian, respectively.

The one-versus-all strategy is adopted for addressing multi-class problems,
which means that we train K different binary logistic classifiers with K corre-
sponding dictionaries for a K-class problem. For each test sample, the classifier
with the maximum score will provide the class label. When the class number is
large, this one-versus-all approach is more scalable than learning a single large
dictionary with a multi-class loss [113], and provides better results.

For the two joint methods, we assign only five dictionary atoms per class to
initialize the dictionary, which means for a K-class problem we have pc = 5

and p = 5K for the total dictionary size. For the two non-joint methods, fifty
dictionary atoms (pc = 50) are assigned per class in the first subproblems of (2.13)
and (2.14), respectively. The choices of dictionary sizes for both joint and non-
joint methods will be illustrated in the fourth experiment. We use the term “atoms
per class” for two reasons: 1) We initialize our dictionary by first applying KSVD
to each class to obtain a class-wise sub-dictionary. This helps to improve the class
discriminability of the learned dictionary more than just applying KSVD to the
whole data. Therefore, we need to specify how many atoms are assigned per class
in the initialization stage. Note that when Algorithm 1 starts, the atoms become
all entangled, and further it is impossible to identify how many (and which) atoms
are representing a specific class in the final learned dictionary. 2) Each dataset
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Table 2.1: Overall classification results (%) for the AVIRIS Indiana Pines data
with different numbers of labeled samples per class (u = ALL, λ = 10−2, λ1 =
0.225, λ2 = 0, ρ = 1, σd = 3, σs = 3,000)

lc 2 3 4 5 6 7 8 9 10
LapSVM [8] 57.80 61.32 63.1 66.39 68.27 69.00 70.15 70.04 70.73
SSC [161] 44.61 56.98 58.27 60.56 60.79 64.19 66.81 69.40 70.50

MLR+AL [98] 52.34 56.16 59.21 61.47 65.16 69.21 72.14 73.89 74.43
Non-Joint (pc = 50) 63.72 69.21 71.87 76.88 79.04 81.81 85.23 87.77 88.54

Non-Joint + L (pc = 50) 66.89 72.37 75.33 78.78 81.21 84.98 87.25 88.61 89.88
Joint (pc = 5) 69.81 76.03 80.42 82.91 84.81 85.76 86.95 87.54 89.31

Joint + L (pc = 5) 76.55 80.63 84.28 86.33 88.27 90.68 91.87 92.53 93.11

has a different number of classes, and empirically, more classes demand more
dictionary atoms to represent. Note, however, if we assign atoms in proportion
to the number of samples per class, some minor classes will tend to be severely
underrepresented.

In the first three experiments, we use all the unlabeled pixels (denoted as “ALL”)
from each hyperspectral image for semi-supervised training. Later, we discuss
how unlabeled samples u will influence the classification accuracy. The last ex-
periment will provide a visualized example to manifest that the proposed method
indeed leads to a more discriminative dictionary that contributes to a higher clas-
sification accuracy.

Classification Performance on AVIRIS Indiana Pines Data

The AVIRIS sensor generates 220 bands across the spectral range from 0.2 to 2.4
µm. In the experiment, the number of bands is reduced to 200 by removing 20
water absorption bands. The AVIRIS Indiana Pines hyperspectral image has the
spatial resolution of 20m and 145 × 145 pixels. It contains 16 classes, most of
which are different types of crops (e.g., corn, soybeans, and wheat). The ground-
truth classification map is shown in Figure 2.1 (a).

Table 2.1 evaluates the influence of the number of labeled samples per class lc
on the classification of AVIRIS Indiana Pines data, with lc varying from 2 to 10.
The dictionary consists of only p = 80 atoms to represent all the 16 classes for
the joint methods, and p = 800 for the non-joint methods. The bold value in each
column indicates the best result among all the seven methods. As can be seen from
the table, the classification results improve for all the algorithms with the increase
in the number of labeled samples. The last two methods, i.e., Joint and Joint +
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Laplacian, outperform the other five methods in terms of overall accuracy (OA)
significantly. It is also observed that the Joint + Laplacian method obtains further
improvement over the Joint method, showing the advantage of spatial Laplacian
regularization. Amazingly, we notice that even when there are as few as three
samples per class, the OA of the proposed method (Joint + Laplacian) is still
higher than 80%.

Figure 2.1 demonstrates the classification maps obtained by all the methods
when 10 labeled samples are used per class. The proposed method, either with
or without spatial regularization, obtains fewer misclassifications compared with
the other methods. What is more, the homogeneous areas in (h) are significantly
better preserved than that in (g), which again confirms the effectiveness of the
spatial Laplacian regularization on the output of the classifier. Figure 2.2 visually
demonstrates that along with the increase of lc, the classification results gradu-
ally improve, and both the regional and scattered misclassifications are reduced
dramatically.

Classification Performance on AVIRIS Salinas Data

This dataset is collected over the Valley of Salinas, Southern California, in 1998.
This hyperspectral image is of size 217× 512, with 16 different classes of objects
in total. In our experiment, a nine-class subset is considered, including vegetables,
bare soils, and vineyard fields. The ground-truth classification map is shown in
Figure 2.3 (a). As AVIRIS Salinas is recognized to be easier for classification than
AVIRIS Indian Pines, all methods obtain high OAs as listed in Table 2.2, while
the Joint + Laplacian method marginally stands out. When we turn to Figure 2.3
(b)-(h) for the comparison in classification maps, however, the Joint + Laplacian
method is visually much superior in reducing scattered misclassifications.

Classification Performance on University of Pavia Data

The ROSIS sensor collected this data during a flight campaign over the Pavia dis-
trict in north Italy. 103 spectral bands were used for data acquisition in this dataset,
comprising of 610×610 pixel images with a geometric resolution of 1.3m. A few
samples contain no information and were discarded before the classification. The
ground truth data shows a total of nine distinct classes, and has been portrayed
visually in Figure 2.4 (a). Similar conclusions can be attained from both Table
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(a) Ground-truth

(b) LapSVM, OA=70.73%

(c) SSC, OA=70.50%

(d) MLR + AL, OA=74.43%

(e) Non-Joint, OA=88.54%

(f) Non-Joint + Laplacian,
OA=89.88%

(g) Joint , OA=89.31%

(h) Joint + Laplacian,
OA=93.11%

Figure 2.1: Classification maps for the AVIRIS Indian Pines scene using
different methods with 10 labeled samples per class.
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(a) lc = 2, OA=76.55%

(b) lc = 3, OA=80.63%

(c) lc = 4, OA=84.28%

(d) lc = 5, OA=86.33%

(e) lc = 6, OA=88.27%

(f) lc = 7, OA=90.68%

(g) lc = 8, OA=91.87%

(h) lc = 9, OA=92.53%

(i) lc = 10, OA=93.11%

Figure 2.2: Classification maps for the AVIRIS Indian Pines scene using the
proposed Joint + Laplacian method with different numbers of labeled samples
per class.
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(a) Ground-truth

(b) LapSVM, OA=98.00%

(c) SSC, OA=75.36%

(d) MLR + AL, OA=95.66%

(e) Non-Joint, OA=95.26%

(f) Non-Joint + Laplacian, OA=98.08%

(g) Joint, OA=98.90%

(h) Joint + Laplacian, OA=99.40%

Figure 2.3: Classification maps for the AVIRIS Salinas scene using different
methods with 10 labeled samples per class.
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(a) Ground-truth
.

(b) LapSVM,
OA=79.88%

(c) SSC,
OA=80.95%

(d) MLR + AL,
OA=85.53%

(e) Non-Joint,
OA=81.26%

(f) Non-Joint + Laplacian,
OA=88.78%

(g) Joint, ,
OA=88.08%

(h) Joint + Laplacian,
OA=90.41%

Figure 2.4: Classification maps for the University of Pavia scene using different
methods with 10 labeled samples per class.
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Table 2.2: Overall classification results (%) for the AVIRIS Salinas data with
different numbers of labeled samples per class (u = ALL, λ = 10−2, λ1 = 0.25, λ2

= 0, ρ = 1, σd = 3, σs = 3,000)

lc 2 3 4 5 6 7 8 9 10
LapSVM [8] 90.77 91.53 92.95 93.50 94.77 95.08 96.05 97.17 98.00
SSC [161] 59.47 61.84 64.90 67.19 71.04 73.04 72.81 73.51 75.36

MLR+AL [98] 78.98 82.32 84.31 86.27 85.86 89.41 92.27 93.78 95.66
Non-Joint (pc = 50) 85.88 87.21 89.29 90.76 91.42 92.87 93.95 94.78 95.26

Non-Joint + L (pc = 50) 87.67 89.28 91.54 92.67 93.93 95.28 96.79 97.83 98.08
Joint (pc = 5) 89.71 90.03 91.42 92.12 93.25 94.54 96.05 97.45 98.90

Joint + L (pc = 5) 90.65 91.59 92.28 93.63 95.22 96.58 97.81 98.53 99.40

Table 2.3: Overall classification results (%) for the University of Pavia Data data
with different numbers of labeled samples per class (u=ALL, λ = 10−2, λ1=0.15,
λ2=0, ρ=1, σd=3, σs=3,000)

lc 2 3 4 5 6 7 8 9 10
LapSVM [8] 64.77 67.83 69.25 71.05 72.97 74.38 76.75 78.17 79.88
SSC [161] 69.54 72.84 74.69 76.21 77.24 78.43 79.81 80.25 80.95

MLR+AL [98] 76.27 78.66 79.30 80.22 81.36 82.41 83.27 84.78 85.53
Non-Joint (pc = 50) 74.21 75.27 76.22 76.83 78.24 79.51 79.67 80.83 81.26

Non-Joint + L (pc = 50) 79.23 80.26 82.58 84.07 86.21 86.88 87.56 88.23 88.78
Joint (pc = 5) 74.21 76.73 79.24 80.82 82.35 84.54 86.97 87.27 88.08

Joint + L (pc = 5) 78.56 80.29 82.84 83.76 85.12 87.58 88.33 89.52 90.41

2.3 and Figure 2.4, that once again verify the merits of both the joint optimization
framework and spatial regularization.

Influences of Dictionary Size

To study the influence of the dictionary size, we report the performance on the
AVIRIS Indian Pines dataset for different dictionary sizes, with both Joint and
Joint + Laplacian methods. Moreover, we also include Non-Joint and Non-Joint
+ Laplacian methods into the same comparison experiments, in order to validate
their optimal dictionary sizes. It is recognized that a larger dictionary usually
means a better performance, but at a higher computational cost. Setting the size
of the dictionary is therefore often a trade-off between the desired quality of the
classification results and computational efficiency of the algorithm.

Table 2.4, as well as Figure 2.5, proves that our proposed method is quite robust
to the dictionary size. The performance is only a little bit low even when there
are only three dictionary atoms per class (dictionary with p = 48 atoms). This is
because the overall dictionary is too small to capture all the features in the training
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Figure 2.5: Classification results for the AVIRIS Indian Pines data with different
pc (fix l = 160, u = ALL).
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Figure 2.6: Classification results for the AVIRIS Indian Pines data with different
u (fix l = 160, pc = 5).
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Table 2.4: Overall classification results (%) for the AVIRIS Indian Pines data
with different numbers of dictionary atoms per class (Fix lc = 10, u = ALL)

pc 3 5 8 10 20 50 100
Non-Joint 69.21 78.83 81.27 85.45 88.38 88.54 88.91

Non-Joint + L 72.33 79.22 84.35 88.76 89.27 89.88 90.21
Joint 87.87 89.31 89.27 89.51 89.87 89.95 90.05

Joint + L 92.42 93.11 93.30 93.53 93.87 93.82 93.67

Table 2.5: Overall classification results (%) for the AVIRIS Indian Pines data
with different numbers of unlabeled samples (Fix l = 160, pc = 5)

u = kl 0l 1l 3l 5l 8l 10l 20l 30l All
Joint 71.28 73.76 76.20 80.94 84.34 86.54 88.83 89.21 89.31

Joint + Laplacian 75.33 79.25 81.21 84.44 87.12 90.24 91.32 93.02 93.11

data. However, a good classification accuracy can always be achieved with a
relatively small dictionary, even with only five atoms per class (dictionary with p
= 80 atoms), which indicates that both joint methods can obtain good performance
with a computationally reasonable dictionary size. In contrast, the performances
of two non-joint methods turn dramatically poorer when the dictionary is highly
compact. As the dictionary size is increased and finally turns overcomplete, the
performance differences with joint methods become relatively smaller but still
quite notable even under pc = 100, where the Joint + Laplacian method maintains
a more than 3% advantage in overall accuracy over its counterpart Non-Joint +
Laplacian method. While the non-joint methods have to sacrifice computational
efficiency (due to a large overcomplete dictionary) for better accuracy, we can use
a compact dictionary and avoid the heavy computational cost in the proposed joint
methods.

Influences of Unlabeled Samples

In this part, we evaluate how the number of unlabeled samples for training will
influence the resulting accuracy, via experiments on AVIRIS Indian Pines dataset
as well. In Table 2.5, we demonstrate the influence of changing u, when fixing
lc at 10 in order to have a total of l = 160 labeled samples. To be more intuitive,
we express u as k times the value of l, i.e., u = kl, k ∈ Z, and vary k from 0
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(which corresponds to the supervised task-specific case, with Laplacian regular-
ization), until when u reaches the total number of unlabeled samples (denoted as
“ALL”). As a consequence, with the same number of labeled samples, increasing
the number of unlabeled samples u leads to a monotonic increase in the classifi-
cation accuracy, which validates the advantage of semi-supervised classification.
Such an improvement becomes especially remarkable even when the amount of
labeled samples is very small, as can also be seen from the plot in Figure 2.6.

(a) atom 1 (b) atom 2 (c) atom 3 (d) atom 4 (e) atom 5 (f) atom 6

(a)

(g) atom 1 (h) atom 2 (i) atom 3 (j) atom 4 (k) atom 5 (l) atom 6

(b)

Figure 2.7: The spectral signatures of (a) the atoms of the K-SVD unsupervised
dictionary in the top row (OA=84.45%), and (b) the atoms of the task-specific
semi-supervised dictionary in the bottom row (OA=92.05%). For each of the
figures, the X-axis and Y-axis stand for the spectral band and radiance value,
respectively.

Discriminability of Dictionary

In the proposed method, we jointly optimize the dictionary and the classifier to-
gether. The learned dictionary is thus expected to consist of highly discriminative
bases for the classification. This fact has already been implied by the perfor-
mances in the first three experiments, and here we are going to verify the discrim-
inative property directly by visualizing the dictionary atoms.

We choose two classes, the 3rd class “Corn-min” and the 6th class “Grass/-
Trees”, from the AVIRIS Indian Pines dataset. Each class has only 10 labeled
samples while being abundant in unlabeled samples. We first apply K-SVD to
each of the classes separately, and obtain a class-wise sub-dictionary of three
atoms. Then we concatenate the two sub-dictionaries into a K-SVD dictionary of
six atoms, and follow the Non-Joint +Laplacian method (2.14) to do a binary clas-
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sification. Next, a task-specific dictionary is generated by our proposed method
(2.9), with the same dictionary size and initialized by the K-SVD dictionary as
described previously.

We visualize our results in Figure 2.7 by plotting the spectral signatures of all
the six atoms in the dictionaries. For each figure, the X-axis and Y-axis stand
for the spectral band and radiance value, respectively. The atoms generated by
K-SVD are plotted in the top row, while the atoms by the proposed method are
plotted in the bottom row. Comparing to the K-SVD results, the dictionary atoms
learned by the proposed method looks more “dissimilar” from each other, demon-
strating visually a higher discriminability. As a consequence, the classification ac-
curacy of our proposed method achieves 92.05%, which remarkably outperforms
the 84.45% accuracy by the Non-Joint +Laplacian method.

2.1.4 Conclusion

In this section, we develop a semi-supervised hyperspectral image classification
method based on task-specific dictionary learning and spatial Laplacian regular-
ization on the output of the logistic regression classifier. We jointly optimize both
the dictionary for feature extraction and the associated classifier parameter, while
both the spectral and the spatial information are explored to improve the clas-
sification accuracy. Experimental results verify the superior performance of our
proposed method on three popular datasets, both quantitatively and qualitatively.
A good and stable accuracy is produced in even quite ill-posed problem settings
(high dimensional spaces with small number of labeled samples). In the future,
we would like to explore the applications of the proposed method to general image
classification and segmentation problems.

2.1.5 Proof of (2.11)

Denote X ∈ X , y ∈ Y and D ∈ D. Let the objective function B(A,w) in (2.9)
be denoted as B for short. The differentiability of B with respect to w is easy to
show, using only the compactness of X and Y , as well as the fact that B is twice
differentiable.

We will therefore focus on showing that B is differentiable with respect to D,
which is more difficult since A, and thus ai, is not differentiable everywhere.
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Without loss of geniality, we use a vector a instead of A for simplifying the
derivations hereinafter. In some cases, we may equivalently express a as a(D,w)

in order to emphasize the functional dependence.
We recall the following lemma [2.1.1] that is proved in [113]:

Theorem 2.1.1 (Regularity of the elastic net solution). Consider the formulation

in (3.13). Assume λ2 > 0 , and both X and Y are compact. Then,

• a is uniformly Lipschitz on X ×D

• Let D ∈ D, σ be a positive scalar and s be a vector in {−1, 0, 1}p. Define

Ks(D, σ) as the set of vectors x satisfying for all j in {1, ..., p},

|dTj (x−Da)− λ2a[j]| ≤ λ1 − σ if s[j] = 0

s[j]a[j] ≥ σ if s[j] 6= 0.
(2.16)

Then there exists κ > 0 independent of s,D and σ so that for all x ∈
Ks(D, σ), the function a is twice continuously differentiable on Bκσ(x) ×
Bκσ(D), where Bκσ(x) and Bκσ(D) denote the open balls of radius κσ

respectively centered on x and D.

Built on [2.1.1] and given a small perturbation E ∈ Rm×p, it follows that

B(a(D + E),w)−B(a(D),w) = ∇zB
T
w(a(D + E)− a(D)) +O(||E||2F ),

(2.17)
where the term O(||E||2F ) is based on the fact that a(D,x) is uniformly Lipschitz
and X ×D is compact. It is then possible to show that

B(a(D + E),w)−B(a(D),w) = Tr(ETg(a(D + E),w)) +O(||E||2F ),

(2.18)
where g has the form given in (2.11). This shows that the objective in (2.11) is
differentiable on D, and its gradient with respect to D is g.

2.2 Bi-Level Sparse Coding for Clustering

Many clustering methods highly depend on extracted features. In this section, we
propose a joint optimization framework in terms of both feature extraction and dis-
criminative clustering. We utilize graph regularized sparse codes as the features,
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and formulate sparse coding as the constraint for clustering. Two cost functions
are developed based on entropy-minimization and maximum-margin clustering
principles, respectively. They are considered as the objectives to be minimized.
Solving such a bi-level optimization mutually reinforces both sparse coding and
clustering steps. Experiments on several benchmark datasets verify remarkable
performance improvements led by the proposed joint optimization.

2.2.1 Introduction

Clustering aims to divide data into groups of similar objects (clusters), and plays
an important role in many real world data mining applications. To learn the hid-
den patterns of the dataset in an unsupervised way, existing clustering algorithms
can be described as either generative or discriminative in nature. Generative clus-
tering algorithms model categories in terms of their geometric properties in fea-
ture spaces, or as statistical processes of data. Examples include K-means [59]
and Gaussian mixture model (GMM) clustering [14], which assume a parametric
form of the underlying category distributions. Rather than modeling categories
explicitly, discriminative clustering techniques search for the boundaries or dis-
tinctions between categories. With fewer assumptions being made, these methods
are powerful and flexible in practice. For example, maximum-margin clustering
[174], [184], [183] aims to find the hyperplane that can separate the data from
different classes with a maximum margin. Informatics theoretic clustering [101],
[6] minimizes the conditional entropy of all samples. Many recent discriminative
clustering methods have achieved very satisfactory performance [183].

Moreover, many clustering methods extract discriminative features from input
data, prior to clustering. The Principal Component Analysis (PCA) feature is a
common choice but not necessarily discriminative [185]. Kernel-based clustering
methods [43] were explored to find implicit feature representations of input data.
In [133], the features are selected for optimizing the discriminativity of the used
partitioning algorithm, by solving a linear discriminant analysis (LDA) problem.
More recently, sparse codes have been shown to be robust to noise and capable to
handle high dimensional data [170]. Furthermore, `1-graph [36] builds the graph
by reconstructing each data point sparsely and locally with other data. A spectral
clustering [124] is followed based on the constructed graph matrix. In [147],
[34], dictionary learning is combined with the clustering process, which makes
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use of Lloyds-type algorithms that iteratively re-assign data to clusters and then
optimize the dictionary associated with each cluster. In [185], the authors learned
the sparse codes that explicitly consider the local data manifold structures. Their
results indicate that encoding geometrical information will significantly enhance
the learning performance. However, the clustering step in [185] is not correlated
with the above mentioned discriminative clustering methods.

In this chapter, we propose to jointly optimize feature extraction and discrimi-
native clustering, such that they mutually reinforce each other. We focus on sparse
codes as the extracted features, and develop our loss functions based on two repre-
sentative discriminative clustering methods, the entropy-minimization [101] and
maximum-margin [174] clustering, respectively. A task-driven bi-level optimiza-
tion model [113], [164] is then built upon the proposed framework. The sparse
coding step is formulated as the lower-level constraint, where a graph regulariza-
tion is enforced to preserve the local manifold structure [185]. The clustering-
oriented cost functions are considered as the upper-level objectives to be mini-
mized. Stochastic gradient descent algorithms are developed to solve both bi-
level models. Experiments on several popular real datasets verify the noticeable
performance improvement achieved by such a joint optimization framework.

2.2.2 Model Formulation

Sparse Coding with Graph Regularization

Sparse codes prove to be effective features for clustering. In [36], the authors sug-
gested that the contribution of one sample to the reconstruction of another sample
was a good indicator of similarity between these two samples. Therefore, the re-
construction coefficients (sparse codes) can be used to constitute the similarity
graph for spectral clustering. `1-graph performs sparse representation for each
data point separately without considering the geometric information and mani-
fold structure of the entire data. Further research shows that the graph regularized
sparse representations produce superior results in various clustering and classifi-
cation tasks [185], [178]. In this chapter, we adopt the graph regularized sparse
codes as the features for clustering.

We assume that all the data samples X = [x1,x2, · · · ,xn],xi ∈ Rm×1, i =

1, 2, · · · , n, are encoded into their corresponding sparse codes A = [a1, a2, · · · , an],
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ai ∈ Rp×1, i = 1, 2, · · · , n, using a learned dictionary D = [d1,d2, · · · ,dp],
where di ∈ Rm×1, i = 1, 2, · · · , p are the learned atoms. Moreover, given a pair-
wise similarity matrix W, the sparse representations that capture the geometric
structure of the data according to the manifold assumption should minimize the
following objective: 1

2

∑n
i=1

∑n
j=1 Wij||ai− aj||22 = Tr(ALAT), where L is the

graph Laplacian matrix constructed from W. In this chapter, W is chosen as the
Gaussian Kernel: Wij = exp(− ||xi−xj ||

2
2

δ2 ), where δ is the controlling parameter
selected by cross-validation.

The graph regularized sparse codes are obtained by solving the following con-
vex optimization:

A = arg minA
1
2
||X−DA||2F + λ

∑
i ||ai||1 + αTr(ALAT) + λ2||A||2F .

(2.19)
Note that λ2 > 0 is necessary for proving the differentiability of the objective
function (please refer to Theorem 2.1.1 for the proof). However, setting λ2 =

0 proves to work well in practice, and thus the term λ2||A||2F will be omitted
hereinafter.

Bi-level Optimization Formulation

The objective cost function for the joint framework can be expressed by the fol-
lowing bi-level optimization:

min
D,w

C(A,w)

s.t. A = arg minA
1
2
||X−DA||2F + λ

∑
i ||ai||1 + αTr(ALAT),

(2.20)

where C(A,w) is a cost function evaluating the loss of clustering. It can be
formulated differently based on various clustering principles, two of which will
be discussed and solved in Section 2.2.3.

2.2.3 Clustering-Oriented Cost Functions

Assuming K clusters, and w = [w1, ...,wK ] as the set of parameters of the loss
function, where wi corresponds to the i-th cluster, i = 1, 2; ..., K. We introduce
two forms of loss functions, each of which is derived from a representative dis-
criminative clustering method.
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Entropy-Minimization Loss

Maximization of the mutual information with respect to parameters of the en-
coder model effectively defines a discriminative unsupervised optimization frame-
work. The model is parameterized similarly to a conditionally trained classifier,
but the cluster allocations are unknown [6]. In [45], [101], the authors adopted
an information-theoretic framework as an implementation of the low-density sep-
aration assumption by minimizing the conditional entropy. By substituting the
logistic posterior probability into the minimum conditional entropy principle, the
authors got the logistics clustering algorithm, which is equivalent to find a la-
belling strategy so that the total entropy of data clustering is minimized.

Since the true cluster label of each xi is unknown, we introduce the predicted
confidence probability pij that sample xi belongs to cluster j, i = 1, 2, · · · , N , j =

1, 2, · · · , K, which is set as the likelihood of the multinomial logistic (softmax)
regression:

pij = p(j|w, ai) = 1

1+e−jw
T ai
, (2.21)

The loss function for all data could be defined accordingly in an entropy-like form:

C(A,w) = −
∑n

i=1

∑K
j=1 pij log pij. (2.22)

The predicted cluster label of ai is the cluster j where it achieves the largest like-
lihood probability pij . The logistics regression can deal with multi-class problems
more easily compared with the support vector machine (SVM). The next impor-
tant thing we need to study is the differentiability of (2.20).

Theorem 2.2.1. The objectiveC(A,w) defined in (2.22) is differentiable on D×w.

Proof: Denote X ∈ X , and D ∈ D. Also let the objective function C(A,w)

in (2.22) be denoted as C for short. The differentiability of C with respect to w is
easy to show, using only the compactness of X , as well as the fact that C is twice
differentiable.

We will therefore focus on showing that C is differentiable with respect to D,
which is more difficult since A, and thus ai, is not differentiable everywhere.
Without loss of generality, we use a vector a instead of A for simplifying the
derivations hereinafter. In some cases, we may equivalently express a as a(D,w)

in order to emphasize the functional dependence. Based on Theorem 2.1.1, and
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given a small perturbation E ∈ Rm×p, it follows that

C(a(D + E),w)− C(a(D),w) = ∇zC
T
w(a(D + E)− a(D)) +O(||E||2F )

(2.23)
where the term O(||E||2F ) is based on the fact that a(D,x) is uniformly Lipschitz
and X ×D is compact. It is then possible to show that

C(a(D + E),w)− C(a(D),w) = Tr(ETg(a(D + E),w)) +O(||E||2F )

(2.24)
where g has the form given in Algorithm I. C is thus differentiable on D.

Built on the differentiability proof, we are able to solve (3.13) using a projected
first order stochastic gradient descent (SGD) algorithm, whose detailed steps are
outlined in Algorithm 2. At a high level overview, it consists of an outer stochastic
gradient descent loop that incrementally samples the training data. It uses each
sample to approximate gradients with respect to the classifier parameter w and
the dictionary D, which are then used to update them.

Algorithm 2 Stochastic gradient descent algorithm for solving (2.20), with
C(A,w) as defined in (2.22)

Require: X, σ; λ; D0 and w0 (initial dictionary and classifier parameter); ITER
(number of iterations); t0, ρ (learning rate)

1: Construct the matrix L from X and σ.
2: FOR t=1 to ITER DO
3: Draw a subset (Xt,Yt) from (X,Y)
4: Graph-regularized sparse coding: computer A∗:

A∗ = arg minA
1
2
||X−DA||2F + λ

∑
i ||ai||1 + Tr(ALAT).

5: Compute the active set S (the nonzero support of A∗)
6: Compute β∗: Set β∗SC = 0 and β∗S = (DT

SDS + λ2I)−1∇AS
[C(A,w)]

7: Choose the learning rate ρt = min(ρ, ρ t0
t
)

8: Update D and W by a projected gradient step:
w =

∏
w[w − ρt∇wC(A,w)]

D =
∏

D[D− ρt(∇D(−Dβ∗AT + (Xt −DA)β∗T )]
where

∏
w and

∏
D are respectively orthogonal projections on the embedding

spaces of w and D.
9: END FOR

Ensure: D and w
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Maximum-Margin Loss

Xu et al. [174] proposed maximum margin clustering (MMC), which borrows
the idea from the SVM theory. Their experimental results showed that the MMC
technique could often obtain more accurate results than conventional clustering
methods. Technically, what MMC does is just to find a way to label the samples
by running an SVM implicitly, and the SVM margin obtained would be maxi-
mized over all possible labelings [183]. However, unlike supervised large margin
methods which are usually formulated as convex optimization problems, maxi-
mum margin clustering is a non-convex integer optimization problem, which is
much more difficult to solve. [102] made several relaxations to the original MMC
problem and reformulated it as a semi-definite programming (SDP) problem. The
cutting plane maximum margin clustering (CPMMC) algorithm was presented in
[183] to solve MMC with much improved efficiency.

To develop the multi-class max-margin loss of clustering, we refer to the classi-
cal multi-class SVM formulation in [41]. Given the sparse code ai are the features
to be clustered, we define the multi-class model as

f(ai) = arg max
j=1,...,K

f j(ai) = arg max
j=1,...,K

(wT
j ai) (2.25)

where f j is the prototype for the j-th cluster and wj is its corresponding weight
vector. The predicted cluster label of ai is the cluster of the weight vector that
achieves the maximum value wT

j ai. Let w = [w1, ...,wK], the multi-class max-
margin loss for ai could be defined as:

C(ai,w) = max(0, 1 + f ri(ai)− f yi(ai))
where yi = arg max

j=1,...,K
f j(ai), ri = arg max

j=1,...,K,j 6=yi
f j(ai)

(2.26)

Note that unlike training a multi-class SVM classier, where yi is given as a training
label, the clustering scenario requires us to jointly estimate yi as a variable. The
overall max-margin loss to be minimized is (λ as the coefficient):

C(A,w) = λ
2
||w||2 +

∑n
i=1C(ai,w) (2.27)

But to solve (2.26) or (2.27) with respect to the same framework as logistic loss
will involve two additional concerns, which need to be handled specifically.

First, the hinge loss of the form (2.26) is not differentiable, with only a sub-
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gradient existing. That makes the objective function C(A,w) indifferentiable on
D×w, and further the analysis in the Theorem [3.4.1] proof cannot be applied.
We could have used the squared hinge loss or modified Huber loss for a quadrati-
cally smoothed loss function [95]. However, as we checked in the experiments, the
quadratically smoothed loss is not as good as hinge loss in training time and spar-
sity. Also, though not theoretically guaranteed, using the subgradient of C(A,w)

works well in our case.
Second, given that w is fixed, it should be noted that yi and ri are both func-

tions of ai. Therefore, calculating the derivative of (2.26) over ai would involve
expanding both ri and yi, and become quite complicated. Instead, we borrow
ideas from the regularity of the elastic net solution [113], that the set of non-zero
coefficients of the elastic net solution should not change for small perturbations.
Similarly, due to the continuity of the objective, it is assumed that a sufficiently
small perturbation over the current ai will not change yi and ri. Therefore in each
iteration, we could directly pre-calculate yi and ri using the current w and ai and
fix them for ai updates1.

Given the above two handlings, for a single sample ai, if the hinge loss is over
0, the derivative of (2.26) over w is:

∆j
i =


λwj

i − ai if j = yi

λwj
i + ai if j = ri

λwj
i otherwise,

(2.28)

where ∆j
i denotes the j-th element of the derivative for the sample ai. If the hinge

loss is less than 0, then ∆j
i = λwj

i . The derivative of (2.26) over ai is wri −wyi

if the hinge loss is over 0, and 0 otherwise. Note the above deduction can be
conducted in a batch mode. It is then similarly solved using a projected SGD
algorithm, whose steps are outlined in Algorithm 3.

1To avoid ambiguity, if yi and ri are the same, i.e., the max value is reached by two cluster
prototypes simultaneously in current iteration, then we ignore the gradient update of ai.
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Algorithm 3 Stochastic gradient descent algorithm for solving (2.20), with
C(A,w) as defined in (2.27)

Require: X, σ; λ; D0 and w0 (initial dictionary and classifier parameter); ITER
(number of iterations); t0, ρ (learning rate)

1: Construct the matrix L from X and σ.
2: Estimate the initialization of yi and ri by pre-clustering, i = 1, 2, ..., N
3: FOR t=1 to ITER DO
4: Conduct the same step 4-7 in Algorithm 2.
5: Update D and W by a projected gradient step, based on the derivatives of

(2.27) over ai and w (2.28).
6: Update yi and ri using the current w and ai, i = 1, 2, ..., N .
7: END FOR

Ensure: D and w

2.2.4 Experiments

Datasets

We conduct our clustering experiments on four popular real datasets, which are
summarized in Table 2.6. The ORL face database contains 400 facial images for
40 subjects, and each subject has 10 images of size 32× 32. The images are taken
at different times with varying lighting and facial expressions. The subjects are all
in an upright, frontal position with a dark homogeneous background. The MNIST
handwritten digit database consists of a total number of 70, 000 images, with
digits ranging from 0 to 9. The digits are normalized and centered in fixed-size
images of 28 × 28. The COIL20 image library contains 1,440 images of size 32
× 32, for 20 objects. Each object has 72 images, which were taken 5 degree apart
as the object was rotated on a turntable. The CMU-PIE face database contains 68
subjects with 41,368 face images as a whole. For each subject, we have 21 images
of size 32 × 32, under different lighting conditions.

Table 2.6: Comparison of all datasets

Name Number of Images Class Dimension
ORL 400 10 1,024

MNIST 70,000 10 784
COIL20 1,440 20 1,024

CMU-PIE 41,368 68 1,024
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Table 2.7: Accuracy and NMI performance comparisons on all datasets

KM KM + SC EMC EMC + SC MMC MMC + SC joint EMC joint MMC

ORL Acc 0.5250 0.5887 0.6011 0.6404 0.6460 0.6968 0.7250 0.7458
NMI 0.7182 0.7396 0.7502 0.7795 0.8050 0.8043 0.8125 0.8728

MNIST Acc 0.6248 0.6407 0.6377 0.6493 0.6468 0.6581 0.6550 0.6784
NMI 0.5142 0.5397 0.5274 0.5671 0.5934 0.6161 0.6150 0.6451

COIL20 Acc 0.6280 0.7880 0.7399 0.7633 0.8075 0.8493 0.8225 0.8658
NMI 0.7621 0.9010 0.8621 0.8887 0.8922 0.8977 0.8850 0.9127

CMU-PIE Acc 0.3176 0.8457 0.7627 0.7836 0.8482 0.8491 0.8250 0.8783
NMI 0.6383 0.9557 0.8043 0.8410 0.9237 0.9489 0.9020 0.9675

Evaluation Metrics

We apply two widely used measures to evaluate the performance of the clustering
methods: the accuracy and the Normalized Mutual Information (NMI) [185], [36].
Suppose the predicted label of the xi is ŷi which is produced by the clustering
method, and yi is the ground truth label. The accuracy is defined as:

Acc =
1Φ(ŷi)6=yi

n
, (2.29)

where 1 is the indicator function, and Φ is the best permutation mapping function
[108]. On the other hand, suppose the clusters obtained from the predicted labels
{ŷi}ni=1 and {yi}ni=1 as Ĉ and C, respectively. The mutual information between Ĉ
and C is defined as:

MI(Ĉ, C) =
∑

ĉ∈Ĉ,c∈C
p(ĉ, c) log p(ĉ,c)

p(ĉ)p(c)
, (2.30)

where p(ĉ) and p(c) are the probabilities that a data point belongs to the clusters Ĉ
and C, respectively, and p(ĉ, c) is the probability that a data point jointly belongs
to Ĉ and C. The NMI is defined as:

NMI(Ĉ, C) = MI(Ĉ,C)

max{H(Ĉ),H(C)} , (2.31)

where H(Ĉ) and H(C) are the entropies of Ĉ and C, respectively. NMI takes
values between [0,1].
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Comparison Experiments

Comparison Methods We compare the following eight methods on all four
datasets:

• KM: K-Means clustering on the input data.

• KM + SC: A dictionary D is first learned from the input data by K-SVD
[60]. Then KM is performed on the graph-regularized sparse code features
(3.13) over D.

• EMC: Entropy-minimization clustering, by minimizing (2.22) on the input
data.

• EMC + SC: EMC performed on the graph-regularized sparse codes over
the pre-learned K-SVD dictionary D.

• MMC: Maximum-margin clustering [183].

• MMC + SC: MMC performed on the graph-regularized sparse codes over
the pre-learned K-SVD dictionary D.

• Joint EMC: The proposed joint optimization (2.20), with C(A,w) as de-
fined in (2.22).

• Joint MMC: The proposed joint optimization (2.20), with C(A,w) as de-
fined in (2.27).

All images are first reshaped into vectors, and PCA is then applied to reduce the
data dimensionality by keeping 98% information, which is also used in [185] to
improving efficiency. The multi-class MMC algorithm is implemented based on
the publicly available CPMMC code for two-class clustering [183], following the
multi-class case descriptions in the original paper. For all algorithms that involve
graph-regularized sparse coding, the graph regularization parameter α is fixed to
be 1, and the dictionary size p is 128 by default. For joint EMC and joint MMC,
we set ITER as 30, ρ as 0.9, and t0 as 5. Other parameters in competing methods
are tuned in cross-validation experiments to our best efforts.

Comparison Analysis All the comparison results (accuracy and NMI) are listed
in Table. 2.7, from which we conclude the following:

37



Figure 2.8: (a) The clustering accuracy and NMI measurements versus the
number of clusters K; (b) The clustering accuracy and NMI measurements
versus the parameter choices of α; (c) The clustering accuracy and NMI
measurements versus the parameter choices of p.

• 1: The joint EMC and joint MMC methods each outperform their “non-
joint” counterparts, e.g., EMC + SC and MMC + SC, respectively. For
example, on the ORL dataset, joint MMC surpasses MMC + SC by around
5% in accuracy and 7% in NMI. Those demonstrate that the key contribution
of this chapter, i.e., jointly optimizing the sparse coding and clustering steps,
indeed leads to improved performance.

• 2: KM + SC, EMC + SC, and MMC + SC all outperform their counterparts
using raw input data, which verifies that sparse codes are effective features
that help improve the clustering discriminability.

• 3: The joint MMC obtains the best performance in all cases, outperforming
the others, including joint EMC, with significant margins. The MMC + SC
obtains the second best performance for the last three datasets (for ORL, it
is joint EMC that ranks the second). The above facts reveal the power of the
max-margin loss (2.27).

Varying the number of clusters On the COIL20 dataset, We re-conduct the
clustering experiments with the cluster number K ranging from 2 to 20, using
EMC + SC, MMC + SC, joint EMC, and joint MMC. For eachK except for 20, 10
test runs are conducted on different randomly chosen clusters, and the final scores
are obtained by averaging over the 10 tests. Figure 2.8 (a) shows the clustering

38



accuracy and NMI measurements versus the number of clusters. It is revealed that
the two joint methods consistently outperform their non-joint counterparts. When
K goes up, the performances of joint methods seem to degrade less slowly.

Initialization and Parameters As a typical case in machine learning, we use
SGD in a setting where it is not guaranteed to converge in theory, but behaves well
in practice. As observed in our experiments, a good initialization of D and w can
affect the final results notably. We initialize Joint EMC by the D and w solved
from EMC + SC, and Joint MMC by the solutions from MMC + SC, respectively.

There are two parameters that we set empirically ahead: the graph regular-
ization parameter α, and the dictionary size p. The regularization term imposes
stronger smoothness constraints on the sparse codes when α grows larger. Also,
while a compact dictionary is more desirable computationally, more redundant
dictionaries may lead to less cluttered features that can be better discriminated.
We investigate how the clustering performances EMC + SC, MMC + SC, joint
EMC, and joint MMC change on the ORL dataset, with various α and p values.
As depicted in Figure 2.8 (b) and (c), we observe that:

• 1: While α goes up, the accuracy result will first go up then down (the peak
is around α =1). That could be interpreted as when α is too small, the local
manifold information is not sufficiently encoded. On the other hand, when
α turns overly large, the sparse codes are “over-smoothened” with a reduced
discriminability.

• 2: Increasing dictionary size pwill first improve the accuracy sharply, which
however soon reaches a plateau. Thus in practice, we keep a medium dic-
tionary size p =128 for all experiments.

2.2.5 Conclusion

We propose a joint framework to optimize sparse coding and discriminative clus-
tering simultaneously. We adopt graph regularized sparse codes as the feature to
be learned, and design two clustering-oriented cost functions, by entropy-minimization
and maximum-margin principles, respectively. The formulation of a task-driven
bi-level optimization mutually reinforces both sparse coding and clustering steps.
Experiments on several benchmark datasets verify the remarkable performance
improvement led by the proposed joint optimization.
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CHAPTER 3

DEEP MODELS MADE INTERPRETABLE:
A SPARSE CODING PERSPECTIVE AND

BEYOND

3.1 Background and Related Work

Albeit effective, conventional sparse coding models rely on iterative approxi-
mation algorithms, whose inherently sequential structure, as well as the data-
dependent latency, often constitute a major bottleneck in the computational effi-
ciency. Besides, the joint optimization of the (unsupervised) feature learning and
the supervised steps often has to rely on solving complex bi-level optimization
[165], and thus constitutes another efficiency bottleneck. Further, to effectively
represent datasets of growing sizes, sparse coding has to refer to larger dictionar-
ies. Since the inference complexity of sparse coding increases more than linearly
with respect to the dictionary size [165], its scalability turns out to be limited.
Other “shallow” models suffer from similar problems.

Deep learning has recently attracted great attention [89]. The advantages of
deep learning lie in its composition of multiple non-linear transformations to yield
more abstract and descriptive representations. The feed-forward networks could
be tuned jointly with task-driven loss functions [163]. With the aid of gradient
descent, it also scales linearly in time and space with the number of train samples.
There has been a booming interest in bridging “shallow” optimization and deep
learning models. Our work shares in the spirit of prior wisdom, with many more
novel models explored and insights gained. In this chapter, we derive deep models
from the `0 sparse approximation model, the graph-regularized `1 sparse approxi-
mation model, the `∞ constrained model, and the dual-sparsity model. The struc-
tural priors inferred from all those models act as effective network regularizations,
and lead to improved generalization ability. The resulting deep models also enjoy
faster inference, larger learning capacity, and better scalability, compared to their
“shallow” counterparts.
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`0 and `1-based Sparse Approximations

Finding the sparsest, or minimum `0-norm, representation of a signal given a dic-
tionary of basis atoms is an important problem in many application domains. Con-
sider a data sample x ∈ Rm×1, that is encoded into its sparse code a ∈ Rp×1 using
a learned dictionary D = [d1,d2, · · · ,dp], where di ∈ Rm×1, i = 1, 2, · · · , p are
the learned atoms. The sparse codes are obtained by solving the `0 regularized
problem (λ is a constant):

a = arg mina
1
2
||x−Da||2F + λ||a||0. (3.1)

Alternatively, one could explicitly impose constraints on the number of non-zero
coefficients of the solution, by solving the M -sparse problem:

a = arg mina ||x−Da||2F s.t. ||a||0 ≤M. (3.2)

Unfortunately, these optimization problems are often intractable because there
is a combinatorial increase in the number of local minima as the number of the
candidate basis vectors increases. One potential remedy is to employ a convex
surrogate measure, such as the `1-norm, in place of the `0-norm that leads to a
more tractable optimization problem. For example, (3.1) could be relaxed as:

a = arg mina
1
2
||x−Da||2F + λ||a||1. (3.3)

It creates a unimodal optimization problem that can be solved via linear program-
ming techniques. The downside is that we have now introduced a mismatch be-
tween the ultimate goal and the objective function [169]. Under certain conditions,
the minimum `1-norm solution equals to the minimum `0-norm one [56]. But in
practice, the `1 approximation is often used way beyond these conditions, and
is thus quite heuristic. As a result, we often get a solution which is not exactly
minimizing the original `0-norm.

That said, `1 approximation is found to work practically well for many sparse
coding problems. Yet in certain applications, we intend to control the exact num-
ber of nonzero elements, such as basis selection [169], where `0 approximation is
indispensable. Beyond that, `0-approximation is desirable for performance con-
cerns in many ways. In compressive sensing literature, empirical evidence [26]
suggested that using an iterative reweighted `1 scheme to approximate the `0 solu-
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tion often improved the quality of signal recovery. In image enhancement, it was
shown in [180] that `0 data fidelity was more suitable for reconstructing images
corrupted with impulse noise. For the purpose of image smoothening, the authors
of [173] utilized `0 gradient minimization to globally control how many non-zero
gradients to approximate prominent structures in a structure-sparsity-management
manner. Recent work [159] revealed that `0 sparse subspace clustering can com-
pletely characterize the set of minimal union-of-subspace structure, without addi-
tional separation conditions required by its `1 counterpart.

Network Implementation of `1-Approximation

Figure 3.1: A LISTA network [68] with two time-unfolded stages.

In [68], a feed-forward neural network, as illustrated in Figure 3.1, was pro-
posed to efficiently approximate the `1-based sparse code a of the input signal x;
the sparse code a is obtained by solving (3.3) for a given dictionary D in advance.
The network has a finite number of stages, each of which updates the intermediate
sparse code zk (k = 1, 2) according to

zk+1 = sθ(Wx + Szk), (3.4)

where sθ is an element-wise shrinkage function (u is a vector and ui is its i-th
element, i = 1, 2, ..., p):

[sθ(u)]i = sign(ui)(|ui| − θi)+. (3.5)

The parameterized encoder, named learned ISTA (LISTA), is a natural network
implementation of the iterative shrinkage and thresholding algorithm (ISTA). LISTA
learned all its parameters W, S and θ from training data using a back-propagation
algorithm [93]. In this way, a good approximation of the underlying sparse code
can be obtained after a fixed small number of stages.
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In [146], the authors leveraged a similar idea on fast trainable regressors and
constructed feed-forward network approximations of the learned sparse models.
Such a process-centric view was later extended in [145] to develop a princi-
pled process of learned deterministic fixed-complexity pursuits, in lieu of itera-
tive proximal gradient descent algorithms, for structured sparse and robust low
rank models. Recently, [75] summarized the methodology of the problem-level
and model-based “deep unfolding”, and developed new architectures as inference
algorithms for both Markov random fields and non-negative matrix factorization.

3.2 Deep `0 Encoders for Classification and Clustering

Despite its nonconvex nature, `0 sparse approximation is desirable in many theo-
retical and application cases. We study the `0 sparse approximation problem with
the tool of deep learning, by proposing Deep `0 Encoders. Two typical forms,
the `0 regularized problem and the M -sparse problem, are investigated. Based
on solid iterative algorithms, we model them as feed-forward neural networks,
through introducing novel neurons and pooling functions. Enforcing such struc-
tural priors acts as an effective network regularization. The deep encoders also
enjoy faster inference, larger learning capacity, and better scalability compared
to conventional sparse coding solutions. Furthermore, under task-driven losses,
the models can be conveniently optimized from end to end. Numerical results
demonstrate the impressive performances of the proposed encoders.

3.2.1 Introduction

Sparse signal approximation has gained popularity over the last decade. The
sparse approximation model suggests that a natural signal could be compactly
approximated, by only a few atoms out of a properly given dictionary, where the
weights associated with the dictionary atoms are called the sparse codes. Proven
to be both robust to noise and scalable to high dimensional data, sparse codes are
known as powerful features, and benefit a wide range of signal processing applica-
tions, such as source coding [57], denoising [55], source separation [47], pattern
classification [170], and clustering [36].

We are particularly interested in the `0-based sparse approximation problem,
which is the fundamental formulation of sparse coding [56]. The nonconvex `0
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problem is intractable and often instead attacked by minimizing surrogate mea-
sures, such as the `1-norm, which leads to more tractable computational methods.
However, it has been both theoretically and practically discovered that solving `0

sparse approximation is still preferable in many cases.
In this section, we investigate two typical forms of `0-based sparse approxi-

mation problems: the `0 regularized problem, and the M -sparse problem. Based
on solid iterative algorithms [17], we formulate them as feed-forward neural net-
works [68], called Deep `0 Encoders, through introducing novel neurons and
pooling functions. We study their applications in image classification and cluster-
ing; in both cases the models are optimized in a task-driven, end-to-end manner.
Impressive performances are observed in numerical experiments.

3.2.2 Deep `0 Encoders

Deep `0-Regularized Encoder

To solve the optimization problem in (3.1), an iterative hard-thresholding (IHT)
algorithm was derived in [17]:

ak+1 = hλ0.5(ak + DT(x−Da
k
)), (3.6)

where ak denotes the intermediate result of the k-th iteration, and hθ is an element-
wise hard thresholding operator:

[hλ0.5(u)]i =

{
0 if |ui| < λ0.5

ui if |ui| ≥ λ0.5.
(3.7)

Figure 3.2: The block diagram of solving (3.6).
.
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Figure 3.3: Deep `0-Regularized Encoder, with two time-unfolded stages.

Eqn. (3.6) could be alternatively rewritten as:

ak+1 = hθ(Wx + Sak),

W = DT ,S = I−DTD, θ = λ0.5,
(3.8)

and expressed as the block diagram in Figure 3.2, which outlines a recurrent net-
work form of solving (3.6).

By time-unfolding and truncating Figure 3.2 to a fixed number of K iterations
(K = 2 in this section by default), we obtain a feed-forward network structure in
Figure 3.3, where W, S and θ are shared among both stages, named Deep `0-
Regularized Encoder, Furthermore, W, S and θ are all to be learnt, instead of
being directly constructed from any pre-computed D. Although the equations in
(3.8) do not directly apply any more to solving the Deep `0-Regularized Encoder,
they can usually serve as a high-quality initialization of the latter.

Note that the activation thresholds θ are less straightforward to update. We
rewrite (3.35) as: [hθ(u)]i = θih1(ui/θi). It indicates that the original neuron
with trainable thresholds can be decomposed into two linear scaling layers, plus a
unit-hard-threshold neuron, the latter of which we call Hard thrEsholding Linear
Unit (HELU). The weights of the two scaling layers are diagonal matrices defined
by θ and its element-wise reciprocal, respectively.
Discussion on HELU While being inspired by LISTA, the differentiating point
of Deep `0-Regularized Encoder lies in the HELU neuron. Compared to classical
neuron functions such as logistic, sigmoid, and ReLU [118], as well as the soft
shrinkage and thresholding operation (3.35) in LISTA, HELU does not penalize
large values, yet enforces strong (in theory infinite) penalty over small values. As
such, HELU tends to produce highly sparse solutions.

The neuron form of LISTA (3.35) could be viewed as a double-sided and trans-
lated variant of ReLU, which is continuous and piecewise linear. In contrast,
HELU is a discontinuous function that rarely occurs in existing deep network
neurons. As pointed out by [76], HELU has countably many discontinuities and
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is thus (Borel) measurable, in which case the universal approximation capability
of the network is not compromised. However, experiments remind us that the al-
gorithmic learnability with such discontinuous neurons (using popular first-order
methods) is in question, and the training is in general hard. For computation
concerns, we replace HELU with the following continuous and piecewise linear
function HELUσ, during network training:

[HELUσ(u)]i =


0 if |ui| ≤ 1− σ
(ui−1+σ)

σ
if 1− σ < ui < 1

(ui+1−σ)
σ

if− 1 < ui < σ − 1

ui if |ui| ≥ 1.

(3.9)

Obviously, HELUσ becomes HELU when σ → 0. To approximate HELU, we tend
to choose very small σ, while avoiding putting the training ill-posed. In practice,
we start with a moderate σ (0.2 by default), and divide it by 10 after each epoch.
After several epoches, HELUσ becomes very close to the ideal HELU.

In [136], the authors introduced an ideal hard thresholding function for solving
sparse coding, whose formulation was close to HELU. Note that [136] approxi-
mates the ideal function with a sigmoid function, which has connections with our
HELUσ approximation. In [87], a similar truncated linear ReLU was adopted.

Deep M-Sparse `0 Encoder

Both the `0 regularized problem in (3.1) and Deep `0-Regularized Encoder have
no explicit control on the sparsity level of the solution. We therefore look at the
M -sparse problem in (3.2), and derive the following iterative algorithm [17]:

ak+1 = hM(ak + DT(x−Da
k
)). (3.10)

Eqn. (3.10) resembles (3.6), except that hM is now a non-linear operator retaining
the M coefficients with the top M -largest absolute values. Following the same
methodology as in the previous section, the iterative form could be unfolded and
truncated to the Deep M -sparse Encoder. To deal with the hM operation, we
refer to the popular concepts of pooling and unpooling [181] in deep networks,
and introduce the pairs of maxM pooling and unpooling, in Figure 3.4.
Discussion on maxM pooling/unpooling Pooling is popular in convolutional net-
works to obtain translation-invariant features [89]. It is yet less common in other
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Figure 3.4: Deep M -sparse Encoder, with two time-unfolded stages.

forms of deep networks [72]. The unpooling operation was introduced in [181]
to insert the pooled values back to the appropriate locations of feature maps for
reconstruction purposes.

In our proposed Deep M -sparse Encoder, the pooling and unpooling operation
pair is used to construct a projection from Rm to its subset S : {s ∈ Rm|||s||0 ≤
M}. The maxM pooling and unpooling functions are intuitively defined as:

[pM , idxM ] = maxM .pooling(u)

uM = maxM .unpooling(pM , idxM).
(3.11)

For each input u, the pooled map pM records the top M -largest values (irrespec-
tive of sign), and the switch idxM records their locations. The corresponding
unpooling operation takes the elements in pM and places them in uM at the loca-
tions specified by idxM , the remaining elements being set to zero. The resulting
uM is of the same dimension as u but has exactly no more than M non-zero ele-
ments. In back propagation, each position in idxM is propagated with the entire
error signal.

Theoretical Properties

It is shown in [17] that the iterative algorithms in both (3.6) and (3.10) are guaran-
teed not to increase the cost functions. Under mild conditions, their targeted fixed
points are local minima of the original problems. As the next step after the time
truncation, the deep encoder models are to be solved by the stochastic gradient de-
scent (SGD) algorithm, which converges to stationary points under a few stricter
assumptions than ones satisfied in this section [18].1 However, the entanglement
of the iterative algorithms and the SGD algorithm makes the overall convergence
analysis a serious hardship.

1As a typical case, we use SGD in a setting where it is not guaranteed to converge in theory,
but behaves well in practice.
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One must emphasize that in each step, the back propagation procedure requires
only operations of order O(p) [68]. The training algorithm takes O(Cnp) time
(C is the constant absorbing epochs, stage numbers, etc.). The testing process is
purely feed-forward and is therefore dramatically faster than traditional inference
methods by solving (3.1) or (3.2). SGD is also easy to be parallelized.

Table 3.1: Prediction error (%) comparison on solving the `0-regularized
problem (3.1)

p 128 256 512
Iterative (2 iterations) 17.52 18.73 22.40
Iterative (5 iterations) 8.14 6.75 9.37

Iterative (10 iterations) 3.55 4.33 4.08
Baseline Encoder 8.94 8.76 10.17

Deep `0-Regularized Encoder 0.92 0.91 0.81

3.2.3 Task-Driven Optimization

It is often desirable to jointly optimize the learned sparse code features and the
targeted task so that they mutually reinforce each other. The authors of [80] asso-
ciated label information with each dictionary item by adding discriminable regu-
larization terms to the objective. Recent work [113], [165] developed task-driven
sparse coding via bi-level optimization models, where (`1-based) sparse coding
is formulated as the lower-level constraint while a task-oriented cost function is
minimized as its upper-level objective. The above approaches in sparse coding are
complicated and computationally expensive. It is much more convenient to imple-
ment end-to-end task-driven training in deep architectures, by concatenating the
proposed deep encoders with certain task-driven loss functions.

In this section, we mainly discuss two tasks: classification and clustering, while
being aware of other immediate extensions, such as semi-supervised learning. As-
sumingK classes (or clusters), andω = [ω1, ...,ω

k] as the set of parameters of the
loss function, where ωi corresponds to the j-th class (cluster), j = 1, 2, ..., K. For
the classification case, one natural choice is the well-known softmax loss func-
tion. For the clustering case, we adopt the entropy-minimization loss function in
Section 2.2.3.
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3.2.4 Experiment

Implementation

Two proposed deep `0 encoders are implemented with the CUDA ConvNet pack-
age [89]. We use a constant learning rate of 0.01 with no momentum, and a batch
size of 128. In practice, given that the model is well initialized, the training takes
approximately 1 hour on the MNIST dataset, on a workstation with 12 Intel Xeon
2.67GHz CPUs and 1 GTX680 GPU. It is also observed that the training efficiency
of our model scales approximately linearly with the size of data.

While many neural networks train well with random initializations without
pre-training, given that the training data is sufficient, it has been discovered that
poorly initialized networks can hamper the effectiveness of first-order methods
(e.g., SGD) [153]. For the proposed models, it is however much easier to ini-
tialize the model in the right regime, benefiting from the analytical relationships
between sparse coding and network hyperparameters in (3.8).

Simulation on `0 Sparse Approximation

We first compare the performance of different methods on `0 sparse code approx-
imation. The first 60,000 samples of the MNIST dataset are used for training and
the last 10,000 for testing. Each patch is resized to 16× 16 and then preprocessed
to remove its mean and normalize its variance. The patches with small standard
deviations are discarded. A sparsity coefficient λ = 0.5 is used in (3.1), and the
sparsity level M = 32 is fixed in (3.2). The sparse code dimension (dictionary
size) p is to be varied.

Our prediction task resembles the setup in [68]: first learning a dictionary from
training data, followed by solving sparse approximation (3.3) with respect to the
dictionary, and finally training the network as a regressor from input samples to the
solved sparse codes. The only major difference here lies in that unlike the `1-based
problems, the non-convex `0-based minimization could only reach a (non-unique)
local minimum. To improve stability, we first solve the `1 problems to obtain a
good initialization for `0 problems, and then run the iterative algorithms (3.6) or
(3.10) until convergence. The obtained sparse codes are called “optimal codes”
hereinafter and used in both training and testing evaluation (as “groundtruth”).
One must keep in mind that we are not seeking to produce approximate sparse
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code for all possible input vectors, but only for input vectors drawn from the same

distribution as our training samples.

Table 3.2: Prediction error (%) comparison on solving the M -sparse problem
(3.2)

p 128 256 512
Iterative (2 iterations) 17.23 19.27 19.31
Iterative (5 iterations) 10.84 12.52 12.40

Iterative (10 iterations) 5.67 5.44 5.20
Baseline Encoder 14.04 16.76 12.86

Deep M -Sparse Encoder 2.94 2.87 3.29

Table 3.3: Averaged non-zero support error comparison on solving the M -sparse
problem (3.2)

p 128 256 512
Iterative (2 iterations) 10.8 13.4 13.2
Iterative (5 iterations) 6.1 8.0 8.8

Iterative (10 iterations) 4.6 5.6 5.3
Deep M -Sparse Encoder 2.2 2.7 2.7

We compare the proposed deep `0 encoders with the iterative algorithms under
different number of iterations. In addition, we include a baseline encoder in the
comparison, which is a fully-connected feed-forward network, consisting of three
hidden layers of dimension p with ReLu neurons. The baseline encoder thus has
the same parameter capacity as deep `0 encoders.2 We apply dropout to the base-
line encoders, with the probabilities of retaining the units being 0.9, 0.9, and 0.5.
The proposed encoders do not apply dropout.

The deep `0 encoders and the baseline encoder are first trained, and all are then
evaluated on the testing set. We calculate the total prediction errors, i.e., the nor-
malized squared errors between the optimal codes and the predicted codes, as in
Tables 3.1 and 3.2. For theM -sparse case, we also compare their recovery of non-
zero supports in Table 3.3, by counting the mismatched nonzero element locations
between optimal and predicted codes (averaged on all samples). Immediate con-
clusions from the numerical results are as follows:

2Except for the “diag(θ)” layers, each of which contains only p free parameters.
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Table 3.4: Classification error rate (%) comparison on the MNIST dataset

p 128 256 512
TDSC 0.71 0.55 0.53

Tuned LISTA 0.74 0.62 0.57
Deep `0-Regularized 0.72 0.58 0.52

Deep M -Sparse (M = 10) 0.72 0.57 0.53
Deep M -Sparse (M = 20) 0.69 0.54 0.51
Deep M -Sparse (M = 30) 0.73 0.57 0.52

• The proposed deep encoders have outstanding generalization performances,
thanks to the effective regularization brought by their task-specific architec-
tures, derived from specific formulations (i.e., (3.1) and (3.2)) as priors. The
“general-architecture” baseline encoders, which have the same parameter
complexity, appear to overfit the training set and generalize much worse.

• While the deep encoders only unfold two stages, they outperform their itera-
tive counterparts even when the later ones have passed 10 iterations. Mean-
while, the former enjoy much faster inference as being feed-forward.

• The Deep `0-Regularized Encoder obtains a particularly low prediction er-
ror. It is interpretable that while the iterative algorithm has to work with a
fixed λ, the Deep `0-Regularized Encoder is capable of “fine-tuning” this
hyper-parameter automatically (after diag(θ) is initialized from λ), by ex-
ploring the training data structure.

• The Deep M -Sparse Encoder is able to find the nonzero support with high
accuracy.

Applications on Classification

Since the task-driven models are trained from end to end, no pre-computation of
a is needed. For classification, we evaluate our methods on the MNIST dataset,
and the AVIRIS Indiana Pines hyperspectral image dataset (see [164] for details).
We compare our two proposed deep encoders with two competitive sparse coding-
based methods: 1) task-driven sparse coding (TDSC) in [113], with the original
setting followed and all parameters carefully tuned; 2) a pre-trained LISTA fol-
lowed by supervised tuning with softmax loss. Note that for Deep M -Sparse

51



Encoder, M is not known in advance and has to be tuned. To our surprise, the
fine-tuning of M is likely to improve the performance significantly, which is ana-
lyzed next. The overall error rates are compared in Tables 3.4 and 3.5.

Table 3.5: Classification error rate (%) comparison on the AVIRIS Indiana Pines
dataset

p 128 256 512
TDSC 15.55 15.27 15.21

Tuned LISTA 16.12 16.05 15.97
Deep `0-Regularized 15.20 15.07 15.01

Deep M -Sparse (M = 10) 13.77 13.56 13.52
Deep M -Sparse (M = 20) 14.67 14.23 14.07
Deep M -Sparse (M = 30) 15.14 15.02 15.00

In general, the proposed deep `0 encoders provide superior results to the deep
`1-based method (tuned LISTA). TDSC also generates competitive results, but at
the cost of the high complexity for inference, i.e., solving conventional sparse
coding. It is of particular interest to us that when supplied with specific M values,
the Deep M -Sparse encoder can generate remarkably improved results.3 Espe-
cially in Table 3.5, when M = 10, the error rate is around 1.5% lower than that of
M = 30. Note that in the AVIRIS Indiana Pines dataset, the training data volume
is much smaller than that of MNIST. In that way, we conjecture that it might not
be sufficiently effective to depend the training process fully on data; instead, to
craft a stronger sparsity prior by smaller M could help learn more discriminative
features.4 Such a behavior provides us with an important hint to impose suitable
structural priors to deep networks.

Applications on Clustering

For clustering, we evaluate our methods on the COIL 20 and the CMU PIE dataset
[143]. Two state-of-the-art methods to compare are the jointly optimized sparse
coding and clustering method proposed in [165], as well as the graph-regularized

3To get a good estimate of M , one might first try to perform (unsupervised) sparse coding on
a subset of samples.

4Interestingly, there are a total of 16 classes in the AVIRIS Indiana Pines dataset. When p
= 128, each class has on average 8 “atoms” for class-specific representation. Therefore M =
10 approximately coincides with the sparse representation classification (SRC) principle [164] of
forcing sparse codes to be compactly focused on one class of atoms.
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deep clustering method in [162].5 The overall error rates are compared in Tables
3.6 and 3.7.

Note that the method in [162] incorporated Laplacian regularization as an ad-
ditional prior while the others did not. It is thus no wonder that this method often
performs better than others. Even without any graph information utilized, the pro-
posed deep encoders are able to obtain very close performances, and outperform
[162] in certain cases. On the COIL 20 dataset, the lowest error rate is reached
by the Deep M -Sparse (M = 10) Encoder, when p = 512, followed by the Deep
`0-Regularized Encoder.

Table 3.6: Clustering error rate (%) comparison on the COIL 20 dataset

p 128 256 512
[165] 17.75 17.14 17.15
[162] 14.47 14.17 14.08

Deep `0-Regularized 14.52 14.27 14.06
Deep M -Sparse (M = 10) 14.59 14.25 14.03
Deep M -Sparse (M = 20) 14.84 14.33 14.15
Deep M -Sparse (M = 30) 14.77 14.37 14.12

Table 3.7: Clustering error rate (%) comparison on the CMU PIE dataset

p 128 256 512
[165] 17.50 17.26 17.20
[162] 16.14 15.58 15.09

Deep `0-Regularized 16.08 15.72 15.41
Deep M -Sparse (M = 10) 16.77 16.46 16.02
Deep M -Sparse (M = 20) 16.44 16.23 16.05
Deep M -Sparse (M = 30) 16.46 16.17 16.01

On the CMU PIE dataset, the Deep `0-Regularized Encoder leads to competitive
accuracies with [162], and outperforms all Deep M -Sparse Encoders with notice-
able margins, which is different from other cases. Pervious work discovered that
sparse approximations over CMU PIE had significant errors [177], which is also
verified by us. Therefore, hardcoding exact sparsity could even hamper the model
performance.

5Both papers train their model under both soft-max and max-margin type losses. To ensure fair
comparison, we adopt the former, with the same form of loss function as ours.
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Remark: From those experiments, we gain additional insights in designing deep
architectures:

• If one expects the model to explore the data structure by itself, and provided
that there is sufficient training data, then the Deep `0-Regularized Encoder
(and its peers) might be preferred as all its parameters, including the desired
sparsity, are fully learnable from the data.

• If one has certain correct prior knowledge of the data structure, including but
not limited to the exact sparsity level, one should choose Deep M -Sparse
Encoder, or other models of its type that are designed to maximally enforce
that prior. The methodology could be especially useful when the training
data is less than sufficient.

We hope the above insights could be of reference to many other deep models.

3.2.5 Conclusion

We propose Deep `0 Encoders to solve the `0 sparse approximation problem.
Rooted in solid iterative algorithms, the deep `0 regularized encoder and deep
M -sparse encoder are developed, each designed to solve one typical formulation,
accompanied with the introduction of the novel HELU neuron and maxM pool-
ing/unpooling. When applied to specific tasks of classification and clustering, the
models are optimized in an end-to-end manner. The latest deep learning tools en-
able us to solve them in a highly effective and efficient fashion. They not only
provide us with impressive performances in numerical experiments, but also in-
spire us with important insights into designing deep models.

3.3 Task-Specific Deep Sparse Coding for Clustering

3.3.1 Introduction

Effectiveness and scalability are two major concerns in designing a clustering al-
gorithm under Big Data scenarios [29]. Conventional sparse coding models rely
on iterative approximation algorithms, whose inherently sequential structure as

54



well as the data-dependent complexity and latency often constitute a major bottle-
neck in the computational efficiency [68]. That also results in the difficulty when
one tries to jointly optimize the unsupervised feature learning and the supervised
task-driven steps [113]. What is more, to effectively model and represent datasets
of growing sizes, sparse coding needs to refer to larger dictionaries [96]. Since the
inference complexity of sparse coding increases more than linearly with respect
to the dictionary size [165], the scalability of sparse coding-based clustering work
turns out to be quite limited.

To conquer those limitations, we are motivated to introduce the tool of deep
learning in clustering, to which there has been a lack of attention paid. The ad-
vantages of deep learning are achieved by its large learning capacity, the linear
scalability with the aid of stochastic gradient descent (SGD), and the low infer-
ence complexity [9]. The feed-forward networks could be naturally tuned jointly
with task-driven loss functions. On the other hand, generic deep architectures [89]
largely ignore the problem-specific formulations and prior knowledge. As a result,
one may encounter difficulties in choosing optimal architectures, interpreting their
working mechanisms, and initializing the parameters.

(a)
(b)

Figure 3.5: (a) The proposed pipeline, consisting of the TAGnet network for
feature learning, followed by the clustering-oriented loss functions. The
parameters W,S,θ and ω are all learnt end-to-end from training data. (b) The
block diagram of solving (3.14).

In this section, we demonstrate how to combine the sparse coding-based
pipeline into deep learning models for clustering. The proposed framework
takes advantage of both sparse coding and deep learning. Specifically, the fea-
ture learning layers are inspired by the graph-regularized sparse coding inference
process, via reformulating iterative algorithms [68] into a feed-forward network,
named TAGnet. Those layers are then jointly optimized with the task-specific loss
functions from end to end. Our technical merits are summarized in three aspects:
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• As a deep feed-forward model, the proposed framework provides extremely
efficient inference process and high scalability to large scale data. It allows
to learn more descriptive features than conventional sparse codes.

• We discover that incorporating the expertise of sparse code-based clustering
pipelines [36, 185] improves our performance significantly. Moreover, it
greatly facilitates the model initialization and interpretation.

• We further enforce auxiliary clustering tasks on the hierarchy of features,
we develop DTAGnet and observe further performance boosts on the CMU
MultiPIE dataset [69].

3.3.2 Related Work

Sparse coding for clustering

Assuming data samples X = [x1,x2, · · · ,xn], where xi ∈ Rm×1 and i = 1, 2, · · · , n.
They are encoded into sparse codes A = [a1, a2, · · · , an], where ai ∈ Rp×1

and i = 1, 2, · · · , n, using a learned dictionary D = [d1,d2, · · · ,dp], where
di ∈ Rm×1, i = 1, 2, · · · , p are the learned atoms. The sparse codes are obtained
by solving the following convex optimization (λ is a constant):

A = arg minA
1
2
||X−DA||2F + λ

∑
i ||ai||1, . (3.12)

In [36], the authors suggested that the sparse codes can be used to construct the
similarity graph for spectral clustering [124]. Furthermore, to capture the geomet-
ric structure of local data manifolds, the graph regularized sparse codes are further
suggested in [185, 178] by solving:

A = arg minA
1
2
||X−DA||2F + λ

∑
i ||ai||1 + α

2
Tr(ALAT), (3.13)

where L is the graph Laplacian matrix and can be constructed from a pre-chosen
pairwise similarity (affinity) matrix P. More recently in [165], the authors sug-
gested simultaneously learning feature extraction and discriminative clustering,
by formulating a task-driven sparse coding model [113]. They proved that such
joint methods consistently outperformed non-joint counterparts.
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Deep learning for clustering

In [154], the authors explored the possibility of employing deep learning in graph
clustering. They first learned a nonlinear embedding of the original graph by an
auto encoder (AE), followed by a K-means algorithm on the embedding to obtain
the final clustering result. However, it neither exploits more adapted deep archi-
tectures nor performs any task-specific joint optimization. In [32], a deep belief
network with nonparametric clustering was presented. As a generative graphi-
cal model, DBN provides a faster feature learning, but is less effective than AEs
in terms of learning discriminative features for clustering. In [157], the authors
extended the semi non-negative matrix factorization (SNMF) model to a Deep
SNMF model, whose architecture resembles stacked AEs. Our proposed model is
substantially different from all these previous approaches, due to its unique task-
specific architecture derived from sparse coding domain expertise, as well as the
joint optimization with clustering-oriented loss functions.

3.3.3 Model Formulation

The proposed pipeline consists of two blocks. As depicted in Figure 3.5 (a), it
is trained end-to-end in an unsupervised way. It includes a feed-forward archi-
tecture, termed Task-specific And Graph-regularized Network (TAGnet), to learn
discriminative features, and the clustering-oriented loss function (the same as Sec-
tion 2.2.3).

TAGnet: Task-specific And Graph-regularized Network

Different from generic deep architectures, TAGnet is designed in a way to take
advantage of the successful sparse code-based clustering pipelines [185, 165]. It
aims to learn features that are optimized under clustering criteria, while encoding
graph constraints (3.13) to regularize the target solution. TAGnet is derived from
the following theorem:

Theorem 3.3.1. The optimal sparse code A from (3.13) is the fixed point of

A = h λ
N

[(I− 1
N

DTD)A−A( α
N

L) + 1
N

DTX], (3.14)
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where hθ is an element-wise shrinkage function parameterized by θ:

[hθ(u)]i = sign(ui)(|ui| − θi)+. (3.15)

N is an upper bound on the largest eigenvalue of DTD.

The proof of Theorem 3.4.1 can be completed with similar techniques in [68].
Theorem 3.4.1 outlines an iterative algorithm to solve (3.13). Under quite mild
conditions [7], after A is initialized, one may repeat the shrinkage and threshold-
ing process in (3.14) until convergence. Moreover, the iterative algorithm could
be alternatively expressed as the block diagram in Figure 3.5 (b), where

W = 1
N

DT ,S = I− 1
N

DTD,θ = λ
N
. (3.16)

In particular, we define the new operator “×L”: A→ − α
N

AL, where the input A

is multiplied by the pre-fixed L from the right side and scaled by − α
N

.
By time-unfolding and truncating Figure 3.5 (b) to a fixed number of K itera-

tions (K = 2 by default)6, we obtain the TAGnet form in Figure 3.5 (a). W, S and
θ are all to be learnt jointly from data. S and θ are tied weights for both stages7. It
is important to note that the output A of TAGnet is not necessarily identical to the
predicted sparse codes by solving (3.13). Instead, the goal of TAGnet is to learn
discriminative embedding that is optimal for clustering.

To facilitate training, we further rewrite (3.35) as:

[hθ(u)]i = θi · sign(ui)(|ui|/θi − 1)+ = θih1(ui/θi). (3.17)

Eqn. (3.37) indicates that the original neuron with trainable thresholds can be de-
composed into two linear scaling layers plus a unit-threshold neuron. The weights
of the two scaling layers are diagonal matrices defined by θ and its element-wise
reciprocal, respectively.

A notable component in TAGnet is the ×L branch of each stage. The graph
Laplacian L could be computed in advance. In the feed-forward process, a ×L

branch takes the intermediate Zk (k = 1, 2) as the input, and applies the “×L” op-
erator defined above. The output is aggregated with the output from the learnable
S layer. In the back propagation, L will not be altered. In such a way, the graph

6We test larger K values (3 or 4), but they do not bring noticeable performance improvements.
7Out of curiosity, we have also tried the architecture that treat W, S and θ in both stages as

independent variables. We find that sharing parameters improves the performance.
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regularization is effectively encoded in the TAGnet structure as a prior.
An appealing highlight of (D)TAGnet lies in its very effective and straightfor-

ward initialization strategy. With sufficient data, many latest deep networks train
well with random initializations without pre-training. However, it has been dis-
covered that poor initializations hamper the effectiveness of first-order methods
(e.g., SGD) in certain cases [153]. For (D)TAGnet, it is however much easier to
initialize the model in the right regime. That benefits from the analytical rela-
tionships between sparse coding and network hyperparameters defined in (3.16):
we could initialize deep models from corresponding sparse coding components,
the latter of which is easier to obtain. Such an advantage becomes much more
important when the training data is limited.
Model Complexity The proposed framework can handle large-scale and high-
dimensional data effectively via the stochastic gradient descent (SGD) algorithm.
In each step, the back propagation procedure requires only operations of order
O(p) [68]. The training algorithm takes O(Cnp) time (C is a constant in terms
of the total numbers of epochs, stage numbers, etc.). In addition, SGD is easy to
parallelize and thus could be efficiently trained using GPUs.

Connections to Existing Models

There is a close connection between sparse coding and neural networks. In [68],
a feed-forward neural network, named LISTA, is proposed to efficiently approx-
imate the sparse code a of input signal x, which is obtained by solving (3.12) in
advance. The LISTA network learns the hyperparameters as a general regression
model from training data to their pre-solved sparse codes using back-propagation.

LISTA overlooks the useful geometric information among data points [185],
and therefore could be viewed as a special case of TAGnet in Figure 3.5 when
α = 0 (i.e., removing the ×L branches). Moreover, LISTA aims to approximate
the “optimal” sparse codes pre-obtained from (3.12), and therefore requires the
estimation of D and the tedious pre-computation of A. The authors did not exploit
its potential in supervised and task-specific feature learning.
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3.3.4 A Deeper Look: Hierarchical Clustering by DTAGnet

Deep networks are well known for their capabilities to learn semantically rich
representations by hidden layers [51]. In this section, we investigate how the in-
termediate features Zk (k = 1, 2) in TAGnet (Figure 3.5 (a)) can be interpreted,
and further utilized to improve the model, for specific clustering tasks. Compared
to related non-deep models [165], such a hierarchical clustering property is an-
other unique advantage of being deep.

Our strategy is mainly inspired by the algorithmic framework of deeply su-
pervised nets [94]. As in Figure 3.6, our proposed Deeply-Task-specific And
Graph-regularized Network (DTAGnet) brings in additional deep feedbacks, by
associating a clustering-oriented local auxiliary loss Ck(Zk,ωk) (k = 1, 2) with
each stage. Such an auxiliary loss takes the same form as the overall C(A,ω),
except that the expected cluster number may be different, depending on the aux-
iliary clustering task to be performed. The DTAGnet backpropagates errors not
only from the overall loss layer, but also simultaneously from the auxiliary losses.

While seeking the optimal performance of the target clustering, DTAGnet is
also driven by two auxiliary tasks that are explicitly targeted at clustering specific
attributes. It enforces constraint at each hidden representation for directly making
a good cluster prediction. In addition to the overall loss, the introduction of auxil-
iary losses gives another strong push to obtain discriminative and sensible features
at each individual stage. As discovered in the classification experiments in [94],
the auxiliary loss both acts as feature regularization to reduce generalization er-
rors and results in faster convergence. We also find later that every Zk (k = 1, 2)
is indeed most suited for its targeted task.

In [157], a Deep SNMF model was proposed to learn hidden representations,
that grant themselves an interpretation of clustering according to different at-
tributes. The authors considered the problem of mapping facial images to their
identities. A face image also contains attributes like pose and expression that
help identify the person depicted. In their experiments, the authors found that
by further factorizing this mapping in a way that each factor adds an extra layer
of abstraction, the deep model could automatically learn latent intermediate rep-
resentations that are implied for clustering identity-related attributes. Although
there is a clustering interpretation, those hidden representations are not specifi-
cally optimized in clustering sense. Instead, the entire model is trained with only
the overall reconstruction loss, after which clustering is performed using K-means
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Figure 3.6: The DTAGnet architecture, taking the CMU MultiPIE dataset as an
example. The model is able to simultaneously learn features for pose clustering
(Z1), for expression clustering (Z2), and for identity clustering (A). The first two
attributes are related to and helpful for the last (overall) task. Part of image
sources are referred from [69] and [157].

on learnt features. Consequently, their clustering performance is not satisfactory.
Our study shares the similar observation and motivation with [157], but in a more
task-specific manner by performing the optimizations of auxiliary clustering tasks
jointly with the overall task.

3.3.5 Experiment Results

Datasets and measurements

We evaluate the proposed model on three publicly available datasets:

• MNIST [185] consists of a total number of 70, 000 quasi-binary, handwrit-
ten digit images, with digits 0 to 9. The digits are normalized and centered
in fixed-size images of 28 × 28.

• CMU MultiPIE [69] contains around 750, 000 images of 337 subjects, that
are captured under varied laboratory conditions. A unique property of CMU
MultiPIE lies in that each image comes with labels for the identity, illumina-
tion, pose and expression attributes. That is why CMU MultiPIE is chosen
in [157] to learn multi-attribute features (Figure 3.6) for hierarchical clus-
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tering. In our experiments, we follow [157] and adopt a subset of 13, 230
images of 147 subjects in 5 different poses and 6 different emotions. No-
tably, we do not pre-process the images by using piece-wise affine warping
as utilized by [157] to align these images.

• COIL20 [123] contains 1, 440 32 × 32 gray scale images of 20 objects (72
images per object). The images of each object were taken 5 degrees apart.

Although the section only evaluates the proposed method using image datasets,
the methodology itself is not limited to only image subjects. We apply two widely-
used measures to evaluate the clustering performances: the accuracy and the Nor-
malized Mutual Information (NMI) [185], [36]. We follow the convention of
clustering work [185, 178, 165], and do not distinguish training from testing. We
train our models on all available samples of each dataset, reporting the clustering
performances as our testing results. Results are averaged from 5 independent runs.

Experiment settings

The proposed networks are implemented using the cuda-convnet package [89].
The network takes K = 2 stages by default. We apply a constant learning rate of
0.01 with no momentum to all trainable layers. The batch size is 128. In particular,
to encode graph regularization as a prior, we fix L during model training by setting
its learning rate to be 0. Experiments are run on a workstation with 12 Intel Xeon
2.67GHz CPUs and 1 GTX680 GPU. The training takes approximately 1 hour on
the MNIST dataset. It is also observed that the training efficiency of our model
scales approximately linearly with data.

In our experiments, we set the default value of α to be 5, p to be 128, and λ
to be chosen from [0.1, 1] by cross-validation.8 A dictionary D is first learned
from X by K-SVD [60]. W, S and θ are then initialized based on (3.16). L is
also pre-calculated from P, which is formulated by the Gaussian Kernel: Pij =

exp(− ||xi−xj ||
2
2

δ2 ) (δ is also selected by cross-validation). After obtaining the output
A from the initial (D)TAGnet models, ω (or ωk) could be initialized based on
minimizing (2.22) or (2.27) over A (or Zk).

8The default values of α and p are inferred from the related sparse coding literature [185], and
validated in experiments.
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Comparison experiments and analysis

Benefits of the task-specific deep architecture We denote the proposed model
of TAGnet plus entropy-minimization loss (EML) (2.22) as TAGnet-EML, and
the one plus maximum-margin loss (MML) (2.27) as TAGnet-MML, respectively.
We include the following comparison methods:

• We refer to the initializations of the proposed joint models as their “Non-
Joint” counterparts, denoted as NJ-TAG-EML and NJ-TAG-MML (NJ short
for non-joint), respectively.

• We design a Baseline Encoder (BE), which is a fully-connected feedfor-
ward network, consisting of three hidden layers of dimension p with ReLU
neuron. It is obvious that the BE has the same parameter complexity as
TAGnet.9 The BEs are also tuned by EML or MML in the same way, de-
noted as BE-EML or BE-MML, respectively. We intend to verify our im-
portant argument, that the proposed model benefits from the task-specific

TAGnet architecture, rather than just the large learning capacity of generic

deep models.

• We compare the proposed models with their closest “shallow” competitors,
i.e., the joint optimization methods of graph-regularized sparse coding and
discriminative clustering in [165]. We re-implement their work using both
(2.22) or (2.27) losses, denoted as SC-EML and SC-MML (SC short for
sparse coding). Since in [165] the authors already revealed SC-MML out-
performs the classical methods such as MMC and `1 graph methods, we do
not compare with them again.

• We also include Deep SNMF [157] as a state-of-the-art deep learning-based
clustering work. We mainly compare our results with their reported perfor-
mances on CMU MultiPIE.10

As revealed by the full comparison results in Table 3.8, the proposed task-
specific deep architectures outperform others by a noticeable margin. The un-
derlying domain expertise guides the data-driven training in a more principled
way. In contrast, the “general-architecture” baseline encoders (BE-EML and BE-
MML) appear to produce much worse (even worst) results. Furthermore, it is evi-
dent that the proposed end-to-end optimized models outperform their “non-joint”

9Except for the “θ” layers, each of which contains only p free parameters and is thus ignored
10With various component numbers tested in [157], we choose their best cases (60 components).
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Figure 3.7: The accuracy and NMI plots of TAGnet-EML/TAGnet-MML on
MNIST, starting from the initialization, and tested every 100 iterations. The
accuracy and NMI of SC-EML/SC-MML are also plotted as baselines.

Table 3.8: Accuracy and NMI performance comparisons on all three datasets

TAGnet TAGnet NJ-TAG NJ-TAG BE BE SC SC Deep
-EML -MML -EML -MML -EML -MML -EML -MML SNMF

MNIST Acc 0.6704 0.6922 0.6472 0.5052 0.5401 0.6521 0.6550 0.6784 /
NMI 0.6261 0.6511 0.5624 0.6067 0.5002 0.5011 0.6150 0.6451 /

CMU Acc 0.2176 0.2347 0.1727 0.1861 0.1204 0.1451 0.2002 0.2090 0.17
MultiPIE NMI 0.4338 0.4555 0.3167 0.3284 0.2672 0.2821 0.3337 0.3521 0.36

COIL20 Acc 0.8553 0.8991 0.7432 0.7882 0.7441 0.7645 0.8225 0.8658 /
NMI 0.9090 0.9277 0.8707 0.8814 0.8028 0.8321 0.8850 0.9127 /

counterparts. For example, on the MNIST dataset, TAGnet-MML surpasses NJ-
TAG-MML by around 4% in accuracy and 5% in NMI.

By comparing the TAGnet-EML/TAGnet-MML with SC-EML/SC-MML, we
draw a promising conclusion: adopting a more parameterized deep architecture
allows a larger feature learning capacity compared to conventional sparse coding.
Although similar points are well made in many other fields [89], we are interested
in a closer look between the two. Figure 3.7 plots the clustering accuracy and
NMI curves of TAGnet-EML/TAGnet-MML on the MNIST dataset, along with
iteration numbers. Each model is well initialized at the very beginning, and the
clustering accuracy and NMI are computed every 100 iterations. At first, the clus-
tering performances of deep models are even slightly worse than sparse-coding
methods, mainly since the initialization of TAGnet hinges on a truncated approx-
imation of graph-regularized sparse coding. After a small number of iterations,
the performance of the deep models surpasses sparse coding ones, and continues
rising monotonically until reaching a higher plateau.
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Effects of graph regularization In (3.13), the graph regularization term im-
poses stronger smoothness constraints on the sparse codes with a larger α. It
also happens to the TAGnet. We investigate how the clustering performances of
TAGnet-EML/TAGnet-MML are influenced by various α values. From Figure
3.8, we observe the identical general tendency on all three datasets. While α
increases, the accuracy/NMI result will first rise then decrease, with the peak ap-
pearing between α ∈ [5, 10]. As an interpretation, the local manifold information
is not sufficiently encoded when α is too small (α = 0 will completely disable
the ×L branch of TAGnet, and reduces it to the LISTA network [68] fine-tuned
by the losses). On the other hand, when α is large, the sparse codes are “over-
smoothened” with a reduced discriminative ability. Note that similar phenomena
are also reported in other relevant literature, e. g., [185, 165].
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Figure 3.8: The clustering accuracy and NMI plots (x-axis logarithm scale) of
TAGnet-EML/TAGnet-MML versus the parameter choices of α, on: (a) (b)
MNIST; (c) (d) CMU MultiPIE; (e) (f) COIL20.

Furthermore, comparing among Figure 3.8 (a) - (f), it is noteworthy to observe
how graph regularization behaves differently on three of them. We notice that the
COIL20 dataset is the one that is the most sensitive to the choice of α. Increasing
α from 0.01 to 50 leads to an improvement of more than 10%, in terms of both
accuracy and NMI. It verifies the significance of graph regularization when train-
ing samples are limited [178]. On the MNIST dataset, both models achieve a gain
of up to 6% in accuracy and 5% in NMI, by tuning α from 0.01 to 10. However,
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unlike COIL20 that almost always favors larger α, the model performance on the
MNIST dataset tends to be not only saturated, but even significantly hampered
when α continues rising to 50. The CMU MultiPIE dataset witnesses moderate
improvements of around 2% in both measurements. It is not as sensitive to α as
the other two. Potentially, it might be due to the complex variability in original
images that makes the graph W unreliable for estimating the underlying mani-
fold geometry. We suspect that more sophisticated graphs may help alleviate the
problem, and will explore it in the future.

Scalability and robustness On the MNIST dataset, we re-conduct the cluster-
ing experiments with the cluster number Nc ranging from 2 to 10, using TAGnet-
EML/TAGnet-MML. Figure 3.9 shows that the clustering accuracy and NMI change
by varying the number of clusters. The clustering performance transits smoothly
and robustly when the task scale changes.
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Figure 3.9: The clustering accuracy and NMI plots of TAGnet-EML /
TAGnet-EML versus the cluster number Nc ranging from 2 to 10, on MNIST.

To examine the proposed models’ robustness to noise, we add various Gaussian
noise, whose standard deviation s ranges from 0 (noiseless) to 0.3, to re-train our
MNIST model. Figure 3.10 indicates that both TAGnet-EML and TAGnet-MML
have certain robustness to noise. When s is less than 0.1, there is even little visible
performance degradation. While TAGnet-MML constantly outperforms TAGnet-
EML in all experiments (as MMC is known to be highly discriminative [174]), it
is interesting to observe in Figure 3.10 that the latter one is slightly more robust
to noise than the former. It is perhaps owing to the probability-driven loss form
(2.22) of EML that allows for more flexibility.
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Figure 3.10: The clustering accuracy and NMI plots of TAGnet-EML /
TAGnet-MML versus the noise level s, on MNIST.

Hierarchical clustering on CMU MultiPIE

As observed, CMU MultiPIE is very challenging for the basic identity clustering
task. However, it comes with several other attributes: pose, expression, and illu-
mination, which could be of assistance in our proposed DTAGnet framework. In
this part, we apply the similar setting of [157] on the same CMU MultiPIE subset,
by setting pose clustering as the Stage I auxiliary task, and expression clustering
as the Stage II auxiliary task.11 In that way, we target C1(Z1,ω1) at 5 clusters,
C2(Z2,ω2) at 6 clusters, and finally C(A,ω) as 147 clusters.

The training of DTAGnet-EML/DTAGnet-MML follows the same aforemen-
tioned process except for considering extra back-propagated gradients from task
Ck(Zk,ωk) in Stage k (k = 1, 2). Then, we test each Ck(Zk,ωk) separately on
their targeted task. In DTAGnet, each auxiliary task is also jointly optimized
with its intermediate feature Zk, which differentiates our methodology substan-
tially from [157]. It is thus no surprise to see in Table 3.9 that each auxiliary
task achieves much better performance than [157].12 Most notably, the perfor-
mances of the overall identity clustering task witness a very impressive boost of
around 7% in accuracy. We also test DTAGnet-EML/DTAGnet-MML with only
C1(Z1,ω1) or C2(Z2,ω2) kept. Experiments verify that by adding auxiliary tasks
gradually, the overall task keeps being benefited. Those auxiliary tasks, when
enforced together, can also reinforce each other mutually.

11In fact, although claimed to be applicable to multiple attributes, [157] only examined the first
level features for pose clustering without considering expressions, since it relied on a warping
technique to pre-process images, that gets rid of most expression variability.

12In [157] Table. 2, it reports that the best accuracy of pose clustering task falls around 28%,
using the most suited layer features.
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Table 3.9: Effects of incorporating auxiliary clustering tasks in DTAGnet-EML /
DTAGnet-MML (P: Pose; E: Expression; I: Identity)

Method
Stage I Stage II Overall

Task Acc Task Acc Task Acc

DTAGnet

/ / / / I 0.2176
P 0.5067 / / I 0.2303

-EML
/ / E 0.3676 I 0.2507
P 0.5407 E 0.4027 I 0.2833

DTAGnet

/ / / / I 0.2347
P 0.5251 / / I 0.2635

-MML
/ / E 0.3988 I 0.2858
P 0.5538 E 0.4231 I 0.3021

One might ask: Which one matters more in the performance boost, the
deeply task-specific architecture that brings extra discriminative feature learning,
or the proper design of auxiliary tasks that capture the intrinsic data structure
characterized by attributes?

Table 3.10: Effects of varying target cluster numbers of auxiliary tasks in
DTAGnet-EML / DTAGnet-MML

Method
#clusters #clusters Overall
in Stage I in Stage II Accuracy

DTAGnet

4 4 0.2827
8 8 0.2813

-EML
12 12 0.2802
20 20 0.2757

DTAGnet

4 4 0.3030
8 8 0.3006

-MML
12 12 0.2927
20 20 0.2805

To answer this important question, we vary the target cluster number in either
C1(Z1,ω1) or C2(Z2,ω2), and re-conduct the experiments. Table 3.10 reveals
that more auxiliary tasks, even those without any straightforward task-specific in-
terpretation (e.g., partitioning the Multi-PIE subset into 4, 8, 12 or 20 clusters
hardly makes semantic sense), may still help gain better performances. It is com-
prehensible that they simply promote more discriminative feature learning in a
low-to-high, coarse-to-fine scheme. In fact, it is a complementary observation
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to the conclusion found in classification [94]. On the other hand, at least in this
specific case, while the target cluster numbers of auxiliary tasks get closer to the
ground-truth (5 and 6 here), the models seem to achieve the best performances.
We conjecture that when properly “matched”, every hidden representation in each
layer is in fact most suited for clustering the attributes corresponding to the layer
of interest. The whole model resembles the problem of sharing low-level feature
filters among several relevant high-level tasks in convolutional networks [65], but
in a distinct context.

We hence conclude that the deeply-supervised fashion proves to be helpful for
the deep clustering models, even when there are no explicit attributes for con-
structing a practically meaningful hierarchical clustering problem. However, it is
preferable to exploit those attributes when available, as they lead to not only supe-
rior performance but more clearly interpretable models. The learned intermediate
features can be potentially utilized for multi-task learning [160].

3.3.6 Conclusion

In this section, we present a deep learning-based clustering framework. Trained
from end to end, it features a task-specific deep architecture inspired by the sparse
coding domain expertise, which is then optimized under clustering-oriented losses.
Such a well-designed architecture leads to more effective initialization and train-
ing, and significantly outperforms generic architectures of the same parameter
complexity. The model could be further interpreted and enhanced by introduc-
ing auxiliary clustering losses to the intermediate features. Extensive experiments
verify the effectiveness and robustness of the proposed models.

3.4 Deep `∞ Encoder for Hashing

We investigate the `∞-constrained representation which demonstrates robustness
to quantization errors, utilizing the tool of deep learning. Based on the Alternating
Direction Method of Multipliers (ADMM), we formulate the original convex min-
imization problem as a feed-forward neural network, named Deep `∞ Encoder, by
introducing the novel Bounded Linear Unit (BLU) neuron and modeling the La-
grange multipliers as network biases. Such a structural prior acts as an effective
network regularization, and facilitates the model initialization. We then inves-
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tigate the effective use of the proposed model in the application of hashing, by
coupling the proposed encoders under a supervised pairwise loss, to develop a
Deep Siamese `∞ Network, which can be optimized from end to end. Extensive
experiments demonstrate the impressive performances of the proposed model. We
also provide an in-depth analysis of its behaviors against the competitors.

3.4.1 Introduction

Problem Definition and Background

While `0 and `1 regularizations have been well-known and successfully applied in
sparse signal approximations, it has been less explored to utilize the `∞ norm to
regularize signal representations. In this section, we are particularly interested in
the following `∞-constrained least squares problem:

minx ||Dx− y||22 s.t. ||x||∞ ≤ λ, (3.18)

where y ∈ Rn×1 denotes the input signal, D ∈ Rn×N the (overcomplete) basis
(often called frame or dictionary) with N < n, and x ∈ RN×1 the learned repre-
sentation. Further, the maximum absolute magnitude of x is bounded by a positive
constant λ, so that each entry of x has the smallest dynamic range [112]. As a re-
sult, the model (3.18) tends to spread the information of y approximately evenly
among the coefficients of x. Thus, x is called “democratic” [151] or “anti-sparse”
[63], as all of its entries are of approximately the same importance.

In practice, x usually has most entries reaching the same absolute maximum
magnitude [151], therefore resembling to an antipodal signal in anN -dimensional
Hamming space. Furthermore, the solution x to (3.18) withstands errors in a very
powerful way: the representation error gets bounded by the average, rather than
the sum, of the errors in the coefficients. These errors may be of arbitrary na-
ture, including distortion (e.g., quantization) and losses (e.g., transmission fail-
ure). This property was quantitatively established in Section II.C of [112]:

Theorem 3.4.1. Assume ||x||2 < 1 without loss of generality, and each coeffi-

cient of x is quantized separately by performing a uniform scalar quantization

of the dynamic range [−λ, λ] with L levels. The overall quantization error of x

from (3.18) is bounded by λ
√
N
L

. In comparison, a least squares solution xLS , by
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minimizing ||DxLS − y||22 without any constraint, would only give the bound
√
n
L

.

In the case of N << n, the above will yield great robustness for the solution
to (3.18) with respect to noise, in particular quantization errors. Also note that
its error bound will not grow with the input dimensionality n, a highly desirable
stability property for high-dimensional data. Therefore, (3.18) appears to be fa-
vorable for the applications such as vector quantization, hashing and approximate
nearest neighbor search.

In this section, we investigate (3.18) in the context of deep learning. Based on
the Alternating Direction Methods of Multipliers (ADMM) algorithm, we formu-
late (3.18) as a feed-forward neural network [68], called Deep `∞ Encoder, by
introducing the novel Bounded Linear Unit (BLU) neuron and modeling the La-
grange multipliers as network biases. The major technical merit is how a specific
optimization model (3.18) could be translated to designing a task-specific deep
model, which displays the desired quantization-robust property. We then study its
application in hashing, by developing a Deep Siamese `∞ Network that couples
the proposed encoders under a supervised pairwise loss, which could be optimized
from end to end. Impressive performances are observed in our experiments.

Related Work

Similar to the case of `0/`1 sparse approximation problems, solving (3.18) and
its variants (e.g., [151]) relies on iterative solutions. [149] proposed an active
set strategy similar to that of [92]. In [2], the authors investigated a primal-dual
path-following interior-point method. Albeit effective, the iterative approxima-
tion algorithms suffer from their inherently sequential structures, as well as the
data-dependent complexity and latency, which often constitute a major bottleneck
in the computational efficiency. In addition, the joint optimization of the (unsu-
pervised) feature learning and the supervised steps has to rely on solving complex
bi-level optimization problems [165]. Further, to effectively represent datasets of
growing sizes, a larger dictionary D is usually needed. Since the inference com-
plexity of those iterative algorithms increases more than linearly with respect to
the dictionary size [11], their scalability turns out to be limited. Last but not least,
while the hyperparameter λ sometimes has physical interpretations, e.g., for sig-
nal quantization and compression, it remains unclear how to be set or adjusted for
many application cases.
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3.4.2 An ADMM Algorithm

ADMM has been popular for its remarkable effectiveness in minimizing objec-
tives with linearly separable structures [11]. We first introduce an auxiliary vari-
able z ∈ RN×1, and rewrite (3.18) as:

minx,z
1
2
||Dx− y||22 s.t. ||z||∞ ≤ λ, z − x = 0. (3.19)

The augmented Lagrangian function of (3.19) is:

1
2
||Dx− y||22 + pT (z − x) + β

2
||z − x||22 + Φλ(z). (3.20)

Here p ∈ RN×1 is the Lagrange multiplier attached to the equality constraint, β is
a positive constant (with a default value 0.6), and Φλ(z) is the indicator function
which goes to infinity when ||z||∞ > λ and 0 otherwise. ADMM minimizes
(3.20) with respect to x and z in an alternating direction manner, and updates p
accordingly. It guarantees global convergence to the optimal solution to (3.18).
Starting from any initialization points of x, z, and p, ADMM iteratively solves (t
= 0, 1, 2... denotes the iteration number):

x update: minxt+1

1
2
||Dx− y||22 − pTt x+ β

2
||zt − x||22, (3.21)

z update: minzt+1

β
2
||z − (xt+1 − pt

β
)||22 + Φλ(z), (3.22)

p update: pt+1 = pt + β(zt+1 − xt+1). (3.23)

Furthermore, both (3.21) and (3.22) enjoy closed-form solutions:

xt+1 = (DTD + βI)−1(DTy + βzt + pt), (3.24)

zt+1 = min(max(xt+1 − pt
β
,−λ), λ). (3.25)

The above algorithm could be categorized to the primal-dual scheme. However,
discussing the ADMM algorithm in more detail is beyond the focus of this section.
Instead, the purpose of deriving (3.19)-(3.25) is to prepare us for the design of the
task-specific deep architecture, as presented below.
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3.4.3 Deep `∞ Encoder

We first substitute (3.24) into (3.25), in order to derive an update form explicitly
dependent on only z and p:

zt+1 = Bλ((D
TD + βI)−1(DTy + βzt + pt)− pt

β
), (3.26)

where Bλ is defined as a box-constrained element-wise operator (u denotes a vec-
tor and ui is its i-th element):

[Bλ(u)]i = min(max(ui,−λ), λ). (3.27)

W
y

λ
z+

S, bt

Figure 3.11: The block diagram of solving (3.18).
.
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diag(λ)

diag(1/λ)

(Linear Layer) (Linear Layer)

(BLU)

z2

diag(λ)
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(BLU)

diag(λ)

diag(1/λ)
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Figure 3.12: Deep `∞ Encoder, with two time-unfolded stages.

(a) tanh (b) ReLU (c) SHeLU (d) HeLU (e) BLU

Figure 3.13: A comparison among existing neurons and BLU.
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Eqn. (3.26) could be alternatively rewritten as:

zt+1 = Bλ(Wy + Szt + bt), where:
W = (DTD + βI)−1DT ,S = β(DTD + βI)−1,

bt = [(DTD + βI)−1 − 1
β
I]pt,

(3.28)

and expressed as the block diagram in Figure 3.11, which outlines a recurrent
structure of solving (3.18). In (3.28), while W and S are pre-computed hyperpa-
rameters shared across iterations, bt remains a variable dependent on pt, and has to
be updated throughout iterations too (bt’s update block is omitted in Figure 3.11).

By time-unfolding and truncating Figure 3.11 to a fixed number of K iterations
(K = 2 by default), we obtain a feed-forward network structure in Figure 3.12,
named Deep `∞ Encoder. Since the threshold λ is less straightforward to update,
we repeat the same trick in [163] to rewrite (3.32) as: [Bλ(u)]i = λiB1(ui/λi).
The original operator is thus decomposed into two linear diagonal scaling layers,
plus a unit-threshold neuron, the latter of which is called a Bounded Linear Unit
(BLU) by us. All the hyperparameters W, Sk and bk (k = 1, 2), as well as λ, are all
to be learnt from data by back-propogation. Although the equations in (3.28) do
not directly apply to solving the deep `∞ encoder, they can serve as high-quality
initializations.

It is crucial to notice the modeling of the Lagrange multipliers pt as the biases,
and to incorporate its updates into network learning. That provides important
clues on how to relate deep networks to a larger class of optimization models,
whose solutions rely on dual domain methods.
Comparing BLU with existing neurons As shown in Figure 3.13 (e), BLU sup-
presses large entries while not penalizing small ones, resulting in dense, nearly
antipodal representations. A first look at BLU easily reminds the tanh neuron
(Figure 3.13 (a)). In fact, with its output range [−1, 1] and a slope of 1 at the ori-
gin, tanh could be viewed as a smoothened differentiable approximation of BLU.

We further compare BLU with other popular and recently proposed neurons:
Rectifier Linear Unit (ReLU) [89], Soft-tHresholding Linear Unit (SHeLU) [162],
and Hard thrEsholding Linear Unit (HELU) [163], as depicted in Figure 3.13
(b)-(d), respectively. Contrary to BLU and tanh, they all introduce sparsity in
the outputs, and thus prove successful and outperform tanh in classification and
recognition tasks. Interestingly, HELU seems exactly the rival against BLU, as it
does not penalize large entries but suppresses small ones down to zero.
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3.4.4 Deep `∞ Siamese Network for Hashing

Rather than solving (3.18) first and then training the encoder as general regression,
as [68] did, we concatenate encoder(s) with a task-driven loss, and optimize the
pipeline from end to end. In this section, we focus on discussing its application
in hashing, although the proposed model is not limited to one specific application.
Background With the ever-growing large-scale image data on the Web, much at-
tention has been devoted to nearest neighbor search via hashing methods [64]. For
big data applications, compact bitwise representations improve the efficiency in
both storage and search speed. The state-of-the-art approach, learning-based hash-
ing, learns similarity-preserving hash functions to encode input data into binary
codes. Furthermore, while earlier methods, such as linear search hashing (LSH)
[64], iterative quantization (ITQ) [67] and spectral hashing (SH) [168], do not re-
fer to any supervised information, it has been lately discovered that involving the
data similarities/dissimilarities in training benefits the performance [90, 104].
Prior Work Traditional hashing pipelines first represent each input image as a
(hand-crafted) visual descriptor, followed by separate projection and quantization
steps to encode it into a binary code. [116] first applied the siamese network [73]
architecture to hashing, which fed two input patterns into two parameter-sharing
“encoder” columns and minimized a pairwise-similarity/dissimilarity loss func-
tion between their outputs, using pairwise labels. The authors further enforced the
sparsity prior on the hash codes in [115] by substituting a pair of LISTA-type en-
coders [68] for the pair of generic feed-forward encoders in [116, 172, 100], and
utilized tailored convolution networks with the aid of pairwise labels. [91] further
introduced a triplet loss with a divide-and-encode strategy applied to reduce the
hash code redundancy. Note that for the final training step of quantization, [115]
relied on an extra hidden layer of tanh neurons to approximate binary codes, while
[91] exploited a piece-wise linear and discontinuous threshold function.
Our Approach In view of its robustness to quantization noise, as well as BLU’s
property as a natural binarization approximation, we construct a siamese network
as in [116], and adopt a pair of parameter-sharing deep `∞ encoders as the two
columns. The resulting architecture, named the Deep `∞ Siamese Network, is
illustrated in Figure 3.14. Assume y and y+ make a similar pair while y and
y− make a dissimilar pair, and further denote x(y) the output representation by
inputting y. The two coupled encoders are then optimized under the following
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y x(y)

y+ /  y-

x(y+) / x(y-)

Lp

Deep l∞ Encoder

Parameter Sharing

Deep l∞ Encoder

Figure 3.14: Deep `∞ Siamese Network, by coupling two parameter-sharing
encoders, followed by a pairwise loss (3.29).

pairwise loss (the constant m represents the margin between dissimilar pairs):

Lp := 1
2
||x(y)− x(y+)||2 − 1

2
(max(0,m− ||x(y)− x(y−)||))2. (3.29)

The representation is learned to make similar pairs as close as possible and dis-
similar pairs at least at distancem. In this section, we follow [116] to use a default
m = 5 for all experiments.

Once a deep `∞ siamese network is learned, we apply its encoder part (i.e., a
deep `∞ encoder) to a new input. The computation is extremely efficient, involv-
ing only a few matrix multiplications and element-wise thresholding operations,
with a total complexity of O(nN + 2N2). One can obtain a N -bit binary code by
simply quantizing the output.

3.4.5 Experiments in Image Hashing

Implementation The proposed networks are implemented with the CUDA Con-
vNet package [89]. We use a constant learning rate of 0.01 with no momentum,
and a batch size of 128. Different from prior findings such as in [163, 162], we
discover that untying the values of S1, b1 and S2, b2 boosts the performance more
than sharing them. It is not only because that more free parameters enable a larger
learning capacity, but also due to the important fact that pt (and thus bk) is in
essence not shared across iterations, as in (3.28) and Figure 3.15.

While many neural networks are trained well with random initializations, some-
times poor initializations can still hamper the effectiveness of first-order methods
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[153]. On the other hand, it is much easier to initialize our proposed models in
the right regime. We first estimate the dictionary D using the standard K-SVD
algorithm [3], and then inexactly solve (3.18) for up to K (K = 2) iterations, via
the ADMM algorithm, with the values of Lagrange multiplier pt recorded for each
iteration. Benefiting from the analytical correspondence relationships in (3.28), it
is then straightforward to obtain high-quality initializations for W, Sk and bk (k =
1, 2). As a result, we could achieve a steadily decreasing curve of training errors,
without performing common tricks such as annealing the learning rate, which are
found to be indispensable if random initialization is applied.
Datasets The CIFAR10 dataset [88] contains 60K labeled images of 10 differ-
ent classes. The images are represented using 384-dimensional GIST descriptors
[125]. Following the classical setting in [115], we used a training set of 200 im-
ages for each class, and a disjoint query set of 100 images per class. The remaining
59K images are treated as database.

NUS-WIDE [38] is a dataset containing 270K annotated images from Flickr.
Every images is associated with one or more of the different 81 concepts, and
is described using a 500-dimensional bag-of-features. In training and evaluation,
we followed the protocol of [105]: two images were considered as neighbors
if they share at least one common concept (only 21 most frequent concepts are
considered). We use 100K pairs of images for training, and a query set of 100
images per concept in testing.
Comparison Methods We compare the proposed deep `∞ siamese network to six
state-of-the-art hashing methods:

• four representative “shallow” hashing methods: kernelized supervised hash-
ing (KSH) [104], anchor graph hashing (AGH) [105] (we compare with its
two alternative forms: AGH1 and AGH2; see the original paper), parameter-
sensitive hashing (PSH) [139], and LDA Hash (LH) [150] 13.

• two latest “deep” hashing methods: neural-network hashing (NNH) [116],
and sparse neural-network hashing (SNNH) [115].

Comparing the two “deep” competitors to the deep `∞ siamese network, the only
difference among the three is the type of encoder adopted in each’s twin columns,
as listed in Table 3.11. We re-implement the encoder parts of NNH and SNNH,

13Most of the results are collected from the comparison experiments in [115], under the same
settings.
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(a) NNH representation (b) NNH binary hashing code

(c) SNNH representation (d) SNNH binary hashing code

(e) Deep `∞ representation (f) Deep `∞ binary hashing code

Figure 3.15: The learned representations and binary hashing codes of one test
image from CIFAR10, through: (a) (b) NNH; (c) (d) SNNH; (e) (f) proposed.
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with three hidden layers (i.e., two unfolded stages for LISTA), so that all three
deep hashing models have the same depth.14 Recall that the input y ∈ Rn and
the hash code x ∈ RN , we immediately see from (3.28) that W ∈ Rn×N , Sk ∈
RN×N , and bk ∈ RN . We carefully ensure that both NNHash and SparseHash
have all their weight layers of the same dimensionality with ours,15 for a fair
comparison.

Table 3.11: Comparison of NNH, SNNH, and the proposed deep `∞ siamese
network.

encoder neuron structural prior
type type on hashing codes

NNH generic tanh /
SNNH LISTA SHeLU sparse

Proposed deep `∞ BLU
nearly antipodal

& quantization-robust

Table 3.12: Performance (%) of different hashing methods on the CIFAR10
dataset, with different code lengths N .

Hamming radius ≤ 2 Hamming radius = 0
Method mAP Prec. Recall F1 Prec. Recall F1

N

KSH 48 31.10 18.22 0.86 1.64 5.39 5.6×10−2 0.11
64 32.49 10.86 0.13 0.26 2.49 9.6×10−3 1.9×10−2

AGH1 48 14.55 15.95 2.8×10−2 5.6×10−2 4.88 2.2×10−3 4.4×10−3

64 14.22 6.50 4.1×10−3 8.1×10−3 3.06 1.2×10−3 2.4×10−3

AGH2 48 15.34 17.43 7.1×10−2 3.6×10−2 5.44 3.5×10−3 6.9×10−3

64 14.99 7.63 7.2×10−3 1.4×10−2 3.61 1.4×10−3 2.7×10−3

PSH 48 15.78 9.92 6.6×10−3 1.3×10−2 0.30 5.1×10−5 1.0×10−4

64 17.18 1.52 3.0×10−4 6.1×10−4 1.0×10−3 1.69×10−5 3.3×10−5

LH 48 13.13 3.0×10−3 1.0×10−4 5.1×10−5 1.0×10−3 1.7×10−5 3.4×10−5

64 13.07 1.0×10−3 1.7×10−5 3.3×10−5 0.00 0.00 0.00

NNH 48 31.21 34.87 1.81 3.44 10.02 9.4×10−2 0.19
64 35.24 23.23 0.29 0.57 5.89 1.4×10−2 2.8×10−2

SNNH 48 26.67 32.03 12.10 17.56 19.95 0.96 1.83
64 27.25 30.01 36.68 33.01 30.25 9.8 14.90

Proposed 48 31.48 36.89 12.47 18.41 24.82 0.94 1.82
64 36.76 38.67 30.28 33.96 33.30 8.9 14.05

14The performance is thus better than reported in their original papers using two hidden layers,
although with extra complexity.

15Both the deep `∞ encoder and the LISTA network will introduce the diagonal layers, while
the generic feed-forward networks will not. Besides, neither LISTA nor generic feed-forward
networks contain layer-wise biases. Yet since either a diagonal layer or a bias contains only N
free parameters, the total amount is negligible.
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Table 3.13: Performance (%) of different hashing methods on the NUS-WIDE
dataset, with different code lengths N .

Hamming radius ≤ 2 Hamming radius = 0
Method mAP@10 MP@5K Prec. Recall F1 Prec. Recall F1

N

KSH 64 72.85 42.74 83.80 6.1×10−3 1.2×10−2 84.21 1.7×10−3 3.3×10−3

256 73.73 45.35 84.24 1.4×10−3 2.9×10−3 84.24 1.4×10−3 2.9×10−3

AGH1 64 69.48 47.28 69.43 0.11 0.22 73.35 3.9×10−2 7.9×10−2

256 73.86 46.68 75.90 1.5×10−2 2.9×10−2 81.64 3.6×10−3 7.1×10−3

AGH2 64 68.90 47.27 68.73 0.14 0.28 72.82 5.2×10−2 0.10
256 73.00 47.65 74.90 5.3×10−2 0.11 80.45 1.1×10−2 2.2×10−2

PSH 64 72.17 44.79 60.06 0.12 0.24 81.73 1.1×10−2 2.2×10−2

256 73.52 47.13 84.18 1.8×10−3 3.5×10−3 84.24 1.5×10−3 2.9×10−3

LH 64 71.33 41.69 84.26 1.4×10−3 2.9×10−3 84.24 1.4×10−3 2.9×10−3

256 70.73 39.02 84.24 1.4×10−3 2.9×10−3 84.24 1.4×10−3 2.9×10−3

NNH 64 76.39 59.76 75.51 1.59 3.11 81.24 0.10 0.20
256 78.31 61.21 83.46 5.8×10−2 0.11 83.94 4.9×10−3 9.8×10−3

SNNH 64 74.87 56.82 72.32 1.99 3.87 81.98 0.37 0.73
256 74.73 59.37 80.98 0.10 0.19 82.85 0.98 1.94

Proposed 64 79.89 63.04 79.95 1.72 3.38 86.23 0.30 0.60
256 80.02 65.62 84.63 7.2×10−2 0.15 89.49 0.57 1.13

We adopt the following classical criteria for evaluation: 1) precision and recall

(PR) for different Hamming radii, and the F1 score as their harmonic average; 2)
mean average precision (MAP) [119]. Besides, for NUS-WIDE, as computing
mAP is slow over this large dataset, we follow the convention of [115] to com-
pute the mean precision (MP) of top-5K returned neighbors (MP@5K), as well as
report mAP of top-10 results (mAP@10).

We have not compared with convolutional network-based hashing methods [172,
100, 91], since it is difficult to ensure their models to have the same parameter ca-
pacity as our fully-connected model in controlled experiments. We also do not
include triplet loss-based methods, e.g., [91], into comparison because they will
require three parallel encoder columns.
Results and Analysis The performances of different methods on two datasets are
compared in Tables 3.12 and 3.13. Our proposed method ranks top in almost all
cases, in terms of mAP/MP and precision. Even under the Hamming radius of 0,
our precision is as high as 33.30% (N = 64) for CIFAR10, and 89.49% (N = 256)
for NUS-WIDE. The proposed method also maintains the second best in most
cases, in terms of recall, inferior only to SNNH. In particular, when the hashing
code dimensionality is low, e.g., whenN = 48 for CIFAR10, the proposed method
outperforms all else with a significant margin. It demonstrates the competitiveness
of the proposed method in generating both compact and accurate hashing codes,
that achieves more precise retrieval results at lower computation and storage costs.
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The next observation is that, compared to the strongest competitor SNNH, the
recall rates of our method seem less compelling. We plot the precision and recall
curves of the three best performers (NNH, SNNH, deep l∞), with regard to the
bit length of hashing codes N , within the Hamming radius of 2. Figure 3.16
demonstrates that our method consistently outperforms both SNNH and NNH in
precision. On the other hand, SNNH gains advantages in recall over the proposed
method, although the margin appears vanishing as N grows.

(a) (b)

Figure 3.16: The comparison of three deep hashing methods on NUS-WIDE: (a)
precision curve; (b) recall curve, both w.r.t the hashing code length N , within the
Hamming radius of 2.

Although it seems to be a reasonable performance tradeoff, we are curious
about the behavior difference between SNNH and the proposed method. We are
again reminded that they only differ in the encoder architecture, i.e., one with
LISTA while the other uses the deep l∞ encoder. We thus plot the learned rep-
resentations and binary hashing codes of one CIFAR image, using NNH, SNNH,
and the proposed method, in Figure 3.15. By comparing the three pairs, one could
see that the quantization from (a) to (b) (also (c) to (d)) suffers visible distortion
and information loss. Contrary to them, the output of the deep l∞ encoder has
a much smaller quantization error, as it naturally resembles an antipodal signal.
Therefore, it suffers minimal information loss during the quantization step.

In view of those, we conclude the following points towards the different behav-
iors, between SNNH and deep l∞ encoder:

• Both deep l∞ encoder and SNNH outperform NNH, by introducing struc-
ture into the binary hashing codes.

• The deep l∞ encoder generates nearly antipodal outputs that are robust to
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quantization errors. Therefore, it excels in preserving information against
hierarchical information extraction as well as quantization. That explains
why our method reaches the highest precision, and performs especially well
when N is small.

• SNNH exploits sparsity as a prior on hashing codes. It confines and shrinks
the solution space, as many small entries in the SNNH outputs will be sup-
pressed down to zero. That is also evidenced by Table 2 in [115], i.e., the
number of unique hashing codes in SNNH results is one order smaller than
that of NNH.

• The sparsity prior improves the recall rate, since it obtains hashing codes
that clutter more compactly in the high-dimensional space, with lower intra-
cluster variations. But it also runs the risk of losing too much information,
during the hierarchical sparsifying process. In that case, the inter-cluster
variations might also be compromised, which potentially causes the de-
crease in precision.

Further, it seems that the sparsity and l∞ structure priors could be complementary.
We will explore it as future work.

3.4.6 Conclusion

This section investigates how to import the quantization-robust property of an `∞-
constrained minimization model, to a specially-designed deep models. It is done
by first deriving an ADMM algorithm, which is then re-formulated as a feed-
forward neural network. We introduce the siamese architecture concatenated with
a pairwise loss, for the application purpose of hashing. We analyze in depth the
performance and behaviors of the proposed model against its competitors, and
hope it will evoke more interests from the community.

3.5 Deep Dual-Domain Sparse Coding for Image
Compression Artifact Removal

In this section, we design a Deep Dual-Domain (D3) based fast restoration model
to remove artifacts of JPEG compressed images. It leverages the large learning ca-
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pacity of deep networks, as well as the problem-specific expertise that was hardly
incorporated in the past design of deep architectures. For the latter, we take into
consideration both the prior knowledge of the JPEG compression scheme, and the
successful practice of the sparsity-based dual-domain approach. We further design
the One-Step Sparse Inference (1-SI) module, as an efficient and lightweight feed-
forward approximation of sparse coding. Extensive experiments verify the superi-
ority of the proposedD3 model over several state-of-the-art methods. Specifically,
our best model is capable of outperforming the latest deep model for around 1 dB
in PSNR, and is 30 times faster.

3.5.1 Introduction

In visual communication and computing systems, the most common cause of im-
age degradation is arguably compression. Lossy compression, such as JPEG [127]
and HEVC-MSP [5], is widely adopted in image and video codecs for saving both
bandwidth and in-device storage. It exploits inexact approximations for repre-
senting the encoded content compactly. Inevitably, it will introduce undesired
complex artifacts, such as blockiness, ringing effects, and blurs. They are usu-
ally caused by the discontinuities arising from batch-wise processing, the loss of
high-frequency components by coarse quantization, and so on. These artifacts not
only degrade perceptual visual quality, but also adversely affect various low-level
image processing routines that take compressed images as input [52].

As practical image compression methods are not information theoretically op-
timal [107], the resulting compression code streams still possess residual redun-
dancies, which makes the restoration of the original signals possible. Different
from general image restoration problems, compression artifact restoration has
problem-specific properties that can be utilized as powerful priors. For exam-
ple, JPEG compression first divides an image into 8 × 8 pixel blocks, followed
by discrete cosine transformation (DCT) on every block. Quantization is applied
on the DCT coefficients of every block, with pre-known quantization levels [127].
Moreover, the compression noises are more difficult to model than other common
noise types. In contrast to the tradition of assuming noise to be white and signal
independent [3], the non-linearity of quantization operations makes quantization
noises non-stationary and signal-dependent.

Various approaches have been proposed to suppress compression artifacts. Early
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works [20, 97] utilized filtering-based methods to remove simple artifacts. Data-
driven methods were then considered to avoid inaccurate empirical modeling of
compression degradations. Sparsity-based image restoration approaches have been
discussed in [28, 37, 81, 106, 134] to produce sharpened images, but they are often
accompanied with artifacts along edges, and unnatural smooth regions. In [107],
Liu et al. proposed a sparse coding process carried out jointly in the DCT and
pixel domains, to simultaneously exploit residual redundancies of JPEG codes
and sparsity properties of latent images. Dong et al. [52] first introduced deep
learning techniques [89] into this problem, by specifically adapting their SR-CNN
model [53]. However, it does not incorporate problem-specific prior knowledge.

The time constraint is often stringent in image or video codec post-processing
scenarios. Low-complexity or even real-time attenuation of compression artifacts
is highly desirable [142]. The inference process of traditional approaches, for ex-
ample, sparse coding, usually involves iterative optimization algorithms, whose
inherently sequential structure as well as the data-dependent complexity and la-
tency often constitute a major bottleneck in the computational efficiency [68].
Deep networks benefit from the feed-forward structure and enjoy much faster in-
ference. However, to maintain their competitive performances, deep networks
show demands for increased width (numbers of filters) and depth (number of lay-
ers), as well as smaller strides, all leading to growing computational costs [74].

In this section, we focus on removing artifacts in JPEG compressed images.
Our major innovation is to explicitly combine both the prior knowledge in the
JPEG compression scheme and the successful practice of dual-domain sparse
coding [107], for designing a task-specific deep architecture. Furthermore, we in-
troduce a One-Step Sparse Inference (1-SI) module, that acts as a highly efficient
and lightweight approximation of the sparse coding inference [49]. 1-SI also re-
veals important inner connections between sparse coding and deep learning. The
proposed model, named Deep Dual-Domain (D3) based fast restoration, proves
to be more effective and interpretable than general deep models. It gains remark-
able margins over several state-of-the-art methods, in terms of both restoration
performance and time efficiency.
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3.5.2 Related Work

Our work is inspired by the prior wisdom in [107]. Most previous works re-
stored compressed images in either the pixel domain [3] or the DCT domain [127]
solely. However, an isolated quantization error of one single DCT coefficient is
propagated to all pixels of the same block. An aggressively quantized DCT coef-
ficient can further produce structured errors in the pixel-domain that correlate to
the latent signal. On the other hand, the compression process sets most high fre-
quency coefficients to zero, making it impossible to recover details from only the
DCT domain. In view of their complementary characteristics, the dual-domain
model was proposed in [107]. While the spatial redundancies in the pixel domain
were exploited by a learned dictionary [3], the residual redundancies in the DCT
domain were also utilized to directly restore DCT coefficients. In this way, quanti-
zation noises were suppressed without propagating errors. The final objective (see
Section 3.1) is a combination of DCT- and pixel-domain sparse representations,
which could cross validate each other.

To date, deep learning [89] has shown impressive results on both high-level
and low-level vision problems [166]. The SR-CNN proposed by Dong et al. [53]
showed the great potential of end-to-end trained networks in image super resolu-
tion (SR). Their recent work [52] proposed a four-layer convolutional network that
was tuned based on SR-CNN, named Artifacts Reduction Convolutional Neural
Networks (AR-CNN), which was effective in removing compression artifacts.

3.5.3 Deep Dual-Domain (D3) based Restoration

Sparsity-based Dual-Domain Formulation

We first review the sparsity-based dual-domain restoration model established in
[107]. Considering a training set of uncompressed images, pixel-domain blocks
{x̂i} ∈ Rm (vectorized from a

√
m ×

√
m patch; m = 64 for JPEG) are drawn

for training, along with their quantized DCT coefficient blocks {yi}∈ Rm. For
each (JPEG-coded) input xt ∈ Rm, two dictionaries Φ ∈ Rm×pΦ and Ψ ∈ Rm×pΨ

(pΦ and pΨ denote the dictionary sizes) are constructed from training data {yi}
and {x̂i}, in the DCT and pixel domains, respectively, via locally adaptive feature
selection and projection. The following optimization model is then solved during
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the testing stage:

min{α,β} ||yt −Φα||22 + λ1||α||1 + λ2||T−1Φα−Ψβ||22 + λ3||β||1,
s.t. qL � Φα � qU .

(3.30)

where yt ∈ Rm is the DCT coefficient block for xt. α ∈ RpΦ and β ∈ RpΨ are
sparse codes in the DCT and pixel domains, respectively. T−1 denotes the inverse
discrete cosine transform (IDCT) operator. λ1, λ2 and λ3 are positive scalars. One
noteworthy point is the inequality constraint, where qL and qU represent the (pre-
known) quantization intervals according to the JPEG quantization table [127].
The constraint incorporates the important side information and further confines
the solution space. Finally, Ψβ provides an estimate of the original uncompressed
pixel block x̂t.

Such a sparsity-based dual-domain model (3.30) exploits residual redundancies
(e.g. inter-DCT-block correlations) in the DCT domain without spreading errors
into the pixel domain, and at the same time recovers high-frequency information
driven by a large training set. However, note that the inference process of (3.30)
relies on iterative algorithms, and is computationally expensive. Also in (3.30),
the three parameters λ1, λ2 and λ3 have to be manually tuned. The authors of
[107] simply set them all equal, which may hamper the performance. In addition,
the dictionaries Φ and Ψ have to be individually learned for each patch, which
allows for extra flexibility but also brings in heavy computation load.

D3: A Feed-Forward Network Formulation

In training, we have the compressed pixel-domain blocks {xi}, accompanied with
the original uncompressed blocks {x̂i}. During testing, for an compressed input
xt, our goal is to estimate the original x̂t, using the redundancies in both DCT and
pixel domains, as well as JPEG prior knowledge.

As illustrated in Figure 3.17, the input xt is first transformed into its DCT co-
efficient block yt by feeding through the constant 2-D DCT matrix layer T . The
subsequent two layers aim to enforce DCT domain sparsity, where we refer to the
concepts of analysis and synthesis dictionaries in sparse coding [70]. The Sparse
Coding (SC) Analysis Module 1 is implemented to solve the following type of
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Figure 3.17: The illustration of Deep Dual-Domain (D3) based model (all
subscripts are omitted for simplicity). The black solid lines denote the network
inter-layer connections, while the black dash lines connect to the loss functions.
The two red dash-line boxes depict the two stages that incorporate DCT and
pixel domain sparsity priors, respectively. The two grey blocks denote constant
DCT and IDCT layers, respectively. The notations within parentheses along the
pipeline are to remind the corresponding variables in (3.30).

sparse inference problem in the DCT domain (λ is a positive coefficient):

minα
1
2
||yt −Φα||22 + λ||α||1. (3.31)

The Sparse Coding (SC) Synthesis Module 1 outputs the DCT-domain sparsity-
based reconstruction in (3.30), i.e., Φα.

The intermediate output Φα is further constrained by an auxiliary loss, which
encodes the inequality constraint in (3.30): qL � Φα � qU . We design the
following signal-dependent, box-constrained [86] loss:

LB(Φα, x) = ||[Φα− qU(x)]+||22 + ||[qL(x)−Φα]+||22. (3.32)

Note it takes not only Φα, but also x as inputs, since the actual JPEG quantization
interval [qL, qU ] depends on x. The operator [ ]+ keeps the nonnegative elements
unchanged while setting others to zero. Eqn. (3.32) will thus only penalize the
coefficients falling out of the quantization interval.

After the constant IDCT matrix layer T−1, the DCT-domain reconstruction Φα

is transformed back to the pixel domain for one more sparse representation. The
SC Analysis Module 2 solves (γ is a positive coefficient):

minβ
1
2
||T−1Φα−Ψβ||22 + γ||β||1, (3.33)

while the SC Synthesis Module 2 produces the final pixel-domain reconstruction
Ψβ. Finally, the L2 loss between Ψβ and x̂i is enforced.
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Note that in the above, we try to correspond the intermediate outputs of D3

with the variables in (3.30), in order to help understand the close analytical re-
lationship between the proposed deep architecture with the sparse coding-based
model. That does not necessarily imply any exact numerical equivalence, since
D3 allows for end-to-end learning of all parameters (including λ in (3.31) and γ in
(3.33)). However, we will see in experiments that such enforcement of the specific
problem structure improves the network performance and efficiency remarkably.
In addition, the above relationships remind us that the deep model could be well
initialized from the sparse coding components.

One-Step Sparse Inference Module

The implementation of SC Analysis and Synthesis Modules appears to be the core
of D3. While the synthesis process is naturally feed-forward by multiplying the
dictionary, it is less straightforward to transform the sparse analysis (or inference)
process into a feed-forward network.

We take (3.31) as an example, while the same solution applies to (3.33). Such
a sparse inference problem could be solved by the iterative shrinkage and thresh-
olding algorithm (ISTA) [17], each iteration of which updates as follows:

αk+1 = sλ(α
k + ΦT (yt −Φαk)), (3.34)

where αk denotes the intermediate result of the k-th iteration, and where sλ is
an element-wise shrinkage function (u is a vector and ui is its i-th element, i =

1, 2, ..., p):

[sλ(u)]i = sign(ui)[|ui| − λi]+. (3.35)

The learned ISTA (LISTA) [68] parameterized encoder further proposed a natural
network implementation of ISTA. The authors time-unfolded and truncated (3.34)
into a fixed number of stages (more than 2), and then jointly tuned all parameters
with training data, for a good feed-forward approximation of sparse inference.

In our work, we launch a more aggressive approximation, by only keeping one
iteration of (3.34), leading to a One-Step Sparse Inference (1-SI) Module. Our
major motivation lies in the same observation as in [52] that overly deep networks
could adversely affect the performance in low-level vision tasks. Note that we
have two SC Analysis modules where the original LISTA applies, and two more

88



SC Synthesis modules (each with one learnable layer). Even if only two iterations
are kept as in [68], we end up with a six-layer network that suffers from both
difficulties in training [52] and fragility in generalization [148] for this task.

A 1-SI module takes the following simplest form:

α = sλ(Φyt), (3.36)

which could be viewed as first passing through a fully-connected layer (Φ), fol-
lowed by neurons of sλ. We further rewrite (3.35) as [166] did16:

[sλ(u)]i = λi · sign(ui)(|ui|/λi − 1)+ = λis1(ui/λi) (3.37)

Eqn. (3.37) indicates that the original neuron with trainable thresholds can be de-
composed into two linear scaling layers plus a unit-threshold neuron. The weights
of the two scaling layers are diagonal matrices defined by θ and its element-wise
reciprocal, respectively. The unit-threshold neuron s1 could in essence be viewed
as a double-sided and translated variant of ReLU [89].

DA

diag(1/ɵ)

diag(ɵ) DS
s1

SC Analysis Module (1-SI) SC Synthesis Module

Figure 3.18: The illustration of SC Analysis and Synthesis Modules. The former
is implemented by the proposed 1-SI module (3.36). Both DA and DS are
fully-connected layers, while diag(θ)/diag(1/θ) denotes diagonal scaling layers.

A related form to (3.36) was obtained in [49] on a different case of non-negative
sparse coding. The authors studied its connections with the soft-threshold feature
for classification, but did not correlate it with network architectures.

Model Overview

By plugging in the 1-SI module (3.36), we are ready to obtain the SC Analysis and
Synthesis Modules, as in Figure 3.18. By comparing Figure 3.18 with Eqn. (3.31)

16In (3.37), we slightly abuse notations, and set λ to be a vector of the same dimension as u, in
order for extra element-wise flexibility.
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(or (3.33)), it is easy to notice the analytical relationships between DA and ΦT (or
ΨT ), DS and Φ (or Ψ), as well as θ and λ (or γ). Those network parameters could
be well initialized from the sparse coding parameters, which could be obtained
easily. The entire D3 model, consisting of four learnable fully-connected weight
layers (except for the diagonal layers), is trained from end to end.17

In Figure 3.18, we intentionally do not combine θ into DA layer (also 1/θ

into DS layer ), for the reason that we still wish to keep θ and 1/θ layers tied
as element-wise reciprocal. That proves to have positive implications in our ex-
periments. If we absorb the two diagonal layers into DA and DS , Figure 3.18
is reduced to two fully connected weight matrices, concatenated by one layer of
hidden neurons (3.37). However, keeping the “decomposed” model architecture
facilitates the incorporation of problem-specific structures.

Complexity Analysis

From the clear correspondences between the sparsity-based formulation and the
D3 model, we immediately derive the dimensions of weight layers in Table 3.14.

Table 3.14: Dimensions of all layers in the D3 model

Layer DA DS diag(θ)
Stage I (DCT Domain) pΦ ×m m× pΦ pΦ

Stage II (Pixel Domain) pΨ ×m m× pΨ pΨ

Time Complexity During training, deep learning with the aid of gradient de-
scent scales linearly in time and space with the number of training samples. We are
primarily concerned with the time complexity during testing (inference), which is
more relevant to practical usages. Since all learnable layers in the D3 model are
fully-connected, the inference process of D3 is nothing more than a series of ma-
trix multiplications. The multiplication times are counted as: pΦm (DA in Stage I)
+ 2pΦ (two diagonal layers) + pΦm (DS in Stage I) + pΨm (DA in Stage II) + 2pΨ

(two diagonal layers) + pΨm (DS in Stage II). The 2D DCT and IDCT each takes
1
2
m log(m) multiplications [127] . Therefore, the total inference time complexity

17From the analytical perspective, DS is the transpose of DA, but we untie them during training
for larger learning capability.
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of D3 is:

CD3 = 2(pΦ + pΨ)(m+ 1) +m log(m) ≈ 2m(pΦ + pΨ). (3.38)

The complexity could also be expressed as O(pΦ + pΨ).
It is obvious that the sparse coding inference [107] has dramatically higher

time complexity. We are also interested in the inference time complexity of other
competitive deep models, especially AR-CNN [52]. For their fully convolutional
architecture, the total complexity [74] is:

Cconv =
∑d

l=1 nl−1 · s2
l · nl ·m2

l , (3.39)

where l is the layer index, d is the total depth, nl is the number of filters in the
l-th layer, sl is the spatial size of the filter, and ml is the spatial size of the output
feature map.

The theoretical time complexities in (3.38) and (3.39) do not represent the ac-
tual running time, as they depend on different configurations and can be sensitive
to implementations and hardware. Yet, our actual running time scales nicely with
those theoretical results.

Parameter Complexity The total number of free parameters in D3 is:

ND3 = 2pΦm+ pΦ + 2pΨm+ pΨ = 2(pΦ + pΨ)(m+ 1). (3.40)

As a comparison, the AR-CNN model [52] contains:

Nconv =
∑d

l=1 nl−1 · nl · s2
l . (3.41)

3.5.4 Experiments

Implementation and Setting

We use the disjoint training set (200 images) and test set (200 images) of BSDS500
database [4], as our training set; its validation set (100 images) is used for valida-
tion, which follows [52]. For training the D3 model, we first divide each original
image into overlapped 8×8 patches, and subtract the pixel values by 128 as in the
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JPEG mean shifting process. We then perform JPEG encoding on them by MAT-
LAB JPEG encoder with a specific quality factorQ, to generate the corresponding
compressed samples. Whereas JPEG works on non-overlapping patches, we em-
phasize that the training patches are overlapped and extracted from arbitrary po-
sitions. For a testing image, we sample 8× 8 blocks with a stride of 4, and apply
the D3 model in a patch-wise manner. For a patch that misaligns with the original
JPEG block boundaries, we find its most similar coding block from its 16× 16 lo-
cal neighborhood, whose quantization intervals are then applied to the misaligned
patch. We find this practice effective and important for removing blocking arti-
facts and ensuring the neighborhood consistency. The final result is obtained via
aggregating all patches, with the overlapping regions averaged.

The proposed networks are implemented using the cuda-convnet package [89].
We apply a constant learning rate of 0.01, a batch size of 128, with no momen-
tum. Experiments run on a workstation with 12 Intel Xeon 2.67GHz CPUs and
1 GTX680 GPU. The two losses, LB and L2, are equally weighted. For the pa-
rameters in Table 3.14, m is fixed as 64. We try different values of pΦ and pΨ in
experiments.

Based on the solved Eqn. (3.30), one could initialize DA, DS , and θ from Φ,
ΦT and λ in the DCT domain block of Figure 3.17, and from Ψ, ΨT and γ in the
pixel domain block, respectively. In practice, we find that such an initialization
strategy benefits the performances, and usually leads to faster convergence.

We test the quality factor Q = 5, 10, and 20. For each Q, we train a dedicated
model. We further find the easy-hard transfer useful. As images of low Q val-
ues (heavily compressed) contain more complex artifacts, it is helpful to use the
features learned from images of high Q values (lightly compressed) as a starting
point. In practice, we first train the D3 model on JPEG compressed images with
Q = 20 (the highest quality). We then initialize the Q = 10 model with the
Q = 20 model, and similarly, initialize Q = 5 model from the Q = 10 one.

Restoration Performance Comparison

We include the following two relevant, state-of-the-art methods for comparison:

• Sparsity-based Dual-Domain Method (S-D2) [107] could be viewed as
the “shallow” counterpart of D3. It has outperformed most traditional meth-
ods [107], such as BM3D [44] and DicTV [28], with which we thus do not
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compare again. The algorithm has a few parameters to be manually tuned.
Especially, their dictionary atoms are adaptively selected by a nearest-neighbor
type algorithm; the number of selected atoms varies for every testing patch.
Therefore, the parameter complexity of S-D2 cannot be exactly computed.

• AR-CNN has been the latest deep model resolving the JPEG compression
artifact removal problem. In [52], the authors show its advantage over SA-
DCT [62], RTF [79], and SR-CNN [53]. We adopt the default network
configuration in [52]: s1 = 9, s2 = 7, s3 = 1, s4 = 5; n1 = 64, n2 = 32, n3 =
16, n4 = 1. The authors adopted the easy-hard transfer in training.

For D3, we test pΦ = pΨ = 128 and 256 18. The resulting D3 models are denoted as
D3-128 and D3-256, respectively. In addition, to verify the superiority of our task-
specific design, we construct a fully-connected Deep Baseline Model (D-Base), of
the same complexity with D3-256, named D-Base-256. It consists of four weight
matrices of the same dimensions as D3-256’s four trainable layers.19 D-Base-256
utilizes ReLU [89] neurons and the dropout technique.

We use the 29 images in the LIVE1 dataset [141] (converted to the gray scale)
to evaluate both the quantitative and qualitative performances. Three quality as-
sessment criteria are evaluated: PSNR, structural similarity (SSIM) [167], and
PSNR-B [179], the last of which is designed specifically to assess blocky images.
The averaged results on the LIVE1 dataset are list in Table 3.15.

Compared to S-D2, both D3-128 and D3-256 gain remarkable advantages, thanks
to the end-to-end training as deep architectures. As pΦ and pΨ grow from 128 to
256, one observes clear improvements in PSNR/SSIM/PSNR-B. D3-256 has out-
performed the state-of-the-art ARCNN, for around 1 dB in PSNR. Moreover, D3-
256 also demonstrates a notable performance margin over D-Base-256, although
they possess the same number of parameters. D3 is thus verified to benefit from its
task-specific architecture inspired by the sparse coding process (3.30), rather than
just the large learning capacity of generic deep models. The parameter numbers
of different models are compared in the last row of Table 3.15. It is impressive to
see that D3-256 also takes less parameters than AR-CNN.

We display three groups of visual results, on Bike, Monarch and Parrots im-
ages, when Q = 5, in Figures 3.19, 3.20 and 3.21, respectively. AR-CNN tends to

18From the common experiences of choosing dictionary sizes [3]
19D-Base-256 is a four-layer neural network, performed on the pixel domain, without

DCT/IDCT layers. The diagonal layers contain a very small portion of parameters and are ig-
nored here.

93



Table 3.15: The average results of PSNR (dB), SSIM, PSNR-B (dB) on the
LIVE1 dataset.

Compressed S-D2 AR-CNN D3-128 D3-256 D-Base-256

Q = 5
PSNR 24.61 25.83 26.64 26.26 27.37 25.83
SSIM 0.7020 0.7170 0.7274 0.7203 0.7303 0.7186

PSNR-B 22.01 25.64 26.46 25.86 26.95 25.51

Q = 10
PSNR 27.77 28.88 29.03 28.62 29.96 28.24
SSIM 0.7905 0.8195 0.8218 0.8198 0.8233 0.8161

PSNR-B 25.33 27.96 28.76 28.33 29.45 27.57

Q = 20
PSNR 30.07 31.62 31.30 31.20 32.21 31.27
SSIM 0.8683 0.8830 0.8871 0.8829 0.8903 0.8868

PSNR-B 27.57 29.73 30.80 30.56 31.35 29.25
#Param \ NA 106,448 33, 280 66, 560 66, 560

generate over-smoothness, such as in the edge regions of butterfly wings and par-
rot head. S-D2 is capable of restoring sharper edges and textures. The D3 models
further reduce the unnatural artifacts occurring in S-D2 results. Especially, while
D3-128 results still suffer from a small amount of visible ringing artifacts, D3-256
not only shows superior in preserving details, but also suppresses artifacts well.

Analyzing the Impressive Results of D3

We attribute our impressive recovery of clear fine details to the combination of
our specific pipeline, the initialization, and the box-constrained loss.
Task-specific and interpretable pipeline The benefits of our specifically de-
signed architecture were demonstrated by the comparison experiments to baseline
encoders. Further, we provide intermediate outputs of the IDCT layer, i.e., the
recovery after the DCT-domain reconstruction. We hope that it helps understand
how each component, i.e., the DCT-domain reconstruction or the pixel-domain
reconstruction, contributes to the final results. As shown in Figure 3.22 (a)-(c),
such intermediate reconstruction results contain both sharpened details (see the
characters in (a), which become more recognizable), and unexpected noisy pat-
terns (see (a) (b) (c) for the blockiness, and ringing-type noise along edges and
textures). It implies that Stage I DCT-domain reconstruction has enhanced the
high-frequency features, yet introducing artifacts simultaneously due to quanti-
zation noises. Afterwards, Stage II pixel-domain reconstruction performs extra
noise suppression and global reconstruction, which leads to the artifact-free and
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(a) Compressed (PSNR = 21.72 dB)

(b) S-D2 (PSNR = 22.87 dB)

(c) AR-CNN (PSNR = 23.27 dB)

(d) D3-128 (PSNR = 23.94 dB)

(e) D3-256 (PSNR = 24.30 dB)

(f) D-Base-256 (PSNR = 23.48 dB)

Figure 3.19: Visual comparison of various methods on Bike at Q = 5. The
corresponding PSNR values (in dB) are also shown.
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(a) Compressed (PSNR = 22.65 dB)

(b) S-D2 (PSNR = 24.87 dB)

(c) AR-CNN (PSNR = 25.81 dB)

(d) D3-128 (PSNR = 24.74 dB)

(e) D3-256 (PSNR = 26.30 dB)

(f) D-Base-256 (PSNR = 24.28 dB)

Figure 3.20: Visual comparison of various methods on Monarch at Q = 5. The
corresponding PSNR values (in dB) are also shown.
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(a) Compressed (PSNR = 26.15 dB)

(b) S-D2 (PSNR = 27.92 dB)

(c) AR-CNN (PSNR = 28.20 dB)

(d) D3-128 (PSNR = 27.52 dB)

(e) D3-256 (PSNR = 28.84 dB)

(f) D-Base-256 (PSNR = 27.21 dB)

Figure 3.21: Visual comparison of various methods on Parrots at Q = 5. The
corresponding PSNR values are also shown.
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more visually pleasing final results.
Sparse coding-based initialization We conjecture that the reason whyD3 is more
capable in restoring the text on Bike and other subtle textures hinges on our sparse
coding-based initialization, as an important training detail in D3. To verify that,
we re-train D3 with random initialization, with the testing results in Figure 3.22
(d)-(f), which turn out to be visually smoother (closer to AR-CNN results). For
example, the characters in (d) are now hardly recognizable. We notice that the
S-D2 results, as in original Figures 3.19-3.21 (c), also presented sharper and more
recognizable texts and details than AR-CNN. These observations validate our con-
jecture. So the next question is: Why does sparse coding help significantly
here? The quantization process can be considered as as a low-pass filter that cuts
off high-frequency information. The dictionary atoms are learned from offline
high-quality training images, which contain rich high-frequency information. The
sparse linear combination of atoms is thus richer in high-frequency details, which
might not necessarily be the case in generic regression (as in deep learning).
Box-constrained loss The loss LB (3.32) acts as another effective regularization.
We re-train D3 without the loss, and obtain the results in Figure 3.22 (g)-(i). It
is observed that the box-constrained loss helps generate details (e.g., comparing
characters in (g) with those in Figure 3.19 (f)), by bounding the DCT coefficients,
and brings PSNR gains.

Running Time Comparison

The image or video codecs desire highly efficient compression artifact removal
algorithms as the post-processing tool. Traditional TV and digital cinema busi-
ness uses frame rate standards such as 24p (i.e., 24 frames per second), 25p, and
30p. Emerging standards require much higher rates. For example, high-end High-
Definition (HD) TV systems adopt 50p or 60p; the Ultra-HD (UHD) TV standard
advocates 100p/119.88p/120p; the HEVC format could reach the maximum frame
rate of 300p [1]. To this end, higher time efficiency is as desirable as improved
performances.

We compare the averaged testing times of AR-CNN and the proposed D3 mod-
els in Table 3.16, on the LIVE29 dataset, using the same machine and software
environment. All running time was collected from GPU tests. Our best model,
D3-256, takes approximately 12 ms per image; that is more than 30 times faster
than AR-CNN. The speed difference is NOT mainly caused by the different im-
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Table 3.16: Averaged running time comparison (ms) on LIVE1.

AR-CNN D3-128 D3-256 D-Base-256
Q = 5 396.76 7.62 12.20 9.85
Q = 10 400.34 8.84 12.79 10.27
Q = 20 394.61 8.42 12.02 9.97

plementations. Both being completely feed-forward, AR-CNN relies on the time-
consuming convolution operations while ours takes only a few matrix multiplica-
tions. That is in accordance with the theoretical time complexities computed from
(3.38) and (3.39), too. As a result, D3-256 is able to process 80p image sequences
(or even higher). To our best knowledge, D3 is the fastest among all state-of-the-
art algorithms, and proves to be a practical choice for HDTV industrial usage.

3.5.5 Conclusion

We introduce the D3 model for the fast restoration of JPEG compressed images.
The successful combination of both JPEG prior knowledge and sparse coding
expertise has made D3 highly effective and efficient. In the future, we aim to
extend the methodology to more related applications.
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(a) PSNR = 22.14 dB

(b) PSNR = 25.14 dB

(c) PSNR = 26.74 dB

(d) PSNR = 23.42 dB

(e) PSNR = 24.85 dB

(f) PSNR = 27.63 dB

(g) PSNR = 23.80 dB

(h) PSNR = 25.63 dB

(i) PSNR = 28.28 dB

Figure 3.22: Intermediate and comparison results, on Bike, Monarch, and Parrot,
at Q = 5: (a) - (c) the intermediate recovery results after the DCT-domain
reconstruction; (d) - (f) the results trained with random initialization; (g) - (i) the
results trained without the box-constrained loss. PSNR values are reported.
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CHAPTER 4

DEEP MODELS MADE INTERPRETABLE:
A COGNITIVE SCIENCE AND

NEUROSCIENCE PERSPECTIVE

Deep networks attempt to emulate the underlying complex neural mechanisms of
human perception, and display the ability to describe semantic content from the
primitive level to the abstract level. On the other hand, the study of the cogni-
tive and neural underpinnings of human perception, by means of neuroimaging
techniques and behavioral experiments, yields some promise for understanding
brain perception. Whereas deep learning is known to be analogous to brain mech-
anisms, there has been little progress to combine scientific findings and learning-
based models into an integrative framework.

We currently start investigating the synergy among feature learning, cognitive
science and neuroscience. We expect to help understand the psychological and
neuroscience mechanisms of human perception tasks, which will promote a better
feature learning model to describe and estimate human preferences. The learning
model can in turn help understand brain mechanisms. One recent progress lies
in tackling the automated assessment of pictorial aesthetics, a challenging visual
perception task due to its subjective nature. Inspired by the neuroaesthetics find-
ings, we design a task-specific deep architecture that proves predictive of human
aesthetics ratings. We further apply deep models to the novel application domain
of brain encoding, with promising preliminary results achieved.

4.1 Image Aesthetics Assessment using Deep
Chatterjee’s Machine

Image aesthetics assessment has been challenging due to its subjective nature.
Inspired by the Chatterjee’s visual neuroscience model, we design Deep Chatter-
jee’s Machine (DCM) tailored for this task. DCM first learns attributes through
the parallel supervised pathways, on a variety of selected feature dimensions. A
high-level synthesis network is trained to associate and transform those attributes

101



into the overall aesthetics rating. We also highlight our first-of-its-kind study of
label-preserving transformations in the context of aesthetics assessment, which
leads to an effective data augmentation approach. Experimental results on the
AVA dataset show that DCM gains significant performance improvement, com-
pared to other state-of-the-art models.

4.1.1 Introduction

Automated assessment or rating of pictorial aesthetics has many applications,
such as in an image retrieval system or a picture editing software [35]. Com-
pared to many typical machine vision problems, the aesthetics assessment is even
more challenging, due to the highly subjective nature of aesthetics, and the seem-
ingly inherent semantic gap between low-level computable features and high-level
human-oriented semantics. Though aesthetics influences many human judgments,
our understanding of what makes an image aesthetically pleasing is still limited.
Contrary to semantics, an aesthetic response is usually very subjective and diffi-
cult to gauge even among human beings.

Existing research has predominantly focused on constructing hand-crafted fea-
tures that are empirically related to aesthetics. Those features are designed under
the guidance of photography and psychological rules, such as rule-of-thirds com-
position, depth of field (DOF), and colorfulness [46], [85]. With the images being
represented by these hand-crafted features, aesthetic classification or regression
models can be trained on datasets consisting of images associated with human
aesthetic ratings. However, the effectiveness of hand-crafted features is only em-
pirical, due to the vagueness of certain photographic or psychologic rules. Re-
cently, Lu et al. [110] proposed the Rating Pictorial Aesthetics using Deep Learn-

ing (RAPID) model, with impressive accuracies on the Aesthetic Visual Analysis

(AVA) dataset [121]. However, they have not yet studied more precise predic-
tions, such as finer-grained ratings or rating distributions [171]. On the other
hand, the study of the cognitive and neural underpinnings of aesthetic apprecia-
tion by means of neuroimaging techniques yields some promise for understanding
human aesthetics [27]. Although the results of these studies have been somewhat
divergent, a hierarchical set of core mechanisms involved in aesthetic preference
have been identified [31].

In this work, we develop a novel deep-learning based image aesthetics assess-
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ment model, called Brain-Inspired Deep Chatterjee’s Machine (DCM). DCM
clearly distinguishes itself from prior models, for its unique architecture inspired
the Chatterjee’s visual neuroscience model [30]. We introduce the specific archi-
tecture of parallel supervised pathways, to learn multiple attributes on a variety of
selected feature dimensions. Those attributes are then associated and transformed
into the overall aesthetic rating, by a high-level synthesis network. Our techni-
cal contribution also includes the study of label-preserving transformations in the
context of aesthetics assessment, which is applied to effective data augmentation.
We examine DCM on the large-scale AVA dataset [121], for the aesthetics rating
prediction task, and confirm its superiority over a few competitive methods, with
the same or larger amounts of parameters.

Related Work

Datta et al. [46] first cast the image aesthetics assessment problem as a classi-
fication or regression problem. A given image is mapped to an aesthetic rating,
which is usually collected from multiple subject raters and is normally quantized
with discrete values. [46], [85] extracted various handcrafted features, including
low-level image statistics such as distributions of edges and color histograms, and
high-level photographic rules such as the rule of thirds. A few subsequent efforts,
such as [12], [50], [111], focus on improving the quality of those features. Generic
image features [114], such as SIFT and Fisher Vector [109], were applied to pre-
dict aesthetics. However, empirical features cannot accurately and exhaustively
represent the aesthetic properties.

The human brain transforms and synthesizes a torrent of complex and ambigu-
ous sensory information into coherent thought and decisions. Most aesthetic as-
sessment methods adopt simple linear classifiers to categorize the input features,
which is obviously oversimplified. Deep networks [9] attempt to emulate the un-
derlying complex neural mechanisms of human perception, and display the ability
to describe image content from the primitive level (low-level features) to the ab-
stract level (high-level features). The RAPID model [110] is among the first to
apply deep convolutional neural networks (CNN) [89] to the aesthetics rating pre-
diction, where the features are automatically learned. They further improved the
model by exploring style annotations [121] associated with images. In fact, even
the hidden activations from a generic CNN were found to work reasonably well
for aesthetics features [54].
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Datasets

Large and reliable datasets, consisting of images and corresponding human rat-
ings, are the essential foundation for the development of machine assessment
models. Several Web photo resources have taken advantage of crowdsourcing
contributions, such as Flickr and DPChallenge.com [121]. The AVA dataset is a
large-scale collection of images and meta-data derived from DPChallenge.com. It
contains over 250,000 images with aesthetic ratings from 1 to 10, and a 14,079
subset with binary style labels (e.g., rule of thirds, motion blur, and complemen-
tary colors), making automatic feature learning using deep learning approaches
possible. In this section, we focus on AVA as our research subject.

4.1.2 The Neuroaesthetics Models

Multiple parallel processing strategies, involving over a dozen retinal ganglion cell
types, can be found in the retina. Each ganglion cell type focuses on one specific
kind of feature, and provides a complete representation across the entire visual
field [122]. Retinal ganglion cells project in parallel from the retina, through the
lateral geniculate nucleus of the thalamus to the primary visual cortex. Primary
visual cortex receives parallel inputs from the thalamus and uses modularity, de-
fined spatially and by cell-type specific connectivity, to recombine these inputs
into new parallel outputs. Beyond primary visual cortex, separate but interact-
ing dorsal and ventral streams perform distinct computations on similar visual
information to support distinct behavioural goals [130]. The integration of visual
information is then achieved progressively. Independent groups of cells with dif-
ferent functions are brought into temporary association, by a so-called “binding”
mechanism [27], for the final decision-making.

From the retina to the prefrontal cortex, the human visual processing system
will first conduct a very rapid holistic image analysis [156], [78], [158]. The
divergence comes at a later stage, in how the low-level visual features are further
processed through parallel pathways [61] before being utilized. The pathway can
be characterized by a hierarchical architecture, in which neurons in higher areas
code for progressively more complex representations by pooling information from
lower areas. For example, there is evidence [135] that neurons in V1 code for
relatively simple features such as local contours and colors, whereas neurons in
TE fire in response to more abstractive features, that encode the scene’s gist and/or
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saliency information and act as a holistic signature of the input.
Key Notations: For the consistency of terms, we use feature dimension to denote
a prominent visual property, that is relevant to aesthetics judgement. We define an
attribute as the learned abstracted, holistic feature representation over a specific
feature dimension. We define a pathway as the processing mechanism from a raw
visual input to an attribute.

Chatterjee’s Visual Neuroscience Model

The main insights for DCM were gained from the classical and important Chat-
terjee’s visual neuroscience model [30]. It models the cognitive and affective
processes involved in visual aesthetic preference, providing a means to organize
the results obtained in the 2004-2006 neuroimaging studies, within a series of
information-processing phases. The Chatterjee’s model yields the following sim-
plified but important insights that inspire our model:

• The human brain works as a multi-leveled system.

• For the visual sensory input, a variety of relevant feature dimensions are
first targeted.

• A set of parallel pathways abstract the visual input. Each pathway processes
the input into an attribute on a specific feature dimension.

• The high-level association and synthesis transforms all attributes into an
aesthetic decision.

Steps 2 and 3 are derived from the many recent advances [122] showing that aes-
thetics judgments evidently involve multiple pathways, which could connect from
related perception tasks [27], [31]. Previously, many feature dimensions, such
as color, shape, and composition, have already been discovered to be crucial for
aesthetics. A bold yet rational assumption is thus made by us, that the attribute
learning for aesthetics tasks could be decomposed onto those pre-known feature
dimensions and processed in parallel.

4.1.3 Deep Chatterjee’s Machine

The architecture of Deep Chatterjee’s Machine (DCM) is depicted in Figure 4.1.
The whole training process is divided in two stages, based on the above insights.
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Table 4.1: The 14 style attribute annotations in the AVA dataset

Style Number Style Number
Complementary Colors 949 Duotones 1, 301
High Dynamic Range 396 Image Grain 840

Light on White 1,199 Long Exposure 845
Macro 1,698 Motion Blur 609

Negative Image 959 Rule of Thirds 1,031
Shallow DOF 710 Silhouettes 1,389

Soft Focus 1,479 Vanishing Point 674

In brief, we first learn attributes through parallel (supervised) pathways, over the
selected feature dimensions. We then combine those “pre-trained” pathways with
the high-level synthesis network, and jointly tune the entire network to predict the
overall aesthetics ratings. The testing process is completely feed-forward and
end-to-end.

Attribute Learning via Parallel Pathways

Individual 
Label 1

Predicted 
Rating

High-Level  Synthesis Network 

Individual 
Label 2

Individual 
Label 14

Hue IH

Saturation IS

Value IV

Complementary 
Colors

Duotones

Vanishing 
Point

Feature Dimensions

A (Supervised) Pathway

Attributes

Softmax 
Loss

Figure 4.1: The architecture of Deep Chatterjee’s Machine (DCM). The input
image is first processed by parallel pathways, each of which learns an attribute
along a selected feature dimension independently. Except for the first three
simplest features (hue, saturation, value), all parallel pathways take the form of
fully-convolutional networks, supervised by individual labels; their hidden layer
activations are utilized as learned attributes. We then associate those
“pre-trained” pathways with the high-level synthesis network, and jointly tune
the entire network to predict the overall aesthetics ratings.
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Attribute Learning via Parallel Pathways

Selecting Feature Dimensions We first select feature dimensions that are dis-
covered to be highly related to aesthetic assessment. Despite the lack of firm rules,
certain visual features are believed to please humans more than others [46]. We
take advantage of those photographically or psychologically inspired features as
priors, and force DCM to “focus” on them.

The previous work, e.g., [46], has identified a set of aesthetically discriminative
features. It suggested that the light exposure, saturation and hue play indispens-
able roles. We assume the RGB data of each image is converted to HSV color
space, as IH , IS , and IV , where each of them has the same size as the original im-
age.1 Furthermore, many photographic style features influence humans’ aesthetic
judgements. [46] proposed six sets of photographic styles, including the rule of
thirds composition, textures, shapes, and shallow depth-of-field (DOF). The AVA
dataset comes with a more enriched variety of style annotations, as listed in Table
4.1, which are leveraged by us. 2

Parallel Supervised Pathways Among the 17 feature dimensions, the simplest
three, IH , IS , and IV , are immediately obtained from the input. However, the
remaining 14 style feature dimensions are not qualitatively well-defined; their
attributes are not straightforwardly extracted.

Figure 4.2: The architecture of a supervised pathway as a FCNN. A 2-way
softmax classifier is employed after global averaging pooling, to predict the
individual label (0 or 1).

For each style category as a feature dimension, we create binary individual

1We downsample IH , IS , and IV to 1/4 of their original size, to improve the efficiency. It
turns out that the model performance is hardly affected, which is understandable since the human
perceptions of those features are insensitive to scale changes.

2The 14 photographic styles are chosen specifically on the AVA datasets. We do not think
they represent all aesthetics-related visual information, and plan to have more photographic styles
annotated.
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labels, by labelling images with the style annotation as “1” and otherwise “0”,
which follows many previous works [121, 50]. We design a special architecture,
called parallel supervised pathways. Each pathway is modeled with a fully con-

volutional neural network (FCNN), as in Figure 4.2. It takes an image as the
input, and outputs the image’s individual label along this feature dimension. All
pathways are learned in parallel without intervening with each other. The choice
of FCNN is motivated by the spatial locality-preserving property of the human
brain’s low-level visual perception [130].

For each feature dimension, the number of labeled samples is limited, as shown
in Table 4.1. Therefore, we pre-train the first two layers in Figure 4.2, using all im-
ages from the AVA dataset, in a unsupervised way. We construct a 4-layer Stacked
Convolutional Auto Encoder (SCAE): its first 2 layers follows the same topology
as the conv1 and conv2 layers, and the last 2 layers are mirror-symmetrical decon-
volutional layers [181]. After SCAE is trained, the first two layers are applied to
initialize the conv1 and conv2 layers for all 14 FCNN pathways. The strategy is
based on the common belief that the lower layers of CNNs learn general-purpose
features, such as edges and contours, which could be adapted for extensive high-
level tasks [51].

After the initialization of the first two layers, for each pathway, we concate-
nate the conv3 and conv4 layers, and further conduct supervised training using
individual labels. The conv4 layer always has the same channel number with the
corresponding style classes (here the channel number is 2 for all, since we only
have binary labels for each class). It is followed by the global average pooling
[103] step, to be correlated with the binary labels. Eventually, the conv4 layer as
well as the classifier are discarded, and the conv1-conv3 layers of 14 pathways are
passed to the next stage. We treat the conv3 layer activations of each pathway as
learned attributes [51].

The pathways in DCM account for progressively extracting more complex fea-
tures. As observed in experiments, the pre-training of all pathways’ conv1 and
conv2 layers learns shared low-level features, such as edges and blobs. Each
pathway is then independently tuned by its “higher-level” concepts, which guides
the adaptation of low-level features. The final outputs of pathways, conv3, are
abstracted from the low-level conv1 and conv2 features, and are regarded as mid-
level attributes. Each pathway’s conv3 attribute displays a different, visible com-
bination of low-level features, but not any semantically meaningful object.

108



Table 4.2: The subjective evaluation survey on the aesthetic influences of various
transformations (s denotes a random number)

Transformation Description LP factor
Reflection Flipping the image horizontally 0.99

Random scaling Scale the image proportionally by s ∈ [0.9, 1.1] 0.94
Small noise Add a Gaussian noise ∈ N(0, 5) 0.87
Large noise Add a Gaussian noise ∈ N(0, 30) 0.63
Alter RGB Perturbed the intensities of the RGB channels [89] 0.10
Rotation Randomly-parameterized affine transformation 0.26

Squeezing Change the aspect ratio by s ∈ [0.8, 1.2] 0.55

Training High-Level Synthesis Network

Finally, we simulates the brain’s high-level association and synthesis, using a
larger FCNN. Its architecture resembles Figure 4.2, except that the first three con-
volutional layers each have 128 channels instead of 64. The high-level synthesis
network takes the attributes from all parallel pathways as inputs, and outputs the
overall aesthetics rating. The entire DCM is then tuned from end to end.

4.1.4 Study Label-Preserving Transformations

When training deep networks, the most common approach to reduce overfitting is
to artificially enlarge the dataset using label-preserving transformations [16]. In
[89], image translations and horizontal reflections are generated, while the inten-
sities of the RGB channels are altered, both of which apparently will not change
the object class labels. Other alternatives, such as random noise, rotations, warp-
ing and scaling, are also widely adopted by the latest deep-learning based object
recognition methods. However, there has been little work on identifying label-
preserving transformations for image aesthetics assessment, e.g., those that will
not significantly alter the human aesthetics judgements, considering the rating-
based labels are very subjective. In [110], motivated by their need to create fixed-
size inputs, the authors created randomly-cropped local regions from training im-
ages, which was empirically treated as data augmentation.

We make the first exploration to identify whether a certain transformation will
preserve the binary aesthetics rating, i.e., high quality versus low quality, by con-
ducting a subjective evaluation survey among over 50 participants. We select 20
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high-quality (δ = 1) images from the AVA dataset (since low-quality images are
unlikely to become more aesthetically pleasing after some simple/random trans-
formations). Each image is processed by all different kinds of transformations in
Table 4.2. For each time, a participant is shown with a set of image pairs orig-
inated from the same image, but processed with different transformations. The
groundtruth is also included in the comparison process. For each pair, the partic-
ipant needs to decide which one is better in terms of aesthetic quality. The image
pairs are drawn randomly, and the image winning this pairwise comparison will
be compared again in the next round, until the best one is selected.

We fit a Bradley-Terry [19] model to estimate the subjective scores for each
method so that they can be ranked. With the groundtruth set as score 1, each trans-
formation will receive a score between [0, 1]. We define the score as the label-

preserving (LP) factor of a transformation; a larger LP factor denotes a smaller
impact on image aesthetics. As in Table 4.2, reflection and random scaling receive
the highest LR factors. The small noise seems to affect the aesthetics feelings neg-
atively, but only marginally. All others are shown to significantly degrade human
aesthetics perceptions. We therefore adopt reflection, random scaling, and small
noise as our default data augmentation approaches.

4.1.5 Experiment

We implement our models based on the cuda-convnet package [89]. The ReLU
nonlinearity as well as dropout is applied. Following RAPID [110], we evaluate
DCM on the binary aesthetic rating task. We quantize images’ mean ratings into
binary values. Images with mean ratings smaller than 5 − δ are labeled as low-
quality, while those with mean ratings larger than 5 + δ are referred to as high-
quality. The adjustment of learning rates in such a hierarchical model calls for
special attention. We first train the 14 parallel pathways, with the identical learn-
ing rates: η = 0.05 for unsupervised pre-training and 0.01 for supervised tuning,
both of which are not annealed throughout training. We then train the high-level
synthesis network on top of them and fine-tune the entire DCM. For the pathway
part, its learning rate η′ starts from 0.001; for the high-level part, the learning rate
ρ starts from 0.01. When the training curve reaches a plateau, we first try dividing
ρ by 10, and further try dividing ρ by 10 if the training/validation error still does
not decrease.
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Static Regularization vs. Joint Tuning The RAPID model [110] also extracted
attributes along different columns (pathways) and combine them. The pre-trained
style classifier was then “frozen” and acted as a static network regularization. Out
of curiosity, we also tried to fix our parallel pathways while training the high-
level synthesis network, e.g., η′ = 0. The resulting performance was verified to be
inferior to that of joint tuning the entire DCM.

We compare DCM with the state-of-the-art RAPID model for binary aesthet-
ics rating prediction. Benefiting from our fully-convolutional architecture, DCM
has a much lower parameter capacity than RAPID that relies on fully-connected
layers. Besides, we construct three baseline networks, all with exactly the same
parameter capacity as DCM:

• Baseline fully-convolutional network (BFCN) first binds the conv1 – conv3
layers of 14 pathways horizontally, constituting a three-layer fully convo-
lutional network, each layer with 64 × 14 = 896 filter channels. Such an
attribute learning part is trained in a unsupervised way, with style annota-
tions utilized. It is then concatenated with the high-level synthesis network,
to be jointly supervised-tuned.

• DCM without parallel pathways (DCM-WP) utilizes style annotations in
an entangled fashion. Its only difference with BFCN lies in that the training
of the attribute learning part is supervised by a composite label ∈ R28×1,
which binds 14 individual labels altogether.

• DCM without data augmentations (DCM-WA) denotes DCM without the
three data augmentations applied (reflection, scaling, and small noise).

We train the above five models for the binary rating prediction, with both δ = 0 and
δ = 1. The overall accuracies are compared in Table 4.3.3 It appears that BFCN
performs significantly worse than others, due to the absence of the style attribute
information. While RAPID, DCM-WP and DCM all utilize style annotations as
the supervision, DCM outperforms the other two in both cases with remarkable
margins. By comparing DCM-WP with DCM, we observe that the biologically-
inspired parallel pathway architecture in DCM facilitates the learning. Such a
specific architecture avoids overly large all-in-one models (such as DCM-WP),
but instead have more effective, dedicated sub-models. In DCM, style annotations
serve as powerful priors, to enforce DCM to focus on extracting features that are

3The accuracies of RAPID are from the RDCNN results in Table 3 [110].
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Table 4.3: The accuracy comparison of different methods for rating prediction.

RAPID BFCN DCM-WP DCM-WA DCM
δ = 0 74.46% 70.20% 73.54% 74.03% 76.80%
δ = 1 73.70% 68.10% 72.23% 73.72% 76.04%

highly correlated to aesthetics judgements. The DCM is jointly tuned from end
to end, which is different from RAPID whose style column only acts as a static
regularization. We also notice a gain of nearly 3% of DCM over DCM-WA, which
verifies the effectiveness of our proposed augmentation approaches.

In [121], a linear classifier was trained on fisher vectors computed from color
and SIFT descriptors. Under the same aesthetic quality categorization setting, the
baselines reported by [121] were 66.7% when σ = 0, and 67.0% when σ = 1,
falling far behind both DCM and RAPID.

(a) (b)

Figure 4.3: Classification examples of the DCM model: (a) high-quality; (b)
low-quality (δ = 0).

To qualitatively analyze the results, we display eight images correctly classified
by DCM to be high-quality when δ = 0, in Figure 4.3 (a), and eight correctly clas-
sified low-quality images in Figure 4.3 (b). The images ranked high in terms of
aesthetics typically present salient foreground objects, low depth of field, proper
composition, and color harmony. In contrast, low-quality images are at least de-
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(a) (b)

Figure 4.4: How contexts and emotions could alter the aesthetic judgment. (a)
Incorrectly classified examples (δ = 0) due to semantic contents; (b)
High-variance examples (correctly predicted by DCM), which have
nonconventional styles or subjects.

fected in one aspect. For example, the top left image has no focused foreground
object, while the bottom right one suffers from a messy layout. Regarding the top
right “girl” portrait in Fig 4.3 (b), the original comments on DPChallenge.com
show that people rated it low because of the noticeable detail loss caused by noise
reduction post-processing, as well as the unnatural “plastic-like” lights on her hair.

More interestingly, Figure 4.4 (a) lists two failure examples of DCM. The left
image in Figure 4.4 (a) depicts a waving glowstick captured by time-lapse photog-
raphy. The image itself has no appealing composition or colors, and is thus iden-
tified by DCM to be low-quality. However, the DPChallenge raters/commenters
were amazed by the angel shape and rated it very favorably due to the creative
idea. The right image, in contrast, is a high-quality portrait, on which DBN confi-
dently agrees. However, it was associated with the “Rectangular” challenge topic
on DPChallenge, and was rated low because this targeted theme was overshad-
owed by the woman. The failure examples manifest the huge subjectivity and
sensitivity of human aesthetic judgement.

4.1.6 Conclusion

In this section, we draw inspiration from the knowledge abstracted from human
visual perception and neuroaesthetics, and formulate the Deep Chatterjee’s Ma-
chine (DCM). The biologically inspired, task-specific architecture of DCM leads
to better performance than other state-of-the-art models with the same or higher
parameter capacity. Since it has been observed in Figure 4.4 that emotions and
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contexts could alter the aesthetic judgment, we plan to take the two factors into
account for a more comprehensive framework.

4.2 Brain Encoding using Deep Models: An
Exploratory Study

4.2.1 Background and Motivation

In this part, we explore the applicability of deep networks to the novel applica-
tion domain of brain encoding [83]. Brain encoding refers to the challenging
task to predict the brain activity, e.g., blood oxygenation level dependent (BOLD)
responses, from the stimuli. Lately, [84] developed a two-stage cascaded second-

order contrast (SOC) model, that accepts a grayscale image as input and predicts
BOLD responses in early visual cortex as output. The SOC model has a cascade
architecture, consisting of two stages of linear and nonlinear operations. The first
stage involves well-established computations - local oriented filters and divisive
normalization - whereas the second stage involves novel computations - compres-
sive spatial summation (a form of normalization) and a variance-like nonlinearity
that generates selectivity for second-order contrast. The SOC model has only
eight controlling parameters: it heavily relies on specific nonlinear computations,
that are summarized from neuroscience expertise. The philosophy behind SOC is
that because data are limited, parameters are precious and we have to incorporate
very specific computations into models.

In this section, we try to apply more parameterized deep models. Such mod-
els could be more flexible, by allowing the data to inform the model as to what
types of computations are necessary. One major obstacle arises from the fact that
training data are extremely limited. It is also infeasible to artificially increase the
data volume, such as generating “synthetic” data or perform data augmentation.
Therefore, the classical “data-driven” setting for deep learning, as well as many
popular training techniques, does not directly apply here.
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4.2.2 Dataset

We refer to Kendrick Kay et al.’s publicly available datasets of BOLD responses
in visual cortex4, measured by functional magnetic resonance imaging (fMRI)
in human subjects. Specifically, we adopt their stimulus set 2, stimulus set 3,
(response) dataset 4, and (response) dataset 5.

All stimuli are band-pass filtered grayscale images. Following [84], we resize
them to 150 × 150 pixels. Stimulus sets 2 and 3 consist of 156 and 35 distinct
stimuli, respectively. The responses at a total of 200 voxels are recorded. On each
voxel, a scalar fMRI measurement was measured given each input stimulus. Note
that each voxel needs to train a separate brain encoding model. Dataset 4 consists
of one person’s responses to stimulus set 2, while dataset 5 has the same person’s
responses to stimulus set 3. Details about the datasets could be found at [84].

Our goal is to train a regression-type model using stimulus set 2 and dataset 4
(as the training set). The model is used to generate predictions and be evaluated on
stimulus set 3 and dataset 5 (as the testing set). Obviously, it is an ill-conditioned
“small data” problem.

4.2.3 Model and Experiment

To design a well-adapted architecture that learns with very limited data, it is nec-
essary to incorporate task-specific domain expertise. Since we consider the visual
stimuli (structured natural images) as the input, it is straightforward to choose
fully convolutional networks [82] as the computational model, and to solve brain
encoding as a regression problem. Fully convolutional networks also cost fewer
parameters than typical deep models with fully-connected layers. For brain en-
coding, The SOC model [84] further suggested that the encoding in the human
brain would go through some type of spatial summation, followed by compres-
sive power-law function (compressive nonlinearity). That motivates us to try the
sigmoid neuron and average pooling, and compare their effects with the popular
ReLu neuron and max pooling, in this specific scenario.

We construct five different deep models for comparison:

• Model I: 1-hidden-layer fully convolutional network, with one convolu-
tional layer configured by: channel number = 16, filter size = 3, stride =

4http://kendrickkay.net/socmodel/
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Table 4.4: The averaged R2 performance comparison of different models for
brain encoding.

Model I II III IV V SOC
R2 82.6027 88.0655 87.4333 87.7403 88.0646 87.7628

2, zero padding = 2, followed by a global average pooling operator.5 The
output is further concatenated with average pooling operator, followed by a
mean square error (MSE) loss.

• Model II: 2-hidden-layer fully convolutional network, by adding the second
convolutional layer with channel number = 8, filter size = 3, stride = 1, zero
padding = 1. All other configurations are identical to Model I.

• Model III: 3-hidden-layer fully convolutional network, by adding the third
convolutional layer, whose configuration remains the same as the second
one’s. All others are identical to Model II.

• Model IV: replacing the sigmoid neurons in Model II with the RELU neu-
rons, while leaving all others unchanged.

• Model V: replacing the last average pooling operator, in Model II with max-
pooling, while leaving all others unchanged.

We initialize the first layer using PCA, and the remaining layers (if any) using
layer-wise pre-training [10], to carefully ensure that those models converge prop-
erly. A earning rate of 0.01 and a momentum of 0.9 are applied. The model ac-
curacy is quantified as the percentage of variance explained (R2) in the measured
response amplitudes by the cross-validated predictions of the response amplitudes
(see page. 14, [84] for definitions). R2 ranges between [0, 100]: the higher R2 is,
the more accurate the model is.

The preliminary experiment has found encouraging results, as in Table 4.4. In
terms of averaged R2 performance across 200 voxels, the SOC baseline reaches
87.7028, which is very competitive and shows neuroscience expertise to be pow-
erful. By adding one more layer, Model II gains a sharp advantage of 5.4%
over Model I, and also outperforms the SOC slightly. However, increasing more

5The global average pooling operator is inserted for fusing all channels into one feature map.
It should be distinguished from the following pooling operator, which performs feature selection
over the feature map.
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hardly brings any further benefit, as evidenced by the slight performance drop
from Model II to III. That reflects the potential overfitting problem due to the
limited training data, and calls for the collection of larger datasets.

A comparison between Models II and IV reminds us that the sigmoid neurons
potentially suit the brain encoding scenario better than the popular choice of ReLU
neuron. We may view it as a success of learning from neuroscience; however,
we realize that sigmoid neurons are more likely to suffer computational concerns
(“saturation”) when the networks grow deeper. That could be partially alleviated
by pre-training.

On the other hand, choosing either max or average pooling operator does not af-
fect the performance much in this experiments. Previous literature [126] suggests
that the sensory processing in the brain suggests a sparse coding strategy over a
highly over-complete basis, when finding stimuli that effectively activate the neu-
rons. Therefore, we conjecture that the max pooling operator, which introduces
sparsity, brings in performance benefits too, which may also find neuroscience
grounds in the brain encoding process.

4.2.4 Remarks and Discussions

The above experiments, although restricted by the training data availability, have
shown promise of the task-specific deep architectures designed from neuroscience
expertise. While preliminary conclusions were drawn, several open questions re-
main for our future investigation, to list a few:

• If more training data can be collected, will a deeper architecture be useful?
Does it really cost thousands of layers to model a brain network?

• Will sigmoid always outperform ReLU? If so, how to resolve the compu-
tational difficulties of the former, i.e., the saturation phenomenon of com-
pressive nonlinearity?

• Is sparsity also an indispensable part of brain encoding? Will a mixed utility
of average pooling and max pooling boost the model performance further?

• Is there really a clear mapping between the neural network layers and the
brain hierarchy? In other words, to what extent could the neuroscience
expertise guide the deep architecture design?
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

The research topics discussed throughout this dissertation share the same under-
lying theme: developing task-specific and interpretable feature learning models.
A majority of my research is focused on bridging traditional learning models
that emphasize problem-specific reasoning, and deep models that allow for larger
learning capacity. Several concrete model examples are presented, to reveal how
the analytic tools in the classical optimization problems can be translated to guide
the architecture design and performance analysis of deep models. As a result,
those models demonstrate improved performance, intuitive interpretation, and ef-
ficiency. The dissertation also discussed the potential synergy between feature
learning, and cognitive science together with neuroscience. For describing and
estimating human preferences, deep models can also be customized by the knowl-
edge of the cognitive and neural underpinnings of human perception.

Furthermore, there are a wide variety of promising research directions that I
wish to pursue further. As the dissertation established certain analytical corre-
spondence relationships between deep learning and sparse coding, the next step
aims to apply a similar methodology to more classical “shallow” models, where
important priors and assumptions beyond sparsity could be incorporated either
implicitly in feature engineering or explicitly as model constraints, such as the
linear additivity of signals, the three-dimensional geometry of objects, and statis-
tical assumptions such as conditional independence, latent variable structure, and
low-rank covariances.

In addition to deriving more novel model architectures, I also have the ambi-
tion to connect the analysis of deep models to the rich theoretical results obtained
in “shallow” models. The translation of those mature analytical tools is likely to
boost the badly-needed behavior interpretations and performance guarantees for
deep models. For example, one of my ongoing projects interprets a conventional
deep model as multiple one-step truncated sparse coding models stacked hierar-
chically. In that way, I study its convergence properties by taking advantage of
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the analytic tools that have been found effective in studying the theoretical perfor-
mances of sparse coding models.

To apply feature learning techniques to the emerging “Big Data” scenarios, one
needs to combat extra difficulties such as large volumes, high dimensions, imbal-
ance between classes, heterogeneous sources, weakly-structured or unstructured
data, ambiguous labeling, noises, incompleteness, and rich contexts. Such are the
challenges and roadblocks for the development of new applicable optimization
algorithms, where I have a keen interest.

Whereas deep learning has already been known to be analogous to brain mech-
anisms, there has been little progress to combine scientific findings and learning-
based models into an integrative framework. Starting from the preliminary work
in Chapter 4, I am looking forward to more systematically investigating the syn-
ergy among feature learning, cognitive science and neuroscience. More psycho-
logical and neuroscience mechanisms are expected to be modeled as the domain
expertise, and to be combined into the design of relevant deep models.

Finally, fast-growing biomedical and healthcare data have encompassed multi-
ple scales ranging from molecules, to individuals, to populations and have con-
nected various entities in healthcare systems (providers, pharma, payers) with in-
creasing bandwidth, depth, and resolution. Those data are becoming an enabling
resource for accelerating basic science discoveries and facilitating evidence-based
clinical solutions. Meanwhile, the sheer volume and complexity of the data present
major barriers toward their translation into effective clinical actions. It thus also
appeals to me to apply cutting-edge feature learning techniques to tackle real-
world medical and healthcare problems.
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