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ABSTRACT 

 

During the transition period dairy cows are exposed to enormous metabolic changes. 

These changes could affect the overall health and production. Two experiments were conducted 

on transition cows to evaluate the 1) effects of body condition score (BCS) on the 

endocannabinoid system and lipid metabolism gene expression in adipose tissue; and 2) effects 

of rumen-protected methionine on the endocannabinoid system in liver tissue.  In the first study, 

cows were retrospectively classified according to their BCS at -3 wk from parturition into two 

groups: HiBCS (BCS ≥ 3.75) or LoBCS (BCS ≤ 3.25 ). Adipose tissue at -10, 7, and 20 d around 

parturition was used to examine mRNA expression via qPCR of endocannabinoid receptors 

(CNR1, CNR2), enzymes that synthesize endocannabinoid (NAPEPLD), enzymes that degrade 

endocannabinoids (FAAH, NAAA, MGLL), and the hormone precursor proopiomelanocortin 

(POMC). We also examined mRNA expression via qPCR of genes associated with lipolysis 

(LIPE, ABDH5, ATGL), fatty acid oxidation (CPT1A, CPT2, ACADVL, ACOX1), oxidative stress 

(SOD1, SOD2), and genes that are involved in inflammation (TLR9, TLR4, NFE2L2). Expression 

of CNR2 and NAPEPLD was greater at 7 d in LoBCS due to lower expression at the same time 

in HiBCS. The expression of FAAH was upregulated at d 7 and 20 in LoBCS than HiBCS cows. 

Expression of MGLL was overall greater across time in LoBCS than HiBCS, LoBCS had a 

tendency for greater overall expression of POMC across time. Regarding the genes associated 

with lipolysis, LoBCS compared with HiBCS cows had overall greater expression of ABDH5, 

LIPE and ATGL, indicating a greater state of basal lipolysis over time. Among genes related with 

fatty acid oxidation the expression of CPT1A and ACADVL was greater in HiBCS than LoBCS 

due to greater expression at -10 and 7 d. For the mitochondrial enzyme SOD2, important for 
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clearing reactive-oxygen species that cause cellular stress and inflammation, we observed an 

interaction of BCS × day due to higher expression at d 7 in LoBCS than HiBCS. There was an 

overall BCS effect on the expression of SOD1 due to greater expression in LoBCS compared 

with HiBCS. 

In the second experiment, cows were fed experimental diets consisting of a basal control 

diet (CON) or rumen-protected methionine-supplemented (MET) during the transition period (-

21 through 30 days in milk). The liver was biopsied at -10, 7, 20 and 30 days relative to 

parturition. Gene expression was determined through qPCR for endocannabinoid receptors 

(CNR1, CNR2), enzymes that synthesize endocannabinoid (NAPEPLD), enzymes that degrade 

endocannabinoid (FAAH, NAAA, MGLL), and the hormone precursor proopiomelanocortin 

(POMC). A significant interaction of treatment × day was observed for the endocannabinoid 

receptor CNR2 associated with lower expression in MET compared with control cows on d -10. 

There was an overall greater expression of FAAH, MGLL, NAAA and the EC-synthesizing 

enzyme NAPEPLD in MET compared with control cows. Cows supplemented with MET had 

greater in vitro blood neutrophil phagocytosis, neutrophil oxidative burst and monocyte oxidative 

burst. 

Results from experiment 1 indicate that expression of the endocannabinoid system and 

lipid metabolism genes in adipose tissue may be associated with BCS. A potential linkage 

between those pathways and risk of disorders postpartum remains to be determined. Results from 

experiment 2 suggest that the alterations in the hepatic EC signaling network in response to MET 

might be involved in the positive effect on performance and liver function. 
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INTRODUCTION 

During the transition period in dairy cows, major metabolic changes occur, which 

negatively impact the immune function, milk production and feed intake (Drackley, 1999). To 

meet their energy requirements, close to parturition in, a huge decrease in dry matter intake 

(DMI) exposes cows to negative energy balance (NEB) (Bauman and Currie, 1980).  The NEB 

leads to the extensive mobilization of fatty acids stored in adipose tissue, and could affect liver 

and immune function further exacerbating the stress on the animal. If severe, the state of NEB 

will increase the chance of metabolic and infectious disorders. Feeding management during 

transition period could have an impact on cow health, milk production and postpartum DMI 

(Dann et al., 2006). 

Several researches using model organisms have investigated the importance of 

endocannabinoid system (ECS) in regulating lipid metabolism, food intake, and immune system. 

The endocannabinoid system is well-studied in non-ruminants and reported to control energy 

balance, feed intake, and other metabolic processes. The ECS includes endocannabinoids, 

cannabinoid receptors, and enzymes for synthesis and degradation of endocannabinoid 

(Maccarrone et al., 2010). Data from a previous study investigated the role of ECS in bovine 

liver in response to prepartal plane of nutrition and uncovered a potential link between this 

system and lipid metabolism (Khan et al., 2012). 

Body condition score (BCS) helps to evaluate the nutritional status of the animal, and 

could have an enormous effect on DMI and energy balance postcalving (Hayirli et al., 2002). 

The effect of BCS on milk production has been observed in different studies (Garnsworthy and 

Topps, 1982; Bourchier et al., 1987).  An ideal BCS score at calving could help cows have a 
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successful transition period and maximize the performance during postpartum period (Akbar et 

al., 2015). Also, a relationship between BCS and oxidative stress has been observed in dairy 

cows (Bernabucci et al., 2005a) demonstrating that cows with higher BCS at calving and cows 

with higher change in BCS from prepartum to postpartum are more sensitive to oxidative stress. 

Methionine is a limiting amino acid for milk synthesis in dairy cows (Schwab et al., 

1992), hence, the supplementation of rumen-protected methionine during transition period has 

improved milk yield, milk protein and postpartum immune function (Schmidt et al., 1999; Osorio 

et al., 2013). The relationship between ECS and methionine deficiency on liver development and 

function was investigated in a recent study using zebra fish (a model organism) (Liu et al., 2016), 

and results revealed that methionine supplementation can prevent many metabolic deficiencies 

associated with EC signaling.    

The objectives of these studies were 1) to evaluate the effect of BCS on endocannabinoid 

system and lipid metabolism in bovine adipose tissue during the transition period, and 2) the 

effects of rumen-protected methionine supplementation on the endocannabinoid system in 

bovine liver during the transition period. 
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CHAPTER I 

LITERATURE REVIEW 

Transition period 

Changing from a non-lactating to a lactating state is known as the “transition period” in 

dairy cows, and this stage is the most critical time in the life cycle. The transition period 

typically starts from 3 weeks prepartum until 3 weeks postpartum (Grummer, 1995). During this 

period the animal is susceptible to different metabolic disorders, which could negatively affect 

immune function, milk production and feed intake (Drackley, 1999). A successful transition 

period is imperative for ensuring an optimal lactation in dairy cows. 

During the transition period, the nutrient requirements increase to maintain fetal growth 

and milk synthesis (Grummer, 1995). The dry matter intake (DMI) decreases close to calving 

(Bertics et al., 1992). The decrease in DMI starts 3 weeks before calving (Drackley, 1999). The 

reduction in DMI prepartum and increase in nutrient requirements affect metabolism, specifically 

lipid metabolism (Grummer, 1995). This change in lipid metabolism in tissues like liver and 

adipose occurs to cover the gap between DMI and nutrient requirements. Due to the variation 

between DMI and nutrient requirements, the NEB during the prepartum period will affect the 

overall health and reproductive system. Several researchers have investigated the effects of level 

of dietary energy during the dry period in the context of a successful transition in dairy cattle 

(Douglas et al., 2006, Loor et al., 2006, Janovick and Drackley, 2010). 

When the time of calving approaches, dairy cows  experience a change in their behavior, 

feed intake pattern and their physiology (Huzzey et al., 2005). All these alterations in the body 
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cause stress for the animal which will negatively affect the immune system and increase the 

chances of disease during this time. Feeding management during this period could have a 

positive effect on cow health, milk production and postpartum DMI (Dann et al., 2006). 

Importance of adipose tissue  

There are two types of adipose tissue in mammals; brown adipose tissue and white 

adipose tissue. The primary function of brown adipose tissue is to regulates heat generation 

(Cannon and Nedergaard, 2004), whereas white adipose tissue plays a major role in energy 

homeostasis by serving as a storage of lipids when nutrient supply is increased and releasing the 

fatty acids when the nutrient supply is below the body requirements (Trayhurn and Beattie, 

2001). During early pregnancy, the storage of lipid in adipose tissue increases, while in late 

pregnancy and early lactation this lipid store will rapidly be mobilized due to hormonal changes 

and the sudden increase in mammary gland requirements (McNamara, 1989). 

Fat deposition is determined by the balance between lipolysis and lipogenesis. During 

feeding of lower energy diets in dairy cows, they tend to increase lipolysis and decrease 

lipogenesis by altering in some hormones such as insulin and leptin (Roche et al., 2009). 

Increasing lipid mobilization after calving leads to an increase in the hepatic uptake of 

nonesterified fatty acids (NEFA) causing TG accumulation, which could cause different 

metabolic disorders such as fatty liver. 

During energy restriction lipolysis within adipose tissue, which involves TG breakdown 

into free fatty acid (FFA) and glycerol, provides FFA as a source of energy to tissues like the 

liver. Hormone sensitive lipase (HSL) and monoacylglycerol lipase (MGLL) are responsible for 

hydrolyzing the ester bonds of tissue triglyceride. Some of the glycerol is used to re-synthesize 
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triglyceride through the process of “glyceroneogenesis” which leads to production of glycerol-3-

phosphate from substrates like lactate or amino acids feeding into the TCA cycle (Nye et al., 

2008). A portion of the FFA released can be re-esterified, exported into the blood, or oxidized 

for energy within the adipose. The use of glycerol to re-synthesize triglyceride is called 

esterification, a process distinct from lipogenesis, which involves synthesis of fatty acids de novo 

(e.g. 16:0). Both lipolysis and re-esterification are persistently occurring in adipocytes (Herdt, 

2000). Some of the glycerol that is released from the adipose tissue is used by the liver to 

provide glucose (via gluconeogenesis) for the synthesis of lactose in the mammary gland 

(Hanigan et al., 2002). 

The nutritional state of the animal is very important in terms of fatty acid utilization, i.e. 

when the animal has adequate dietary energy from carbohydrates and lipid they will convert 

some of the carbohydrate to fatty acid and use it for esterification; however, when the animal 

does not receive enough dietary energy from the feed, adipose tissue lipolysis provides fatty 

acids to other tissues to oxidize them for energy. Adipose tissue itself can also oxidize fatty acids 

during periods of dietary energy-insufficiency. In non-ruminants, fatty acid synthesis takes place 

in liver and adipose tissue, but in the ruminant the adipose and mammary gland (during lactation) 

are the most important tissues synthesizing fatty acids de novo. Long chain fatty acids can be 

obtained from the diet or from lipogenesis using acetyl-coenzyme A (acetyl-CoA). Acetyl CoA 

is used by the first enzyme of fatty acid synthesis, acetyl-CoA carboxylase-alpha (ACACA) 

(Wakil and Abu-Elheiga, 2009).  Fatty acid synthesis requires acetyl-CoA, malonyl-CoA 

(synthesized from ACAC), and other enzymes and transcription factors that control NADPH 

synthesis and fatty acid synthesis prior to esterification into triglyceride. 
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Lipolysis has been investigated in dairy cattle by many researchers (Shirley et al., 1973; 

Yang and Baldwin, 1973), and they were able to determine alterations in enzymes that control 

lipid metabolism. The key hormones involved in lipolysis regulation include catecholamines, 

insulin, growth hormone, and thyroid hormones with catecholamines considered as the essential 

hormone that stimulates lipolysis by binding to the β-adrenergic receptor followed by activation 

of G- protein coupled receptors (Sekar and Chow, 2014).  

During early lactation the lipolytic pathway increases to meet the energy requirements of 

the mammary gland. Increases in the rate of lipolysis in adipose tissue depends on the production 

ability (i.e. genetic merit of the cow) and dietary energy level (McNamara, 1991). Hormone-

stimulated lipolysis is regulated by HSL which catalyzes the release of fatty acids and glycerol 

from TG. HSL is activated via phosphorylation by protein kinase A (PKA). The activity of HSL 

peaked at 60 d after calving and decline at late gestation  (Smith and McNamara, 1990). 

Adipose triglyceride lipase (ATGL) is responsible for basal lipolysis, the activation of 

ATGL requires the activator protein abhydrolase domain containing 5 (ABDH5) (Duncan et al., 

2007). The activation of G-protein coupled receptor leads to the production of cAMP which then 

activates protein kinase A leading to phosphorylation of HSL  (Kraemer and Shen, 2002). In 

monogastric animals AMP-activated protein kinase (AMPK) is involved in the regulation of 

lipolytic processes (Gauthier et al., 2008). In a recent study (Locher et al., 2012), it was 

determined that lipolysis during early lactation is associated with an increase in phosphorylation 

of AMPK in bovine adipose tissue. 

Importance of liver 
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The liver plays a major role in terms of NEB and lipid mobilization through transition 

period. There is an effect of NEB in dairy cow liver during early and late lactation periods (Gross 

et al., 2013). Increasing lipid mobilization results in a large amount of NEFA released from the 

adipose tissue (Imhasly et al., 2015). The oxidation of long chain fatty acids within adipose 

tissue and liver takes place in mitochondria and peroxisomes (Drackley et al., 2001). The liver 

removes a large amount of NEFA and use them to synthesize ketone bodies or to synthesize 

triglyceride. Ketone bodies released from the liver can be used as an energy source by peripheral 

tissues during periods of NEB (i.e. when glucose availability decreases). The oxidation of fatty 

acids produces Acetyl CoA and ketone bodies, excessive production of ketone bodies could 

negatively affect the health and production of cows (Herdt, 2000). 

Increases in the concentration of NEFA in the blood and the inability of the liver to 

completely oxidize them often leads to synthesis of a large amount of triglycerides within liver. 

Very low density lipoproteins are essential for the removal of triglyceride from the liver into the 

blood (Brickner et al., 2009). Most of the TG exported by the liver will be used by different 

tissues as an energy source, and some will go to the mammary gland to synthesize milk fat 

(Drackley et al., 2006). When the rate of triglyceride-fatty acids that is released from adipose 

lipid mobilization is higher than what is exported by the liver the accumulated TG in the liver 

can get above the threshold that is considered adequate, and cause fatty liver. This is an 

important metabolic disorder that is associated with many different diseases and can decrease 

milk yield (Grummer, 1993; Drackley, 1999). 

In non-ruminants, insulin and glucagon signaling within liver play important roles during 

NEB. It is well-established that increased insulin causes a reduction in carnitine 

palmitoyltransferase I (CPT1A) activity in liver, which can lead to decreased NEFA transport 
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into mitochondria causing a decrease in ketogenesis (McGarry and Foster, 1980). On the other 

hand, the increase of insulin promotes esterification and increases the synthesis of triglyceride in 

adipose tissue (Keller et al., 1988). Glucagon works to stimulate gluconeogenesis, promote the 

activation of CPT1A and stimulate the entry of NEFA into mitochondria to produce Acetyl-CoA 

for synthesis of ketone bodies (Kerner and Hoppel, 2000). The transport of monocarboxylic 

acids like ketone bodies and lactate plays a major role in body weight and fat deposition (Pierre 

and Pellerin, 2005). 

Body condition score 

In the United States, dairy farmers utilize a five-point scale to evaluate body condition 

score; whereas a score 1 indicates very thin cows, a score of 5 denotes fat or “overconditioned” 

cows (Wildman et al., 1982). Body condition scores help to evaluate the amount of fat deposition 

in the body, and give a good indication to the nutritional status of the animal. Body condition 

score plays an important role in animal health, with a high body condition score during the 

prepartum period often being related to different postpartum metabolic disorders in dairy cows 

(Cameron et al., 1998; Buckley et al., 2003). Also, high body condition is associated with high 

NEFA concentration in the blood (Rukkwamsuk et al., 1998). Cows with high body condition 

score prepartum often lose more body weight and condition postpartum than thin cows (Treacher 

et al., 1986). 

Body condition score at calving could affect DMI postcalving. There is evidence to show 

that DMI postpartum decreases with increased BCS at calving (Hayirli et al., 2002). 

Furthermore, an increase in fat depots precalving leads to inhibition of feed intake postcalving 

(Garnsworthy and Topps, 1982). Busato et al. (2002) determined the relationship among 
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metabolic and endocrine changes with pre-calving and post-calving BCS loss. They observed 

that cows with prepartum BCS > 3.25, which also lost more than 0.75 BCS points in the first 2 

months of lactation, were more susceptible to subclinical ketosis than cows with prepartum BCS 

< 3.25 and lost less than 0.75 BCS point postpartum. 

Body condition score at calving and the loss of BCS after calving often affect milk yield, 

but the evidence of the effect of BCS on milk yield is conflicting. Some studies reported a 

negative relationship between BCS and milk yield, particularly due to the difference in DMI 

between fat cows and thin cows, this is because cows with high BCS prepartum consume less 

DMI postpartum than cows with low BCS (Garnsworthy and Topps, 1982; Bourchier et al., 

1987). Other data show that cows that had BCS at calving 2.5 produced more milk than cows 

that had BCS 4 at a 5- point scale (Treacher et al., 1986). Other research reported no significant 

effect of BCS at calving on milk yield. Some studies reported a positive effect of BCS on milk 

yield (Waltner et al., 1993; Stockdale, 2004). 

Oxidative stress  

Increase metabolic rate during the transition period leads to an increase in the 

requirement of oxygen for metabolism in organs such as the liver. As such, there is an increase in 

the production of reactive oxygen species (ROS). The disequilibrium between ROS production 

and antioxidant defenses could expose dairy cows to increased oxidative stress. Oxidative stress 

plays a major role in the pathogenesis of different diseases in dairy cattle (Miller et al., 1993; 

Castillo et al., 2005). Oxidative stress results in damage of unsaturated lipids with a subsequent 

change of cell membrane and other cellular chemical properties (Toyokuni, 1999) leading to an 

overall change of tissue metabolic function. 
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Negative energy balance could be a primary reason for the development of oxidative 

stress during the transition period (Pedernera et al., 2010). In humans and mice, there is a 

relationship between fat deposition and systemic oxidative stress where the production of ROS 

increases in white adipose tissue in obese mice as a result of increased expression of NADPH 

oxidase and reduced expression of antioxidant enzymes (Furukawa et al., 2004). In dairy cows, 

some data showed that cows with high BCS during the prepartum period and with a bigger loss 

of BCS postpartum were more susceptible to oxidative stress (Bernabucci et al., 2005a). 

Superoxide dismutase (SOD) is one of the most important defense mechanisms involved 

in the control of ROS concentrations (Martindale and Holbrook, 2002), and specifically the 

removal of superoxide. There are different types of SOD enzymes found in mammalian 

including SOD1 and SOD2. Superoxide dismutase (SOD1) was the first enzyme characterized 

and it is found in intracellular cytoplasmic spaces (Zelko et al., 2002). In contrast, SOD2 is 

primarily located in the mitochondria and because this organelle is the primary site for the 

production of ROS, mitochondrial SOD2 plays an important role in maintaining cellular ROS 

balance (Drose and Brandt, 2012). For example, the inhibition of SOD2 led to accumulation of 

ROS which caused an increase in the intracellular oxidative stress (Hu et al., 2005). 

Methionine 

Methionine is one of the most-limiting amino acids for milk synthesis in dairy cows 

(Schwab et al., 1992). During the transition period, the decrease in DMI and the increase in 

nutrient demands by the mammary gland are the key causes that increase the methionine 

requirements and the need for supplementation (Grummer, 1995). In addition to production 

outcomes, the increase in the availability of methionine could positively affect S-
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adenosylmethionine (SAM), which is the primary biological methyl donor (Finkelstein, 1990), 

concentration at the tissue level. To further complicate the issue, the rumen microbes decrease 

the dietary availability of methionine which makes the supplementation of rumen-protected 

methionine necessary. Several researchers demonstrated a benefit of rumen-protected methionine 

supplementation in terms of milk yield (Schmidt et al., 1999) and milk fat content (Socha et al., 

2005). Other more recent studies observed a positive effect of rumen-protected methionine 

during the peripartal period on alleviating oxidative stress (Osorio et al., 2014).  

Methionine is also involved in very low-density lipoprotein (VLDL) synthesis, and plays 

an important role as a lipotropic agent which could help clear lipid from the liver (Auboiron et 

al., 1995). Some studies have observed lower liver TG with rumen-protected choline (Zom et al., 

2011), whereas other studies reported no effect of methionine supplementation on TG level 

(Piepenbrink et al., 2004; Osorio et al., 2013). 

Endocannabinoid System 

Endocannabinoids (ECs) are fatty acid amides that in non-ruminants have the ability to 

control feed intake, energy balance, and have anti-inflammatory properties (Guindon and 

Beaulieu, 2006; Maccarrone et al., 2010). The endocannabinoid system (ECS) includes at least 

two receptors (CNR1 and CNR2) that were originally discovered as the target of the Cannabis 

sativa activate molecule Δ9-tetrahydrocannabinol (Pertwee et al., 2010). Cannabinoid receptors 

are G-protein coupled receptors, and in non-ruminants are expressed in central nervous system 

(CNS) and peripheral tissues that include liver, adipose tissue and skeletal muscle (Matias and Di 

Marzo, 2007; Khan et al., 2012).  
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The ECS also include cannabinoid receptor agonists called endocannabinoids the most 

studied of which are anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl 

glycerol (2-AG) (Devane et al., 1992). These EC are synthesized on demand (Di Marzo et al., 

2005). The endocannabinoid system also includes enzymes to regulate the EC level such as N- 

acyl-phosphatidylethanolamines (NAPE)-hydrolyzing phospholipase D (NAPE-PLD) the main 

enzyme to synthesize AEA, palmitoylethanolamine (PEA), and oleoylethanolamine (OEA) and 

also diacylglycerol lipase that leads to production of 2-AG (Bisogno et al., 2003). There are 

different enzymes involved in the degradation of AEA and 2AG of which the most important are 

fatty acid amide (FAAH) (Fezza et al., 2008) and monoacylglycerol lipase (MGLL) (Dinh et al., 

2002b). 

In non-ruminants, endocannabinoids have the ability to control appetite, food intake and 

energy balance (Randall, 2007; Pacher et al., 2008; Pagano et al., 2008). For example, low doses 

of anandamide can increase food intake by actions at the brain level of CNR1 (Hao et al., 2000), 

and administration of 2-AG also increases food intake (Kirkham et al., 2002). Some data showed 

that CNR1 knockout mice had lower rates of feed intake compared with wild-type mice (Jelsing 

et al., 2008). However, the level of AEA and 2-AG is affected by nutrient status such that fasting 

increase the level of cannabinoids especially 2AG;  feeding decreased the 2AG level (Hanus et 

al., 2003).  

In non-ruminants, endocannabinoids can regulate lipid and glucose metabolism by 

binding to peroxisome proliferator-activated receptors (Bensinger and Tontonoz, 2008) and they 

have the ability to enhance adipogenesis by promoting lipoprotein lipase (LPL) and fatty acid 

synthase activity in the adipose tissue. The LPL activity increased during the activation of CNR1 

(Cota et al., 2003). On the other hand, the endocannabinoids are able to inhibit lipolysis and fatty 
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acid oxidation through preventing adenylyl cyclase and AMPK activity (Maccarrone et al., 

2010).  

In liver tissue, the relationship between ECS and various liver diseases has been 

investigated in several studies with non-ruminants, and they demonstrated that the normal liver 

contains a low level of endocannabinoids (Siegmund et al., 2006; Teixeira-Clerc et al., 2006). 

Several hepatic disorder such as fatty liver and fibrosis cause upregulation of endocannabinoid 

levels in the liver (Teixeira-Clerc et al., 2006). The increase level of AEA during the early stages 

of fatty liver was caused by a decrease in the degradation of AEA by FAAH (Siegmund et al., 

2006). The expression of endocannabinoid receptors CNR1 and CNR2 is very low in normal 

liver, and is upregulated in various liver diseases, thus, providing more evidence that the activity 

of the endocannabinoid system is low under normal conditions (Siegmund and Schwabe, 2008). 

As discussed above, BCS and feeding management during the transition period play an 

important role in overall animal health and production. The role of the endocannabinoid system 

in regulating feed intake and immune system in non-ruminant has been well studied. As far as 

we know, only one study has been done in bovine related to the endocannabinoid system and 

demonstrated that ECS may be associated with lipid metabolism which could be affected by 

energy balance (Khan et al., 2012). Investigating the effect of BCS and feeding management 

during the transition period on the endocannabinoid system could increase our understanding of 

this system in the context of metabolism and immune function. 
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CHAPTER II 

ENDOCANNABINOID AND LIPID METABOLISM GENE NETWORK EXPRESSION 

IN ADIPOSE TISSUE OF PERIPARTAL COWS WITH HIGH OR LOW BODY 

CONDITION SCORE  

ABSTRACT  

Our previous research has revealed a strong inflammatory response within adipose tissue 

during the transition into lactation. Whether this localized effect is a result of oxidative stress 

induced by lipolysis and fatty acid oxidation or via the production of endocannabinoids remains 

to be determined. The objective of this study was to investigate the expression of genes 

composing the endocannabinoid signaling system and lipid metabolism in adipose tissue during 

the transition period in dairy cows. Twenty multiparous Holstein cows were retrospectively 

divided by body condition score (BCS) into two groups (10 cows/group): BCS ≤ 3.25 (LoBCS) 

and BCS ≥ 3.75 (HiBCS). Adipose tissue was biopsied at d -10, 7 and 20 relatives to parturition. 

Tissue RNA was used to evaluate 28 target genes via quantitative real time RT-PCR. Among the 

endocannabinoid-related genes, a BCS × day was observed for NAPEPLD, CNR2 and FAAH. 

Expression of NAPEPLD and CNR2 was greater at d 7 in LoBCS than HiBCS cows, while 

FAAH was upregulated at d 7 and 20 LoBCS than HiBCS cows. Expression of monoglyceride 

lipase (MGLL), which inactivates 2-rachidonoylglycerol, was overall greater across time in 

LoBCS than HiBCS. Regarding the genes related with lipid metabolism, a BCS × day was 

observed for the mitochondrial enzyme SOD2, important for clearing reactive-oxygen species 

that cause cellular stress and inflammation, because of greater expression at d 7 in LoBCS than 

HiBCS. The expression of SOD1 was greater in LoBCS vs. HiBCS. A tendency for a BCS × day 
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was observed for LIPE due to greater expression at d 7 and 20 in LoBCS than HiBCS. Among 

genes associated with lipolysis, LoBCS compared with HiBCS cows had overall greater 

expression of ABDH5 and ATGL, indicating a greater state of basal lipolysis over time. Among 

genes related with fatty acid oxidation and transporter CPT1A and ACADVL was greater in 

HiBCS than LoBCS due to greater expression at -10 and 7 d. Among the genes related to 

glyceroneogenesis, higher expression of PCK1 in LoBCS than HiBCS indicates a greater rate of 

FA recycling in LoBCS. Overall, data indicated that cows with BCS 3.25 or lower before calving 

experienced greater alterations in lipid metabolism and endocannabinoid signaling whereas, 

cows with BCS 3.75 or higher showed higher expression of genes related to inflammation like 

TLR4 and TLR9. A potential linkage between those pathways and risk of disorders postpartum 

remains to be determined. 
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INTRODUCTION 

The endocannabinoid system (ECS) contains cannabinoid receptors, endogenous 

cannabinoid agonists known as endocannabinoid, and the enzymes involved in endocannabinoid 

synthesis and degradation (Vahatalo et al., 2015). Endocannabinoid receptors CNR1 and CNR2 are 

G- protein coupled receptors. They are mainly expressed in central nervous system, and in immune 

cells but also in peripheral tissues (Mechoulam and Parker, 2013). The most important endogenous 

cannabinoids are N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol 

(2-AG). Endocannabinoid-like molecules like N-palmitoylethanolamide (PEA) and N-

oleoylethanolamide (OEA) are endogenous fatty acyl amides, but they do not have the ability to 

activate cannabinoid receptors (Maccarrone et al., 2010). Anandamide and 2-AG are synthesized 

by multiple biosynthetic pathways. N-acyl-phosphatidylethanolamines (NAPE)- hydrolyzing 

phospholipase D (NAPE-PLD) is the first enzyme in the pathway to synthesize AEA, PEA, and 

OEA (Petrosino et al., 2009). The degradation of endocannabinoids occurs through fatty acid 

amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and monoglyceride lipase 

(MGLL) (Matias and Di Marzo, 2006). 

The discovery of the role of the endocannabinoid system in modulating energy balance and 

controlling feed intake led to demonstration the effect of this system in adipose tissue. Several 

studies indicate a direct effect of endocannabinoid in adipose tissue (Cota et al., 2003; Hildebrandt 

et al., 2003). The level of AEA and 2-AG is highly affected by nutrient status; fasting can increase 

levels of 2-AG and AEA in the part of the brain involved in regulation of food intake, whereas 

feeding reduces these levels (Soria-Gomez et al., 2014). N-oleoylethanolamide can stimulate a 

satiety signal and inhibit food intake via activation of peroxisome proliferator-activator receptor α 

(PPARα) (Gomez-Boronat et al., 2016). Data from rodents reported the effect of endocannabinoid 
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in the regulation of fat metabolism, where the activation of CNR1 in mice increased the expression 

of lipogenic and fatty acid synthesis genes (Osei-Hyiaman et al., 2005). In addition, EC prevents 

adenylyl cyclase and AMPK activity which will lead to inhibition of lipolysis and fatty acid 

oxidation (Maccarrone et al., 2010). 

During the transition from a non-lactating to a lactating stage, dairy cows are susceptible 

to metabolic disorders and immunologic challenges. Dry matter intake (DMI) decreases in the 

prepartum and rapidly declines when calving date is approaching (Robinson and Garrett, 1999). 

Due to the variation between DMI and nutrient requirements, most dairy cows will experience 

negative energy balance (NEB) (Drackley et al., 2001). Negative energy balance affects 

metabolism in different tissues, and particularly adipose tissue (Grummer, 1995). Adipose tissue 

plays an important role in the maintenance of metabolic homeostasis during the transition period 

(McNamara, 1991). During late pregnancy and early lactation, the adipose tissue starts to break 

down the triglyceride to generate fatty acids (FAs) and glycerol in a process known as lipolysis. 

The main purpose of lipolysis is providing energy to other organs among the body. Lipolysis and 

lipogenesis in adipose tissue are regulated by different hormones around parturition (Sumner-

Thomson et al., 2011). Non-esterified fatty acids (NEFA) concentration in blood is a good 

indicator of adipose tissue mobilization (Bell, 1995). Understanding the function of adipose tissue 

and lipid metabolism might help to decrease the occurrence of metabolic disorders. 

After parturition in dairy cows, the mobilization of fat stored in adipose tissue leads to the 

loss in body condition score. Roche et al. (2013) showed the relationship between body condition 

score (BCS) and cow metabolic profiles. Body condition score at calving and early lactation are 

related to the occurrence of several metabolic disorders like ketosis and fatty liver (Drackley, 1999; 

Gillund et al., 2001). It was reported that cows with high body condition score at calving lose more 
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body weight and body condition than cows with low BCS (Treacher et al., 1986; Bernabucci et al., 

2005a). There is a relationship observed between obesity and oxidative stress in humans (Ozata et 

al., 2002; Morrow, 2003). Bernabucci et al. (2005) reported a connection between BCS, lipid 

mobilization and the imbalance in oxidative status in transition cows. 

The postnatal effect in non-ruminants of the EC system in pathogenesis of obesity and their 

role in controlling food intake, body weight and metabolic processes is relatively well-known 

(Rossi et al., 2016). Endocannabinoid receptors in adipose tissue prevent lipolysis and fatty acid 

oxidation and increase the expression of lipogenic and fatty acid synthesis genes (Osei-Hyiaman 

et al., 2005). Dry matter intake postpartum decreases in cows with high BCS prior to calving 

(Hayirli et al., 2002) and also the increase in fat depots precalving leads to inhibition of feed intake 

postcalving. (Garnsworthy and Topps, 1982). A previous study investigated the role of EC system 

in bovine liver in response to prepartal plane of nutrition (Khan et al., 2012), and demonstrated 

that the expression of ECS and POMC in bovine liver was effected by prepartal plane of nutrition. 

This response could associate with lipid metabolism and energy balance by controlling hepatic 

intracellular signals. 

The primary objective of this study was to evaluate the effect of body condition score befor 

calving on the endocannabinoid signaling system and lipid metabolism genes in adipose tissue 

during the transition period in dairy cows retrospectively grouped into a high or low BCS at 

calving. 
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MATERIALS AND METHODS 

Animals and diets 

All the procedures for this study were conducted in accordance with a protocol approved 

by the Institutional Animal Care and Use Committee of the University of Illinois (Protocol 

#13023). Twenty Holstein cows were selected according to the body condition score (3.75 ±0.12) 

or higher (n = 10) and cows have (3.25±0.15) or lower (n = 10). All cows received the same diet; 

from -50 to -23 d before expected calving they received a far-off diet (1.40 Mcal/kg of DM, 10.2% 

RDP, and 4.1% RUP), from -21d to expected calving they received a close-up diet (1.52 Mcal/kg 

of DM, 9.1% RDP, and 5.4% RUP), and from calving until 30 DIM they received a lactation diet 

(1.71 Mcal/kg of DM, 9.7% RDP, and 7.5% RUP) (Table 2.1). Diets were fed as a total mixed 

ration (TMR) once daily (0630 h). Dry cows were housed in a free-stall barn with an individual 

Calan (American Calan, Northwood, NH, USA) gate feeding system. Cows had access to sand-

bedded free stalls until 3 d before expected calving date, when they were moved to an individual 

maternity pen bedded with straw until the calved. After calving, cows were housed in a tie-stall 

barn and were fed a common lactation diet once daily in the morning and milked 3 times daily at 

approximately 6:00, 14:00, and 22:00. 

Adipose tissue 

Subcutaneous adipose tissue biopsies were collected from the tail-head region at -10, 7 and 

20 days relative to parturition. The samples were immediately frozen in liquid nitrogen and 

transferred to –80 °C freezer for future analysis.  
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RNA extraction, PCR, and design and evaluation of primers 

RNA extraction 

The frozen tissues were used to extract the RNA using protocols established in our 

laboratory (Loor et al., 2007). Briefly, adipose tissue samples were weighed (~0.2-0.4 g) and 

immediately placed 1.2 ml of ice-cold Qiazol reagent (Qiagen 75842; Qiagen Inc., Valencia, CA) 

for homogenization. After homogenization, genomic DNA was removed from RNA with DNase 

using RNeasy Mini Kit columns (Qiagen, Hilden, Germany). The Nano-Drop ND-1000 

spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA) was used to measure the 

concentration of RNA, while The quality of RNA was evaluated using the Agilent Bioanalyzer 

system (Agilent 2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA, USA).  

qPCR analysis 

The cDNA was synthesized with 100 ng RNA. The RNA was mixed with the Master Mix-

1(MM1) containing 9 µL DNase/RNase free water and l µL random primers (Roche® Cat. No. 11 

034 731 001, Roche Diagnostics GmbH, Mannheim, Germany), then incubated at 65°C for 5 min 

and kept in ice for 3 min. The reaction was perform using Eppendorf Mastercycler®.  9 µl of Master 

Mix-2 (MM2) consists of 1.625 µL DNase/RNase free water, 4 µL 5X First-Strand Buffer, 1 µL 

Oligo dT18, 2 µL 10 mM dNTP mix (10 mM; Cat. No. 18427-088; Invitrogen), 0.25 µL of Revert 

aid (200 U/µL; Cat. No. EP 0441; Fermentas), and 0.125 µL of RNase inhibitor (20 U/µL; Cat. 

No. EO 0382; Fermentas). Samples then were incubated (MM1+RNA and MM2) at the following 

temperature program: 25°C for 5 min, 42°C for 60 min and 70°C for 5 min. An aliquot of undiluted 

cDNA from all samples was pooled to make samples of standard curve by diluting with 

DNase/RNase free water, then the cDNA was diluted 1:4 with DNase/RNase free water. 
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Quantitative PCR was performed using 4 µL diluted cDNA combined with 6 µL of a 

mixture contain 5 µL 1 ´ SYBR Green master mix (Applied Biosystems, CA, USA), 0.4 µL each 

of 10 µM forward and reverse primers, and 0.2 µL DNase/RNase free water in a MicroAmp™ 

Optical 384-Well Reaction Plate (Applied Biosystems, CA, USA). An ABI prism 7900 HT SDS 

instrument was used at the following program: 2 min at 50 °C, 10 min at 95 °C, 40 cycles of 15 s 

at 95 °C, and 1 min at 60 °C. (Gene symbol, ID and accession number are shown in table2.2) 

The final data were normalized using the geometric mean of three internal control genes 

(ICG): UXT, GAPDH and RPS9. The relative mRNA abundance was calculated as previously 

reported (Bionaz and Loor, 2008) using the median ∆Ct (∆Ct = Ct of the gene – geometrical mean 

Ct of internal control genes) corrected by efficiency (E), where % relative mRNA abundance = [ 

1/E∆Ct ] / ∑[1/E∆C] all measures genes × 100 . The PCR efficiency was calculated for each gene 

using the standard curve method] E=10(-1/slope)] .  

 Statistical analysis 

After the data had been normalized with the geometric mean of the internal control genes, 

the quantitative PCR data were log2 transformed before statistical analysis to obtain a normal 

distribution. Statistical analysis was performed with SAS (SAS Institute, Inc., Cary, NC, USA). 

Normalized, log2-transformed data, were subjected to ANOVA and analyzed using repeated 

measures ANOVA with PROC MIXED. The statistical model included time (day; −10, 7 and 20 

d relative to parturition), BCS (HiBCS and LoBCS), and their interactions (BCS × time) as fixed 

effects. Data were considered significant at P ≤ 0.05 and tendencies at P ≤ 0.15. 
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RESULTS 

Dry matter intake and milk production 

Prepartum, we observed a tendency for an effect of BCS on DMI (BCS P = 0.15) (Figure 

2.1) due to more feed intake in LoBCS than HiBCS. There was also a tendency in the first days 

(BCS × Time P = 15) after calving where LoBCS score tended to eat more than HiBCS (Figure 

2.1). We did not observe any effect of BCS on milk yield between the two groups (Figure 2.2). 

Genes involved in the endocannabinoid system  

The expression of genes involved in the ECS system is shown in Figure 2.3. There was an 

interaction of BCS x time (P ≤ 0.05) on the mRNA expression of EC receptor CNR2 due to a 

greater expression at 7 d in LoBCS than HiBCS cows. Similar to CNR2, the expression of 

NAPEPLD the first enzyme responsible for the synthesis of AEA and OEA increased during 

postpartum, which resulted in higher expression (BCS × time P ≤ 0.05) at 7 d in cows with LoBCS. 

Fatty acid amide hydrolase (FAAH) was upregulated at d 7 and 20 in Lo BCS compared with 

HiBCS cows. Expression of monoglyceride lipase (MGLL), which inactivates 2-

arachidonoylglycerol, was overall greater (P ≤ 0.05) across time in LoBCS than HiBCS. In 

addition, LoBCS compared with HiBCS cows had a tendency (P = 0.06) for greater overall 

expression of POMC across time. 

Genes involved in lipolysis   

Regarding to the genes involved in lipolysis (Figure 2.4), the expressions of ATGL which 

catalyzes the first step in triglyceride hydrolysis and LIPE were affected by BCS (P ≤ 0.05), with 

ATGL having overall greater expression in LoBCS than in HiBCS cows. There was a strong 
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tendency in the expression of LIPE (BCS × time P = 0.07) due to greater expression at d 7 and 20 

in LoBCS than HiBCS. An overall greater expression of ABDH5 (P = 0.04) was detected in LoBCS 

cows. 

Fatty acid oxidation and transport genes 

There was an interaction (BCS × time P ≤ 0.05) in the expression of CPT1A, which is the 

key enzyme in fatty acid oxidation due to its increase at -10 and 7 d in HiBCS compared with 

LoBCS (Figure 2.5). There was no BCS or BCS × time effect for the expression of CPT2. 

However, HiBCS experienced a gradual increase (time P = 0.05) between -10 and 20 d.  Acyl-

CoA dehydrogenase, very long chain (ACADVL) is another enzyme that plays a key role in the 

oxidation of long chain fatty acids. The expression of ACADVL was higher in HiBCS than LoBCS 

across time (P ≤ 0.05). There was a significant interaction (P ≤ 0.05) due to higher expression at -

10 and 7 d in HiBCS than LoBCS. Similar to ACADVL there was a BCS (P ≤ 0.05) effect for the 

expression of ACOX1 due to higher expression in HiBCS during prepartum and postpartum. 

The gene ADIPOQ was affected by BCS due to greater expression in LoBCS than HiBCS 

(P ≤ 0.05). The expression of solute carrier family 16 member 1(SLC16A1) which is involved in 

short chain fatty acid transport (Hadjiagapiou et al., 2000) was affected by BCS (P ≤ 0.05) due to 

the higher expression in LoBCS than HiBCS (Figure 2.6). We observed a BCS effect (P ≤ 0.05) 

for the expression of FABP4 due to high expression of LoBCS at day 7 comparing to -10 and 20d. 

Aquaporin 7 (AQP7) allows movement of water and a glycerol across cell membranes and 

highly expressed in adipose tissue; AQP7 plays important role in glycerol transport from adipose 

tissue (Rodriguez et al., 2006). The expression of AQP7 was not affected by BCS or BCS × time, 

but there was a time effect (P ≤ 0.05) due to a decrease the expression in both groups between -10 
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and 20 d. The expression of PCK1 (Figure 2.7), which play important in glyceroneogenesis, was 

higher in LoBCS (P ≤ 0.05) due to higher expression at -10 and a sharp decrease at postpartum 

period (Figure 2.7). Glycerol kinase (GK) was not affected by BCS; there was a time effect (P ≤ 

0.05) observed due to an increase in expression at 7 and 20 d compared with -10 d in both HiBCS 

and LoBCS (Figure 2.7). 

Inflammation and oxidative stress  

The expression of NFE2L2, which is involved in inflammation, was not affected by BCS, 

time or their interaction. We detected a BCS effect (P ≤ 0.05) for the expression of SOD1 due to 

higher expression of LoBCS at -10 and 7 d. There was an interaction (BCS × Tim P ≤ 0.05) 

observed for the mitochondrial enzyme SOD2 because of greater expression at d 7 in LoBCS than 

HiBCS (Figure 2.8). Although Toll-Like Receptor 4 (TLR4) was not affected by BCS or time, we 

observed an interaction resulting in higher expression at -10 d in HiBCS. We detected a BCS effect 

for the expression of TLR9 (P ≤ 0.05) because of an increase in the expression at 20 d in HiBCS 

compared with LoBCS. 

DISCUSSION 

Although cannabinoid receptor 1 (CNR1) was not expressed in adipose tissue, we found a 

significant difference for CNR2 (BCS × Time, P ≤ 0.05) because of higher expression in LoBCS 

cows at day 7. Those data may indicate that the adipose tissue in bovine is a minor site of 

endocannabinoid signaling. As far as we know, only one study related to the endocannabinoid 

system has been performed in ruminants, and the data suggested the synthesis of endocannabinoids 

in ruminant liver is minor (Khan et al., 2012). Data from rodents indicate that the lack of CNR2 in 

adipose tissue causes an increase in body weight and food intake (Agudo et al., 2010). The activity 
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of endocannabinoid signaling during consumption of a high-fat diet seems to increase the 

expression of CNR2 in adipose tissue specially when there is an inflammatory stimulus occurring 

(Deveaux et al., 2009).  

Anandamide and 2AG are synthesized on demand through multiple pathways, N 

Acylphosphatidylethanolamine phospholipase D (NAPEPLD) is the main enzyme involved in the 

synthesis of endocannabinoids, especially AEA (Fonseca et al., 2013). The endogenous 

cannabinoid AEA can increase food intake in mice by activating CNRs (Maccarrone et al., 2010). 

Body condition score at calving negatively affects DMI during the postpartum period, with 3.5 

BCS or higher at calving being associated with lower DMI after calving (Roche et al., 2009). Our 

data suggest that increased expression of NAPEPLD after calving regardless of BCS, the first 

enzyme involved in AEA synthesis, could be associated with changes in feed intake through 

greater production and export of AEA. Future research of the plasma profiles of endocannabinoids 

during the transition period could enhance our understanding of their role in the peripheral control 

of signals that may induce satiety through CNRs. 

The degradation of AEA and 2AG mainly occurs through fatty acid amide hydrolase 

(FAAH) and monoacylglycerol lipase (MGLL), respectively (Alswat, 2013). Monoacylglycerol 

lipase also plays an important role in the conversion of monoacylglycerides to free fatty acids and 

glycerol. The greater expression of MGLL in LoBCS indicated a higher degradation of 2AG as in 

rodents (Maccarrone et al., 2010), and seems to agree with the greater expression of NAPEPLD. 

Data from rodents showed that deficiency of monoglycerode lipase increased the level of 2AG and 

impaired lipolysis (Taschler et al., 2011). The expression of ATGL and LIPE was higher in LoBCS 

which is opposite to what would be expected, i.e. cows with HiBCS would be expected to have 

accumulated more fat depots and potentially have greater lipolytic activity partly through the 
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action of ATGL and LIPE (Ji et al., 2012).  Data from dairy cows revealed a greater expression of 

MGLL prepartum in adipose tissue of overfed versus control cows (Ji et al., 2012), and also 

postpartum in liver of cows overfed energy prepartum compared with cows fed a diet to closely 

meet energy requirements during the dry period. Those overfed cows also had higher concentration 

of TAG in liver after calving  (Khan et al., 2012). 

The N-acylethanolamine-hydrolyzing acid amidase (NAAA) enzyme is involved in the 

degradation of endocannabinoids, and its expression increased gradually in both groups indicating 

more degradation of EC during the postpartum. Such response could indicate that NAAA may play 

a role in reducing the amount of EC that could elicit a biologic response within the adipose tissue, 

e.g. production of inflammatory molecules. Proopiomelanocortin (POMC) plays an important role 

in body weight and appetite regulation in non-ruminants (Zemel and Shi, 2000). In addition, 

POMC neurons are important in coordinating some activities of leptin, during negative energy 

balance, the level of leptin and insulin in the blood decrease and these two hormones are involved 

in several peripheral functions (Varela and Horvath, 2012). Additional studies to investigate the 

mechanisms of POMC in bovine adipose tissue will help to understand its potential role in 

regulating food intake and body weight in dairy cows. 

Around calving, adipose tissue becomes active by increasing the mobilization of body fat 

reserves to provide energy to other tissues. Adipose triglyceride lipase (ATGL) is upregulated 

during fasting and induces lipolysis because it is the rate-limiting enzyme of lipolysis (Duncan et 

al., 2007). The degradation of triacylglycerols is regulated by ATGL and LIPE, the two key 

enzymes in basal and stimulated lipolysis (Morak et al., 2012). The complete activation of ATGL 

requires binding of the protein ABHD5 which is the activator of ATGL (Ji et al., 2012). Hormone 

sensitive lipase (LIPE) is able to hydrolyze triacylglycerols, with the activation of LIPE occurring 
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via cyclic AMP (Kraemer and Shen, 2002). Thus, the increase in the expression of ATGL, LIPE 

and ABDH5 (Figure 2.4) in LoBCS compared with HiBCS indicated a greater state of basal and 

stimulated lipolysis over time. 

Adipose tissue sensitivity to insulin and insulin concentration affect the degree of lipolysis 

and lipogenesis (De Koster and Opsomer, 2013). Data from rats and humans demonstrated that 

late-pregnancy is an insulin resistant state (Sevillano et al., 2007). The mRNA expression of 

CPT1A, ACADVL and ACOX1 (genes involved in FA oxidation) (Figure 2.5) was higher in HiBCS 

cows, indicating an increase in the use of FA as energy within adipose tissue. Some of the fatty 

acids produced through lipolysis can be transported  into the blood and taken up by liver or muscle 

cells to be oxidized for generation of energy (Serra et al., 2013). The greater expression of CPT1A 

in HiBCS at -10 and 7 day relative to parturition indicated a higher level of fatty acid utilization 

by the mitochondria for β-oxidation, hence, underscoring the robust capacity of adipose for 

utilization of fatty acids. Our data indicated that LoBCS cows likely were mobilizing more fat than 

HiBCS but at the same time they did not seem to have the ability to increase the utilization of these 

FA through oxidation.  

Data from non-ruminants indicated that obese subjects have a lower concentration of 

adiponectin in the circulation (Arita et al., 2012), which could partly explain the high level of 

ADIPOQ in the LoBCS cows. Solute carrier family 16 member 1 (SLC16A1) is responsible for the 

transport of short chain monocarboxylates such as pyruvate, lactate and volatile fatty acids. (Wang 

and Morris, 2007). Higher expression of SLC16A1 in LoBCS at -10 d indicated more transport of 

short chain fatty acids. Treatment with SCFA in non-ruminants can reduce gain in body weight 

(Canfora et al., 2015). 
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Aquaglyceroporin aquaporin-7 (AQP7) is highly expressed in non-ruminant adipose tissue, 

because AQP7 facilitated the efflux of glycerol that is released from adipose tissue during lipolysis. 

A deficiency in  AQP7 is related to TG accumulation in adipose tissue (Lebeck, 2014). There was 

no BCS effect on the expression of AQP7, but there was a sharp decrease between prepartum 

(Figure 2.6) to postpartum. Data from rodents showed that AQP7 knockout mice had a lower 

plasma concentration of glycerol under fasting and fed conditions than wild-type mice, but they had a 

normal plasma concentration of FFA (Maeda et al., 2004). 

Fatty acid binding protein 4 (FABP4) is involved in the intracellular transport of fatty acids 

primarily during adipogenesis. There is some evidence for a relationship between FABP4 and 

some diseases in humans such as type 2 diabetes and insulin resistance (Terra et al., 2011). 

However, there was no BCS effect on the expression of FABP4. Among the genes related to 

glyceroneogenesis (i.e. de novo synthesis of glycerol-3-phosphate for TG production) the 

expression of PCK1 was higher in LoBCS than HiBCS. Higher expression of PCK1 in LoBCS 

could be a response to utilize more FA released as a result of greater ATGL and LIPE in those 

cows. A high rate of FA recycling indicates that lipolysis releases more FA than what may be 

required to generate energy (Nye et al., 2008). It is possible that recycling of the excess amount of 

FA that were hydrolyzed after calving in LoBCS is partly regulated by hormonal signals (e.g. 

epinephrine) as a way to maintain TG stores in those cows. However, comparing -3 wk vs. 3 wk 

relative to parturition reveals that HiBCS lost more BCS than LoBCS which supports the role of 

PCK1 in maintaining TG stores (Figure 2.9). 

Excessive lipid mobilization in the adipose tissue leads to a high concentration of FFA in 

the blood and is associated with the incidence of metabolic disorders (Ospina et al., 2010). Hence, 

during a state of high lipolytic activity of adipose tissue as in the transition period, dairy cows are 
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more susceptible to inflammation and oxidative stress. Oxidative stress, resulting in the increase 

in reactive oxygen species (ROS) production, can cause alterations of cell membranes and changes 

in cellular function (Bernabucci et al., 2005b, Nordberg and Arner, 2001). The enzyme superoxide 

dismutase (SOD) is one antioxidant mechanism that catalyzes the reduction of ROS, thus, plays 

an important role in maintenance of proper antioxidant capacity in tissues (Sordillo and Aitken, 

2009). It was previously reported that cows with high BCS before calving and with more BCS 

losses had lower SOD and higher ROS in the circulation (Bernabucci et al., 2005a). Furthermore, 

several studies in humans linked obesity with higher oxidant and lower antioxidant concentrations 

(Keaney et al., 2003; Fernandez-Sanchez et al., 2011). 

The expression of SOD1, one of at least three isotypes of SOD, was higher in LoBCS than 

HiBCS cows; expression of SOD2 was also higher at day 7 in LoBCS cows (Figure 2.8). Because 

a previous study detected that the inhibition of SOD2 expression caused accumulation of ROS (Hu 

et al., 2005), the response in LoBCS cows could have helped the adipose tissue to maintain a proper 

antioxidant status. From a mechanistic standpoint, the greater ATGL and LIPE in LoBCS cows 

could have generated more FA and greater concentrations of ROS that led to the upregulation of 

SOD2. 

Toll-like receptors are essential in the defense mechanism against microbes and activate 

the innate immune response during inflammation (Medzhitov, 2001). Higher expression of TLR9 

in HiBCS compared with LoBCS and the higher expression of TLR4 at day -10 in the same group 

of cows indicated a higher state of inflammation in this group of cows. Toll-like receptor 4 binds 

to bacterial lipopolysaccharide which is the main component of all Gram-negative bacteria (Shi et 

al., 2006). Also, TLR4 could be activated via saturated fatty acids (Contreras and Sordillo, 2011), 

and such response could be a reason for the increase in expression of TLR4 at -10 d in HiBCS. A 
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recent study in mice demonstrated that obesity is associated with the release of cell-free DNA 

(cfDNA) which could stimulate the resident macrophages via the TLR9 pathway (Nishimoto et al., 

2016). Further research could help demonstrate if the same linkage exists in dairy cow adipose 

tissue. 

CONCLUSIONS 

The endocannabinoid system in non-ruminants is reported to regulate immune function, 

control feed intake, and energy balance. Differences in the mRNA expression of components of 

this system between the BCS groups underscore the potential link with lipid metabolism in 

transition cow adipose tissue. The greater expression of genes associated with lipolysis in 

LoBCS indicated a greater state of basal lipolysis in this group, and at the same time those cows 

had higher expression of PCK1, which indicated more re- esterification of FA to maintain TG 

stores. The greater expression of genes involved in FA oxidation in the HiBCS indicated a higher 

use of FA as energy substrates within adipose tissue. The greater expression of TLR in HiBCS 

cows and the lower expression of SOD in the same group could be associated with higher loss of 

BCS postpartum, which could render cows more susceptible to health problems. 
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TABLES AND FIGURES 

Table 2.1. Ingredients and chemical composition of experimental diets. 

 1SoyPLUS (West Central Soy, Ralston, IA) 
2By West Central Soy 
3Perdue AgSolutions LLC (Ansonia, OH) 
4Energy Booster 100 (Milk Specialties Global, Eden Prairie, MN) 
5Contained a minimum of 5% Mg, 10% S, 7.5% K, 2.0% Fe, 3.0% Zn, 3.0% Mn, 5000 mg of 
Cu/kg, 250 mg of I/kg, 40 mg of Co/kg, 150 mg of Se/kg, 2200 kIU of vitamin A/kg, 660 kIU of 
vitamin D3/kg, and 7,700 IU of vitamin E/kg. 
6Contained 30,000 kIU/kg 
7Contained 5,009 kIU/kg 
8Contained 44,000 kIU/kg

 Diet 

Ingredient (% of DM) Far-off Close-up Lactation 

Alfalfa silage 12.00 8.34 5.07 
Alfalfa hay - 4.29 2.98 
Corn silage 33.00 36.40 33.41 
Wheat straw 36.00 15.63 2.98 
Cottonseed - - 3.58 
Wet brewers grains - 4.29 9.09 
Ground shelled corn 4.00 12.86 23.87 
Soy hulls 2.00 4.29 4.18 
Soybean meal, 48% CP 7.92 2.57 2.39 
Expeller soybean meal1 - 2.57 5.97 
Soychlor2 0.15 3.86 - 
Blood meal, 85% CP 1.00 - - 
ProVAAl AADvantage3 - 0.86 1.50 
Urea 0.45 0.30 0.18 
Rumen-inert fat4 - - 1.02 
Limestone 1.30 1.29 1.31 
Salt 0.32 0.30 0.30 
Dicalcium phosphate 0.12 0.18 0.30 
Magnesium oxide 0.21 0.08 0.12 
Magnesium sulfate 0.91 0.99 - 
Sodium bicarbonate - - 0.79 
Potassium carbonate - - 0.30 
Calcium sulfate - - 0.12 
Mineral vitamin mix5 0.20 0.17 0.18 
Vitamin A6 0.015 - - 
Vitamin D7 0.025 - - 
Vitamin E8 0.38 0.39 - 
Biotin - 0.35 0.35 
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Table 2.2.  Gene ID, GenBank accession number, sequence and amplicon size of primers used in adipose tissue  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           1Amplicon size in base pair  

Gene ID Accession # Gene  Primers Primers (5’-3’) bp1 
539769 NM_001192303.1 CNR2 F.791 

R.900 
TCTTCGCCGGCATCATCTAC 
CATCCGGGCTATTCCAGACA 

110 

541291 NM_001015680.1 NAPEPLD F.400 
R.494 

AGAGATCACAGCAGCGTTCCAT 
ACTCCAGCTTCTTCAGGGTCATC 

95 

540007 NM_001099102.1 FAAH F.1332 
R.1436 

TTCCTGCCAAGCAACATACCT 
CACGAAATCACCTTTGAAGTTCTG 

105 

515375 NM_001100369.1 NAAA F.223 
R.322 

CAGCACTACGACCGGGACTT 
CCGGGACGACTTTTCTGATC 

110 

505290 XM_581556.5 
 

MGLL F.2 
R.138 

GCAACCAGCTGCTCAACAC 
AGCGTCTTGTCCTGGCTCTT 

137 

281416 NM_174151.1 
 

POMC F.855 
R.951 

CTTGTCACGCTGTTCAAAAACG 
GTCAACTTTCCGCGGAGAGA 

101 

535588 NM_001076063.1 ABDH5 F. 1141 
R.1240 

CTGCAGATGATGTGGGAAAGC 
GACTGCCTGGTTCTCGTGTCA 

100 

286879 EF140760.1 LIPE F.1674 
R.1779 

TCAGTGTCCAAGACAGAGCCAAT 
CATGCAGCTTCAGGCTTTTG 

106 

504502 XM_005204534 CPT2 F. 149 
R.203 

ATCATTTCTTTCACTCTGCAGAACA 
GGAGGCCTGAGGGAGTCATT 

98 

281495 XM_005201085.1 SOD1 F. 256 
F.356 

GGCTGTACCAGTGCAGGTCC 
GCTGTCACATTGCCCAGGT 

101 

508493 NM_001046005.1 ATGL F.675 
R.866 

CACCAGCATCCAGTTCAACCT 
CTGTAGCCCTGTTTGCACATCT 

102 
 

281759 NM_174314 FABP4 F.403 
R502 

TGGTGCTGGAATGTGTCATGA 
TGGAGTTCGATGCAAACGTC 

101 
 

281496 NM_201527.2 SOD2 F.620 
R.714 

TGTGGGAGCATGCTTATTACCTT 
TGCAGTTACATTCTCCCAGTTGA 

95 
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                        Table 2.2. (Continued) Gene ID, GenBank accession number, sequence and amplicon size of primers used  

                                                               in adipose tissue                                                                     
 

 

 

 

 

 

 

 

 

 

 

 

 

                                  1Amplicon size in base pair (bp) 

Gene ID Accession # Gene  Primers1 Primers (5’-3’) bp1 
506812 XM_005227376 CPT1A F. 141 

R. 240 
TCGCGATGGACTTGCTGTATA 
CGGTCCAGTTTGCGTCTGTA 

100 

615498 NM_001076378 AQP7 F.880 
R.983 

ACTGGCATCCTTGTTGTC 
GCGAGGAAGGTGAAGAAG 

104 

282130 NM_174494.2 ACADVL F. 1140 
R. 1245 

TGCTGCTAACCGTACCCAGTTT 
CGCCATGGACTCAGTCAGTCACAT 

106 

513996 NM_001035289.2 ACOX1 F.180 
R.279 

ACCCAGACTTCCAGCATGAGA 
TTCCTCATCTTCTGCACCATGA 

100 

282865 BC140488 ADIPOQ F. 214 
R. 344 

GATCCAGGTCTTGTTGGTCCTAA 
GAGCGGTATACATAGGCACTTTCTC 

131 
 

281536 NM_174198.6 TLR4 F.555 
R.664 

TAGTTAAAGCTCAGGTCCAGCATCT 
TAGTTAAAGCTCAGGTCCAGCATCT 

110 

282602 NM_183081 TLR9 F.52 
R.166 

GCCAAGCATCCTTCCCTG 
GCACCAGGAGAGAAAGGG 

115 

282855 NM_174737 PCK1 F. 601 
R. 720 

AAGATTGGCATCGAGCTGACA 
GTGGAGGCACTTGACGAACTC 

120 

82617541 NM_001037319.1 SLC16A1 F. 1701 
R.1813 

CCTGTGGGACTGAAGGGTAAAT 
ATGATTCCCACAGAAATGTCCAGTAT 

110 

  NFE2L2  
 

GGGAATATCAGGAACAAGTGATTGA 
AGCAGATGATTTGTACTTCGATGACT 

 

505987 NM_001075236 GK F. 1193 
R. 1282 

AAAGCTCCGAGGAAATTGAAAAAC  
GTGCATACAGCCCCGAAAAT 

90 
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 Table 2.3.  PCR product sequences of the primers after BLAST with NCBI. 
Gene  Sequence  
CNR2 CGAAGTTCCTCTTCGCCGGCATCATCTACATGGAAGGCCCATCA

GGCATTCCGGAGCCAGCTTGGCTGAGCACCGGGACAGACACCTG
TCTGA 

NAPEPLD GCATAGCGTTGATGAGACACCTCCGGGGTGCCTTAGGCCATATT
TTATTGATGACCCTGAAGAAGCCTGGAGTACAAT 

FAAH GCGTGCACGGGCAGGGGTGCTGTTCAGTGACGGTGGCACGACCT
TCCTACAGAACTTCAAAGGTGATTTCGTGA 

NAAA CTCGTCCAATCATCGGAGAATTATGTCCCGCAGTGGGTCCTTGCA
TTGATCAGAAAAGTCGTCCCGGGAC 

MGLL GCTGGAGGCGCTGCCAGCTGAGCTGCCCTTCCTGCTGCTGCAGG
GCTCTGCCGACCGCCTCTGTAACAGCAGGGGCGCCTACCTGCTC
ATGGAGTCAGCCAAGAGCCAGGACAAGACGCTAAT 

POMC CCTAACGCCACAGAGAGGCCAGTGTGAGGGCGCAGCGGGCAGG
GGGGCCTCCTCTCCGCGGAAAAGTTTGAACAAA 

ABHD5 CGTCCACCTCTCGCGTATTACCGCTCTGGGACGCAGAGTAAGGG
AATCTGACACGAGAACCAGGCAGTTAA 

LIPE AGCAGCCCTGACCCGGCCGGAGGGCTCACTGGGAACCGACTCCC
TCAAAAGCCTGAAGCTGCATGAA 

CPT2 GCATAGCGTTGATGAGACACCTCCGGGGTGCCTTAGGCCATATT
TTATTGATGACCCTGAAGAAGCCTGGAGTACAAT 

SOD1 GCGTGCACGGGCAGGGGTGCTGTTCAGTGACGGTGGCACGACCT
TCCTACAGAACTTCAAAGGTGATTTCGTGA 

SOD2 GCATGTTTGGCCGATTATCTGAGGCCATTTTGGAATGTGATCAAC
TGGGAGAATGTAACTGCAATAC 

ATGL GCCTCGCCTTCAGGCCTGTTCCGCCCGAGCCCTGGTNCTTCGAGA
GATGTGCAAACAGGGCTACAGAACCC 

FABP4 CCCGAGTTATGAGAGAGCGTAGCCAAGGGATATTGAAATGGATG
ACGTTTGCATCGAACCTCCAAA 

SOD2 GCATGTTTGGCCGATTATCTGAGGCCATTTTGGAATGTGATCAAC
TGGGAGAATGTAACTGCAATAC 

CPT1A GGACTATGAAGGTAAACCAGGCCCGGGACGCCCTTCGTACAGGC
CTCTCGCTCCAGCTGGCTCATTACAAGGGACCA 

AQP7 ATTGTGACTGGCATCCTTGTTGTCATCATCGGAATATCCCTGGGC
ATGAACTCAGGATATGCCATCAACCCATCCCGGGACCT 

ACADVL GAAACTAACTTTGTGGCGTATCCAGGAGAAGCGTGCCCGGAAGT
GCTATGCTGCAGTATGTGACTGAGAATCCATGGCGA 

ACOX1 ATCCTCGTATCCGCGTTCAGGGTGCGTTTAAGAAGAGTGCCATC
ATGGTGCAGAAGATGAGGAAATCCCC 

ADIPOQ GGCAGTGGTAACTGGATCACTGGGATCGAGGTCCCCGAGGCTTT
CCAGGAACCCCAGGCAGAAAGGGAGAACCTGGAGAAAGTGCCT
ATGTATACACGCTCTATG 
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Table 2.3. (Continued) PCR product sequences of the primers after BLAST with NCBI. 

 
 

Gene Sequence  
TLR4 GCATCCCTCACCGTTATGGTCAGGTGAATTCCTGGGATAAGGCCAGG

CTTCCTCTTGTTGGTTACTTCAGCCAGAAA 
TLR9 GGCACGGGAAGTGGGCGCCAAGCATCCTTCCCTGCAGCTGCCTCCC

AACCTGCCCGCCAGACCCTCTGGAGAAGCCGCATTCCCTGTCATGGG
CCCCTACTGTGCCCCGCACCCCCTTTCTCTCCTGGTGC 

PCK1 GCCATGTGTACAGCAGTCGCATCATGACGAGGATGGGCACCAGCGT
CCTGGAAGCGCTGGGGGACGGCGAGTTCGTCAAGTGCCTCCACAAA 

SLC16A1 GCACTCGTCACCAATATTCTATGTGGCCTGGGTGATCCTACCAGGTG
GGTGCCTCAGGTGCAAATACCTGGACATTTCTGTGGGAATCATATGA
A 

GK TACTTCTTATGGCTGCTATTTCGTCCCAGCATTTTCGGGGGCTGTATG
CACAAA 

TLR4 GCATCCCTCACCGTTATGGTCAGGTGAATTCCTGGGATAAGGCCAGG
CTTCCTCTTGTTGGTTACTTCAGCCAGAAA 

TLR9 GGCACGGGAAGTGGGCGCCAAGCATCCTTCCCTGCAGCTGCCTCCC
AACCTGCCCGCCAGACCCTCTGGAGAAGCCGCATTCCCTGTCATGGG
CCCCTACTGTGCCCCGCACCCCCTTTCTCTCCTGGTGC 
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         Table 2.4. qPCR performance of genes measured in adipose tissue. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Median Ct1 Median ∆Ct2 Slope3 (R2)4 Efficiency5 
CNR2 27.99 6.68 -3.22 0.99 2.05 
NAPEPLD 23.88 2.52 -3.11 0.99 2.10 
FAAH 23.57 2.21 -2.94 0.99 2.19 
NAAA 25.08 3.57 -3.08 0.99 2.11 
MGLL 21.94 0.35 -3.85 0.98 1.82 
POMC 22.84 1.41 -3.13 0.99 2.09 
ABDH5 

HSL 

HSL 

 

25.48 3.84 -3.19 0.99 2.06 
LIPE 

 

17.87 -3.61 -3.14 0.99 2.08 
CPT2 

 

23.89 2.24 -3.20 0.99 2.05 
SOD1 21.50 -0.06 -3.66 0.97 1.88 
ATGL 

 

19.30 -2.38 -3.42 0.97 1.96 
FABP4 

 

15.12 -6.45 -3.13 0.98 2.09 
SOD2 

CPT1A 

 

23.17 1.84 -3.56 0.97 1.91 
CPT1A 

 

23.61 1.77 -3.11 0.99 2.10 
AQP7 

 

23.20 1.56 -3.67 0.99 1.87 
ACADVL 

 

22.74 1.13 -3.00 0.99 2.15 
ACOX1 

 

22.22 0.66 -3.06 0.97 2.12 
ADIPOQ 

 

18.70 -2.65 -3.33 0.99 2.00 
TLR4 

TLR-9 

 

29.83 8.67 -2.50 0.99 2.51 
TLR9 

 

28.46 7.07 -3.02 0.99 2.15 
PCK1 

 

27.05 5.30 -3.23 0.99 2.04 
SLC16A1 

 

23.73 1.92 -3.19 0.99 2.06 
NFE2L2 

 

19.96 -1.47 -3.04 0.98 2.13 
GK 

 

26.56 5.10 -3.46 0.99 1.94 
RPS9 20.08 -- -3.51 0.97 1.93 
UXT 24.23 -- -3.16 0.99 2.07 
GAPDH 20.35 -- -3.05 0.98 2.13 

1The median is calculated considering all time points and all cows. 
2 The median of ∆Ct is calculated as [Ct gene – geometrical mean of  
Ct of 3 internal control genes] for each time point and each cow. 
3 Slope of the standard curve.  
4 R2 stands for the coefficient of determination of the standard curve. 
5 Efficiency is calculated as [10(-1/slope)]. 
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Table 2.5. Least squares mean of gene expression data in transition cows with high (HiBCS) or low (LoBCS) body condition score                               

at -10, 7 and 20 days relative to parturition. 

 

  A-B indicate to values with statistical difference (P ≤ 0.05) among treatments, * Indicate significant difference between groups at the   
same time points.  

1Greatest SEM 

 

Gene 

BCS  
SEM1 

HiBCS 
SEM1 

 
 

LoBCS 
SEM1 

 

 

P value 

Hi 

BCS 

Lo 

BCS 

-10 7 20 -10 7 20 BCS day BCS×day 

CNR2 1.44 1.80 0.03 1.23 1.06* 2.05 0.51 0.54 2.91* 1.95 0.53 0.43 0.04 0.01 

NAPEPLD 1.11 1.31 0.08 1.03 1.11* 1.21 0.11 0.94 1.48* 1.51 0.11 0.09 <0.01 0.02 

NAAA 1.41 1.36 0.08 0.86 1.66 1.72 0.11 0.81 1.61 1.67 0.1 0.64 <0.01 0.99 

FAAH 1.28 1.45 0.11 0.97 1.52 1.36 0.14 0.8 1.84 1.71 0.13 0.35 <0.01 0.01 

MGLL  1.01B 1.78A 0.14 1.25 1.02 0.76 0.22 2.15 1.66 1.52 0.21 <0.01 0.05 0.24 

POMC 2.47 2.98 0.19 2.87 2.67 1.87 0.29 3.28 3.28 2.39 0.29 0.13 <0.01 0.88 

ABDH5 0.90B 1.17A 0.14 1.03 0.77 0.92 0.26 1.16 1.13 1.23 0.28 0.04 0.86 0.91 

LIPE  0.99B 1.38A 0.14 1.06 1.13 0.75 0.25 1.09 1.86 1.16 0.27 <0.01 <0.01 0.08 

ATGL 0.78B 1.11A 0.10 1.15 0.62 0.58 0.19 1.47 1.08 0.78 0.20 0.02 <0.01 0.25 

CPTIA 0.97A 0.68B 0.06 0.56* 1.21* 1.14 0.11 0.22* 0.86* 0.96 0.11 <0.01 <0.01 <0.01 

CPT2 0.96 0.94 0.12 0.88 0.96 1.04 0.12 1.09 0.90 0.82 0.21 0.42 0.05 0.19 

ACADVL 0.84A 0.51B 0.04 0.93* 0.89* 0.69 0.08 0.53* 0.46* 0.54 0.08 <0.01 0.02 <0.01 

ACOX1 0.74A 0.25B 0.04 0.78 0.78 0.67 0.08 0.22 0.28 0.24 0.08 <0.01 0.18 0.59 
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Table 2.5. (Continued) Least squares means of gene expression data in transition cows with high (HiBCS) or low (LoBCS) body                                               

condition score at -10, 7 and 20 days relative to parturition. 

 

A-B indicate to values with statistical difference (P ≤ 0.05) among treatments, * Indicate significant difference between groups at the                
same time points.   

1Greatest SEM 

Gene 

BCS  
SEM1 

 

 

HiBCS 
SEM1 

 
 

LoBCS 
SEM1 

 
 

P value 

Hi 

BCS 

Lo 

BCS 

-10 7 20 -10 7 20 BCS day BCS×day 

SLC16A 0.99B 1.33A 0.10 2.06 0.74 0.38 0.20 2.68 0.74 0.56 0.20 <0.01 <0.01 0.68 

AQP7 0.38 0.33 0.03 0.70 0.24 0.19 0.05 0.56 0.27 0.18 0.05 0.90 <0.01 0.33 

FABP4 1.16 1.36 0.16 0.89 1.30 1.29 0.29 0.86 1.95 1.26 0.30 0.39 0.04 0.44 

PCK1 1.13B 2.30A 0.15 2.79 0.31 0.28 0.31 5.61 0.72 0.57 0.33 <0.01 <0.01 0.63 

ADIPOQ 0.89B 1.29A 0.09 1.19 0.91* 0.57* 0.16 1.29 1.65 0.94 0.16 <0.01 <0.01 0.12 

GK 0.69 0.52 0.08 0.24 0.88 0.94 0.15 0.20 0.63 0.71 0.13 0.20 <.001 0.96 

NFE2L2 0.76 0.72 0.06 0.73 0.73 0.80 0.10 0.61 0.79 0.77 0.10 0.30 0.13 0.17 

SOD2 1.07 1.33 0.25 0.88 0.84* 1.48 0.41 1.09 1.89* 1.01 0.43 0.08 0.19 0.04 

SOD1 0.78B 0.85A 0.10 0.78 0.66 0.88 0.17 0.96 0.86 0.73 0.18 <0.01 <0.01 0.88 

TLR4 1.96 0.98 0.23 3.79* 0.57 1.52 0.51 0.59* 1.11 1.25 0.49 0.17 0.20 <0.01 

TLR9 1.62A 0.75B 0.29 0.99 0.85 3.03 0.55 0.32 0.92 1.01 0.50 <0.01 <0.01 0.06 
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Figure 2.1. Daily dry matter intake (kg/d) between two groups of cows HiBCS and LoBCS during 
prepartum and postpartum period.  
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Figure 2.2. Daily milk yield (kg/d) between two groups of cows HiBCS and LoBCS.   
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 Figure 2.3. mRNA expression (least squares mean ± SEM) of genes involved in the 
endocannabinoid system in cows with HiBCS or LoBCS at calving * indicates an interaction effect 
(BCS × time P ≤ 0.05) at the specific time point. 
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 Figure 2.4. mRNA expression (least squares mean ± SEM) of genes involved in lipolysis in cows 
with HiBCS or LoBCS at calving * indicates an interaction effect (BCS × time P ≤ 0.05) at the 
specific time point. 
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 Figure 2.5. mRNA expression (least squares mean ± SEM) of genes involved in fatty acid 
oxidation in cows with HiBCS or LoBCS at calving.* indicates an interaction effect (BCS × time 
P ≤ 0.05) at the specific time point.  
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Figure 2.6. mRNA expression (least squares mean ± SEM) of genes involved in fatty acid 
transporter in cows with HiBCS or LoBCS at calving * indicates an interaction effect (BCS × time 
P ≤ 0.05) at the specific time point. 
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Figure2.7.mRNA expression (least squares means ± SEM) of genes involved in  
glyceroneogenesis in cows with HiBCS or LoBCS at calvinr* indicates an interaction effect (BCS 
× time P ≤ 0.05) at the specific time point. 
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Figure 2.8. mRNA expression (least squares means ± SEM) of genes involved in inflammation 
and oxidative stress in cows with HiBCS or LoBCS at calving. * indicates an interaction effect 
(BCS × time P ≤ 0.05) at the specific time point. 
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 Figure 2.9. Change in BCS between -3 and 3 weeks relative to parturition of HiBCS and 
LoBCS. * indicates a significant difference between the groups (P ≤ 0.05). 
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CHAPTER III 

ENDOCANNABINOID NETWORK GENE EXPRESSION IN PERIPARTAL BOVINE 

LIVER IN RESPONSE TO RUMEN- PROTECTED METHIONINE 

SUPLEMENTATION 

ABSTRACT 

Results from our previous work revealed a beneficial effect of rumen-protected Met (MET) 

supplementation during the transition period on postpartal immune function, inflammation, and 

cow performance. Endocannabinoids (EC; 2-Arachidonoylglycerol, oleoylethanolamide, and 

anandamide) are produced upon stimulation of EC receptors expressed in central nervous system 

and peripheral tissues. These compounds have orexigenic, anorexigenic or pro- and anti-

inflammatory properties. Because cows supplemented with rumen-protected methionine (RPM) 

from -21 through 30 days in milk had a better immune and liver function response postpartum, 

we sought to examine changes in the expression of EC-related genes in liver. Twenty-two 

multiparous Holstein cows were fed experimental treatments consisting of a basal control diet 

(CON; n = 11) and CON plus Met (Smartamine M, Adisseo NA) (MET; n = 11). All cows 

received the same far-off diet from -50 to -22 d before expected calving, close-up diet from -21 d 

to expected calving, and lactation diet from calving through 30 days in milk (DIM). MET 

supplementation was adjusted daily from -21 d to 30 DIM at a rate of 0.08% (DM basis) of diet 

DM. The liver was biopsied at -10, 7, 20 and 30 days relative to parturition. RNA was extracted 

and gene expression was determined via real-time RT-PCR for endocannabinoid receptors 

(CNR1, CNR2), enzymes that synthesize endocannabinoid (NAPEPLD), enzymes that degrade 

endocannabinoid (FAAH, NAAA, MGLL), and the hormone precursor proopiomelanocortin 
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(POMC). A significant difference for a treatment × day effect was observed for the EC receptor 

CNR2, the interaction for CRN2 was associated with lower expression in MET compared with 

control cows on d -10. There was an overall greater expression of FAAH, MGLL, NAAA and 

NAPEPLD in MET compared with control cows. Overall, results indicate that alterations in the 

hepatic EC signaling network in response to MET might be involved in the positive effect on 

performance and liver function. Additional studies to investigate the mechanism of action of 

MET on the hepatic endocannabinoid system appear warranted. 
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INTRODUCTION 

Interest in the endocannabinoid system (ECS) in the context of animal physiology has 

receive increased attention in recent years. The ECS consists of endocannabinoid receptors 

CNRs (CNR1 and CNR2) which are G - protein coupled receptors that are highly expressed in 

the central nervous system (CNS), but are also found in peripheral tissues (Rajaraman et al., 

2016). The CNR endogenous ligands Anandamide [N -arachidonoylethanolamine (AEA)] and 2-

arachidonoyl glycerol (2-AG) have been the most studied (Mechoulam and Parker, 2013). In 

addition to the endogenous ligand, there are endocannabinoid-like compounds including the anti- 

inflammatory compound N- plamitoylethanolamaide (PEA) and the appetite suppressor N- 

olylethanlomaide (OEA). Both have the same structural characteristics of endocannabinoids but 

do not activate CNRs (Kleberg et al., 2014). The last components of the ECS system are the 

enzymes involved in the degradation and synthesis of endocannabinoids. The primary enzyme 

involved in endocannabinoid synthesis is N- acylphosphatidylethanolamine phospholipase D 

(NAPEPLD). Other enzymes involved in the degradation of endocannabinoids are N-

acylethanolamine acid amide (NAAA), fatty acid amide hydrolase (FAAH) and monoglyceride 

lipase (MGLL) (Bari et al., 2011). 

Endocannabinoids are synthesized on demand and there is no evidence for 

endocannabinoid storage (Di Marzo, 2008). The biosynthesis of endocannabinoids occurs 

through multiple pathways, anandamide synthesis via N-arachidonoyl phosphatidylethanolamine 

(NAPE), followed by the hydrolysis of NAPE by a phospholipase D (NAPEPLD) (El Manira 

and Kyriakatos, 2010). The biosynthesis of 2-AG can occur through the hydrolysis of 

arachidonic acid (Sugiura et al., 2002). Fatty acid amide hydrolase (FAAH) is the primary 

enzyme for the degradation of AEA and OEA. The enzyme MGLL mainly degrades 2-AG, but 
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also can degrade AEA (Maccarrone et al., 2010). The enzyme NAAA can hydrolyze both AEA 

and 2-AG (Muccioli, 2010). 

The transition period in dairy cows is considered the most important in their life cycle  in 

terms of  health and productivity (Drackley, 1999). During this period, energy requirements 

increase to supply the mammary gland and the fetus (late pregnancy), often causing adjustments 

in metabolism to restrict the variance between nutrient and energy demand. Furthermore, in 

addition to negative energy balance, cows also are in negative protein and essential amino acid 

balance, especially Methionine a methyl donor with important roles beyond protein synthesis.  

Methyl donors are essential for many biological processes such as DNA methylation, via 

the production of S-adenosylmethionine (SAM), as an epigenetic modification involved in the 

regulation of gene expression in different tissues. In addition to DNA methylation, SAM is also 

involved in transsulfuration and polyamine biosynthesis (Lu and Mato, 2012; Osorio et al., 

2016). Besides the role of ECS in the control of appetite, food intake and energy balance the 

ECS also is involved in the regulation of immune function (Maccarrone et al., 2010). 

Results from previous work (Osorio et al., 2013) revealed a beneficial effect of rumen- 

protected Met supplementation during the transition period on postpartum immune function, 

inflammation, and cow performance.  Furthermore, the study of Khan et al. (2012) comparing 

cows overfed energy or fed to requirements during the entire dry period provided evidence of 

alterations in expression of genes associated with the EC during the transition period. Therefore, 

the main objective of this study was to determine changes in the genes associated with the EC 

network and the hormone precursor proopiomelanocortin (POMC) during the transition period in 

cows supplemented with rumen- protected methionine (Zhou et al., 2015).  
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MATERIALS AND METHODS 

Animals and diets 

All the procedures for this study were approved by the institutional Animal care and use 

committee (IACUC) of the University of Illinois (protocol 13023). Twenty-two multiparous 

Holstein cows were blocked according to parity, previous lactation milk yield, and expected day 

of calving (Zhou et al., 2015). The cows were fed experimental treatments consisting of basal 

control (CON) diet (n = 11) and control plus Smartamine M (MET; n = 11) at a rate of 0.08% of 

DM. All cows received the same far-off diet (1.40 Mcal/ kg of DM, 4.1 % RUP, AND 10.2% 

RDP) from -50 until -21 d before expected calving, the same close-up diet (1.52 Mcal/kg of DM, 

9.1% RDP, and 5.4% RUP) from -21d to expected calving, and the same lactation diet right after 

calving until 30 DIM (1.71 Mcal/kg of DM, 7.5% RUP and, 9.7% RDP). Methionine was top-

dressed from -21 to 30 days in milk one time a day at the AM feeding using around 50 g of 

ground corn as a carrier of MET. During dry period cows were housed in a ventilated enclosed 

barn, cows were fed individually once daily at 0630 h using an individual gate system (American 

Calan Inc., Northwood, NH). Cows had access to sand-bedded free stalls until 3 d before 

expected parturition, before calving cows moved to individual maternity pens bedded with straw 

until parturition. After calving, cows were housed in a tie-stall barn and were fed a common 

lactation diet once daily in the AM (Table 2.1) cows were milked 3 times a day at 6:00, 14:00 

and 22:00. The feed was adjusted daily to reach to 10% refusals. 
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Blood sampling  

Blood was sampled from the coccygeal vein on days 1, 4, 7, 14, and 28 relatives to 

calving. Samples collected into evacuated serum tubes (BD vacationer, BD and CO., Franklin 

Lakes, NJ) after collocation tubes with lithium heparin were placed on ice until analysis. 

Innate immune function assay 

Phagocytosis capacity and oxidative burst activity of peripheral monocytes and 

neutrophils was determined upon challenge with enteropathognic bacteria (Escherichia 

coli0118:H8). Forty µL 100 µM dihydrohodamine 123 (Sigma- Aldrich, St Louis, MO) with 200 

µL of blood, and 40 µL of propidium iodine labeled bacteria (109 cfu/mL) for 10 min at 38.5 °C. 

Ice could MilliQ water was used to lysed red blood cells and the cells were re-suspended in PBS 

solution. Monocytes marked with APC anti- CD14 antibody (cat. NO. 301808; Biolegend, San 

Diego, CA). Neutrophils were stained with CH138A primary anti- bovine granulocyte 

monoclonal antibody (Cat. No. BOV2067, Washington State University, WA) and PE-labeled 

secondary antibody (Cat. No.1020-095, Southern Biotech, AL). Finally, cells re-suspended in 

PBS solution for flow cytometry analyses (LSR II; Becton Dickinson Dickinson, San Jose, CA).  

Liver tissue biopsy 

Liver was sampled via puncture biopsy from cows under local anesthesia before morning 

feeding on days -10, 7, 20 and 30 days relative to parturition. Liver samples was immediately 

frozen in liquid nitrogen and transferred to - 80 °C freezer for future analysis.  

RNA extraction 
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RNA was extracted from the tissue using protocols established in our laboratory (Loor et 

al. 2007). Briefly, liver sample was weighed (~0.3-0.5 g) and immediately placed 1.2 ml of ice-

cold Qiazol reagent (Qiagen 75842; Qiagen Inc., Valencia, CA) for homogenization. After 

homogenization, DNase was used to remove any genomic DNA from RNA using RNeasy Mini 

Kit columns (Qiagen, Hilden, Germany). The concentration was measured using the Nano-Drop 

ND-1000 spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA), and Agilent 

Bioanalyzer system (Agilent 2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA, USA). 

Used to measure the quality of RNA.  

qPCR analysis 

The cDNA was synthesized with 100 ng RNA. The RNA was mixed with the Master Mix-

1(MM1) containing 9 µL DNase/RNase free water and l µL random primers (Roche® Cat. No. 11 

034 731 001, Roche Diagnostics GmbH, Mannheim, Germany), then incubated at 65°C for 5 min 

and kept in ice for 3 min the reaction was perform using Eppendorf Mastercycler®.  9 µl of Master 

Mix-2 (MM2) consists of 1.625 µL DNase/RNase free water, 4 µL 5X First-Strand Buffer, 1 µL 

Oligo dT18, 2 µL 10 mM dNTP mix (10 mM; Cat. No. 18427-088; Invitrogen), 0.25 µL of Revert 

aid (200 U/µL; Cat. No. EP 0441; Fermentas), and 0.125 µL of RNase inhibitor (20 U/µL; Cat. 

No. EO 0382; Fermentas). Then incubate (MM1+RNA and MM2) at the following temperature 

program: 25°C for 5 min, 42°C for 60 min and 70°C for 5 min. An aliquot of undiluted cDNA 

from all samples was pooled to make samples of standard curve by diluting with DNase/RNase 

free water, then the cDNA was diluted 1:4 with DNase/RNase free water. 

 Quantitative PCR was performed using 4 µL diluted cDNA combined with 6 µL of a 

mixture contain 5 µL 1 ´ SYBR Green master mix (Applied Biosystems, CA, USA), 0.4 µL each 
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of 10 µM forward and reverse primers, and 0.2 µL DNase/RNase free water in a MicroAmp™ 

Optical 384-Well Reaction Plate (Applied Biosystems, CA, USA). Using ABI prism 7900 HT SDS 

instrument at the following program: 2 min at 50 °C, 10 min at 95 °C, 40 cycles of 15 s at 95 °C, 

and 1 min at 60 °C. 7900 HT Sequence Detection Systems Software (version 2.2.1, Applied 

Biosystems, CA, USA) used to calculated data. The final data were normalized using the geometric 

mean of three internal control genes (ICG): UXT, GAPDH and RPS9. The relative mRNA 

abundance was calculated as previously reported (Bionaz and Loor, 2008) using the median ∆Ct 

(∆Ct = Ct of the gene – geometrical mean Ct of internal control genes) corrected by efficiency (E), 

where % relative mRNA abundance = [ 1/E∆Ct ] / ∑[1/E∆C] all measures genes × 100 . The PCR 

efficiency was calculated for each gene using the standard curve method] E=10(-1/slope)] .  

 Statistical analysis 

After the data have been normalized with the geometric mean of the internal control genes, 

the quantitative PCR data were log2 transformed before statistical analysis to obtain a normal 

distribution. Statistical analysis was performed with SAS (SAS Institute, Inc., Cary, NC, USA). 

Normalized data, log2-transformed data, were subjected to ANOVA and analyzed using repeated 

measures ANOVA with PROC MIXED. The statistical model included Trt (CON and MET), day 

(Day; −10, 7, 20 and 30 relatives to parturition), and interaction (Trt × Day). Data were considered 

significant at a P ≤ 0.05 and tendencies at P ≤ 0.15. 

RESULTS 

The relative mRNA abundance of CNR2 was 2.56% of total mRNA transcripts measured 

(Figure 3.1). There was a significant difference (Trt × day P ≤ 0.05) for an effect on the 

expression of CNR2 due to higher expression in the CON group at d -10 compared with MET in 
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which the expression of CNR2 at -10 and 7 d remained fairly stable. This was followed by a 

dramatic decrease in expression between d 7 and 20 relative to parturition. The relative mRNA 

abundance of FAAH and MGLL, encoding enzymes responsible for the degradation of 

endocannabinoid-like compounds, was greater than CNR2 and NAPELD which indicated a 

higher degree of degradation than synthesis of endocannabinoids in liver during transition. 

We detected that relative mRNA abundance of MGLL accounted for ~59% of total genes 

measured, which made it the most abundant gene among those measured. Furthermore, we 

observed a tendency in the expression of MGLL (Trt × day P ≤ 0.15) in cows supplemented with 

MET than CON. This result was associated with greater expression in MET compared with 

control cows on d 7. We observed an overall treatment effect for the expression of MGLL (Trt P 

≤ 0.05) due to higher expression in cows supplemented with MET than CON. 

The relative mRNA abundance of FAAH accounted for ~28% of total genes measured in 

this study, making it the second most abundant gene FAAH (Fig 3.1). Although the expression 

pattern of FAAH did not have a significant day or Trt × day, cows supplemented with MET had 

an overall greater expression of FAAH (Trt P ≤ 0.05, Table 3.5). The expression of NAAA, 

another enzyme that degrades endocannabinoids (Maccarrone et al., 2010), was greater in MET 

cows than CON (Trt P ≤ 0.05). Concerning the interaction effects, there was a tendency (Trt × 

day P ≤ 0.15) between the two groups of cows at -10 and 7 d with higher level of expression in 

MET than CON cows (Fig. 3.3). However, there was no interaction for the expression of 

NAPEPLD, but its overall expression was greater in MET-fed cows (Trt P ≤ 0.05). In terms of 

time effects, there was a significant difference (P < 0.01) between time points in MET-fed cows 

with expression being at its highest level at -10 d and significantly decreasing at d 20. For CON 

cows, the expression of this gene experienced a sharp decrease between -10 and 20 d. 
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There was an irregular pattern of POMC expression in MET- and CON-fed cows, even 

though, there was a tendency (Trt × day P ≤ 0.15) in term of interactions due to greater 

expression of POMC in MET compared with CON cows at d 7. Furthermore, there was a 

significant difference between -10 and 7 d owing to the effect of time in MET supplemented 

cows, the expression of POMC increased between -10 and 7 d reaching a peak at d 20 (Fig. 3.3). 

In terms of time effect in the CON cows, the expression of POMC significantly increased from 7 

to 20 d relative to parturition. 

Blood Phagocytosis and Oxidative burst 

A greater increase in neutrophil phagocytosis capability was detected in cows 

supplemented with MET (P ≤ 0.05, Table 2.6). Cows supplemented with MET had greater blood 

neutrophil oxidative burst (P ≤ 0.05, Table 3.6). Similarly, monocyte oxidative burst was greater 

in MET than control cows (P ≤ 0.05, Table 3.6). We observed a tendency (P = 0.12, Table 3.6) in 

monocyte phagocytosis in cows fed MET compared with CON.   

Dry Matter intake and milk yield  

There was a tendency (P = 0.11) for an effect on prepartum DMI due to greater 

consumption of DMI in cows supplemented with MET than CON. For DMI during postpartum we 

also observed a tendency (P = 0.08) in MET compared with CON cows. Cows supplemented with 

methionine had a tendency (P = 0.09) for greater milk yield compared with CON (Table 3.7).  

DISCUSSION 

The cannabinoid receptor 1 (CNR1) was not expressed in our samples; we also found that 

the relative mRNA abundance of genes that degrade endocannabinoids was higher than CNR2 
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and NAPELD. The relative mRNA abundance of NAPEPLD was 1.60 % which represented the 

lowest value among the genes measured. Those data are similar to a previous study where it was 

suggested that the degradation of endocannabinoids in peripartal cow liver is a more prevalent 

process than their synthesis (Khan et al., 2012). Endocannabinoids are not stored in the body, 

they are produced on demand, and they activate CNRs (Costa, 2016). Data from non-ruminants 

showed that endocannabinoid signaling can regulate methionine metabolism via sterol regulatory 

element binding transcription factors (Srebfs) that are downstream of EC signaling in the liver 

(Liu et al., 2016). 

A previous study showed that the endocannabinoid system was up-regulated during fatty 

liver disease, and also that CNR2 plays important roles during inflammation (Alswat, 2013). 

Other data suggested that CNR1 signaling may promote inflammation (Mukhopadhyay et al., 

2010). In our study, the down-regulation of CNR2 prepartum in cows supplemented with MET 

may indicate a better immune status. Data from a previous study showed that Met 

supplementation during the peripartal period might affect lipid metabolism in the liver (Osorio et 

al., 2013). Another study observed lower liver TAG concentration in cows fed rumen-protected 

choline (Zom et al., 2011). Lower expression of CNR2 at -10 d (P = 0.05) in MET-supplemented 

cows could be related to more removal of TAG from the liver. Data from mouse indicated that 

CNR1 signalling indirectly mediated metabolic steatosis (Mallat and Lotersztajn, 2008). Another 

study indicated that CNR2, not CNR1, in bovine liver may be the receptor involved in this signal 

(Khan et al., 2012). 

Fatty acid amide hydrolase (FAAH) has the ability to degrade orexigenic (e.g., AEA) and 

anorexigenic (e.g., OEA) endocannabinoids (Tourino et al., 2010). The endocannabinoid AEA 

can increase food intake (Maccarrone et al., 2010) and OEA is able to increase adipose lipolysis 
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and induce satiety (Gomez-Boronat et al., 2016). The endogenous OEA also has analgesic 

properties by binding to peroxisome proliferator-activated receptor- α (PPAR- α) (Suardiaz et al., 

2007). Under normal conditions, the liver in non-ruminant contains a small concentration of the 

endocannabinoids OEA, AEA, and 2-AG due to the high expression of FAAH (Cravatt et al., 

2004). The expression of FAAH was higher (P ≤ 0.05) in MET supplemented cows than CON 

cows suggesting that MET supplementation could have increased the degree of liver tissue OEA 

degradation. Regarding to a potential link between OEA degradation and feed intake, cows 

supplemented with MET consumed (P = 0.11) 14.03 kg/d whereas CON consumed 12.76 kg/d 

during the last 21 d prepartum. A greater increase in neutrophil phagocytosis capability, 

neutrophil oxidative and monocyte oxidative burst in cows supplemented with MET (P ≤ 0.05) 

than CON cows indicated a better immune system in MET supplemented cows. 

The N-acylethanolamine acid amidase (NAAA) is another enzyme involved in the 

degradation of AEA and PEA (Maccarrone et al., 2010), and it seems to have higher selectivity 

for PEA than AEA in vitro (Ueda et al., 2013). The endogenous PEA can act as an anti-

inflammatory and analgesic compound (Tai et al., 2012). Data from mice showed that the level 

of NAAA in the liver was the lowest among other organs such as lung and spleen (Tai et al., 

2012). In the same study, they measure the level of NAAA in FAAH–/– mice and there was no 

significant difference in NAAA level between wild-type and FAAH–/– (Tai et al., 2012). However, 

in our study, the relative mRNA abundance of NAAA was ~5.63% of total genes measured which 

represented the lowest abundance among the genes involved in the degradation of 

endocannabinoids. 

Monoglyceride Lipase (MGLL) is an enzyme that inactivates 2-arachidonoylglycerol and 

converters monoglycerides to fatty acids and glycerol (Guindon and Hohmann, 2009). Data from 
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previous work indicated that MGLL in bovine liver correlated with serum NEFA, which 

suggested that MGLL could control lipidosis (Khan et al., 2012). In non- ruminants, MGLL plays 

a more important role than FAAH in the degradation of endocannabinoids (Dinh et al., 2002a). 

Mice treated with an MGLL inhibitor had a higher level of 2-AG in the brain and decreased the 

level of arachidonic acid (AA) (Nomura et al., 2011). The relative mRNA abundance of MGLL 

accounted for ~59% of total genes measured. The expression of MGLL was greater (Trt P ≤ 

0.05) in cows fed MET than CON. A previous study demonstrated the importance of lipotropic 

agents in the prevention of liver lipid accumulation (Cooke et al., 2007), hence, an increase in the 

expression of MGLL in the MET group could be one such response to a lipotropic agent (i.e. 

methionine) to clear lipid accumulation from the liver. 

Proopiomelanocortin (POMC) controls many biological processes in the body. The 

POMC gene produces many different peptides such as melanocyte-stimulating hormones 

(MSHs), corticotrophin (ACTH) and β-endorphin (Millington, 2007). The deficiency of POMC 

in mice was characterized by early onset of obesity (Challis et al., 2004). Data from rodents 

showed a relationship between POMC neurons and energy balance (De Jonghe et al., 2011). The 

production rate of endocannabinoids from POMC neurons is similar to other neurons with a 

lower ability to degrade cannabinoids (Hentges et al., 2005). However, our data did not reveal 

any treatment effect for the expression of POMC. The interaction between treatment and time 

had a tendency (Trt × day P ≤ 0.15) due to the greater expression of POMC in MET 

supplementation cows at d 7 than CON cows. Additional research to investigate the mechanisms 

of POMC and endocannabinoids in the bovine liver may help to clarify the importance of these 

compounds as it relates to rumen-protected methionine, the immune system, and metabolism in 

dairy cows. 
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CONCLUSIONS 

Results of the present study revealed a relationship between MET supplementation and 

several components of the endocannabinoid signaling system and proopiomelanocortin in bovine 

liver. These results raise the possibility that the ECS and POMC in bovine liver may be involved 

in the positive effect of rumen-protected methionine on hepatic metabolism and the innate 

immune system and overall cow performance. 
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TABLES AND FIGURES 

Table 3.1. Ingredients and chemical composition of experimental diets. 

 Diet 

Ingredient (% of DM) Far-off Close-up Lactation 

Alfalfa silage 12.00 8.34 5.07 
Alfalfa hay - 4.29 2.98 
Corn silage 33.00 36.40 33.41 
Wheat straw 36.00 15.63 2.98 
Cottonseed - - 3.58 
Wet brewers grains - 4.29 9.09 
Ground shelled corn 4.00 12.86 23.87 
Soy hulls 2.00 4.29 4.18 
Soybean meal, 48% CP 7.92 2.57 2.39 
Expeller soybean meal1 - 2.57 5.97 
Soychlor2 0.15 3.86 - 
Blood meal, 85% CP 1.00 - - 
ProVAAl AADvantage3 - 0.86 1.50 
Urea 0.45 0.30 0.18 
Rumen-inert fat4 - - 1.02 
Limestone 1.30 1.29 1.31 
Salt 0.32 0.30 0.30 
Dicalcium phosphate 0.12 0.18 0.30 
Magnesium oxide 0.21 0.08 0.12 
Magnesium sulfate 0.91 0.99 - 
Sodium bicarbonate - - 0.79 
Potassium carbonate - - 0.30 
Calcium sulfate - - 0.12 
Mineral vitamin mix5 0.20 0.17 0.18 
Vitamin A6 0.015 - - 
Vitamin D7 0.025 - - 
Vitamin E8 0.38 0.39 - 
Biotin - 0.35 0.35 

1SoyPLUS (West Central Soy, Ralston, IA) 
2By West Central Soy 
3Perdue AgSolutions LLC (Ansonia, OH) 
4Energy Booster 100 (Milk Specialties Global, Eden Prairie, MN) 
5Contained a minimum of 5% Mg, 10% S, 7.5% K, 2.0% Fe, 3.0% Zn, 3.0% Mn, 5000 mg of 
Cu/kg, 250 mg of I/kg, 40 mg of Co/kg, 150 mg of Se/kg, 2200 kIU of vitamin A/kg, 660 kIU of 
vitamin D3/kg, and 7,700 IU of vitamin E/kg. 
6Contained 30,000 kIU/kg 
7Contained 5,009 kIU/kg 
8Contained 44,000 kIU/kg 
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Table 3.2. Gene ID, GenBank accession number, sequence and amplicon size of primers used in 

bovine liver.  

1 Amplicon size in base pair (bp). 

  

Gene 

ID 

Accession # Symbol Primers Primers (5’-3’) bp1 

281087 U77348.1 
 

CNR1 F.68 
R.172 

AACCCCAGCCAGCAGCTT 
GAGGCTGGAATGGAGGATGA
C 

105 

539769 NM_001192303.1 
 

CNR2 F.791 
R.900 

TCTTCGCCGGCATCATCTAC 
CATCCGGGCTATTCCAGACA 

110 

540007 NM_001099102.1 
 

FAAH F.1332 
R.1436 

TTCCTGCCAAGCAACATACC
T 
CACGAAATCACCTTTGAAGT
TCTG 

105 

505290 XM_581556.5 
 

MGLL F.2 
R.138 

GCAACCAGCTGCTCAACAC 
AGCGTCTTGTCCTGGCTCTT 

137 

541291 NM_001015680.1 NAPEPLD F.400 
R.494 

AGAGATCACAGCAGCGTTCC
AT 
ACTCCAGCTTCTTCAGGGTC
ATC 

95 

515375 NM_001100369.1 
 

NAAA F.223 
R.322 

CAGCACTACGACCGGGACTT 
CCGGGACGACTTTTCTGATC 

100 

281416 NM_174151.1 
 

POMC F.855 
R.951 

CTTGTCACGCTGTTCAAAAA
CG 
GTCAACTTTCCGCGGAGAGA 

97 
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Table 3.3.  PCR product sequences of the primers after BLAST with NCBI   

  

Gene Sequence 

CNR1 GTTTTCGCCAGCTTGCCACGCTGTGCACTTTAAGCGCTTGTTTGGCA
CCTTCACGGTCCTGGAACCTGCTGGTGCTGTGTCATCCTCCATTCCA
GC 

CNR2 CGAAGTTCCTCTTCGCCGGCATCATCTACATGGAAGGCCCATCAGGC
ATTCCGGAGCCAGCTTGGCTGAGCACCGGGACAGACACCTGTCTGG
A 

FAAH GCGTGCACGGGCAGGGGTGCTGTTCAGTGACGGTGGCACGACCTTC
CTACAGAACTTCAAAGGTGATTTCGTGA 

MGLL GCTGGAGGCGCTGCCAGCTGAGCTGCCCTTCCTGCTGCTGCAGGGCT
CTGCCGACCGCCTCTGTAACAGCAGGGGCGCCTACCTGCTCATGGA
GTCAGCCAAGAGCCAGGACAAGACGCTAAT 

NAPEPLD GCATAGCGTTGATGAGACACCTCCGGGGTGCCTTAGGCCATATTTTA
TTGATGACCCTGAAGAAGCCTGGAGTACAAT 

NAAA CTCGTCCAATCATCGGAGAATTATGTCCCGCAGTGGGTCCTTGCATT
GATCAGAAAAGTCGTCCCGGGAC 

POMC CCTAACGCCACAGAGAGGCCAGTGTGAGGGCGCAGCGGGCAGGGG
GGCCTCCTCTCCGCGGAAAAGTTTGAACAAA 
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Table 3.4.  qPCR performance of genes measured in bovine liver.  

 

 

 

 

 

 

 1The median is calculated considering all time points and all cows. 
2 The median of ∆Ct is calculated as [Ct gene – geometrical mean of Ct of 3 internal control 
genes] for each time point and each cow. 
3 Slope of the standard curve. 
4 R2 stands for the coefficient of determination of the standard curve. 
5 Efficiency is calculated as [10(-1/slope)]. 

 

Gene Median 

Ct1 

Median 

∆Ct2 

Slope3 (R2)4 Efficiency5 
CNR2 26.85 5.46 -3.68 0.94 1.87 
FAAH 22.91 1.54 -3.51 0.96 1.93 
MGLL 21.74 0.37 -3.19 0.96 2.06 
NAAA 25.08 3.73 -3.27 0.99 2.02 
POMC 26.34 4.85 - 3.16 0.99 2.07 
NAPEPLD 26.99 5.57 -3.30 0.98 2.01 

 
UXT 24.37 -- -3.39 0.97 1.97 
GAPDH 20.01 -- -3.18 0.99 2.07 

 
RPS9 20.09 -- -3.23 0.99 2.04 
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 Table 3.5. Least squares means of gene expression data in transition cows supplemented with rumen-protected methionine (MET)              

or control cows (CON).  

A-B Mean values with statistical differences (P ≤ 0.05) between treatments. 

* indicates an interaction effect (Trt × day P ≤ 0.05) at the specific time point.  
1Greatest SEM. 

  

Gene 
Tretment  Control 

SEM1 
Methionine 

SEM1 
P value 

CON Met  -10 7 20 30 -10 7 20 30 Trt  Day Trt×day 

CNR2 1.04 0.89 1.65* 1.08 0.60 0.84 0.15 1.09* 1.12 0.57 0.82 0.14 0.30 <0.01 0.05 

FAAH 0.79B 0.93A 0.76 0.67 0.87 0.84 0.11 0.95 1.03 0.95 0.80 0.11 0.04 0.91 0.23 

MGLL 0.58B 0.78A 0.41 0.63 0.73 0.57 0.13 0.32 1.17 0.85 0.77 0.12 0.04 <0.01 0.08 

NAAA 0.94B 1.33A 1.42 0.85 0.64 0.87 0.18 1.89 1.72 0.65 1.09 0.17 <0.01 <0.01 0.08 

NAPEPLD 0.87B 1.07A 1.16 0.91 0.55 0.85 0.15 1.47 1.26 0.55 1.01 0.14 0.03 <0.01 0.60 

POMC 1.21 1.16 1.09 0.90 1.68 1.18 0.19 0.79 1.46 1.58 0.84 0.19 0.71 <0.01 0.07 
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Table 3.6. The effects of methionine supplementation on blood neutrophil, monocyte phagocytosis, and oxidative burst. 

Parameter  Tretment  Control  
SEM2 

 Methionine  
SEM2 

P value 

CON MET  1 4 7 14 28 1 4 7 14 28 T  D T×d 

P_mono1 40.5 46.7 39.6 38.1 38.9 40.4 45.5 2.9 48.0 45.0 46.5 47.0 47.0 3.6 0.12 0.26 0.55 

P_neutro 50.9B 62.2A 45.8 49.7 46.2 54.6 58.2 4.1 60.9 62.7 59.0 65.1 63.3 5.1 <0.01 0.19 0.81 

O_Mono 17.4B 28.1A 18.0 19.2 16.4 20.0 13.3 4.7 32.3 22.5 35.2 21.5 29.0 5.7 <0.01 0.71 0.28 

O_Neutro 42.7B 58.2A 41.4 42.1 38.8 44.4 47.0 6.9 57.6 55.6 56.0 56.1 65.9 8.5 0.03 0.69 0.98 
 

1P_mono = monocytes phagocytosis; P_neutro = neutrophils phagocytosis; O_mono = monocytes oxidative burst;  

O_neutro = neutrophils oxidative burst. 
2Greatest SEM. 

A-B Mean values with statistical differences (P ≤ 0.05) between treatments. 
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Table 3.7. Diet effects on DMI and milk yield during prepartum and postpartum periods. 

      1Greatest SEM. 

  

Parameter 
Treatment  

SEM1 
P- value  

control methionine Treatment day T × day  

Prepartum       

DMI (kg/d) 12.76 14.03 0.56 0.11 <0.01 0.96 

Postpartum       

DMI (kg/d) 17.21 19.33 0.84 0.08 <0.01 0.49 

Milk yield ( kg/d)  40.99 45.12 1.74 0.09 <0.01 0.71 
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      Figure 3.1.  mRNA abundance of ECS genes in bovine liver in response to rumen-protected  

                          Methionine (MET) or control (CON) diet  
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Figure 3.2.  Dry matter intake (kg/d) during prerartum and postpartum periods and milk 
production in response to rumen-protected methionine supplementation (MET) or control (CON) 
diet. 
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Figure 3.3. mRNA expression of endocannabinoid genes in response to methionine 
supplementation (MET) or control diet (CON). * indicates an interaction effect (Trt × day P ≤ 
0.05) at the specific time point. 
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