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Abstract 

 

Fluorescence imaging of intracellular proteins is often achieved by using transfection-induced 

expression of fluorescent protein. This can potentially impose artifacts such as loss of function or 

over-expression of target proteins. Direct labeling of the intracellular protein is an alternative to 

transfection, but is largely limited by permeability of the fluorescent probes. Here, we have 

developed a high-throughput technique for labeling intracellular proteins of living cells. The 

technique makes use of Streptolysin O (SLO), a bacterial enzyme that permeabilizes cells to 

DNA, RNA, proteins. We show that SLO can be used to deliver a variety of fluorescent 

probes; ranging from organic dyes (<1 kDa in size) to fluorescent immunoglobulin antibody 

(~150 kDa) for specific labeling of intracellular proteins. We demonstrate in numerous ways that 

after permeabilization the cells remained viable and responded normally to cell signaling protein. 

We applied this technique to observe the dynamic motion of labeled actin and mitochondria 

using super-resolution fluorescence microscopy (dSTORM). Furthermore, we show the ability to 

image single proteins inside the living cell by tracking single molecules of kinesin using 

photostable probes.  
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Chapter 1  

Introduction and Background 

1.1 LABELING INTRACELLULAR PROTEINS OF LIVING CELLS 

 The eventual goal of many biophysical experiments is to be able to observe how a 

particular protein functions in the dynamic system of a living cell. Fluorescence and super-

resolution fluorescence microscopy provide us with the tools to do just that; it became possible 

to visualize a particular protein over the background. To achieve this, many experimental designs 

has included the use of transfected cell, where a green fluorescent protein (GFP), or any 

fluorescent proteins (FP) are appended to the protein of interest. The consideration for attaching 

a FP is always this; how much does adding a GFP affect the function of the target protein. Most 

importantly, the over-expression of target protein from transfection can cause serious artifact in 

the biological results that one obtains. What we really want is a way to introduce fluorescent 

probes, which targets a specific protein, inside a living cell. This is a significant challenge, 

because unlike using cells that are fixed and permeabilized, the cell membrane of a healthy cell 

is not permeable to most of the fluorescent probes. There are two ways to tackle this problem; 

from the designing of probe itself, or find some ways to bypass the membrane either 

mechanically or chemically. In terms of probe design, various combinations of cell permeant 

fluorophore and ligands have been use to get by the cell membrane. For example, small cell 

permeant ligands that are able to form covalent bond with protein of interest that carries specific 

tags has become increasingly popular; namely, chloroalkane (for HaloTag)1, benzylguanine (for 

SNAPtag)2, and trimethoprim-Acrylamide (for eDHFR)3. In order to label protein of interest 

using these novel labeling system, the cells has to first be transfected with either Halotag 

enzyme, SNAPtag enzyme or eDHFR fused to the protein of interest. To retain the permeability 
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of the fluorescent probe, the ligand has to be conjugated to a cell permeant dye. Some examples 

of these cell permeant organic dyes are Oregon Green, tetramethylrhodamine (TMR), silicon 

Rhodamines (siR) and Atto655. The fluorescent probes would label intracellular proteins when 

incubated with the cell, and excessive probes are usually washed away by incubating with serum 

containing media for several minutes. For larger probes, such as proteins conjugated to organic 

dyes, cell penetrating peptides (CPP) has been used to allow certain proteins to enter the cell 4. In 

particular, poly-arginine has been used to introduce free GFP into the cell 5. Other CPPs have 

shown to allow molecular entry of proteins, but is unclear whether the molecule entered are 

trapped in endosomes. CPP has been reported to bring in large molecule, such as quantum dot 

nanocrystals 6. However, there hasn’t been any report of specific labeling using quantum dots 

delivered by this method, as most of the uptakes are due to endocytosis and the delivered 

quantum dots are trapped in endosomes. 

 Mechanically injecting probes, or creating pores on the cell membrane using mechanical 

or chemical means are applied if the use of cell impermeant probes can’t be avoided. Nano-

injection method has been used to bring in small probes for performing super-resolution 

fluorescence microscopy 7. There are several drawbacks with the injection methods. It is known 

to create structural artifact on actins at the point of injection. Second, microinjection provides 

entry into the cell, but it doesn’t provide an exit for the free probe to be washed away. Therefore, 

the concentration of the probes injected should be very well optimized, otherwise a significant 

amount of unlabeled probes will be observed. The amount of probes required for injection 

method is also significantly higher; typically several micromolar concentration of probe is used 

for staining. Electroporation or microporation is another alternative to physically open holes on 

the membrane using electric current 8. To ensure even permeabilization across all cells, it is often 
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necessary to detach adherent cells to suspension in order to make sure the cells are exposed to 

the electric field evenly. For imaging, the cells are then plated onto a coverslip after 

electroporation, which could take up to hours to attach depending on the cell type. This limits the 

time when one can start observing the kinetic of labeled protein to several hours after delivery of 

the probes. Osmotic pinosome lysis is a technique that is commercially available for delivering 

fluorescent probes inside the living cell 9. The technique utilizes the formation of pinosomes, 

which formed by changing the osmolarity of the surrounding media. The cells are first exposed 

to a hypertonic solution along with the probe of interest. Pinosomes will then form on the cell 

membrane from probes that are intercalated in the membrane. The cells are then exposed to 

hypotonic solution, which lysis the pinosomes on the internal side of the cell membrane, 

breaking free the probes that were stuck. This method however is more applicable to probes that 

sticks to the cell membrane. Not to mention that the osmotic shock can often cause blebbing of 

the membrane, in which the cells do not recover from, and eventually lead to compromised 

membrane, or cell death. Recently, there is a new technique to deliver probes and large cargoes 

into the cell by using a photonic device 10. The cells are cultured on a specialized coverslip, 

which causes bombardment of the cell membrane when exposed to laser light. The probes are 

then delivered into the cell during the period of membrane bombardment, when the holes are 

formed on the membrane. Using this technique, the authors were able to deliver cargo up to the 

size of E.coli that is micron in size. This technique is feasible but normally inaccessible to labs 

that doesn’t have the specialized coverslip and instrumentation. Chemical means of creating 

holes on the cell membrane have been made possible by the use of pore-forming toxins 11. 

Different toxins is known to create different sized holes; for instance, Streptolysin S creates 

holes that are permeable to molecules that are ~4.5 nm in diameter, whereas Streptolysin O 
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(SLO) makes the cell permeable to particles that are ~13 nm in diameter 12. In particular, the 

large size of pore that SLO create makes it an idea candidate to use to introduce fluorescent 

probes into the cell. 

 

1.2 STREPTOLYSIN O AND RELATED PORE FORMING TOXINS 

 

Figure 1.1. Crystal Structure of Perfringolysin O, which is only a few amino acid sequence different from 

Streptolysin O, and the mechanism of pore formation. The monomer consists of four domains. Right image from13, 

and left image from14. 

 Streptoysin O (SLO) is a 70 kDa bacterial enzyme that oligomerizes and forms pore on 

the cell membrane 11,15. In general, the cholesterol binding cyclotoxins, such as Perfringolysin O 

and Streptolysin O consists of 4 domains (Fig 1.1). Domain 4 is hypothesized to be mostly 

responsible for membrane binding, whereas domain 1 and 3 are responsible for oligomerization 

and pore formation. Numerous studies have shown SLO, like other cholesterol binding 

cyclotoxins, binds to the cholesterol rich region on the membrane 14. The oligomerization 
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process however, is still unclear at this point. For instance, the exact number of monomers per 

pore, and whether this number changes with concentration of the toxin and cholesterol content of 

the membrane is not yet known. A similar pore-forming toxins pneumolysin forms pore on the 

cell membrane with 30-50 monomers. A 3D reconstruction image of the pore complex based on 

cryo-EM data of pneumolysin is shown in Fig. 1.2.  

 

Figure 1.2. 3D Reconstruction of the Oligomer Pore-Complex based on Cryo-EM data. 

 The sizes of pores that SLO forms can vary to a certain extend. For example, SLO has 

been shown to form pores that are arc like instead of complete circle, due to partial 

oligomerization 16. What remains a mystery is the fact that although the pores are roughly 30-40 

nm as shown by electron microscopy and AFM 16,17 (Fig. 1.3), the largest size of recorded 

molecule that enter or exit the cell is only ~13 nm in diameter12. The discrepancy of these 

experiments can be attributed to the use of different techniques. For instance, in EM and AFM, 

the cells are often fixed after pore formation, and the cells could have been permeabilized to a 

point of no return. It is possible that to remain cell viability, pore as large as 30-40 nm was never 

achieved and only smaller holes are formed. It is also unclear whether the SLO damage becomes 

irreversible is due to formation of too many pores, or formation of too large of a pore. More 
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studies are needed in order to elucidate the relationship between SLO concentration, pore size, 

and cell death.  

 

Figure 1.3. Image of the cell membrane pore complex based on electron microscopy and AFM imaging. 

 

 It is well known in literature that the pores formed by SLO on the membrane are 

eventually removed by the cell under a certain conditions, and the cells are viable after a brief 

period of recovery. However, there has been an inconsistency in how to initiate the recovery of 

SLO permeabilized cells, as well as how the cells even clear the numerous SLO pore complex 

off the cell membrane. Some studies mentioned the importance of calcium in membrane repair 

after SLO permeabilization 18. Others used complete medium supplemented with FBS for 

recovery 19,20. Some paper even further suggest the use of cytosolic solution from other cells to 

supplement the recovery process 21. All of these studies provided proofs that the membrane has 

repaired, however, it is unclear whether incomplete oligomerization has occurred as mentioned 

before, and whether different degrees of permeabilization requires different recovery agents. The 

exact mechanism of how the cell membrane is repaired from these numerous pores is still 

controversial. One study suggests that the SLO oligomer is removed from the cell by bleb 

formation17, while another study suggests that the oligomer is endocytosed inside the cell during 
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membrane repair22. Once again, more studies are needed in order to further understand the 

recovery mechanism of cells permeabilized by SLO. 

 Even though the pore formation and recovery mechanism of SLO are not well 

understood, experimentally SLO has been used to deliver DNA23, RNA19, ligands24 and 

proteins25,26 into living cells. SLO was first shown to be able to cause reversible permeabilization 

of the membrane to a wide variety of proteins by Walev et al. 25. Walev et al. showed that after 

SLO treatment, the cells were permeable to FITC labeled albumin and Fab’2 fragments. The 

purpose was to show that the membrane could be made permeable, and hence they did not show 

specific labeling from the delivered fluorescent molecules. In addition, the report claimed that 

the cells were only permeable up to 100 kDa of protein (Fab’2) and therefore excluded the 

possibility of bringing in primary antibodies such as IgG’s that are ~150 kDa. Others have 

reported the entrance of macromolecules (>100 kDa) using SLO but did not provide evidence of 

specific labeling (for instance, colocalization with expressed fluorescent protein on the same 

target) and cell health, since the cells were either fixed immediately after delivery or cell 

viability at this permeabilization condition was never evaluated 9,18. SLO has, however, been 

successfully used in live untransfected cells to deliver fluorescent probes bound to DNA and 

RNA, (including molecular beacons)20 and the dynamic of mRNA are sometimes observed. 

There has yet to be any report of dynamic observation in proteins labeled by SLO 

permeabilization. Our goal is to use this technique to deliver a variety of fluorophores that are 

capable of providing superb photostability for observing the dynamic of proteins inside the living 

cell. 
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1.3 SINGLE DOMAIN ANTIBODY-A NOVEL CLASS OF FLUORESCENT 

PROBE 

 In general with pore-forming toxin permeabilization, small molecules are more 

permeable than large molecules 12. It is therefore more efficient to deliver smaller probes into the 

cell if massive labeling of the cellular structure is desired. Although the delivery of full size 

antibody may be possible, to deliver enough antibody to stain a whole cellular structure can be 

challenging. An alternative to full antibody is to use single domain antibody for labeling cellular 

structure, which has been shown to be capable of doing this task by using the transfected cell to 

express recombinant single domain antibody labeled fluorescent protein 27. A recent report has 

also successfully collected super-resolution images with dye labeled single domain antibody on 

fixed cells 28. The single domain antibody, also termed nanobody, is a 15 kDa fragment antibody 

produced by llamas (Fig 1.4.). 

 

Figure 1.4. Single domain nanobody derived from camelid Immunoglobulin.  

 

 The library for single domain nanobody is still growing, but there has been reliable 

commercial source for nanobody against GFP, RFP, and few other proteins. It has been shown 

that GFP nanobody can be conjugated to compact quantum dots for immunolabeling of receptors 
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in the narrow synapses due to its size advantage 29. GFP and RFP nanobody (GBP, RBP) can 

also be used as boosters for fluorescence signal (Fig. 1.5). 

 

Figure 1.5. Total photon output of GFP versus Atto647N. Single molecules of GFP are measured by immobilizing 

GFP on glass. GFP was subsequently labeled by GBP-Atto647N. The total photon output of GFP and Atto647N are 

calculated. 

 In this example, GFPs are immobilized onto a glass coverslip and single molecule 

fluorescence images of GFP and GBP-Atto647N were collected until all the spots are 

photobleached. The total photon output of GFP before photobleaching was calculated, where we 

got an average of about 35,000 photons for the GFPs. After labeling the GFP with GBP-

Atto647N, the total photon output increased to 200,000 photons, attributed to the photostability 

of Atto647N. This ~6x boost in photon output is very valuable for tracking molecular motors and 

imaging long time dynamics. In summary, the compact size of GBP, and ability to use it to boost 
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the fluorescence signal over existing fluorescent proteins, such as GFP and RFP makes it a very 

unique and useful class of probes to deliver inside the cell for single molecule tracking purposes.  

 

1.4 DYNAMIC OF KINESIN-1 MOTOR IN VIVO 

 

Figure 1.6. Structure of Full Length Kinesin 1. Image from http://www.biochemsoctrans.org/content/40/2/438. 

 

 Kinesin-1 is a plus end directed microtubule motor responsible for cargo transport in cells 

30. For each ATP hydrolyzed, kinesin “walks” 8 nm step, which is roughly the size of the tubulin 

dimer that the kinesin walks on. Naturally, kinesin exists as a homodimer, and the structure 

mainly contains two motor domains (or heads), and a long stalk (Fig 1.6). Kinesin has been 

reported to mostly be in-active in vivo due to the folding of hinge 2, and the interaction between 

cargo binding domain and the motor domain. Therefore, various constructs of kinesins have been 

made to eliminate the motility issue due to in-activation so that they can be better studied. This is 

http://www.biochemsoctrans.org/content/40/2/438
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typically done by truncating the kinesin above hinge 1. Although kinesin has been studied 

extensively in vitro, very little is known about its biophysical properties in vivo. Numerous paper 

has reported that when tracking cellular vesicles, such as in the long axon of neurons, the 

velocity of kinesin can be several microns per second, and the cargo also exhibit extremely long 

run length 31,32. Through in vitro measurement, it is well known that the velocity of kinesin is 

roughly under a micron per second (depending on temperature, type of buffer used, and other 

factors), and the run length of individual motor is about a micron in length33. The big question 

now is whether the increase in velocity and run length that have been measured from vesicles is 

due to the intracellular condition of  being in vivo, or is the elevated speed caused by other 

proteins that attached to the kinesin and cargo, which the kinesin was carrying and caused the 

increase in speed. All these questions cannot be answered until we’re able to measure and study 

the properties of kinesin molecule in vivo. The difficulty in studying single molecular motors in 

vivo is the fact that currently there isn’t a way to label the motor proteins in cells with a 

photostable dye. This problem can be circumvented by appending FP to the molecular motor. 

However, kinesin fused to fluorescent proteins photobleaches extremely fast and suffers from 

poor signal to noise in the intracellular environment. An interesting attempt to solve this problem 

is by using kinesin fused to tandem fluorescent proteins (FP) 34. This particular study done by 

Verhey lab was able to measure the velocity of kinesin inside the cell, by increasing the photon 

output high enough to track individual kinesin via its 6 FP tags. However, it is very challenging 

to obtain the exact expression level where individual kinesin can be observe, as the cells 

typically over-expresses transiently transfected proteins. Just within hours, the cells could be 

filled with the protein of interest. It was also reported that this tandem FP fusion kinesin 

construct are not all functional. For instance, they have observed that the kinesin with a shorter 
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stalk region (K560) aren’t functional after the attachment of three FPs. SLO permeabilization is a 

great way to overcome this problem by introducing fluorescent probes that are specific to the 

kinesin, and increase photon output of the FP attached by using the nanobody probes mentioned 

above. 

 

1.5 SUPER-RESOLUTION MICROSCOPY WITH DELIVERED 

FLUORESCENT PROBE 

 Recently super-resolution microscopy that utilizes localization of single fluorophore has 

been very popular 35. The technique, such as stochastic optical reconstruction microscopy 

(STORM) uses the detection of isolated fluorophores per frame to construct an overall high 

resolution image of the cell, where each molecule is localized to roughly 10-20 nm accuracy 

(Fig. 1.7). Such technique requires either the use of a photoswitchable probe, or a probe that can 

activated stochastically, so that the probes can be turned on/off to have a chance of detecting 

isolated molecules.  

 

Figure 1.7. Basic Principle Behind Stochastic Optical Reconstruction Microscopy (STORM).  
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http://microscopyu.com/tutorials/flash/superresolution/storm/index.html 

 

 Typically, the dyes are deactivated with the aid of reducing agent, like sodium borohydrate, 

BME, MEA, or glutathione 36. Because photobleaching limits the number of cycles a particular 

dye can be activated, typically an oxygen scavenging system, such as glucose oxidase/catalase + 

glucose, or PCD/PCA are used. So far, super-resolution techniques like these have huge success 

in revealing detailed cytoskeleton structures such as microtubule and actin in fixed cells 36,37. A 

comprehensive review has been published evaluating different fluorophores and their potential to 

be used for direct STORM (dSTORM)38. The concept of dSTORM is similar to STORM, but the 

use of an activator dye is not necessary; the fluorophore undergoing photoswitching on its own 

in the presence of thiol containing reducing agent. Unfortunately, most of these probes that they 

find extremely efficient for dSTORM, such as Cy3B and Alexa647 are cell impermeant, which 

limits the use of the technique on live cells. Potentially what we want to do with our technique is 

to be able to deliver these dSTORM probes inside the cell, so that dSTORM can be performed on 

living cells. 
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Chapter 2 

Material and Methods 

2.1  MAMMALIAN CELL CULTURE 

SLO permeabilization experiments conducted on various mammalian cell lines. The cell 

lines tested included CHO-K1, COS-7, HeLa, U2OS, and NSC34. A table for culture media and 

doubling time for each of the cell line is below: 

Cell line Culture Media Doubling Time 

CHO-K1 F12K 10% FBS PS 16 hrs 

COS-7 DMEM 10% FBS 18 hrs 

HeLa MEM 10% FBS PS 24 hrs 

U2OS DMEM 10% FBS PS 29 hrs 

NSC34 DMEM 10% FBS PS Not Available 

Table 2.1. Culture media for cell lines maintained for SLO experiments along with their doubling time. PS= 

penicillin streptomycin 

Cells are cultured in 25 mm filtered flask, and subcultured whenever the cells reach ~90% 

confluency. Subculture protocol is described below: 

-Wash cells with PBS 3x 

-Add 2 mL 0.25% Trypsin-EDTA (Gibco or Corning), incubate for 5” in 37 degree C 5% 

CO2 incubator. 

-Check the cells under microscopy to make sure they’re rounded up, which means the cells 

are detached from the surface of the flask. 
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-Neutralize the 0.25% Trypsin-EDTA with 6 mL complete medium for the particular cell 

line. 

-Dilute cells anywhere between 1:10 to 1:4 ratio by diluting the cell solution with complete 

medium. For CHO-K1 cells or fast growing cells 1:10 ratio is used, whereas for slow 

growing cell such as U2OS cells, 1:4 ratio is used. 

-After the cells are transferred to a new flask, gently mix the cells by swirling the flask in 

figure 8 pattern. 

 

2.2  GFP NANOBODY EXPRESSION PURIFICATION 

 
The protocol for purifying recombinant nanobody GBP (GFP binding protein) is detailed 

below: 

-Plate bacteria from BL21+GBP plasmid Glycerol stock in -80C (DO NOT THAW THE 

GLYCEROL STOCK) by dipping a 100 uL pipet tip deep into the frozen glycerol and then 

streak LB plate with KANAMYCIN using the pipet tip or a new streaking stick. Allow the 

colonies to form overnight. 

-Pick one colony from the plate and start overnight culture in 50 mL LB + kanamycin in a shaker 

at 37 degree C. 

-Add 5 mL of overnight culture into each 1 L flask containing LB + kanamycin, grow until OD 

reaches 0.6 to 1.5 in 37 degree C shaker. Save a sample of bacteria when O.D. reaches 0.6 for gel 

verification. 

-Add final concentration of 0.5 mM IPTG into each flask, express the protein at room 

temperature while shaking with the lid open for 4 hours.  
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-Save a small amount of bacteria for gel verification. Harvest the bacteria by centrifuging the 

bacteria at 6000g and 4 degree C for 15 minutes using a GSA rotor (Sorvall). 

-Discard the LB, store pellet in -80 until ready to start lysis/protein purification. 

-Prepare Purification buffer (PB):  

 50 mM NaH2PO4/NaHPO4 (pH 8) 

 250 mM NaCl 

 1 mM MgCl2 

Take the above buffer, prepare a separate buffer containing 500 mM imidazole (PBI) 

adjust pH to 8 with HCl. 

-Prepare Lysis buffer 

 50 mM Imidazole in PB by mixing ratios of PB + PBI. (dilute PBI 10x with PB) 

 1 mg/mL lysozyme 

 250 uL Protease inhibitor cocktail for his-tagged protein (Sigma) 

 1 mM PMSF (100 mM PMSF in isopropanol) 

 15 ug/mL Benzamydine (15 mg/mL Benzamidin in ddH20) 

-Once the buffers are prepared, dissolve bacteria pellet in Lysis buffer (~35 mL for 2 L flasks). 

-Add 1 scoop full of DNase. Incubate the lysing bacteria on ice for 15 minutes. 

-Sonicate the bacteria in lysis buffer at 40% amplitude for 60s (10s on/10s off) 

-Centrifuge cell lysate at 15,000g 4C for 20 minutes using Beckman coulter ultracentrifuge. 

-During centrifugation, prepare NiNTA resin by discarding the original solution, wash it with at 

least 10 mL ddH20, and then equilibrate it with 50 mM Imidazole PB (by mixing PB and PBI). I 

used ~2.5 mL of resin for 2L culture. Leave ~1 mL of 50 mM imidazole buffer in the resin. 
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-After bacteria lysate is centrifuged, collect the supernatant but be careful not to disturb the 

pellet.  

-Incubate the collected supernatant with the NiNTA resin while shaking for 1.5 hours at 4 degree 

C.  

-At the end of 1.5 hour pour the content (NiNTA + lysate) in the column, and collect flow 

through. 

-Wash the column with 50 mM imidazole buffer. The volume of buffer needed depends on 

whether protein is still present in the flow through. I run a qualitative Bradford assay 

concurrently as I purify to make sure all the unwanted proteins are washed away. 

-During the wash prepare subsequent buffer, 100 mM imidazole buffer is next. Prepare this from 

PB and PBI. 

-GBP should come out at 150 mM imidazole prepare 10 mL of 150 mM imidazole buffer, and 

collect 2, 4, 4 mL for 3 fractions. Concurrent Bradford assay will help you check when the 

protein starts to come out. For Bradford Assay protocol, see below. 

-Collect another flow through with 10 mL 250 mM Imidazole towards the end of 250mM 

elution, no more protein should come out. 
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-Run a SDS gel to check purity and concentration of protein (see Figure 2.1).

 

Figure 2.1 SDS-PAGE Gel of Purified GBP. Purified GBP appears as a 15 kDa band on the gel. 

 

-Pure GBP fraction were collected, in my case 150 mM fraction 2 and 3, do Bradford assay to 

check concentration, and dilute the protein to below 100 uM (~50 uM recommended). 

-flash freeze and stored protein in -80 degree C freezer. 2 L of LB yielded roughly 8mL of 70 

uM of GBP (fraction 2&3 + diluted 2x further with PB)    

Protein concentration determination with Bradford Assay: 

 
Reagents needed:  

 

-Bradford assay reagent (also called Coomassie G-250) from Bio-rad 

-Protein Calibration Standard (Usually Bovine serum albumin, BSA) 

-Molecular Biology Grade Water 

Protocol:  

1. Dilute Bradford Assay Reagent to 1X in Molecular Biology Grade Water, its usually a 5x 

dilution. 
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2. Establish a Bradford Assay calibration curve by adding 2 uL of various concentration of 

BSA at 2, 1.5, 1, 0.5, 0.25, 0 mg/mL to 100 uL of Bradford Assay reagent. Measure the 

O.D. at 595 nm after waiting 10 minutes. Result should be roughly linear between O.D. 

and protein concentration, see Fig. 2.2 below. 

3. Calculate the protein concentration of your protein of interest using the calibration curve 

established. 

 

Figure 2.2. Bradford Assay Calibration Curve using BSA. Absorbance at 595 nm was measured for BSA in the 

concentration of 2 mg/mL, 1.5 mg/mL, 1 mg/mL, 0.5 mg/mL and 0.25 mg/mL.  

 

2.3  PROTEIN LABELING AND PURIFICATION 

 
To prepare for probes used in the study, nanobody such as GBP, or commercially 

available primary antibody has to be labeled by organic dyes. Generally the labeling strategy we 

use is to label the amine groups on protein with NHS-ester-organic dye. The protocol is 

described below: 

Reagents needed:  

-Primary antibody or nanobody at 0.1 mg/mL – 1.0 mg/mL in PBS 

y = 0.4215x - 0.0361
R² = 0.978

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

A
b

s 
@

 5
9

5

Protein Concentration (mg/mL)



- 24 - 
 

-Organic dye with NHS-ester (lyophilized) 

-1 M Sodium Bicarbonate 

-3500 mw cutoff desalting column  

Protocol: 

1. Add 1/10 volume of 1 M Sodium Bicarbonate to antibody solution to adjust pH. 

2. Dissolve organic dye NHS-ester in DMSO at 10 mg/mL. 

3. Add minimum amount of dissolved dye to antibody so that the ratio between antibody 

and dye is 6:1 for primary antibody, and 3:1 for nanobody. 

4. Incubate the dye and antibody for 2 hours at room temperature. 

5. Purify the free dye away by passing the labeled protein through a 3500 mw cutoff 

desalting column. 

 

2.4  MOLECULAR BIOLOGY: PCR AND SUBCLONING 

Sub-cloning is necessary for preparing plasmids with additional insert fused to our 

protein of interest. For example, we often subclone plasmid to add a Halotag or GFP on our 

protein of interest. It also work for substituting an existing tag for another tag, such as changing 

an existing GFP to halotag and vice versa. The general strategy for sub-cloning is via the use of 

Gibson’s assembly, which is described in the diagram below (Fig. 2.3). 
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Figure 2.3. Schematic diagram of how sub-cloning via Gibson Assembly works.  

https://www.neb.com/products/e2621-nebuilder-hifi-dna-assembly-master-mix 

The Gibson Assembly adds fragments of DNA to a linearized vector through overlaps at 

the two ends. PCR is used to create linearized vector and the DNA fragments. As an example, 

here is the protocol used to subclone a GFP into a p65-halotag plasmid. Here we wish to attach 

an eGFP insert at the C terminal end of the p65-halotag, resulting in a plasmid encoding for p65-

halotag-GFP (Fig. 2.4). 

https://www.neb.com/products/e2621-nebuilder-hifi-dna-assembly-master-mix
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Figure 2.4. Example backbone plasmid and Insert with PCR sequencing direction. 

To obtain linearized vector and the insert, we perform PCR on the two plasmid, each with 

2 different primers. The primers for the linearized vector will bind to the left and right of the 

insertion site from 5’ to 3’ direction. The primers for the eGFP gene will bind at the two ends of 

the gene, but with an additional ~12 nt of overlap with the vector backbone next to the insertion 

site. An example of the primer design is shown below (Fig. 2.5). 

 

Figure 2.5. Example of primer design. Primer for the insert needs to contain ~12 nt of overlap with the vector 

backbone. http://nebuilder.neb.com/ 

http://nebuilder.neb.com/
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The red text are segment of primer that binds the insert eGFP gene, whereas the grey 

letters are the overlap that it create based on the neighboring sequence of the insertion site on the 

vector backbone. Once the primers design is finished, primer and be ordered and once arrived we 

proceeds with PCR. 

The protocol for PCR is as follows: 

Reagents needed: 

-Phusion Hi-Fi PCR Kit (NEB) 

-Primers (500 uM) 

-10 ng/uL Plasmid DNA 

-Molecular Biology Grade Water 

Protocol: 

1. To prepare a final volume of 50 uL PCR product, add the following in order: 

2. 36.5 uL Molecular Biology Grade Water 

3. 10 uL 5x Phusion HF Buffer 

4. 1 uL 10 mM dNTPs 

5. 0.5 uL Forward Primer 

6. 0.5 uL Reverse Primer 

7. 1 uL Template DNA  

8. 0.5 uL Phusion Polymerase 

9. Program the thermocycler with the following setting: 

10. Initial denaturation: 98 degree C for 30 seconds 

11. 30x cycles of 98 degree C for 30 seconds, annealing temperate of your primers for 30 

seconds (lower of the two), 72 degree C extension for 30 seconds per 1000 basepairs.  
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12. Final extension 72 degree C for 5 minutes 

13. Hold at 4 degree C. 

At the end of PCR, check the fragment sizes using 0.8% agarose gel (320 mg agarose in 40 

mL 1X TAE Buffer (40 mM Tris, 20 mM Acetatic Acid, 1mM EDTA), plus 1X SYBR Safe 

Stain). The fragments are loaded along with 6x loading buffer (3mL glycerol, 25mg 

bromophenol blue, 7 mL ddH2O). Gel was ran at 120V for 50 minutes. At the end of the run, gel 

was visualized under UV light. Fragments should appear yellow. Once the fragments are verified 

to be the correct size, proceed to clean up the plasmid DNAs in the PCR products by doing DPNI 

Digest, where the methylated nucleotides on the plasmid DNA are cleaved. DPNI Digest is 

performed following the protocol below: 

Reagents Required:  

-DPN1 Enzyme 20,000 units/mL 

-NEB Buffer #4   

Protocol: 

1. Add 4.6 uL NEB Buffer #4 and 1.75 uL DPN1 Enzyme to 40 uL PCR products 

2. Incubate at 37 degree C for 2 hours 

3. Heat inactivate at 80 degree C for 20 minutes  

After the digest proceed with PCR cleanup. PCR cleanup was conducted by using PCR 

Cleanup Kit (Thermo Fisher) following manufacturer’s protocol. With the purified PCR 

fragments and linearized vectors, we proceed on to forming Gibson Assembly using NEB 

Assembly Master Mix. Following the protocol below: 

Reagents Required: 

-2x NEB Assembly Master Mix 
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-PCR products (linear and insert) 

-Molecule Grade Water 

Protocol: 

1. Put in (10-x) uL of DNA so that the total amount of DNA in terms of mass is between 

0.03 – 0.2 pmol. Fill rest of the volume with water. 

2. Put in 10 uL of 2x NEB Assembly Master Mix 

3. Incubate the mixture at 50 degree C for 30 minutes. Keep it on ice afterward. 

4. Add 2 uL of DNA assembled product to an aliquot of competent E.coli (DH5α). Incubate 

on ice for 30 minutes. 

5. Heat shock the E.coli. at 42 degree C for 30 seconds. 

6. Incubate bacteria on ice for 2 minutes. 

7. Add 950 uL S.O.C. Medium, and put the bacteria in the shaker for 60 minutes at 37 

degree C. 

8. Plate 100 uL of cells on correct antibiotic resistance agar plate, and let it grow overnight 

at 37 degree C. 

9. Grow and sequence 4-10 colonies on the agar plate the next morning to verify whether 

the subcloning was successful.  

During the time we wait for sequencing, we usually run a gel to verify the number of 

basepairs in the new plasmids. We then just transfect the cell with the new plasmids to check 

the functionality of the new protein. 
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2.5  STREPTOLYSIN O PERMEABILIZATION PROTOCOL 

Streptolysin O (SLO, 25,000-50,000 U, Sigma Aldrich) was dissolved in 1 mL of 

molecular biology grade water. The stock solution was aliquoted and stored at -80 oC freezer. A 

new aliquot was thawed prior to each experiment and used within 5 hr. The SLO stock solution 

was further diluted to working concentration in DPBS supplemented with 1 mM MgCl2. 

Working SLO concentration was determined by testing a range of SLO concentrations for each 

cell line to achieve >75% permeability to 10 kDa fluorescein dextran. Different cell lines 

required different dosage of SLO; CHO-K1 required 250x dilution of the SLO stock, HeLa cell 

required 250x dilution, and U2OS cells required 500-1000x dilutions. A table of toxin 

concentration and incubation time for permeabilization using SLO is provided below.  

Cell line Cell Confluency Dilution of SLO stock (S5265) SLO Inc. Time 

CHO-K1 90-100% 250x diluted 7 minutes 

CHO-K1 80% 334x diluted 10 minutes 

CHO-K1 65-70% 334x diluted 7 minutes 

U2OS 80% 500x diluted 8 minutes 

U2OS 50% 774x diluted 7 minutes 

U2OS 30-40% 1000x diluted 7 minutes 

HeLa 50-75% 250x diluted 10 minutes 

COS7 50-75% 666x diluted 10 minutes 

NSC34 50% 500x diluted 8 minutes 

Table 2.2. Dilution table of concentration of SLO toxins and time required to permeabilize different cell lines at 

different confluency. 
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The cells grown to 80-100% confluency were incubated in SLO containing buffer for 7-

10 min at 37 oC. Permeabilized cells can be observed under phase contrast microscopy at 20x 

magnification after 5 min. The granules inside the cells are more distinctive in permeabilized 

cells. Fluorescent probes were diluted in Tyrode’s buffer without calcium (140 mM NaCl, 5 mM 

KCl, 1 mM MgCl2, 10 mM HEPES, 10 mM glucose, pH 7.4). After SLO permeabilization, the 

cells were washed 2x with DPBS + 1 mM MgCl2. The cells were fluorescently labeled by 

incubating with the probes, such as DAPI, chloroalkane-Alexa660 (Promega), phalloidin dye 

conjugate (Thermo-Fisher), nanobody-dye conjugate (Chromotek), and labeled IgG (Thermo-

Fisher) at a final concentration of 300-700 nM for 5 min on ice. For preparation of haloligand SA 

probe, SA was incubated with biotin-PEG-chloroalkane at 1:6 molar ratio for 10 min. Free SA 

binding sites were then saturated with excess free biotin for 5 min. The sample was purified by 

using a desalting column (30 kDa MW cutoff, Amicon). If the probe is prone to cause non-

specific binding on the coverslip or cell membrane, 2.5 L of 10X Casein (Vector Lab) was added 

to the Tyrode’s buffer along with the probes. After labeling, the cells were washed 3x with 

Tyrode’s buffer, and incubated with recovery medium (Phenol red (P/R) free DMEM with 

sodium pyruvate, 10% FBS, 2mM ATP, 2mM GTP, 2 mg/mL glucose, without antibiotic) for 20 

min. To check whether the cell membrane has recovered, the cells were washed with PBS 3x, 

and incubated with 500 nM of 20 kDa Texas Red dextran diluted in DPBS 1 mM MgCl2 for 5 

min. As a negative control, another coverslip of cell underwent the same treatment except the 

addition of SLO were also imaged. The negative control was then exposed to SLO and 

consequently 20 kDa Texas Red dextran to show that the cells are permeant to 20 kDa Texas 

Red Dextran if the cell membrane was still permeable.  
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For transfection, all cells were transiently transfected with Lipofectamine 2000 (Life 

Technologies) following the manufacturer’s protocol, with plasmid DNA (pERB254) encoding 

GFP-ActA-Halotag, which is a mitochondria membrane targeting protein, (pERB254 was a gift 

from Michael Lampson (Addgene plasmid # 67762)) or PCNA-GFP (a protein localized in 

nucleus). The transfection media was removed after 3 hours for human cell lines (HeLa, U2OS) 

which are sensitive to presence of lipofectamine. Unless specified otherwise, the 

permeabilization procedure was done on cells after protein expression takes place overnight. Post 

membrane recovery and before imaging, the cells were washed once with 10% FBS DMEM P/R 

free, and cells are imaged in 10% FBS DMEM P/R free medium at 30 degree C unless otherwise 

stated. 

 

2.6  CELL VIABILITY ASSAYS 

Several measures to ensure cell viability were performed on CHO-K1 cells after SLO 

permeabilization. For propidium iodide (PI) assay, after permeabilization with SLO cells were 

incubated with 1 ug/mL for 5 minutes on ice. At the end of staining, the cells were washed with 

PBS 3x. PI was imaged using 561 nm excitation and 605 nm emission. A bright field image was 

recorded for the same region for cell counting purposes. % viability was calculated based on the 

number of propidium iodide stained cells over the number of cells counted in bright field. 

For cell counting experiment, CHO-K1 cells were seeded on a lettered fiduciary marker 

coverslip. The manufacturing process for the coverslip is described in literature1. The CHO-K1 

cells were permeabilized following the protocol mentioned above with SLO. GBP-Atto647N was 

delivered inside the cell without labeling any protein just to mark the cells that are 

permeabilized. An initial fluorescence and bright field image was recorded right after SLO 
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permeabilization. After 16 hours, the same regions were located with the help of lettered 

fiduciary marker and another bright field and fluorescence image of the region was recorded. 

The number of cells present in this region was counted.  

For p65 translocation assay, HeLa cell was transiently transfected with p65-Halotag, or 

p65-GFP. 48 hours post-transfection, the cell was permeabilized with SLO, and HeLa p65 

Halotag and p65 GFP were loaded with chloroalkane-Alexa660 and GBP-Atto647N 

respectively. After the cell recover from SLO permeabilization, the cells were serum starved in 

DMEM for 4 hours prior to TNF-alpha (10 ng/mL) and Leptomycin B (LMB, 2 uM) treatment. 

A fluorescence image of the GFP and Atto647N channel was recorded 15 minutes and 30 

minutes after the drug treatments.   

 

2.7  KINESIN TRACKING ANALYSIS 

U2OS cells were transiently transfected with plasmid DNA encoding 2xmCherry K560 

(A gift from Kristin Verhey, U Michigan) for 2.5-4 hours. Post-transfection the cells were 

permeabilized with SLO as described above. The cells were then labeled with red fluorescent 

protein binding nanobody (RBP-Atto647N, Chromotek). For each cell, a 300 frames movie was 

recorded using 200 ms exposure time. The movie was analyzed by cropping single molecule 

spots that shows processive linear motion. Each frame of the cropped movies are then fitted with 

a 2D Gaussian function to localize the center of the molecule. The position of the molecule per 

frames are rotate to linearize the trajectory so that the molecule only moves in 1 dimension (x). 

The velocity and run length is then determined from the x position as a function of time.  
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2.8  LIVE CELL dSTORM AND ANALYSIS USING LIVEPALM 

U2OS cells were permeabilized using the protocol mentioned above. 330 nM of 

Alexa647-phalloidin, or Atto488-phalloidin were loaded after permeabilization. The cells were 

recovered in recovery media mentioned above plus 4 mM final concentration of glutathione. 

After the cell recovered from SLO permeabilization, 100 uL of Oxyrase stock solution (Oxyrace, 

Inc.) and 20 mM final concentration of sodium DL-lactate (Sigma) were added to the cell media. 

Series of images were recorded after the addition of Oxyrace up to a total of 2 hours. The 

activation laser was 405 nm at 5-50% power, and Alexa647 was de-activated by shining 640 nm 

laser at 100% laser power. For experiments using Atto488, the dye was de-activated by using 

488 nm laser. For static dSTORM image, a section of the cell was imaged at 20 ms exposure for 

40,000 frames. For dynamic dSTORM movie 20,000 frames were recorded per cell at 100 ms 

exposure time per frame. For the analysis of dSTORM data, a custom software was used 

(LivePALM). The detail algorithm of how the single molecule detection works is published 

previously 2. We’ve also extend the measurement to labeled mitochondria, and the protocol is 

mentioned above same as where we labeled the mitochondria protein ActA with Alexa660.  
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Chapter 3 

Results 

3.1 SPECIFIC LABELING OF INTRACELLULAR PROTEIN IN LIVE 

MAMMALIAN CELLS 

A general schematic of SLO permeabilization and delivery process is very 

straightforward and shown in Fig. 3.1. The cells are exposed to SLO toxin for permeabilization, 

which is followed by incubation with the probes. The external free probes are then washed away 

after 5 minutes of short incubation. To recover the cell, completely medium without antibiotics 

supplemented with ATP, GTP, and glucose, are added to the cell. The cells are then allowed to 

recover in the incubator for 15-20 minutes.  

 

Figure 3.1. Schematic of permeabilization, delivery, and recovery steps. Cells are exposed to Streptolysin O for 7-10 

minutes before incubating with the three different fluorescent probes (DAPI, phalloidin-Alexa647, and Anti-

PMP70-Atto488) on ice for 5 minutes. Recovery was initiated by adding 10% FBS DMEM supplemented with 

nucleotide triphosphates and glucose. 

To demonstrate the specific labeling of intracellular structures in untransfected cells, we 

simultaneously delivered three different membrane impermeant fluorescent probes (DAPI, < 1 

kDa; Alexa647-Phalloidin, ~2 kDa; Anti-PMP70-Atto488, 150 kDa) into native and live CHO-

K1 cells that have been permeabilized with SLO (Fig. 3.2).  High permeabilization efficiency 

(~90%) was achieved within 10 min. Fluorescence images of SLO treated cells (Fig. 3.2, top 

row) revealed the stained nucleus, punctate structure of peroxisomes, and filamentous structure 



- 36 - 
 

of the actin – a stark contrast to SLO untreated negative control cells (Fig. 3.2, bottom row). To 

confirm the membrane integrity, the same set of cells were incubated with a fluorescent marker 

molecule (Texas Red dextran, 20 kDa) after 20 min of recovery time. Membrane of recovered 

cells efficiently excluded Texas Red dextran (Fig. 3.2 top right). The negative control cells also 

showed no fluorescence signal until cells were permeabilized by SLO (Fig. 3.2 bottom row 

right). Through further viability tests after the recovery step, we found that close to 95% of cells 

had intact membrane (Fig. 3.3), and showed proper cell division (Fig. 3.4). In addition, we 

performed p65 translocation assay on human cancer cell line (HeLa), where the cells were 

permeabilized, and intracellular p65-GFP or p65-Halotag was labeled with GBP or Halotag 

Ligand. We observed translocation of labeled p65 into the nucleus upon treatment with TNF-

alpha (Fig. 3.5). The strength of the response is comparable to that of cells untreated by SLO 

(blue circle), which is about a 70% increase in fluorescence intensity inside the nucleus. 

Furthermore, with the addition of Leptomycin B (LMB), a nucleus export inhibitor, we saw an 

accumulation of p65 inside the nucleus at a level higher (~200%) than TNF-alpha alone. This is 

a proper response of the p65 to a nucleus export inhibitor, where the p65 are unable to be 

recycled back to the cytoplasm. This technique can potentially be applied to perform similar 

assay on native cells. For instance, antibody probes can be delivered using SLO permeabilization 

to label proteins that are relevant to cancer cell metabolism. We can then monitor the activity of 

labeled native proteins in response to various molecules for drug screening. 



- 37 - 
 

 
Figure 3.2. Specific labeling of cellular structures by SLO delivered probes. Nucleus, peroxisome, and actin 

filaments are labeled by DAPI, Anti-PMP70-Atto488, and phalloidin-Alexa647 respectively. The cells are then 

incubated with Texas red- 20 kDa dextran to check whether the membrane has recovered. The negative control 

(SLO-) shows no labeling of cellular structure. The negative control cells are then permeabilized by SLO to show 

the fluorescence of Texas red in permeabilized cells. (With CHO cells, as opposed to other mammalian-type of cells, 

DAPI is cell impermeant.) 

 
Figure 3.3. Propidium iodide assay performed on CHO-K1 cell after SLO permeabilization and recovery. The CHO-

K1 cells were recovered in different buffers after permeabilization. Only recovery media and 10% FBS DMEM 

successfully excluded the cells from PI staining. Scale bar denotes 50 μm. 
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Figure 3.4. CHO-K1 cells cultured on lettered fiduciary marker for 16 hours after delivering GBP-Atto647N probes. 

The number of cells are counted in the region initially and after 16 hours. The number of cells increased by nearly 

60% despite SLO treatment, suggesting cells were able to undergo cell division. Scale bar denotes 10 μm. 
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Figure 3.5. Observing Live cell dynamic using p65 Translocation Assay after SLO permeabilization. TNF-alpha and 

Leptomycin B were used to stimulate nucleus import of the p65-GFP protein labeled by GBP-Atto647N. The 

Nucleus fluorescence of both GFP and Atto647N channels increased 15 and 30 minutes after stimulation, suggesting 

TNF-alpha stimulated IKB removal to bring the p65-GFP into the nucleus. (Red square= Atto647N intensity in the 

nuclear after TNF-alpha and LMB treatment, Green circle = GFP intensity after TNF-alpha treatment [N=4 cells], 

Red circle =Atto647N Intensity after TNF-alpha treatment [N=4 cells]. Blue circle with dashed line is GFP intensity 

after TNF-alpha treatment for cells never been permeabilized by SLO [N=4 cells]. Green triangle = GFP intensity 

without TNF alpha and LMB treatments [N=3 cells].) An example of p65-halotag is also given, labeled with 

Alexa660 chloroalkane. 

 

 

3.2 SPECIFIC LABELING OF INTRACELLULAR PROTEIN IN 

TRANSFECTED MAMMALIAN CELLS USING A VAIRETY OF 

PROBES 

 
Furthermore, our technique can be extended to label any intracellular proteins by using 

transfected cells, where additional tag such as Halotag or GFP are fused to the protein of interest. 



- 40 - 
 

Here, we have transfected cells with GFP-ActA-Halotag, a protein that binds to the 

mitochondrial membrane, and our goal is to label this particular protein using different probes so 

that the structure of mitochondria is fluorescent. The probes either target the mitochondrial 

membrane protein through immunolabeling of GFP or through ligand binding action of Halotag. 

Specific labeling is demonstrated by comparing the fluorescence image of the probes to the 

image of GFP channel (Fig 3.7). Through SLO permeabilization, all of the probes tested 

(chloroalkane-Alexa660, GBP-Atto647N, Chloroalkane-Biotin-Streptavidin-Atto647N, Anti-

GFP IgG) were able to specifically label the mitochondria. However, these probes are different 

in size, and one has to consider under what scenario each of these probe would be used. 

One consideration for the size of the probe being delivered is whether it makes it across 

the nucleus. We demonstrated this by labeling GFP fused Proliferating Cell Nuclear Antigen 

(GFP-PCNA) using GBP-Atto647N (Fig. 3.7). We found that single domain nanobody, in this 

case specific to GFP (GBP), makes it across the nucleus and were able to label nuclear protein, 

whereas probes larger than GBP, such as streptavidin (SA) were not able to passively diffuse 

across the membrane. We have also delivered fluorescein– dextran to confirm this fact that 70 

kDa dextran which is comparable to the size of SA is not able to make it across the nucleus 

membrane (Fig. 3.6), but 40 kDa dextran did make it across and its fluorescence is diffused 

across the cell homogenously. 

Surprisingly, we discovered that probes larger than dye conjugated ligand shows 

retention inside the cells after recovery, which appears as homogenous background fluorescence 

across the cytosol. This makes the size of the probes delivered using SLO permeabilization an 

important factor to consider for different experiment, because different sizes of probes has 

different advantages for labeling intracellular proteins (Fig. 3.7). One significant advantage of 



- 41 - 
 

using pore-forming toxin for probe delivery over other methods, such as microinjection, is that 

unlabeled free probes can be washed away. Small probes and small molecules, such as 

conjugated phalloidin, chloroalkane (for Halotag), leaks out by the end of washing and resealing 

(Fig. 3.6.). Consequently, essentially background-free signal is achieved. 

 
Figure 3.6. The effect of ligand size on probe retention and nucleus permeability. The Texas Red Dextran image 

(yellow) shows all of the cells that were permeabilized, which a haze of fluorescence across the whole cell, whereas 

the chloroalkane-Alexa660 being <2 kD only stains the cells expressing the GFP-halo protein; no homogenous red 

fluorescence was observe in other permeabilized cells. Free chloroalkane-Alexa660 were washed out during our 

procedure. In terms of nucleus accessibility, we tested the mw-cutoff with fluorescein dextran on CHO-K1 cells. We 

observed homogenous fluorescein fluorescence using 40 kDa-dextran, whereas 70 kDa-dextran the fluorescence was 

excluded in the nucleus. Scale bar denotes 10 μm. 
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Figure 3.7. Delivery of different sized fluorescent probes for specific labeling of intracellular protein. Delivery of 

different sized fluorescent probes for specific labeling of intracellular protein. Cells that are labeled by various SLO 

delivered probes are shown (top row) to compare with their intracellular or nucleus target, which is tagged with GFP 

(bottom row). All the probes loaded, up to 150 kDa IgG were successfully delivered by SLO and labeled target 

proteins. However, only small proteins such as GBP (14 kDa) was able to access the nucleus target. Small ligands 

with roughly 2 kDa molecular weight can be washed away, which only leaves the transfected cells labeled. Scale bar 

denotes 10 μm.  

 

3.3 KINESIN TRACKING USING DELIVERED NANOBODY PROBES 

 
We have also utilized SLO permeabilization for delivering fluorescent probes that are 

much more photostable than FP for single particle tracking. As an example of this, we tracked 

single kinesin molecules in the cytoplasm of U2OS cells. We transfected the cells with 2x-

mCherry Kinesin 560, a truncated version of dimeric kinesin-1. Based on the fluorescence of 



- 43 - 
 

mCherry alone, it is extremely hard to track a single kinesin protein, due to poor signal to noise 

ratio and over-expression of the protein. Previously, attempt has been made to over-come this by 

expressing a 3x tandem FP kinesin construct1. However, it was found that the truncated version 

of kinesin fusion protein is not motile. Here, we enhance the signal by delivering RFP binding 

nanobody (RBP-Atto647N). A single kinesin can bind up to four RBP-Atto647N for enhanced 

photon output (Fig. 3.8).  

 
Figure 3.8. Tracking nanobody labeled single kinesins in live U2OS cells.  

 

Each RBP has a single binding domain for mCherry. Therefore, the stoichiometry is 

favorable for detecting a single kinesin protein. To demonstrate the specificity of the nanobody 

probe (RBP-Atto647N). We first tried recovering the cells in the absence of ATP. The results are 

shown in Fig 3.9. We saw a majority of kinesin accumulating on the microtubule. This is to be 

expected in a condition where ATP is very scarce. The specificity of the probe is demonstrate by 

overlapping the mCherry fluorescence image with the Atto647N image. We observed 

colocalization of the two channels, which indicated to us that the probe is very specific. Next, we 

went on to recover cells under saturating ATP condition, and we also purposely under label the 

kinesin so that minimum freely diffusive probe was observed. In Fig. 3.10. we observed the 

fluorescence image of mCherry accumulating at the tip of the cell, which is an indication that 

ATP in the cell is abundant. Because of the over-expression of the kinesin protein, it is very hard 
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to track individual molecular motor. We then photobleached the FPs so that it is easier to see 

individual molecules. However, due to the poor S/N, it was still difficult to track kinesin using 

FP under this condition. Once we labeled the kinesin with Atto647N, the kinesins becomes much 

easier to track, and individual spots can be easily tracked in the whole cell. As demonstrated by 

the overall trajectory of molecules detected, most of the traces are around a micron, which agrees 

with the run length of kinesin (Fig. 3.11). The velocity of individual kinesins were tracked and a 

histogram was compiled from the velocities (Fig. 3.12). We observe that the velocity of kinesins 

in cells was 1058 ± 22 nm/s (Center ± S.E.M.) at 30 °C. At room temperature (22 °C), the 

velocity of kinesin lowered to 541 ± 16 nm/s (Center ± S.E.M.). The effect of temperature on the 

enzymatic activity of kinesin and resulting velocity was previously studied in vitro2,3. Our results 

suggest that kinesin’s velocity is heavily influenced by temperature of the cell, and not just in 

vitro. Overall, we showed that at the single protein level, velocity of truncated kinesin is almost 

identical in vitro and in vivo.  

 

Figure 3.9. Labeling of mCherry Kinesin without ATP Supplement. mCherry kinesins are shown to accumulate on 

the microtubule (green). Atto647N-RBP fluorescence is shown in red. Specific labeling is demonstrated by the 

overlap of two fluorescence images (yellow).  
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Figure 3.10. Expression and Labeling of mCherry Kinesin in U2OS cells. After just 3 hours of expression, the cell is 

filled with over-expressed mCherry kinesin, and it isn’t possible to track individual protein. Single kinesin 

molecules can easily be tracked by sparsely labeled mCherry kinesin with Red fluorescent protein binding protein 

(RBP) conjugated to Atto647N. Scale bar denotes 10 μm. 
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Figure 3.11. Tracking individual Atto647N-RBP labeled kinesin. Majority of kinesin trajectory in the selected area 

can be seen to travel uni-directionally in a short distance (<5 micron). The trajectory enclosed in the red rectangle is 

an example trace of detected kinesin trajectory. 
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Figure 3.12. Quantitative Analysis of Labeled Kinesins. To quantify the kinesin behavior in vivo, velocity and run 

length of labeled kinesin were measured. The kinesins are moving at an average velocity of 1058 ± 22 nm/s (Center 

± S.E.M.), and the average run length is 621 ± 99 nm (Avg ± S.E.M.). The measurements were taken on a heated 

stage at 30 degree Celsius. At 20 degree Celsius, Gaussian fitting shows a velocity of 541 ± 16 nm/s (Center ± 

S.E.M.). Average run length is found to be 792 ± 216 nm (Center ± S.E.M). 

 

3.4 dSTORM IN LIVE CELL USING SLO DELIVERED CELL 

IMPERMEANT PROBES 
 

We demonstrate the ability to observe live cell dynamics in both macro and microscopic 

scale by looking at the dynamic of actin in live cell, labeled with cell impermeant probes through 

direct Stochastic Optical Reconstruction Microscopy (dSTORM) 4. Currently, there are a limited 

number of commercially available cell permeant ligands and fluorophores for dSTORM. For 
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instance, popular dSTORM fluorophores for in vitro imaging, such as Cy3B and Alexa647 are 

cell impermeant. Attempt to overcome this limitation was made by injecting the fluorescent 

probes using microinjection method5. The advantage of our method however, is that small 

unlabeled probes exit the cell during washing and recovery, so minimum background is 

achieved.  

 

Figure 3.13. Activation of Alexa647 on actin in fixed cells and in live cells in the presence of Oxyrace. U2OS cells 

with actin staining are deactivated by high power illumination using 640 nm laser (Top row). Scale bar denotes 10 

μm. Pulses of 405 nm lasers are applied to the either fixed or live cells with stained actin, and the intensity as a 

function of frame number is plotted. If the probe reactivated, spikes of intensity increase would be observed. No 

reactivation was observed without addition of Oxyrace on fixed cell. Even with addition of Oxyrace alone, there was 

very little activation in fixed cell. The environment of living cell combined with Oxyrace make reactivation 

possible. Scale bar denotes 10 μm. 

In order for dSTORM to work on live cell, two criteria has to be satisfied; an oxygen 

scavenging system that works intracellularly, and presence of thiol containing reducing agent. To 

keep the oxygen concentration low, we utilized live cell compatible oxygen scavenging system 
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called Oxyrace, where we observed almost no reactivation of Alexa647 without Oxyrace (Fig. 

3.13). The cells natively contain reducing agent, such as glutathione, and has been reported to 

work for the acquisition of dSTORM images using fluorophore (Atto655) dSTORM 6. In fixed 

cell where no reducing agent was present, the activation was poor, even with oxygen scavenger 

present. To make dSTORM work with the SLO technique, we had to supplement glutathione in 

the recovery media. It was previously discovered that small molecules, such as ATP, may escape 

the cell during severe SLO permeabilization 7. After we supplemented our recovery media with 

glutathione, indeed we observed higher activation events from Alexa647, and lower background, 

meaning the fluorophore is being more effectively turned off (Fig 3.14).  

 
Figure 3.14. Number of detected activation events per frame with and without the addition of glutathione in the 

recovery media. With the addition of 4 mM of glutathione in the recovery media after SLO permeabilization, there 

are more number of activation events detected per frame, as well as less number of detected events during 

illumination, suggesting that the added glutathione assists in turning off the fluorophore more efficiently 
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Here, we delivered a cell impermeant fluorescent probe (Alexa647-Phalloidin) to 

specifically label actin filaments in living cell. A region of the U2OS cell with labeled actin are 

shown in conventional fluorescence image and super-resolution d-STORM image. The image 

was collected at 20 ms time resolution for a total of 40,000 frames (Fig 3.15). We further 

demonstrate the capability of observing long time dynamics, where with the addition of 

Oxyrace/Glutathion we observed actin dynamics extending over the long-time of > 30 minutes. 

In a longer movie that we acquired with 100 ms per frame for a total of 20,000 frames. We 

observed a thick actin bundle split into two over the course of ~3 minutes (Fig. 3.16).  

 
Figure 3.15. Comparison of conventional FL image vs dSTORM image. Phalloidin-Alexa647 was delivered via 

SLO permeabilization. A region of densely packed actins that are hard to resolve is shown in the conventional 

fluorescence image. A dSTORM image is reconstructed from the same section of the cell, which resolves the actins 

much better. The dSTORM image was reconstructed from 40,000 frames of activation and deactivation events, each 

frame was taken at 20 ms exposure time for a total of 13 minute 20 seconds of acquisition time. 
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Figure 3.16. A dynamic dSTORM movie was acquired to examine large scale actin dynamics. Each frame of the 

movie is composed of 500 frames, with a 250 frames moving average time window. The movie was recorded for a 

total of 20,000 frames at 100 ms exposure time, for a total acquisition time of over 30 minutes. Focusing on a small 

section of the image, a thick actin bundle can be seem to split into two smaller actin filaments. The actin filaments 

grew 230 nm apart after 1 minute 40 seconds, and then 850 nm apart after another 1 minute 40 seconds. 

We’ve also extended this measurement on a different wavelength dye, and a different 

cytosolic target. We tried using Atto488-Phalloidin instead of Alexa647-Phalloidin, since 

Atto488 is also listed as one of the dSTORM dyes. We noticed that Atto488 is less reactive 

towards 405 nm, that is, the fluorophore does not “turn on” in response to 405 nm illumination. 

However, Atto488 blinks a lot, and using blinking to detect individual fluorophores we were able 

to construct a super-resolution image (Fig. 3.17). A comparison between convention and super-

resolution shows clearly the actin filaments. The number of blinking event detected using 
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Atto488 was roughly 50 per frame, which makes it less efficient for dSTORM than Alexa647, 

where more than 100 activation events were detected per frame.

 

Figure 3.17. Super-Resolution image of actin using Atto488-Phalloidin.  

 

  Next, we tried to label a different cytosolic target other than actin, and we decided to 

label the mitochondria via Halotag using previously describe protocol. The difference is that 

Oxyrace and Glutathione are now added in order to cause reactivation and prolonged 

photostability. The fluorophore used for labeling was Alexa660. The dye claimed to be used for 

super-resolution imaging in one paper8, our experience when using it for conventional imaging 

was that it shows extremely poor photostability. Nonetheless, we were able to record super-

resolution image of mitochondria using this dye (Fig. 3.18). Because of the fact that the labeled 

ActA protein diffuses along the mitochondrial membrane, it was able to fill out the shape of 

mitochondria very well by single particle tracking dSTORM (SPT-dSTORM)9. In Fig. 3.18A a 

conventional image and SPT-dSTORM image of the mitochondria in U2OS cells are shown. 

There are a lot more mitochondria in conventional image, due to the fact that the mitochondria is 

very dense in cells, and it was not possible to de-activate all of the out of plane mitochondria 

given the depth of the cell. The improvement of super-resolution image can be seen by looking at 
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a particular mitochondria that appeared to be circular (Fig. 3.18B). The circular shape of the 

mitochondria appear to be a filled sphere in conventional image, however, SPT-dSTORM image 

reveals that it is actually hollow. Not only was SPT-dSTORM an improvement of the spatial 

resolution, we were able to observe dynamic using this technique as well. Fig. 3.18C shows the 

dynamic of spherical mitochondria over the course of ~5 minutes. The mitochondria traveled 

roughly 1.5 microns in the course of 5 minutes. It showed an initial backward motion in the first 

2 minutes, then migrate towards the opposite side for the next 3 minutes.  

 
Figure 3.18. SPT-dSTORM Image of Mitochondria in Live U2OS cells. A) Conventional image of GFP-

mitochondria (left), and SPT-dSTORM image of mitochondria (right). The area enclosed in yellow and blue squares 

are further analyzed in sub-figure B and C. Scale bar denotes 10 μm. B) Conventional image of a circular 

mitochondria (left), and SPT-dSTORM image of mitochondria (right). Scale bar denotes 200 nm. C) Mitochondria 

dynamic in U2OS cell is observed over the course of 275 seconds. The trajectory of the mitochondria is shown 

(bottom). 
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Chapter 4 

Conclusion 

4.1 SLO PERMEABILIZATION AS A TECHNIQUE TO INTRODUCE 

FLUORESCENT PROBES  

Our results demonstrate the practicality of delivering fluorescent probes using reversible 

permeabilization by pore-forming toxin. Delivering small probes (<2 kDa) using SLO 

permeabilization has significant advantage in experiments where high signal to background ratio 

is required. Free and unbound probes are washed away during the washing steps or recovery 

step. Nanobody probe (14 kDa) is efficient to deliver in experiments where nucleus protein has 

to be labeled. Due to its single binding domain, it is particularly useful as well in single molecule 

tracking experiment, where 1:1 protein to probe stoichiometry is important. For experiment 

where the photon output is important, a larger probe such as SA, or even IgG can be used, where 

there are multiple fluorophores on the protein. Ultimately, the probes that can be delivered using 

this method is not limited to the probes used in these examples; with this technique, any 

fluorescent probe within the size limit can potentially be delivered inside the cell for the purpose 

of specific labeling of intracellular protein. The technique can be coupled with other photon 

enhancement method, such as “spaghetti monster”, where a protein of interest is labeled by 

multiple probes at once for signal enhancement1.   

Furthermore, this technique makes it possible to perform live cell with various probe, and 

will benefit from reagents that enhances photostability of dyes in live cell. For example, reagents 

such as Oxyrace can be used to keep the oxygen concentration low, and further improve the 

photostability of the probes in cells. We also show that by supplementing the recovery media 

with glutathione and ATP, the SLO permeabilization technique can be tailored to suit the 
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specific experimental need for the biological problem of interest. The application to other non-

fluorescent markers, e.g. metal markers for electron microscopy and chemicals for in vivo anti-

cancer drugs, is still being tested. 

 

4.2 TRACKING SINGLE KINESIN PROTEIN IN U2OS CELLS 

We found that the velocity of truncated kinesin U2OS cells closely resemble that of in 

vitro measurements done previously by others2. The velocity we measured is from single 

kinesins, as verified by its run length. It isn’t possible for this truncated kinesin to be carrying 

cargoes, as the kinesin has no light chain or cargo binding domain, where the scaffolds for 

cargoes are usually attached to. The question of how the velocity of vesicles being transported in 

cells can reach several microns per second still remains to be solved3. Based on our studies, the 

elevated temperature of living cell can increase the velocity of kinesin by two folds- to roughly a 

micron per second. Our technique serves as a useful tool to study the translocation of proteins in 

vivo. There has been on-going effort to label native kinesins, instead of the truncated ones, using 

antibody fragments in order to study the properties of native molecular motors. 

 

4.3 DYNAMIC DSTORM MEASUREMENT ON LIVING CELLS 

dSTORM or STORM is usually associated as a technique used to study fixed cells, due to 

the limitation of the fluorescent probes. Here, we have broken the barrier and enabled the use of 

this technique on living cells, by introducing cell impermeant dSTORM probes using SLO 

permeabilization. The trick to be able to perform immediate measurement after permeabilization 

is to supplement the recovery media with glutathione to replenish those that had leaked out.  An 

oxygen scavenging system that is compatible with live cells was used to extend the lifetime of 
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fluorophore to > 30 minutes. By performing dSTORM on living cell, we were able to observe 

the motion of actin filaments in vivo. We also observed first hand, how phototoxicity can be 

damaging in live cell imaging, by observing the shrinking of the cell and its cytoskeleton 

network. This will be an on-going challenge to this kind of long-duration live cell imaging 

technique. We are currently exploring options to perform dSTORM on a different protein of 

interest, other than actin, and potentially that will introduce less phototoxicity in cells. For 

instance, we tried to apply dynamic dSTORM on mitochondrial membrane protein ActA. With 

the aid of diffusive motion of ActA, the trajectory of labeled ActA can be tracked so that less 

number of frames are required to obtain a complete outline of the mitochondrial membrane. 

Using this method we have successfully observed improvement in spatial resolution of the 

fluorescence image, and captured dynamic motion of the mitochondria. Success in obtaining 

long duration dynamic dSTORM images further demonstrate the broad applicability of our 

technique on various imaging applications. 
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Chapter 5 

Intramolecular, Head to Tail Distance of Kinesin-1 Measured via SHREC 

5.1 BIOLOGICAL MOTIVATION 

The orientation of kinesin’s stalk influences the position of the cargo during cellular 

transport. Earlier published work indicated that the neck coiled-coil, below Hinge I, is oriented 

perpendicular to the long-axis of the microtubule near the microtubule surface. This helps 

explain the asymmetric walk of kinesin. However, these experiments were done in the absence of 

ATP with a truncated kinesin lacking much of the stalk region. Here we have measured close-to-

full-length kinesin (K888) in the presence of low concentrations (400-800 nM) of ATP. We have 

used the technique of two-dimensional SHREC (Single molecule High-REsolution Co-

localization), a method that can simultaneously monitor the position of two quantum dots on the 

kinesin with nanometer resolution; one quantum dot is on the motor domain and another is at one 

of several positions near the cargo-binding domain. Our results indicate that unlike the neck 

coiled-coil, the rest of the stalk does not continue in the tangent-plane, but rather directs the 

cargo to be above the motor-domains in the radial direction. In addition, by examining the on-

axis position of motile kinesin under 400 nM ATP, we observe that the stalk occasionally 

translocated the cargo from the front to the back of the motor domain or vice versa when one of 

the motor domains dissociates from the microtubule. This suggests that both of the motor 

domains are bound to the microtubule during the ATP waiting state.  
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5.2 INTRODUCTION AND BACKGROUND  

Kinesin-1, also called conventional kinesin, “walks” with its motor domains in a hand-

over-hand fashion, taking 8 nm center-of-mass steps and 16 nm step-sizes1–3. Inside the crowded 

environment of the cell, kinesin must avoid bumping into molecules so it can move processively 

for several microns at high velocity towards the plus-end of microtubules. It does this with cargo 

ranging in size from a few nanometers to several microns. To understand how cargoes can be 

transported without significant steric hindrance, it is important to understand the cargo placement 

relative to the microtubule (Fig. 5.1).  

 

Figure 5.1. Diagram of Kinesin 888 construct used in the study. 

Kinesin has a contour length of roughly 75 nm. The microtubule is in the x-y plane, which is also the plane of 

imaging. We define the direction that kinesin travels toward as the on-axis direction (x-axis). The y-axis is the 

direction tangential to the microtubule (in the optic plane) while the z-axis is perpendicular to the plane that the 
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microtubules lie on. Kinesin’s neck coiled-coil lies horizontally against the microtubule up to Hinge 1. The question 

is in what direction does the remainder of the stalk go in, in particular, continue along the (x-) y-direction or take a 

turn and head in the z-direction? Here it is shown along the z-direction. 

 

The position of the cargo is determined by the connection of the cargo to the kinesin, that 

consists of a cargo-binding domain (CBD), which is at the end of a long, ~65 nm, α-helical coiled-

coil that is relatively rigid except for two flexible hinge regions, followed by a neck coiled-coil 

region ending in the motor domains (Fig. 5.1)4,5. The flexible hinges, as well as the neck coiled-

coil region at the beginning of the stalk, govern the position of the stalk with regards to the motor 

domain and the microtubule. Hinge 2, (about half-way up the stalk) is known to be flexible, 

bending over to cause the stalk to interact with the motor domain in the absence of cargo, and 

remaining relatively straight with bound cargo6,7. The exact function of Hinge 1 (immediately after 

the motor-domain), is not known, but without it, kinesin motility is severely impaired8.  

The preponderance of evidence suggests that the neck coiled-coil tends to lie close to the 

microtubule, at least in kinesin mutants. Cryoelectron microcopy on the kinesin-tubulin complex 

indirectly supports this claim9. Thorn et al., studied K560 without Hinge 2, and showed increasing 

positive charges in the neck coiled-coil region improved run length by as much as 4-fold. 

Presumably, this arises from charge-charge interaction between the neck coiled-coil and the 

tubulin, implying a close interaction10. Martin et al. tested K401 without ATP, which contained 

the neck coiled-coil but was missing Hinge 1 and beyond. They used Fluorescence Resonance 

Energy Transfer (FRET) measurements which indicated that the end of the neck coiled-coil region 

lies only 4  5 up from the tangent plane11. The authors could not experimentally distinguish 

between the neck coiled-coil being aligned with the microtubule direction (called the axial 

direction, or (r,θ,Φ = y ,90˚, 90˚, Fig. 5.1) or being perpendicular to this direction in the tangent 
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plane (r,θ,Φ = x ,90˚, 0˚) Nevertheless, they argued that the stalk must be at r,θ,Φ = x ,90˚, 0˚ due 

to structural constraints, namely that the stalk would not interfere with walking of the motor 

domains.  Finally, Schaap et al. did AFM studies on K433 and showed images of kinesin where 

the stalk came out r,θ,Φ = x ,90˚, 0˚ 12. The experiment was also done using truncated kinesin 

lacking much of the stalk. 

We wish to understand, in the presence of ATP, whether the stalk of kinesin after Hinge 1 

continues along the direction tangential to the microtubule surface (Fig. 5.1, right-hand side: r,θ,Φ 

= x ,90˚, 0˚) or takes a roughly right-handed turn to move the cargo away from the tangential 

direction of the microtubule (Fig. 5.1, left-hand side, r,θ,Φ = z ,0˚, 0˚). Fig. 1 shows a schematic 

where the kinesin is positioned on top of the microtubule, such that the axis of incoming light (z-

axis) is parallel to the radial direction of the microtubule. With kinesin binding to the top of the 

microtubule, if the stalk lies in the radial direction with respect to the microtubule (r,θ,Φ = z ,0˚, 

0˚) , it will result in a minimum 2D distance in the x-y plane, which is the plane that is parallel to 

the polarization of the incoming light. On the other hand, if the stalk extends in the tangential 

direction (r,θ,Φ = x ,90˚, 0˚) it will result in a maximum 2D distance. Although the kinesin may 

bind in all directions around the microtubule, the distribution of the difference in the x-axis (off-

axis direction) can be used to estimate the accessible microtubule surface that is available for the 

kinesins to bind to.  

To determine the position of both the cargo and motor domains in the presence of an almost 

complete stalk, we used a nearly full-length kinesin (K888), which lacks the final 75 amino acids 

that are necessary for auto-inhibition7. To resolve the distance between the cargo and the motor 

domain, single molecule high-resolution co-localization (SHREC) was applied, which is a 

microscopy technique for localizing two-differently colored fluorophores, with approximately 10 
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nm resolution13. Using SHREC, we measured the two-dimensional distance, parallel to the 

coverslip, between two quantum dots. The quantum dot near the C-terminus was attached via 

variable linker lengths. Our results indicate that the cargo is not being carried tangential to the 

microtubule. This strongly implies that a significant bend must exist after the tangentially-oriented 

neck coiled-coil. In addition, monitoring both the CBD and motor domain position with nanometer 

precision and hundred millisecond temporal resolution reveals dynamic events, such as the 

occasional front-and-back translocation of the cargo with respect to the motor domain as kinesin 

is actively moving under low ATP condition (400 nM). From this we conclude that the dissociation 

of the rear motor-domain happens simultaneously with the cargo swinging either forward or 

backward. Our results clarify that during the “ATP-waiting state”, both motor domains are bound 

to the microtubule.  

 

5.3 RESULTS 

A heterodimeric kinesin construct lacking the last 75 amino acids in the heavy chain 

(K888) was expressed using the baculovirus/insect cell expression system. One heavy chain 

contained a C-terminal His-tag and a biotin at the N-terminus, and the other heavy chain 

contained only a C-terminal FLAG-tag. The heavy chain was co-expressed with a kinesin light 

chain with a C-terminal YFP tag. The kinesin was simultaneously labeled with two differently 

colored quantum dots, one near its cargo binding domain (CBD), and the other at the N-terminus 

of the motor domain (Fig. 5.1). The biotinylated N-terminus of one of the two heavy chains of 

the heterodimer was labeled with a streptavidin conjugated quantum dot (Qdot-SA). For the Qdot 

labeling near the CBD, one of three alternative strategies was used. First, to label the His-tagged 

heavy chain, a Qdot was bound via two antibodies, namely an anti-HIS antibody followed by a 
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Qdot conjugated to goat anti-mouse antibody. Second, the Flag-tagged heavy chain was labeled 

using a Qdot conjugated to anti-FLAG antibody. Lastly, a nanobody specific to GFP/YFP was 

used to label the light chain (Fig. 5.1). (The nanobody is a 14 kDa antibody from llama, specific 

to a GFP/YFP, known as GFP-binding Protein, or GBP14.) The lengths of antibody-linkers are 

estimated to be 20, 10, and 4 nm, respectively.  

 

Figure 5.2. Step Size Histograms of Kinesin Labeled at CBD and Motor Domain. Kinesin motility trace was 

collected at 400nM ATP, and the trace was fitted using a step size finding algorithm. The resulting step sizes were 

collected and histograms were compiled (step size >50nm were omitted, which accounts for 0.8% of the cargo and 

6.4% of the motor domain steps).  The step size histograms were fitted to 2 gaussians with centers located at x and 

2x. Kinesin labeled at the c-terminus takes predominantly 8.8±0.4 nm step (50.5%, N=24, center±SE) with 

undetected step resulting in an 8.8x2nm double step. In contrast, the kinesin labeled at the motor domain takes a 

15.5± 0.3 nm step (80.5%, N=20, center±SE). These step sizes are what one would expect if the kinesin was 

properly labeled at cargo binding domain and motor domain. 

 

To ensure that the Qdots were attached to the correct locations on the kinesin (i.e. the C- 

or the N-termini), the kinesin step-size was measured when only one location was labeled. We 
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found that the step size of kinesin labeled at the C-terminal HIS-tag or the N-terminal biotin tag 

showed the expected step sizes of 8.8 ± 0.4 nm and 15.5 ± 0.3 nm, respectively (Fig. 5.2.). Controls 

to make sure that the Qdots do not label kinesins non-specifically during the dual labeling process 

were also conducted. 

To test the accuracy of how well we correct for chromatic aberration between the two 

channels using a mapping function generated from a set of nanoholes, we used our previous 

technique to measure the end-to-end distance of two organic dyes, Cy3 and Atto633N, attached to 

DNA molecules that are 51 and 68 base pairs apart15. We obtained distances of 15.4 nm and 22 

nm (Fig. 5.3.). Our result agrees with the expected distance (17.3 nm and 23.0 nm) between the 

dyes within registration error (4 nm), and the distance difference between the two DNAs, 

confirming the accuracy of our method. 

 

Figure 5.3. End-to-End distance Determining of 51mer and 68mer DNA Using SHREC. Histograms of the end-to-end 

distance of DNA 51mer and 68mer were compiled and fitted to specialized gaussian function. The center for the 51mer 

DNA is determined to be 15.4nm, where the expected distance is 17.3nm as approximately by a rigid rod. The center 

for the 68mer DNA was 22.0nm. Both experimentally measured distance were smaller than the expected distance by 

1-2 nm. However, the difference between the two distance is accurate to within 1 nm. Given that the typical registration 

error of co-localization is 4nm, and the localization accuracy of each dye is 7-9nm the average distance determined 
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from the center and their difference is accurate. This gives up confidence that our SHREC method will be accurate 

when applied to Qdots which are more photostable, and for determining a larger difference between conformations (0 

to 75 nm). 

As kinesin actively walks on the microtubule in the presence of ATP, the relative position 

between the CBD and the motor domain Qdots can be decomposed in terms of the on- and off-

axis of the microtubule (Fig. 5.4A). The on-axis (called the y-axis) offset is parallel to the 

direction that kinesin is walking towards, and the off-axis offset (called the x-axis) is the 

direction that is tangential to the microtubule and parallel to the coverslip. Separating the two 

axes allow us to examine whether the kinesin carries its cargo with any preference for a 

particular direction. An example trace, Fig. 5.4B, is obtained from a kinesin labeled with a Qdot 

attached to the CBD via 2 antibodies (green) and to the N-terminal biotin with Qdot-SA (red). 

The distance between the two Qdots, for both the on- and off-axes, are shown immediately 

below in Fig. 5.4B. A 2D histogram of the on-axis (y-axis) difference between the motor-domain 

Qdot and the CBD Qdot and the off-axis (x-axis) difference, correlated in time, is shown in Fig. 

5.4C. The histogram is a two-dimensional projection of the position of the cargo using the motor 

domain as the reference point at (0,0). That there is a single peak at about (0,0) indicates that the 

cargo is primarily sitting above the motor domain: if the stalk was tangential, the most probable 

position would be far from zero in the off-axis direction. Furthermore, the cargo also has a wider 

distribution along the front and back direction (σy = 31.5 nm) than the left-right direction (σx = 

20.7 nm). The implication is that the cargo can be positioned in a greater range of angles along 

the direction of motion rather than perpendicular to it. 
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Figure 5.4. Analysis of on and off-microtubule axis offset. A) Illustration of kinesin orientation in terms of on and 

off microtubule axis. Here the on-axis direction is the y-axis, and off-axis direction is the x-axis. B) Example of on 

and off axis kinesin motility traces from Qdots attached to cargo binding domain via 2 antibodies (green) and motor 

domain via a SA-Qdot (red). The on and off axis differences are calculated by subtracting the position of red trace 

from the green trace. C) 2D histogram that depicts the most probable position of kinesin’s cargo in reference to the 

motor domain. The CBD of kinesin was labeled with Qdot-anti Mouse conjugated to Mouse-anti HIS, and motor 

domain was labeled using a streptavidin Qdot. The position of the cargo is color coded in the histogram based on the 

number of times a particular offset is observed using a 20 nm bin size in both direction. The most probable position 

for the cargo is clearly centered around the motor domain at (0,0). The distribution is wider in the on-axis direction 

(y-axis) than off-axis (x-axis) direction, is likely caused by the translocation of cargo front and back of the motor 

domain within a trace. C) The difference between the Qdots attached to tail and head of kinesin in the on-axis 

direction (Δy) and off-axis direction (Δx) depending on the attachment method: 2 Antibodyis calculated from each 

frame of the kinesin motility movie, and the difference in on and off axis distance were compiled into a histogram. 

The results obtained using other antibody labeling methods are summarized in Table 1.  
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Next, we fit the off-axis and the on-axis positions of the cargo separately to a Gaussian 

distribution to see if the cargo has a preference between the left-and-right, or between the front-

and back of the motor domain (Fig. 5.4D). We found that the on-axis and off-axis center was at 

6.5 ± 0.4 nm, and -2.4 ± 0.1 nm, respectively, or close to zero. This implies little preference. 

Furthermore its range is fairly limited: from +/- 60 nm, and never less than -40 nm or greater 

than +30 nm, when we eliminate the effect of noise in the off-axis data by averaging. Combining 

the observation that the center of the distribution for the off-axis offset is about zero with a 

limited range, implies that unlike the neck coiled-coil, the stalk of kinesin is not tangential to the 

microtubule; otherwise the center of the distribution of the off-axis difference would be biased 

significantly towards the negative direction. 

Previously we have stated that the stalk of kinesin is not tangential to the microtubule. 

What exactly then is the conformations of the kinesin’s stalk? In order for the cargo to be 

directly above the motor domain, there has to be a bent at either hinge I or II after the 

tangentially oriented neck-coiled coil. If hinge II is bent in the wild type, removing hinge II 

would straighten the kinesin, causing a larger height to be measured. 

To measure the height of kinesin, we can examine the spread of off-axis offsets, because 

these extrema would be the height of the kinesin when it binds to the side of the microtubule. A 

larger off-axis offset to be measured when kinesin binds to the side of the microtubule. In the 

hinge II deleted mutant, we did not observe an increase in the range of maximum and minimum 

off-axis offset (Table 1).  
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 Off-axis offset 

Center±SE (nm) 

FWHM 

(nm) 

On-axis offset 

Center±SE 

(nm) 

FWHM 

(nm) 

Off-Axis 

Max/Min 

(nm) 

2 AB -2.4±0.1 52.3 6.5±0.4 76.3 30/-40 

1 AB -2.7±0.5 60.6 0.6±0.6 68.0 40/-60 

GBP 1.2±0.5 52.8 0.0±0.3 64.6 50/-40 

1 AB Organic Dye 0.5±0.6 48.8 2.9±0.4 56.4 50/-60 

2 AB ΔH2 1.5±1.1 61.0 4.1±0.5 67.9 40/-40 

2 AB MTΔC -4.2±0.3 56.5 5.0±1.6 83.2 40/-50 

Table 5.1. Head to Tail Distance of Kinesin-1 Measured From Various Constructs and Probes 

 

The range of off-axis offset is 30 to -40 nm in the wild type, and 40 to -40 nm in the 

hinge II deleted mutant, implying that kinesin was already fully stretched to begin with in our 

measurement of wild type. Another possibility is that the kinesin remains folded even with hinge 

II removed. The second scenario is less likely, since the alpha coiled-coils are not really flexible 

elements that can keep the kinesin folded at all times.   

The question is whether a distance of 40 to -40 nm makes sense as the height of the 

kinesin when binding to the side of the microtubule, or is the kinesin being surface restricted 

somehow limited the kinesin from binding to the side. To avoid steric restriction on kinesin 

carrying a cargo so that it can bind to the side of microtubules, the same experiments were 

performed on axoneme and microtubule suspended on 440 nm beads, and we’ve obtained more 

or less the same result (Data not shown). We expected to see some kinesins binding to the side of 

the microtubule in these experimental settings. In our results, we observed the spread of 

distribution widen from 30 to -40 nm to 50 to -50 nm, it never quite reach the full contour length 

of kinesin. This can be explained by the size of the probes, since one of the Qdots is attached to 
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the N-terminus of motor domain, we would expect the center of the Qdot to sit ~10 nm above the 

motor domain, shrinking the possible distance that can be measured from the tail domain to the 

motor domain. As we decrease the size of the probes, from Qdots to organic dyes, our 

distribution of off-axis distance increases up to 50 to-60 nm which is close to the length of 

kinesin from hinge I and above. Therefore, using surface bound microtubule and the massive size 

of Qd did somehow restrict us from measuring the complete ~60 nm contour length. Although a 

larger off-axis should be observed when using 2 antibodies instead one antibody or a small 

nanobody, we argue that it’s not certain how these antibody may contribute to the height of the 

kinesin. For instance, we did however observed an increase in the width of the on-axis 

distribution, implying that the antibodies adding to the distance in the on-axis direction, or the 

front and back of the kinesin, and not directly to the top of kinesin.  

Since Hinge II does not play a role in changing the height of kinesin, we conclude that 

the Hinge II is not normally folded for kinesin in motion. The bent that redirects the cargo to 

above the motor domain from a tangentially oriented neck-coiled coil occurs at Hinge I of the 

kinesin. 

The C-terminus of the (α and β) tubulin heterodimer is hypothesized to interact with the 

neck coiled-coil region. Originally, this was hypothesized to cause the stalk to become tangential 

to the microtubule with a bias to one side10. Subsequent experiments using a truncated K401 

construct found this was not the case; the neck coiled-coil orients tangential to the microtubule 

even with C-terminus of the tubulin cleaved11. We wanted to see whether the same was true 

using our nearly full-length (K888) kinesin. The C-terminus of tubulin was therefore removed by 

subtilisin digestion16. Experiments were conducted to make sure the subtilisin digestion was 

complete (Fig. 5.5.AB). We found that the center of the distribution in the off-axis direction only 
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shifted slightly from -2.4 nm to -4.2 nm (Table 1). This difference is smaller than the registration 

error of the two-color experiment (4 nm), i.e. is not significant.  Our result therefore confirms the 

previous work by Martin et al. where they discovered no change in neck coiled-coil orientation 

after removal of the C-terminus from tubulin. We conclude that there is no significant effect on 

the overall direction of the stalk when the tubulin C-terminus was removed. 

 

Figure 5.5. SDS-Gel Electrophoresis of Microtubule and Digested Microtubule. After digestion with subtilisin, a 

SDS-PAGE was performed to verify the completion of digestion activity. Comparing the normal microtubule (MT), 

and digested microtubule (SMT), the digested microtubule shows 2 bands with less molecular weight which are 

typically observed after subtilisin digestion. B) Velocity assay performed on kinesin on subtilisin digested 

microtubule and normal microtubule. The velocity of kinesin on digested microtubule was 2.64±0.45nm/s (n=23), 

whereas on normal microtubule under the same ATP concentration, the velocity of kinesin was 4.23±0.4nm/s 

(n=19). 

By lowering the ATP concentration from 800 nM to 400 nM, individual steps were 

discernable. We observed the CBD and motor domain alternating the leading/rear position in the 

on-axis direction, i.e. the cargo (green) of kinesin abruptly switches from the front of the motor 
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domain (red) to the back of the motor domain and vice versa (Fig. 5.6.). Statistically, we 

observed the switch occurred 8.6% (54 switching event observed over 626 steps) of the total 

number of steps taken.  

 

Figure 5.6. Dynamics between Cargo and Motor Domain at 400 nM ATP Concentration. An example trace is shown 

where the Cargo (Green) and Motor Domain (Red) of kinesin are both monitored as kinesin is actively walking 

along the on-axis direction. The solid lines are fitted results from step finding algorithm. At times the cargo and 

motor domain switches in role in terms of which domain is in front of one another. The majority of the switches can 

be categorized in two proposed scenarios. Scenario A happens when both the cargo (green circle) and the labeled 

motor domain (red circle) step together in order to switch the leading position. Scenario B occurs when the lead 

position change due to cargo crossing a labeled stationary motor domain, while the unlabeled motor domain takes a 

step.  
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There are two ways for the cargo and motor domains to move with respect to each other 

that would cause such a switch (Fig. 5.6). The Qdot on the motor domain is either bound to the 

foot which takes a step, i.e. the rear foot stepping forward (Scenario A), or is bound to the 

stationary motor domain (Scenario B). In either case, the cargo and motor domain change lead as 

a result of cargo movement. Scenario A results in the simultaneous movement of both cargo and 

motor domain in the trace. We observed this to happen 43% of the time (23 out of 54 total 

switching events). In scenario B, the cargo appears to cross the stationary Qdot on the motor 

domain in the trace. This occurs 41% (22 out of 54 switching event) of the total events observed. 

In the remaining 16% of the time (9 out of 54 switching event), the kinesin appears to take a step 

(i.e., the motor domain moves), but the cargo appears not to move. We believe this is because of 

the presence of noise in our measurement, or due to something interfering with the cargo 

moving. We also measured steps sizes of these dual-labeled kinesins to make sure that the Qdots 

are labeled at the proper positions (Fig. 5.7.) and that the 16 nm steps are “real”, i.e. not simply a 

matter of missing two 8 nm steps.  

 

Figure 5.7. A step size histogram is compiled from a total of 9 traces where abrupt switching was observed at 400 

nM ATP (Green, N=396 steps, Red, N=313 steps). Step size greater than 45nm are omitted in the plot which 

accounts for less than 1% of the total number of steps for both motors. The cargo Qdot is shown to take 

predominantly 8.0 ± 0.43 nm (center± SE) and steps that are twice of the magnitude, whereas the motor domain 

takes predominantly 15.1 ± 0.26 nm steps (center± SE).  
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5.3 DISCUSSION  

Through the use of SHREC we have successfully monitored the position of both the CBD 

and the motor domain as kinesin walks along the microtubule. The advantage of the SHREC 

method is that the conformation of the stalk is based on direct observation of the CBD and motor 

domain position, and therefore the data interpretation is straightforward. We separately looked at 

the off-axis motion and the on-axis motion with respect to the microtubule direction. The off-

axis motion leads us to conclude that the cargo is upright. However, the on-axis motion indicates 

that while the average position is close to having the cargo above the motor domain, there is a 

wide variance. At an ATP concentration where single steps can be resolved, we find that the 

cargo is sometimes thrown forward, and sometime thrown backwards, with respect to the motor 

domain. This has important implications for what the “ATP-waiting state” looks like. For both 

the on- and off-axis directions, the presence or absence of the C-terminus of tubulin does not 

affect the results. 

Is the cargo upright or tangential to the microtubule? Two previous studies have looked at 

the direction of the stalk12,17. The first study, by Kerssemakers et al., measured the distance 

between the CBD and motor domain of full-length kinesin along the z-direction, where the 

microtubule is in the x-y plane. They did this by preferentially exciting the microtubule as a 

function of z through an interferometric technique. They found the contour length of kinesin to 

be only 17 nm in the z-direction, as opposed to the full height of kinesin (~75 nm). The authors 

concluded that the stalk of kinesin is either compressed, or is laid down flat and tangential to the 

microtubule.  

Our results show that the stalk is not tangential to the microtubule, since both the on- and 

off-axis difference is centered at zero, implying that the cargo is most frequently found above the 
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motor domain. That leaves the compressed stalk model the consensus model between our study 

and that of Kerssmakers et al., although the differences between a gliding assay, used by 

Kerssemakers et al., and our motility assay, prevent a definitive conclusion. While a compressed 

stalk would also lead to a comparatively smaller 2D distance between motor-domain and cargo, 

our results were obtained with a small cargo (~20 nm diameter of the quantum dot), which would 

fully activate the kinesin while exhibit significantly lower forces of compression than in the 

gliding assay by Kerssemakers et al.  

The second study used AFM measurement of the kinesins placed on the microtubule12. 

This study shows that the stalk is oriented tangential to the microtubule, just like the neck coiled-

coil region. However, the construct used was a truncated kinesin mutant (K433), which lacks 

most of the stalk region above Hinge I. Also, the experiment was conducted in the presence of 

AMP-PNP (a non-hydrolyzable analogue of ATP), such that the kinesins were not motile during 

the measurement.  

Our results, obtained while kinesin walks along the microtubule, indicate that the cargo 

carried by a nearly full-length kinesin is directly above the motor domain of kinesin. Its 

disposition is insensitive to the presence of hinge II and the C-terminus of tubulin. Based on 

published findings that the neck coiled-coil region is tangential to the microtubule, this implies 

that a 90 turn must occur somewhere after the neck coiled-coil region. That is, the stalk must be 

bent at Hinge I with the remainder of the kinesin stalk being rigid, such that the cargo is above 

the microtubule in the z-dimension. Hinge I is the only element that is capable of bending and 

directing the cargo above the motor domain to avoid steric clashes with other proteins on the 

microtubule. Therefore, the most efficient way for kinesin to carry the cargo would be to extend 

its cargo and stalk in the out-of-plane (z-) direction. 



- 75 - 
 

At lower ATP concentration (400 nM), where single step-sizes are discernable, we 

observed the cargo suddenly change its on-axis position, from the front to the back of the motor-

domain or vice versa (Fig 5.6). This appears to be a two-state transition (Top). One possibility is 

that this translation of the cargo involves a twisting of the stalk. This was actually observed in an 

optical trapping experiment: An asymmetric bead was put on the cargo and the direction of the 

asymmetry flipped 180 every 2% of the steps (depending on ATP concentration) 11. Based on 

the rarity of the switching event during motility in our result (8.6%) and the change in the 

position of the cargo being two-state (front and back), we believe that we are observing the same 

phenomenon, namely an occasional 180 rotation of the stalk. 

When using low concentration of ATP (400 nM), the kinesin is in the ATP-waiting-state 

the majority of the time. This state has either one motor domain bound to the microtubule, or 

both motor domains bound. For the two-motor-domain bound case, we would see the cargo 

change direction (i.e. front-to-back or back-to-front) simultaneously with the stepping of the 

motor domain. In fact, we do see this happening 43% of the time, slightly less than the 50% 

predicted for the two-head model. The other 50% occurs when the label is bound to the 

stationary head; In-fact, we see this happens 41%. In the remaining 16%, the cargo doesn’t 

move, even when the motor domain takes a step, a clearly unnatural configuration. On the other 

hand, if only one motor domain is bound during the ATP-waiting-state, the stalk would rotate 

freely during the ATP-waiting state and rarely coincide with the stepping of the motor domain. 

The fact that the cargo changes direction with (43%) and without (41%) the stepping of the 

labeled motor domain with roughly equal frequency, clearly shows that this is not the case.  
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5.4 CONCLUSION 

By measuring both the end-to-end (on-axis) distance and the off-axis distance of an almost full-

length kinesin while it walks using the method of two-dimensional SHREC. We have determined 

that the stalk of kinesin is bent at hinge I unlike the tangentially oriented neck coiled-coil. At low 

ATP concentration where kinesin spends the majority of the mechanochemical cycle waiting for 

ATP, we found that the cargo suddenly changes direction between the front and the back of the 

motor domain most frequently when one of the motor domains take a step. This implies that 

when kinesin is waiting for ATP, both motor domains remain bound to the microtubule, 

preventing the stalk from changing direction.  

 

5.5 METHODS 

Preparation of Kinesin Constructs Kinesin constructs used in this work, (K888, K888ΔH2) 

expression and purification are prepared by Kathy Trybus Lab in U of Vermont. 

Microtubule and Surface Preparation Tubulin, biotin tubulin, and tubulin conjugated to Hilyte 

488 were mixed in ratio of 25:3.13:1 at a total concentration of 5.8mg/mL and polymerized in 

polymerizing buffer that consists of 3mM GTP, 35% glycerol and BRB80 buffer (80mM PIPES 

pH6.8, 1mM EGTA, 1mM MgCl2) at 37 degree C for 30 minutes. The sample was then diluted 7 

times in taxol GTP buffer consists of BRB80, 1mM GTP, and 20μM paclitaxel. The diluted 

microtubules were then centrifuged at 15,000×g for 30 minutes at room temperature. Supernatant 

was discarded, and the microtubule pellet was resuspended in taxol GTP buffer at a final 

concentration of 0.58mg/mL. Microtubules were then immobilized on the surface of the coverslip 

for experiment. Sample chambers were made from a 5% biotin-PEG slide, and 0.5mg/mL of 

neutravidin was added and incubated for 5 minutes. Excess and unbound neutravidin were washed 



- 77 - 
 

away by Motility buffer and BSA (8mg/mL BSA in MB, see main text). Microtubules were then 

diluted 10X in taxol buffer consist of MB-BSA, 20 μM paclitaxel, and incubated for 5 minutes in 

the neutravidin coated chamber. To remove unbound microtubule and block free neutravidin 

binding site in the chamber, 0.1mM biotin were added to the taxol buffer and flown through the 

chamber.  

Quantum Dots Conjugation and Labeling the Kinesin Quantum dots conjugated to 2 

antibodies were generated by using Quantum dot 655 anti-Mouse (Life Technologies), incubated 

with Mouse anti-HIS antibody for 30 minutes in motility buffer (30mM HEPES pH 7.2, 50mM 

KAcetate, 2mM Mg-Acetate, 1mM EGTA, 8mg/mL BSA), 1mM THP,  and 1.6 uM ATP. 

Quantum dots conjugated to anti-FLAG antibody was generated by using the Invitrogen 

Quantum dot conjugation kit (Life Technologies). Quantum dots conjugated to GFP binding 

nanobody was custom made and has been previously published [Ref Yong Paper]. Conjugated 

GBP-Qdot was tested on kinesin (K888) lacking the YFP to ensure there was no non-specific 

binding to the kinesin. The Quantum dots used to label the cargo binding domain were incubated 

with kinesin diluted in dilution buffer that consists of motility buffer, 1 mM THP and 1.6 uM 

ATP at 6:1 Quantum dot to kinesin ratio for 30 minutes. To avoid having multiple kinesins 

bound to the same Qdots, the molar ratio between Qdots and kinesin was at least 6:1. In this way, 

there are many times more Qdots than kinesin and only 1% of the Qdots will have more than 1 

kinesin bound according to Poisson statistic. Quantum dot 605 Streptavidin conjugate (Life 

Technologies) were blocked to prevent non-specific binding by diluting it 2 fold with 

SuperBlock Buffer (Thermo Scientific) for 15 minutes. The blocked SA-Qd605 were then added 

to CBD labeled kinesin at 7:1 ratio and incubated for 30 minutes on ice. At the end of the 30 

minutes, 0.9 mM of biotin was added to the kinesin quantum dots mixture to saturate the free 
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streptavidin binding sites on the Qdot-SA. The percent of kinesin labeled with both Qdots 

(specific to CBD and motor domain) that showed motility under the influence of ATP was 

roughly 15-35% of the total moving Qdots observed in the CBD Qdot channel. The experiments 

are performed within 3 hours after saturation with biotin to avoid nonspecific binding of Qdots to 

kinesin due to prolonged incubation.  

Motility Assay and Imaging Setup Imaging was performed on sample chambers constructed by 

attaching 5% PEG-Biotin coverslip to channels created by gaps between the double-sided tapes. 

Motility assay was performed using motility buffer, 2mM THP (reducing agent), 0.02mM biotin, 

20μM paclitaxel (microtubule stabilizing agent), 50nM protocatechuate-3,4-dioxygenas (PCD), 

protocatechuic acid (1mg/mL), and a final ATP concentration of 400-800 nM. Images were 

collected at 150ms exposure time. The quantum dot labeled at C and N terminus were both 

excited with 488 nm argon-ion laser (Melles Griot) in TIR using an inverted microscope 

(Olympus). The emission passes through a divider (Optosplit II, Cairn Research) based on 

wavelengths, causing the fluorescence image to occupy two halves of the CCD camera (Andor). 

Bandpass filter 655/15 was used for the Qdot655 emission channel, and either a 605/15 or 

593/43 filter was used for the Qdot605 channel. 

Calibration with Nanoholes and Data Analysis To co-localize the two emission channels, a 

mapping function was generated from images of a slide full of diffraction limited holes that are 

1.5 um apart imaged in brightfield. Mapping function was created from the brightfield image 

using previously published algorithm written in matlab18. Kinesin motility traces were processed 

and analyzed with custom matlab script. Basically, images containing motile quantum dots that 

are co-localized in both channels were cropped. The point-spread function of the quantum dot 

fluorescence from both channels was fitted to a 2D Gaussian in order to determine the center 
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position. Center position in x and y were obtained per frame, and traces were screened for 

outliers caused by blinking of the quantum dots and quantum dots that diffused into the field of 

view. Over a short distance that the kinesin traveled under 400-800 nM ATP concentration the 

distance traveled is relatively straight which allow us to rotate the trace linearly so that the 

direction of movement is only in the x-axis. To determine step sizes, the position trace in x-axis 

after rotation was inputted into step finder algorithm19. The on and off axis offsets are calculated 

by subtracting the rotated x and y position of the motor domain from the x and y position of the 

cargo for each frame of the movie. Distance between two Qdots is obtained by distance formula 

using position of cargo and motor domain Qdot per frame. An average distance is calculated per 

kinesin trace. The average distances from each trace are then used to compile a histogram. The 

histogram is fitted using a specialized Gaussian function suitable for determining the expected 

value of a broad distribution obtained from measuring 2D distance20.  
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