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ABSTRACT

We investigate a cross-layer communication technique which jointly lever-

ages diversity gain from cooperative communications relaying and optimal

throughput characteristics of backpressure networking. In particular, we

address the capacity limitations of backpressure networks within fading en-

vironments by the retasking of a cooperating node as a relay with potentially

heterogeneous transmission architecture. Retasking a node as a cooperative

relay can temporally allocate resources of one particular session within the

backpressure network onto another session, thereby allowing for a more flex-

ible physical (PHY) layer for traffic load balancing. With this, we derive a

scheduling method that ensures timely delivery of information in networks

without predetermined infrastructure.

Within this thesis, we propose the architecture of an amplify-and-forward

relay for cooperative communications and derive the performance of multi-

ple cooperative nodes utilizing this architecture. We also propose a suitable

medium access control (MAC) layer facilitating the scheduling and decision

making of nearby relay node candidates. The proposed architecture may be

of potential interest for emerging device-to-device (D2D) and swarming mesh

networks.
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CHAPTER 1

INTRODUCTION

This thesis addresses work in the use of cooperative communications at the

physical (PHY) layer protocol in high throughput mobile ad-hoc networks

(MANETs). In particular, we consider a slow fading environment heavily

loaded with multiple sessions of traffic. This type of scenario is common when

considering wireless data links over vehicular communications in airborne or

ground-based cluttered urban environments. The design and implementation

of such a protocol may provide insight for the development of future airborne

swarm communications and other commercial use.

1.1 Motivation

In the 2010s, both the commercial and personal use of unmanned aerial

systems (UAS) has increased in the United States. By 2013, the Federal

Aviation Administration (FAA) had announced a selection of six test sites

tasked to conduct studies on the feasibility of UASs for commercial applica-

tions. The same year, Google announced Project Loon, an ambitious project

to provide connectivity and data worldwide through the use of inexpensive

but intricately designed balloons with base station capabilities. Amazon an-

nounced its intentions with Amazon Prime Air, an autonomous flight delivery

system that can allow customers to receive their packages in under an hour.

Air-to-air wireless communications and networking is still a widely inves-

tigated and open problem in terms of reliable high-throughput data delivery.

Due to the impracticality of using reliable communication methods through

excessively long wires between moving or airborne nodes, nodes must rely

on high power and advanced physical layer techniques to compensate for

their less advantageous wireless transmission medias. Furthermore, the un-

certainty of the exact location of nodes and event-based policies such as air
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space deconfliction suggest that airborne nodes cannot rely on known infras-

tructure, such as cellular base stations or ground relay points, as supporting

backbones for heavy data traffic applications. Cognitive radio, a rapidly

autonomously reconfigurable radio that can exploit available wireless spec-

trum based on its situational awareness, is a flexible candidate technology in

alleviating current problems in airborne wireless communications.

This work in particular addresses amplify-and-forward cooperative diver-

sity in backpressure MANETs. Cooperative diversity is a PHY and media

access control (MAC) layer (Open Systems Interconnection Layers 1 and 2)

transmission technique that utilizes spatially separated cooperating nodes

to provide redundant paths in a wireless fading environment. The bit error

rate (BER) and outage probability of source-to-destination wireless transmis-

sions improve dramatically as the number of nodes participating increases.

Backpressure routing is a dynamic routing algorithm that routes information

by prioritizing nodes with maximized difference in locally queued traffic. It

can be shown that networks of nodes that follow a distributed control rule

prioritizing backpressure also follow an optimal throughput policy that can

support the maximum set of inbound network data traffic [1, Tassiulas and

Ephremedes]. Although cooperative diversity is treated as a PHY-MAC layer

protocol and backpressure routing algorithms have been investigated as cross-

layer situationally aware network protocols, the techniques cannot be coupled

in a modular fashion. Specifically, MAC protocols that use cooperative di-

versity in the literature do not consider the current status of the network,

nor do they address the possibility of assigning relay nodes for link augmen-

tation as needed by a network undergoing heavy traffic. To our knowledge,

there is no framework that investigates the benefits of cooperative diversity

in backpressure networks, which we investigate in this thesis.

1.2 Background

1.2.1 Cooperative Communications

The goal of modern wireless communication involves relocating information

from point A (which we will refer to as a transmitter or source) to point B

(which we will refer to as a receiver or destination) without the use of a solid
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Figure 1.1: Instantaneous Channel Gain Under Rayleigh Fading Conditions

physical medium. Common means of transmitting this signal involve propa-

gating an electromagnetic wave or optical beam in a pattern agreed on by the

source and destination a priori. Unfortunately, environment variables such

as scatterers, blockages, and interferers may constructively or destructively

interfere with signal transmissions. Communication engineers characterize

for the cumulative effect of these environment variables as a random event,

known as fading. Fading is mathematically integrated into the design mod-

els of engineers as a random phenomenon affecting the gain and linearity

properties of a wireless signal.

An example of the instantaneous channel gain under Rayleigh fading con-

ditions is shown in Figure 1.1. At times, the channel may experience deep

fade (strong destructive interference leading to a sharp drop in gain magni-

tude), resulting in failure and disruption of communications. The quality of

communication links experiencing effects from fading channels can be quan-

tified with metrics such as BER and outage probability (probability that the

channel gain drops below a threshold value necessary to maintain information

exchange at a minimal requirement). One approach in the design of wireless

communication systems is to focus on the reduction of these quantities.

One of the most common methods to mitigate the effects of fading is by the

use of diversity, or sending information redundantly over different channels in
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either space, frequency or time. Spatial diversity treats fading by transmit-

ting or receiving from multiple spatially separated antennas. If the antennas

are sufficiently separated, redundant signals will traverse different paths and

the probability of multiple signal paths simultaneously experiencing deep

fade diminishes with increasing number of antennas. Frequency diversity

treats fading by transmitting over multiple or a wider set of frequencies. If

some frequencies selected do not experience fading during transmission, the

original message can be recovered by message fragments that were received

unobstructed. Frequency diversity works exceptionally well in narrow-band

interference and frequency-selective fading conditions. Common applications

of frequency diversity include sub-carrier interleaving (like in orthogonal fre-

quency division multiplexing) and spread spectrum techniques. Time diver-

sity treats fading by sending redundant signals at different times, or by inter-

leaving (randomizing message bits with a known pseudo-random sequence).

By interleaving, the error effects of deep fade are spread over different mes-

sage blocks and are not significant enough to lose entire messages. These

principles are commonly used in today’s multi-input-multi-output (MIMO)

communication systems.

In order for diversity techniques to be effective, the channel in which the

redundant signal copies traverse should be independent (or satisfy some “rich

scattering”-like environment). For airborne vehicular communications, inde-

pendence of paths for spatial diversity typically becomes an invalid assump-

tion because nodes are far from each other (because of air space deconflic-

tion), and signal paths become strongly correlated. Consider a situation

where there are 2 airborne nodes separated by hundreds of miles. Each air-

borne node is equipped with multiple antennas to facilitate spatial diversity.

From the local perspective of any antenna on the receiving node, all of the

antennas on the transmitting node seem almost coincident . Consequently,

all of the signal paths will undergo the same path attenuation and fading

effects. The receiver would obtain multiple near-identical copies of a faded

signal rather than multiple diversity copies of a faded signal and not be able

to exploit the full diversity gain of all elements. Cooperative diversity has

been proposed as a practical solution to provide spatial diversity in these

situations.

Cooperative diversity is the concept that a node can temporarily act as

an antenna element for a source transmission. A source transmission is first
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broadcast to the physical medium, with the destination receiving a copy of

this signal. At a later stage, nearby nodes that received a copy of the broad-

cast forward redundant copies to the destination as well. Upon reception

of the multiple copies at the destination, the receiver coherently combines

information symbols using weights determined by the quality of signal paths

before decoding the intended message bits. This method differs from net-

work layer relaying techniques as the destination receives multiple symbol-

level copies of the signal and does not designate specific routing paths for

the end-to-end delivery of messages. For this reason, cooperative diversity

has also been considered virtual MIMO or beyond line-of-sight MIMO.

Common methods of cooperative communications involve decode-and-forward

or amplify-and-forward. As the name implies, decode-and-forward relays re-

quire common transceiver architecture to decode relayed messages, which

may have unintended security consequences and potential for error propaga-

tion upon incorrect decoding of messages. Contrarily, amplify-and-forward

relays only require transceiver architecture to receive samples, amplify and

retransmit relayed messages. This makes amplify-and-forward relaying an

excellent candidate for heterogeneous node network design. In this thesis,

we consider amplify-and-forward relaying as a means for cooperation.

1.2.2 Backpressure Routing

In some scenarios, wireless point-to-point communications subject to resource

and physical constraints may not be a feasible or practical solution to deliver

messages. The natural extension of point-to-point communication links con-

siders networking for the end-to-end delivery of information. Networking, as

a science, was developed to handle multi-user, multi-commodity end-to-end

traffic delivery when point-to-point delivery is infeasible. Communication

networks, which emphasize the task of end-to-end data delivery, have his-

torically been viewed as a set of modular problems by models such as the

Open Systems Interconnection (OSI) 7-layered network protocol stack shown

in Figure 1.2. Each layer of the protocol stack plays a role in information

delivery independent of the other layers, and layers are separated with the en-

capsulation/decapsulation of messages (appending the output data structure

of a layer to a lower layer with header bits of meta-information and removing
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Figure 1.2: OSI 7 Layer Protocol Stack

header bits when messages are passed to a higher layer, respectively). The

functional responsibilities of each layer are as follows:

• Application: End-user host protocols and interfaces

• Presentation: Translation and encoding of data between application

and networking services

• Session: Management of continuous exchanges of information between

multiple nodes

• Transport: Reliability and ordering of end-to-end message deliveries

• Network: Management of routes and addressing of different nodes

• Data Link: Reliability and scheduling of point-to-point messaging

• Physical: Transmission and reception of raw messages over physical

media

One of the problems in network design is the establishment of end-to-end

routes. In a route, messages are sent from one node to another (designated

as hops) until they reach their intended destination. As the geographic span

of a network increases, identifying the best routes for data delivery becomes

more difficult. Furthermore, wireless networks must consider the delivery

of messages with unreliable links subject to fading and outages. Queue-

ing networks provide a mathematical and protocol framework for handling

messages when certain links in a network experience outage or are unavail-

able due to channel access scheduling. In queueing networks, nodes unable

to immediately forward their information to a next hop store their packets
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(network layer units of messages) onto a local queue. The long term growth

or overflow of any queue is an indicator that data traffic is not being directed

appropriately. Routing protocols in queueing networks must then satisfy the

requirement of stabilizing the queues in the network in addition to providing

end-to-end routes for data delivery.

In 1989 [1, Tassiulas and Ephremedes] determined a routing and schedul-

ing policy that could stabilize the largest set of packet generation rates in a

network. Furthermore, it was proven that if there existed any routing and

scheduling policy that could stabilize queues with a traffic generation vector

in a fixed topology, their policy could stabilize the queues as well (their pol-

icy dominates over all other policies). The main idea of this optimal policy

is to prioritize scheduling to alleviate packets with the highest queue back-

log. Consider the scenario where packets were consistently sourced from a

location and sinked at some destination within a connected network (packets

are not queued at the sink). Nodes will direct traffic to neighboring hops if

the queues of these hops are less than that of their own. Since the queue

of the destination is always empty, queue backlogs will decrease based on

proximity to the destination. This buildup of packets away from the des-

tination generates a “potential” that influences next-hop routing decisions

for large networks. Packets will move from high potential nodes to the low-

est potential neighboring nodes, analogous to the pressure flow dynamics

of fluid mechanical systems. This principal became known as Backpressure

Routing. As described, backpressure routing incorporates aspects from the

network layer 3 (routing) and network layer 2 (scheduling). With this dis-

covery, it became apparent that cross-layer protocols (networking protocols

that jointly optimized across different layers) were potentially more flexible

and responsive to different environments and situations.

1.3 Related Work

1.3.1 Cooperative Communication

The fundamental work on diversity combining of signals is summarized in

a comprehensive survey by [2, Brennan]. The pioneering concept for coop-

erative relaying was published by [3, Cover and Gamal], where the achiev-
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able information theoretic capacity had been determined for general relay

channels. [4, Laneman et al.] considered the performance benefits of coher-

ently combining signals from both source-destination and relayed exchanges

and provided information theoretic capacity bounds for amplify-and-forward

and decode-and-forward cooperative diversity methods. In [5, Hasna and

Alouini], the authors provide analytic methods to determine the BER and

outage probability of links in the form of Bessel functions and Gaussian hy-

pergeometric functions. [6, Su et al.] provides a simple expression for the

channel gain probability density function of amplify-and-forward coopera-

tive communications and uses it to determine closed form expressions for

the symbol-error-rate of M-ary phase shift keying (MPSK) and quadrature

amplitude modulation (QAM) signals. [7, Ibrahim et al.] considers the dy-

namic reallocation of power and selection of relays so that the capacity is

maximized per power expenditure in cooperative communications.

Many of these previously mentioned works focus on the signal processing

and information theoretic capacity of cooperative communications, but do

not consider network aspects of nodes. In the investigated settings, a node

is allocated long-term solely for the purpose of relaying, and the exchange of

messages to schedule, retask or coordinate is unnecessary. The first works

to consider network aspects of cooperative communication consider the re-

quirements to coordinate a wireless node as a relay. [8, Khan and Karl]

investigates messaging requirements needed for MAC protocols to begin co-

operative transmission and provides a survey of different MAC schedulers

that can coordinate cooperation within a wireless network. [9, Ding and

Uysal] considers the signal processing properties and capacity gains for multi-

ple amplify-and-forward relays in orthogonal frequency division multiplexing

(OFDM) scenarios; however, they do not consider the allocation of channels

due to traffic statistics (a network layer problem).

1.3.2 Backpressure Routing

The premier work on backpressure routing was published in [1, Tassiulas and

Ephremedes]. The authors had modeled the state of the network queue vec-

tors as a Markovian random process and applied Lyapunov control theory to

guarantee the long-term finite-boundedness of queues under the backpressure
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policy in a fixed and connected topology. The large admittance of exogenous

traffic rates for the backpressure policy led it to be recognized as the through-

put optimal scheduling policy. Since then, different authors have attempted

to use the optimal throughput characteristics in maximizing end-to-end data

delivery. [10, Ding et al.] formulates a convex optimization problem that

maximizes the capacity-differential backpressure product. A distributed so-

lution to this problem decouples the tasks of scheduling and multicarrier

power allocation and is shown to outperform networks with static routes or

fixed power allocation. [11, Liu et al.] extends the principle of backpressure

routing by applying first order dynamic updates to virtual queues. By in-

cluding information on the rate of queue differences, backpressure networks

are shown to be more responsive to changes in topology and require less time

to converge to a steady state policy.

[12, Neely] considers the performance of a backpressure network with re-

ceiver diversity. In the DIVersity BAckpressure Routing (DIVBAR) algo-

rithm, each source sends messages to multiple relays and the destination

based on differential backpressure. Upon unsuccessful packet reception at

the destination, the responsibility for forwarding messages is passed onto

the relay nodes. Because potential relays act only upon unsuccessful packet

reception at the destination, cooperation is reactive and is not suitable for

variable rate encoding transmission schemes. [13, Yeh and Berry] considers

the scheduling of transmissions between direct source-destination pairs and

cooperative decode-and-forward through Gaussian relay channels. Both of

these methods perform decode-and-forward instead of amplify-and-forward,

which necessitates common decoding architectures.

1.4 Cooperative Link Augmentation in Backpressure

Networks

In this work, we consider a bottom-up (PHY-to-Network) approach to study

the effects of cooperative communications in backpressure networks. In

Chapter 2, we present a signal model for cooperative communications amplify-

and-forward protocol for a binary phase shift keying (BPSK) signal as a

physical layer model for our point-to-point transmissions. We show that

with maximum ratio coherent combining of multiple diversity paths, the
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BER of a cooperative communications amplify-and-forward link outperforms

conventional single diversity point-to-point transmission. Using the moment

generating function method, we also see that multiple relay diversity links

can incrementally improve link quality with diminishing returns. Using the

ergodic capacity of a channel achieved through channel-state waterfilling, we

derive the conditional capacity gain to a single diversity link if a remote node

were to assist as a relay. In Chapter 3, we consider the effect of cooperation

in backpressure queueing network dynamics. We look at the ability of a MAC

protocol to schedule multiple transmissions as the allowable capacity region

of a network and determine how the capacity region changes with coopera-

tive link augmentation. By considering the current state of network backlog

and conditional capacity gain to scheduled transmissions, we determine a

threshold rule for when a node should forgo its own backlog transmissions

and participate as a relay. Consequently, we present an appropriate MAC

protocol and message frame structure to facilitate cooperation. We show

that under this new MAC protocol, the network queue can be stabilized for

larger traffic generation rates not previously accommodated by backpressure

networks without cooperation.
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CHAPTER 2

COOPERATIVE COMMUNICATIONS

Cooperative communications is a class of physical layer communication tech-

niques that exploit the inherent broadcast nature of wireless transmissions

in enabling spatial diversity. During wireless transmissions, a signal from

the source node is sent to a destination. Nearby cooperative nodes receive a

copy of this signal and can decide to discard their copy or relay this signal to

the destination. Assuming the signal transmissions paths to the destination

are independent, multiple copies of the source signal are received and coher-

ently combined to produce a signal with higher signal-to-noise ratio (SNR).

The intended message from the signal is computed after the receiver decides

it has accumulated enough copies of the signal to decode with sufficiently

low probability of error. For this reason, such cooperative communication

techniques are commonly referred to as energy accumulation techniques. We

explore cooperative communication techniques as a physical layer solution to

combat fading in heterogeneous node networks.

Different forms of cooperative communications have been studied exten-

sively in literature. The capacity of different cooperative communications

techniques has been studied in [4, Laneman et al.]. Relay selection techniques

have been studied in [7, Ibrahim et al.]. Selection relaying and incremental

relaying have been studied from a networking perspective and can provide

intuition on which nodes can be allocated to relay in a cooperative fashion

and how much performance improvement is expected.

Relaying techniques can be described as amplify-and-forward and decode-

and-forward. In decode-and-forward techniques, the received message at the

relay is decoded and retransmitted. This type of “hard” decision has been

known to cause error propagation, where if the relay decodes the message in-

correctly, it is more likely to cause bit errors within the combined message at

the receiver. In amplify-and-forward techniques, the received message at the

relay is normalized in power and retransmitted. Amplify-and-forward tech-
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niques have the advantage of not requiring a relay node to have message de-

coding architecture and consequently is a strong candidate for heterogeneous

cooperative transmissions. In this chapter, we provide the system model

and metric considerations necessary for considering amplify-and-forward in

differential backpressure networks.

2.1 Signal Model and Transmission Scheme

We assume the signal model shown in Figure 2.1 for our amplify-and-forward

transmission scheme. Suppose we have a source S, destination D, and re-

lay R. After coordination, S intends to transmit a signal to D with R as a

relay. Henceforth, we will use the notation (SR), (SD), and (RD) to repre-

sent wireless channels between nodes. (We declare (SRD) the overall effect

of a 2-hop “virtual” channel.) All channels are subject to Rayleigh fading

and channel coefficients can be modeled as independent, zero-mean circu-

larly symmetric Gaussian distributed random variables (hSD, hSR, hRD) ∼
(CN(0, σ2

SD),CN(0, σ2
SR),CN(0, σ2

RD)). We assume the fading coefficients

will not change within the duration of a transmitted signal; that is, each

individual symbol transmission period is shorter than the coherence time

of the channel. Noise at different locations are assumed to be indepen-

dent identically distributed complex Gaussian random variables denoted as

nij ∼ CN(0, N0), respectively. For simplicity, we normalize the noise power

N0 to 1 and scale the corresponding channel gain accordingly. We denote

the transmission power from the source as PS, and wish to keep the average

relay transmission power PR. Assuming Binary Phase Shift Key (BPSK)

signalling, the transmission of information symbol x ∈ {−1, 1}, our system

can be modeled as:

ySD = hSD
√
PSx+ nSD (2.1)

ySR = hSR
√
PSx+ nSR (2.2)
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Figure 2.1: Cooperative Communication model

yRD = hRD

√
PR
PS

h∗SR
‖hSR‖2ySR + nRD

= hRD
√
PRx+

√
PR
PS

hRD
hSR

nSR + nRD (2.3)

where channel amplitude and phase equalization is executed at each receiv-

ing stage. (This scheme assumes globally known channel fading conditions

and thus serves as an upper bound for performance of links from a network

perspective.) The signal copies at the receiver can be linearly combined as

yΣ = αSD
h∗SD
‖hSD‖

ySD + αRD
h∗RD
‖hRD‖

yRD (2.4)

We wish to determine the appropriate combining coefficients αSD and αRD

that would maximize the SNR of the combined signal yΣ. If we define γΣ as

the SNR of yΣ, then we can express γΣ as

γΣ =

(
αSD
√
PS|hSD|+ αRD

√
PR|hRD|

)2(
α2
SD + α2

RD

[
PR
PS

|hRD|
|hSD|

+ 1
])
N0

=

∣∣∑2
i=1 αi

√
Pihi

∣∣2∑2
i=1 α

2
i ñi

2
(2.5)

with the understanding that i = 1 corresponds to properties of the signal

from the source, i = 2 corresponds to properties of the signal from the relay

and ñi represents the root mean squared of the cumulant noise on i. We use

the Cauchy-Schwarz inequality to maximize the above expression. For any

two finite vectors a, b of length n in an inner product space
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∣∣∣∣∣
n∑
i=1

a∗i bi

∣∣∣∣∣
2

≤
n∑
i=1

|ai|2
n∑
i=1

|bi|2 (2.6)

with equality if and only if a and b are linearly dependent, that is a = Kb

for some non-zero scalar K. Allowing the numerator to represent the left-

hand side of the inequality and the denominator to represent one of the

summations on the right-hand side, we can determine the coefficients αSD

and αRD. Let a∗i bi = αi
√
Pi |hi| and bi = αiñi. Then (2.5) can be represented

in the Cauchy-Schwarz inequality as∣∣∑2
i=1 αi

√
Pihi

∣∣2∑2
i=1 α

2
i ñi

2
≤

2∑
i=1

Pi |hi|2

ñi
2 (2.7)

where the right-hand side is the sum of SNRs received from individual di-

versity paths. The above expression can be met with equality only if αiñi =

K
√
Pi|hi|
ñi

. Thus we can determine the combining coefficients as

αSD =

√
PS |hSD|
N0

(2.8)

αRD =

√
PR |hRD|(

PS |hSD|2

PR|hRD|2
+ 1
)
N0

(2.9)

The coefficients αSD and αRD are commonly referred to as maximum ratio

combining coefficients because they maximize the overall SNR of the com-

bined signal [2, Brennan]. Effectively, aSD and aRD are weighted proportional

to each signal amplitude and inversely proportional to noise power (similar

to a reliability factor, where stronger signals are counted as more reliable).

In (2.7), it is shown that the weighted sum of received signals from different

diversity paths using these maximum ratio combining coefficients will result

in a cumulant signal with SNR that is the sum of individual SNRs of each

diversity branch. If we define γij as the SNR of link (i, j), then we have

γΣ = γSD + γSRD (2.10)

A maximum likelihood decoding decision can be made at the receiver on

the combined signal to recover the information bit
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p(X = 1|YΣ)
x̂=1

≷
x̂=−1

p(X = −1|YΣ) =⇒ x̂ = sign (R(YΣ)) (2.11)

2.2 Average Bit Error Rate Performance of

Cooperative Communication Amplify-and-Forward

with Maximum Ratio Combining

In this section, we evaluate the average bit error rate (BER) of a cooper-

ative communication amplify-and-forward link. The average BER can be

calculated exactly by the moment generating function (MGF) method. The

probability of error of BPSK signal is given by

Pε =
1√
2π

∫ ∞
√

2γ

e
−t2

2 dt = Q
(√

2γ
)

(2.12)

where γ is the instantaneous SNR of the received signal and the Q-function

is the complementary cumulative distribution function of the standard Gaus-

sian with zero mean and unit variance, defined as

Q (z) =
1√
2π

∫ ∞
z

e
−t2

2 dt (2.13)

Then the average BER can be calculated as

P̄ε =

∫ ∞
0

Q
(√

2γ
)
p (γ) dγ (2.14)

=

∫ ∞
0

∫ ∞
√

2γ

1√
2π
e

−t2
2 dt · p (γ) dγ (2.15)

where p (γ) is the probability that the received signal has an SNR of γ.

Because the limits of integration in (2.15) include a random variable, direct

integration to solve for the probability of error is usually not feasible. [14,

Craig] had derived an alternate representation of the Gaussian Q-function as

Q (z) =
1

π

∫ π
2

0

exp

(
− z2

2 sin2 θ

)
dθ z ≥ 0 (2.16)

which is valid as long as the argument of the Q-function is positive. Plugging

(2.16) into (2.14), we get a new expression for the average probability of error
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P̄ε =

∫ ∞
0

Q
(√

2γ
)
p (γ) dγ (2.17)

=

∫ ∞
0

1

π

∫ π
2

0

exp

(
− 2γ

2 sin2 θ

)
dθp (γ) dγ (2.18)

=
1

π

∫ π
2

0

∫ ∞
0

exp
(
− γ

sin2 θ

)
p (γ) dγdθ (2.19)

The inner integral in (2.19) is the MGF of the SNR γ. The MGF of a

continuous random variable X is defined as

MX(s) = E
[
esX
]

=

∫
esxpX (x) dx (2.20)

where E [f (x)] is the expectation of f (x) with respect to the distribution of

X, and the integral is taken over the support of X. With this, (2.19) can be

expressed in the insightful form of

P̄ε =
1

π

∫ π
2

0

Mγ

(
− 1

sin2 θ

)
dθ (2.21)

The average BER p̄e of a BPSK signal can be evaluated by first comput-

ing the moment generating function of the SNR MγΣ
. By independence of

channels (SD) and (SRD), the overall MGF can be evaluated as the prod-

uct of the MGFs of the individual channels MγΣ
= MγSDMγSRD . The SNR

γSD = PS |hSD|2
N0

is a function of power output PS and the exponentially dis-

tributed random variable |hSD|2. An exponential random variable X with

mean λ has the following density and distribution functions

pX (x) =
1

λ
e−

x
λ · U (x) PX (x) = 1− e−

x
λ (2.22)

where U (·) is the unit step function. Note that exponential random variables

are closed under positive scaling, so γSD is an exponential random variable

with mean PSσ
2
SD. To see this, consider the distribution function of a random

variable Z = KX for some positive scalarK and exponential random variable

X with mean λ. Then Z
K

= X and

PZ (z) = PKX (z) = P (KX ≤ z) = P
(
X ≤ z

K

)
= 1− e

z
Kλ (2.23)
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which is the distribution of an exponential random variable with mean Kλ.

For simplicity, let PSσ
2
SD = β, PSσ

2
SR = β1, and PRσ

2
RD = β2. Then γSD has

density function and MGF:

pγSD(γ) =
1

β
e−

γ
β · U (γ) (2.24)

MγSD(s) = E [esγSD ] =

∫ ∞
−∞

esγpγSD(γ)dγ =

1
β

1
β
− s

(2.25)

To determine the SNR of the 2-hop relay link (SRD), we consider the ex-

panded signal model in (2.3)

yRD = hRD
√
PRx+

√
PR
PS

hRD
hSR

nSR + nRD (2.26)

Then γSRD:

γSRD =
PR |hRD|2(

PR|hRD|2
PS |hSR|s

+ 1
)
N0

=

PR|hRD|2
N0

PS |hSR|2
N0

PR|hRD|2
N0

+ PS |hSR|2
N0

= µH

(
PS |hSR|2

N0

,
PR |hRD|2

N0

)
(2.27)

where µH (a, b) = ab
a+b

represents the (half) harmonic mean of its arguments.

The MGF of the harmonic mean of two exponential random variables with

means β1 and β2 is [15, Hasna and Alouini]:

MµH(s, β1, β2) =
16 1

β1

1
β2

3
(

1
β1

+ 1
β2

+ s+ 2
√

1
β1β2

)
 4

(
1
β1

+ 1
β2

)
1
β1

+ 1
β2

+ s+ 2
√

1
β1β2

·

2F1

3,
3

2
;
5

2
;

1
β1

+ 1
β2

+ s− 2
√

1
β1β2

1
β1

+ 1
β2

+ s+ 2
√

1
β1β2

+2F1

2,
1

2
;
5

2
;

1
β1

+ 1
β2

+ s− 2
√

1
β1β2

1
β1

+ 1
β2

+ s+ 2
√

1
β1β2

]
(2.28)

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(1 + n)
zn (2.29)

where (2.29) is the Gauss hypergeometric series [16, Abramowitz] and Γ(n)

is the gamma function. The MGF of the combined SNRs from (2.10) can
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be determined by multiplying the MGFs of γSD, and γSRD. In order to

determine the average BER using the MGF, we need to evaluate:

P̄e =
1

π

∫ π
2

0

MγSD ·MµH

(
− 1

sin2(φ)

)
dφ (2.30)

Numerical integration of (2.30) is shown in Figure 2.2. In this simulation,

we compare three scenarios with different resource allocation and receiving

methods. A baseline scenario considers when the source can allocate all of

its power in a direct transmission over a Rayleigh faded channel (SD). An-

other scenario considers when the source and relay evenly distribute the total

transmission power between themselves for transmission over channels (SR)

and (RD); however, the destination ignores any messages it overhears from

channel (SD). We label this case as “2-hop Relaying”. A third scenario con-

siders when transmission power is evenly distributed between the source and

relay, and the destination coherently combines signals from the two diversity

paths as described in the previous section. The total transmission power in

each scenario is preserved.

We see that even under equal (not necessarily optimal) power allocation

between nodes for cooperation, a cooperative communication link performs

as well as a direct transmission link in low SNR conditions, and has significant

diversity gain at high SNRs. This diversity gain suggests improvements in

power consumption and signal quality, and can be even further augmented

by additional links. Figure 2.3 shows the analytic performance of half-power

allocation schemes for multiple relays (half of the overall power comes from

source, and the remaining power is equally distributed over all relays).

2.3 Link Performance Improvement with Amplify and

Forward Cooperation

To investigate the rate improvement a cooperative communication scheme

would have, we first consider the optimal power allocation for opportunis-

tic transmissions. [17, Goldsmith and Varaiya] proposed that if nodes are

allowed to vary their transmission power and rate in response to known chan-

nel state information, the achievable capacity subject to some average power

constraint is solved by the following convex optimization problem:
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Figure 2.2: P̄ε in Cooperative Communication (σ2
SR = σ2

SD = σ2
RD = 1)

Figure 2.3: P̄ε in Cooperative Communication with Multiple Relays
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C∗ (S) = max
S(γ):

∫
S(γ)p(γ)dγ=PS

∫
γ

ω log

(
1 +

S (γ) γ

PS

)
p (γ) dγ (2.31)

where PS is the total average transmission power and S (γ) is the instanta-

neous transmission power of the transmitter in response to channel gain γ.

Equation (2.31) can be solved by minimizing the following Lagrangian dual

function (with λ ≥ 0 as a dual variable):

L (λ) =

∫
γ

log

(
1 +

S (γ) γ

PS

)
p (γ)− λ

(∫
γ

S (γ) p (γ)− PS
)

(2.32)

=

∫
γ

[
log

(
1 +

S (γ) γ

PS

)
− λS (γ)

]
p (γ) + λPS

∂L

∂S (γ)
=

[
γ
PS

1 + S(γ)γ
PS

− λ

]
p (γ) = 0⇒ S (γ)

PS
=

1

λPS
− 1

γ
(2.33)

This solution results in a state-based waterfilling technique to allocate

power. Starting from λ = 0, the (2.33) allocates too much power to satisfy

the constraint in (2.31). The power constraint is gradually satisfied by in-

creasing λ and results in the optimal rate of information transmissions. It

is important to note that this power allocation is a function of the current

channel state and it is seemingly agnostic to the channel state distribution

function because of the dual problem. [17, Goldsmith and Varaiya] succinctly

define the optimal power allocation as

S (γ)

PS
=

1

γ0

− 1

γ
; γ0 < γ (2.34)

for some channel gain threshold γ0. When γ < γ0, the source node does

not transmit and waits for a better transmission opportunity. The capacity

determined by this expression is

C∗ =

∫
γ

ω log

(
1 +

(
1

γ0

− 1

γ

)
γ

)
p (γ) dγ =

∫ ∞
γ0

ω log

(
γ

γ0

)
p (γ) dγ

(2.35)
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In a Rayleigh fading channel, the capacity expression becomes

C∗ =

∫ ∞
γ0

ω log

(
γ

γ0

)
1

σ2
e−

1
σ2 γdγ (2.36)

=

∫ ∞
γ0

ω (log (γ)− log (γ0))
1

σ2
e−

1
σ2 γdγ

=

∫ ∞
γ0

ω log (γ)
1

σ2
e−

1
σ2 γdγ − ω log (γ0) e−

1
σ2 γ0

= ω log (γ) e−
1
σ2 γ
∣∣∣γ0

γ=∞
+ ω

∫ ∞
γ0

1

γ
e−

1
σ2 γdγ − ω log (γ0) e−

1
σ2 γ0

= ωE1

[
1

σ2
γ0

]
where E1 [x] =

∫∞
x

1
t
e−tdt is the exponential integral of the first order. The

average power expenditure PS determines the appropriate value for γ0. For

a Rayleigh fading channel

∫
γ

S (γ) p (γ) dγ = PS ⇒ 1 =

∫ ∞
γ0

(
1

γ0

− 1

γ

)
1

σ2
e−

1
σ2 γdγ (2.37)

=
1

γ0

e−
1
σ2 γ0 −

∫ ∞
γ0

1

γσ2
e−

1
σ2 γdγ

=
1

γ0

e−
1
σ2 γ0 − 1

σ2
E1

[
1

σ2
γ0

]
Since E1 [x] is not an elementary function, γ0 can be numerically evaluated

as the roots of the equation:

f (γ0) =
1

γ0

e−
1
σ2 γ0 − 1

σ2
E1

[
1

σ2
γ0

]
− 1 (2.38)

The plot in Figure 2.4 shows the achievable transmission rate C∗ in a Rayleigh

fading channel with channel variance σ2 = 1. Figure 2.5 shows the corre-

sponding γ0 transmission decision threshold necessary to satisfy the aver-

age power expenditure requirement PS. Because of the E1

[
1
σ2γ0

]
term, one

might find the bounding approximations of the exponential integral useful

[16, Abramowitz].

1

2
e−x ln

(
1 +

2

x

)
< E1 (x) < e−x ln

(
1 +

1

x

)
(2.39)
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Figure 2.4: Achievable Capacity in a Rayleigh Fading Channel C∗

As σ2 increases (channel is better on average), so does the value of γ0

(limσ2→∞ γ0 = 1). The rationale suggests that if the channel has more op-

portunities for higher gain, the transmitter should wait for these high gain

opportunities to transmit while still being able to support its average power

expenditure requirement. We consider this protocol “state-based opportunis-

tic transmission” to achieve the most point-to-point throughput given power

consumption. Because of the direct relationship between average power ex-

penditure and achievable capacity, we realize that this same protocol deter-

mines the minimum power necessary to fulfill a required transmission rate.

Consequently, (2.36) can be used to determine γ0 and the minimum aver-

age power necessary to fulfill a capacity requirement in this scenario. (This

problem is not a convex problem because different power assignments in re-

sponse to transmission states do not form a convex set of possible power

expenditures).

To achieve the projected capacity performance [17, Goldsmith and Varaiya]

proposed the transmitter encoding and receiver decoding architecture in Fig-

ure 2.6. With known γ, the transmitter will select an appropriate code and

power allocation. The decoder will decode the received message with the
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Figure 2.5: Opportunistic Transmission Threshold γ0

appropriate codebook.

In order to solve (2.35) for a cooperative link, we must determine the

density function of the equivalent channel SNR (2.10). The density of the

sum of independent random variables can be computed using convolution

or with the characteristic function/MGF method. The probability density

function of γSRD is given by [15, Hasna and Alouini]:

pγSRD (γ) =
2γe

−γ
(

1
β1
− 1
β2

)
β1β2

·[(
β1 + β2√
β1β2

)
K1

(
2γ√
β1β2

)
+ 2K0

(
2γ√
β1β2

)]
· U (γ) (2.40)

where K1 and K0 represent the first and zeroth order modified Bessel func-

tions of the second kind. Alternatively, [6, Su et al.] provides a probability

density function for γSRD without the use of Bessel functions:

pγSRD (γ) = γ

∫ 1

0

1

β1β2t2 (1− t)2 e
−
(

1
β1(1−t) + 1

β2t

)
γ
dt · U(γ) (2.41)
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Figure 2.6: Channel State Based Encoding/Decoding Architecture

Then the density function of the equivalent cooperative channel SNR γΣ can

be determined with the convolution of the two density functions (2.41) and

(2.24)

pγΣ
(γ) = (pγSD ∗ pγSRD) (γ)

=

∫ ∞
−∞

pγSD (γ − τ) pγSRD (τ) dτ

=

∫ ∞
−∞

∫ 1

0

1

β
e−

γ−τ
β · τe

−
(

1
β1(1−t) + 1

β2t

)
τ

β1β2t2 (1− t)2 dt · U (γ − τ)U(τ)dτ

=

∫ γ

0

τe−
γ
β

∫ 1

0

e
−
(

1
β1(1−t) + 1

β2t
− 1
β

)
τ

ββ1β2t2 (1− t)2 dt · dτ (2.42)

Instead of evaluating the above integral, we consider a reactive protocol

where a relay decides to cooperate given some known information about the

current channel states, which we assume can be exchanged via handshake

messages. In that case, we can consider the expected gain a relay can provide

if it chooses to cooperate, given channel states. Without cooperation, the

source destination link at one instance of channel state γSD can provide

Cold = ω log

(
γSD
γ0

)
(2.43)

Suppose by overhearing the source message to initiate transmission and the
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destination’s reply (typically a request-to-send and clear-to-send, or RTS/CTS),

the relay can determine γSD and γSR. At this point, it can consciously make

the determination whether it would be beneficial to aid the source’s trans-

mission. With the known channel SNRs γSD and γRD, and the mean of the

channel SNR from the relay to destination (PRσ
2
RD), the relay can determine

an expected transmission rate gain if it functioned temporarily as a relay.

The expected transmission rate gain can be calculated as:

E [∆C|γSD, γSR] =

∫ ∞
0

ω log

(
γSD + γSR·γ

γSR+γ

γ0

)
pγRD (γ) dγ − Cold

=

∫ ∞
0

ω log

(
γSD + γSR·γ

γSR+γ

γ0

)
1

β2

e
− γ
β2 dγ − Cold

=

∫ ∞
0

ω [log

[
γSD

(
1 +

1

γSD
· γSR · γ
γSR + γ

)]
− log (γ0)

1

β2

e
− γ
β2 dγ − Cold

=

∫ ∞
0

ω [log (γSD) + log

(
1 +

1

γSD
· γSR · γ
γSR + γ

)
1

β2

e
− γ
β2 dγ − ω log (γSD)

=

∫ ∞
0

ω log

(
1 +

1

γSD
· γSR · γ
γSR + γ

)
1

β2

e
− γ
β2 dγ (2.44)

which can be evaluated using integration by parts:∫ b

a

udv = (u · v)
∣∣b
a
−
∫ b

a

vdu (2.45)

u = log

(
1 +

1

γSD
· γSR · γ
γSR + γ

)
dv =

1

β2

e
− γ
β2 dγ

(2.46)

du =

γSR[γSD(γSR+γ)]−γSD(γSRγ)

[γSD(γSR+γ)]2[
1 + 1

γSD
· γSR·γ
γSR+γ

] dγ v = −e−
γ
β2

The term du can be further simplified by partial fraction decomposition
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du =

γSR[γSD(γSR+γ)]−γSD(γSRγ)

[γSD(γSR+γ)]2[
1 + 1

γSD
· γSR·γ
γSR+γ

] dγ =
γ2
SR

(γ + γSR) [(γSR + γSD) γ + γSR · γSD]
dγ

(2.47)

=
γ2
SR/ (γSR + γSD)

(γ + γSR)
(
γ + γSR·γSD

γSR+γSD

)dγ =

 −1

(γ + γSR)
+

1(
γ + γSR·γSD

γSR+γSD

)
 dγ

It is interesting to note that the harmonic mean of γSR and γSD appears as a

root in the partial fraction decomposition in (2.47). Plugging in (2.46) and

(2.47) to evaluate (2.44), we get:

E [∆C∗|γSD, γSR] = ω

(
e
µH(γSR,γSD)

β2 E1

[
µH (γSR, γSD)

β2

]
− e

γSR
β2 E1

[
γSR
β2

])
(2.48)

To understand (2.48), we consider the following function and its derivative:

f (x) = exE1 [x] f ′ (x) = ex
[
E1 [x]− e−x

x

]
(2.49)

The derivative of this function can be determined by applications of the

chain rule and the second fundamental theorem of calculus. The expres-

sion within the square brackets of (2.49) can be shown to be non-positive,

specifically, e−x

x
is an upper bound of E1 [x] [16, Abramowitz, pg 229, eq

5.1.19]. Consequently, the term in the parenthesis of (2.48) cannot be nega-

tive, because the µH is upper bounded by the minimum if its arguments. The

function exE1 [x] is plotted in Figure 2.7. If γSD and µH (γSR, γRD) were plot-

ted on the abscissa, the difference between the corresponding function values

would represent expected capacity gain per unit bandwidth for a source to

destination link if a node supported as a relay.

We conclude with the statement that if a relay decides to engage in co-

operative transmission, the cooperation cannot reduce the average capacity

(an intuitive result). In the next chapter, we investigate when a node should

decide to cooperate as a relay.
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Figure 2.7: Function exE1 [x] Used to Determine Potential Increase in
Capacity if Cooperatively Communicating
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CHAPTER 3

BACKPRESSURE ROUTING

In the previous chapter, we have demonstrated how a cooperating node

can act as an amplify-and-forward relay and augment single hop source-

destination transmissions. On top of that, because the relay does not decode

any information, specialized hardware and forward error correction circuitry

are not necessary; virtually any node that can sample and retransmit on com-

mon frequencies can assist as a relay. Furthermore, by using adaptive rate

transmissions, we have shown that the augmented BER and SINR perfor-

mance can yield an overall rate improvement. In this chapter, we investigate

efficient ways of leveraging this rate improvement from a network perspec-

tive. This study leads to the development of an efficient distributed medium

access control (MAC) protocol and a cross-layer throughput optimal imple-

mentation with cooperation.

3.1 Queueing Networks and Differential Backpressure

We consider a network G of nodes N and links E denoted G = (N,E). Each

node in the network has the ability to queue packets that it has not had

the opportunity to transmit yet. Packets intended for different destinations

are placed into different queues; for example, packets locally queued at ni

intended for nj will be placed into qji . Let qji (t) represent the non-negative

number of packets at qji at time t. This description allows us to denote node

queue processes as qi(t) =
[
q1
i (t) q2

i (t) . . . q
|N|
i (t)

]T
and the network

queue process as Q(t) =
[
q1(t) q2(t) . . . q|N|(t)

]T
. Packets arriving

at their intended destination exit the network instead of queuing at their

destination, so qii(t) = 0 ∀ni ∈ N, ∀t ∈ T. The exogenous traffic generated

at each node ni is a random process denoted λji (t). For this thesis, we will

consider each λji as independent wide-sense stationary non-negative integer
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Figure 3.1: Queueing Network Model

random processes with mean E
[
λji
]

= µji and finite variance. We define the

exogenous traffic rate matrix Λ as the matrix of expected values of the λji
processes. The breakdown of such a structure is shown in Figure 3.1.

We investigate a single hop network G1 of 4 nodes shown in Figure 3.2 as

it is the most illustrative of our results. In this example, node n1 generates

traffic intended for node n2 and node n3 generates traffic intended for node

n4 (we designate nodes n1 and n3 as sources), while nodes n2 and n4 do

not generate packets. Furthermore, we impose an additional constraint that

nodes n1 and n3 cannot decode each other’s messages (they cannot queue

each other’s messages). In this single hop network, the exogenous traffic rate

matrix Λ can be sparsely represented as a vector Λ = [E [λ2
1] E [λ4

3]]
T

.

Suppose there exists enough available bandwidth in the spectrum so that

both nodes n1 and n3 can schedule their transmissions without interfering

with each other and that they are resource constrained only in their available

transceiver capabilities. During each timeslot t, each node ni can schedule a

transmission to nj and allow for a rate of information transfer rij(t) limited

by the capacity between the two nodes, cij(t), that is, rij(t) ≤ cij(t). Then

queue length dynamics can be modeled by the following equations

qji (t+ 1) = max
(
qji (t)− rij(t), 0

)
+ λji (t) (i, j) ∈ (1, 2) , (3, 4) (3.1)
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Figure 3.2: Single Hop Network G1

qji (t) = 0 i ∈ 2, 4 (3.2)

where the max (·, 0) in (3.1) is because nodes cannot send more information

than they have queued. Assuming nodes n1 and n3 have non-zero channel

access probability only when have non-empty queues, we can define the ca-

pacity region of the network Π as the set of admissible exogenous traffic rates

that the network can support without any queue growing to infinity at any

time. We consider a network that satisfies this condition as stable and con-

versely, the network is unstable if any queue goes to infinity at any point in

time. The capacity region of a network described like G1 is an n-dimensional

hypercube where the side lengths are the source-destination link capacities

and n is the number of sources in the network.

The shape of Π is influenced by different factors, such as channel access

probability, power limitations of sources, and available resources. Two ex-

amples of capacity regions are shown in Figure 3.3, where the horizontal axis

represents the transmission rate from node n1 to n2, while the vertical axis

represents the transmission rate from node n3 to n4. The shaded region rep-

resents the network capacity region Π. In Figure 3.3a, we assume that n1 and
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Figure 3.3: Capacity Regions of G1 with Scheduling Constraints

n3 are fitted with an appropriate MAC and there are sufficient bandwidth re-

sources so that they can both schedule transmissions simultaneously. In that

case, Π is rectangularly shaped with each side length limited by their respec-

tive capacities, cij. If the network is environmentally resource constrained or

the MAC is designed to only schedule a limited number of users, Π takes a

shape similar to that shown in Figure 3.3b, where the network scheduler only

has enough bandwidth or time to schedule one transmission between n1 and

n3, and decides accordingly. If it schedules for n3 all the time, n1 will never

have access to the channel, so its capacity would be 0 in this situation. A

similar reasoning for the time sharing of channel access shows that Π is the

convex hull of all schedulable capacity rates at any given time. Figure 3.3b

is an example of a network where the queue growth cannot be bounded. It

is easy to prove that G1 is stable if and only if Λ lies in the interior of Π;

that is,

E
[
λ2

1

]
≤ c12 (3.3)

E
[
λ4

3

]
≤ c34 (3.4)

If either (3.3) or (3.4) does not hold, then G1 is unstable. To prove this,

consider if (3.3) is false. Then if we weaken max (·, 0) in (3.1), the queue

length dynamics become:

q1(t+ 1) = q1(t)− r12(t) + λ1(t) (3.5)
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The queue growth of n1 can be defined as:

∆q1(t) = q1(t+ 1)− q1(t) = λ1(t)− r12(t) ≥ λ1(t)− c12(t) (3.6)

If (3.3) is false, then ∆q1(t) is a stochastic process with a positive mean.

The process q1(t + 1) can be rewritten as the summation of all instances of

∆q1(t) from some initial time 0 to t. Since q1(t + 1) includes the summa-

tion of random variables with positive means, the mean of q1(t + 1) is the

growing summation of positive terms. Over time, the expected queue length

E [q1(t+ 1)] will grow without bound and cannot converge to a finite limit.

lim
t→∞

E [q1(t+ 1)] = q1(0) + lim
t→∞

t∑
τ=0

E [∆q1(τ)] D.N.E. (3.7)

The approach above inspires a technique called “minimizing Lyapunov

Drift” in designing optimal throughput networking strategies, first suggested

by [1, Tassiulas and Ephremedes] and then expanded by [18, Neely] and

other authors. The idea is to apply Lyapunov control theory to determining

a scheduling rule for controlling the growth of queue lengths in a network.

A Lyapunov function is a non-negative monotonic and continuously dif-

ferentiable scalar function of control variables. Conceptually, it is an energy

function that can be used to determine a control rule to dissipate energy ef-

ficiently. For multivariable systems, the Lyapunov function is usually based

on the of a norm or distance of the current system state variables from to a

desired operating region. The quadratic function and the weighted quadratic

functions are common Lyapunov functions used to determine control rules

to drive the control variable x to 0. These functions are shown below:

L (x) = x2 (3.8)

L (x) =
∑
i

wix
2
i wi ≥ 0 ∀i (3.9)

Manipulations of the weights wi in conjunction with Little’s law can be

used for quality of service and application/flow control problems. Suppose

we wish to use a Lyapunov function to determine a scheduling rule that keeps

the queues in a network bounded. We select the scaled Frobenius norm of

our network queue process Q(t) as a trivial choice of a Lyapunov function.
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L (Q(t)) =
1

2
‖Q(t)‖2

F =
1

2

∑
j

∑
i

(
qji (t)

)2
(3.10)

If we can determine a scheduling and rate allocation rule that keeps (3.10)

bounded by some quantity, say K, for all time, we obtain a loose bound for

the maximum queue length of the network:

L (Q(t)) ≤ K ⇒ max
i,j

qji (t) ≤
√

2K ∀t ∈ T (3.11)

To determine such a rule, we use (3.1) to understand how L (Q (t)) grows

with time. The Lyapunov drift function is defined as

∆L (Q(t)) = L (Q(t+ 1))− L (Q(t)) (3.12)

=
1

2

∑
j

∑
i

[
max

(
qji (t)− rij(t), 0

)
+ λji (t)

]2 − 1

2

∑
j

∑
i

(
qji (t)

)2

≤ 1

2

∑
j

∑
i

[
(rij)

2 − 2qji rij + 2
∣∣qji − rij∣∣λji +

(
λji
)2
]

=
1

2

∑
j

∑
i

[
(rij)

2 + 2
(
qji − rij

)
λji +

(
λji
)2
]
−
∑
j

∑
i

qji rij

where the terms in (3.12) have been separated into the difference of terms,

which will increase and decrease the Lyapunov drift. Note that because

packets are queued before they can be transmitted, and a node cannot send

more packets than it has in its queue, rij ≤ qij. If we follow the methodology

in determining queue stability from (3.7), we are interested in developing a

protocol that leads (3.12) to average out to 0 over time, so that

E [∆L (Q(t))] = 0⇒ E [L (Q(t))] = E

[
L (Q (0)) +

t∑
0

∆L (Q(t))

]
(3.13)

= L (Q (0)) +
t∑
0

E [∆L (Q (t))]

= L (Q (0))

In practice, it is very difficult to satisfy the condition E [∆L (Q(t))] = 0

without a priori knowledge of network traffic or instantaneous backlog. Most
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designers use known queue information to create a scheduling rule so that

E [∆L (Q) |Q] ≤ 0 beyond some boundary point which we do not want the

queue values to exceed. To see if such a condition can be achieved, we mini-

mize (3.12) given the queue information, which is equivalent to maximizing

the rightmost term of (3.12).

argmin
R,rij≤qji ,cij

E [∆ (Q) |Q]⇒ argmax
R,rij≤qji ,cij

∑
j

∑
i

qji rij (3.14)

The maximization in (3.14) leads to the backpressure scheduling algorithm.

If the network resource constraints or MAC allowed for at most 1 transmission

during each timeslot, it should schedule for the link-session with the highest

rate-backlog product. For G1, it requires the evaluation of

c12 · q2
1 ≷ c34 · q4

3 (3.15)

If c12 and c34 are comparable, then (3.15) simply prioritizes channel access

to the node with a higher backlog. Consequently, many distributed MAC

schedulers in the literature use only local queue information and that of

their 1 hop neighbors [10, Ding et al.]. This process leads to an inherent

control rule for queues. If not enough channel access has been allocated to

a particular node in a network, its queue will grow, prompting more channel

access. MAC schedulers for mobile ad-hoc networks are typically designed

to greedily maximize according to (3.14).

3.2 Changing The Capacity Region

The scenario in Figure 3.4 assumes there is enough bandwidth and time

to schedule transmissions for both nodes n1 and n3. Consider Figure 3.4a,

when a particular inbound traffic rate exceeds the capacity of an individual

link in the network. If a node could enlist the help of a nearby neighbor

with excess resources, we have shown that the point-to-point transmission

rate can change, thus the effective capacity region can change to encompass

additional traffic rates. Figure 3.4b shows the change in capacity region if

node n3 supports node n1 some percentage of its transmission cycle. If node

n3 relays for node n1 all the time, then its effective capacity will reduce to
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Figure 3.4: G1 Capacity Regions with Cooperative Transmission

0 and the capacity of n1 will increase to c
(new)
12 . Clearly, if node n3 has any

traffic, it should reserve some time, power and bandwidth to complete its

own task. When should node n3 support node n1? A reasonable decision

should address the following points:

• Node n3 should not support node n1 if E [λ4
3] is at the boundary of

Π, i.e. E [λ4
3] ≈ c34. While long term averages are difficult to compare

practically, this can be inferred if the link activation rate/channel access

probability is high. (If a node needs to transmit often to maintain a

steady queue, it probably should not be additionally overloaded to

support another.)

• Node n3 should not support node n1 if it has overtaxed its power con-

straint. Specifically, if node n3 had to previously address a low latency

or heavy traffic transmission and expended more power than it should

have, it lacks the appropriate resources to support node n1 without

being outside of its intended mode of operation.

• Node n3 should support node n1 if it will yield a better expected quan-

tifiable result for the network. Since the backpressure network priori-

tizes minimizing queues, when given a choice, node n3 should evaluate

c
(new)
12 · q2

1 ≷
(
c12 · q2

1 + c34 · q4
3

)
(3.16)

and schedule for the option that benefits the network best as a whole.
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Interestingly enough, the last point above invokes another natural control

rule to the network backlogs. Consider the case where q2
1 gradually grows

without bound, i.e. E [λ2
1] has rendered Λ 6∈ Π. If E [λ4

3] is sustainable,

then q4
3 remains finite. We have shown in (2.49) that if node n3 wishes to

assist node n1 by relaying, any help it provides will result in a non-negative

gain. Thus, at some point if the capacity region does not accommodate the

network, the left-hand side of (3.16) should be greater than the right-hand

side, and node n3 will support node n1. When node n3 has supported node

n1 sufficiently to have comparable queues, it will schedule for itself again.

The first and last points lead to the following cooperation decision rule:

E [∆c12] · q2
1

Support

≷
DoNotSupport

c34 · q4
3 (3.17)

where E [∆c12] is inferred from (2.48) and the exchange of handshaking mes-

sages (to be described in a later section). To address the second point, we

first consider the quality of the 2-hop relay link. From (2.27), we know

that the γ132 = µH (γ13, γ32). Because the harmonic mean is dominated by

the minimum of its arguments, to prevent further degradation of the signal,

n3 should allocate enough power to match γ32 to γ13. To control excessive

power expenditure supporting as a relay, we adopt the concept of generalized

queueing from [18, Neely] and [19, Supittayapornpong and Neely]. Suppose

n3 is subject to an average power constraint P̄3. This constraint is trivially

satisfied if at each time node n3 schedules with P3 ≤ P̄3. Since we are consid-

ering average power expenditure, node n3 is allowed to violate this constraint

occasionally. If we queue up the violations of this power constraint, then we

can determine a queue control rule that we can apply to power. Define the

power queue as

Wi (t+ 1) = max
[
Wi (t) +

(
Pi (t)− P̄i

)
, 0
]

(3.18)

If W3 6= 0, we simply do not allow the option for node n3 to support as a

relay. This power queue will naturally dissipate if node n3 stops scheduling,

indicating low amounts of incoming traffic.
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3.3 Media Access Control for Cooperation

In this section, we briefly discuss the properties of a distributed MAC sched-

uler to function in a backpressure network with cooperation. We assume

that every node has information on its own queue, as well as long term av-

erage statistics on the channels to their 1-hop neighbors σ2
ij. This can be

determined through collection on the exchange of control messages, as well

as known environment information inferred with other sensors ([10, Ding et

al.] refers to one such process as “Collaborative Virtual Sensing”).

To consider the latency of time sensitive or priority packets in the network,

we consider Little’s law, which states that the average length of a queue is

directly proportional to the average latency on the delivery of packets and the

arrival rate. In the networks we are discussing, we can consider an average

delay requirement to satisfy some quality of service. In the variables we have

defined so far, Little’s law states

E
[
qji (t)

]
= E

[
λji
]
Dj
i =⇒ Dj

i =
E
[
qji (t)

]
E
[
λji
] (3.19)

where Dj
i denotes the average delay of information from ni to nj. Because

packets need to be queued before they can be transmitted, Dj
i is lower

bounded by 1. Different applications have different delay requirements and

because of Little’s law, the delay constraints can be met by control of the av-

erage queue length. Because queues can only diminish with the transmission

of packets, channel access and resources should be allocated to meet delay

constraints. Specifically, for ni, the probability of channel access should ap-

proach 1 as qji approaches qj∗i = E
[
λji
]
dji , where dji is the latency requirement

of information from node ni to nj. Conversely, probability of channel access

should approach 0 as qji approaches 0.

To create a distributed MAC scheduler with the considerations above, each

backlogged node determines a contention window timer to begin a hand-

shaking protocol. Nodes with a higher backlog than their application re-

quirements should be given priority. The following contention window is

commonly used to determine a backoff counter:

CW = 2
β·maxj

(
q
j
i
(t)

q
j∗
i

)
+ α (3.20)
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Figure 3.5: Handshaking Between Nodes with Cooperation in G1

for some α ≥ 0 and β < 0. A backoff counter can be generated by multiplying

the contention window by a uniform random variable distributed between 0

and 1. Nodes will defer channel access for the duration of their backoff

counter prior to attempting to schedule transmission. Using this method,

nodes with greater backlog are likely granted channel access earlier than

less backlogged nodes. When a node’s backoff counter has expired, it will

schedule a transmission with handshake messages as shown in Figure 3.5.

In this instance, node n1 has an expired backoff timer and it would like to

transmit to node n2. It begins the handshaking coordination with a request-

to-send (RTS) which has information on node n1’s current backlog and a

reference transmission power. At event e1, all nodes in the network have

received node n1’s RTS and determined the channel gain h1j from the quality

of the signal. If node n2 is available for reception, it will respond with a

clear-to-send (CTS) message which includes node n2’s backlog and inferred

value of h12. Consequently, by event e2, node n3 has enough information to

compute (2.48). Using that result, node n3 evaluates (3.17) and determines

whether it should cooperate with node n1’s transmission. If node n3 chooses

to cooperate, it will send out an assist (AST) message with information on

h13 and relaying parameters (bandwidth, frequency, power, etc.). Node n2

responds with a confirm-assist (CAS) message which includes information on
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Figure 3.6: Frame Structure for Cooperative Transmission

h32. By event e4, node n1 has collected information on h12, h13, and h32 and

can determine the channel conditions and select the appropriate coded rate

of transmission.

3.3.1 Packet Designs

Figure 3.6 shows a proposed frame structure for the sending and recombina-

tion of messages from different diversity branches

The preamble at the beginning of the frame is used for detection, as well as

frame synchronization. If the message is being relayed through a supporting

node, there is an inherent latency due to a longer path traversal and the

diversity branches need to be synchronized in order to avoid self-interference

through combination. The frame id field is used to assist in latency estimation

between different diversity branches and the combination of correct frames.

The length field is used to determine where the frame ends to terminate

reception and combining of messages. We assume the length of the frame is

selected appropriately to stay within the coherence time of the channel.

3.4 Simulation of a Backpressure Network with

Cooperation

Figures 3.7-3.10 shows the results of two simulations carried out in GNU

Octave. In both simulations ω = 1, σ2 = 1, and the arrival rates are modeled

as Poisson processes with Λ = [4 1]; however, γ0 was selected to be .015.

The corresponding achievable capacity for each node is just under 3 bits/Hz,

so in general, node n1 cannot stabilize its queue. The simulation in Figure

3.7 shows the queue growth of network G1 when nodes are not allowed to

cooperate with each other as relays. The simulation in Figure 3.8 shows

the same exact settings as in Figure 3.7; however, in this simulation nodes
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Figure 3.7: Queue Growth of G1 when Cooperation is Not Allowed

are allowed to cooperate as cooperative amplify-and-forward relays. The

simulation was run for a duration of 10000 time steps. In the scenario where

nodes were not allowed to cooperate, q2
1 seems to grow without bound, while

q4
3 was comparatively low because n3 did not generate as much traffic as n1.

This is indicative that n3 may have excess resources to support n1. In the

scenario where nodes were allowed to cooperate, n3 periodically supported

n1 in reducing its backlog, maintaining a stable backlog for q2
1 of about 100.

Figure 3.9 shows the power expenditure of nodes n1 and n3, and the high

spikes from n1 are an indication that it is having a difficult time getting rid

of packets in its queue. Figure 3.10 shows a steady curve that tabulates the

instances that one node supports another (in the cooperative scenario shown

in Figure 3.8). The slope in Figure 3.10 shows that n3 supports n1 roughly

20% of the time, allowing the remaining time for its own transmissions while

providing the necessary help to keep q2
1 stable. It is visibly clear here that

a backpressure network which allows nodes to cooperate as amplify-and-

forward relays is more flexible than the same network without cooperation.
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Figure 3.8: Queue Growth of G1 when Cooperation is Allowed

Figure 3.9: Power Queue of Nodes n1 and n3 when Cooperation is Allowed
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Figure 3.10: Rate of Cooperation Between Nodes n1 and n3
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CHAPTER 4

CONCLUSIONS

This thesis has shown that the capacity regions of backpressure networks can

be further augmented with cooperation models in heterogeneous networks.

While cooperative diversity has been studied to reduce outage probability or

bit error rate in a physical layer perspective, comparatively little has been

investigated on the impact cooperation can have from a network perspec-

tive. By judiciously tasking less occupied nodes to support more occupied

nodes with an amplify-and-forward relaying technique, we have shown a more

flexible and responsive capacity region.

4.1 Capacity of Backpressure Networks with

Cooperation

Backpressure Networks have been regarded as throughput optimal networks

because of their ability to accommodate more arrival rates than any other

scheduling policy while maintaining bounded queue lengths. To consider

more general theory in practical networks, backpressure scheduling was then

applied to differential backpressure routing for multihop networks, providing

queue stability rules for end-to-end delivery of packets.

Differential backpressure routing has been known to have end-to-end deliv-

ery rate that is limited by the maximum quantity of information traversing

the weakest cut in a multihop route. This shows a natural limitation on

the capacity region of backpressure networks. By allowing for an amplify-

and-forward relaying protocol, weak cut links can be augmented by resources

available from less occupied nodes. This sort of capacity region morphing

protocol is sufficiently flexible to include legacy software-based devices, to

support newer generation devices, and can naturally react to changing ap-

plication requirements in a network.
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