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ABSTRACT 

 

 

  

The presented research analyses different topologies of low dropout (LDO) 

regulator, mostly focusing on different frequency compensation schemes 

and power supply rejection analysis. This thesis discusses different analog 

LDO topologies and analyzes how they achieve stability using small signal 

analysis and related equations. The power supply rejection (PSR) of a 

different error amplifier and pass device has been analyzed and concluded 

that a Type-B amplifier with n-channel metal oxide semiconductor field 

effect transistor (MOSFET) output stage or a Type-A amplifier with p-

channel MOSFET (PMOS) output stage yields the best PSR. Digital LDO 

regulator topologies have also been discussed. The digital LDO regulator is 

intriguing due to its low power and synthesizability, but it suffers from 

coarse voltage regulation and poor PSR compared to the analog LDO 

regulator.  
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CHAPTER 1: INTRODUCTION 

 

 

 

Power management has become an important issue in modern circuit 

design. While switched mode power converters are used between power-

rail supply (110 V) and on-chip supply (1-5 V), linear regulators are used to 

reduce the noise further and generate the desired voltage level for different 

blocks. LDO regulator falls into a class of linear voltage regulator that 

operates at a relative low voltage across the pass transistor.  

 

The presented research analyses different topologies of LDO regulator, 

mostly focusing on different frequency compensation schemes and power 

supply rejection analysis. Pole locations are calculated using small signal 

analysis. Conventional LDO regulator requires a large output capacitor that 

allows for good stability with reasonable power supply rejection. Large 

external capacitors increase the number of pin counts and take up valuable 

board space. Thus, recent research focuses on capacitor less LDO regulators 

which are more suitable for SoC applications. 

 

Digital LDO regulator topologies have also been discussed. Digital LDO 

regulator is intriguing due to its low power and synthesizability but suffers 
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from coarse voltage regulation and poor power supply rejection (PSR) 

compared to the analog LDO regulator. 
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CHAPTER 2: LDO REGULATOR METRICS 

 

 

Linear voltage regulators can be categorized into two different topologies: 

conventional linear voltage regulators and LDO regulators. The main 

difference between these two types is in the pass transistor and the dropout 

voltage. An LDO regulator uses common source configuration for the pass 

transistor while the linear voltage regulator uses a source follower or 

Darlington pair. This allows the dropout voltage of the LDO regulator to be 

as low as 0.1 without pushing the pass element into saturation.  

Figure 2.1: LDO block diagram 

The block diagram in Figure 2.1 shows how the LDO regulator regulates the 

output voltage. A simple LDO regulator consists of a bandgap circuit, an 

error amplifier, a pass transistor, and feedback resistors. VOUT refers to the 
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output voltage of the regulator and VREF is the reference voltage from the 

bandgap circuit. The feedback adjusts the impedance of a pass transistor 

such that VOUT is equal to VREF. This allows the feedback to regulate the 

output voltage regardless of load current. More specifically, the output 

voltage is sensed through the feedback resistors and compared with a fixed 

reference voltage that is generated by the bandgap circuit. An error 

amplifier then feeds an error signal to the pass device so that the impedance 

of the pass device changes. The negative feedback loop causes the 

impedance of the pass device to change until the scaled VOUT is equal to VREF. 

For the case of a metal–oxide–semiconductor field-effect transistor 

(MOSFET) as a pass device, an error signal is the gate voltage of a MOSFET 

and it needs to stay in the linear/saturation region to regulate the output 

voltage. 

 

Ideally LDO regulators provide constant output voltage regardless of the 

supply voltage noise or the load current variations. Performance metrics of 

LDO regulators can be categorized into steady-state, dynamic-state, and 

high-frequency specifications. 

 

The dropout voltage is the minimum voltage across the pass device to 
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maintain regulation. The dropout voltage depends on pass device 

parameters, minimum supply voltage, and the maximum load current. The 

dropout voltage typically ranges from 0.1 to 0.5 V. 

 𝑉𝐷𝑅𝑂𝑃𝑂𝑈𝑇 = 𝑉𝐷𝑆𝐴𝑇 = √
2𝐼𝑀𝐴𝑋

𝜇𝑃𝐶𝑂𝑋𝑊/𝐿
 (2.1) 

 

An approximate value of the dropout voltage for a MOSFET is given in 

Equation (2.1). This equation can be used to get approximate transistor sizes 

when the maximum load current and the dropout voltage are specified. 

 

The static parameter also includes line regulation and load regulation. 

General equations for line regulation and load regulation are derived from 

the transfer functions of a MOSFET-based LDO regulator. Transfer 

functions are found using Mason’s gain rule. 

 

 𝐻 =
∑ 𝑀𝑗∆𝑗𝑗

∆
 (2.2) 

 

𝐻 = transfer function of the system 

𝑗 = index number of a forward path from input to output 

𝑀𝑗 = gain of forward path j from input to output 
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∆ = 1 − ∑ (all loop gains) 

  + ∑ (nontouching loop gains multiplied two at t time) 

  − ∑ (nontouching loop gains multiplied three at t time) 

  + ∑ (nontouching loop gains multiplied four at t time) … 

∆𝑗  = ∆ calculated after excluding all feedback loops that intersect with 

forward path j 

 

Using the Mason’s gain rule, transfer function for VOUT due to VIN can be 

calculated as follows. Figure 2.2 shows the signal flow for an LDO regulator. 

 

Figure 2.2: LDO regulator signal flow 
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𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

1 + 𝑔𝑚𝑝𝑟𝑑𝑠𝑝

1 + (𝐴𝐸𝐴0 ∙ 𝑔𝑚𝑝 ∙ 𝑟𝑑𝑠𝑝 ∙ 𝛽 +
𝑟𝑑𝑠𝑝

𝑅𝐹𝐿
)

 (2.3) 

 

𝑔𝑚𝑝  is the pass transistor transconductance, 𝑟𝑑𝑠𝑝  is on-resistance of the 

MOSFET, 𝐴𝐸𝐴0 is error amplifier gain, and β is the feedback factor. 

 

Line regulation measures the ability to maintain desired output voltage 

with varying input voltage. This reflects the deviation at steady-state. An 

ideal voltage regulator maintains constant output voltage with changing 

input voltage. Figure 2.3 shows ideal behavior of an LDO regulator. 

Figure 2.3: Line regulation 

 

Line regulation is approximated to be 𝐿𝑅  in Equation (2.4), which is 

directly taken from Equation (2.3). 
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𝐿𝑅 =
∆𝑉𝑂𝑈𝑇

∆𝑉𝐼𝑁
=

1 + 𝑔𝑚𝑝𝑟𝑑𝑠𝑝

1 + (𝐴𝐸𝐴0 ∙ 𝑔𝑚𝑝 ∙ 𝑟𝑑𝑠𝑝 ∙ 𝛽)
 

  ⇒ 𝐿𝑅 ≈
1

𝛽𝐴𝐸𝐴0
 

(2.4) 

 

Since an ideal voltage regulator should have a line regulation of 0, error 

amplifier gain has to be sufficiently large to suppress the output change due 

to input voltage. 

 

Load regulation measures LDO regulator’s ability to maintain a desired 

output voltage with a varying output load current. This also reflects the 

deviation at steady-state. 

  𝐿𝑅𝑙𝑜𝑎𝑑 =
∆𝑉𝑂

∆𝐼𝑂
=

𝑟𝑜𝑝

1 + 𝐴𝛽
 (2.5) 

 

The output impedance of the pass transistor is 𝑟𝑜𝑝 and 𝐴𝛽 is the loop gain. 

The load regulation can be improved by decreasing the output resistance or 

increasing the loop gain. 

 

Dynamic state specifications of LDO regulators define the maximum 

allowable output variation during load and line transience. An LDO 

regulator must specify its transient response time to show its regulation 
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capability. Line transient and load transient responses are both dynamic 

metrics unlike load regulation or line regulation. Line transient response is 

a measure of an LDO regulator’s ability to maintain output voltage with 

varying input voltage. Load transient response is a measure of an LDO 

regulator’s ability to maintain output voltage with a varying output load 

current. The load transient response is a function of the maximum load 

current, the output capacitance, and the bandwidth of the LDO regulator. It 

can be improved by having a higher value of output capacitance and a 

higher bandwidth. 

 

Power supply rejection (PSR) shows the LDO regulator’s ability to reject the 

output voltage variation due to the input voltage change. This is similar to 

line regulation but the whole frequency domain is considered. Most LDO 

regulator designs specify PSR due to its importance in practical uses. The 

type of an error amplifier and type of a pass device tend to be the largest 

contributors of PSR, which will be discussed later in Chapter 4. Large 

output capacitance also improves PSR. 

 

Power efficiency of an LDO regulator is mainly affected by the quiescent 

current, load current, output voltage, and input voltage. 
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 Power efficiency: 𝜂 =
𝐼𝑂𝑈𝑇𝑉𝑂𝑈𝑇

(𝐼𝑂𝑈𝑇 + 𝐼𝑄)𝑉𝐼𝑁
 (2.6) 

 

The quiescent current is mainly caused from the bias current in the reference 

generator, error amplifier, and feedback resistors. Unless the load current 

and quiescent current have comparable values, power efficiency becomes 

only dependent on the output voltage and the input voltage. This can only 

be improved by having a large pass transistor, but it would cause slewing 

due to large gate capacitance. 
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CHAPTER 3: ANALOG LDO COMPENSATION SCHEME 

 

 

The conventional linear regulator has high dropout voltage but it is inherently 

stable due to its low output impedance. The dominant pole is generated from 

the output node of an error amplifier, while the second pole is pushed to much 

higher frequency due to low output impedance. However, the LDO regulator 

has a higher output impedance due to common source configuration. There 

has to be a compensation measure to guarantee stability in the form of pole 

splitting or pole-zero cancellation. Many publications have found different 

ways of maintaining the stability [1]. This thesis analyzes and evaluates each 

compensation schematics. 

 

A typical uncompensated LDO regulator is shown in Figure 3.1. 

Approximate pole zero locations for a typical LDO regulator that has not 

been compensated are shown in Figure 3.2 along with the equations for 

each pole and zero in Equation (3.1), Equation (3.2), and Equation (3.3). 
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Figure 3.1: Uncompensated conventional LDO 

 

Figure 3.2: Approximate pole-zero locations for uncompensated LDO 
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 𝜔𝑃𝐿 ≈
1

𝑅𝑂𝑈𝑇𝐶𝑂
 (3.1) 

 𝜔𝑃𝐻 ≈
1

𝑅𝑂𝐸𝐴 ∙ [𝐶1 + 𝑔𝑚𝑝 ∙ 𝑅𝑂𝑈𝑇 ∙ 𝐶𝑔𝑑𝑝]
 (3.2) 

   

 𝜔𝑍 ≈
𝑔𝑚𝑝

𝐶𝑔𝑑𝑝
 (3.3) 

   

 

The dominant pole ωPL is generated from the output node of the LDO 

regulator. The second dominant pole ωPH is located close to the dominant 

pole and stability cannot be guaranteed. A conventional LDO regulator 

uses equivalent series resistance (ESR) of the output capacitor to produce 

zero and maintain stability. Figure 3.3 shows how ESR is implemented. 

However, ESR also creates another pole and its location heavily depends 

on the ESR value. Decrease in ESR causes zero to move to the right causing 

the phase margin to decrease, and increase in ESR causes the new pole to 

Figure 3.3: Conventional LDO with ESR attached 
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move to the left causing instability. Thus, researchers have strived to find 

different ways of introducing zero without using ESR. 

Figure 3.4: Conventional LDO with a feed-forward capacitor 

 

Chava and Silva-Martinez report a frequency compensation scheme that 

uses a feed-forward capacitor to produce a zero to guarantee stability [1]. 

This scheme generates a zero internally instead of using ESR to generate a 

zero. A capacitor is added between the output node and VX, as shown in 

Figure 3.4, to provide a bypass path for the loop gain. 

 

 𝜔𝑍𝐹 =
1

𝑅𝐹1𝐶𝐹1
 (3.4) 

 𝜔𝑃𝐹 =
1

(𝑅𝐹1 ∥ 𝑅𝐹2)𝐶𝐹1
 (3.5) 
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This produces a pole-zero pair in Equation (3.4) and Equation (3.5). 

Although the zero is generated as required, the pole ωPF is not far from the 

zero and needs to be removed. Figure 3.5 shows how a feed-forward 

capacitor is implemented in the circuit. 

Figure 3.5: Feed-forward capacitor 

 

Figure 3.6: Ground capacitor and VCCS equivalent to feed-forward capacitor 

 

Figure 3.6 shows how CF in Figure 3.5 can be realized as two frequency-

dependent voltage controlled current source (VCCS) with ground 

capacitors. 
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 𝑉𝑂𝑈𝑇 (𝑠𝐶𝐹 + 1
𝑅𝐹1

⁄ ) = 𝑉𝑋(1
𝑅𝐹1

⁄ + 1
𝑅𝐹2

⁄ + 𝑠𝐶𝐹) (3.6) 

 

Kirchhoff's current law (KCL) equation based on Figure 3.5 is derived in 

Equation (3.6). The 𝑉𝑋(𝑠𝐶𝐹)  term in Equation (3.6) contributes to the 

generated pole and it can be removed by removing the capacitor 𝐶𝐹 

connected to 𝑉𝑋 and VCCS at the output node in Figure 3.6. It should also 

be noted that 𝐶𝐹 at the output node does not significantly affect the node 

voltage since 𝐶𝐹  is much smaller than CO at the output node. The 

resulting configuration is shown in Figure 3.7. This becomes a two-pole 

and one-zero system. The zero remains unchanged and the dominant pole 

is given in Equation (3.7). The dominant pole location slightly changes but 

it is still mostly dependent on the output capacitor. 

 

 
𝜔𝑃𝐿 =

1

𝑅𝑂𝑈𝑇(𝐶𝑂 −
𝐶𝐹

𝛽
)
 

(3.7) 
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Figure 3.7: Implementation of a feed-forward capacitor after removing the extra pole 

 

 

Al-Shyoukh et al. uses an impedance attenuated buffer to push the second 

dominant pole at the gate of the pass transistor to high frequencies [2]. As 

shown in Equation (3.2), the second dominant pole is a function of error 

amplifier output impedance and capacitance at the node. However, the 

capacitance C1 is difficult to reduce since it is set by the load current and 

VDSAT of the pass transistor. Reducing the error amplifier output 

impedance is also difficult since it affects load/line regulation. In order to 

move the pole location without changing C1 or VDSAT, a buffer is employed, 

as shown in Figure 3.8. A source follower can be adopted as a buffer to 

shield C1 from loading the error amplifier. Small input capacitance and 
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lower output impedance allow the second dominant pole to be pushed to 

high frequencies as shown in Equation (3.8) and Equation (3.9) compared 

to the second dominant pole in Equation (3.2).  

Figure 3.8: Conventional LDO with buffer 

 

 𝜔𝑃𝐵 =
1

𝑅𝐵𝐶1
 (3.8) 

 𝑅𝐵 ≈ 1 𝑔𝑚𝐵⁄ ∝
1

(𝑊/𝐿)𝐼𝐵
 (3.9) 

 

However, large load current requires a larger pass device and increases 

the gate capacitance. This requires the current through the source follower 

to be greatly increased to lower the output impedance further. Instead of 

dissipating more power through the source follower to reduce the output 
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impedance, Al-Shyoukh et al. use shunt feedback to reduce the output 

impedance as shown in Figure 3.9 [2]. The improved buffer has an output 

impedance of 𝑅𝐵 in Equation (3.10) where 𝑅𝑋 is resistance at the gate of 

transistor MS in Figure 3.9. Thus, this scheme maintains stability without 

using the ESR and achieves low power. 

 

Figure 3.9: Improved buffer that uses shunt feedback 

 

 𝑅𝐵 ≈
1

(𝑔𝑚𝐵 ∙ 𝑅𝑥)𝑔𝑚𝑆
 (3.10) 

 

 

Unlike the conventional LDO regulator that relies on large output 

capacitors for regulation and stability, the capacitor-less LDO regulator 
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has an output capacitance less than a few hundred pF. Thus, the 

uncompensated capacitor-less LDO regulator has a dominant pole at the 

gate of the pass transistor and a second dominant pole at the output of the 

pass transistor. Equations (3.11), (3.12), and (3.13) show pole and zero 

locations of the capacitor-less LDO regulator. The compensation schemes 

used in conventional LDO regulators cannot be used. Rather, the Miller 

compensation, cascade compensation, or cascaded compensation can be 

used depending on the applications. 

 

 𝜔𝑃𝐿 =
1

𝑅𝑂𝐸𝐴(𝐶1 + 𝑔𝑚𝑝 ∙ 𝑅𝑂𝑈𝑇 ∙ 𝐶𝑔𝑑𝑝)
 (3.11) 

 𝜔𝑃𝐻 =
1

𝑅𝑂𝑈𝑇𝐶𝑂
 (3.12) 

 𝜔𝑍 =
𝑔𝑚𝑝

𝐶𝑔𝑑𝑝
 (3.13) 

 

Figure 3.10 shows how a compensation capacitor can be inserted between 

the gate and drain of the pass transistor. This causes the separation 

between the two poles in Equations (3.11) and (3.12). However, a large 

compensation capacitor is required to ensure stability, and stability can be 

compromised with load current variation. This also shows poor PSR at 

high frequency. 
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Figure 3.10: Capacitor-less LDO with miller compensation 

Figure 3.11: Capacitor-less LDO with cascode compensation 

 

Cascode compensation improves the capacitive load capability and power 

supply rejection [3]. The LDO regulator with typical cascode 
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compensation is shown in Figure 3.11. It suppresses the feed-forward path 

that comes from the compensation capacitor while keeping the Miller 

effect of CC. The right-half plane zero from the feed-forward path 

essentially works like the left-half plane pole and needs to be removed for 

stability. Equations (3.14) and (3.15) show two poles associated with the 

cascode compensated LDO regulator. 

 𝑃1 ≈
1

𝑅𝑂𝐸𝐴𝐶1 + 𝑅𝑂𝑈𝑇(𝐶𝐶 + 𝐶𝑂) + 𝑔𝑚𝑝 ∙ 𝑅𝑂𝐸𝐴 ∙ 𝑅𝑂𝑈𝑇 ∙ 𝐶𝐶
 (3.14) 

   

 𝑃2 ≈
𝑅𝑂𝐸𝐴𝐶1 + 𝑅𝑂𝑈𝑇(𝐶𝐶 + 𝐶𝑂) + 𝑔𝑚𝑝 ∙ 𝑅𝑂𝐸𝐴 ∙ 𝑅𝑂𝑈𝑇 ∙ 𝐶𝐶

𝑅𝑂𝐸𝐴 ∙ 𝑅𝑂𝑈𝑇 ∙ 𝐶1(𝐶𝐶 + 𝐶𝑂)
 (3.15) 

 

Pole locations can be simplified to Equations (3.16) and (3.17) for small 𝐶𝑂, 

the capacitance at the output; Equations (3.18) and (3.19) for large 𝐶𝑂. 

 

 𝑃1 ≈
1

𝑔𝑚𝑝 ∙ 𝑅𝑂𝐸𝐴 ∙ 𝑅𝑂𝑈𝑇 ∙ 𝐶𝐶
 (3.16) 

 𝑃2 ≈
𝑔𝑚𝑝𝐶𝐶

𝐶1(𝐶𝐶 + 𝐶𝑂)
 (3.17) 

 𝑃1 ≈
1

𝑅𝑂𝑈𝑇(𝐶𝐶 + 𝐶𝑂)
 (3.18) 

 𝑃2 ≈
1

𝑅𝑂𝐸𝐴𝐶1
 (3.19) 
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CHAPTER 4: ANALOG LDO PSR ANALYSIS 

 

Power supply rejection defines the LDO regulator’s ability to reject the 

output voltage variation due to input voltage change. Any path from the 

input to the output can contribute to degrading PSR. It includes the path 

through the reference generator, error amplifier, and pass device.  

 

The output stage of the regulator can be either a PMOS or an n-channel 

MOSFET (NMOS) device. Since an NMOS device requires large voltage 

headroom, it can be used as a pass device when low dropout voltage is not 

needed. It behaves as a source follower and conducts all the noise present 

at the input to the output. Thus, it is important to have as low a ripple as 

possible at the gate to minimize the ripple at the output [4].  

 

On the other hand, a PMOS device is used for most of the recent research 

due to its low dropout voltage. Due to its higher output impedance, the 

compensation of the regulator is more difficult than for the regulator with 

the NMOS device. Due to the pass transistor orientation, the gain from the 

source to the drain is equal in magnitude to the gain from the gate to the 

drain. Since these two gains are out of phase, supply ripple can be fed to 
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the gate of the PMOS to cancel out the ripple from the source [4].  

 

Gupta et al. categorizes error amplifier to two different types to evaluate 

PSR for each type [4]. The Type-A error amplifier is shown in Figure 4.1 

and its small signal model is shown in Figure 4.2. It consists of an NMOS 

input pair and a PMOS current-mirror. 

 

Figure 4.1: Type-A error amplifier 
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Figure 4.2: Type-A error amplifier small signal model 

 

 
𝑣𝑜𝑢𝑡

𝑣𝑑𝑑
= −𝐺𝑀𝑅𝑜𝑢𝑡 (4.1) 

 𝑅𝑜𝑢𝑡 = (𝑟𝑑𝑠2 ∥ 𝑟𝑑𝑠4) (4.2) 

 𝑖𝑜𝑢𝑡 = 2𝑖𝑥 +
𝑣𝑑𝑑

𝑟𝑑𝑠4
 (4.3) 

 𝑖𝑥 =
𝑣𝑑𝑑

1 𝑔𝑚3⁄ + 2𝑟𝑑𝑠1
 (4.4) 

 𝐺𝑀 = 𝑟𝑑𝑠1 ∥ 𝑟𝑑𝑠4 (4.5) 

 
𝑣𝑜𝑢𝑡

𝑣𝑑𝑑
≈ 1 (4.6) 

 

PSR is calculated to be 1 from the small signal model analysis. 𝐺𝑀  is 

calculated by grounding the output node and calculating 𝑖𝑜𝑢𝑡 in terms of 

𝑣𝑑𝑑 . The analysis shows that all the noise at the supply appears at the 
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output for the Type-A error amplifier. The Type-A error amplifier can 

provide the supply noise to the gate of the PMOS output stage to cancel 

out the feedthrough. Thus, the PMOS output stage can be used with the 

Type-A error amplifier to maximize PSR. 

 

The Type-B error amplifier is shown in Figure 4.3 and it consists of a 

PMOS differential pair and an NMOS current-mirror [4]. Small signal 

analysis reveals that none of the supply noise appears at the output. The 

Type-B error amplifier is suitable for the NMOS output stage, which 

requires a small gate ripple to minimize the output noise. 

Figure 4.3: Type-B error amplifer 
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It can be concluded that the Type-B amplifier with an NMOS output stage 

or the Type-A amplifier with a PMOS output stage yields the best PSR. 

This can be further improved by cascading regulators at the cost of 

dropout voltage. 
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CHAPTER 5: DIGITAL LDO REGULATOR 

 

The difficulty of designing a high gain amplifier for an analog LDO 

regulator and lowered supply voltage gave rise to the digital LDO 

regulator in recent years. The digital LDO regulator broadly comes in two 

different categories: designs that use a comparator with a digital controller 

and designs that convert the voltage difference into other information.   

 

Raychowdhury et al. present a fully digital LDO regulator based on a 

phase locked loop (PLL) [5]. This design converts the difference between 

the output voltage and reference voltage to the phase difference and 

directly use it for regulation. The design consists of two voltage-controlled 

oscillators (VCOs), each run by a reference voltage and the output voltage. 

The VCO outputs are used as clock signals for the 32-bit Johnson Counter 

with PMOS devices and latches inside each stage [5]. At steady state, the 

phase difference comes to a constant value and the amount of current from 

the turned-on devices matches the load current. A simulated Bode plot 

shows a high phase margin, more than 80 degrees at light load [5]. This 

configuration is capable of fine voltage regulation based on PLL, but it 

consumes high power compared to the comparator-based LDO regulator 
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and suffers from PVT dependency. 

 

Figure 5.1: Basic comparator-based digital LDO 

 

The comparator-based digital LDO regulator in Figure 5.1 uses a 

comparator to detect the difference between the reference voltage and the 

output voltage that needs to be regulated. Then, an error signal from the 

comparator is fed into the digital controller which usually comes in the 

form of a shift register. The digital controller is connected to an array of 

PMOS and continuously switches them until the output voltage is close to 

the reference voltage. The design in [6] implements the digital controller 

with a bi-directional shift register. This design can be fully expressed in 

hardware description language and synthesized from commercially 

available standard libraries. It also consumes little power due to its 

simplicity. However, the voltage regulation is limited by the clock 
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connected to the shift register which deteriorates the transient response 

and causes voltage ripple at steady-state. 

 

More recent designs focus on enhancing the transient response of the 

comparator-based digital LDO regulator. Nasir et al. [7] present a digital 

LDO regulator using a programmable barrel shifter that can access several 

PMOSs at a time to enhance the transient response. The most recent 

architecture from [8] separates the coarse loop from the fine loop so that 

the coarse loop responds to a large load change while the fine loop is used 

to maintain the steady-state output. These measures definitely enhance 

the transient response, but the output ripple still remains as a problem. 

Unless a huge number of power transistors are used, most of the designs 

fail to keep low output voltage ripple for various load current [9]. 
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CHAPTER 6: CONCLUSION  

 

This thesis discusses different analog LDO topologies and analyzes how 

they achieve stability using small signal analysis and related equations. The 

conventional analog LDO regulator uses a feed-forward capacitor and/or 

adds a buffer to ensure stability. The capacitor-less LDO regulator uses 

cascode compensation to keep the Miller effect and remove the RHP zero. 

The PSR of different error amplifier and pass devices has been analyzed.  

The conclusion is that the Type-B amplifier with an NMOS output stage or 

Type-A amplifier with a PMOS output stage yields the best PSR. Digital 

LDO topologies have also been discussed. The digital LDO regulator is 

intriguing due to its low power and synthesizability but suffers from coarse 

voltage regulation and poor PSRR compared to the analog LDO regulator. 

[9] 
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