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Abstract 

 

 The Lewis base activation of Lewis acids has been harnessed in the development of an 

enantioselective oxysulfenylation reaction for unactivated alkenes. The weak Lewis acid N-

(phenylthio)-phthalimide can be activated in the presence of a moderate Brønsted acid and chiral 

Lewis base donors. The resulting complex is a powerful sulfenylating agent capable of sulfenium 

transfer to simple mono-, di- and trisubstituted alkenes with high selectivity to form 

enantioenriched thiiranium ions. Stereospecific and site-selective capture of the thiiranium ions 

furnish vicinally functionalized thioethers. The nucleophile scope of the reaction encompasses 

alcohols, carboxylic acids and phenols. Both inter- and intramolecular sulfenylation reactions 

were realized. The reaction is highly robust and individual substrates usually did not require 

reoptimization. 

 Mechanistic, X-ray crystallographic and kinetic investigations enabled a complete 

catalytic cycle to be formulated. The proposed cycle was supported by both kinetic data and the 

characterization of reaction intermediates. The turnover-limiting and enantiodetermining steps 

were identified as thiiranium ion formation. X-ray crystallography of the active sulfenylating 

agent did not immediately identify a basis for the high selectivity. Instead, the origin of 

selectivity in the reaction of trans-alkenes was determined to be distortion-based with the aid of 

computational models.  
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Chapter 1: Introduction to Lewis Base 

Catalysis 

 1.1. Overview. 

 The field of chemistry encompasses the reactivity of atoms, functional groups and 

molecules. Reactivity is, in turn, dictated by the potential for electrons in atomic and molecular 

orbitals to achieve lower energy configurations as a result of orbital realignment. In general, the 

behavior of electrons, and their reorganization to low-energy alignments, constitutes a 

fundamental principle behind chemical reactivity. Thus, any study of catalysis and catalytic 

reactions necessitates a deep understanding of the theory underlying reactivity.  

 The octet rule has been developed as a widely applicable framework for the study of 

electron rearrangements in molecules.
1
 The rule, which states that atoms in molecules attempt to 

have a filled valence shell of electrons, is based on the observation that in molecules, atoms share 

electrons and orbitals such that each low-lying atomic orbital is filled. The thermodynamic 

electron redistribution leading to the octet rule is responsible for a wide variety of phenomena, 

such as molecular geometry and bond strengths.
2
 Stable molecules that are exceptions to the rule 

are uncommon, but have been isolated and characterized, primarily among group 13 elements.
3
 

Octet-deficient structures are commonly found in dimeric form to ameliorate the energy penalty 

associated with their inability to fully delocalize electrons within the available molecular orbitals 

in monomeric form.
4
 In general, molecules that contain octet-deficient electrons greatly desire 

electron density. Molecules that contain atoms with paired electrons represent the opposite end 

of the spectrum. The localized electron density in these atoms contain chemical potential that can 

be used to drive reactivity.  

 1.1.1. Lewis Acids and Bases. An electron-based approach to explain and categorize 

reactivity was proposed by G. N. Lewis in his theory of acids and bases.
5
 Atomic loci that accept 

electrons are identified as Lewis acids, and electron donors as Lewis bases. The outcome of the 

association between Lewis acids with Lewis bases is highly dependent on the nature of the 

interacting species. Thus, the combination of Lewis acidic BH3 and Lewis basic NH3 generates a 

stable, zwitterionic solid adduct.
4
 The delocalization of nitrogen electrons into the empty boron 
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atomic orbital is highly favorable, which overcomes the penalty associated with formation of 

charge-separated species. In contrast, the association of polar solvents such as THF or DMF with 

SbCl5 is dative in nature, and the strength of the interaction varies by the donicity of the solvent. 

The resulting complexes, while polarized, are not ionized (Scheme 1).
6
  

 

Scheme 1 

 1.1.2. Jensen's Orbital Analysis. The different types of Lewis acid- Lewis base 

interactions can be classified by the type of orbitals that participate in the bonding scheme. In the 

classification by Jensen, there are nine possible interactions, from one of either σ, π or n type 

filled orbitals to one of the σ*, π* or n* type empty orbitals.
7
 Of these, the most relevant to 

catalysis is the interaction of n-type orbitals with π* and σ* orbitals, represented by the green 

boxes in Table 1.
8
  

Table 1. Tabular representation of Lewis base - Lewis Acid interactions by Jensen.  

    Acceptor 

Donor 
n* π* σ* 

n n→n* n→π* n→σ* 

π π→n* π→π* π→σ* 

σ σ→n* σ→π* σ→σ* 

 

 The importance of the n→π* Lewis base-Lewis acid interaction has been widely 

recognized in the field of enone functionalizations.
8
 A salient example is the catalysis of the 

Morita-Bayliss-Hillman reaction by phosphine and amine catalysts.
9
 The n→π* interaction 

between the phosphine and the electron-deficient alkene leads to the formation of a charge-

separated enolate (Scheme 2). Attack of the enolate onto a second carbonyl compound, followed 
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by elimination of the phosphine catalyst, forms the final α-functionalized enone. The use of 

chiral phosphines in the reaction enables stereocontrol during the enolate addition step, which 

then leads to the formation of chiral, non-racemic alcohols and amines. The key role of the Lewis 

base (phosphine) to complex with the Lewis acid (alkene) in promoting reactivity can clearly be 

recognized from the high enantioselectivities observed in this class of transformations (Scheme 

2).
10

  

 

Scheme 2 

  The n→σ* complexation of Lewis bases with Lewis acids leads to bond polarization 

within the Lewis acidic moiety. Gutmann over 40 years ago identified a "spillover" effect that 

led to increased bond lengths upon complexation of a Lewis acid with a Lewis base.
6a,11

 In his 

four rules of bonding, Gutmann states that (1) the smaller the intramolecular distance between 

the donor (D) and the acceptor (A), the greater the induced lengthening of the peripheral bonds 

(A X), (2) the longer the bond between D and A, the greater the degree of polarization of 

electron density across that bond, (3) as the coordination number of an atom increases, so do the 

lengths of all the bonds originating from that coordination center, and (4) the bonds adjacent to D 

and A will either contract or elongate to compensate for the changes in electron density at D and 

A. This last rule was used to explain the variations in bond lengths observed in crystals of stable 

Lewis base - Lewis acid adducts with respect to their starting materials.  
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Figure 1. Gutmann Analysis of Donor-Acceptor Pairs 

 

 A particular example of this type of interaction can be found in the complexes of I2 with a 

variety of Lewis bases. In the HMPA(Se) •I2 complex 1, the Se-I-I bond angle is around 176
o
, 

displaying the collinear arrangement of the three atoms in the bonding scheme (Figure 2).
12

 The 

I-I bond is lengthened by 0.25 Å as a result of electron density in the σ*I-I orbital. A 0.065Å 

lengthening is also observed in the P-Se bond, as the electron density is transferred to the Se 

center, although the bond retains its double bond character. Stronger Lewis bases such as 

phosphazanes 2 are capable of inducing halogen bond scission, resulting in formation of I, Br 

and Cl salts. 
13

 

Figure 2. Crystal Structures of HMPA(Se)-I2  and 2-I2 Adduct 
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 The bonding scheme in a n→σ* type Lewis base - Lewis acid complex has some unusual 

properties, which are particularly prominent for Group 14-17 Lewis acids bearing ionizable 

groups. The bonding is hypervalent at the central atom, as the high-lying nature of the d orbitals 

of the central atom preclude them from participating in the bonding.
8
 The Lewis base - Lewis 

acid interaction is then best characterized as a 3-center-4-electron bond, involving the n atomic 

orbital on the Lewis base component and the σ and σ* orbitals on the Lewis acid component. 

The resulting MO diagram is shown in Figure 3. 

Figure 3. Donor-Acceptor Bonding Analysis for a Group 14 Lewis Acid 

 

 A peculiar characteristic of the 3-center-4-electron bonding scheme is that the terminal 

atoms are enriched in electron density, whereas the central atom is impoverished in electron 

density (Figure 4). This conclusion follows from an analysis of the nodes of the molecular 

orbitals involved in the bonding. For molecular orbital Ψ1 the electrons are shared equally across 

all atoms. However, molecular orbital Ψ2 has a node at the central atom, and increased density at 

the peripheral atoms. Consequently, the electrons in this orbital are localized at the periphery, 

increasing the electron density of the ligand atom. The central node results in impoverishment of 

the Lewis acidic atom above and beyond its starting electron density. This redistribution of 

electron density in the 3-center-4-electron bond leads to the aforementioned "spillover" 

phenomenon. As the band gap between Ψ1 and Ψ2 increases, the polarization of the bonds 

becomes greater. At its most extreme, the n→σ* interaction can result in complete ionization of 

the X ligand, and formation of a highly reactive [DA]
+ 

cation.    
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Figure 4. Molecular Orbitals of a 3c-4e Bond  

 

 1.1.3. Catalysis by Lewis Bases. The increased Lewis acidity as a consequence of 

electron redistribution can directly be translated into a catalytic protocol (Figure 5). Group 14, 16 

and 17 Lewis acids (generically represented as A-X) can be engaged by Lewis bases to form 

electron-deficient complexes. Their increased Lewis acidic nature would then promote the 

complexes' susceptibility to nucleophilic attack. The use of chiral non-racemic Lewis bases 

would enable the catalytic process to proceed in an enantioselective manner.  

Figure 5. A Generic Catalytic Cycle for Lewis Base Catalyzed Enantioselective 

Functionalization 

 

  The n→σ* type activation of Lewis Acids have been extensively developed in these 

laboratories. In the example of SiCl4, a group 14 Lewis acid, exposure of SiCl4 to a 

phosphoramide Lewis base 3 results in the formation of a [SiCl4LB2] complex, which has 

increased affinity towards carbonyl groups (Scheme 3a).
14

 In the presence of aldehydes, 

displacement of one of the peripheral chlorines by the aldehyde results in a highly reactive 

[SiCl3LB2(RCHO)]
+
 electrophile complex which can be nucleophilically attacked by enol 

ethers.
15

 Dissociation of the catalyst from the oxytrichlorosilane product completes the cycle. 

The application of this technology to diverse classes of enol ethers enabled the formation of 
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numerous aldol products with excellent yields and selectivities. (Scheme 3b)   

 

Scheme 3 

 The application of n→σ* activation to group 16 selenium electrophiles enabled an 

enantioselective selenofunctionalization of alkenes to be realized (Scheme 4).
16

 Protonation of 

benzeneselenyl succinimide creates a highly active Lewis acidic selenenium source. 

Displacement of succinimide by the phosphoramide catalyst forms the active, chiral, non-

racemic selenenylating agent 4. This complex can be directly attacked by an alkene to form an 

enantioenriched seleniranium intermediate. Nucleophilic capture of the seleniranium ion inter- or 

intramolecularly affords selenofunctionalized products. For example, the enantioselective, 

intramolecular selenofunctionalization of 5 formed 3-selenotetrahydropyran 6 in 86% yield and 

75:25 e.r. No reactivity of the selenium electrophile with the alkene was observed when the 
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catalyst 7 was omitted. The catalyst accelerates the reaction by increasing the reactivity of the 

Lewis acidic selenium center in accord with the principles of Lewis base activation. 

 

Scheme 4 

 The n→σ* activation model has also been extended to Group 17 Lewis acids (Scheme 

5).
17

 Halolactonization and haloetherification reactions of alkenes can be effected by the use of 

weak electrophilic halogen sources and a variety of Lewis bases. A protic activator is usually 

added to further promote formation of the active halogenating agent. The family of halogen 

electrophiles that can be utilized is quite diverse. Unfortunately, the resulting haliranium ions 

usually suffer from poor stability or undesirable reactivity, and chiral non-racemic Lewis bases 

that can effect an enantioselective halofunctionalization remain uncommon. Therefore, chiral 

Brønsted acidic coactivators are used to assist the enantioselectivity. Thus, in an example from 

these laboratories, the bromoetherification of 8 was accomplished using the Lewis acidic 

bromine source NBS, Ph3PS as the Lewis base and phosphoric acid 9 as a chiral Brønsted acidic 

co-activator.
18

 The chiral active brominating complex has not been characterized, but in some 

way incorporates the conjugate base of 9. A 55:45 isomer ratio of the 3-bromotetrahydropyran 

10a to the 6-bromo-tetrahydrofuran 10b was obtained in 77% yield. The enantioenrichment of 

each product differed significantly, with 10b being obtained in 93:7 e.r. and 10a in 58:42 e.r. 

This difference in selectivity was explained by the participation of the conjugate base of 9 in 

both the formation and capture steps.  
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Scheme 5 

 The common theme of the above-mentioned reactions is the use of alkenes as initial 

nucleophiles for the Lewis base - Lewis acid complex. In the last few decades, many techniques 

for the catalytic, enantioselective functionalization of alkenes with O and N electrophiles have 

been developed, including ones that utilize Lewis base catalysts.
19

 However, at the outset of this 

project, the corresponding catalytic, enantioselective electrophilic alkene 

sulfenofunctionalization reaction had not been developed.  

  

 1.2. Goals of the Project. 

 The application of Lewis base catalysis to the electrophilic functionalization alkenes has 

been successful with a wide variety of elements and electrophile families. The development of a 

Lewis base catalyzed electrophilic sulfenylation reaction seemed possible. The project thus 

entailed identification of suitable Lewis acids and bases, as well as conditions for an 

enantioselective, Lewis base catalyzed sulfenofunctionalization (Scheme 6). 

 

Scheme 6 
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Chapter 2: Catalyic, Enantioselective 

Sulfenoetherification of Alkenes  

2.1. Introduction.  

2.1.1. Sulfenylation. Few elements in the periodic table have as rich and varied 

participation in chemical reactions as sulfur.
20

 Poor overlap between the 3p orbitals of sulfur and 

the 2p orbitals of the 2
nd

 row elements such as carbon, nitrogen and oxygen leads to a marked 

decrease in bond strength between these elements. Consequently, molecules containing sulfur 

can undergo a dazzling variety of chemical transformations.
21

 Briefly, sulfur can act both as a 

nucleophile and an electrophile (Scheme 7, reactions a and b). Oxidation and reduction of the 

sulfur center is possible, as the -2, 0 and +2 oxidation states of sulfur are all stable under normal 

conditions (reaction c). Sulfur can also easily be removed from organic molecules under 

hydrogenative (reaction d) or radical conditions (reaction e). Rearrangements of sulfur moieties 

are also well-documented, a salient example is the [2,3]-rearrangement of allylic sulfoxides to 

sulfenic acids which can be cleaved to form allylic alcohols (reaction f). In the same vein, S-H 

bonds are significantly weaker due to meager 3(sp
n
)

 
- 1s overlap  This results in the formation of 

disulfides from thiols under aerobic conditions.
22
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Scheme 7 

There are numerous applications of sulfur in modern industrial chemistry.
23

 Most 

prominently, sulfurization of polymers leads to the formation of crosslinked polymers with 

varying mechanochemical and physical properties in the vulcanization process. In addition, the 

need for removal of sulfurous material from fuel feedstock has promoted substantial research 

into the behavior of sulfur compounds in refinery environments.
24

 

The propensity of sulfur to form strong disulfide linkages, as well as its soft donor nature 

has resulted in sulfur being the only third-row element that is incorporated into the 20 naturally-

occuring amino acids in the form of cysteine and methionine.
22

 Disulfides resulting from the 

oxidative dimerization of two cysteine residues force proteins to adopt specific conformations, 

playing a key role in the formation of tertiary structures of proteins.
22

 Furthermore, sulfur is 

centrally involved in the protection of biological systems against oxidative stress.
25

 Sulfurous 

compounds also serve as ligands in biological systems; for example many redox-active enzymes 

in living organisms use Fe-S tetrads as catalytic subunits.
26

  

The biological importance of sulfur extends to the level of small molecules (Chart 1). 

Numerous biologically active compounds containing sulfur have been isolated or prepared; the 

antibiotics penicillin and sulfanilamide were some of the first drugs used to treat bacterial 

infections,
27

 whereas allicin, which is derived from garlic, is currently being investigated as a 



12 

 

topical antibiotic against methycillin resistant S. aureus.
28

 Sulfur-containing natural products 

such as Ecteinascidin 743 and gliotoxin have been employed for their antiproliferative 

properties.
29

 Telomestatin has been shown to suppress telomerase, which leads to Hayflick 

senescence. Since non-cancerous cells generally do not express telomerase, this differential 

targeting has led to interest in telomerase-suppressors as anti-cancer therapeutics.
30

 There are 

also numerous nonproteinogenic amino acids derived from cysteine and methionine such as 

lanthionine, which is present in the lantibiotic peptides, as well as the cytotoxic methionine 

antagonist ethionine.
31

 

Chart 1 

 

In light of the prevalence of sulfur in biological systems and biologically active small 

molecules, it would be reasonable to postulate that sulfur should be widely represented in active 

pharmaceutical ingredients. However, this has unfortunately not been the case. Chemical 

transformations that incorporate sulfur into organic compounds, specifically ones which do so 

stereoselectively, have not been well developed.
32

 The dearth of robust methods has severely 

limited the exploration of design space for sulfur-containing molecules. Broadly applicable 

methods to stereoselectively introduce sulfur into small molecules could speed up the 

exploitation of this underutilized class of molecules, and furnish new molecules to probe 

biological systems. 
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 2.1.2. Electrophilic Sulfenylation. A typical method of introducing sulfur into small 

molecules is through the sulfenofunctionalization of alkenes. This transformation is commonly 

accomplished through the action of sulfenyl chlorides.
33

 The reaction of an alkene and sulfenyl 

chloride results in stereospecific difunctionalization of the alkene, with both the sulfenyl moiety 

as well as the chloride group being incorporated. The strongly electrophilic nature of sulfenyl 

chlorides allow the reaction to proceed at temperatures down to -70 
o
C. Both alkyl and aryl 

sulfenyl chlorides are competent for sulfenium transfer (Scheme 8).
34

  

 

Scheme 8 

 The difunctionalization of alkenes with nucleophiles other than chloride is also possible. 

However, the high nucleophilicity of chloride results in undesirable side products, necessitating 

optimized reaction conditions or superstoichiometric quantities of the desired nucleophile.
35

 

Thus, the need for sulfur electrophiles with less nucleophilic leaving groups stimulated the 

development of novel sulfenylating agents, including, but not limited to, sulfenyl acetates, 

sulfenate esters, and azaheterocycles.
36

 These new electrophiles enabled diverse vicinal 

functionalization products such as sulfeno acetates, sulfeno ethers, sulfeno amides and bisulfides 

to be obtained in good yields and with high chemoselectivity (Scheme 9). In addition to the 

extensive use of sulfenyl chlorides in these reactions, sulfenium and sulfonium salts also serve as 

sulfenyl transfer agents.
37

 Unlike sulfenyl chlorides, use of sulfenium and sulfonium salts enable 

the interception of intermediate thiiranium ions by weak as well as strong external nucleophiles. 

In all cases the anti stereospecific course of the reaction is retained.  
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Scheme 9 

 2.1.3. Mechanism of the Sulfenylation Process. The generality and predictable 

stereochemical course of the electrophilic sulfenylation reaction encouraged extensive studies 

into the mechanistic and stereochemical aspects the underlie these desirable properties. The anti 

stereospecificity for sulfenofunctionalization of trans alkenes was proposed to be the 

consequence of a bridged intermediate that preserves the stereochemical information of the 

alkene component (Scheme 10).
38

 In this hypothesis, approach of the alkene to the sulfenium ion 

source results in an π→σ* interaction that promotes the ionization of the leaving group (X) on 

the sulfur with simultaneous formation of a three-membered ring intermediate. Subsequent to 

this proposal, such bridged-ring intermediates (called thiiranium or episulfonium ions) (11) have 

been thoroughly characterized by computational, spectroscopic and crystallographic methods.  

 

Scheme 10 

 Computational transition state models show a strong directionality in thiiranium 

formation, in which approach of the alkene spiro with the S-X bond is highly favored (Scheme 

11).
39

 The sulfenium adopts an approach where the sulfur substituents are oriented orthogonal to 

the alkene.
40

 This type of spiro approach maximizes orbital overlap between the filled sp
3

 orbitals 

on the sulfur atom with the π* orbital of the alkene component. Notably, the σ* of the leaving 
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group X is not directly involved in the formation process. Thus, there are two possible pathways 

for thiiranium ion formation: (1) C-S bond formation that proceeds synchronously with S-X 

ionization (pathway A); or (2) S-X bond ionization occurs asynchronously, subsequent to C-S 

bond formation (pathway B) (Scheme 11). The former would then be similar to the "butterfly 

mechanism" observed in the epoxidation of alkenes with peracids.
41

 In the latter case, the X 

group may remain either covalently bound to what is now a sulfurane, or form an ion pair. The 

degree of synchronicity has not been well studied, and likely varies as a result of experimental 

parameters such as leaving group identity, solvent and temperature.  

 

Scheme 11 

 The 
1
H NMR spectra of thiiranium ions reveal a wealth of information regarding their 

structure (Table 2). The protons within the ring system for the thiiranium ion 12 appear at 4.0 

ppm (TMS) in SO2 at -60 
o
C (entry 1).

42
 These are shifted upfield in the thiiranium ion 14 to 3.56 

and 3.85 ppm, clearly showing their anisochronicity which results from the stereogenic sulfur 

center. Thiiranium 13 derived from a cis-alkene showed only one set of signals at 4.32 ppm. 

Thus, only one of two possible diasteromers is formed, which has been shown to be cis-13.
42,43

 

The propensity for formation of cis-13 results from decreased steric clash between the S-

substituent and the C-substituents. The 
13

C NMR shift of thiiranium ion 17 is at 76.2 ppm 

(CDCl3), far downfield of the starting thiirane 16 (50.7 ppm) (Scheme 12).
44

 This shift is taken 

as evidence of charge density at the ring carbons of thiiranium ions, in accord with their 

ambident electrophilic nature. Similar shifts are observed for 1,1- and trans-substituted alkenes.
45
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Table 2. Proton NMR Shifts of Thiiranium Ions. 

 

entry ion R
1
 R

2
 R

3
 R

4
 

1
H NMR shift of endocyclic protons (TMS) 

1 12 Me H H Me 4.0, m, 2H 

2 13 Me Me H H 4.32, m, 2H 

3 14 Me H Me H 
3.56, d, J = 6.0 Hz, 1H 

3.85 d, 1H 

4 15 Me Me Me H 4.09, q, 1H 

 

 

Scheme 12 

 The crystal structures of a number of thiiranium ions have been acquired. Diadamantyl 

phenyl thiiranium ion 18 shows the classical bent orientation of the sulfur substituent.
46

 The 

acute C-S-C angle of 46.3
o 

illustrates the deviation of the thiiranium ion from a perfect 

equilateral triangle as a consequence of the size of the sulfur atom. The C-S bond length is 1.904 

Å, which is elongated compared to the average C-S length of 1.82 Å.
47

 The C-S-CAryl
 
bond angle 

of 117.6
o
 shows that the sulfur atom is tetrahedrally hybridized. 

Figure 6. Crystal Structure of Adamantyl Thiiranium ion 18 
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 The comparison of methylthiiranium ions derived from cis- and trans- di-t-butylethene is 

also informative (Figure 7).
43

 The Ct-Bu-CS distance is only 3.288 Å for 19, which is smaller than 

the sum of the radii for the two methyl groups. The C-Cring-Cring-X dihedral angles also differ 

substantially between the two structures. For 19, the dihedral of  the opposing substituents is 

148.6
o
. In contrast, 20 has a dihedral angle of 134.6

o
. There is a similar difference in the dihedrals 

of the syn-substituents. The t-butyl substituents eclipse each other for 20, but the corresponding 

dihedral in 19 is 15.6
o
  The difference in angles confirms the greater stability of the cis-

thiiranium ion over the trans-thiiranium ion.  

Figure 7. Crystal Structures of cis- and trans-Thiiranium Ions 19 and 20 

20  19      

 The rate of sulfenofunctionalization of alkenes has been extensively investigated with a 

variety of substrates.
34a

 The rate of sulfenofunctionalization increases with solvent polarity. The 

relative rate of the reaction of styrene with PhSCl was 9250 times faster in CH2Cl2 than in CCl4 

(Scheme 13). Decreases in reactivity were sometimes observed in highly nonpolar solvents such 

as cyclohexane.
34a

 The polarity of the solvent likely assists in the stabilization of highly charged 

species like thiiranium ions, lowering the barrier to their formation.  

 

Scheme 13 

 A comprehensive table of relative reaction rates was compiled by Stirling.
34a

 The 

following general trends could be identified: (1) the reaction of alkyl-substituted alkenes is faster 

than those of aryl substituted alkenes. (2) increasing numbers of alkyl substituents increase the 

reaction rate, whereas increasing numbers of aryl substituents decrease it. (3) for cyclic alkenes, 

the reaction rate increases with alkene strain. (4) the presence of electron-withdrawing groups 
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conjugated to the alkene severely decreases the reaction rate and (5) inductively electron-

withdrawing groups retard the reaction, and correlate with σ* and ρ*. These results are consistent 

with thiiranium formation being the rate-limiting step. Modest buildup of positive charge on the 

carbons was inferred, however, these results were not consistent with open carbocation 

formation.
38

 

 It is worth noting that the mechanism of thiiranium formation and capture with sulfenyl 

chlorides appears to be dependent on the sulfenium source. Thus, the reactions with 2,4-

dinitrophenylsulfenyl chloride showed different characteristics with respect to phenylsulfenyl 

chloride, which has led to speculation that the reactions may be proceed through a qualitatively 

different thiiranium ions.
34a,38

 The different intermediates postulated are shown in Figure 8. 

These are, in increasing order of electrophilicity, a fully bound sulfurane, a datively bound 

thiiranium, a solvent-associated ion pair, or a fully solvent separated ion pair. The correct view is 

likely a continuum of reactivity that is dependent on sulfenium ion, solvent, alkene and 

nucleophile, thus comparisons of the mechanisms of different sulfenylating agents should be 

done with much care.  

Figure 8. The Types of Possible Thiiranium Ions 

 

 A thiiranium ion is an ambident electrophile, and is susceptible to nucleophilic attack at 

any of its constituents. The bridged nature of thiiranium ions lead to high stereospecificty of 

addition with sulfur electrophiles. The reaction of trans-alkenes with sulfur electrophiles leads to 

anti-functionalization, whereas the reaction of cis-alkenes leads to specific cis-functionalization. 

Nucleophilic attack by either X
-
 or an external nucleophile on the thiiranium ion proceeds 

stereospecifically, opening either at either carbon to selectively afford anti-functionalized 

products. In electronically biased thiiranium ions, capture follows Markovnikov selectivity.
48

 If 

the thiiranium ion is sterically and electronically unbiased, mixtures of constitutional isomers are 

obtained.
49

 Notably, sulfenyl chlorides are an exception to this rule, occasionally affording some 

anti-Markovnikov product even in biased alkenes.
34a
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 2.2. Enantioselective Sulfenylations.  

 2.2.1. Electrophilic Sulfenylation with Stoichiometric Reagents. The ease with which 

thiiranium ions can be generated and the valuable products derived from their subsequent 

reactions has generated broad interest to form them enantioselectively. Although the direct 

addition of sulfenyl electrophiles to olefins has been known for the better part of a century, 

enantioselective sulfenofunctionalization remains a young field.
50

 Early successes employed 

diastereoselective reactions of chirally-modified substrates, taking advantage of the 

stereochemical environment around the alkene to control the selectivity of thiiranium formation. 

The first such diastereoselective sulfenofunctionalization was accomplished by Effenberger and 

coworkers using chiral camphor diol derived auxiliaries (Scheme 14a).
51

 The auxiliary 

effectively controls the facial selectivity of thiiranium formation during the sulfenylation of 

acryloyl ester 21, even at ambient temperature. Subsequent introduction of amide-based 

auxiliaries led to higher selectivities.
52

 For example, sulfenylation of dimethyl N-

acryloylpyrrolidine-2,5-dicarboxylate 23 affords thioether 24 in 76% yield and >95:5 d.r 

(Scheme 14b). However, the reaction is limited to the use of unsubstituted acrylates and 

acrylamide substrates.   

 

Scheme 14 

 The auxiliary-based approach described above requires two additional steps to introduce 

and remove the auxiliary. Enantioselective sulfenylation of prochiral alkenes using chiral 

sulfenylating agents addresses this challenge. For example, treatment of alkene 25 with camphor-

derived sulfonium salt 26 affords thioether 27 in excellent yield albeit with poor 

enantioselectivity (less than 55:45 e.r.) (Scheme 15a).
37a

 The poor selectivity likely arises from 

initial sulfenylation of the amide moiety followed by intramolecular S-methyl group transfer to 
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afford the final product as a nearly racemic mixture. A more selective sulfenylating agent, S-

methylthio binaphthyl sulfonium salt 28, can transfer the S-methyl group to 3-hexene and the 

resulting thiiranium ion is captured by acetonitrile which upon hydrolysis provides methylthio 

acetamide 29 in 93:7 e.r. (Scheme 15b).
37b

 The authors did not present a stereochemical model 

for the transformation and the absolute configuration of the major enantiomer of the product was 

not established.  

 

Scheme 15 

 Although instances of successful enantioselective sulfenofunctionalization occurred in 

the literature, the lack of a detailed model for enantioinduction hampered the development of 

more selective chiral sulfenylating reagents. Furthermore, the necessity for use of chiral, 

stoichiometric reagents is disadvantageous. An ideal strategy would entail the in situ formation 

of enantioenriched thiiranium ions from readily available achiral sulfur electrophiles and 

substoichiometric amounts of a chiral additive.  

 2.2.2. Catalytic, Enantioselective Sulfenylation. The stereoselective introduction of sulfur 

has historically relied on its nucleophilicity, for example the use of sulfur nucleophiles in the 

invertive displacement of secondary leaving groups and enantioselective opening of epoxides 

with rare earth catalysts 30 and 31.(Scheme 16, a and b).
53

 The development of a catalytic 

asymmetric 1,4-addition of thiols to α,β-unsaturated carbonyl compounds was the first catalytic 

sulfenofunctionalization of an alkene moiety (Scheme 16c).
54

 The catalyst for this process was 

the well known proline derivative 32. Notably, a catalytic, asymmetric γ-sulfenylation of α,β,γ-
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unsaturated carbonyl allenes with a protected thiol which utilizes phosphine 33 as a complement 

to the aforementioned β-functionalization has also been developed (Scheme 16d).
55

  

 

Scheme 16 

The use of electrophilic sulfur reagents for olefin functionalization has been known for 

many decades.
50a

 Weak S-N, S-O and S-halogen bonds can be displaced by π-nucleophiles, 

leading to AdE-type displacements at the sulfur center.
56

 Specifically sulfenyl amides, acetates 

and halides have all been studied in the context of alkene functionalization. In contrast, only 

recently have examples of catalytic, stereoselective reactions involving electrophilic sulfur 

species been discovered. In 2005, Jørgensen disclosed a proline-catalyzed asymmetric α-

sulfenylation of carbonyl compounds (Scheme 17a).
57

 In this transformation, the prolinol 

enamines formed from prolinol derivatives react with N-benzylsulfenyltriazole to afford 

benzylsulfenylated aldehydes. Organocatalytic sulfenylation of carbonyl compounds has since 

been expanded to keto esters and other carbonyl compounds using cinchonine and TADDOL-

derived catalysts (Scheme 17b and c).
58

 Importantly, Cordova was able to use both the sulfenyl 
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electrophile and the transferring group in the catalytic asymmetric aminosulfenylation of α,β-

unsaturated carbonyl compounds (Scheme 17d).
59

  

 

 

Scheme 17 

 In the course of this work, other Lewis base catalyzed enantioselective functionalizations 

have been developed. The Shi group demonstrated the catalytic activity of 36 in the 

oxysulfenylation of (Z)-alkenes 37 with electrophile 38 (Scheme 18).
60

 The product 

tetrahydrofurans 39-41 were obtained with modest enantioselectivity. The chiral acid catalyzed 

sulfenofunctionalization of alkenes could be extended to nosylamine substrates 43 with 

electrophile 44 with substantially better enantioselectivity.
61

 The increase in enantioselectivity 

was driven by the use of highly sterically hindered chiral phosphoric acid 42. The 

enantioselectivity differed greatly based on alkene configuration, and products of (Z)-alkenes 

(45,46) were produced in significantly higher selectivity than (E)-alkenes (47). Although the 
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authors postulated a model for selectivity based on data for similar reactions, the unique 

properties of each sulfenylating agent renders such a comparison ill-advised. Mechanistic 

experiments or computational simulation to validate the proposed transition state model was not 

performed.  

 

Scheme 18 

 In all but the last of these transformations, the requirement for an activated alkene to be 

generated in situ limits the overall applicability of the reaction. Thus, the need for a 

complementary approach was obvious. The conceptual approach of activation of normally 

unreactive sulfenyl electrophiles towards nucleophilic displacement by electronically unactivated 

alkenes led to the formulation of a Lewis base catalyzed enantioselective 

sulfenofunctionalization framework.    
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 2.2.3. Application of Lewis Base Activation of Lewis Acids to Sulfenofunctionalization.  

The theoretical formulation of Lewis base activation of sulfur Lewis acids proceeds analogous to 

those developed for selenium and silicon. Sulfenyl electrophiles are Lewis acidic as a result of 

their ability to accept electrons into the S-X σ* orbital.
23

 Thus, the interaction of a suitable Lewis 

base with sulfenyl electrophiles is expected to increase their reactivity, ideally to the point where 

they can be engaged by simple alkenes. If the Lewis base is chiral, the resulting sulfenium source 

would also be chiral, and potentially able to impart stereochemical information to the nascent 

thiiranium ion. The ability of the Lewis base to increase the reactivity of the sulfenium moiety is 

paramount in avoiding a stereoselectively deleterious background reaction. In light of these 

requirements, a plausible framework for catalytic, enantioselective sulfenylation of alkenes can 

be formulated. The process commences with the activation of the sulfenylating reagent 49 by a 

chiral Lewis base (LB) 48 to generate intermediate activated sulfenium source 50 (Figure 9).
62

 

Consistent with the principles of Lewis base activation, the redistribution of the electron density 

from the S-atom toward the peripheral ligand (X) enhances the Lewis acidity of the S-center. The 

increased Lewis acidity facilitates the nucleophilic attack of the alkene onto 50 (step 2). The 

interception of the resulting thiiranium ion 51, enantioenriched as a consequence of the chirality 

of 48, by a nucleophile (step 3) leads to the formation of the product (53) and regenerates the 

Lewis base catalyst (step 4). In the desired reaction framework, both the enantioselectivity of 

thiiranium formation as well as the stereochemical integrity of the resulting thiiranium ion need 

to be well controlled. Furthermore, for high selectivity and chemical yield, nucleophilic attack on 

51 needs to proceed site selectively among the carbon and sulfur atoms of the thiiranium ion.   



25 

 

Figure 9. Mechanistic Framework for a Lewis Base Catalyzed Sulfenofunctionalization 

Process 

 

 Efforts toward achieving catalytic, enantioselective sulfenylation of alkenes have hinged 

upon the discovery of conditions that allow for the controlled formation and capture of 

enantioenriched thiiranium ions. Although the stereoselective, stoichiometric synthesis of 

thiiranium ions has been accomplished (see Section 2.1.3), these methods did not provide any 

insights into the configurational stability of thiiranium ions under catalytic conditions.  

 Mechanistically, three major pathways can result in thiiranium ion racemization (Scheme 

19).
63

 The first involves the unimolecular racemization of thiiranium ions through equilibrium 

with an open carbocation (path a). The second mechanism entails nucleophilic attack at the 

sulfur center followed by addition of the resulting sulfenium moiety to the alkene (path b). 

Finally, the racemization could occur via a bimolecular alkene-to-alkene transfer mechanism 

(path c). In a series of studies from these laboratories, each of these issues were separately 

addressed to provide the foundation for highly-enantioselective, catalytic, 

sulfenofunctionalization reactions.  
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Scheme 19 

 The configurational stability of thiiranium ions in the presence of hard nucleophiles was 

established by demonstrating high enantiospecificity in the formation and capture of 

enantiomerically enriched thiiranium ions.
63

 Specifically, thiiranium ion 54, prepared from 

enantioenriched β-chloro sulfide 55 at -40 
o
C, undergoes highly stereospecific capture with a 

variety of nucleophiles at -20 
o
C to afford the corresponding enantioenriched thioether products 

(Scheme 20). The use of neutral and anionic oxygen nucleophiles as well as azides results in the 

formation of β-thioethers, esters, and azides with high enantiospecificity. Thus, thiiranium ions 

are configurationally stable in the presence of hard nucleophiles at -20 
o
C. Additionally, the high 

enantiospecificity observed with all nucleophiles investigated suggests that a unimolecular 

racemization process does not occur on the timescale of nucleophilic capture (Scheme 19, paths 

a and b). 

 

Scheme 20 
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 Under catalytic conditions, thiiranium ions (e.g., 55, Scheme 21) are generated in low 

concentration in the presence of Lewis bases. Therefore, the configurational stability of 

thiiranium ions with respect to various Lewis bases is critical. The enantiospecificity for the 

methanolysis of thiiranium ion 55 is highly dependent on the nature of the Lewis base in the 

reaction mixture.
63

 Whereas complete loss of configurational homogeneity occurs in the presence 

of diphenyl disulfide, high enantiospecificity is observed for the reaction with 

tetrahydrothiophene as the Lewis base. These results suggest that the enantiomeric composition 

of the thiiranium ion in a reaction can be maintained using non-chalcophilic Lewis bases (e.g., 

tetrahydrothiophene) as catalysts. 

 

Scheme 21 

 The direct transfer of thiiranium ions between two alkenes has been studied both 

experimentally and computationally.
40,64

 Rapid sulfenium ion transfer between trans-thiiranium 

ions occurs at 0 
o
C (Table 3, entries 1 and 2). In addition, the sulfenium ion can be transferred 

between cis- and trans- thiiranium ions (entries 3 and 4).  

Table 3. Alkene-to-alkene Transfer of Thiiranium Ions. 

 

entry R
1
 R

2
 Keq 

1 (E)-n-Pr Bn 0 

2 Bn (E)-n-Pr 100 

3 (E)-n-Pr (Z)-n-Pr 2 

4 (Z)-n-Pr (E)-n-Pr 1
a
 

a 
decomposed before equilibrium could be reached. 
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 Consequently complete racemization of enantioenriched thiiranium ion 55 occurs in the 

presence of an excess of (E)-4-octene at 0 
o
C as evidenced by the formation of racemic 

methoxylated product (Scheme 22). However, the olefin-to-olefin transfer process proved to be 

temperature-dependent, as the racemization of 55 is completely suppressed at -20 
o
C. These data 

implicated that the racemization of thiiranium ions via path c can be prevented by judicious 

choice of reaction conditions. 

 

Scheme 22 

 2.3. Goals of the Project.  

 The detailed mechanistic experiments demonstrated that stereocontrol over thiiranium ion 

formation is possible. Furthermore, all known major racemization pathways of thiiranium ions 

can be suppressed for methanol capture. Thus, the challenge lay in identifying a suitable 

electrophile-Lewis base combination and reaction conditions that would allow for the catalytic 

formation of thiiranium ions with high stereoselectivity and prevent their racemization. 
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 2.4. Results.    

 2.4.1. Optimization. 2.4.1.1. Background and Initial Survey. To conduct a far-reaching 

Lewis base survey, a simple and robust test system needed to be determined. An intramolecular 

cyclization was considered easier to accomplish, due to the high effective concentration of 

nucleophile in solution, which reduces the necessary lifetime for the thiiranium ion. Furthermore, 

the existence of a chromophore was considered advantageous with regards to separation and 

enantiomer determination. Sulfenylating reagent 56 is a crystalline, commercially available, 

stable solid and was therefore highly suitable for optimization (Chart 2). Unsaturated alcohol 

57a, accessible by a known and scalable procedure in three steps, was selected as the initial 

substrate.
16

 The thiiranium derived from 57a can cyclize either in exo- or endo- fashion to afford 

tetrahydrofurans and tetrahydropyrans respectively. Thus, the choice of 57a also allows for 

investigation of the site selectivity of the alcohol nucleophile.   

  Chart 2 

 

As previosly mentioned, Lewis base activation of Lewis acids requires an ionizable group 

on the Lewis acidic center. Due to its high pKa, phthalimide is not an ideal leaving group, and 

attempts to effect the sulfenoetherification with just 56 was not successful.
65

 However, 

protonation of the phthalimide significantly enhances its competence as a leaving group.
16

 

Trifluoroacetic acid (TFA) was selected initially as a medium-strength acid to protonate the 

electrophile and enhance its reactivity.
66

 Unfortunately, the introduction of a proton source 

implies that the Lewis base must be tolerant of acidic reaction conditions. Hence the catalyst 

must balance strong Lewis basicity (to function as a sulfenyl transfer reagent) with weak 

Brønsted basicity (to be active in acidic reaction media).  

As the soft nature of sulfur favors interactions with easily polarizable groups, and in light 

of the weak Brønsted basicity of alkyl sulfides, the survey commenced with known transfer 

catalyst, tetrahydrothiophene (THT).
67

 THT, electrophile 56 and alkene 57a were combined with 

TFA, yielding thioether 58a (Table 4, entry 1). A stronger acid, MsOH, was a more potent 
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activator of 56 (entry 2).
66

 No conversion was observed in the absence of acid, which precludes a 

simple acid-catalyzed cyclization (entries 3 and 4).
68

 In light of these results, and the importance 

of chalcogenides for selenofunctionalization, other sulfur-containing Lewis bases were also 

tested.
18

 DMPU(S) was only a moderately successful catalyst, resulting in 55% conversion after 

24 h (entry 5). In contrast, phosphine sulfides Ph3P(S) and Cy3P(S) were highly reactive, both 

reactions giving complete conversion in less than 3 h (entries 6 and 7). No reaction was observed 

when HMPA was used (entry 8). In contrast, slow conversion was observed with 

thiophosphoramide HMPA(S) (entry 9). Replacing S with the more polarizable Se resulted in a 

more active catalyst, with complete conversion observed after 24 h for HMPA(Se) (entry 10). 

The results confirmed the importance of a soft, polarizable group in the catalyst backbone and 

optimization studies revolved around phosphorus(V) chalcogenides.  

Table 4. Survey of Lewis Base Catalysts for Oxysulfenylation. 

 

   conversion, %
a
 

entry acid Lewis base 3 h 24 h 

1 TFA THT 33 70 

2 MsOH THT 100 100 

3 TFA none 0 0 

4 MsOH none trace <10 

5 MsOH DMPU(S) 7 55 

6 MsOH Ph3P(S) 100 100 

7 MsOH Cy3P(S) 100 100 

8 MsOH HMPA 0 0 

9 MsOH HMPA(S) trace 35 

10 MsOH HMPA(Se) 31 100 

a
Determined by 

1
H NMR analysis of quenched mixture. 
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 2.4.1.2. Optimization of Chiral Lewis Base. The initial survey of chiral Lewis bases was 

conducted mainly by Dr. Thomas Vogler.
63,69

 The success of BINAM-phosphoramides in the 

related selenofunctionalization reaction indicated that the binaphthyl backbone may be a 

priviliged scaffold for the desired transformation.
16

 Selected results from these experiments are 

displayed in. Thio-BINAP 60 was found to be unselective (Table 5, entry 1). In contrast 

thiophosphoramide 61 afforded pyran 58a in 82:18 e.r. (entry 2). Replacing sulfur with selenium 

slightly lowered the e.r. but significantly increased reactivity (entry 3). Substitution of a 

hexahydroazepine ring in the place of the piperidine moiety as well as replacing sulfur with 

selenium resulted in a more active catalyst, 62a, allowing the reaction to be conducted at low 

temperature (entry 4). Furthermore, it was also discovered that 10 mol % catalyst was sufficient 

for this reaction. Under these optimized conditions 58a was obtained in 91:9 e.r. A 

heptahydroazocine moiety did not increase selectivity (62c, entry 5). Therefore 62b was chosen 

as the catalyst for further reaction development. In the course of this work more selective 

catalysts such as 62d and 62e have been developed (entries 6 and 7).
40

 They are shown here for 

comparison purposes. 

Table 5. Survey of Chiral, Nonracemic Lewis Bases for Sulfenofunctionalization. 

 

entry # catalyst electrophile equiv. 
time, 

h 

temp, 

o
C 

conversion, 

%
a
 

e.r.
b
 

1
c,d

 60 

 
 

0.2 3 23  100 46:54 

2
d
 61 

  

0.2 24 23 100 82:18 
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3 62a 

 
 

0.2 4  23 100 79:21 

4 62b 

 
 

0.1 30  -20 100 91:9 

5
c
 62c 

 
 

0.1 48  -20 100 91:9 

6 62d 

 
 

0.1 48 -20 100 93:7 

7 62e 

 
 

0.1 48 -20 100 95:5 

a
Determined by 

1
H NMR analysis of crude reaction mixture. 

b
Determined by CSP-SFC analysis. 

c
TFA was used instead of MsOH. 

d
1.2 equiv. of electrophile was used.  

 

On scale, 62b was prepared from racemic 1,1'-binaphthyl-2,2'-diamine. Condensation of 

naphthol with hydrazine under high temperature and pressure afforded a tarry mass, from which 

1,1'-binaphthyl-2,2'-diamine 63 was isolated in low yield (Scheme 23). The amine was resolved 

using (D)-camphorsulfonic acid, and a second neutralization afforded (R)-binaphthylamine 64 in 

89% yield over two steps, which was found to have an e.r. of 99.2:0.8 by chiral stationary phase-

supercritical fluid chromatography (CSP-SFC). Treatment of 64 with ethyl chloroformate 

followed by LiAlH4 reduction led to dimethyl derivative 65.
70

 Reaction of 65 with PCl3 followed 

by addition of amine 66 and powdered Se to yielded selenophosphoramide 62b in 5 steps and 

overall 28% yield from the racemic 1,1'-binaphthyl-2,2'-diamine. The first step in this process 

Table 5. (cont.) 
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has since been replaced through the use of a Cu-catalyzed coupling oxidative coupling that is 

more amenable to high throughput.
71

 

 

Scheme 23 

2.4.1.3. Evaluation of Electrophilic Sulfur Sources. The requirement for strong acid 

activation of 56 meant that many interesting nucleophiles such as cyanide, amines and conjugate 

bases of carbon acids cannot be used. If a more reactive electrophile/ leaving group combination 

could be found, this could lead to a significant increase in the nucleophile scope.  

The reason behind the low reactivity of 56 is most likely the poor nucleofugality of 

phthalimide.
23

 Thus groups on nitrogen better able to stabilize negative charge should lead to 

higher reactivity. To test this assumption, a series of electrophiles with increasing conjugate acid 

strength were tested (Table 6). The e.r. decreased modestly with increasing nucleofugality 

(entries 2 and 3). Unfortunately the reactions were run under different conditions so a direct 

comparison of the reactivity was not possible. Weaker Brønsted acids TFA and TCA 

(trichloroacetic acid) successfuly activated the benzotriazole and saccharin electrophiles 

respectively, although the overall solution was still highly acidic (pKa (TCA) < 1).
66

 Ultimately 

the highly reactive dimesylamide-derived electrophile 69 successfully effected the cyclization of 

57a in the presence of 2 equiv. of hindered base 73 (entry 4; use of Et3N and Hünig’s base 

resulted in N-sulfenylation). Unfortunately, the e.r. was significantly lower. More reactive 

sulfenylating agents were not prepared. Sulfenyl acetate 70, which corresponds to an 

intermediate nucleofuge strength was unreactive in the absence of acid (entry 5). Attempts to 
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decrease the electron density on the sulfur by introducing electron-withdrawing groups, such as 

in 71 and 72 led to exclusive O-sulfenylation (entries 6 and 7).  

Table 6. Survey of Electrophilic Sulfenylating Agents. 

 

entry electrophile # additive R 
time 

h 

temp 

o
C 

conversion 

%
a
 

e.r.
b
 

1 

 

56 MsOH Ph 30  -20 100 91:9 

2 
 

67 TFA Ph 40  -20 100 84:16 

3
c
 

 

68 TCA Ph 1.5 23 89 79:21 

4
d
 

 
69 

 

Ph 48  -20 100 68:32 

5 
 

70 - Ph 16  -20 0 - 

6 

 

71 - 
2-NO2-

C6H4 
16  -20 -

e
 - 

7 

 

72 - 
2,4-NO2-

C6H4 
16  -20 -

e
 - 

a
Determined by 

1
H NMR analysis of crude reaction mixture. 

b
Determined by CSP-SFC analysis. 

c
62a was used instead of 62b 

d
2 equiv.of base additive was used.

 e
O-sulfenylation was observed 

instead. 
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 The identity of the sulfenyl group was also investigated (Table 7). The use of methyl-

derivative 74 resulted in lower e.r. although it is currently unclear whether this is a steric or an 

electronic effect (entry 1). Trichloromethyl analog 75 proved completely unreactive under the 

reaction conditions (entry 2). Interestingly 76 was successful in effecting the cyclization, 

although the e.r. using a chiral Lewis base was not determined (entry 3). Further experimentation 

in this field was conducted by Dr. Eduard Hartmann.
72

  

Table 7. Survey of Sulfur Subsituent of the Sulfenium Source. 

 

a
Determined by 

1
H NMR analysis of crude reaction mixture. 

b
Determined by CSP-SFC analysis. 

c
Other species were observed as well. 

2.4.1.4. Optimization of Temperature. To determine the reactivity profile of the 

phthalimide electrophile, experiments at a number of different temperatures were performed 

using the parent substrate 57a. When conducted at room temperature, the thiofunctionalization of 

57a yielded 58a with an e.r. of 84:16 (Table 8, entry 1). However, at -10 
o
C this ratio could be 

improved to 89:11 (entry 2) and when the reaction was run at -20 
o
C, where thiiranium ions are 

entry electrophile # 
Lewis 

base 
additive R 

time, 

h 

temp, 

o
C  

conversion 

%
a
 

e.r.
b
 

1 

 

74 62b MsOH Me 48  -20 100 76:24 

2 

 

75 THT MsOH CCl3 24  23 0 - 

3 

 

76 THT MsOH 
4-NO2-

C6H4 
1 23 50

c
 - 
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known to be stable, the e.r. was 91:9 (entry 3). Further decrease in the temperature did not affect 

the enantioselectivity (entry 4). This increase in e.r. was accompanied by a significant increase in 

reaction time, from 1 h at 23 
o
C to 24 h at -10 

o
C and 48 h at -20 

o
C. The reaction did not reach 

full conversion even after 66 h at -30 
o
C.

69
 This trend was confirmed for a second substrate, 57k: 

the e.r. of 59k increased from 78:22 to 83:17 to 84:16 when the reaction temperature was 

lowered to -10 
o
C and -20 

o
C respectively (entries 5, 6 and 7). A similar increase in reaction time 

was observed.   

Table 8. Variation of Enantioselectivity as a Function of Temperature. 

 

entry substrate temp. 
o
C time  product e.r.

a
 

1 57a 23 1 h 58a 84:16  

2 57a -10 24 h 58a 89:11 

3 57a -20 48 h 58a 91:9 

4 57a -30 >66 h
b
 58a 91:9 

5 57k 23 2 h  59k 78:22 

6 57k -10 48 h 59k 83:17 

7 57k -20 >48 h
b
  59k 84:16 

a
Determined by CSP-SFC analysis

 b
full conversion was not achieved at the final data point.  

 2.4.2. Intramolecular Sulfenoetherification. 2.4.2.1. Preparation of Substrates. The 

synthesis of γ-alkoxystyrenes followed a 4-step synthetic sequence (Scheme 24). Aldehydes 77 

were treated with vinyl magnesium bromide to form secondary alcohol 78. A Johnson-Claisen 

rearrangement transformed the secondary alcohols into γ-carboxystyrenes 79. The ester was then 

reduced with LiAlH4 to afford the desired substrates 57a-c. Alkyl substituted 57g and 57h were 

prepared through an identical route.  
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Scheme 24 

 The synthesis of trisubstituted alkenes was also accomplished over four steps each. The 

preparation of 57m commenced with the treatment of benzaldehyde with cyclopropyl 

magnesium bromide to form secondary alcohol 80 (Scheme 25). Under acidic conditions, 

rearragement of the cyclopropane ring resulted in the formation of the (E)-alkene 81. Treatment 

of the bromide with Mg followed by CO2 formed acid 82, which was then transformed into 57m 

by exposure to LiAlH4. 

 

Scheme 25 

 The synthesis of 57n started with α-methyl-trans-cinnamaldehyde. The aldehyde was 

transformed into the allyl bromide 84 over two steps. Displacement of the allylic bromide with 

diethyl malonate afforded diester 85. Hydrolysis of 85 in the presence of LiOH proceeded 

smoothly, and the product 86 underwent spontaneous decarboxylation upon distillation to the 

desired acid 87. Reduction of 87 with LiAlH4 then afforded 57n.   
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Scheme 26  

2.4.2.2. Preparative Intramolecular Sulfenoetherification. A series of alkenes with 

differing electron density were subjected to the thiofunctionalization conditions. The parent 

substrate 57a yielded thioether 58a in 80% yield and 91:9 e.r. (Table 9, entry 1). When methoxy-

substituted substrate 57c was used, the product was obtained in 84% yield and 91:9 e.r. (entry 2). 

In contrast, the reaction of trifluoromethyl-substituted substrate 57b was found to be quite 

sluggish, leading to only 45% conversion even at -10 
o
C (entry 3). At this temperature 58b could 

be obtained in 88:12 e.r. When an even more electron poor α,β-unsaturated ester 57d was used, 

no reaction was observed even at elevated temperatures (entry 4). The electron density of the 

desired alkene appears to have an appreciable effect on reaction rate. Interestingly, even though 

considerable variation in rate was observed, the e.r. of the products was not affected. 

Furthermore, all products showed highly selective 6-endo closure, in contrast to previous reports 

suggesting that 5-exo closure was kinetically favored for such intramolecular capture reactions.
17

 

To determine the importance of substitutents in the carbon tether, substrates bearing 

tertiary and quaternary carbons were synthesized. Cyclization of tertiary alcohol 57e afforded 

pyran 58e with an e.r. comparable to the parent substrate (Table 9, entry 5). Substrate 57f bearing 

a quaternary carbon also yielded a similar result, indicating that the reaction is insensitive toward 

substitution in the intervening tether (entry 6). Notably, the endo:exo selectivity decreased 

slightly when more hindered substrates were used. The impact of substituents around the carbon-

carbon double bond was also investigated. A nonconjugated olefin 57g was tested first.  Under 

the standard reaction conditions 58g was obtained in 96:4 e.r., indicating that the reaction of 

dialkyl olefins is more stereoselective than their styryl counterparts (entry 7). Notably, 

significant quantitites of the 5-exo closure product 59g were obtained. The e.r. for 59g was 
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identical to that of 58g. The reaction of branched alkene 57h yielded 58h in 71% yield and 96:4 

e.r. (entry 8). The branched substrate showed similar stereoselectivity but increased endo 

selectivity compared to 57g. It appears that the introduction of branching at the nucleophile, in 

the tether, or around the unsaturation does not lead to significant changes in the 

enantioselectivity of the reaction, and has modest effects on exo:endo selectivity. No significant 

trends regarding the constitutional selectivity based on the size and location of the substitution 

could be determined. All reactions were complete after 48 h at -20 
o
C which indicates that any 

effects on rate are modest at best.  

 

Table 9. Survey of Substrates for Intramolecular Sulfenoetherification. 

 

entry alkenol R
1
 R

2
 R

3
 

temp, 

o
C 

product 
yield,

a 

% 
58/59 

b
 e.r.

c,d
 

1 57a Ph H H -20 58a 80 49:1 91:9 

2 57b 4-CF3C6H4 H H -10 58b 36 25:1 88:12 

3 57c 4-MeO-C6H4 H H -10 58c 84 >10:1 91:9 

4 57d COOMe H H rt
d
 - 0 - - 

5 57e 

 

-20 58e 84 13:1 92:8 

6 57f 

 

 

-20 58f 94 19:1 92:8 

7 57g CH2CH2Ph H H -20 
58g, 

59g 
88 5:1 

96:4  

(58g) 

96:4  

(59g) 

8 57h i-Pr H H -20 58h 71 17:1 96:4 

9
e
 57i H Ph H rt

d 
58i 41 N.D. 53:47 

10 57j H (CH2)2Ph H -10 59j 72 1:20 54:46 
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11 57k H H H -10 59k 72 <1:19 83:17 

12 57l H H Ph -20 59l 85 <1:99 62:38 

13 57m Ph H Me -20 58m 82 17:1 70:30 

14 57n Ph Me H 23 59n 24 1:18 60:40 

15 57o 

 

-10 59o 83 1:99 91:9 

  16 57p 

 

rt
d
 - 0 - - 

a
Isolated yield. 

b
Determined by 

1
H NMR analysis of crude reaction mixture. 

c
Determined by 

CSP-SFC analysis. 
d
Reaction run at rt for 96 h. 

e
Catalyst (R)-62a and electrophile 67 were used. 

 The hallmark of a robust catalyst for alkene functionalization is its ability to engage 

different alkene substitution patterns. To determine the behavior of the reaction toward the 

various alkene classes, representatives mono-, di-, and trisubstituted alkenes were used in 

thiofunctionalizations. Tetrasubstituted alkenes were expected to react sluggishly and were not 

tested; difficulties with trisubstituted alkenes bore out this expectation. (Z)-alkenes were much 

slower than their (E)-alkene counterparts. The cyclization of 57i took four days at elevated 

temperature, and afforded nearly racemic product (entry 9). Dialkyl substituted (Z)-57j was 

significantly faster, affording thioether 59j in 72% yield after 48 h at -10 
o
C (entry 10). 

Unfortunately, the product was once again nearly racemic. Terminal olefins are known to be 

difficult substrates for face-discriminating reactions due to the minimal difference between the 

enantiotopic faces.
73

 Thus, it was pleasing to discover that tetrahydrofuran 59k could be obtained 

in 72% yield and 83:17 e.r (Table 9, entry 11). Higher temperatures (-10 
o
C) were necessary for 

this substrate. In contrast to the cyclizations of (E)-alkenes high exo selectivity was observed. 

Disubsituted terminal alkenol 57l showed good reactivity, and 59l was obtained with very high 

exo-selectivity albeit with poor enantioselectivity. The use of trisubstituted alkenes did not 

improve the enantioselectivity significantly, as two different trisubstituted alkenes 57m and 57n 

gave products 58m and 59n with 70:30 and 60:40 e.r. respectively. Notably, for 59n the reaction 

was quite sluggish, and elevated temperatures were necessary. Many side products were also 

obtained. Interestingly the constitutional selectivity between 58m and 59n were switched. The 

obtained isomer in each case is consistent with nucleophilic attack at the more substituted 

carbon.  

Table 9. (cont.) 
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 Other nucleophiles also participated in the opening of thiiranium ions. In addition to 

alcohols, carboxylic acids were found to be effective nucleophiles, and the cyclization of 57o 

yielded 59o in 83% yield, 99:1 constitutional selectivity and 91:9 enantioselectivity (Table 9, 

entry 15). The reaction did require slightly elevated temperatures. When amide 57p was used, no 

reaction was observed (entry 16).
74

  

The absolute configuration of 58a was determined by X-ray analysis of single crystals. 

58a was obtained as a viscous oil which crystallized upon standing after distillation. X-ray 

analysis revealed the absolute configuration to be (2S,3R)-58a (Figure 2). The remaining 

thioethers are assigned by analogy, assuming the formation of the same configuration at the 

thiiranium center for the remaining substrates.  

Figure 10. X-Ray Crystal Structure of 58a 

 

 2.4.3. Intermolecular Sulfenoetherification. The intermolecular thiofunctionalization of 

alkenes represents an important avenue for the development of a general asymmetric 

sulfenylation reaction. Preparation of substrates for intramolecular thiofunctionalizations may 

not always be simple, and the obtained products are by necessity cyclic. Thus the 

functionalization of isolated alkenes with intermolecular nucleophiles introduces sulfur without 

ring formation, and with a much broader range of functionalized nucleophiles. However, 

intermolecular functionalizations also present some major challenges. The lifetime of the 

thiiranium ion in solution is lengthened, which presents greater opportunities for racemization. 

The lower effective nucleophile concentration may also result in slower reactions. Furthermore, 

for non-C2-symmetric alkenes, site selectivity may be an issue. A substrate survey to was 

initiated to investigate these issues.  

 The model substrate 88a was chosen due to its C2h-symmetry and information available 

regarding its reactivity.
63

 Exposing 88a to the standard thioetherification protocol in the presence 

of MeOH afforded the difunctionalized product 89a in 93% yield and 92:8 e.r (Table 10, entry 
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1). (Z)-Olefin 88b was an interesting substrate as the resulting thiiranium ion would be meso. 

Thus, if enantioinduction were observed, this could be evidence for the continued involvement of 

the catalyst after thiiranium ion formation. Unfortunately, the products obtained were within 

experimental error of being racemic (entry 2). Since (Z)-Olefins do not give high 

enantioselectivities with the current catalyst, no conclusions in either direction could be drawn. 

Terminal alkene 88c could be functionalized in 77% yield and 82:18 e.r., although constitutional 

isomers 89c and 90c were obtained in a 10:1 ratio (entry 3). The functionalization of 

unsymmetrically substituted alkene 88d resulted in 4:1 constitutional ratio of 89d:90d with 58% 

combined yield and 86:14 e.r. (entry 4). Trends that were apparent in the intramolecular 

thiofunctionalization reaction transferred well to the intermolecular thiofunctionalization, 

indicating that the mechanistic pathways may be similar.  

Table 10. Survey of Substrates for Intermolecular Sulfenoetherification. 

 

entry # R
1
 R

2
 R

3
 temp. 

o
C NuH yield, %

a
 89/90

b
 e.r.

c
 

1 88a n-Pr n-Pr H -20 MeOH 93 - 92:8 

2 88b n-Pr H n-Pr -20 MeOH n.d. - 52:48 

3 88c n-Hex H H -20 MeOH 77 10:1 82:18 

4 88d i-Pr n-Pr H -20 MeOH 58 4:1 
84:16 (89)

d
 

84:16 (90d)
d
 

5 88a n-Pr n-Pr H -20 AcOH 77 - 91:9 

6 88a n-Pr n-Pr H -20 MeCN
e
 35 - 89:11 

a
Isolated yield. 

b
Determined by 

1
H NMR analysis of crude reaction mixture. 

c
Determined by 

CSP-SFC analysis. 
d
E.r. determined after oxidation to the sulfones 91 and 92, see experimental 

section. 
e
10 equiv of nucleophile was used. 

 Nucleophiles other than alcohols were also tested in the intermolecular 

thiofunctionalization reaction. The thiiranium ion derived from 4-octene could also be captured 

by acetic acid, which formed 89e in 77% yield and 91:9 e.r. (Table 10, entry 5). Nitriles have 
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been shown to react with thiiranium ions to afford nitrilium ions that are hydrolyzed to amides 

upon workup.
37b

 Amide 89f resulting from nitrile capture was obtained in 89:11 e.r. (entry 6). 

The yields of the reaction were low, and a significant quantity of material resulting from 

thiiranium hydrolysis was recovered, even in the presence of excess CH3CN.  

 2.5. Discussion. 

 2.5.1. Optimization of Reaction Conditions. The use of Brønsted acids to activate sulfenyl 

and selenyl electrophiles is well known.
16,23

 Protonation of the imide moiety increases its 

nucleofugality. The increased S-N bond polarization increases Lewis acidity, which is then 

further bolstered by Lewis base complexation. Only then is the alkene a competent nucleophile 

for sulfenium transfer. Indeed, the combination of electrophile 56, alcohol 57a and Lewis base 

62b did not lead to product formation.
65

 However, upon addition of MsOH was clean conversion 

to 58a observed. Thus, the reactivity of the sulfenylimides as Lewis acids is modulated by the 

presence of a Brønsted acidic co-activator (Scheme 27). The decrease in reactivity as a 

consequence of lower acid strength suggests that the protonated imide fraction needs to be high 

for efficient turnover.  

 

Scheme 27 

 The rate of the reaction for electrophiles 56, 67 and 68 were comparable at -20 
o
C. Thus, 

the rate of the reaction is not a function of electrophile source. For reactions of substrates that are 

not compatible with strong acids, more reactive sulfenyl agents with less stringent acid 

requirements can be used. At the most extreme, disulfonylimides 69 allow the reaction to 

proceed without any acid activation (Table 6, Scheme 28). However, the downside of increasing 

the reactivity of the sulfenylating agent can be observed in the enantiomeric composition of the 

resulting products. More reactive sulfenylimides are also more apt to undergo an uncatalyzed 

sulfenium transfer reaction, leading to the formation of racemic product, polluting the highly 

enantioenriched material that results from the catalyzed pathway. The influence of the counterion 

on the facial selectivity for thiiranium formation is also a potential reason for the change in 
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selectivity, however it would not be expected to monotonically decrease as a function of 

counterion nucleofugality.   

 

Scheme 28 

 Sulfenyl acetates represent a different class of electrophile due to the differences between 

the S-N and S-O bonds.
54b

 Sulfenyl acetates displayed σ-electrophilicity as opposed to π-

electrophilicity, resulting in preferential O-sulfenylation (Scheme 29). Although the reaction of 

sulfenyl acetates with alkenes have been well studied, they had been performed in the absence of 

other nucleophilic groups.
75

 Electrophiles with S-O linkages were not studied further as a result 

of the observed undesirable reactivity.  

 

Scheme 29 

   The substituent on the sulfur atom can affect the sulfenofunctionalization process in two 

ways. Functional groups that stabilize positive charge on the sulfur promote ionization of the 

Lewis base - sulfenium complex, assisting in the formation of the chiral sulfenylating agent. 

However, they can also donate electron density into the Lewis acidic sulfur atom, decreasing its 

reactivity as a sulfenylating source. The replacement of the phenyl group by a methyl group did 

not have a major impact on reactivity, and the reaction proceeded to high conversion. In contrast, 

the much more electrophilic 75 bearing a trichloromethyl moiety failed to react even at elevated 

temperatures and with the more active THT catalyst. Thus, thiiranium ion appears to benefit 

from some stabilization at the sulfur center. This result is in agreement with those from Dr. 

Matthew Cullen, who observed increased reactivity for sulfenium sources bearing electron-rich 

arenes.
65

 The ability of the arene moiety to modulate the reaction rate is correlated with its 
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electron density, insofar as its ability to stoichiometrically sulfenylate the Lewis base complex. 

Therefore, no further sulfenium transfer agents bearing alkyl sulfides were tested. Further 

modifications to the electrophile were performed by other researchers from these laboratories.
40

  

 Only a subset of various Lewis bases previously tested in these laboratories are shown. 

The softness, i.e. polarizability of the Lewis basic atom was extremely important for reactivity.
69

 

Thus, phospine oxides were poor catalysts, whereas increasing reactivity was observed for the 

corresponding sulfides and selenides. Thioureas were less effective, potentially due to increased 

Brønsted basicity or insufficient Lewis basic character. Interestingly, Lewis basic 

sulfenophosphoramides were less effective than the corresponding alkyl or aryl phosphine 

sulfides. Ds numbers for the series of Lewis bases (HMPA, 39; THT, 43; HMPA(S), 53, tri-n-

butylphosphite 56)
76

 did not correlate with reactivity, and therefore Lewis basicity may not be 

the sole factor governing the efficacy of a particular catalyst architecture. Unfortunately, 

comprehensive donor scales for phosphine sulfides are not available. Comparison with the Ds of 

the related alkyl phosphines (~80) suggest that they would be substantially more Lewis basic 

than HMPA(S), potentially contributing to their high reactivity.
76

 The Ds numbers of 

selenophosphoramides and phosphine selenides are unknown, although their increased 

polarizability would likely also increase their donactity with respect to their corresponding sulfur 

analogues. It is worth noting that all of these Lewis basic functionalities are poor Brønsted bases 

and are not protonated under the reaction conditions. Titration of selenophosphoramides with 

methanesulfonic acid revealed only minor shifts by 
31

P NMR up to 4 equiv of MsOH.
69

 

 The best catalysts for the sulfenofunctionalization process differed from those for the 

analogous selenofunctionalization process in one important facet. For sulfenofunctionalization 

catalysts, selenophosphoramides displayed better catalytic activity than the corresponding 

sulfenophosphoramides, in contrast to selenofunctionalization for which sulfenophosphoramides 

were more efficient catalysts.
16

 The rate difference is hypothesized to be due to the formation of 

a strong homonuclear group 16 bond for S-S and Se-Se. In contrast, the S-Se bond is polarized 

and much weaker due to poor orbital overlap.
77 

This trend was confirmed by further X-ray 

crystallographic studies of reaction intermediates (Chapter 3.2.2).  

 The catalyst optimization process by researchers in these laboratories, primarily Drs. 

Thomas Vogler and Matthew Cullen, identified three major families of potential catalysts 

amenable to modification (1) aryl and alkyl phosphine sulfides, (2) dialkyl sulfides, (3) 
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selenophosphoramides. Extensive modification of families (1) and (2) were investigated 

(representative examples are shown in Table 5). The binaphthylphosphoramide backbone proved 

uniquely selective for the sulfenofunctionalization process. The biaryl moiety is a priviliged 

ligand, and has been featured in numerous highly selective catalysts, such as 3 for the Lewis base 

activation of silicon Lewis acids. Structural features of the catalyst architecture that enable the 

high selectivity will be discussed in Section 3.3.  

 The temperature-dependent racemization of thiiranium ions has been well documented.
63

 

Thus, a temperature survey was undertaken to study both rate and enantioselectivity as functions 

of temperature. The rate of sulfenofunctionalization monotonously and rapidly decreased as a 

consequence of reaction temperature. A lower bound on reactivity was -20 
o
C, at lower 

temperatures the reaction time was unacceptably long. The enantioselectivity was temperature 

dependent, however much less so than expected. The e.r. of 58a decreased from 91:9 to 84:16 

when the reaction temperature was increased from -20 
o
C to rt (Scheme 30). In contrast, when 

thiiranium ions were generated stoichiometrically and allowed to equilibriate for 15 min at rt in 

the presence of excess olefin, complete racemization was observed.
63

 

 The observed differences in enantioselectivity suggested that the thiiranium ion lifetime 

is unsurprisingly much shorter in the presence of a nucleophile. Thus, even at elevated 

temperature, capture is sufficiently fast to protect most of the stereochemical integrity of the 

thiiranium ion. The stabilization was not solely related to the presence of a stabilizing phenyl 

group on the alkene. The stereochemical integrity of thiiranium ions derived from terminal 

olefins was also mostly retained at rt (78:22 vs 84:16, Scheme 30). In the interest of observing 

the true intrinsic selectivity of the catalyst for the formation of thiiranium ions derived from 

various alkenes, the optimized reactions were conducted at -20 
o
C. 

 

Scheme 30 
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 2.5.2. Preparative Intramolecular Sulfenoetherification. The substrate scope for alkene 

sulfenofunctionalization was designed to investigate the effects on rate, enantio- and site-

selectivity as a consequence of alkene parameters. These changes are discussed in turn. 

 2.5.2.1. Rate. The rate of the sulfenofunctionalization reaction was sensitive to the 

electronic parameters of the alkene. Increased electron density did not have a measurable effect 

on rate. In contrast, the presence of an electron-withdrawing -CF3 moiety resulted in substantially 

lower reactivity (Scheme 31). Even at elevated temperatures, full conversion was not achieved. 

The lack of reactivity observed for 58d bearing an electron-withdrawing ester group is consistent 

with this hypothesis. 

 

Scheme 31 

 The electron density of the alkene affects the reaction rate insofar as it affects the 

nucleophilicity of the alkene towards attack at the thiiranium ion. Thus, substantial changes in 

rate as a consequence of alkene electron density is consistent with thiiranium formation being 

turnover-limiting. The high-energy of charge localization on the sulfur as well as the formation 

of a strained three-membered ring are invoked to explain the high energy barrier towards 

formation. Comparison with other -iranium functionalizations of Group 16 and Group 17 

elements shows that the formation of the three-membered intermediate is uaually turnover-

limiting, in agreement with the current results.
62

 

 The rate of the reaction was not sensitive to steric parameters at the alcohol or along the 

tether (Table 9, entry 5 and 6). There also appeared to be no discernible difference in rate for 

aryl, hindered alkyl or unhindered alkyl (E)-disubstituted alkenes (Table 9, entries 1, 7 and 8). 

Thus, the electronic environment of the alkene is a much stronger predictor of cyclization rate 

than the steric parameter for (E)-alkenes.   

 The geometry of the alkene had a very prominent effect on rate. If the alkene geometry 

changed from (E) to (Z), the reaction proceeded more slowly. No rate difference was observed 
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between (E)- and 1,1-substituted alkenes. Given the small electronic differences between these 

alkene classes, steric considerations are likely affecting the rate of cyclization for (Z)-alkenes. 

This result stands in stark contrast with the relative rates of cyclization of cis- and trans-butene 

with Cl2 and MeSCl (Scheme 32).
78

 The dichlorination of cis-butene with Cl2 proceeds 1.25 

times faster than trans-butene, for sulfenochlorination krel of cis-butene to trans-butene is 18. In 

agreement with current results, krel of trans-butene to isobutylene is ~1 when MeSCl is used as 

the sulfenylating agent. The potential for sulfenyl chlorides to proceed through a qualitatively 

different thiiranium ion must not be forgotten. The alkene sensitivity may thus also represent 

differences in carbon charge density between the two thiiranium ions based on counterion. 

 

Scheme 32 

 The barrier to the aforementioned turnover-limiting thiiranium formation will be directly 

affected by the stability of the resulting thiiranium ion. The following ground-state arguments 

have been put forth to explain differences in reaction barriers towards thiiranium formation.
43

 

The reaction of PhSCl and cis-butene gives rise to two diastereomers syn-93 and anti-93 

(Scheme 33). In syn-93 the substituent on the sulfur atom is in an unfavorable steric interaction 

with the alkene substituents, whereas the selfsame interaction is avoided in anti-93. Therefore, 

formation favors the less hindered anti-93. The addition of a sulfenium moiety to trans-butene 

results in two enantiomers of 94, neither of which can escape eclipsing of one of the sulfur 

substituents. More generally speaking, for trans-alkenes the resultant thiiranium ion must 

necessarily be experiencing steric repulsion with one alkene substituent. Thus, the formation of 

thiiranium ions from trans-alkenes should be slower than cis-alkenes, which is borne out by the 

rate data for MeSCl. The slow reactivity of cis-alkenes 57j and 57k under the current reaction 

conditions cannot be explained by an analysis excluding participation of the Lewis base in the 

transition state.  
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Scheme 33 

 The steric difference between the sulfenium substituents in the current Lewis-base 

catalyzed process is much different. The presence of the Lewis base forces the sulfenium moiety 

to have the equivalent of two large substituents (Scheme 35). The thiiranium ions anti-93-LB* 

and syn-93-LB* derived from a cis-alkene would then necessarily have at least one large 

sulfenium substituent eclipsing both alkene arms, disfavoring reaction of the cis-alkene. For the 

corresponding thiiranium ion derived from a trans-alkene, each sulfenium substituent eclipses 

only one alkene arm. The two empty alkene quadrants (occupied by Csp3-H atoms) can 

accomodate the remaining steric bulk of the substituents. The presence of the Lewis base likely 

retards the reactivity of the cis-alkenes significantly, to the point that trans-alkenes are the more 

reactive substrates.  

 

Scheme 34 

   Alkene electron density increases monotonically with the number of alkene substituents. 

The reaction of monosubstituted alkene 57k was somewhat slower than that of disubstituted 57a 

(Scheme 35). No change was observed for 57m. The corresponding krel between trans-butene 

and 2-methyl-2-butene is 11 (Scheme 32), again suggesting that the Lewis base appears to be 

significantly modulating the relative reactivity of alkene isomers for hindered systems. The 

reaction of trisubsituted alkenes was very sensitive to the location of the methyl group. Altering 

the position of methyl group led to very slow reactivity, requiring elevated temperatures. Thus, 

the catalyst appears to be highly selective for trans-alkenes over other alkene geometries. The 

presence of a substituent (Z)- to the alkyl chain is also disfavored by the catalyst.   
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Scheme 35 

 Carboxylic acids were competent nucleophiles for the oxysulfenylation reaction. The 

rates did not deviate from the corresponding alcohols. Thus, even though they are much weaker 

nucleophiles (pKa ROH2
+
 -2.2, pKa RCO2H2

+
 -6.5)

66
 the rate of capture by carboxylic acids still 

outpaces the rate of thiiranium formation. In contrast, amides were unreactive. The pKa of the 

conjugate acid for the amide (-0.2)
66,74

 is lower than the pKa of MsOH (-2.6)
66

, therefore the lack 

of amide reactivity can be traced back to stoichiometric protonation of the amide (and 

concomitant decrease in formation of sulfenylation complex 50). 

 2.5.2.2. Enantioselectivity. The enantioselectivity of the sulfenofunctionalization process 

was consistently high for (E)-styrenes. Changes in the electron density of the alkene did not have 

a substantial effect on selectivity (Table 9, entries 1, 2 and 3). Increased steric bulk at the alcohol 

or in the tether also did not result in changes in enantioselecitivity. In contrast to the reactivity, 

enantioselectivity for styrenes appears to be well-controlled by the catalyst, and similar 

selectivities are observed. The similar selectivities observed are in good agreement with a 

common, configurationally stable thiiranium ion intermediate. The intrinsic selectivity of the 

catalyst for styrene substrates is directly relayed to the product enantiomeric ratio with little 

sensitivity to the electronic properties of the thiiranium ion. 

 Interestingly, sulfenofunctionalization of alkenes with two alkyl substrates resulted in 

improved enantioselectivity. The effect is not simply related to changes in the steric environment 

around the alkene, as no change in enantioselectivity was observed between substrates bearing 

methylene and methine carbons at the α position of the alkene. Thus, the initial thiiranium 

formation appears to more selective for unconjugated substrates. The position of the conjugated 

phenyl may have a deleterious effect on selectivity, as the slight increase in selectivity for 

disubstituted alkenes has been replicated in the amino- and carbosulfenylation reactions.
79,83

 For 
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unconjugated substrates, the alkyl chain could potentially adopt a more selective conformer that 

is not accessible to the conjugated substrate as a result of planarization of the alkene and arene 

moieties.   

 In contrast, changes to the alkene geometry significantly impacted enantioselectivity. 

Substrate (Z)- 57j of  could be sulfenofunctionalized with only 55:45 e.r. in contrast to the result 

with the (E)-57g (96:4, Table 9, entries 7 and 10). The lack of a detailed model for 

enantioselectivity prevents an in-depth analysis of this change. However, a quadrant model of 

selectivity has been proposed for similar alkene functionalization reactions.
19f

 In this model, the 

catalyst is sterically hindered in two quadrants of the alkene approach, requiring the alkene to 

orient itself in a manner that places the small substituents in these quadrants (Figure 11, shaded 

areas are occupied by the catalyst). For (Z)-alkenes, no low energy approach is possible, and the 

transition states leading to the two enantiomers do not have large energy differences, which 

results in the product being obtained in nearly racemic form. This catalytic model also predicts 

poor selectivity for other classes of alkenes. Indeed, both 1,1- and trisubstituted alkenes formed 

sulfenofunctionalization products with diminished e.r. However, the enantioselectivity was much 

less diminished for a monosubstituted alkene. In the framework of the quadrant model, this result 

can be explained if the two sterically bulky quadrants contain unequal amounts of space. Thus, 

the orientation of the monosubstituted alkene is well controlled in terms of which quadrant the 

alkyl group occupies. While the experimental data does not refute this interpretation, without 

further data on transition states of less selective alkenes any general model for selectivity 

remains speculative. 

Figure 11. The Quadrant Model for Enantioselectivity. 

 

 The properties of the nucleophile also did not have a substantial impact on the selectivity. 

Both hindered alcohol and carboxylic acids resulted in sulfenofunctionalization with similar 

selectivities (Table 9, entries 5 and 15). Primary amides did not cyclize and therefore the 

enantioselectivity could not be determined. Interestingly, the intermolecular 
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sulfenofunctionalization of a nitrile led to the isolation of the secondary amide with an e.r. 

similar to that of alcohols and acids, which implied that nucleophile identity does not affect 

product enantioselectivity. Extension of this process to protected amines and amides has since 

confirmed this observation.
79

 Nitrile addition to thiiraniums reversibly forms nitrilium ions, thus 

the thiiranium ion can be reformed under the reaction conditions.
42

 The high configurational 

stability of the thiiranium ion, in conjunction with the strong preference of hard nucleophiles for 

C-attack, prevents stereoerosion at this critical juncture.  

 From this data, the enantioselectivity-determining step is conjectured to be thiiranium 

formation. The results indicate that the inherent catalyst selectivity is affected by the geometry of 

the alkene, but not by alkene electron density, steric properties of the tether, nucleophile steric 

bulk or nucelophile identity. The latter three factors would have all been expected to 

significantly impact selectivity if the enantioselectivity-determining step were thiiranium 

capture. The enantioselectivity of the sulfenofunctionalization reaction is thus governed by two 

primary factors, both involving thiiranium formation: the intrinsic selectivity of the catalyst for 

sulfenium transfer to a reference alkene and the geometrical configuration of the substrate 

alkene. The predictable nature of sulfenofunctionalization selectivity on the basis of these factors 

was then further confirmed in the optimization process for amino- and carbonsulfenylation 

reactions. 

 2.5.2.3. Site Selectivity. The three-membered ring of a thiiranium ion is electrophilic at 

each of its constituent atoms. The propensity of hard nucleophiles to prefer C-attack over S-

attack has been covered in Section 2.2.3. However, C-attack can happen at either carbon of the 

thiiranium ion, leading to constitutional isomers (Scheme 36). For intramolecular cyclizations, 

the designations endo and exo are used to signify modes of cyclization in which the sulfur-

bearing methylene is endocyclic or exocyclic with respect to ring formation. In the case of 

sulfenofunctionalization with alcohols, high endo selectivity was observed for alkenes displaying 

an electronic bias. Similarly, sterically biased dialkyl substituted alkene 57h also cyclized with 

high endo selectivity whereas the unbiased alkene 57g afforded 58g and 59g with only 5:1 

endo:exo selectivity.  
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Scheme 36 

 The observed site-selectivity can result from a number of different equilibria. 

Specifically, the site-selectivity can be under kinetic or thermodynamic control. If under kinetic 

control, the observed site-selectivities would represent the intrinsic relative rates of endo and exo 

cyclization of alcohols. If the site selectivity is instead under thermodynamic control, the relative 

stability of the tetrahydrofuran and tetrahydropyran products would be responsible for the 

observed ratios. A different way of phrasing this question would be to state whether the 

thiiranium capture step is reversible. For reversible capture, the thermodynamically more stable 

product is expected to be formed, whereas for irreversible capture, the kinetic product should 

predominate.  

 The relative kinetic reactivity for the cyclization of seleniranium ions has been 

established as 5-exo>6-endo>3-exo>4-endo.
80

 Thus, for a kinetically controlled cyclization of 

analogous thiiranium ions, the 5-exo product is expected to predominate. Instead, the 6-endo 

product was obtained, in accord with Markovnikov rules for nucleophilic attack. Notably, this 

result is also in accordance with the cyclization of haliranium ions, which generally proceed with 

high Markovnikov selectivity.
17

 The nature of the electrophilic atom in the -iranium ring appears 

to strongly affect site selectivity.  

 To ascertain the reversibility of thiiranium capture isomerization studies of exo-products 

59k, 59g and 59j were conducted (Section 3.2.3). Whereas terminal and (Z)-alkene derived 

thiiranium ions did not isomerize under the reaction conditions, thiiranium ions from (E)-alkenes 

did. Thus the high enantioselectivity appears to be at least partially due to the thermodynamic 

preference for tetrahydropyrans over tetrahydrofurans. Unfortunately, the exo-product could not 

be obtained in sufficient quantities from the cyclization of styrenes to test whether these 

substrates also undergo thermodynamic equilibriation. In this case, the Markovnikov and kinetic 

selectivity are working in conjunction, thus making it difficult to deconvolute their respective 

contributions. 

 Interestingly, cyclization of carboxylic acid 57o proceeded with high exo selectivity. 

There is substantial evidence showing that carboxylic acid cyclizations proceed under different 
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selection rules than alcohols based on both protonation state and -iranium source.
17

 Therefore, no 

direct comparison with the aforementioned alcohols is drawn.  

 2.5.3. Preparative Intermolecular Sulfenoetherification. The reactivity trends did not 

change when intermolecular sulfenylations were tested. Sulfenofunctionalization of 4-octene 

proceeded within 48 h at the same temperature as 57a. A larger difference was observed for 1-

octene, as the temperature needed to be raised higher for good reactivity. As expected, no rate 

change was observed as a consequence of increased steric encumbrance around the alkene 

moiety. This data suggests that thiiranium capture is faster than thiiranium formation during the 

intermolecular sulfenofunctionalizaiton process, and by extension during the intramolecular 

sulfenofunctionalization process.  

 The enantioselectivity for intermolecular sulfenofunctionalizations is mildly diminished 

compared to the intramolecular case. Thus, whereas 57g afforded sulfenofunctionalization 

products with 96:4 e.r., the corresponding intermolecular reaction with 4-octene proceeded with 

only 92:8 e.r. A similar decrease was observed in the reaction a terminal alkene. An even greater 

decrease was observed when the alkene was substituted at the α-position. These results suggest 

that a small amount of racemization may be occurring during the intermolecular 

sulfenofunctionalization reaction. In the intermolecular pathway, the molecularity of capture 

changes from unimolecular to bimolecular, resulting in a decrease in effective concentration of 

the nucleophile. The attendant retardation of the capture step leads to a direct increase in the 

lifetime of the thiiranium ion, which can then racemize by any of the pathways mentioned in 

Section 2.2.3 or by other as-yet uncharacterized mechanisms. The overall decrease is minor, 

which suggests that thiiranium stereointegrity is still retained to a large extent in the course of 

intermolecular sulfenofunctionalization. 

 In the intermolecular sulfenofunctionalization of 1-octene, high selectivity for internal 

capture was observed. There does appear to be a substantial bias towards capture at the more 

substituted position, as the thermodynamic difference between the two prodcuts is unlikely to 

account for the high selectivity. There impact of steric bias was modest, with the less hindered 

position being favored 4:1 in the sulfenofunctionalization of 88d. It is uncertain whether this is a 

kinetic or thermodynamic preference. Nitrile capture was found to be reversible as well, and 

even with excess nitrile in solution, the yield was modest at best. The site selectivity of nitrile 

capture for substrates other than 4-octene were not investigated. Further experimentation with 
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amines and amides showed that they, too, show substrate and condition-dependent reversibility 

of capture.   

 2.6. Conclusions. 

 The application of Lewis base catalysis to sulfenofunctionalization enabled the 

development of the first catalytic, enantioselective version of this venerable reaction. The current 

system displayed best results for trans- or monosubstituted, electron-rich or electron-neutral 

alkenes. The most relevant factor impacting rate was alkene electron density; impacting 

enantioselectivity was alkene geometry; and impacting site selectivity was the reversibility of 

capture and charge stabilization. This initial set of substrates also revealed clues regarding the 

turnover-limiting and enantiodetermining steps. The ability to observe and characterize reaction 

intermediates during the course of these studies stimulated a deeper investigation into the 

mechanism of the oxysulfenylation reaction.  
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Chapter 3: Formulation of Mechanistic 

Framework for the Catalytic, Enantioselective 

Sulfenylation Reaction. 

 3.1. Introduction.  

 The experimental results from the sulfenofunctionalization of alkene substrates hinted at 

the turnover-limiting and enantiodetermining steps. The optimized catalyst was useful with many 

substitution patterns, and selectivity was diminished as a result of changes in alkene geometry. 

The reaction was quite selective for trans- and monosubstituted alkenes. In an effort to improve 

catalyst design and to better understand the parameters that govern reactivity and selectivity, a 

deeper mechanistic investigation of the oxysulfenylation reaction was conducted  

 There have been extensive kinetic studies on the stoichiometric sulfenofunctionalization 

reaction.
32

 The reaction was found to be second order overall, consistent with an intermolecular 

rate-determining step. However, the order was not uniform and changed as a consequence of 

solvent polarity. A Hammett investigation found that the reaction had a negative σ value, which 

implied substantial buildup of positive charge at the benzylic position of styrenes undergoing 

sulfenofunctionalization. This evidence led to the conclusion that thiiranium ion formation is 

rate-determining in stoichiometric sulfenofunctionalization reactions with sulfenyl chlorides.  

Based on known mechanisms for electrophilic AdE functionalization of alkenes, a 

catalytic cycle can be formulated and is depicted in Figure 12.
81

 The reaction begins with 

displacement of the ionizable group on the sulfur electrophile by the chiral, non-racemic Lewis 

base. This results in a chiral, non-racemic sulfenylating reagent 95 that should also be a better 

electrophile due to increased Lewis acidity on the sulfur atom. The sulfenyl transfer from 95 to 

an unsaturated species can then proceed to generate thiiranium ion 96. Species 96 is most likely a 

high-energy species and will undergo nucleophilic attack by σ-nucleophiles in solution to afford 

protonated intermediate 97. Deprotonation of 98 leads to the desired product. Notably, the 

balanced equation yields only phthalimide as a byproduct, as the acid component solely acts in a 

cocatalytic manner. 
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Figure 12. Proposed Mechanistic Cycle for Enantioselective Sulfenofunctionalization. 

 

The postulated mechanism offers a number of testable hypotheses regarding the catalytic 

cycle to be formulated. There are two microscopic steps that could conceivably be the rate-

determining step. Electrophilic addition of the olefin to generate 96 forms a charged, strained 

species. Due to the high energy of the resulting products, a late transition state where bond 

breaking is more advanced than bond making can be envisioned, leading to a high barrier. If this 

step is rate-determining a significant effect of alkene electron density should be observable, as 

more electron rich alkenes should undergo more facile addition.  Capture of 96 by a σ-

nucleophile in solution, as well as deprotonation of 95 all appear to be low-barrier processes. 

Alternatively the formation of 95 could also be rate-determining, with subsequent thiiranium 

formation being favored due to scission of the weak LB-S dative bond. Identification of the 

catalyst resting state should be able to differentiate between the two alternatives.  

The formation of an enantiomerically enriched product requires an irreversible 

enantiodetermining step. Either the formation of 96 or 97 can fulfill this requirement. In the 

former scenario, thiiranium formation is irreversible. This implies that the catalyst, which is most 

likely thiophilic to some extent, is not sufficiently strong to abstract sulfur from thiiranium ions. 
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Subsequent stereospecific nucleophilic capture and deprotonation leads to the desired product. In 

this case the enantioinduction is derived from the catalyst being able to discriminate between 

enantiotopic olefin faces. In the latter scenario, the catalyst is sufficiently strong to form the 

thiiranium ion reversibly. Enantioinduction must then necessarily be derived from the relative 

rates of capture for complex 96 and its diastereomer. This mechanism would require that the 

catalyst remain associated with the thiiranium ion after formation, as decomplexation before 

capture would lead to racemic products. These considerations were taken into account during the 

design of experiments to determine the enantiodetermining step.  

  3.2. Goals of the Project.  

 The mechanistic investigations presented here focused on determining the following 

properties of the sulfenoetherification process: (1) the order of the reaction in each reactant, (2) 

the physicochemical properties of the active sulfenylating agent, (3) the constitutional and 

configurational stability of products under the reaction conditions, (4) the turnover-limiting and 

enantiodetermining steps and (5) the origin of rate differences and enantioselectivity between 

substrates.   

 3.3. Results.  

 3.3.1. Kinetic Experiments. A full investigation of the kinetic parameters was undertaken 

to identify the rate  equation. The conversion of 99 was monitored by 
19

F NMR (Fig. 2). Catalyst 

100 was chosen because the rates of reaction could be followed easily over a wide range of 

temperatures and concentrations. The order in each component was determined by the method of 

initial rate kinetics (Figures 12-15). Reactions, done in triplicate, were followed to 10% 

conversion and the initial rates were plotted against concentration to obtain straight lines. 

Standard deviations are displayed on the plots. The activation parameters of the reaction were 

obtained by carrying out the reactions in a temperature range from –20 
o
C to 20 

o
C (Figure 17). 
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Figure 13. Dependence of Reaction Rate on Substrate Concentration. 

 

Figure 14. Dependence of Reaction Rate on Electrophile Concentration. 
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Figure 15. Dependence of Reaction Rate on Catalyst Concentration. 

 

Figure 16. Dependence of Reaction Rate on Acid Concentration. 

 

  

  

y = 1.0044x - 2.2875 
R² = 0.9942 

-5 

-4.8 

-4.6 

-4.4 

-4.2 

-4 

-3.8 

-3.6 

-3.4 

-3.2 

-3 

-2.5 -2 -1.5 -1 

Catalyst Concentration 

Catalyst 
Concentration 

Linear (Catalyst 
Concentration) 

Linear (Catalyst 
Concentration) 

log [catalyst] 

lo
g  k 

lo
g  k 

log [catalyst] 

lo
g  k 

lo
g  k 

-5 

-4.9 

-4.8 

-4.7 

-4.6 

-4.5 

-4.4 

-4.3 

-4.2 

-4.1 

-4 

-2 -1.5 -1 -0.5 

Acid Concentration 

Acid concentration 

lo
g  k 

lo
g  k 

log [acid] 

lo
g  k 

lo
g  k 



61 

 

Figure 17. Dependence of Reaction Rate on Temperature. 

 

 The reaction was found to be first order in both catalyst and substrate. Zeroth order 

kinetics was observed for the electrophile. Interestingly, when the acid (MsOH) dependence was 

investigated, the rate dependence was found to be parabolic with a maximum at ca. 0.6 equiv. 

The enthalpy of the reaction was 8.9 +/–0.2 kcal/mol and the entropic contribution was 52.7 +/–

0.6 e.u. At 298 K, the entropy term is the primary contributor to the free energy of activation of 

24 kcal/mol. This data is summarized in Figure 18. 

Figure 18. Kinetic study of the Lewis base catalysed sulfenofunctionalisation.  
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 3.3.2. Isolation of the Catalytically Active Species. The proposed catalytically active 

species [(R2N)3P=Se–SPh]
+
X

–
 is assumed to transfer the sulfenium ion to an alkene, forming a 

thiiranium ion. Detailed knowledge about the stereostructure of the active species could help to 

understand the origin of enantioselectivity. Accordingly, the isolation and crystallographic 

characterisation of [(R2N)3P=Se–SPh]
+
X

–
 was investigated. 

  The requirement of a Brønsted acid co-activator for 56 is well-documented.
68

 Thus, 

when 56 was combined with 62b, no change in the 
31

P spectrum was observed. Upon addition of 

MsOH, the signal for 62b at 91.6 ppm is replaced by a signal at 60.4 ppm. The peak at 60.4 ppm 

can also be observed under the reaction conditions for slower-reacting substrates such as 57d or 

57j, indicating that the catalyst-resting state is the activated complex (no peak at 91.6 ppm was 

observed under these conditions). The 
31

P shift is comparable to other substrates that have the 

[P=Se-C]
+
 moiety.

82
  

Other selenophosphoramides that have been synthesized displayed similar upfield shifts 

in 
31

P NMR spectra after exposure to sulfenylating agents.
83

 The resulting compounds were 

persistent. After conversion of 62 to 95, no changes in 
31

P NMR spectra were observed after 4 d. 

The remarkable stability of putative complex 95 encouraged studies towards the crystallization 

and characterization of this species.   

First, a crystal structure of the parent species was obtained by crsytallization from 

CH2Cl2/pentane. The Se-P-Nendo angle was 109.0
o
 whereas the corresponding Se-P-Nexo angle 

was 111.6
o
. The P-center is almost completely tetrahedral. The P-Se bond distance is slightly 

shorter at 2.098 Å compared to HMPA(Se), which has a P-Se bond length of 2.120 Å.
84

 The 

packing of 62b was disordered at the external amine moiety, which suggests that the amine 

component can easily rotate. The rate of rotation of the groups on the exocyclic amine is 

substrate dependent and broadening of 
31

P NMR spectra was observed for the more hindered 

62e.
79

 Notably, electron density for the azepane carbons bound to nitrogen were localized close 

to the P-Se axis. Thus, it appears that the methyl groups on the endocyclic nitrogens act as 

gatekeepers, forcing the substituents on the exocyclic amine to adopt an eclipsing conformation 

with the P-Se bond. The N-Se bond lengths were within a 0.05Å range of each other, elongation 

was not observed.   
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Figure 19. Crystal Structure of Selenophosphoramide (R)-62b. 

   

Next, crystallization of sulfenylating agent 95 was attempted. Orienting experiments 

focused on the identification of suitable conditions for generating the active species 

[(R2N)3P=Se–SPh]
+
X

–
 without any byproducts that would disrupt the crystallization process. The 

first approach relied on the reaction of a selenophosphoramide with [PhS(SMe2)]SbCl6
85

 which 

had been used as an of the S-phenyl transfer agent to alkenes (Scheme 37, equation 1). This 

reagent was also competent in transferring the sulfenyl moiety to the catalyst forming the active 

species along with volatile Me2S as the sole byproduct. The formation of the active species was 

confirmed by the appearance of a diagnostic 
31

P resonance at 62.4 ppm. Unfortunately, during 

the crystallization attempts, a disproportionation reaction occurred reducing the sulfenyl group to 

PhSSPh while oxidizing the selenophosphoramide to the dicationic dimer [(R2N)3P=Se–

Se=P(NR2)3]
2+ 

2SbCl6
–

 (Scheme 37, equation 2). An X-ray crystal structure of the latter could be 

obtained, which demonstrated how the groups in the actual active species might be oriented. 

 

Scheme 37 

 In this complex, the N-P-Se angles are distinct, with the two endo nitrogens having N-P-

Se angles of 108.0
o
 and 115.1

o
. The Nexo-P-Se angle is also much more acute, at 105.4

o
. Thus, in 

the dimeric complex, all three nitrogens appear to be differentiated, and the phosphorus center is 

more planarized. The P-Se angle is greatly lengthened to 2.244 Å. The formal bond P-Se bond 

order is closer to a single bond with positive charge on the phosphorus as opposed to a P-Se 

double bond with charge on the selenium. The Nexo-P distance is 1.618 Å, compared to 1.633 and 

1.638 Å for the endocyclic nitrogens. The Cring-Nexo-P-Se dihedral is 31
o
, which suggests some 
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eclipsing interaction between the Nexo substituent and the Se-substituent. The Nexo-P-Se-Se 

dihedral is -162.8
o
 and the Se-substituent points directly over the biaryl ring. Experimentally, the 

disproportionation of sulfenylated selenophosphoramides could not be avoided. Eventually, the 

crystal structure of a sulfenylated sulfenophosphoramide was isolated by Dr. E. Hartmann, which 

further assisted the investigation.
40

    

Figure 20. Crystal structure of bisselenophosphoramide 102. 

   

 3.3.3. Stability of Thioethers.  The site-selectivity ratios obtained in the 

sulfenofunctionalization of alcohols can be the result of kinetic or thermodynamic capture. If 

capture is reversible, as evidenced in the nitrilium ion case, the observed isomer ratios would be 

expected to be thermodynamic. However, this possibility also raised the concern that 

enantioselectivity could be decreased if thiiranium ion stability was impacted as a consequence 

of reversible capture. In order to determine the configurational and constitutional stability of the 

products under the reaction conditions, isolated thioethers were resubjected to the reaction 

mixture. The thioethers under investigation were found to not be configurationally stable, and a 

range of behavior with regards to endo/exo interconversion was observed. When 59k was 

resubjected to the reaction mixture, no isomerization was observed at 23 
o
C (Table 11, entry 1). 

In contrast, 59j isomerized at 23 
o
C but not at -10 

o
C (entries 3 and 4). Furan 59g was found to 

isomerize quickly at 23 
o
C and slowly at -20 

o
C (entries 5, 6). The constitutional stability of the 

products appears to be dependent on the nature of the thiiranium intermediate: products that are 

obtained from the formation of less stable thiiranium ions isomerize slower. This data is 

consistent with regeneration of the thiiranium ion in solution from the products and reversible 

capture of the thiiranium ion by the nucleophile.
68

 This led to interesting questions regarding the 

stereochemical stability of the thiiranium ions; if they are accessible in solution, can any 

racemization of the thioethers be detected?  In all cases (59k, 59j and 59g), the re-isolated 
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material was obtained with 100% e.s. (entries 2,4 and 6). It can be concluded that the 

stereochemical purity of the products do not erode under the reaction conditions.
63

 

Table 11. Determination of Constitutional and Configurational Stability of Products.   

 

entry thioether starting 

endo/exo
a
 

temp, 
o
C time, h final 

endo/exo
a
 

e.r.
b
 e.s., %

c
 

1 59k 1:50 23 3 1:50 - - 

2 59k - -10 48 - 83:17 100 

3 59j <1:99 23  3.5 3.5:1 - - 

4 59j <1:99 -10 48 <1:99 - - 

5 59g 1:8 23 16 30:1 96:4 100 

6 59g 1:1 -20 48 5.5:1 96:4 100 

a
Determined by 

1
H NMR analysis of crude reaction mixture. 

b
Determined by CSP-SFC analysis. 

c
e.s. = [eestart/eefinal]*100% 

 3.4. Discussion.  

3.4.1. Reactant Order. The reaction was found to be first order in catalyst and substrate 

but zero order in electrophile. Thus, whereas both catalyst and alkene participate in the turnover-

limiting step, the electrophile does not. The various 
1
H and 

31
P NMR experiments demonstrated 

that 62b is quickly converted to complex 95 under the reaction conditions. Conditions where 

there is less electrophile than catalyst were not tested.  

 The order in both substrate and catalyst was first order. Thus, the thiiranium ion is not 

ligated by more than one catalyst at any point before the turnover-limiting step. The reaction was 

also pseudo-first order overall. The concentraion of sulfenylating agent stays constant throughout 

the reaction, which implies that neither the Lewis base nor the sulfenylating complex experience 

product inhibition.  

The conversion of 56 and 62b to 95 is much faster than thiiranium formation. In addition, 

the equilibrium between 62b and 95 is very highly in favor of 95. Consequently, the catalyst is 
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saturated with electrophile in the initial phase of the reaction. Importantly, the concentration of 

sulfenylated catalyst does not change as a function of electrophile concentration above 1 equiv of 

electrophile with respect to catalyst.  Thus, with an excess of electrophile over catalyst zero-

order kinetics for the electrophile is obserbed. Properly, the electrophile is pseudo-zero order, as 

order in electrophile would be expected to be observable if less 56 than 62b were present in the 

reaction mixture.
86

  

 The order in acid is curved. Curvature in kinetic plots usually results from a change in 

mechanism. At low concentration, the order in acid appears to be close to 1. At these 

concentrations, there is likely insufficient acid to fully convert all of the catalyst to the 

sulfenylating complex. This conclusion agrees with results from these laboratories, which 

demonstrated that 3-4 equiv of acid with respect to catalyst is necessary for complete formation 

of 95e (R = i-Pr) from selenophosphoramide 62e.
87

 If this were the entire case, the curvature 

would be expected to level off and flatten once the catalyst is saturated. Instead, a downward 

curvature is observed. Excess methanesulfonic acid slows the reaction down. A possible 

explanation is protonation of the substrate. The presence of positive charge would disfavor the 

formation of a positively charged species such as a thiiranium ion. Thus, excess acid serves to 

reduce the effective concentration of substrate in the reaction. The overall rate equation is then 

shown in Figure 18. Alternatively, the addition of acid may result in changes in the overall 

dielectric of the solvent mixture. Sulfonic acids strongly hydrogen bond to each other in 

nonpolar media, and thus may be forming locales of higher dielectric constant.
88

 These areas 

could then potentially sequester acid or substrate, lowering the effective concentration. The 

current hypothesis based on the study of the related amino- and carbosulfenylation reactions is 

substrate protonation.
87

  

 Eyring analysis of the reaction was performed in order to obtain activation parameters for 

the reaction. The results were in qualitative agreement with calculations performed by Dr. Hao 

Wang.
40

 The activation parameters of ΔH
‡
 = 8.9 kcal/mol and ΔS

‡
= 52.7 e.u. imply a highly 

ordered transition state in which the reaction barrier is primarily entropy-driven. This profile 

results from the organizational requirement wherein the alkene must approach the catalyst in a 

highly restricted conformational landscape. In fact, the entropic barrier is comparable to those of 

other highly-conformationally-restricted, bimolecular transition states such as those of Diels-

Alder reactions
89

, MBH reactions
90

 or the Lewis base promoted aldol addition of trichlorosilyl 
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enolates.
91

 Notably, the entropic parameter is much larger than that for the simple stoichiometric 

sulfenofunctionalization of alkenes. Thus, it appears that while the catalyst substantially 

increases the entropic cost of the reaction, it reduces the enthalpic parameter by an even greater 

amount.  

 3.4.2. Turnover-Limiting Step. Transfer of the sulfenium ion to the alkene occurs from 

the sulfenylated selenophosphoramide [(R2N)3P=Se–SPh]
+
X

–
. First order kinetic behavior in both 

substrate and catalyst, as well as second-order overall kinetic behavior suggests that thiiranium 

ion formation is the turnover-limiting step of the reaction. If thiiranium ion capture were 

turnover-limiting, first order overall kinetic behavior would be expected, and species 95 should 

not be visible in the reaction. Furthermore, buildup of thiiranium ion 96 over the course of the 

reaction is not observed, which would have been the case for turnover-limiting thiiranium ion 

capture. The formation of 95 cannot be turnover-limiting either, as in that case, no order in 

alkene should be observed. The catalytically active species [(R2N)3P=Se–SPh]
+
X

–
, represents the 

resting state of the catalyst. Its existence is supported by 
31

P NMR spectroscopic analysis, in 

which the diagnostic signal for 62 (80–90 ppm, depending on the catalyst structure) disappears 

and a new resonance at ca. 60 ppm is observed, which is diagnostic fo 95. This value is in accord 

with previously reported, analogous compounds of the type [(R2N)3P=Se–YAr]
+
X

–
.
16,87

  

 3.4.3. Origins of Selectivity. In the process of catalyst optimization, product 

enantioenrichment was observed to vary widely with the choice of exocyclic amine. The crystal 

structures obtained for the first time delivered a structural basis of selectivity. The substituents 

on the exocyclic amine in 102 serve to orient the Se-S bond over one of the biaryl rings. The 

approach of the alkene, which occurs orthogonal to the Se-S bond to maximize overlap with the 

lone pairs on the sulfur, then proceeds in close proximity to the stereogenic axis of 102.  
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Table 12. Transition States at the B3LYP/6-31G(d) level with CPCM Correction.
40

 

a 
 

 

 

 

b 
 

 

 

 

 

 

 

 

     

R = H 

H-TS-major1 

G = 0.0 kcal/mol 

H-TS-major2 

G = 1.5 kcal/mol 

H-TS-minor1 

G = 1.7  kcal/mol 

H-TS-minor2 

G = 3.0  kcal/mol 

     

R = Me 

Me-TS-major1 

G = 0.0 kcal/mol 

Me-TS-major2 

G = 1.8 kcal/mol 

Me-TS-minor1 

G = 3.5  kcal/mol 

Me-TS-minor2 

G = 5.4  kcal/mol 
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Table 13. Transition State Models and Distortion Interaction Values for Selected 

Transition States.
40

 

 

 
 

 

 
 

 

 

 
Edist_A

a Edist_B
b Ed Ei Eact

c H G 
(C=C)-

*(S-Se)d

H-TS-major1 9.6 26.1 35.7 -24.8 10.9 (0.0) 11.9 (0.0) 23.9 (0.0) 63.3 (6.7) 

H-TS-major2 10.7 27.4 38.1 -25.6 12.5 (1.6) 13.5 (1.6) 25.4 (1.5) 57.5 (0.9) 

H-TS-minor1 10.4 28.1 38.5 -25.9 12.6 (1.7) 13.6 (1.7) 25.6 (1.7) 64.2 (7.6) 

H-TS-minor2 13.3 33.5 46.8 -32.2 14.6 (3.7) 15.2 (3.3) 26.9 (3.0) 56.6 (0.0) 

Me-TS-major1 7.8 22.8 30.7 -19.9 10.8 (0.0) 11.2 (0.0) 25.0 (0.0) 61.7 (7.3) 

Me-TS-major2 9.0 27.2 36.1 -22.4 13.7 (2.9) 14.7 (3.5) 26.8 (1.8) 55.9 (1.5) 

Me-TS-minor1 9.4 28.6 38.0 -23.0 15.0 (4.2) 15.3 (4.1) 28.5 (3.5) 62.1 (7.7) 

Me-TS-minor2 9.1 29.9 39.0 -23.6 15.4 (4.6) 15.5 (4.3) 30.4 (5.4) 54.4 (0.0) 

 

The isolation and crystallization of 102 enabled a more detailed transition state model to 

be fromulated. The study of the competing transition states resulting from (Si) and (Re)-face 

attack of the alkene did not show any steric basis for energy difference. An interaction/distortion 

analysis identified catalyst distortion as the primary contributor to the energy difference in the 

transition states.
40

 Thus, the favored approach H-TS-major 1 is 1.7 kcal/mol more stable than H-

TS-Minor 1 at 253 K. The decomposition of this value into its components shows that the H-TS-

Minor 2 has a stronger interaction between sulfenium and alkene, with a difference of -1.1 

kcal/mol. However, the total distortion of the individiual components is much worse, at a total of 

+2.8 kcal/mol. This distortion drives the overall energy gap. The gapi is even bigger for sulfenyl 

groups with 2,6-substituents. The difference between Me-TS-Major 1 and Me-TS-Minor 1 is 3.5 

kcal/mol. The distortion energy in this case is a sizable 7.3 kcal/mol, which dominates the 



70 

 

interaction process. The low reactivity of catalysts of family 62 appears to be partially driven by 

the problems the catalyst encounters in accomodating the alkene moiety. The alternative 

transition states leading to the same enantiomer, designated TS-2, are uniformly higher in energy 

than TS-1 and are not expected to substantially contribute to the enantioselectivity.    

Thiiranium ion formation is also likely the enantiodetermining step. The competing 

hypothesis for the enantiodetermining step in accord with  Figure 12 is thiiranium capture. For 

such a mechanism to be operative two conditions need to be satisfied: (1) the "thiiranium ion" 

must exist in the form of a charged sulfurane, or at least in very tight association with the Lewis 

base 62 and (2) the Lewis base must not be able to exchange thiiranium ions once formed. There 

is no direct evidence that contradicts these requirements. However, in numerous iterations of the 

sulfenofunctionalization reaction, neither the elemental nature, nor the electronic nor the steric 

properties of the nucleophile was found to have a significant effect on enantioselectivity.
40,83,87

 In 

the regime of enantiodetermining thiiranium capture, the nucleophile, as opposed to the alkene, 

would be expected to dominate the selectivity effects, as the transition state for capture is 

expected to vary with nucleophile properties. The uniform selectivity observed as a consequence 

solely of alkene geometry is inconsistent with enenatiodetermining capture.  

An analysis of the transition state for cis-alkenes revealed why selenophosphoramide 

catalyst family were unsuitable for the functionalization of cis alkenes.
83

 The competing 

transition states for cis thiiranium ion formation are not differentiated on the basis of their 

substituent size, and both substituents encounter unfavorable steric clashes with the S-aryl 

moiety. These interactions account for both the low reactivity and low selectivity observed for 

(Z)-alkenes. The combined calculations did not suggest any possible improvements in catalyst 

architecture for increased selectivity. However, they were successful in predicting increased 

selectivity as a consequence of increased bulk of the sulfenylating agent. The combination of 

crystal structures and calculations directly led to the development of electrophile 103, which 

showed a significantly improved selectivity profile for the sulfenofunctionalization of alkenes 

(Scheme 38). Because the energy difference between the competing transition states comes about 

as a result of catalyst distortion, no simple modifications to increase the selectivity for poorly 

performing substrate classes were found. The design and synthesis of catalysts to expand the 

alkene scope for enantioselective sulfenofunctionalization is left to future generations.  
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Scheme 38 

 3.4.4. Configurational and Constitutional Stability of Products. Thiiranium ions were 

found to be uniformly configurationally stable under the reaction conditions. In all cases, no 

change in enantioselectivity was observed after resubjecting the products to the reaction 

conditions. For furan 59k this result is inconclusive, as there were no indications that the 

thiiranium ion reformed under the reaction conditions. However, in the case of 59g and 59h, 

although isomerization was observed, complete enantiospecificity was retained. Mechanistically, 

reformation of the thiiranium ion under the reaction conditions essentially significantly prolongs 

the thiiranium ion lifetime in solution, as it now spends some non-negligible portion of its time 

in thiiranium ion form. However, the lack of enantioerosion implies that capture still 

outcompetes racemization processes. Thus, the mechanistic groundwork developed during the 

intermolecular stoichiometric sulfenylation helped identify conditions where enantioenrichment 

is retained even in the presence of excess olefin and other potential Lewis bases. Notably, 

phthalimide incorporation was not observed in this case. The fast intramolecular cyclization 

outcompetes the intermolecular capture process even when the thiiranium ion can be reformed.  

 The constitutional integrity of the thiiranium ions was not constant across the substrates. 

Thiiranium ions isomerized in direct correlation with their reactivity in the reaction, i.e. the more 

reactive substrates reformed their thiiranium ions faster. Re-formation of the thiiranium ion is the 

microscopic reverse reaction of thiiranium capture. Thus, the energy barrier to re-formation will 

be dictated both by the strength of the nucleophile and the stability of the thiiranium ion. Since in 

all cases the nucleophiles are alcohols, the energy associated with nucleophile departure is close 

to constant across the thiiranium ions. Consequently, thiiranium ions that are more stable, i.e. 

have lower ground-state energies can re-form faster. Thus, a direct comparison to the initial 

thiiranium ion formation can be drawn. And since thiiranium formation is turnover-limiting, a 

clear downward trend in reactivity (i.e. higher energy to initial formation) can then be translated 

into a clear downward trend in rate of reformation. 
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 3.5. Conclusions. 

 The kinetic and crystallographic studies described in this section definitively established 

both the properties and the behavior of intermediate 95. The formation of 95 from 62b proceeds 

quickly in the presence of MsOH and 56. Sulfenylating agent 95 was observed and characterized 

spectroscopically. The reaction of 95 with alkene 57 was established as the turnover-limiting step 

of the reaction based on the order of the reactants. The turnover-limiting thiiranium ion 

formation step accounts for the dependence of reaction rate on alkene electron density and its 

insensitivity to the nucleophile. The enantiodetermining step was assigned as thiiranium ion 

formation as well, albeit indirectly. The definitive reaction, which is to observe the stereoerosion 

during the isomerization of products in the presence of the opposite enantiomer of the catalyst, 

has not yet been performed. However, the insensitivity of enantioselectivity to the nucleophile 

component, coupled with its high sensitivity to changes in the alkene component, also suggest 

that thiiranium ion formation is enantiodetermining. A comprehensive model for the 

enantioselectivity could not be generated from calculation of the transition state. Instead, the 

diastereomeric transition states leading to the two enantiomers were found to primarily differ in 

distortion energy. However, in conjunction with X-ray crystallography data, the unique 

selectivity of the catalysts of family 62 could be explained: the exogenous amine substituent 

forces the SAr moiety over the biaryl backbone. The approach of the alkene over the biaryl 

backbone spiro to the SAr group induces conformational changes in the catalyst that then dictate 

selectivity. 

 At this juncture, the project diverged in different directions. Development of novel 

electrophiles for sulfenofunctionalization was performed by Dr. Eduard Hartmann. The use of 

carbon nucleophiles for thiiranium capture was performed by Drs. Alex Jaunet, Sergio Rossi and 

Matthew Webster. The aminosulfenylation reaction was taken up by Mr. H. M. Chi. The 

extension of the sulfenylation to new classes of oxygen-bearing nucleophiles then constitutes the 

remainder of this thesis.   
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Chapter 4:  Catalytic Enantioselective 

Functionalization of Alkenes with Phenols 

 4.1. Introduction. 

 The initial substrate survey and subsequent mechanistic experiments painted a more 

complete picture of sulfenofunctionalization. The successful extension of Lewis base catalysis 

principles to carbosulfenylation and aminosulfenylation has greatly expanded the nucleophile 

scope of the sulfenofunctionalization reaction.
79,83,134

 So far, both alcohols and carboxylic acids 

proved to be competent nucleophiles. However, phenols, which constitute the other major class 

of oxygen nucleophile had not been tested so far. Thus, the extension of sulfenofunctionalization 

chemistry to the functionalization of phenols was undertaken. 

 4.2. Background. 

 One of the simplest benzofused heterocycles, the chroman core is a privileged scaffold 

for bioactive compounds, with representatives displaying antioxidant, antitumor, antibacterial, 

and other therapeutic properties (Chart 3).
92

 Its presence in pharmaceutically relevant targets has 

led to a variety of methods for its enantioselective construction. 

Chart 3 

 

 The importance of the chroman motif in organic molecules is reflected in the myriad 

protocols that have been developed for its synthesis. Five major disconnections have been 

identified, each of which leads to a different starting material (Scheme 39). These are: (a) 

cyclization of a 2-allylphenol 104, (b) C-H functionalization of an O-alkyl phenol 105, (c) 

intermolecular double Michael reaction of a phenol, 106, with an unsaturated carbonyl 
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derivative, (d) intramolecular Friedel-Crafts-type cyclization of an O-allylphenol 107 and (e) 

direct functionalization of the 2-position of the parent chroman 108. 

 

Scheme 39 

 To date, for each of the pathways (a)-(c), enantioselective versions have been developed, 

whereas pathway (d) is diastereoselective due to the presence of a stereogenic center. The 

enantioselective variant of pathway (b) has been accomplished under Rh(II) catalysis,
93

 pathway 

(c) is amenable to enantioselective catalysis by secondary amines,
94

 whereas pathway (d) can be 

accessed either as a two-step epoxidation-ring opening process or in a single step using transition 

metal catalysis.
95

 Each of these pathways have distinct substitution requirements that are 

reflected in the products they afford. Notably, none of these approaches directly lead to the 2- or 

2,3-difunctionalized chromans that are accessible through pathway (a).  

 Because many important natural products bear the 2-substituted chroman motif, 

substantial effort has been devoted to developing enantioselective reactions that proceed through 

pathway (a).
96

 Selected examples include: (1) asymmetric allylic substitution, which proceeds 

through capture of an allylpalladium intermediate by the phenol oxygen (Scheme 40a);
97

 (2) 

tandem oxidative functionalization/Heck-coupling, wherein a similar allylpalladium intermediate 

is generated from an isolated alkene (Scheme 40b);
98

 (3) oxidative functionalization of a skipped 

diene precursor to form an allylpalladium complex (Scheme 40c);
99

 and (4) Lewis-base catalyzed 

cyclofunctionalization of the γ-position of an ynoate with a phenolic hydroxyl group (Scheme 

40d).
100
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Scheme 40 

 Despite the impressive selectivities and obvious utility of these methods, they are not 

applicable to the synthesis of chromans bearing an additional substituent at the 3-position. 

Hence, direct synthesis of enantioenriched, anti-2,3-difunctionalized chromans is usually 

accomplished diastereoselectively from an acyclic epoxide or diol precursor (Scheme 41a).
101

 

The difunctionalization of γ-substituted 2-allylphenol to afford chromans with stereocenters at 

both the 2- and 3- positions remains rare.
102

 A recent example involves the stereocontrolled 

generation and intramolecular opening of a seleniranium ion by a phenolic hydroxyl group to 

form a 2-seleno-3-arylchroman (Scheme 41b).
103

 The reaction proceeds as a DYKAT, since the 
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seleniranium ion in question is not stable under the reaction conditions. Only aryl substituents 

were incorporated at the 2-position. The product could be functionalized further by formation of 

a C-C bond through the intermediacy of a C-centered radical. The diastereoselectivity was poor 

but the stereocenter adjacent to the oxygen atom remained unaffected. 

 

 

Scheme 41 

 As part of the ongoing program on enantioselective sulfenofunctionalization of alkenes, 

extension of the sulfenofunctionalization reaction to the synthesis of chromans represented an 

appealing target. Sulfenofunctionalization of alkenes is a longstanding strategy for the efficient 

introduction of sulfur moieties into organic molecules.
62,104

  We sought to apply the expertise 

gained in the study of enantioselective oxysulfenylation of alkenes to the synthesis of 

difunctionalized chroman derivatives. If both the 2- and the 3-positions of the newly formed ring 

system are functionalized, the final products can be transformed into a variety of useful 

compounds, thus constituting a general and selective method for the synthesis of chroman 

derivatives.  
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 4.3. Goals of the Project. 

 In the course of previous work from these laboratories, the dependence of rate-, enantio- 

and site-selectivity of sulfenoetherification on the substitution pattern and electron density of the 

alkene component have been investigated.
20

 However, changes in the reaction outcome as a 

function of structural variations at the nucleophile were not determined. Furthermore, the tether 

length was kept constant across the different substrates. The primary goals of this study were to 

evaluate the influence of: (1) the steric and electronic properties of the nucleophile, in isolation 

and in competition, (2) the tether length, and (3) the presence of other Lewis basic functional 

groups for the sulfenoetherification of alkenes with phenolic hydroxyl groups as nucleophiles.  

To achieve this goal, a study for the synthesis of 2-cinnamylphenols was undertaken.   

 4.4. Results. 

 4.4.1. Synthesis of 2-Cinnamylphenols. The direct electrophilic alkylation of phenols is a 

longstanding method of phenol functionalization.
105

 Cinnamyl chloride is a well-known, 

commonly available and reactive alkylating agent.
106

 Thus, the alkylation of phenols or 

phenolates with cinnamyl chloride promised expedient access to a variety of 2-cinnamylphenols. 

 Phenols are ambident nucleophiles, and the alkylation of phenols is non-trivial due to the 

numerous products that can be formed (Scheme 42).
107

 The alkylation can take place at the 

phenol oxygen, termed O-alkylation, at the ortho-position, or at the para-position. Furthermore, 

an ambident electrophile such as cinnamyl chloride  can react in either SN2 or SN2' fashion to 

afford two different sets of products.  
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Scheme 42 

 The O-alkylation of cinnamyl chloride results in the formation of an aryl allyl ether, 

which further complicates the situration (Scheme 43). Aryl allyl ethers can undergo [3,3]-

sigmatropic rearrangements at elevated temperature.
108

 This has the effect of turning an O-

alkylation product 109 into C-alkylation intermediate 110. The course of the [3,3]-sigmatropic 

rearrangement also depends on how quickly the substrate can rearomatize. If rearomatization is 

slow, the immediate product can undergo a Cope rearrangement, effectively changing the 

position of C-alkylation.
108

 Thus, even if the initial alkylation is selective, interconversion of the 

products is possible under some conditions.  
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Scheme 43 

 Clearly, the alkylation of phenols is dependent on a large number of variables. In a lone 

study, the alkylation of phenol with prenyl chloride was followed by gas chromatographic 

analysis (Scheme 44).
109

 The sterically hindered nature of prenyl chloride enforces high SN2 

selectivity in this transformation. Under the reaction conditions, the alkylation afforded primarily 

112 and 113. The product distribution was highly solvent dependent, and increasing solvent 

polarity led to higher quantities of O-alkylation product. Notably, the solely para-alkylation 

product was not detected in the reaction mixture, which suggested that at least the para-

alkylation pathway would be disfavored. Reaction conditions for the alkylation of phenols were 

investigated based on this initial report. 
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Scheme 44 

 The alkylation of phenol in THF using metallic sodium as the base resulted in the 

formation of three major identifiable components (Table 14). Alkenes 114 and 115 were 

inseparable from each other under standard purification techniques, and hence the yields 

provided are for the mixture of materials. In the case of THF, a total yield of 12% was obtained, 

and significant quantities of O-alkylation product 116 was observed (entry 1). The reaction 

proceeded with greater selectivity in diethyl ether, and afforded the 114 and 115 in 65% 

combined yield (entry 2). In an effort to increase the site selectivity of the alkylation 

dichloromethane was employed as a reaction solvent. While the selectivity was still high, the 

yield suffered. Lithium was not compatible with the reaction conditions (entries 3 and 4). 

Metallic potassium resulted in a lower ratio (2:1) of 114:115 (entry 5).  The dissolution of the 

metallic reagent to form the active alkoxide was visually slow, and therefore sodium hydride was 

employed as the base. This change resulted in almost immediate deprotonation as evidenced by 

both gas evolution and an exothermic reaction. Alkylation under these conditions resulted in an 

improved 7:1 ratio of 114:115, and also restored the high yield observed for the reaction in ether 

(entry 6). Further optimization of solvents identified both CCl4 and the more environmentally 

friendly benzene as appropriate reaction solvents, with 114:115 ratio of >9:1 and 68 and 74% 

yield respectively (entries 7 and 8). The development of a direct C-alkylation of phenols thus 

opened the route to an expedient synthesis of 2-cinnamylphenols. 
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Table 14. Optimization of C-alkylation of Phenols. 

 

entry solvent base temp, 
o
C 

ratio
a
 

114:115:116 

yield of 

114+115, %
b
 

1 THF Na rt 1: trace : 2.5 12 

2 Et2O Na rt 4.5 : 1 : 0.3 65 

3 CH2Cl2 Na rt 4 : 1 :0 37 

4 CH2Cl2 Li rt Complex 

mixture 
0 

5 CH2Cl2 K rt 2 : 1 : 0.4 29 

6 CH2Cl2 NaH 40 
o
C 7 : 1 : trace 66 

7 CCl4 NaH 80 
o
C 9.5:1:0.4 68 

8 Benzene NaH 80 
o
C 9 : 1 : 1.5 74 

 
a
Determined by 

1
H NMR spectroscopy of crude reaction mixture 

b
 Isolated yield. 

 The generality of the cinnamylation reaction was then tested by subjection of a number of  

2- and 4- substituted phenols to the optimized conditions. The reaction of phenol with cinnamyl 

chloride under the optimized conditions produced 114 in 71% yield (Table 15, entry 1). Both 2- 

and 4-methyl-substituted phenols could be alkylated under the same conditions in 47% and 62% 

yield respectively (entries 2 and 3). Cinnamylation of 4-hydroxy anisole afforded 114d in 49% 

yield (entry 4). Modestly electron-poor phenols such as 116e, 116f and 116g were also reactive 

under these conditions, albeit with somewhat extended reaction times (entries 5, 6 and 7). The 

highly electron poor 4-CF3-substituted 116h required refluxing toluene to proceed (entry 8). 2-

naphthol was alkylated at the 1-position selectively in 79% yield (entry 10). The reaction was not 

limited to cinnamyl chlorides: phenethyl allyl chloride also reacted with phenol to afford 114i in 

51% yield (entry 9). Isoprenyl chloride could also be used in a similar fashion to afford the 

desired trisubsituted alkene with 65% yield (entry 11).
110
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Table 15. Alkylation of Substituted Phenols with Cinnamyl Chloride. 

 

entry phenol R
1
 R

2
 R

3
 time, h product yield, %

a
 

1 116a H H Ph 16 114 71% 

2 116b Me H Ph 16 114b 47% 

3 116c H Me Ph 16 114c 62% 

4 116d OMe H Ph 16 114d 49% 

5 116e F H Ph 24 114e 71% 

6 116f Cl H Ph 24 114f 60% 

7 116g Br H Ph 24 114g 56% 

8 116h CF3 H Ph 24
c
 114h 64% 

9 116i H H CH2CH2Ph 16 114i 51% 

10 116j 
 

Ph 16 
 

114j 

79% 

11 116k H H -
b
 20  

114k 

65% 

a
Isolated yield of pure 114.

 b
Prenyl chloride was used as the electrophile. 

c
Toluene was used as 

the reaction solvent 

 4.4.2. Synthesis of other 2-Substituted Phenols. The extension of the C-alkylation method 

to heterocycles would involve the synthesis of 1-heterocyclic allyl chlorides. These substrates 

were both difficult to synthesize, as the corresponding alcohols could not be converted into the 

chloride easily, and prone to decomposition and polymer formation.
111

 Therefore an alternative 

synthesis was devised. The reduction of easily synthesized 2-carbonoylchalcones by sodium 

borohydride results in the complete reduction of the ketone to the methylene (Scheme 45).
101b,112

 

Importantly, this route avoids exposure of 119a and 119b to acidic reaction conditions, thereby 
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minimizing the opportunity for decomposition. Chalcones 118a and 118b were accessed in one 

step from 2-hydroxy acetophenone. Formation of the phenol carbonate and subsequent reduction 

with sodium borohydride afforded 119a and 119b in 66 and 48% yield respectively.  

 

Scheme 45 

 In previous communications, the sulfenofunctionalization reaction has shown significant 

changes in both stereo- and site selectivity based on the geometry of the alkene in question as 

well as the distance between the alkene and the nucleophile (Chapter 2). Therefore, efforts were 

directed at accessing substrates which could help elucidate these effects with respect to the 

functionalization with phenolic nucleophiles. The synthesis of geometrically pure (E)-alkenes 

necessary for these reactions was surprisingly difficult. To solve this problem, a number of 

approaches were considered (Scheme 46). These are (a) Wittig and Schlosser-Wittig reactions, 

(b) the stereospecific elimination from diastereopure alkyldiphenylphosphine oxides, i.e. Horner-

Wittig, (c) the SN2 and SN2' displacement of allyl and benzyl halides with organometallic 

reagents, (d) an intermolecular cross-coupling of alkenyl and aryl halides and (e) olefin 

metathesis of a terminal alkene and a styrene.  

  

Scheme 46 
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.  4.4.2.1. Wittig and Schlosser-Wittig Reactions.
113

 The first attempt to form the (E)-alkene 

junction employed benzyltriphenylphosphonium bromide and 2-hydroxy-(4H)-dihydrochroman 

as the reaction partners. With a Na-counterion the E:Z selectivity was about 6:1. Therefore, the 

Schlosser modification was tested as an alternative approach. In this case, PhLi was used as the 

base to equilibriate the intermediate betaine before the final elimination. Unfortunately, under the 

best conditions tested with the Schlosser modification, the selectivity did not exceed 4:1. 

 

Scheme 47 

 4.4.2.2. Horner-Wittig Reaction.
114

 The disappointing failure of the direct Wittig 

methodology suggested that the intrinsic E:Z selectivity for this substrate may not be great. 

Therefore, an alternative approach that utilizes the Horner method was generated. The α-oxo 

diphenylphosphines 123 are isolable intermediates, and separation of the diastereomers would 

lead to diastereopure 123. The elimination from α-oxo diphenylphosphines is stereospecifically 

syn and therefore 120 should be produced as the geometrically pure (E)-isomer. The percursor 

synthesis began with the nucleophilic attack of benzyldiphenylphosphine anion onto 

dihydrocoumarin. The resulting ketone was reduced with NaBH4  in 9:1 selectivity favoring the 

desired trans-isomer. However, the final elimination proved problematic. Although only (E)-120 

was visible by 
1
H NMR spectroscopy, the reaction proved to be very irreproducible, with 

mixtures of starting material, low amounts of alkene and other unidentified products. Although a 

few conditions were tested, this route, too did not ultimately prove successful.  
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Scheme 48 

 4.4.2.3. Organometallic Reagents.
115

 The problems encountered setting the (E)-alkene 

geometry led to the investigation of alternative approaches that would take advantage of 

preformed geometrically pure alkenes. The C-C bond disconnect along the alkene tether led to 

the consideration of SN2-type reactions on activated centers. Thus, either the combination of an 

allyl organometal with a benzyl halide or of a benzyl organometal with an allyl halide would 

both lead to the desired product. Thus, a wideranging investigation into the possible conditions 

for such a coupling was performed.   

 

Scheme 49 

 The Wurtz-type coupling and homocoupling of activated organometallic reagents was an 

expected side reaction.
116

 Unfortunately, in most of the conditions tested, homocoupling to 125 

was observed. Primarily, the initial formation of organometallic reagents proved problematic as 

the organometallic species generated immediately reacted with the remaining reagent leading to 

homocoupling. Thus, no clean generation of cinnamyl organometallic reagents was possible. The 

homocoupling was problematic even when the conjugation was interrupted by replacement of the 
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aryl moiety with a phenethyl moiety. The generation of benzyl organometallic species was 

similarly problematic with predominantly bibenzyl derivative 124 observed as the primary 

constituent of reaction mixtures. Conditions that employed organometallic reagents with lower 

reactivities such as In
117

 and Zn
118

 also did not lead to successful couplings.    

 4.4.2.4. Synthesis of Vinyl Halogens. The cross coupling of various alkenyl halides and 

with aryl boronates
119

 or aryl silicon reagents
120

 is well developed. Therefore, vinyl halides of 

type 128 were targeted. Treatment of 126 with the Ohira-Bestmann reagent
121

 led to the 

formation of alkyne 127. However, Al-H reduction of the alkyne followed by I2 quench primarily 

afforded the terminal alkene. The Takai reaction
122

 of protected aldehyde 129 was also 

unsuccessful. Further optimization of this route was not attempted based on the success obtained 

in the cross-metathesis reaction. 

 

Scheme 50 

 4.4.2.5. Alkene Metathesis. Olefin metathesis reactions that employ Grubbs-I and 

Grubbs-II type catalysts generally proceed with high (E)-selectivity.
123

 Thus, metathesis of a 

styrene with a terminal olefin was seen as a possible answer to the problem of E:Z selectivity. 

The requisite terminal alkenes 131 were prepared from 2-methoxybenzyl bromide by displacing 

the bromide with a preformed Grignard reagent (Scheme 51).
124

 Deprotection with sodium 

ethanethiolate in refluxing DMF produced terminal alkenes 131a and 131b in 89 and 68% yield 

over two steps.
19f

 

 

Scheme 51 
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 The use of Hoveyda-Grubbs II catalyst 135 for the metathesis of alkenes 131 was 

unsuccessful. No reaction was observed at low temperature. When the temperature was raised to 

reflux, homocoupling product 136 was observed. The Grubbs-I-indenylidene type catalyst 134 

was much more successful at catalyzing the reaction. Metathesis of 130a and 131a with excess 

styrene was found to deliver protected styrenes with  high geometrical selectivity.
125

 Usually, 

addition of a second portion of catalyst was necessary for high conversion. Protection of the 

phenol as the methyl ether led to slightly higher yields in the reaction. Subsequent demethylation 

under identical conditions resulted in the formation of 120 and 120b in high yield.  

Table 16. Grubbs Metathesis of Butenyl- and Pentenylphenols. 

 

entry R n cat. styrene temp, 
o
C time, h yield, %

a
 

1 H 1 135 1.2 rt 24 0 

2 H 1 135 1.2 reflux 6 n.d. 

3 H 1 134 5 rt 36 62% 

4 Me 1 134 5 rt 36 69% 

5 H 2 134 5 rt 36 42% 

a
Isolated yield.  

 The (E)-selectivity of the olefin metathesis reaction does not extend to isolated alkenes 

under cross-metathesis conditions.
123

 Therefore a new route was devised to access substrates 

with a two-methylene tether but with alkyl substituents. The Pd-mediated opening of 2-

vinylchroman by malonate nucleophiles mediated by palladium had been studied by Murahashi 

in 1986.
126

 Under similar conditions, diethylmalonate intermediate 137 could be accessed rapidly 

(Scheme 52).  The decarboxylation of the malonate was effected using Krapcho conditions.
127
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NaCl was sufficient to decarboxylate the diester, but the high temperatures and long reaction 

times necessary led to uncharacterized polymerization products were observed by 
1
H NMR 

spectroscopy. Instead, use of NaCN resulted in rapid decarboxylation at only 160 
o
C, with a 

minimal amount of side products.
128

 Under the optimized conditions, the desired ester substrate 

could be obtained in 85% yield.  

 

Scheme 52 

 Ester 138 then served as a linchpin for diversification to study the effects of Lewis basic 

groups on the reaction. Hydrolysis yielded 139 in 93% yield, and reduction of the ester afforded 

140 in 91% yield (Scheme 53). Ether 141 was synthesized from the corresponding bromoarene. 

 

Scheme 53 

 4.4.3. Optimization of the Phenoxysulfenylation Reaction.  The use of a phenolic 

hydroxyl group as the nucleophile afforded a unique opportunity to systematically vary both the 

steric and the electronic properties of the nucleophile. The reaction temperature was chosen as    

-20 
o
C to avoid any potential enantioerosion of the thiiranium ion.

63
 Previous studies suggested 

that only 1.0 equiv of 56 was necessary for the reaction.
20

 The initial-rate experiments revealed 

that an excess amount of acid was detrimental to the reaction rate, thus 0.75 equiv was chosen as 
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the starting point for optimization. Solvent and concentration were unchanged from the previous 

conditions for sulfenoetherification reactions. For catalysts of type 62, exocyclic amine 

substituent strongly affects the enantioselectivity of the sulfenofunctionalization process. Thus, 

catalyst 62b afforded the desired product with poor selectivity (Table 17, entry 1). Catalyst 62e 

formed product 143a in 46% yield and with an e.r. of 95.1:4.9 (entry 2). Changing to catalyst 

62d resulted in slightly lower enantioselectivity of 93.1:6.9 e.r (entry 3). Reducing the 

concentration of the reaction using catalyst 62e allowed the product to be obtained in 95% yield 

(entry 4).  

Table 17. Optimization of the Sulfenocyclization Reaction.
a
 

 

entry substrate [3], M acid, equiv catalyst time, h  yield, %
b
 e.r.

c
 

1 142a 0.4 0.75 62b 24 35
d
 65.6:34.4 

2 142a 0.4 0.75 62e 24 46
e
 95.1:4.9 

3 142a 0.4 0.75 62d 24 27
f
 93.1:6.9 

4 142a 0.15 0.75 62e 24 95 -
i
 

5 142a 0.15 0.5 62e 24 95 95.3:4.7 

6 142a 0.15 0.25 62e 24 94 95.7:4.3 

7 142a 0.15 0.1 62e 24
h
 32 94.9:5.1 

8 142a 0.15  0.5
g
 62e 24 96 94.3:5.7 

a 
Reactions run on 0.1 mmol scale. 

b 
Yield of isolated, purified product. 

c 
Determined by 

CSP-SFC. 
d 

Also isolated product contaminated with 2a. 
e 

Also isolated product 

contaminated with 2b.
 f 

Also isolated product contaminated with 2c.
 g 

EtSO3H was used.
 h 

Incomplete conversion. 
i
 Not determined. 

 In all preceding sulfenofunctionalization studies, the loading of the Brønsted acid proved 

to greatly affect the rate and selectivity of the reaction.
18,20

 In the sulfenoetherification with 

alcohols, maximum reactivity was reached at 0.6 equiv of methanesulfonic acid. Cyclization of 

substrate 114 (hereforth referred to as 142a) using 0.75 equiv of acid was complete within 24 h. 
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Decreasing the amount of acid to 0.5 equiv or even 0.25 equiv did not decrease the yield in the 

same time frame (entries 5 and 6). In all cases, high selectivity (>30:1) for endo capture to form 

the chroman was observed. Further decrease in the acid loading resulted in reduced yield (entry 

7). The use of ethanesulfonic acid did not affect the enantioselectivity and was not pursued 

further (entry 8). 

 4.4.4. Sulfenocyclizations of Substituted (E)-2-Cinnamylphenols: Influence of Phenol 

Ring Substituents. The nucleophilicity of phenolic hydroxyl groups is influenced by both steric 

and electronic properties of ring substituents.
129

 Accordingly, a series of substituted (E)-2-

cinnamylphenols was prepared and evaluated (Table 2). The parent substrate, 142a, which 

afforded 143a in 84% yield, 94.9:5.1 e.r. and >30:1 endo-selectivity was used as a benchmark 

(Table 2, entry 1). Methyl substituents at the 4- and 6- positions on the ring did not alter the 

reaction outcome meaningfully (entries 2 and 3). The presence of an extended π-system resulted 

in no change in yield and a very small decrease in e.r. (entry 4). In all cases high (>30:1) 

consitutional selectivity was observed.  

 Next, the influence of heteroatom substituents on reaction outcome was evaluated. 

Electron-donating groups had little influence, for example 142e bearing a 4-methoxy group 

cyclized to form 143e in 84% yield and 94.4:5.6 selectivity (entry 5). Bromophenol 142f 

cyclized to afford 143f in 81% yield and 93.8:6.2 e.r (entry 6), albeit with slightly extended 

reaction time. The more electronegative chloro- and fluoro-substituted substrates reacted in the 

same time frame, 143g and 143h being produced in 70 and 82% yields respectively (entries 7 

and 8). The enantioselectivity of the reactions remained high with these substrates.  

 Phenol 142i, bearing a highly electron-withdrawing 4-CF3 group, was insufficiently 

reactive at -20 
o
C. When the reaction temperature was increased to 22 

o
C, significant 

enantioerosion was observed (e.r. 70.7:29.3, SI). Sterically bulky N-2,6-

diisopropylphenylthiophthalimide electrophile 103 prevents erosion at elevated reaction 

temperatures by shielding the intermediate thiiranium ion.
40

 Cyclization of 142i at room 

temperature using 103 proceeded smoothly, and 143i was isolated with 89% yield and 95.2:4.8 

e.r (entry 9). 

  



91 

 

 

Table 18. Sulfenocyclizations of Substituted (E)-2-Cinnamylphenols.
a
 

 

entry phenol  time, h product  yield, %
b
 e.r.

c
 

1 
 

3a 24 
 

4a 84 94.9:5.1 

2 
 

3b 24 
 

4b 82 95.0:5.0 

3 

 

3c 24 

 

4c 78 96.0:4.0 

4 

 

3d 24 

 

4d 79 93.2:6.8 

5 
 

3e 24 
 

4e 84 94.4:5.6 

6 
 

3f 36 
 

4f 81 93.8:6.2 

7 
 

3g 36 
 

4g 70 93.8:6.2 

8 
 

3h 36 
 

4h 86 93.2:6.8 

9 
 

3i 12
d,e

 
 

4i 89 95.2:4.8
f
 

a 
Reactions run on 1.0 mmol scale. 

b 
Yield of isolated, purified product. 

c
 Determined by 

CSP-SFC. 
d 

Electrophile 1c was used, Ar
iPr

 = 2,6-(i-Pr)-C6H3 
e
 Reaction run at 22 

o
C 

f 

Determined after oxidation to the sulfone. 

 4.4.5. Sulfenocyclization of 2-Substituted Phenols. Changes in the alkene substitution 

pattern have been documented to dramatically alter selectivity for the sulfenofunctionalization 

process.
18,20,79,83

 (E)-substituted alkenes were the most selective substrates for 

sulfenoetherification, whereas terminal alkenes were only slightly less so. Trisubstituted, (Z)- 
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and 1,1-substituted alkenes reacted with poor selectivity. Thus, primarily (E)- and terminal 

alkenes were employed in this study. Initially, the (E)-phenyl substituent was varied. Furan-

substituted benzopyran 143j was produced in 88% yield and 92.7:7.5 e.r, whereas thiophene-

substituted substrate 142k produced the desired product in 86% yield and 93.9:6.1 e.r.(Table 3, 

entries 1 and 2). Changing the alkene substituent to an aliphatic group as in substrate 142l led to 

a 74% combined yield of a 1.5:1.0 mixture of isomers 143l and 144l with 96.6:3.4 e.r. for 143l  

(entry 3). Trisubstituted alkenes generally lead to less selective cyclizations with 56.
83

 To 

increase selectivity, electrophile 103, which has an improved selectivity profile, was tested with 

substrate 142m.
40

 In this case, use of 103 led to the formation of gem-disubstituted benzopyran 

143m in 93% yield and 95.4:4.6 e.r. (entry 4). 

Table 19. Sulfenocyclizations of 2-Substituted Phenols.
a
 

 

entry  substrate 
sulf. 

agent 

time

h 

temp 

o
C 

product
c
  

yield 

%
b
 

endo: 

exo
d
 

e.r.
e
 

1
f
 142j 

 

56 24 -20 

 

143j 88 >30:1 92.5:7.5 

2
f
 142k 

 

56 24 -20 

 

143k 86 >30:1 93.9:6.1 

3
f
 142l 

 

56 24 -20 

 

143l, 

144l 
74 1.5:1 

96.6:3.4 

(143l) 

96.3:3.7 

(144l) 
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4
f
 142m 

 

103 24 0 

 

143m 93 >30:1 95.4:4.6
g
 

5 142n 

 

56 18 -20 

 

143n 92 >30:1 94.4:5.6 

6 142o 

 

103 24 0 

 

144o 76 <1:30 92.6:7.4
g
 

7 142p 
 

103 12 0 

 

144p 91 <1:30 97.2:2.8
g
 

8 142q 
 

103 48 0 
 

144q 84 <1:30 97.7:2.3
g
 

9 142r 

 

56 24 -20 

 

144r 80 1:12 93.2:6.8 

10 142s 

 

56 24 -20 

 

144s 85 <1:30 96.7:3.3 

11 145t 

 

56 24 -20 

 

147t 92 <1:30 92.2:7.8 

12 146u 

 

56 24 -20 

 

147u, 

148u 
88 1.1:1

h
 

96.9:3.1 

(8u) 

97.1:2.9 

(9u) 

a 
Reactions run on 1.0 mmol scale. 

b 
Yield of isolated product. 

c
Ar

iPr
 = 2,6-(i-Pr)-C6H3. 

d
 Determined by 

1
H NMR analysis of crude reaction mixtures. 

e 
Determined by CSP-SFC. 

f 
0.25 equiv MsOH was used. 

g
 Determined after oxidation to the sulfone. 

h 
endo:exo ratio for alcohol capture. 

 The site-selectivity of thiiranium ion capture during intramolecular sulfenocyclization is 

expected to be strongly influenced by the relative rates of formation of different size rings. The 

preparation of substrates with varying tether length enabled for a systematic study of ring size 

  Table 19. (cont.) 
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effects (Table 3). Substrate 142n, which contains an (E)-2-styryl group at the end of a two 

carbon tether, afforded the 7-endo cyclization product benzoxepane 143n in 92% yield and 

94.4:5.6 e.r (entry 5). Further extending the tether to three methylene groups in substrate 142o 

proved problematic: under the optimized conditions using electrophile 56, no desired product 

was observed. Gratifyingly, use of electrophile 103 led to the surprising formation of exo 

cyclization product 144 in 76% yield and 92.6:7.4 e.r (entry 6). Next, the electronic bias 

imparted by the phenyl group was removed to evaluate the site-selectivity of closure with a 

terminal alkene in the reaction with electrophile 103. Substrate 142p reacted via a 6-exo-mode 

cyclization to afford 144p with high site-selectivity, 91% yield and 97.2:2.8 e.r (entry 7). 

Extension of the tether length by one more methylene group, as in substrate 142q, was 

gratifyingly successful, as the cyclization proceeded in a 7-exo mode to afford product 144q, 

with 84% yield and 97.7:2.3 e.r (entry 8).  

 The Lewis basic nature of the selenophosphoramide moiety prompted an investigation 

into the compatibility of the reaction conditions with other Lewis basic functional groups in the  

substrate. Substrate 142r, containing a carboxylic ester group three carbons removed from the 

reacting olefin, afforded 144r in good yield albeit with somewhat diminished enantioselectivity 

compared to 142a (c.f. entry 9 and Table 2, entry 1). Replacement of the ester by the 

corresponding ether in 142s restored the enantioselectivity in comparable yield (entry 10). The 

relative reactivity of other oxygen nucleophiles with respect to phenolic hydroxyl groups was 

also tested. Both carboxylic acids and alcohols outcompeted phenols for thiiranium ion capture. 

Substrate 142t, bearing a carboxylic acid moiety, preferentially afforded lactone 147t in 92% 

yield and 92.2:7.8 e.r. (entry 11). In the presence of a remote hydroxyl group, such as in 

substrate 142u, saturated oxacycles 147u and 148u were formed as a 1.1:1 mixture of 

constitutional isomers in 88% combined yield and with 96.9:3.1 e.r. (entry 12). 

 4.4.6. Intermolecular Sulfenylation of Alkenes with Phenols. The intermolecular 

sulfenofunctionalization of alkenes with phenols would greatly extend the potential applications 

of the reaction. Thus, the functionalization of representative alkenes with phenols were tested.  

The cyclization of 4-octene with phenol under the standard reaction conditions afforded 149 in 

75% yield and 93:7e.r. However, when β-methylstyrene  was tested, both the yield and the 

enantioselectivity for 150 were much lower (44% and 86:14). High site selectivity for capture at 
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the benzylic position was observed. Stilbene was completely unreactive under the standard 

conditions, even at elevated temperature. 

Table 20. Intermolecular Sulfenofunctionalization with Phenol Nucleophiles. 

 

entry R,R product time, h temp, 
o
C yield

a
 

site 

selectivity
b
 

e.r.
c
 

1 n-Pr,n-Pr 

 

24 -20 75 N/A 93:7 

2 Ph, Me 

 

48 -20 44 <1:30 86:14 

3 Ph,Ph - 48 23 0 - - 

a
Isolated yield. 

b
Determined by 

1
H NMR analysis of crude mixture. 

c
Determined by CSP-SFC. 

 4.4.7. Transformations of Sulfenofunctionalization Products. The sulfenyl moiety in the 

product thioether can act as a functional handle for further transformations. Thus, a series of 

manipulations to explore the reactivity of the thioether group were carried out (Scheme 54). 

Reductive cleavage of 143a with nickel boride formed 2-phenylchroman in 35% yield. Oxidation 

of 143a with sodium metaperiodate led to sulfoxide 151 in 85% yield and in a 2:1 diastereomer 

ratio. Both diastereomers underwent thermal elimination in toluene, leading to the formation of 

2-phenylchromene in 92% yield. Attempts to engage the sulfoxide in a Pummerer process was 

not successful. Instead, vinyl thioether 152, which results from elimination of the thiocarbenium 

intermediate, was formed under a variety of conditions (see experimental section). In the 

presence of trifluoroacetic anhydride and pyridine, 152 was obtained in 94% yield.  
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Scheme 54 

 Conversion of sulfoxide 151 to ketone 153 under other Pummerer conditions were 

attempted. Representative examples of conditions are shown in (Table 21). Treatment of the 

sulfoxide with acetic anhydride in the presence and absence of acetate led to the exclusive 

formation of chromene 154. Interestingly, other dehydrating agents such as thionyl and oxalyl 

chlorides resulted in the formation of the sulfide, formally oxidizing the reagent. The addition of 

both soluble and insoluble bases did not lead to product formation. Other activating agents such 

as PIDA and TBSOTf were also ineffective at promoting the Pummerer rearrangement.  

Table 21. Survey of Pummerer Rearrangement Conditions for 151. 

 

entry solvent reagent base temp, 
o
C time, h 153:154:152:143a

a
 

1 Ac2O - - 110 2 0:1:0:0 

2 Ac2O AcOH - 110 2 0:1:0:0 

3 CH2Cl2 SOCl2 - rt 1 0:0:1:7.5 

4 CH2Cl2 (COCl)2 - rt 1 0:0:1:1 

5 CH2Cl2 (COCl)2 K2CO3 rt 2 0:0:1:3.5 

6 CH2Cl2 (COCl)2 KOAc rt 2 0:0:1:4.8 

7 CH2Cl2 (COCl)2 Pyr rt 2 0:0:1.25:1 

8 DCE PIDA - rt 12 No Reaction 

9 CH2Cl2 TBSOTf Et3N rt 3 0:0:1:0 

a 
Determined by 

1
H NMR spectroscopy of crude reaction mixture. 
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 4.5. Discussion. 

 The synthesis and reactivity of phenolic substrates was unexpectedly difficult. Phenols 

with one and two-carbon methylene tethers each had unique challenges associated with their 

synthesis. In the first section of the discussion some of the challenges related to geometrical and 

constitutional purity will be discussed. 

 4.5.1. Optimization of the Phenol Alkylation Process.  The selectivity of phenolate 

alkylation is affected by both reaction solvent and counterion. Therefore, these variables will be 

treated sequentially. Alkylation of sodium phenolate was slightly more selective for 114 than 

with potassium phenolate. Lithium phenolates reacted slower than their sodium counterparts. 

Interestingly, the use of potassium in polar media with allyl chloride results in clean ether 

formation.
130

 In contrast, sodium phenolates were more problematic substrates for the reaction 

with an allyl halide.  Calculation of charge densities for phenol and its alkali metal salts at the 

B3LYP level shows that the partial negative charge at C(2) increases monotonically moving 

down the group (Scheme 55). Greater O-alkylation over ether formation would be expected as a 

consequence, in contrast to the observed trend. However, these calculations were performed in 

the gas phase. The aggregation of phenols in nonpolar media may alter the relative reactivities of 

these enolates. The strongly coodinating nature of Li-ate complexes in nonpolar media probably 

attenuates the reactivity of the phenolate anion. Furthermore, coordination of the oxygen can 

both sterically encumber and electronically deactivate it, favoring C- over O-alkylation. 

  

 

Scheme 55 

 Indeed, changes in the solvent had a great effect on the site of alkylation. Thus, whereas 

high selectivity for 114 was observed in ether, the reaction in THF afforided primarily the 

undesired isomer 115. These results were in agreement with previous results for ethereal 

solvents.
109

 Thus, the alkylation was performed in highly nonpolar solvents. Under these 

conditions the reaction is usually heterogenous, as the phenoxide ion can crash out of solution. 
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NaH was significantly more effective at deprotonating the phenol. Deposition of phenolate on 

the metal surface can retard the further formation of anions in dissolving metal deprotonations. 

Alkali metals can also undergo SET reactions with chlorinated and aromatic solvents. The clean 

reactivity profile of NaH led to it being the best choice for this reaction.     

 The alkylation of phenols under these conditions resulted in the formation of two major 

isomers.  High selectivity for the desired isomer 114 was observed, the SN2' alkylation product 

was difficult to remove from the reaction mixture. Although a number of conditions were tested, 

its production could not be fully suppressed. The relative ratio of 114/115 appears to be better in 

highly nonpolar solvents. The SN2' alkylation of cinnamyl chloride would require the phenolate 

to approach a secondary methine as opposed to a primary methylene for SN2 alkylation. Thus, 

the formation of aggregates may actually be beneficial. Increased nucleophile size as a 

consequence of aggregation would then favor attack at the less hindered position of cinnamyl 

chloride. Unfortunately, even under the optimized conditions, the production of isomer 115 

could not be fully suppressed. The separation of 114 and 115 was not possible on silica. Thus, 

new purification techniques needed to be developed. Unfortunately, the sacrificial reaction with 

K2OsO4/NMO, which had previously been successfully employed in these laboratories did not 

fully remove the minor isomer.
131

 Finally, AgNO3 on SiO2 (10% w/w) was found to separate the 

two isomers. The operational overhead on the direct alkylation of phenols proved to be 

considerable.  

  4.5.2. Synthesis of 2-Substituted Phenols. The synthesis of phenols with more than one 

methylene linker was successful only after numerous different attempts. The initial failure of 2
nd

 

generation Hoveyda-Grubbs led fruitless efforts at either geometrically constructing the (E)-

alkene in a geometrically pure manner or disconnecting somewhere else in the tether. After much 

effort, the efforts came full circle, and the alkene could be constructed in >50:1 E/Z selectivity 

using 1
st
 generation Grubbs catalyst 134  

 The success of 134  over 135 is comment worthy. NHC ligands are known to decrease 

the reactivity of the Ru center, while substantially increasing catalyst stability. In the current 

system, no reactivity was observed with 130 at room temperature. If the Ru center is 

insufficiently reactive, the initial [2+2] addition to form the [Ru(substrate)] complex can not take 

place. As a result, starting material is recovered. The selectivity of the two catalysts was also 

different. Whereas 135 gave a mixture of homo- and heterocoupling products, 134 afforded 
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primarily the heterocoupling product. The reactivity of terminal alkenes in cross-metathesis 

reactions is greater than styrenes, therefore an initial addition to form the homocoupling product 

is plausible. However, the carbene complex derived from 134 can add back into the dimer 136 to 

reform starting material and the [Ru(substrate)] complex. The mixture observed for 135 suggests 

that the carbene derived from 135 can either not add back into the internal alkene or that this 

addition is much slower than the initial rate of reaction with the terminal alkene in solution. 

Either way, catalyst 134 was much better suited to the reaction. However, the low stability of 

134 required two portions of catalyst to be added over the timeframe of the reaction. Since the 

overall total catalyst loading is still 3-4 mol %, this was not particularly problematic. The effect 

of the hydroxyl group was not prominent.  

 The low selectivity of intermolecular metathesis reactions is a result of the low energy 

difference between alkyl substituted (E)- and (Z)-alkenes. In light of the difficulties encountered 

with the aforementioned methods of making geometrically pure (E)-alkenes, a different approach 

was tested. The palladium catalyzed opening of 2-vinylchroman proceeded with very high (E)-

selectivity. The original proposal for the selectivity is the preference for the Pd-allyl complex 

that forms upon opening of vinyl chroman to adopt a preferentially trans configuration. 

Subsequent displacement of the Pd-allyl complex by malonate preserves the high (E)-selectivity 

on account of an outer-shell SE2-type transition state that is formally related to the Tsuji-Trost 

process.
132

 

 4.5.3.  Optimization of the Phenoxysulfenylation Reaction. The systematic variation of 

reaction conditions, phenol substituents, tether length and functional groups enabled a more 

thorough understanding of the factors governing the sulfenofunctionalization process. In this 

section, the influences of each of these components on observable reaction outcomes such as 

rate, enantioselectivity and site-selectivity will be discussed in turn. 

 4.5.3.1. Catalyst. The optimization of the sulfenofunctionalization reaction focused on 

two main variables, the catalyst and the loading of the Brønsted acid. Of the three best catalysts 

for sulfenofunctionalization, optimum selectivity was achieved with 62e. The high selectivity for 

this catalyst can be traced to the increased steric encumbrance provided by the N,N-diisopropyl 

substituents, accentuating the degree to which the catalyst backbone must distort to 

accommodate the alkene.
40

 Conversion across all catalysts was comparable.  
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 4.5.3.2. Brønsted Acid.  The kinetic studies established that for an alcohol nucleophile, 

the υmax was reached with 0.6 equiv of methanesulfonic acid (MsOH).
40

 Further increases in the 

Brønsted acid loading led to decreases in reaction rate. Two major factors need to be considered 

for optimal MsOH loading: (1) the amount of acid necessary to fully transform the catalyst into 

active complex 95, (2) the effective acidity of the reaction mixture as a result of solvation effects 

in nonpolar reaction media. In the proposed mechanistic cycle, the acid is present only in 

cocatalytic amounts, therefore only 1.0 equiv of acid with respect to catalyst should be 

necessary. However, titration studies with ethanesulfonic acid together with 56 and 62d 

established that up to 4 equiv of acid are needed before full conversion to the sulfenylated 

species is observed.
87

 In the case of cyclizations of phenolic hydroxyl groups, high conversion 

could be achieved with as little as 2.5 equiv of MsOH with respect to catalyst. Small differences 

in the pKa values of MsOH and ethanesulfonic acid as well as the pKb values of 62d and 62e 

may account for the reduced acid loading necessary for good reactivity. In contrast to alcohols, 

the phenolic hydroxyl group does not appear to act as a proton buffer. 

 The cyclization of 142a was complete within 24 h at -20 
o
C, compared to 93% after 24 h 

at the same temperature for the corresponding alcohol substrate.
20

 Thus, the rate of phenol 

cyclization is comparable to that of the alcohols. In the prior set of experiments a large excess 

(10 equiv with respect to catalyst) of MsOH was employed, which led to rates slower than υmax. 

The decrease in rate at high MsOH concentrations was ascribed to protonation of the substrate by 

excess acid.
40

 In the case of phenols, no substantial changes in rate were observed as a result of 

increased acid concentration in the range of 2.5 to 7.5 equiv of MsOH with respect to catalyst. 

The substantially lower Brønsted basicity of phenols (pKa of PhOH2
+
: -6.5, pKa EtOH2

+
: -2.2)

66
 

implies that a much smaller fraction of substrate is protonated even in the presence of an excess 

of acid. Thus similar reaction rates are observed over a much broader range of acid 

stoichiometry.  

 4.5.4. Structural Effects on Rate and Selectivity. 4.5.4.1. Influence of the Nucleophile. 

The rate, enantio- and site-selectivity of sulfenofunctionalization of any alkene with a pendant 

nucleophile is dependent on a multitude of structural factors. The initial studies showed a 

substantial impact of alkene environment on all three of these observables.
20

 However, no such 

systematic investigation for the nucleophile was undertaken. In an isolated example, the 

cyclization of a tertiary alcohol was comparable with that of a primary alcohol (Scheme 56, c.f. 
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Table 9). A previous study regarding the rate of sulfenocyclization of a number of protected 

amines did not identify specific reactivity trends.
79

 Thus, the cyclization of (E)-2-

cinnamylphenols provided an opportunity to understand how the aforementioned observables are 

impacted by the steric and electronic properties of the nucleophile. 

 

Scheme 56 

 4.5.4.2. Reaction Rate.  The turnover-limiting step of the sulfenofunctionalization 

reaction for alcohols is thiiranium ion formation, hence for these substrates thiiranium ion 

capture is fast. (Chapter 3). As mentioned previously, phenols are substantially weaker 

nucleophiles than alcohols.
66

 However, the rates of cyclization of 142a, 142b, 142c and 142e 

were comparable. Thus, the turnover-limiting step does not change for electron-neutral or -rich 

phenol nucleophiles. Naphthols are slightly stronger nucleophiles than phenols, and, in 

agreement with the aforementioned turnover-limiting thiiranium ion formation, the rate of 

cyclization of 142d was not affected.
66

  

 Introduction of weakly electron-withdrawing substituents led to slightly slower overall 

rates. The electron-withdrawing properties of substituents on phenols is a composite effect of the 

inductive (σI) and resonance (σR) contributions of the substituent to the electron density on the 

phenol.
133

 Chlorine and bromine both strongly withdraw electron density inductively (σI
 
Br, 0.49; 

Cl, 0.43) but also donate electron density through π-resonance (σR Br, -0.16; Cl, -0.16).
133

 

Fluorine is a strongly withdrawing substituent inductively, but also a much better π-donor (σI F, 

0.57; σR F, -0.33) such that its overall effect is comparable. In contrast, a trifluoromethyl group is 

both inductively and mesomerically electron-withdrawing (σI CF3, 0.46; σR CF3, 0.09). The 

reaction of Br, Cl and F-substituted phenols (142f, 142g, 142h, respectively) were all only 

slightly slower at -20 
o
C compared to parent substrate 142a. The reaction does not appear to be 

sensitive to either of these parameters. However, for CF3-bearing substrate 142i the reaction 

needed to be performed at room temperature.  



102 

 

 The substantial difference in rate between 142a and 142i (c.f. Table 18, entries 1 and 9) 

suggests that the turnover-limiting step may change from formation to capture of the thiiranium 

ion for electronically deactivated nucleophiles. Although the lifetime of the thiiranium ion 

intermediate derived from 142i likely increases as a result of slow capture, the high chemical 

yield implies that the thiiranium ion is stable when 103 is used as the electrophile. 

 4.5.4.3. Enantioselectivity. The configurational stability of thiiranium ions at -20 
o
C in 

dichloromethane has been established.
63

 Thus, the enantiomeric composition of the thiiranium 

ion upon its genesis is retained throughout the remaining reaction steps.
40

 Notably, capture of 

thiiranium ions derived from styrenes by C, N and O-nucleophiles resulted in the same absolute 

configuration and comparable levels of product enantioenrichment (Scheme 57).
20,79,83

  

 

Scheme 57 

 For the participation of phenolic hydroxyl groups, the enantioselectivity of 

sulfenocyclization remained uniformly high for electron-rich phenols. However, the change in 

mechanism from turnover-limiting formation to turnover-limiting capture raises the possibility of 

erosion of enantioselectivity as a consequence of increased thiiranium ion lifetime and attendant 

racemization. Previous studies on the intermolecular sulfenoetherification reaction showed that 

under the optimized conditions at -20 
o
C, the configurational integrity of the thiiranium ion is 

retained.
63

 No decrease in enantioselectivity is observed for substrates bearing halogen 

substituents, confirming the overall stereochemical stability of the thiiranium ion for slightly 

extended lifetimes at -20 
o
C For the trifluoromethyl-substituted phenol, the lack of reactivity 

required that the reaction be run at 23 
o
C, leading to decreased product enantioselectivity with 

electrophile 56 (Scheme 58).  
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Scheme 58 

 To attenuate the racemization, electrophile 103, bearing a bulky 2,6-diisopropylphenyl 

group was used. The 2,6-substituents impart both slightly higher intrinsic selectivity to 103 as 

well as increased stability to the resulting thiiranium ions (Scheme 59).
40

 The use of 103 in the 

reaction of 142i resulted in a dramatic increase in selectivity, albeit not to the level observed with 

alcohol 57a (Scheme 58).
40

 Thus, configurational erosions of thiiranium ions can be ameliorated 

through increased steric shielding of the sulfur atom. 

 

Scheme 59 

 4.5.4.4. Site-selectivity. The site-selectivity for the sulfenoetherification follows the 

established Markovnikov rule.
48

 Reaction of (E)-2-cinnamylphenols can proceed through either a 

5-exo cyclization to afford a benzofuran or a 6-endo cyclization to afford a chroman. Only 

chromans were observed as reaction products in the cyclization of (E)-2-cinnamylphenols. 

Changes in the electron density or steric bulk of the nucleophile had no effect on site-selectivity. 

Opening of the thiiranium ion through a Friedel-Crafts-type process (i.e. C-aryl cyclization) was 

not observed, demonstrating that the chemoselectivity of capture is high, irrespective of arene 

electron density.
 83,95c

  

 The reversible capture observed for alcohol cyclizations prevented conclusions about the 

intrinsic site selectivity of the sulfenoetherification process. Therefore, an isomerization 

experiment with product 143d was set up. Even at elevated temperature, only a minute amount 

of isomerization was observed (Scheme 60). Thus, in the case of phenoxysulfenylation at 
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subambient temperatures and substoichiometric acid concentrations, no product isomerization is 

expected. Therefore, the observed ratios represent the kinetic site selectivity of thiiranium ion 

functionalization. 

 

Scheme 60 

 4.5.5. Influence of Alkene Environment. The alkene environment represents the most 

important variable that can influence both the rate and the selectivity of the sulfenocyclization 

process.
40

 This sensitivity has been evident in numerous sulfenofunctionalizations.
20,79,83,134 

In 

general, higher alkene electron density leads to increased reactivity. Enantioselectivity is most 

sensitive to the alkene substitution pattern, whereas site-selectivity is governed by the 

aforementioned Markovnikov selectivity, albeit complicated by the potential for isomerization of 

certain sets of constitutional isomers under the reaction conditions. 

 4.5.5.1. Rate. The rate of cyclization was expected to follow a well-defined trend of 

alkene electron density. The reaction times of substrates with disubstituted alkenes demonstrated 

that the reactivity difference between heteroaryl, aryl and alkyl substituents was not substantial 

for disubstituted alkenes (142a, 142k, 142l, 142s 24 h at -20 
o
C). However, because both mono- 

and trisubstituted alkenes required electrophile 103 for high selectivity, direct comparison of the 

rate of cyclization for terminal alkene 142p and trisubsituted alkene 142m with their respective 

analogs 142s and 142l is not possible.  

 The strongly acidic nature of the reaction conditions raised the possibility of cationic 

alkene cyclization or polymerization as a competitive side reaction, especially for substrates with 

electron-rich alkenes.
135

 For example, in the cyclization of a 4-tolyl substituted alkene 143x in 

the absence of Lewis basic functionality, a proton initiated cyclization was observed (Scheme 
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61).
87

 No evidence of acid-catalyzed polymerization or cyclization was observed for the current 

set of styrenes.  

 

Scheme 61 

 Conjugated electron-rich heteroarenes are significantly more susceptible to 

polymerization. Thus, when MsOH was added to a mixture of 142j, 62e, and 56 in 

dichloromethane at -20 
o
C, rapid polymerization was observed and no identifiable product was 

obtained. If the order of addition was changed to introduce 142j last, the desired reaction 

pathway was restored. The effective acid concentration in solution clearly has a substantial 

impact on the rate of polymerization for sensitive alkenes. Incubation of the methanesulfonic 

acid with the remaining reagents solubilizes MsOH, removing local concentrations of acid.
87

  

 4.5.5.2. Enantioselectivity. The enantiomeric composition of the final products in 

sulfenofunctionalizations is determined by the enantioenrichment of their precursor thiiranium 

ions.
20,79

 The enantioselectivity of thiiranium ion formation is, in turn, determined by the 

transition state complex consisting of alkene and intermediate 95. Computation of the energies of 

the diastereomeric transition states revealed that catalyst distortion as the most important 

contributor to the difference in transition state free energies.
40

 Thus, changes in alkene 

substitution pattern and consequently the degree of distortion that the catalyst experiences to 

accomodate the substituents, are expected to substantially impact the stereoselectivity of the 

process. Indeed, foregoing studies have demonstrated that the enantiotopic faces of (Z)- and 1,1-

disubstituted alkenes were poorly differentiated by the active sulfenylating agent derived from 

62e.
20,40

  

 The enantioselectivity of the sulfenoetherifications herein was consistent among aryl, 

heteroaryl and alkyl-substituted (E)-alkenes (143a, 94.9:5.1; 143k, 93:9:6.1; 143l, 96.6:3.4). The 

nature of the oxygen nucleophile played only a minor role as phenols, alcohols and carboxylic 

acids cyclized with comparable enantioselectivities (143a, 94.9:5.1; 147u, 96.9:3.1; 147t, 
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92.2:7.8). The high enantioselectivities observed independent of nucleophile parameters is in 

good agreement with the current hypothesis of stereodetermining thiiranium ion formation. 

 Terminal alkenes are usually difficult substrates for enantioselective alkene 

functionalizations due to absence of steric differentiation at the terminus.
136

 Lower 

enantioselectivities have been observed previously for sulfenofunctionalization with this class of 

substrates (Scheme 62).
20,83

 Therefore, more selective electrophile 103 was employed for the 

cyclization of terminal alkenes 142p and 142q. Thus, when 1c was used for the cyclization of 

142p, the enantioselectivity was found to be 97.2:2.8. (c.f. Table 19, entries 5 and 7). Similarly, 

cyclization of 142q proceeded with high enantioselectivity even at elevated temperature 

(97.7:2.3).  

 

Scheme 62 

 Trisubstituted alkenes are challenging substrates for selective sulfenofunctionalization. In 

the cyclization of pendant alcohols, both (E)- and (Z)-trisubstituted alkenes afford the 

corresponding products with poor enantioselectivities (60:40 and 70:30 respectively, Scheme 

63). The higher intrinsic selectivity of sulfenylating agent 103 was beneficial to this class of 

substrates as well, as benzopyran 143m was produced with 95.4:4.6 e.r. The stereochemical 

model for enantioselectivity posits that bulky electrophiles accentuate the difference in catalyst 

distortion during the transition state for thiiranium ion formation. Thus, the respective position of 

the (Z)-methyl group to the enantiotopic faces of 142m appears to cause a much greater 

distortion in the complex 95 derived from 103 than that from 56.
40

  

 

Scheme 63 
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 4.5.5.3. Site-selectivity. The Markovnikov rule for site-selectivity holds well for the 

cyclization of alkenes wherein the nucleophile is three atoms removed (Section 4.5.4.4). The 

investigation of constitutional site-selectivity of the reaction alcohols to thiiranium ions derived 

from biased alkenes demonstrated that cyclization preferentially occurs at the stabilized position. 

For unbiased alkenes, a mixture of isomers is obtained, although an in situ isomerization process 

from the 5-exo isomer to the 6-endo isomer precluded analysis of kinetically controlled 

selectivity (Table 11).
18

 In contrast, high 5-exo selectivity is observed for carboxylic acid 

cyclizations. The cyclization of phenolic hydroxyl groups proceeds similarly to the alcohols, 

with high Markovnikov site-selectivity being observed. The presence of resonance stabilization 

(presence of a Ph substituent, c.f. Table 19, entry 5) or inductive stabilization (disubsituted 

carbon atom of the thiiranium ion, Table 19, entry 4) is sufficient for high selectivity. Moreover, 

a mixture of isomers is observed in the absence of electronic bias (Table 19, entry 3). The 

presence of a phenolic hydroxyl group did not otherwise impact selectivity, as the cyclization of 

142u proceeded to give a mixture of isomers, whereas carboxylic acid 145t displayed very high 

5-exo selectivity, confirming previous trends (Table 19, entries 11 and 12).
137

  

 For capture of an electronically unbiased thiiranium ion by a phenolic hydroxyl group 

three atoms away, the Markovnikov rule predicts poor selectivity. Instead, the controlling factor 

is the relative rate of 5-exo to 6-endo cyclization. For epoxides, exo opening to afford furans is 

preferred.
141b

 In the case of substrate 142l, a 1.5:1 ratio of 143l/144l from endo vs. exo 

cyclization respectively was obtained. Direct comparison to the corresponding alcohol substrate, 

which afforded a 5:1 ratio of endo/exo isomers, is not warranted due to the presence of Csp2 

atoms in the tether.
20

 Instead, comparisons can be drawn to intramolecular phenol capture of 

other tethered three-membered rings. The opening of a disubstituted alkyl epoxide by a phenolic 

hydroxyl proceeds exclusively exo, whereas the iodine-mediated cyclization of 2-crotylphenol, 

which proceeds through an iodonium intermediate, affords solely the endo product (Scheme 

64).
138

 The intrinsic selectivity of phenol capture is therefore highly dependent on the nature of 

the electrophilic moiety, wherein increased charge and larger atoms in the three-membered ring 

result in higher formation of the endo product. Thiiranium ions are between these two extremes, 

and consequently low selectivity is observed.  
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Scheme 64 

 The ratio 143l/144l is independent of conversion. In this particular case, the reduced 

basicity of a benzopyran oxygen compared to a pyran, as well as the reduced MsOH loading 

likely retard isomerization, leading to poor site selectivity that represents kinetic control.  

 4.5.6. Influence of Tether Length. On the basis of the observed characteristics of the 

sulfenofunctionalization reaction, changes in the tether length were primarily expected to affect 

the rate- and site-selectivity of the process. As the alkene environment is constant among the 

various substrates, the enantioselectivity was not expected to vary. Indeed, comparable substrates 

displayed similar enantioselectivities irrespective of tether length (142a and 142n, 142p and 

142q).  

 4.5.6.1. Rate. The free energy barrier to cyclization for medium sized rings is highly 

dependent on ring size.
139

 Consequently, the relative rates of endo and exo capture of the 

thiiranium ions are dependent on the sizes of the rings being formed. The rate of cyclization of 

substrate 142n, bearing one more atom in the tether than 142a, is similar to the rate of 142a (c.f. 

Table 18, entry 1 and Table 19, entry 5, Scheme 65a). Similarly, the rates of cyclization of 

dialkyl-substituted substrates 142l and 142s are comparable (Table 19, entries 3 and 10, Scheme 

65b and Scheme 65c). Overall, for 5-exo, 6-endo, 6-exo and 7-endo capture, thiiranium ion 

formation appears to be turnover-limiting, and no effect on rate as a function of tether length is 

observed. In contrast, substantially different rates are observed for the cyclization of 142p and 

142q (12 h vs 48 h) which have, respectively, two and three methylene units in their tethers 

(Table 19, entries 7 and 8, Scheme 65d). The cyclization of 142o, also bearing a three carbon 

tether, with 1c, required elevated temperature compared to the shorter 142n (22 
o
C vs -20 

o
C, 

Table 3, entries 5 and 6). Attempts to cyclize 142o with 56 for comparison purposes failed, with 
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primarily decomposition products being formed (Scheme 65a). Thus, both 7-exo and 8-endo 

cyclizations are generally disfavored in comparison to the aforementioned modes. The overall 

relative rates as a function of cyclization mode can then be expressed as 8-endo << 7-exo < 7-

endo ~ 6-exo ~ 6-endo ~ 5-exo. In conjunction with these rates, a regime for change of the rate-

determining step can be established. For 7-endo and more facile closures, thiiranium formation 

remains turnover-limiting, however, for less favored closures such as 7-exo and 8-endo, capture 

becomes turnover-limiting. The importance of sterically shielding the thiiranium ion reactions 

with turnover-limiting capture is clearly illustrated by the failure of 56 to promote the cyclization 

of 142o.  

  

 

  

 

Scheme 65 

 4.5.6.2. Site-selectivity.  Changing the tether length introduces substantial bias into the 

cyclization due to the higher energy associated with forming 7-membered and larger rings.
,139,140

 

The cyclization of electronically unbiased alkenes with two-carbon tethers (142s and 142r) show 

that the intrinsic selectivity for 6-exo over 7-endo highly favors the 6-exo product. However, 

142n, which bears a phenyl substituent, cyclized selectively to the less favored benzoxepane 
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143n. Thus, there exists a kinetic preference for cyclization following the Markovnikov rule. 

Surprisingly, the cyclization of 142o did not follow the expected trend. Under standard reaction 

conditions, decomposition was observed. The increased kinetic barrier to either 8-endo or 7-exo 

cyclization likely extends thiiranium lifetime to the point where decomposition processes 

intervene. The use of the electrophile 103 led to preferential 7-exo cyclization. Electrophile 103 

has been known to substantially increase thiiranium lifetime, enabling intramolecular 

sulfenofunctionalization reactions to be run at ambient temperature.
18,40

 In this case, the 

increased stability imparted to the thiiranium ion is sufficient to prevent decomposition, 

whereupon successful phenol capture can take place. The observed site-selectivity is dominated 

by the kinetic preference for formation of a seven- vs. eight-membered ring. The subtle interplay 

between enthalpic and entropic contributions is similar to that exhibited with epoxide substrates 

wherein the cyclization of an electronically-unbiased epoxide affords the 5-exo isomer vs. the 6-

endo isomer with high selectivity whereas an electronically biased epoxide opens with opposite 

selectivity (Scheme 66).
141

  

 

Scheme 66 

 4.5.7. Influence of Lewis Basic Functional Groups. The sulfenofunctionalization process 

relies on a moderately Lewis basic selenophosphoramide to promote the catalytic process. 

Therefore, the sensitivity of the reaction to other Lewis basic functional groups that may be 

present in the reaction was of interest. In comparison with the reaction of 142a, no effect on rate 

was observed for any of the four Lewis basic groups tested (alcohol, acid, ester, ether), although 

in these cases 0.5 equiv acid was used to counteract any potential buffering effects.  

 The enantioselectivity of the reactions were consistently high except for 143r and 147t 

which showed a slight erosion. The interaction of the carbonyl group either directly with the 

thiiranium ion during its formation or with the complex during its capture may lead to this 

erosion. Given the small magnitude of the change, the interaction appears to be weak. The site 
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selectivity for ester 143r was slightly lower than for 142s, which also suggests an interaction not 

present with the ether functional group.  

 If two competent nucleophiles are present in the molecule, such as in 145t and 146u, 

capture with either nucleophile is possible. The chemoselectivity of the reaction is then 

dependent on, in addition to the ring size as discussed, the relative rates of cyclization for either 

nucleophile. Both a carboxylic acid and an alcohol outcompeted the phenolic hydroxyl group for 

thiiranium capture. Clearly, the  deactivation of the phenolic hydroxyl group, a consequence of 

electron delocalization, with respect to other oxygen nucleophiles is sufficient to disfavor aryl 

ether formation.
129

 Interestingly, the chemoselectivity does not correlate with proton affinity, as 

the pKa of a protonated carboxylic acid is somewhat higher than a protonated phenol (pKa,aq. 

PhCO2H2
+
: -7.8 vs PhOH2

+
: -6.5).

66
 The discrepancy suggests the existence of a secondary 

interaction that favors capture by the carboxylic acid, similar to what was observed during the 

cyclization of ester 142r.  

 The site-selectivity for the formation of lactone 147t was consistent with high 5-exo 

preference for cyclization of carboxylic acid substrates with phosphoramides.
20

 In contrast, the 

alcohol 142u formed 147u and 148u in almost equimolar ratio, compared to previous results 

where a 5:1 isomer ratio favoring the pyran was observed (Scheme 67a).
20

 There appears to be 

no intrinsic kinetic preference for 5-exo vs. 6-endo cyclization for alcohols with three carbon 

tethers, in agreement with the low kinetic preference observed in the cyclization of phenol 142l 

(Scheme 67b and Scheme 67c).  

 

 

 

Scheme 67 
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Scheme 67 (cont.) 

 4.5.8. Intermolecular Sulfenylation. The phenoxysulfenylation reaction could also be 

performed intermolecularly. The production of 149 ensued in comparable yield and selectivity to 

143a. Although the selectivity was slightly lower (93:7 compared  to 95:5), such small decreases 

were also observed in the comparison of inter- and intramolecular sulfenylation. However, the 

sulfenofunctionalization of β-methylstyrene was much less successful. The lower nucleophilicity 

of phenols with respect to alcohols now allows substantial racemization to take place. Stilbene 

was completely unreactive. Increased conjugation is known to decrease reactivity with respect to 

thiiranium ions, and the result was not particularly unexpected. The applicability of 

intermolecular sulfenylation remains limited based on the current substrate scope. 

 4.6. Conclusions. 

 The highly enantioselective sulfenocyclization of alkenes with tethered phenolic 

hydroxyl groups to afford substituted chromans has been accomplished. A systematic variation 

of the nucleophile component and tether length allowed further trends in sulfenofunctionalization 

to be identified. The reaction was insensitive to changes in the steric properties of the 

nucleophile. The nucleophile electron density only made a difference for highly electron-

deficient phenols. The reaction rate did not change for one- and two-methylene tethers, and both 

benzopyrans and benzoxepanes were readily prepared, whereas further increases in tether length 

resulted in slower reactions. Enantioselectivity was unaffected by changes in the nucleophile 

component or tether length. Nucleophilic capture occurred at the more electronically biased 

location of the thiiranium ion. In the absence of electronic bias, the intrinsic site selectivity of 

sulfenofunctionalization was low for one-methylene tethers but high for two-methylene tethers. 

Carboxylic acids and alcohols were more reactive towards thiiranium ions than phenolic 

hydroxyl groups, and high chemoselectivity was observed in competition experiments. 

Substrates which displayed low reactivity at -20 
o
C were amenable to sulfenofunctionalization 

with hindered 103 at higher temperatures. The increased thiiranium ion stability as a result of 
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shielding prevented enantioerosion that had previously plagued reactions at such elevated 

temperature.  

 4.7. Outlook. 

 The sulfenofunctionalization of alkenes has enabled the rapid synthesis of diverse 

sulfenylated heterocycles. In the presence of oxygen based nucleophiles pyrans, benzopyrans and 

lactones can be formed. The enantioselectivity of the reaction remained high throughout a 

diverse set of modifications, a result of the configurational stability of the thiiranium ion. Only 

changes in the alkene geometry were not well tolerated.  

 The development of new sulfenofunctionalization catalysts is necessary for the extension 

of the reaction to other alkene geometries such as cis- or 1,1-substituted. Steric differentiation of 

cis-alkenes usually requires catalysts of ungerade symmetry, thus, these catalysts will likely not 

exhibit the C2 symmetry present in the current catalyst architecture. Some architectures that have 

been proposed so far are the C3 symmetric propellane architectures 155 and 156 (Scheme 68).  

 

Scheme 68 

 The thiiranium ion that results from initial alkene sulfenofunctionalization remains a 

strong electrophile. Thus, other alkenes of sufficient electron density may be able to engage the 

thiiranium ion in C-C bond formation. The resulting carbocation would then serve as a locus for 

further ring formation or rearrangement. These well known polyene cyclization processes have 

been triggered by the formation of other -iranium ions before, however current enantioselective 

polyene cyclization methods remain limited (Scheme 69).
142

 The broad nucleophile and 

substituent tolerance of the sulfenofunctionalization process and high selectivity independent of 

substrate are well suited towards this type of cyclization. 
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Scheme 69 

 The highly selective functionalization of terminal alkenes remains an area of active 

research, and the sulfenofunctionalization reaction could be employed to synthesize terminal 

aziridines with high selectivity in a Payne-type reaction.
143

 The sulfenofunctionalization of an 

allyl amine would lead to the formation of a thiiranium ion with an α-amine. Anchimeric 

opening of the thiiranium ion would lead to α-thioaziridine formation (Scheme 70).  

 

Scheme 70 

 The deprotection of the thioether moiety has remained problematic throughout the course 

of these investigations. Attempts at cross coupling with an Fe-based system were met with mixed 

success, and, as detailed above, the direct deprotection also proved difficult.
144

 Conversion of the 

sulfoxide to the ketone failed as well. Thus, changes to the aryl group that make it easier to 

deprotect are necessary. These may be either increasing electron density on the arene, to better 

undergo oxidative deprotection, or completely changing the electrophile to better accommodate 

deprotection strategies. These approaches remain active areas of research in these laboratories.      
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Chapter 5: Experimental Procedures 

 

 5.1. General Experimental.  

 All reactions were performed in oven- (160 °C) and/or flame-dried glassware under an 

atmosphere of dry argon unless otherwise noted. Reaction solvents tetrahydrofuran (Fisher, 

HPLC grade), ether (Fisher, BHT stabilized ACS grade), and dichloromethane (Fisher, 

unstabilized HPLC grade), were dried by percolation through two columns packed with neutral 

alumina under a positive pressure of argon. Reaction solvents hexanes (Fisher, OPTIMA grade) 

and toluene (Fisher, ACS grade) were dried by percolation through a column packed with neutral 

alumina and a column packed with Q5 reactant (supported copper catalyst for scavenging 

oxygen) under a positive pressure of argon. Solvents for filtration, transfers, and chromatography 

were certified ACS grade. “Brine” refers to a saturated solution of sodium chloride in water. All 

reaction temperatures correspond to internal temperatures measured with Teflon coated 

thermocouples. A ThermoNesLab CC-100 or a ThermoNesLab IBC-4A cryocool with an 

attached cryotrol was used for reactions at subambient temperatures.  

 
1
H and 

13
C NMR spectra were recorded on Varian Unity (400 MHz, 

1
H; 101 MHz, 

13
C) 

or Inova (500 MHz, 
1
H; 126 MHz, 

13
C) spectrometers. 

31
P NMR and 

19
F spectra were recorded 

on Inova (202 MHz) and Inova (470 MHz) spectrometers respectively. Acquisition times were 

4.096 s for 
1
H NMR, 1.024 s for 

13
C NMR, 0.655 s for 

31
P NMR, and 0.328 s for 

19
F NMR. 

Spectra are referenced to residual chloroform (δ = 7.26 ppm, 
1
H; 77.0 ppm, 

13
C). Chemical shifts 

are reported in parts per million, multiplicities are indicated by s (singlet), d (doublet), t (triplet), 

q (quartet), p (pentet), h (hextet), sept (septet), m (multiplet), and br (broad). Coupling constants, 

J, are reported in Hertz, and integration is provided and assignments are indicated. Assignments 

were confirmed through 2-D COSY and HMQC experiments. Elemental analysis was performed 

by the University of Illinois Microanalysis Laboratory or Robertson Microlit Laboratories. Mass 

spectrometry (MS) was performed by the University of Illinois Mass Spectrometry Laboratory. 

Electron Impact (EI) spectra were performed at 70 eV using methane as the carrier gas on a 

Finnegan-MAT C5 spectrometer. Chemical Ionization (CI) spectra were performed with 

methane reagent gas on a Micromass 70-VSE spectrometer. Electrospray Ionization (ESI) 

spectra were performed on a Micromass Q-Tof Ultima spectrometer. Data are reported in the 
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form of m/z (intensity relative to the base peak = 100). Infrared spectra (IR) were recorded on a 

Perkin-Elmer FT-IR system and peaks are reported in cm
-1

 with indicated relative intensities: s 

(strong, 0–33% T); m (medium, 34–66% T), w (weak, 67–100% %), and br (broad). Melting 

points (mp) were determined on a Thomas-Hoover capillary melting point apparatus in sealed 

tubes under vacuum and are corrected.  

 Analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60 F254 

or Merck silica gel 60 RP-18 F254s plates. Silver impregnated silica was prepared by first 

dissolving 5 g of AgNO3 in 30 mL of deionized water. The resulting homogenous solution was 

added to 50 g of SiO2 in a mortar. The clumpy silica was ground with a pestle until free-flowing. 

The mortar was then covered in aluminium foil and placed in an oven (160 
o
C) for 3 h. The 

vessel was then removed from the oven, and allowed to cool in a dessicator. No special 

precautions were necessary during the chromatography process, however, prolonged (>6 h) 

exposure to visible light resulted in the formation of black Ag nanoparticles and a loss of column 

separation power. Visualization was accomplished with UV light and/or Ceric Ammonium 

Molybdenate (CAM) solution. Rf values reported were measured using a 10 × 2 cm TLC plate in 

a developing chamber containing the solvent system described. Flash chromatography was 

performed using Merck silica gel 60 230–400 mesh (60–63 µ, 60 Å pore size). Analytical chiral 

stationary phase supercritical fluid chromatography (CSP-SFC) was performed on an Agilent 

1100 HPLC equipped with an Aurora Systems A-5 supercritical CO2 adapter for supercritical 

fluid chromatography and a UV detector (220 nm or 254 nm) using Daicel Chiralcel OD, OJ, OB 

or Chiralpak AD, and AS columns as well as a Regis Whelk-O1 column. Normal Phase HPLC 

was performed on an Agilent 1100 HPLC equipped with AD-H, OJ-H, IB-3, Naphtholeucine and 

R,R-Beta-Gem columns. Reverse-Phase HPLC was performed on an Agilent 1100 HPLC using a 

Chiralpak AD-RH or Chiralcel OJ-RH column.  

 Commercial reagents were purified by distillation or recrystallization prior to use unless 

noted. Solvents for chromatography, filtration and recrystallization were toluene (Fisher, ACS 

grade), dichloromethane (Aldrich, ACS grade), ethyl acetate (Fisher, ACS grade), and hexane 

(Fisher, Optima). Isopropylamine (Aldrich), triethylamine (Alfa-Aesar) and pyridine (Fisher) 

were distilled from CaH2. 
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 5.2. Literature Preparations. 

 

 Literature Preparations for Chapter 2: 

 Electrophiles N-(phenylthio)-phthalimide 56
145

, N-(phenylthio)-benzotriazole 67
69

, N-

(phenylthio)saccharin 68
146

, N-(phenylthio)bismethylsulfonamide 69
147

, phenylsulfenyl acetate 

70
75

, 2-nitrophenylsulfenyl acetate 71
75

, 2,4-dinitrophenylsulfenylacetate 72
75

, N-(methylthio)-

phthalimide 74
148

, N-(trichloromethylthio)-phthalimide 75
149

, N-(4-nitrophenylthio)phthalimide 

76
148

 and N-(2,6-diisopropylphenylthio) phthalimide 103
40 

were prepared as decribed.  

 Alkenes (E)-5-phenyl-pent-4-en-1-ol 57a
20

, (E)-5-(4-trifluoromethylphenyl)-pent-4-en-1-

ol 57b
20

, (E)-5-(4-methoxyphenyl)-pent-4-en-1-ol 57c
20

, methyl (E)-6-hydroxyhex-2-enoate 

57d
20

, (E)-2-methyl-6-phenylhex-5-en-2-ol 57e
150

, (E)-2,2-dimethyl-5-phenylpent-4-en-1-ol 

57f
20

, (E)-7-phenylhept-4-en-1-ol 57g
20

, (E)-6-methylhept-4-en-1-ol 57h
20

, (Z)-5-phenyl-pent-4-

en-1-ol 57i
20

, (Z)-7-phenylhept-4-en-1-ol 57j
151

, pent-4-en-1-ol 57k
20

, 4-phenylpent-4-en-1-ol 

57l
20

, (E)-5-phenylhex-4-en-1-ol 57m
20

, (E)-4-methyl-5-phenylpent-4-en-1-ol 57n
20

, (E)-5-

phenylpent-4-enoic acid 57o
20

, (E)-5-phenylpent-4-enamide 57p
152

 were prepared as described.  

 Catalysts 61
69

, (R)-4-(piperidin-1-yl)-3,5-dimethyl-4,5-dihydro-3H-dinaphtho[2,1-d:1',2'-

f][1,3,2]diazaphosphepine-4-selenide 62a
16

, (R)-4-(diisobutyl)-3,5-dimethyl-4,5-dihydro-3H-

dinaphtho[2,1-d:1',2'-f][1,3,2]diazaphosphepine-4-selenide 62d
83

, di-Me-BINAM
71

, (R)-4-

(diisopropyl)-3,5-dimethyl-4,5-dihydro-3H-dinaphtho[2,1-d:1',2'-f][1,3,2]diazaphosphepine-4-

selenide 62e
40

, and azocane
153

 were prepared according to their published procedures.  

 

 Literature Preparations for Chapter 3: 

 (E)-5-(2-fluorophenyl)-pent-4-en-1-ol 99
154

, (R)-6,6- dimethyl-2,2-di(methylamino)-1,1-

biphenyl
155

, benzenesulfenyl chloride
156

, 1,1-dimethyl-2-phenyldisulfan-1-ium 

hexachloroantimonate ([PhS(SMe2)]SbCl6)
85

 were prepared according to their published 

procedures.  

 

 Literature Preparations for Chapter 4: 

 2-((E)-3-thiophenylprop-2-en-1-yl)phenol 119a
157

, 2-(but-3-en-1-yl)phenol
96b

,  142p
158

, 

2-(pent-4-en-1-yl)phenol 142q
96b

, (E)-3-(furan-2-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one 
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118b
159

 and diethyl (E)-2-(5-(2-hydroxyphenyl)pent-2-en-1-yl)malonate 138
160

 were prepared as 

described. 

 

 5.3. Experimental Procedures for Chapter 2. 

 

Survey of Achiral Lewis Bases (Table 4)  

 

General Procedure 1 

 

 An oven-dried, 5-mm NMR tube was charged with N-phenylthiophthalimide (56, 1.2 

equiv) in a glovebox and capped with a septum. Outside of the glovebox, 5-phenyl-4-penten-1-ol 

(57a), the indicated amount of catalyst and 0.62 mL of CDCl3 was added and the mixture was 

shaken well. Subsequently, the corresponding amount of acid was added and the mixture was 

shaken again. Spectra were recorded at 3 h and 24 h time points. Conversion to product was 

measured by the appearance of the diagnostic 
1
H NMR resonance for the product at 4.14 ppm 

with respect to the substrate peaks at 6.23 ppm and 3.72 ppm. Generally, no other products were 

observed in the 
1
H NMR spectra. Formation of phthalimide byproduct was visually confirmed by 

the precipitation out of the solution.  

Data for 58a: 

 1
H NMR:  (500 MHz, CDCl3) 

  7.32 (m, 2 H, H(C-aryl)), 7.28 – 7.16 (m, 3 H, H(C-aryl)), 7.14 – 7.03 (m, 5 H, 

H(C-aryl)), 4.14 (d, J = 10.1 Hz, 1 H, HC(2)), 4.09 – 4.00 (m, 1 H, HC(6)), 3.53 

(td, J = 11.9, 2.2 Hz, 1 H, HC(6)), 3.20 (ddd, J = 11.5, 10.2, 4.0 Hz, 1 H, HC(3)), 

2.32 – 2.17 (m, 1 H, HC(4)), 1.93 – 1.73 (m, 1 H, HC(5)), 1.66 (m, 2 H, HC(4), 

HC(5)). 

 

 Sulfenocyclization with Tetrahydrothiophene and TFA (Table 4, Entry 1) [DJK-3-34A] 
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 Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (9.9 mg, 0.062 mmol), THT (Tetrahydrothiophene, 1.2 µL, 0.013 

mmol, 0.22 equiv) and CDCl3 (0.62 mL). Trifluoroacetic acid (4.7 µL, 0.061 mmol, 1.0 equiv) 

was added and the tube was shaken well. Spectral analysis revealed 33% and 70% conversion 

after 3 h and 24 h respectively.  

 

Sulfenocyclization with Tetrahydrothiophene and MsOH (Table 4 Entry 2) [DJK-3-34B] 

 

 Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (9.7 mg, 0.062 mmol), THT (1.2 µL, 0.013 mmol, 0.23 equiv) and 

CDCl3 (0.62 mL). Methanesulfonic acid (4.0 µL, 0.061 mmol, 1.0 equiv) was added and the tube 

was shaken well. Spectral analysis revealed 100% conversion after 3 h.  

 

Background Sulfenofunctionalization with TFA (Table 4 Entry 3) [DJK-3-34D] 

 

 Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (10.2 mg, 0.063 mmol) and CDCl3 (0.62 mL). Trifluoroacetic acid 

(4.7 µL, 0.061 mmol, 1.0 equiv) was added and the tube was shaken well. Spectral analysis 

revealed no conversion after 24 h. 

 

Background Sulfenofunctionalization with MsOH (Table 4 Entry 4) [DJK-3-34E] 

 

 Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (10.0 mg, 0.062 mmol) and CDCl3 (0.62 mL). Methanesulfonic acid 

(4.0 µL, 0.062 mmol, 1.0 equiv) was added and the tube was shaken well. Spectral analysis 

revealed trace and 10% conversion after 3 and 24 h respectively. 

 



120 

 

Sulfenofunctionalization with 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinthione 

(DMPU(S))  (Table 4 Entry 5) [DJK-3-25-M] 

 

 Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (10.2 mg, 0.063 mmol), 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-

pyrimidinethione (1.9 mg, 0.013 mmol, 0.21 equiv) and CDCl3 (0.62 mL). Methanesulfonic acid 

(4.0 µL, 0.062 mmol, 1.0 equiv) was added and the tube was shaken well. Spectral analysis 

revealed 7% and 55% conversion after 3 and 24 h respectively. 

 

Sulfenofunctionalization with Triphenylphosphine sulfide (Table 4 Entry 6) [DJK-3-25-G] 

 

Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (10.2 mg, 0.063 mmol), triphenylphosphine sulfide (3.63 mg, 0.012 

mmol, 0.20 equiv) and CDCl3 (0.62 mL). Methanesulfonic acid (4.0 µL, 0.062 mmol, 1.0 equiv) 

was added and the tube was shaken well. Spectral analysis revealed 100% conversion after 3 h. 

 

Sulfenofunctionalization with Tricyclohexylphosphine sulfide  (Table 4 Entry 7) [DJK-3-

25-L] 

 

Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (10.1 mg, 0.062 mmol), tricyclohexylphosphine sulfide (3.89 mg, 

0.012 mmol, 0.20 equiv) and CDCl3 (0.62 mL). Methanesulfonic acid (4.0 µL, 0.062 mmol, 1.0 

equiv) was added and the tube was shaken well. Spectral analysis revealed 100% conversion 

after 3 h. 
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Sulfenofunctionalization with Hexamethylphosphoramide (Table 4 Entry 8) [DJK-3-25-I] 

 

Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (10.1 mg, 0.062 mmol), hexamethylphosphoramide (2.1 µL, 0.012 

mmol, 0.20 equiv) and CDCl3 (0.62 mL). Methanesulfonic acid (4.0 µL, 0.062 mmol, 1.0 equiv) 

was added and the tube was shaken well. Spectral analysis revealed 0% conversion after 24 h. 

 

Sulfenofunctionalization with Hexamethylsulfenophosphoramide (Table 4 Entry 9) [DJK-

3-25-H] 

 

Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (9.8 mg, 0.061 mmol), hexamethylthiophosphoramide (2.42 mg, 

0.012 mmol, 0.2 equiv) and CDCl3 (0.62 mL). Methanesulfonic acid (4.0 µL, 0.062 mmol, 1.0 

equiv) was added and the tube was shaken well. Spectral analysis revealed 35% conversion after 

24 h. 

 

Sulfenofunctionalization with Hexamethylselenophosphoramide (Table 4 Entry 10) [DJK-

3-25-J] 

 

Following General Procedure 1, an oven-dried NMR tube was charged with 56 (20 mg, 

0.078 mmol 1.2 equiv), 57a (10.2 mg, 0.063 mmol), hexamethylselenophosphoramide (3.06 mg, 

0.012 mmol, 0.2 equiv) and CDCl3 (0.62 mL). Methanesulfonic acid (4.0 µL, 0.062 mmol, 1.0 

equiv) was added and the tube was shaken well. Spectral analysis revealed 31% and 100% 

conversion after 3 and 24 h respectively. 
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Survey of Chiral, Nonracemic Lewis Bases for Sulfenofunctionalization 

 

Preparation of Catalysts for Table 5: 

 

Preparation of (R)-4-(Azepan-1-yl)-3,5-dimethyl-4,5-dihydro-3H-dinaphtho[2,1-d:1',2'-

f][1,3,2]diazaphosphepine-4-selenide (62b) [DJK-2-27] 

 

To a flame-dried, 50-mL Schlenk flask equipped with a magnetic stir bar and septum 

were added amine 65 (1.048 g, 3.35 mmol) and anhydrous toluene (10.0 mL) via syringe under 

argon. The solvent was removed under high vacuum (30 °C, 0.05 mm Hg) for 30 min. 

Anhydrous THF (30.0 mL) and Et3N (1.167 mL, 8.38 mmol, 2.5 equiv) were added via syringe 

and the homogeneous mixture was cooled to 0 °C. Phosphorus trichloride (880 µL, 10.0 mmol, 

3.0 equiv) was added dropwise via syringe whereupon a colorless precipitate formed 

immediately. The reaction mixture was stirred at 0 °C for 1.5 h, then was allowed to warm to 

room temperature and was stirred for another 3 h. The volatiles were removed under high 

vacuum (30 °C, 0.05 mm Hg) and anhydrous Et2O (10.0 mL) was added via syringe and the 

mixture was stirred for 5 min. The supernatant was cannula filtered into a tared, flame-dried, 

argon filled, 50-mL Schlenk flask equipped with a rubber septum. The remaining precipitate in 

the reaction flask was washed with anhydrous Et2O (5.0 mL) and then was filtered into the 

receiver Schlenk flask. The volatiles were removed under high vacuum (30 °C, 0.05 mm Hg) to 

afford 1.262 g of a colorless foam. The solid was redissolved in anhydrous Et2O (10.0 mL) and 

the volatiles were again removed under high vacuum (30 °C, 0.05 mm Hg) to remove traces of 

HCl. The solid was then dried for 2.5 h at reduced pressure (23 
o
C, 0.05 mm Hg) to give a 

colorless foam. Anhydrous CH2Cl2 (30.0 mL) was added via syringe and the mixture was cooled 

to 0 °C. Triethylamine (560 µL, 4.0 mmol, 1.2 equiv) and hexahydro-1H-azepine (411 µL, 3.65 

mmol, 1.1 equiv) were added via syringe and the reaction mixture was allowed to warm to room 

temperature and then was stirred for 24 h. Powdered selenium (796 mg, 10.1 mmol, 3.0 equiv) 
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was added and the mixture was stirred for 50 h, whereupon the mixture was filtered through a 

pad of Celite (5 g, 35 mm). The pad was washed with EtOAc (50 mL) and the filtrate was 

concentrated in vacuo (40 °C, 10 mm Hg) and the residue was purified by silica gel flash column 

chromatography (SiO2, 15 g, 20 mm Ø, hexanes/EtOAc, 60:1 to 40:1) to afford 1.233 g (71%) of 

62b as an off-white solid.Data for (R)-62b: 

 mp:  252-253 °C (decomposition) 

 1
H NMR:  (500 MHz, CDCl3) 

  8.06 (d, J = 8.8 Hz, 1 H, HC(4,4’)), 8.01 (d, J = 8.8 Hz, 1 H, HC(4,4’)), 7.96 (d, J = 

8.1 Hz, 1 H, HC(6)), 7.93 (d, J = 8.2 Hz, 1 H, HC(6’)), 7.72 (d, J = 8.2 Hz, 1 H, 

HC(3,3’)), 7.71 (d, J = 8.4 Hz, 1 H, HC(3,3’)), 7.47 (t, J = 7.2 Hz, 1 H, HC(7)), 

7.41 (t, J = 7.2 Hz, 1 H, HC(7’)), 7.34 (d, J = 8.4 Hz, 1 H, HC(9)), 7.27 (t, J = 7.4 

Hz, 1 H, HC(8)), 7.18 (t, J = 7.4 Hz, 1 H, HC(8’)), 7.14 (d, J = 8.4 Hz, 1 H, 

HC(9’)), 3.46 - 3.36 (m, 2 H, H2C(12) and H2C(12’)), 3.33 (d, J = 12.3 Hz, 3 H, 

H3C(11,11’)), 3.17 - 3.02 (m, 2 H, H2C(12) and H2C(12’)), 2.95 (d, J = 13.4 Hz, 3 

H, H3C(11,11’)), 1.72 (bs, 8 H, H2C(13), H2C(14)) 

13
C NMR:  (125 MHz, CDCl3) 

  142.9 (d, J = 11.3 Hz, C(2,2’)), 141.8 (C(2,2’)), 132.4 (C(aryl)), 132.2 (C(aryl)), 

131.2 (C(aryl)), 130.9 (C(aryl)), 129.3 (C(4,4’)), 128.7 (C(6)), 128.5 (C(1,1’)), 

128.0 (C(4,4’)), 2 × 127.8 (C(6’) and C(8’)), 127.4 (d, J = 2.5 Hz, C(1,1’)), 127.1 

(C(9’)), 126.0 (C(9)), 125.7 (C(8’)), 125.1 (C(7)), 124.7 (C(7’)), 123.0 (C(3,3’)), 

122.1 (C(3,3’)), 49.6 (C(12)), 37.9 (d, J = 11.3 Hz, C(11,11’)), 35.2 (d, J = 6.3 Hz, 

C(11,11’)), 30.3 (d, J = 3.8 Hz, C(13)), 26.7 (C(14)) 

 31
P NMR:  (202 MHz, CDCl3) 

  91.64  

 IR: (KBr) 

  3046 (w), 2993 (w), 2929 (m), 2858 (w), 1618 (m), 1593 (s), 1506 (s), 1466 (s), 

1329 (s), 1274 (s). 1147 (s), 1090 (s), 1052 (s), 934 (s), 815 (s), 753 (s) 

 MS: (ESI) 

522 (25), 521 (34), 520 (100, M+H
+
), 518 (57), 517 (24), 516 (21) 

 HRMS: calcd for C28H31N3PSe
+
: 520.1415, found: 520.1422 

 TLC: Rf 0.17 (hexanes/EtOAc, 20:1) [CAM] 
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 Opt Rot. : [α]
 
D

24 
-318.1 (c = 0.25, CHCl3) 

 SFC: (R)-3c, tR, 15.75 min (99.2%); (S)-3c, tR 19.42 min (0.8%) (Chiralpak AD, 15% 

MeOH in CO2, 2 mL/min, 220 nm.) 

  Analysis: C28H30N3PSe (518.49) 

  Calcd:  C, 64.86;  H, 5.83% N, 8.10% 

  Found:  C, 64.88;  H, 5.83% N, 7.98% 

 

Preparation of (R)-4-(Azocin-1-yl)-3,5-dimethyl-4,5-dihydro-3H-dinaphtho[2,1-d:1',2'-

f][1,3,2]diazaphosphepine-4-selenide (62c) [DJK-1-56] 

 

To a flame-dried, 50-mL Schlenk flask equipped with a magnetic stir bar and septum 

were added amine 65 (161.2 mg, 0.5 mmol) and anhydrous toluene (10.0 mL) via syringe under 

argon. The solvent was removed under high vacuum (30 °C, 0.05 mm Hg) for 30 min. 

Anhydrous THF (30.0 mL) and Et3N (174 µL, 1.25 mmol, 2.5 equiv) were added via syringe and 

the homogeneous mixture was cooled to 0 °C. Phosphorus trichloride (131 µL, 1.5 mmol, 3.0 

equiv) was added dropwise via syringe whereupon a colorless precipitate formed immediately. 

The reaction mixture was stirred at 0 °C for 1.5 h, then was allowed to warm to room 

temperature and was stirred for another 24 h. The volatiles were removed under high vacuum (30 

°C, 0.05 mm Hg) and anhydrous Et2O (15.0 mL) was added via syringe and the mixture was 

stirred for 5 min. The supernatant was cannula filtered into a tared, flame-dried, argon filled, 50-

mL Schlenk flask equipped with a rubber septum. The remaining precipitate in the reaction flask 

was washed with anhydrous Et2O (5.0 mL) and then was filtered into the receiver Schlenk flask. 

The volatiles were removed under high vacuum (30 °C, 0.05 mm Hg). The solid was redissolved 

in anhydrous Et2O (10.0 mL) and the volatiles were again removed under high vacuum (30 °C, 

0.05 mm Hg) to remove traces of HCl. The solid was then dried for 2.5 h at reduced pressure (23 

o
C, 0.05 mm Hg) to give 188.4 mg of a colorless foam. Anhydrous CH2Cl2 (10.0 mL) was added 

via syringe and the mixture was cooled to 0 °C. Triethylamine (90 µL, 0.63 mmol, 1.2 equiv) 
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and heptahydro-1H-azocine (80 mg, 0.58 mmol, 1.1 equiv) were added via syringe and the 

reaction mixture was allowed to warm to room temperature and then was stirred for 24 h. 

Powdered selenium (120 mg, 1.5 mmol, 3.0 equiv) was added and the mixture was stirred for 50 

h, whereupon the mixture was filtered through a pad of Celite (5 g, 35 mm). The pad was washed 

with EtOAc (50 mL) and the filtrate was concentrated in vacuo (40 °C, 10 mm Hg) and the 

residue was purified by silica gel flash column chromatography (SiO2, 15 g, 20 mm Ø, 

hexanes/EtOAc, 60:1 to 40:1) to afford 223.1 mg (71%) of 62c as an off-white solid.Data for 

62c: 

 1
H NMR:  (500 MHz, CDCl3) 

  δ 8.01 – 7.97 (d, J = 8.9 Hz, 1H, HC(4,4’)), 7.97 – 7.92 (d, J = 8.8 Hz, 1H, 

HC(4,4’)), 7.93 – 7.88 (d, J = 8.2 Hz, 1H, HC(6)), 7.89 – 7.85 (d, J = 8.1 Hz, 1H, 

HC(6’)), 7.70 – 7.65 (d, J = 9.0 Hz, 1H, HC(3,3’)), 7.65 – 7.61 (dd, J = 8.9, 1.3 Hz, 

1H, HC(3,3’)), 7.46 – 7.40 (ddd, J = 8.1, 6.4, 1.5 Hz, 1H, HC(7)), 7.39 – 7.34 (t, J = 

7.5 Hz, 1H, HC(7’)), 7.30 – 7.20 (m, 2H, HC(8,9)), 7.17 – 7.10 (ddd, J = 8.1, 6.7, 

1.2 Hz, 1H, HC(8’)), 7.09 – 7.02 (d, J = 8.5 Hz, 1H, HC(9’)), 3.33 – 3.18 (d, J = 

12.2 Hz, 4H, HC(11,11’,12)), 3.04 – 2.91 (tdd, J = 14.5, 8.1, 4.0 Hz, 2H, HC(12’)), 

2.91 – 2.84 (d, J = 13.4 Hz, 3H, HC(11,11’)), 1.79 – 1.70 (m, 2H, HC(13,14,15), 

1.70 – 1.63 (m, 6H, HC(13,14,15)), 1.62 – 1.55 (m, 2H, HC(13,14,15)). 

 31
P NMR:  (202 MHz, CDCl3) 

  92.44  

 

Sulfenofunctionalization with Chiral Nonracemic Lewis Bases (Table 5) 

 

General Procedure 

An oven-dried 5-mm NMR tube was charged with 56 in a glovebox. The tube was taken 

out of the box and the Lewis base, 57a, and 0.7 mL CDCl3 was added. If indicated, the tube was 

cooled to the appropriate temperature in a -20 
o
C freezer or cryocool unit. The acid was added at 

the indicated temperature and the mixture was shaken well. The reaction was quenched after the 

indicated time with excess Et3N, and the product was purified by silica gel flash column 
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chromatography prior to SFC analysis.  

Data for 58a: 

 1
H NMR:  (500 MHz, CDCl3) 

  7.32 (m, 2 H, H(C-aryl)), 7.28 – 7.16 (m, 3 H, H(C-aryl)), 7.14 – 7.03 (m, 5 H, 

H(C-aryl)), 4.14 (d, J = 10.1 Hz, 1 H, HC(2)), 4.09 – 4.00 (m, 1 H, HC(6)), 3.53 

(td, J = 11.9, 2.2 Hz, 1 H, HC(6)), 3.20 (ddd, J = 11.5, 10.2, 4.0 Hz, 1 H, HC(3)), 

2.32 – 2.17 (m, 1 H, HC(4)), 1.93 – 1.73 (m, 1 H, HC(5)), 1.66 (m, 2 H, HC(4), 

HC(5)). 

 

Sulfenofunctionalization with (R)-4-(1-Azepano)-3,5-dimethyl-4,5-dihydro-3H-

dinaphtho[2,1-d:1’,2’-f][1,3,2]diazaphosphepine-4-selenide (62b) (Table 5 Entry 4) [DJK-1-

17] 

 

Following General Procedure 2, an oven-dried NMR tube was charged with 56 (25.5 mg, 

0.1 mmol, 1 equiv), and 57a (16.2 mg, 0.1 mmol). To this was added (R)-62b (5.2 mg, 0.01 

mmol, 0.1 equiv), CDCl3 (0.7 mL). The reaction was cooled to -20 
o
C in a freezer and MsOH 

(6.5 µL, 0.1 mmol, 1.0 equiv) was added. After 30 h, the reaction was quenched with Et3N (10 

µL). Purification by flash chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 30:1) afforded 

16 mg (59%) of 58a as a white solid. 

Data for 58a: 

 SFC: (2R,3S)-58a, tR 4.29 min (90.6%); (2S,3R)-58a, tR 5.35 min (9.4%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 
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Sulfenofunctionalization with (R)-4-(1-Azocano)-3,5-dimethyl-4,5-dihydro-3H-

dinaphtho[2,1-d:1’,2’-f][1,3,2]diazaphosphepine-4-selenide (62c) (Table 5 Entry 5) [DJK-1-

66] 

 

Following General Procedure 2, an oven-dried NMR tube was charged with 56 (30.6 mg, 

0.12 mmol, 1.2 equiv), and 57a (16.2 mg, 0.1 mmol). To this was added (R)-62c (5.4 mg, 0.01 

mmol, 0.1 equiv), CDCl3 (0.7 mL) and the reaction was cooled to -20 
o
C in a freezer. MsOH (6.6 

µL, 0.1 mmol, 1.0 equiv) was added and the tube was shaken well. After 96 h, the reaction was 

quenched with Et3N (10 µL). Purification by silica gel flash column chromatography (SiO2, 20 g, 

20 mm Ø, hexanes/EtOAc, 40:1) afforded 12 mg (44%) of 58a as a white solid.  

Data for 58a: 

 SFC: (2R,3S)-58a, tR 4.29 min (90.7%); (2S,3R)-58a, tR 5.35 min (9.3%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 

 

Sulfenofunctionalization with (R)-4-(Diisobutylamino)-3,5-dimethyl-4,5-dihydro-3H-

dinaphtho[2,1-d:1’,2’-f][1,3,2]diazaphosphepine-4-selenide (62d) (Table 5 Entry 6) [DJK-3-

75] 

 

An oven-dried Schlenk flask was charged with 56 (64 mg, 0.25 mmol, 1 equiv), and 57a 

(40.6 mg, 0.25 mmol). To this was added (S)-62d (13.7 mg, 0.025 mmol, 0.1 equiv), CDCl3 (0.7 

mL). The reaction was cooled to -20 
o
C in an i-Pr bath with stirring and MsOH (17 µL, 0.25 

mmol, 1.0 equiv) was added. After 48 h, the reaction was quenched with Et3N (50 µL). 

Purification by silica gel flash chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 40:1) 

afforded 25 mg (37%) of 58a as a white solid. 
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Data for 58a: 

 SFC: (2R,3S)-58a, tR 4.29 min (7.1%); (2S,3R)-58a, tR 5.35 min (92.9%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 

 

Sulfenofunctionalization with (R)-4-(Diisopropylamino)-3,5-dimethyl-4,5-dihydro-3H-

dinaphtho[2,1-d:1’,2’-f][1,3,2]diazaphosphepine-4-selenide (62e)  (Table 5 Entry 7) [DJK-

10-55] 

 

An oven-dried Schlenk flask was charged with 56 (26 mg, 0.1 mmol, 1 equiv), and 57a 

(16.2 mg, 0.1 mmol). To this was added (S)-62e (5.2 mg, 0.01 mmol, 0.1 equiv), CDCl3 (0.7 

mL). The reaction was cooled to -20 
o
C in an i-Pr bath with stirring and MsOH (4.8 µL, 0.75 

mmol, 0.75 equiv) was added. After 48 h, the reaction was quenched with Et3N (50 µL). 

Purification by flash chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 40:1) afforded 14 

mg (52%) of 58a as a white solid. 

Data for 58a: 

 SFC: (2R,3S)-58a, tR 4.29 min (5.3%); (2S,3R)-58a, tR 5.35 min (94.7%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 

 

Sulfenofunctionalization with Electrophilic Sulfenium Sources (Table 6) 

 

General Procedure  

 An oven-dried NMR tube was charged with 56, 57a and catalyst. To this was added 

CDCl3, followed by MsOH. If necessary, the reaction was cooled to the appropriate reaction 

temperature. The reaction was monitored by 
1
H NMR spectroscopy. After the specified time, the 

reaction was quenched with excess Et3N, and purified by silica gel flash column 

chromatography.  

 

Sulfenofunctionalization with N-Phenylthiophthalimide 56 (Table 6 Entry 1) [DJK-1-17] 
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An oven-dried NMR tube was charged with 56 (25.5 mg, 0.1 mmol, 1 equiv), and 57a 

(16.2 mg, 0.1 mmol). To this was added (R)-62b (5.2 mg, 0.01 mmol, 0.1 equiv) and CDCl3 (0.7 

mL). The reaction was cooled to -20 
o
C in a freezer and MsOH (6.5 µL, 0.1 mmol, 1.0 equiv) 

was added. After 30 h, the reaction was quenched with Et3N (10 µL). Purification by silica gel 

flash column chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 30:1) afforded 6 mg (22%) 

of 58a as a white solid. 

Data for 58a: 

 1
H NMR:  (500 MHz, CDCl3) 

  7.32 (m, 2 H, H(C-aryl)), 7.28 – 7.16 (m, 3 H, H(C-aryl)), 7.14 – 7.03 (m, 5 H, 

H(C-aryl)), 4.14 (d, J = 10.1 Hz, 1 H, HC(2)), 4.09 – 4.00 (m, 1 H, HC(6)), 3.53 

(td, J = 11.9, 2.2 Hz, 1 H, HC(6)), 3.20 (ddd, J = 11.5, 10.2, 4.0 Hz, 1 H, HC(3)), 

2.32 – 2.17 (m, 1 H, HC(4)), 1.93 – 1.73 (m, 1 H, HC(5)), 1.66 (m, 2 H, HC(4), 

HC(5)). 

 SFC: (2R,3S)-58a, tR 4.29 min (90.6%); (2S,3R)-58a, tR 5.35 min (9.4%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 

 

Sulfenofunctionalization with N-Phenylthiobismethanesulfonamide 69 (Table 6 Entry 4) 

[DJK-4-10] 

 

An oven-dried NMR tube was charged with 69 (60 mg, 0.2 mmol, 2 equiv), and 57a 

(16.2 mg, 0.1 mmol). To this was added (R)-62b (10.3 mg, 0.02 mmol, 0.2 equiv) and CDCl3 

(0.7 mL). The reaction was cooled to -20 
o
C in a freezer and 2,6-di-t-butyl-4-methylpyridine (44 

mg, 0.2 mmol, 2 equiv) was added. After 18 h, the reaction was quenched with Et3N (50 µL). 

Purification by silica gel flash column chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 

30:1) afforded 5 mg (19%) of 58a as a white solid.  
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Data for 58a: 

 1
H NMR:  (500 MHz, CDCl3) 

  7.32 (m, 2 H, H(C-aryl)), 7.28 – 7.16 (m, 3 H, H(C-aryl)), 7.14 – 7.03 (m, 5 H, 

H(C-aryl)), 4.14 (d, J = 10.1 Hz, 1 H, HC(2)), 4.09 – 4.00 (m, 1 H, HC(6)), 3.53 

(td, J = 11.9, 2.2 Hz, 1 H, HC(6)), 3.20 (ddd, J = 11.5, 10.2, 4.0 Hz, 1 H, HC(3)), 

2.32 – 2.17 (m, 1 H, HC(4)), 1.93 – 1.73 (m, 1 H, HC(5)), 1.66 (m, 2 H, HC(4), 

HC(5)). 

 SFC: (2R,3S)-58a, tR 4.29 min (68.3%); (2S,3R)-58a, tR 5.35 min (31.7%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 

 

Attempted Sulfenofunctionalization with Phenylsulfanyl ethanoate (Table 6 Entry 5) [DJK-

3-80] 

 

An oven-dried Schlenk flask was charged with PhSCl (14.5 mg, 0.1 mmol, 1 equiv) and 

CH2Cl2 (0.7 mL). AgOAc (16.7 mg, 0.1 mmol, 1 equiv.) was added and the reaction was cooled 

to -20 
o
C and stirred 16 h. Afterwards, 57a (16.2 mg, 0.1 mmol) and (R)-62b (2.6 mg, 0.005 

mmol, 0.05 equiv) were added. After 12 h, no change was visible by 
1
H NMR. No further 

manipulations were done. 

 

Attempted Sulfenofunctionalization with 2-Nitrophenylsulfanyl ethanoate (Table 6 Entry 

6) [DJK-3-79] 

 

An oven-dried Schlenk flask was charged with 2-NO2-C6H4-SCl (19 mg, 0.1 mmol, 1 

equiv) and CH2Cl2 (0.7 mL). AgOAc (16.7 mg, 0.1 mmol, 1 equiv.) was added and the reaction 

was cooled to -20 
o
C and stirred 16 h. Afterwards, 57a (16.2 mg, 0.1 mmol) and (R)-62b (2.6 

mg, 0.005 mmol, 0.05 equiv) were added. After 16 h, no desired product was visible by 
1
H 
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NMR. No further manipulations were done. 

 

Attempted Sulfenofunctionalization with 2,4-Dinitrophenylsulfanyl ethanoate  (Table 6 

Entry 7) [DJK-3-77] 

 

An oven-dried NMR tube was charged with 2,4-NO2-C6H3-SOAc (10.4 mg, 0.04 mmol, 

1 equiv) and CDCl3 (0.7 mL). 57a (16.2 mg, 0.1 mmol) was added and after 2h, (R)-62b (1 mg, 

0.002 mmol, 0.05 equiv) were added. After 16 h, no desired product was visible by 
1
H NMR. No 

further manipulations were done. 

 

Sulfenofunctionalization with N-methylthiophthalimide (Table 7 Entry 1) [DJK-4-14] 

 

An oven-dried Schlenk flask was charged with 74 (19.3 mg, 0.1 mmol, 1 equiv) and 

CH2Cl2 (0.7 mL). 57a (16.2 mg, 0.1 mmol) was added and (R)-62b (5.1 mg, 0.01 mmol, 0.1 

equiv) were added. The reaction was cooled to -20 
o
C and MsOH (6.4 µL, 0.1 mmol, 1 equiv) 

was added. After 48 h, the reaction was quenched with Et3N (50 µL Et3N). Purification by flash 

chromatography (SiO2, 8 g,  10 mm Ø, hexanes/EtOAc, 60:1) afforded 5 mg (24%) of pure 77.  

Data for 74a: 

 1
H NMR:  (500 MHz, CDCl3) 

  7.45 – 7.39 (m, 2H), 7.39 – 7.26 (m, 83), 4.14 (m, 2H), 3.61 (td, J = 11.9, 2.4 Hz, 

1H), 2.92 (s, 3H), 2.68 (ddd, J = 12.3, 10.2, 4.0 Hz, 1H), 2.01 (m, 1H), 1.89 (tdd, J 

= 17.1, 8.7, 4.2 Hz, 1H), 1.76 (dddd, J = 11.3, 9.5, 6.6, 4.6 Hz, 1H), 1.62 (m, 1H). 

 SFC: (2R,3S)-74a, tR 3.43 min (76.3%); (2S,3R)-74a, tR 4.95 min (23.7%) (Chiralpak AD, 

5% MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 

Attempted Sulfenofunctionalization with N-Trichloromethylthiophthalimide (Table 7 
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Entry 2) [DJK-4-21] 

 

An oven-dried 5-mm NMR tube was charged with 75 (29.6 mg, 0.1 mmol, 1 equiv) and 

CDCl3 (0.7 mL). 57a (16.2 mg, 0.1 mmol), THT (1.8 µL, 0.02 mmol, 0.2 equiv) and MsOH (6.4 

µL, 0.1 mmol, 1 equiv) were added. After 24 h, no reaction was observed. No further 

manipulations were made.  

 

Attempted Sulfenofunctionalization with N-(4-Nitrophenyl)thiophthalimide (Table 7 Entry 

3) [DJK-4-17] 

 

An oven-dried 5-mm NMR tube was charged with 76 (29.9 mg, 0.1 mmol, 1 equiv) and 

CDCl3 (0.7 mL). 57a (16.2 mg, 0.1 mmol), THT (1.8 µL, 0.02 mmol, 0.2 equiv) and MsOH (6.4 

µL, 0.1 mmol, 1 equiv) were added. After 2 h, substantial conversion was observed by 
1
H NMR. 

However, no product was isolated from the reaction. 

 

Evaluation of Enantioselectivity as a Function of Temperature (Table 8) 

 

General Procedure 

An oven-dried 5-mm NMR tube was charged with 1 in a glovebox. The tube was taken 

out of the box and the Lewis base, 57a, and 0.7 mL CDCl3 was added. If indicated, the tube was 

cooled to the appropriate temperature in a cryocool unit. The acid was added at the indicated 

temperature and the mixture was shaken well. The reaction was quenched after the indicated 

time with excess Et3N, and the product was purified by silica gel column chromatography prior 
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to SFC analysis. 

Data for 58a: 

 1
H NMR:  (500 MHz, CDCl3) 

  7.32 (m, 2 H, H(C-aryl)), 7.28 – 7.16 (m, 3 H, H(C-aryl)), 7.14 – 7.03 (m, 5 H, 

H(C-aryl)), 4.14 (d, J = 10.1 Hz, 1 H, HC(2)), 4.09 – 4.00 (m, 1 H, HC(6)), 3.53 

(td, J = 11.9, 2.2 Hz, 1 H, HC(6)), 3.20 (ddd, J = 11.5, 10.2, 4.0 Hz, 1 H, HC(3)), 

2.32 – 2.17 (m, 1 H, HC(4)), 1.93 – 1.73 (m, 1 H, HC(5)), 1.66 (m, 2 H, HC(4), 

HC(5)). 

Data for 59k: 

 
1
H NMR: (500 MHz, CDCl3) 

  7.37 (d, J = 7.9 Hz, 2 H, HC(9)), 7.28 (t, J = 7.7 Hz, 2 H HC(10)), 7.17 (t, J = 7.4 

Hz, 1 H, HC(11)), 4.11 – 4.00 (tt, J = 6, 7 Hz, 1 H, HC(2)), 3.91 (dd, J = 14.4, 7.3 

Hz, 1 H, HC(5)), 3.77 (dd, J = 14.4, 7.8 Hz, 1 H, HC(5)), 3.16 (dd, J = 13.0, 5.8 

Hz, 1 H, HC(6)), 2.97 (dd, J = 13.0, 6.8 Hz, 1 H, HC(6)), 2.06 (m, 1 H, HC(3)), 

1.91 (m, 2 H, HC(4)), 1.66 (m, 1 H, HC(3)). 

 

Evaluation of Enantioselectivity for the Sulfenofunctionalization of 57a at -10 
o
C (Table 8 

Entry 2) [DJK-1-80] 

 

Following General Procedure 4, an oven-dried NMR tube was charged with 56 (64 mg, 

0.25 mmol, 1 equiv), and 57a (40.0 mg, 0.25 mmol). To this was added (R)-62b (13 mg, 0.025 

mmol, 0.1 equiv), CDCl3 (0.7 mL). The reaction was cooled to -10 
o
C in a cryocool. MsOH (17 

µL, 0.25 mmol, 1.0 equiv) was added. After 24 h, the reaction was quenched with Et3N (50 µL). 

Purification by silica gel flash column chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 

30:1) afforded 42 mg (63%) of 58a as a white solid. 

Data for 58a: 

 SFC: (2R,3S)-58a, tR 4.29 min (89.4%); (2S,3R)-58a, tR 5.35 min (10.6%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 

 

Evaluation of Enantioselectivity for the Sulfenofunctionalization of 57a at -20 
o
C (Table 8 
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Entry 3) [DJK-1-84] 

 

Following General Procedure 4, an oven-dried NMR tube was charged with 56 (64 mg, 

0.25 mmol, 1 equiv), and 57a (40.0 mg, 0.25 mmol). To this was added (R)-62b (13 mg, 0.025 

mmol, 0.1 equiv), CDCl3 (0.7 mL). The reaction was cooled to -20 
o
C in a cryocool. MsOH (17 

µL, 0.25 mmol, 1.0 equiv) was added. After 48 h, the reaction was quenched with Et3N (50 µL). 

Purification by silica gel flash column chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 

30:1) afforded 50 mg (74%) of 58a as a white solid.  

Data for 58a: 

 SFC: (2R,3S)-58a, tR 4.29 min (91.1%); (2S,3R)-58a, tR 5.35 min (8.9%) (Chiralpak AD, 

5% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C) 

Evaluation of Enantioselectivity for for the Sulfenofunctionalization of 57k at 23 
o
C   (Table 

8 Entry 5) [DJK-1-21] 

 

Following General Procedure 4, an oven-dried NMR tube was charged with 56 (28.4 mg, 

0.11 mmol, 1.2 equiv), and 57k (8.2 mg, 0.09 mmol). To this was added (R)-62b (4.8 mg, 0.009 

mmol, 0.1 equiv), CDCl3 (0.7 mL). MsOH (6 µL, 0.09 mmol, 1.0 equiv) was added. After 16 h 

the reaction was judged to be complete by 
1
H NMR. After 24 h, the reaction was quenched with 

Et3N (50 µL). Purification by silica gel flash column chromatography (SiO2, 20 g, 20 mm Ø, 

hexanes/EtOAc, 75:1) afforded 6 mg (34%) of 59k as a white solid.  

Data for 59k: 

 SFC: (2S)-59k, tR 4.97 min (21.8%); (2R)-59k, tR 6.07 min (78.2%) (Chiralpak AD, 5 

% MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 

Evaluation of Enantioselectivity for for the Sulfenofunctionalization of 57k at -10 
o
C  

(Table 8 Entry 6) [DJK-2-31] 

 

Following General Procedure 4, an oven-dried Schlenk flask was charged with 56 (64 

mg, 0.25 mmol, 1 equiv), and 57k (21.8 mg, 0.25 mmol). To this was added (R)-62b (13.1 mg, 
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0.025 mmol, 0.1 equiv), CDCl3 (0.7 mL). The reaction was cooled to -10 
o
C in a cryocool. 

MsOH (17 µL, 0.25 mmol, 1.0 equiv) was added. After 48 h the reaction was quenched with 

Et3N (50 µL). Purification by silica gel flash column chromatography (SiO2, 20 g, 20 mm Ø, 

hexanes/EtOAc, 75:1) afforded 41 mg (85%) of 59k as a white solid.  

Data for 59k: 

 SFC: (2S)-59k, tR 4.97 min (16.8%); (2R)-59k, tR 6.07 min (83.2%) (Chiralpak AD, 5  

  % MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 

Evaluation of Enantioselectivity for for the Sulfenofunctionalization of 57k at -20 
o
C    

(Table 8 Entry 7) [DJK-2-13] 

 

Following General Procedure 4, an oven-dried Schlenk flask was charged with 56 (66 

mg, 0.26 mmol, 1.04 equiv), and 57k (21.2 mg, 0.25 mmol). To this was added (R)-62b (13 mg, 

0.025 mmol, 0.1 equiv), CDCl3 (0.7 mL). The reaction was cooled to -20 
o
C. MsOH (17 µL, 0.25 

mmol, 1.0 equiv) was added. After 72 h, the reaction was quenched with Et3N (50 µL). 

Purification by flash chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 75:1) afforded 49 

mg (98%) of 59k as a white solid.  

Data for 59k: 

 SFC: (2S)-59k, tR 4.97 min (13.9%); (2R)-59k, tR 6.07 min (86.1%) (Chiralpak AD, 5 

% MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 

Preparative Sulfenofunctionalization of Alkenes (Table 9) 

 

General Procedure  

  In a glovebox, a 5-mL Schlenk flask equipped with a stirbar was charged with 1 (255 mg, 

1.0 mmol, 1.0 equiv). The flask was transferred to a vacuum manifold and the corresponding 

alkene (1.0 mmol, 1.0 equiv), catalyst (R)-3c (52 mg, 0.1 mmol, 0.1 equiv), nucleophile (if 

indicated, 1.0 mmol, 1.0 equiv) and CH2Cl2 (2.5 mL) were added. The flask was placed into 

either a 1:1 ethylene glycol/water or isopropyl alcohol bath, and the bath was cooled to the 

appropriate temperature via a cryocool unit. The temperature of the mixture was monitored via a 
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thermocouple digital temperature probe. After the temperature stabilized, MsOH (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for the indicated time. The 

reaction was quenched while cold by the addition of 150 µL of Et3N. The resulting mixture was 

poured into 20 mL of 1 M HCl in a separatory funnel, 30 mL of CH2Cl2 was added and the 

layers were thoroughly mixed. The organic layer was poured into 20 mL of 1 M NaOH and the 

layers were thoroughly mixed and then separated. The acidic layer was back-extracted with 30 

mL CH2Cl2, which was then poured into the basic layer and used to extract that layer as well. 

Both organic portions were combined, dried over MgSO4, filtered through glass wool and then 

concentrated on a rotavap (20-23 
o
C, 3 mm Hg). The product thioethers were purified by silica 

gel flash chromatography. 

 

Preparation of (2R,3S)-Tetrahydro-2-phenyl-3-(phenylthio)-2H-pyran (58a)  (Table 9 

Entry 1) [DJK-3-67] 

 

 Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57a (162 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -20 
o
C in an i-PrOH bath. Methanesulfonic acid (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product 58a was purified by flash 

chromatography (SiO2, 26 g, 20 mm Ø, hexanes/EtOAc, 80:1 to 40:1) to afford 216.1 mg, (80%) 

of a pale yellow oil. Kugelrohr distillation afforded 171 mg of analytically pure 58a which 

crystallized upon standing. The crystals were of suitable quality for single crystal X-ray 

diffraction, which unambiguously established relative and absolute configurations (see pp. 266)  

 

 Data for 58a : 
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 bp:  100 
o
C (ABT), 2 x 10

-4
 mm Hg 

 1
H NMR:  (500 MHz, CDCl3) 

  7.32 (m, 2 H, H(C-aryl)), 7.28 – 7.16 (m, 3 H, H(C-aryl)), 7.14 – 7.03 (m, 5 H, 

H(C-aryl)), 4.14 (d, J = 10.1 Hz, 1 H, HC(2)), 4.09 – 4.00 (m, 1 H, HC(6)), 3.53 

(td, J = 11.9, 2.2 Hz, 1 H, HC(6)), 3.20 (ddd, J = 11.5, 10.2, 4.0 Hz, 1 H, HC(3)), 

2.32 – 2.17 (m, 1 H, HC(4)), 1.93 – 1.73 (m, 1 H, HC(5)), 1.66 (m, 2 H, HC(4), 

HC(5)). 

13
C NMR:  (125 MHz, CDCl3) 

  139.9 (C(7)), 133.7 (C(12)), 133.0 (C-aryl), 128.5 (C-aryl), 128.2 (C-aryl), 128.1 

(C-aryl), 127.7 (C-aryl), 127.0 (C-aryl), 85.1 (C(2)), 68.5 (C6)), 50.7 (C(3)), 32.3 

(C(4)), 27.0 (C(5)) 

 IR: 3033 (s), 2937 (s), 2850 (s), 2720 (m), 1951 (m), 1872 (m), 1809 (w), 1741 (w), 

1583 (s), 1493 (s), 1473 (s), 1436 (s), 1369 (s), 1346 (m), 1325 (s), 1308 (m), 1256 

(s), 1230 (m), 1213 (m), 1179 (s), 1077 (s), 1024 (s), 1002 (s), 968 (s), 941 (s), 909 

(s), 883 (m), 851 (m), 819 (m), 780 (s), 755 (s), 696 (s), 636 (m)    

 MS: (EI) 

  270 (65), 161 (35), 160 (40), 149 (24), 136 (100), 135 (43), 91 (52), 77 (19)  

 TLC: Rf  0.27 (hexanes/EtOAc, 20:1) [CAM] 

 Opt Rot. : [α]
 
D

24 
 -35.1 (c = 0.42, CHCl3) 

 SFC: (2R,3S)-58a, tR 5.53 min (91.1%); (2S,3R)-58a, tR 7.49 min (8.9%) (Chiralpak AD, 

5% MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

   Analysis: C17H18OS (270.11) 

  Calcd:  C, 75.51;  H, 6.71%  

  Found:  C, 75.73;  H, 6.55%  
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Preparation of (2R,3S)-Tetrahydro-3-(phenylthio)-2-(4-(trifluoromethyl)phenyl)-2H-pyran 

(58b) (Table 9 Entry 2) [DJK-3-43] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57b (230 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -10 
o
C in a glycol/water bath. Methanesulfonic acid (65 µL, 

1.0 mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product 58b was purified by flash 

chromatography (SiO2, 27 g, 20 mm Ø, hexanes/dichloromethane, 9:1 to 4:1 to 0:100) to afford 

120.1 mg (36%) of 58b along with 125.5 mg (55%) of unreacted 57b. Recrystallization from hot 

hexanes (5 mL) followed by sublimation (refluxing ethanol) yielded 30.2 mg (9%) of 

analytically pure 58b as a white solid. 

Data for 58b : 

 mp:  86-88 
o
C (hexane) 

 1
H NMR:  (500 MHz, CDCl3) 

7.44 (m, 4 H, H(C-aryl)), 7.10 (m, 3 H, H(C-aryl)), 7.02 (m, 2 H, H(C-aryl)), 4.24 

(d, 1 H, J = 10.2 Hz, HC(2)), 4.09 (m, 1 H, HC(6)), 3.57 (dt, 1 H, J = 2.3, 12 Hz, 

HC(6)), 3.18 (ddd, 1 H, J = 10.1, 4, 12 Hz, HC(3)), 2.34 (m, 1 H, HC(4)), 1.89 (m, 

1H, HC(5)), 1.72 (m, 2 H, HC(4), HC(5)) 

13
C NMR:  (126 MHz, CDCl3) 

  143.77 (C(7)), 133.64 (C(13)), 132.65 (C-aryl), 130.17 (q, J = 32 Hz, C(10)), 

128.58 (C-aryl), 128.15 (C-aryl), 127.12 (C-aryl), 124.96 (q, J = 3.8 Hz, C(9)), 

124.06 (q, J = 272 Hz, C(11)), 85.02 (C(2)), 68.50 (C(6)), 50.98 (C(3)), 32.07 

H(C(4)), 27.05 (HC(5)).  
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19
F NMR:  (470 MHz, CDCl3) 

  
-63.04 

 IR:  (KBr) 

  2975 (m), 2952 (m), 2925 (m), 2863 (m), 1618 (w), 1572 (w), 1481 (w), 1439  (m), 

1425 (m), 1326 (s), 1261 (m), 1161 (s), 1134 (s), 1118 (s), 1095 (s), 1068 (s), 1018 

(s), 943 (m), 844 (m), 824 (m), 782 (m), 739 (s), 688 (m), 666 (m), 604 (m)    

 MS: (EI) 

  338 (81), 229 (27), 228 (28), 173 (20), 159 (29), 149 (40), 136 (100), 135 (40), 91 

(19), 71 (17) 

 TLC: Rf  0.31 (hexanes/EtOAc, 20:1) [CAM] 

 Opt Rot. : [α]
 
D

24 
 -19.6 (c = 0.16, CHCl3)   

 SFC: (2R,3S)-58b, tR 4.77 min (88.1%); (2S,3R)-58b, tR 5.79 min (11.9%) (Chiralpak 

AD, 4% MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 Analysis: C18H17F3OS (338.42) 

  Calcd:  C, 63.89;  H, 5.06%  

  Found:  C, 63.59;  H, 4.91%  

 

Preparation of (2R,3S)-Tetrahydro-2-(4-methoxyphenyl)-3-(phenylthio)-2H-pyran (57c) 

(Table 9 Entry 3) [DJK-3-41] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57c (192 mg, 1.0 mmol, 1.0 equiv), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and 

CH2Cl2 (2.5 mL). The mixture was cooled to -20 
o
C in a glycol/water bath. Methanesulfonic acid 

(65 µL, 1.0 mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The 

reaction was worked up following the General Procedure. The product 58c was purified by flash 
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chromatography (SiO2, 27 g, 20 mm Ø, hexanes/dichloromethane, 9:1) to afford 250 mg (84%) 

of 58c as a white solid. Recrystallization from hot pentane provided 220 mg (73%) of 

analytically pure 58c as a white solid.  

Data for 58c : 

 mp:  71-73 
o
C (pentane)  

 1
H NMR:  (500 MHz, CDCl3) 

 7.26 (d, 2 H, J = 8.6 Hz, HC(8)), 7.15 (m, 5 H, H(C-aryl)), 6.80 (d, 2 H, J = 8.7Hz, 

HC(9)), 4.14 (d, 1 H, J = 10.1Hz, HC(2)), 4.07 (m, 1 H, HC(6)), 3.78 (s, 3 H, 

HC(12)), 3.55 (dt, 1 H, J = 2.2Hz, J = 12.1Hz, HC(6)), 3.23 (ddd, 1 H, J = 4.0Hz, 

10.2Hz, 12.0Hz, HC(3)), 2.26 (m, 1 H, HC(4)), 1.83 (m, 1 H, HC(5)), 1.67 (m, 2 H, 

HC(4), HC(5)) 

13
C NMR:  (125 MHz, CDCl3) 

  159.39 (C(10)), 133.67 (C(14)), 133.07 (C-aryl), 132.27 (C-aryl), 128.73 (C-aryl), 

128.49 (C-aryl), 127.01 (C(7)), 113.56 (C(9)), 84.56 (C(2)), 68.57 (C(6)), 55.24 

(C(12)). 51.76 (C(3)), 32.21 (C(4)), 27.04 (C(5)) 

 IR: (KBr) 

  2955 (s), 2935 (m), 2914 (m), 2843 (s), 1612 (s), 1583 (m), 1560 (m), 1542 (w), 

1518 (s), 1499 (m), 1491 (m), 1474 (s), 1459 (s), 1450 (m), 1440 (s), 1370 (m), 

1330 (w), 1303 (m), 1267 (m), 1245 (s), 1176 (s), 1115 (m), 1092 (s), 1074 (s), 

1030 (s), 962 (s), 949 (s), 940 (s), 922 (m), 829 (s), 817 (s), 778 (s), 748 (s), 693 (s) 

 MS: (EI) 

  300 (40, M+), 191 (28), 190 (41), 136 (100), 135 (45), 121 (42), 91 (18)  

 TLC: Rf   0.17 (hexanes/EtOAc, 10:1) [CAM] 

 Opt Rot. : [α]
 
D

24 
 -45.5 (c = 0.2, CHCl3) 

 SFC: (2R,3S)-58c, tR 6.28 min (91.4%); (2S,3R)-58c, tR 9.88 min (8.6%) (Chiralpak AD, 

5% MeOH in CO2, 2.5 mL/min, 220 nm, 40 
o
C) 

 Analysis: C18H20O2S (300.41) 

  Calcd:  C, 71.96;  H, 6.71%  

  Found:  C, 71.64;  H, 6.90%  
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Attempted Sulfenofunctionalization of (E)-Methyl 6-hydroxyhex-2-enoate (57d) (Table 9 

Entry 4) [DJK-1-98] 

 

An oven-dried NMR tube was charged with 56 (25.6 mg, 0.1 mmol, 1 equiv), and 57d 

(14.6 mg, 0.1 mmol). To this was added (R)-62b (5.2 mg, 0.01 mmol, 0.1 equiv), CDCl3 (0.7 

mL). MsOH (6.7 µL, 0.1 mmol, 1.0 equiv) was added. After 96 h, only 57d was detectable by 
1
H 

NMR. No further manipulations were done.  

 

Preparation of (5S,6R)-Tetrahydro-2,2-dimethyl-6-phenyl-5-(phenylthio)-2H-pyran (58e) 

and (5S,8R)-Tetrahydro-2,2-dimethyl-5-(phenyl(phenylthio)methyl)furan (59e)  (Table 9 

Entry 5) [DJK-2-45] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57e (190 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -20 
o
C in a i-PrOH bath. Methanesulfonic acid (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 35 g, 20 mm Ø, hexanes/EtOAc, 100:1) to afford 181.4 mg (61%) of 58e and 70.2 mg 

(24%, combined yield 84%) of a mixture of 58e and 59e as white solids. Partial separation of 

isomers was accomplished by silica gel flash chromatography (SiO2, 3 g, 10 mm Ø, 

hexanes/dichloromethane, 4:1). 
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Data for isomer mixture : 

 IR: 3061 (m), 3028 (m), 2969 (s), 2936 (s), 2860 (s), 1583 (m), 1493 (m), 1471 (s), 

1452 (s), 1437 (s), 1380 (m), 1369 (s), 1354 (s), 1333 (m), 1309 (m), 1259 (m), 

1227 (m), 1180 (s), 1159 (s), 1124 (m), 1072 (s), 1065 (s), 1023 (s), 952 (m), 924 

(m), 911 (s), 892 (s), 819 (w), 784 (m), 757 (s), 744 (s), 701 (s), 628 (m)    

 MS: (EI)  

  298 (M+), 136 (100), 135 (23), 91 (15) 

 TLC:  Rf  58e, 0.39 (hexanes/EtOAc, 10:1) [CAM] 

 Analysis: C19H22OS (298.44) 

  Calcd. : C: 76.46; H: 7.43 

  Found : C: 76.33; H: 7.62 

 

Data for 58e : 

 mp: 58-61 
o
C  

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.4 (m, 2 H, H(C-aryl)), 7.26 (m, 3 H, H(C-aryl)), 7.13 (m, 5 H, H(C-aryl)), 

4.48 (d, J = 10.2 Hz, 1 H, HC(6)), 3.11 (ddd, J = 12.1, 10.5, 4.3 Hz, 1 H, HC(5)), 

2.08 (ddd, J = 13.5, 7.6, 4.0 Hz, 1 H, HC(4)), 1.87 (m, 1 H, HC(4)), 1.77 – 1.56 

(m, 2 H, HC(3)), 1.32 (s, 3 H, HC(7)), 1.28 (s, 3 H, HC(8)).  

 13
C NMR: (100 MHz, CDCl3) 

  δ 140.6 (C(14)), 133.9 (C(10)), 132.7 (C-aryl), 128.5 (C-aryl), 128.1 (C-aryl), 

128.0 (C-aryl), 127.8 (C-aryl), 126.9 (C-aryl), 77.8 (C(6)), 72.4 (C(2)), 51.2 

(C(5)), 37.2 (C(3)), 31.4 (C(8)), 28.7 (C(4)), 21.7 (C(7)). 

 Opt Rot. : [α]
 
D

24 
 -4.6 (c = 0.56, CHCl3) 

 SFC: (5S,6R)-58e, tR 4.08 min (92.4%); (6S,5R)-58e, tR 4.66 min (7.6%) (Chiralpak 

AD, 5 % MeOH in CO2, 2.5 mL/min, 220 nm, 40 
o
C)  

 

Data for 59e : 

 
1
H NMR: (400 MHz, CDCl3) 

  δ 7.4 (m, 2 H, H(C-aryl)), 7.26 (m, 5 H, H(C-aryl)), 7.13 (m, 3 H, H(C-aryl)), 

4.43 (app q, J = 6.6 Hz, 1 H, HC(5)), 4.25 (d, J = 5.4 Hz, 1 H, HC(8)), 2.08 (m, 1 
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H, HC(4)), 1.87 (m, 1 H, HC(4)), 1.77 – 1.56 (m, 2 H, HC(3)), 1.20 (s, 3 H, 

HC(7)), 1.18 (s, 3 H, HC(6)).  

 

Preparation of (2R,3S)-Tetrahydro-5,5-dimethyl-2-phenyl-3-(phenylthio)-2H-pyran (58f) 

and (2R,6S)-Tetrahydro-4,4-dimethyl-2-(phenyl(phenylthio)methyl)furan (59f) (Table 9 

Entry 6) [DJK-2-46] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57f (190 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -10 
o
C in a i-PrOH bath. Methanesulfonic acid (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 30 g, 20 mm Ø, hexanes/EtOAc, 40:1) to afford 281 mg (94%) of a 19:1 mixture of 

58f:59f as a pale yellow oil. Further, partial separation of isomers was accomplished by silica gel 

flash chromatography (SiO2, 15 g, 20 mm Ø, hexanes/dichloromethane, 4:1). 

Data for isomer mixture :  

 IR: 3063 (m), 3033 (m), 2942 (s), 2927 (m), 2866 (m), 2842 (m), 1949 (w), 1581 (w), 

1495 (w), 1473 (s), 1455 (m), 1438 (s), 1390 (m), 1372 (m), 1301 (w), 1280 (m), 

1209 (w), 1079 (s), 1026 (s), 993 (s), 963 (m), 921 (w), 894 (m), 814 (m), 759 (s), 

743 (s), 699 (s), 655 (w)    

 MS: (EI) 

  298 (M+), 188 (19), 177 (84), 136 (100), 135 (38), 91 (65)  

 TLC: Rf  58f, 0.42; 59f, 0.35 (hexanes/EtOAc, 10:1) [CAM] 
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 Analysis: C19H22OS (298.44) 

  Calcd. : C: 76.46; H: 7.43 

  Found : C: 76.22; H: 7.49 

 

Data for 58f : 

 1
H NMR:  (500 MHz, CDCl3) 

  7.41 (m, 2 H, H(C-aryl)), 7.29 (m, 3 H, H(C-aryl)), 7.14 (m, 3 H, H(C-aryl)), 7.08 

(m, 2 H, H(C-aryl)), 4.12 (d, J = 10.4 Hz, 1 H, HC(2)), 3.62 (dd, J = 11.1, 2.6 Hz, 1 

H, HC(6)), 3.42 (ddd, J = 12.6, 10.4, 4.2 Hz, 1 H, HC(3)), 3.35 (d, J = 11.2 Hz, 1 H, 

HC(6)), 2.04 (ddd, J = 13.3, 4.1, 2.7 Hz, 1 H, HC(4)), 1.58 (app t, J = 13 Hz, 1 H, 

HC(4)), 1.23 (s, 3 H, HC(16)), 0.92 (s, 3 H, HC(16’)). 

13
C NMR:  (125 MHz, CDCl3) 

  δ 139.9 (C(7)), 133.9 (C(12)), 132.5 (C-aryl), 128.5 (C-aryl), 128.2 (C-aryl), 127.7 

(C-aryl), 126.9 (C-aryl), 85.3 (C(2)), 78.2 (C(6)), 48.0 (C(3)), 45.6 (C(4), 32.6 

(C(5)), 26.8 (C(16’)), 23.8 (C(16)). 

 Opt Rot. : [α]
 
D

24 
 -27.1 (c = 0.35, CHCl3) 

 SFC:  (2R,3S)-58f tR 2.88 min (92.4%); (2S,3R)-58f tR 5.46 min (7.6%) (Chiralpak AD, 

5% MeOH in CO2, 2.5 mL/min, 220 nm, 40 
o
C) 

 

Data for 59f : 

1
H NMR:  (500 MHz, CDCl3) 

  δ 4.52 (dd, J = 16.0, 6.6 Hz, 1 H, HC(2)), 4.25 (d, J = 7.1 Hz, 1 H, HC(5)), 3.51 

(s, 1 H, HC(6)), 1.94 (dd, J = 12.4, 6.3 Hz, 1 H, HC(3)), 1.73 (dd, J = 12.4, 9.2 

Hz, 1 H, HC(3)), 1.12 (s, 3 H, HC(16)), 1.07 (s, 3 H, HC(16’)).  
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Preparation of (2R,3S)-Tetrahydro-2-phenethyl-3-(phenylthio)-2H-pyran (58g) and 

(2S,6R)-Tetrahydro-2-(3-phenyl-1-(phenylthio)propyl)furan (59g) (Table 9 Entry 7) [DJK-

2-48] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 

1.0mmol, 1.0 equiv), 57g (190 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and 

CH2Cl2 (2.5 mL). The mixture was cooled to -20 
o
C in a bath. Methanesulfonic acid (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 28 g, 20 mm Ø, hexanes/EtOAc, 50:1) to afford 263.4 mg (88%) of a 5:1 mixture of 

58g:59g as a pale yellow oil. Partial separation of isomers was accomplished by flash 

chromatography (SiO2, 3 g, 10 mm Ø, hexanes/dichloromethane, 2:1, then SiO2, 4 g, 10 mm Ø, 

hexanes/EtOAc, 40:1) 

Data for isomer mixture :  

 IR: 3060 (m), 3025 (s), 2940 (s), 2848 (s), 2729 (w), 1946 (w), 1876 (w), 1804 (w), 

1602 (m), 1583 (m), 1496 (s), 1479 (s), 1454 (s), 1438 (s), 1377 (m), 1344 (m), 

1288 (m), 1256 (m), 1233 (m), 1179 (m), 1118 (s), 1087 (s), 1065 (s), 1038 (s), 

1025 (m), 1010 (m), 982 (m), 931 (m), 869 (m), 844 (w), 804 (w), 777 (w), 743 

(s), 700 (s)   

  MS: (EI) 

  298 (M+), 189 (24), 136 (60), 135 (28), 117 (24), 91 (100), 71 (35) 

  TLC: Rf  58g, 0.30; 59g, 0.24 (hexanes/EtOAc, 20:1)[CAM] 

 Analysis: C19H22OS (298.44) 

  Calcd. : C: 76.46; H: 7.43 

  Found : C: 76.58; H: 7.49 
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Data for 58g: 

 
1
H NMR: (500 MHz, CDCl3) 

  7.46 (d, J = 7.4 Hz, 2 H, H(C-aryl)), 7.26 (m, 5 H, H(C-aryl), 7.18 (t, 3 H, J = 7.4 

Hz, H(C-aryl)) , 4.00 (ddd, J = 9.5, 5.0, 3.1 Hz, 1 H, HC(6)), 3.36 (td, J = 11.8, 

2.5 Hz, 1 H, HC(6)), 3.20 (td, J = 9.5, 2.4 Hz, 1 H, HC(2)), 2.91 (ddd, J = 11.9, 

10.0, 4.1 Hz, 1 H, HC(3)), 2.82 (ddd, J = 14.3, 9.9, 4.8 Hz, 1 H, HC(8)), 2.69 

(ddd, J = 13.6, 9.5, 7.3 Hz, 1 H, HC(8)), 2.46 – 2.31 (m, 1 H, HC(7)), 2.19 – 2.09 

(m, 1 H, HC(5)), 1.87 – 1.77 (ddt, J = 14, 4.8, 9.3 Hz, 1 H, HC(7)), 1.77 – 1.66 

(m, 1 H, HC(4)), 1.66 – 1.58 (m, 1 H, HC(4)), 1.50 (app qd, J = 13.0, 4.2 Hz, 1 H, 

HC(5)). 

 13
C NMR: (126 MHz, CDCl3) 

  142.2 (C(9)), 133.5 (C(14)), 133.2 (C-aryl), 128.8 (C-aryl), 128.6 (C-aryl), 128.2 

(C-aryl), 127.3 (C-aryl), 125.6 (C-aryl), 80.3 (C(2)), 67.9 (C(3)), 49.0 (C(8)), 35.3 

(C(4)), 31.9 (C(8)), 31.3 (C(5)), 27.2 (C(7)), 

 Opt Rot. :  [α]
 
D

24 
 48.9 (c = 0.44, CHCl3) 

 SFC: (2S,3R)-58g, tR 7.42 min (4.1%); (2R,3S)-58g, tR 8.19 min (95.9%) (Chiralcel OJ, 

4 % MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 
 

Data for 59g: 

 
1
H NMR: (400 MHz, CDCl3) 

  7.43 (m, 2 H, H(C-aryl)), 7.24 (m, 5 H, H(C-aryl)), 7.15 (m, 3 H, H(C-aryl)), 3.94 

(q , J = 7.0 Hz, 1 H, HC(2)), 3.82 (dt, J = 14.0, 6.9 Hz, 1 H, HC(5)), 3.73 (td, J = 

7.7, 5.9 Hz, 1 H, HC(5)), 3.14 – 3.05 (m, 1 H, HC(6)), 3.04 – 2.94 (m, 1 H, 

HC(8)), 2.78 (ddd, J = 13.7, 9.7, 6.8 Hz, 1 H, HC(8)), 2.17 – 2.06 (m, 1 H, 

HC(7)), 2.06 – 1.96 (m, 1 H, HC(7)), 1.93 – 1.64 (m, 4 H, H2C(3) and H2C(4)). 

 13
C NMR: (126 MHz, CDCl3) 

  141.83 (C(14)), 135.56 (C(8)), 132.03 (C-aryl), 128.80 (C-aryl), 128.54 (C-aryl), 

128.30 (C-aryl), 126.75 (C-aryl), 125.79 (C-aryl), 81.77 (C(2)), 68.34 (C(5)), 

53.73 (C(6)), 33.52 (C(3)), 33.00 (C(13)), 29.73(C(4)), 26.01 (C(12)) 

         SFC:  (2R,6S)-59g, tR 6.89 min (4.1%); (2S,6R)-59g, tR 8.16 min (95.9%) (Chiralcel OD, 

5 % MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 
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Preparation of (2R,3S)-Tetrahydro-2-isopropyl-3-(phenylthio)-2H-pyran (58h) and 

(2R,6S)-Tetrahydro-2-(2-methyl-1-(phenylthio)propyl)furan (59h) (Table 9 Entry 8) [DJK-

2-66] 

 

Following General Procedure 5 a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57h (128 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -20 
o
C in an i-PrOH bath. Methanesulfonic acid (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 28 g, 20 mm Ø, hexanes/EtOAc, 40:1) to afford 168 mg (71%) of a 17:1 mixture of 

58h:59h as a pale yellow oil. Further partial separation of isomers was accomplished by silica 

gel flash chromatography (SiO2, 3 g, 10 mm Ø, hexanes/dichloromethane, 4:1)  

Data for isomer mixture : 

 IR: 3073 (m), 2958 (s), 2842 (s), 1949 (m), 1735 (m), 1583 (s), 1474 (s), 1438 (s), 

1378 (s), 1365 (s), 1303 (m), 1264 (s), 1229 (w), 1185 (m), 1085 (s), 1026 (s), 

1001 (s), 925 (s), 873 (m), 853 (w), 805 (m), 775 (s), 744 (s), 691 (s)     

 MS: (EI) 

236 (M+), 193 (61), 175 (57), 136 (100), 127 (29), 109 (35), 91 (29), 83 (26), 71 

(83), 65 (24), 54 (45) 

 TLC: Rf  58h, 0.38; 59h, 0.26 (hexanes/EtOAc, 20:1) [CAM] 

 Analysis: C14H20OS (236.37) 

  Calcd. : C: 71.14; H: 8.53  

  Found : C: 71.42; H: 8.55  
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Data for 58h : 

 
1
H NMR: (500 MHz, CDCl3) 

7.43 (d, 2 H, J = 6.9 Hz, HC(12)), 7.28 (m, 3 H, HC(13,14)), 3.95 (m, 1 H, 

HC(6)), 3.34 (dt, 1 H, J = 3.0, 11.3 Hz, HC(6)), 3.09 (dd, 1 H, J = 2.2, 10.0 Hz, 

HC(2)), 3.02 (ddd, 1 H, J = 3.9, 10.0, 11.0 Hz, HC(3)), 2.34 (dsept, 1 H, J = 2.0, 

7.0 Hz, H C(7)), 2.12 (m, 1 H, HC(4)), 1.59 (m, 3 H, HC(4,5)), 1.00 (d, 3 H, 

J=7.0 Hz, HC(8)) 0.83 (d, 3 H, J= 6.8Hz, H(C9)) 

 13
C NMR: (126 MHz, CDCl3) 

  133.7 (C11)), 133.2 (C(12)), 128.8 (C(13)), 127.3 (C(14)), 85.2 (C(2)), 68.2 

(C6)), 46.9 (C(3)), 32.1 (C(4)), 28.8 (C(7)), 27.2 (C(5)), 20.3 (C(8)), 14.5 (C(9)) 

 Opt Rot. : [α]
 
D

24 
 85.5 (c = 0.14, CHCl3) 

 SFC:  (2R,3S)-4i, tR 3.02 min (96.4%); (2S,3R)-4i, tR 3.49 min (3.6%) (Chiralpak AD, 1 

% MeOH in CO2, 3 mL/min, 220 nm, 40 
o
C), 

Data for 59h : 

 
1
H NMR: (400 MHz, CDCl3)  

7.44 (d, 2 H, J= 7.6 Hz, HC(9)), 7.28 (t, 2 H, J = 8 Hz, HC(10)), 7.18 (d, 2 H, J = 

7.4 Hz, HC(11), 4.05 (app q, J =7.4 Hz, 1 H, HC(2)), 3.84 (app q, 1 H, J= 7.2 Hz, 

HC(5)), 3.76 (app q, 1 H, J= 7.2 Hz, HC(5)), 3.06 (dd, 1 H, J= 3.4, 8.6 Hz, 

HC(6)), 2.31 (m, 1 H, HC(12)), 2.08 (m, 1 H, HC(4,5)), 1.83 (m, 2 H, HC(4,5)), 

1.58 (m, 1 H, HC(4,5), 1.11 (d, 3 H, J= 6.9 Hz, HC(13,14)), 0.99 (d, 3 H, J= 6.9 

Hz, H(C13,14)) 
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Preparation of (2S,3S)-Tetrahydro-2-phenyl-3-(phenylthio)-2H-pyran (58i) (Table 9 Entry 

9) [DJK-1-11] 

 

An oven-dried 5-mm NMR tube was charged with 67 (34 mg, 0.15 mmol, 1.2 equiv), 57i 

(20 mg, 0.12 mmol), (R)-62a (11.5 mg 0.025 mmol, 0.2 equiv) and CDCl3 (0.7 mL). 

Trifluoroacetic acid (9.5 µL, 0.12 mmol, 1.0 equiv) was added and the mixture was allowed to 

stir for 96 h. The product was purified by flash chromatography (SiO2, 27 g, 20 mm Ø, 

hexanes/EtOAc, 40:1) to afford 13.7 mg (41%) of 58i as a pale yellow oil.  

Data for 58i: 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.51 (m, 2H, HC(Aryl)), 7.36 (m, 4H HC(Aryl)), 7.25, (m, 1H, HC(Aryl)), 7.14 

(m, 3H, HC(Aryl)), 4.81 (s, 1H, HC(2)), 4.30 (ddt, J = 11.2, 3.5, 1.9 Hz, 1H, 

HC(6)), 3.72 (m, 1H, HC(6’)), 3.61 (s, 1H, HC(3)), 2.32 (m, 1H, HC(4,5)), 2.21 

(m, 1H, HC(4,5)), 2.09 (m, 1H, HC(4,5)), 1.51 (m, 1H, HC(4,5)). 

 SFC: (2S,3S)-58i, tR 9.05 min (47.2%); (2R,3R)-58i, tR 11.86 min (52.8%) (Chiralpak 

AD, 5 % MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 
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Preparation of (2R,6R)-Tetrahydro-2-(3-phenyl-1-(phenylthio)propyl)furan (59j) (Table 9 

Entry 10) [DJK-2-73] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 59j (190 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -10 
o
C in an i-PrOH bath. Methanesulfonic acid (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 23 g, 20 mm Ø, hexanes/EtOAc, 70:1) to afford 240 mg (81%) of 59j as a pale yellow oil.  

Data for 59j : 

 
1
H NMR: (400 MHz, CDCl3) 

  7.42 (d, J = 7.1 Hz, 2 H, H(C-aryl)), 7.28 (app t, J = 7.4 Hz, 4 H, H(C-aryl)), 7.24 

– 7.14 (m, 4 H, H(C-aryl)), 4.08 (dt, J = 11.3, 5.6 Hz, 1 H, HC(2)), 3.93 (dd, J = 

14.8, 6.6 Hz, 1 H, HC(5)), 3.78 (dd, J = 14.3, 7.1 Hz, 1 H, HC(5)), 3.23 (dt, J = 

9.1, 4.4 Hz, 1 H, HC(6)), 2.99 (ddd, J = 14.7, 9.9, 5.3 Hz, 1 H, HC(13)), 2.81 

(ddd, J = 13.8, 9.7, 6.7 Hz, 1 H, HC(13)), 2.11 (m, 1 H, HC(12)), 2.04 – 1.96 (m, 

1 H, HC(3)), 1.94 – 1.73 (m, 4 H, HC(12), H(C3), HC(4)). 

 13
C NMR: (126 MHz, CDCl3) 

  141.6 C(14), 135.7 C(8), 131.2 (C-aryl), 128.8 (C-aryl), 128.4 (C-aryl), 128.3 (C-

aryl), 126.4 (C-aryl), 125.8 (C-aryl), 80.7 (C(2)), 68.7 (C(6)), 52.3 (C(5)), 33.3 

(C(13)), 32.8 (C(12)), 28.3 (C(3)), 26.1 (C4)). 

 IR: 3060 (s), 3025 (s), 2945 (s), 2860 (s), 1947 (m), 1873 (w), 1805 (w), 1603 (m), 

1583 (s), 1496 (s), 1480 (s), 1454 (s), 1438 (s), 1357 (m), 1302 (m), 1242 (m), 

1181 (m), 1057 (s), 1025 (s), 925 (m), 869 (w), 741 (s), 699 (s)   
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 MS: (EI) 

  298 (M+), 135 (18), 117 (35), 91 (100), 71 (53), 64 (36)  

 TLC: Rf  0.18 (hexanes/EtOAc, 20:1), [CAM]  

          SFC: (2R,6R)-59j, tR 7.70 min (46.3%); (2S,6S)-59j, tR 8.50 min (53.7%) (Chiralpak 

OD, Gradient 1 % MeOH in CO2 to 10% MeOH in CO2 over 10 min, 2.5 mL/min, 

220 nm, 40 
o
C), 

 Analysis: C19H20OS (298.44) 

  Calcd. : C: 76.47; H: 7.43  

  Found : C: 76.58; H: 7.40  

  

Preparation of (2R)-Tetrahydro-2-((phenylthio)methyl)furan (59k) (Table 9 Entry 11) 

[DJK-2-53] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57k (86 mg, 1.0 mmol), (R)-62b (52 mg 0.1 mmol, 0.1 equiv) and CH2Cl2 (2.5 

mL). The mixture was cooled to -10 
o
C in an i-PrOH bath. Methanesulfonic acid (65 µL, 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 27 g, 20 mm Ø, hexanes/EtOAc, 80:1 to 60:1) to afford 140 mg (72%) of 59k as a pale 

yellow oil. The spectroscopic data match those published in the literature.
56a

 

Data for 59k: 

 
1
H NMR: (500 MHz, CDCl3) 

  7.37 (d, J = 7.9 Hz, 2 H, HC(9)), 7.28 (t, J = 7.7 Hz, 2 H HC(10)), 7.17 (t, J = 7.4 

Hz, 1 H, HC(11)), 4.11 – 4.00 (tt, J = 6, 7 Hz, 1 H, HC(2)), 3.91 (dd, J = 14.4, 7.3 

Hz, 1 H, HC(5)), 3.77 (dd, J = 14.4, 7.8 Hz, 1 H, HC(5)), 3.16 (dd, J = 13.0, 5.8 

Hz, 1 H, HC(6)), 2.97 (dd, J = 13.0, 6.8 Hz, 1 H, HC(6)), 2.06 (m, 1 H, HC(3)), 

1.91 (m, 2 H, HC(4)), 1.66 (m, 1 H, HC(3)). 
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 13
C NMR: (101 MHz, CDCl3) 

  136.3 (C(8)), 129.0 (C(9)), 128.7 (C(10)), 125.82 (C(11)), 77.46 (C(2)), 68.19 

(C(5)), 38.71 (C(6)), 30.82 (C(3)), 25.64 (C(4)). 

 Opt Rot. : [α]
 
D

24 
 13.1 (c = 0.89, CHCl3) 

 SFC: (2S)-59k, tR 4.97 min (17.0%); (2R)-59k, tR 6.07 min (83.0%) (Chiralpak AD, 5 

% MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 

Preparation of (2R)-Tetrahydro-2-phenyl-2-((phenylthio)methyl)furan (59l) (Table 9 Entry 

12) [DJK-2-49] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57l (162 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -20 
o
C in an i-PrOH bath. Methanesulfonic acid (65 µL 1.0 

mmol, 1.0 equiv) was added and the mixture was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 24 g, 20 mm Ø, hexanes/EtOAc, 80:1) to afford 228 mg (85%) of 59l as a pale yellow oil.  

Data for 59l : 

 
1
H NMR: (500 MHz, CDCl3) 

  7.47 (d, J = 8.1, 2 H, H(C-aryl)), 7.37 (m, 2 H, H(C-aryl)), 7.32 (m, 2 H, H(C-

aryl)), 7.26 (m, 3 H, H(C-aryl)), 7.16 (t, 1 H, J = 6.7 Hz, H(C-aryl)), 4.08 (dt, J = 

14.4, 7.1 Hz, 1 H, HC(5)), 3.95 (td, J = 8.0, 5.8 Hz, 1 H, HC(5)), 3.48 (d, J = 12.9 

Hz, 1 H, HC(10)), 3.38 (d, J = 12.9 Hz, 1 H, HC(10)), 2.43 (dt, J = 12.3, 8.2 Hz, 1 

H, HC(3)), 2.28 (ddd, J = 12.5, 7.9, 5.1 Hz, 1 H, HC(3)), 2.13 – 2.00 (m, 1 H, 

HC(4)), 1.85 (m, 1 H, HC(4)). 

 13
C NMR: (126 MHz, CDCl3) 

  145.9 (C(6)), 138.0 (C(12)), 129.5 (C-aryl), 128.9 (C-aryl), 128.4 (C-aryl), 127.2 

(C-aryl), 125.9 (C-aryl), 125.6 (C-aryl), 86.4 (C(2)), 68.4 (C(5)), 47.0 (C(10)), 
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37.1 (C(3)), 26.2 (C(4)). 

 IR: 3058 (m), 3023 (m), 2975 (m), 2872 (m), 1952 (w), 1881 (w), 1582 (w), 1480 (s), 

1446 (m), 1439 (m), 1300 (m), 1211 (m), 1120 (m), 1088 (m), 1052 (s), 1026 (s), 

979 (m), 921 (w), 880 (w), 739 (s), 702 (s)   

 MS: (EI) 

  270 (M+), 147 (100), 105 (40), 77 (21) 

 TLC: Rf  0.42 (hexanes/EtOAc, 10:1) [CAM] 

 Opt Rot. : [α]
 
D

24 
 -8.5 (c = 0.51, CHCl3) 

 SFC:  (2R)-59l, tR 5.96 min (61.7%); (2S)-59l, tR 7.25 min (38.3%) (Chiralpak AD, 5 % 

MeOH in CO2, 2.5 mL/min, 220 nm, 40 
o
C) 

 Analysis: C17H18OS (270.11)  

  Calcd. : C: 75.51; H: 6.71 

  Found : C: 75.53; H: 6.52 

 

Preparation of (2R,3S)-Tetrahydro-2-methyl-2-phenyl-3-(phenylthio)-2H-pyran (58m) 

(Table 9 Entry 13) [DJK-3-33] 

 

 Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57m (176 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -20 
o
C in a glycol/water bath. Methanesulfonic acid (65 µL 

1.0 mmol, 1.0 equiv) was added at -20 
o
C and the reaction was allowed to stir for 48 h. The 

reaction was worked up following the General Procedure. The product was purified by silica gel 

flash chromatography (SiO2, 18 g, 20 mm Ø, hexanes/EtOAc, 60:1) to afford 233 mg (82%) of 

58m as a white solid. Recrystallization from hot MeOH (5 mL) followed by partial sublimation 

(refluxing ether) yielded 17 mg (6%) of analytically pure needle-like crystals.  
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Data for 58m : 

 mp:  46-48 
o
C (MeOH)  

 1
H NMR:  (500 MHz, CDCl3) 

7.55 (d, 2 H, J = 7.3 Hz, H(C-aryl)), 7.35 (t, 2 H, J = 7.7Hz, H(C-aryl)), 7.25 (t, 1H, 

J = 7.2 Hz, H(C-aryl)), 7.18 (m, 5H, H(C-aryl)), 3.85 (ddd, 1 H, J = 3.7, 8.0, 11.7 

Hz, HC(6)), 3.77 (m, 1 H, HC(6)), 3.57 (dd, 1 H, J = 3.9, 8.7 Hz, HC(3)), 2.05 (m, 

1 H, HC(4)), 1.94 (m, 2 H, HC(4), HC(5)), 1.67 (s, 3 H, HC(7)), 1.57 (m, 1 H, 

HC(5)).   

13
C NMR:  (126 MHz, CDCl3) 

  
145.3 (C(8)), 135.9 (C(13)), 131.7 (C-aryl), 128.8 (C-aryl), 128.1 (C-aryl), 127.1 

(C-aryl), 126.7 (C-aryl), 126.1 (C-aryl), 78.5 (C(2)), 61.8 (C(6)), 55.3 (C(3)), 27.8 

(C(4)), 24.6 (C(5)), 22.5 (C(7)). 

 IR: (KBr) 

  3069 (m), 2994 (m), 2941 (s), 2868 (m), 1578 (m), 1570 (m), 1492 (m), 1479 (s), 

1438 (s), 1377 (s), 1286 (m), 1247 (m), 1155 (m), 1099 (s), 1076 (s), 1059 (s), 1019 

(m), 975 (s), 940 (m), 850 (w), 827 (w), 777 (w), 755 (s), 732 (s), 699 (s), 615 (w) 

 MS: (EI) 

  284 (52, M+), 164 (25), 136 (100), 135 (41), 93 (45), 91 (17) 

   TLC: Rf  0.42 (hexanes/EtOAc, 20:1) [CAM] 

 SFC: (2R,3S)-58m, tR 5.82 min (69.8%); (2S,3R)-58m, tR 6.29 min (30.2%) (Chiralpak 

AD, gradient 1% MeOH to 10% MeOH in CO2 over 10 min, 2.5 mL/min, 220 nm,       

40 
o
C) 

 Analysis:  C18H20OS (284.41) 

   Calcd. : C: 76.01; H: 7.09 

  Found : C: 75.62; H: 7.03 
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Preparation of (2R,6S)-Tetrahydro-2-methyl-2-(phenyl(phenylthio)methyl)furan (59n) 

(Table 9 Entry 14) [DJK-3-56] 

 

 Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57n (176 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). Methanesulfonic acid (65 µL 1.0 mmol, 1.0 equiv) was added at 23 
o
C and the reaction 

was allowed to stir for 48 h. The reaction was worked up following the General Procedure. The 

product was purified by silica gel flash chromatography (SiO2, 19 g, 20 mm Ø, hexanes/EtOAc, 

40:1 then SiO2, 8 g, 10 mm Ø, hexanes/EtOAc, 60:1) to afford 69 mg (24%) of 59n as a clear 

liquid which solidified at -20 
o
C.  

Data for 59n : 

 bp: 120 
o
C, 0.15 mm Hg 

 mp: 34-36 
o
C 

 1
H NMR:  (500 MHz, CDCl3) 

  
δ 7.42 (d, J = 7.5 Hz, 2 H, H(C-aryl)), 7.30 – 7.20 (m, 5 H, H(C-aryl)), 7.14 (m, 3 

H, H(C-aryl)), 4.29 (s, 1 H, HC(6)), 3.96 – 3.87 (m, 2 H, HC(5)), 2.31 – 2.21 (m, 1 

H, HC(3)), 2.00 – 1.89 (m, 1 H, HC(4)), 1.86 – 1.77 (m, 2 H, HC(3), HC(4)), 1.32 

(s, 3 H, HC(16)). 

13
C NMR:  (125 MHz, CDCl3) 

  δ 140.2 (C(12)), 136.3 (C(8)), 130.8 (C-aryl), 129.6 (C-aryl), 128.6 (C-aryl), 127.8 

(C-aryl), 127.0 (C-aryl), 126.3 (C-aryl), 85.2 (C(2)), 68.3 (C(5)), 63.6 (C(6)), 36.4 

(C(3)), 26.3 (C(4)), 25.4 (C(16)). 

 IR: (KBr) 

  3058 (m), 2987 (s), 2965 (s), 2943 (m), 2924 (m), 2853 (s), 1584 (m), 1570 (m), 

1560 (w), 1491 (m), 1481 (s), 1451 (s), 1372 (m), 1353 (m), 1303 (m), 1252 (m), 

1155 (m), 1095 (s), 1072(m), 1042 (s), 910 (m), 885 (m), 834 (m), 789 (w), 764 
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(m), 746 (m), 733 (s), 703 (s), 686 (s), 650 (w)    

 MS: (EI) 

  284 (4, M+), 199 (5), 105 (6), 85 (100) 

 TLC: Rf  0.34 (hexanes/EtOAc, 20:1) [CAM] 

 SFC: (2R,6S)-59n, tR 6.28 min (60.0%); (2S,6R)-59n, tR 9.68 min (40.0%) (Chiralpak 

OD, 5 % MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C), 

 Analysis: C18H20OS (284.41) 

  Calcd. : C: 76.01; H: 7.09 

  Found : C: 75.95; H: 7.03 

  

Preparation of (5R,6S)-Dihydro-5-(phenyl(phenylthio)methyl)furan-2(3H)-one (59o) (Table 

9 Entry 15) [DJK-2-58] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 57o (176 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) and CH2Cl2 

(2.5 mL). The mixture was cooled to -10 
o
C in an i-PrOH bath. Methanesulfonic acid (65 µL 1.0 

mmol, 1.0 equiv) was added and the reaction was allowed to stir for 48 h. The reaction was 

worked up following the General Procedure. The product was purified by flash chromatography 

(SiO2, 21 g, 20 mm Ø, hexanes/EtOAc, 6:1) to afford 237.2 mg (84%) of 59o as a white solid. 

Analytically pure material was obtained by recrystallization from hot hexane.  

Data for 59o : 

 mp: 92-93 
o
C (hexane) 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.28 (m, 10 H, H(C-aryl)), 4.89 (dt, J = 6.3, 6.7 Hz, 1 H, HC(5)), 4.27 (d, J = 5.8 

Hz, 1 H, HC(6)), 2.49 – 2.34 (m, 2 H, HC(3), H(C4)), 2.25 (tt, J = 14.0, 6.8 Hz, 1 

H, HC(3)), 2.18 – 2.06 (m, 1 H, HC(4)). 
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 13
C NMR: (126 MHz, CDCl3) 

  δ 176.5 C(2), 137.3 C(12), 133.5 C(8), 133.0 (C-aryl), 129.0 (C-aryl), 128.8 (C-

aryl), 128.6 (C-aryl), 128 (C-aryl), 127.9 (C-aryl), 81.3 C(6), 58.1 C(5), 28.4 C(3), 

25.9 C(4). 

  IR: (KBr) 

  3071 (w), 3058 (m), 3030 (w), 2989 (w), 2944 (w), 1778 (s), 1470 (m), 1454 (m), 

1439 (m), 1408 (w), 1381 (w), 1346 (m), 1303 (w), 1279 (w), 1253 (w), 1226 (m), 

1184 (s), 1141 (w), 1111 (m), 1055 (m), 1021 (s), 994 (m), 923 (s), 870 (w), 803 

(w), 789 (w), 753 (m), 718 (m), 694 (s), 654 (w)    

 MS: (EI) 

  284 (M+), 199 (100), 175 (16), 91 (34) 

 TLC: Rf  0.12 (hexanes/EtOAc, 4:1) [CAM] 

 Opt Rot. : [α]
 
D

24 
 113.8 (c = 0.46, CHCl3) 

 SFC:  (2R,3S)-59o, tR 11.35 min (90.7%); (2S,3R)-59o, tR 13.86 min (9.3%) (Chiralpak 

AS, 3 % MeOH in CO2, 2.5 mL/min, 220 nm, 40 
o
C) 

 Analysis: C17H16O2S (284.37) 

 Calcd. : C: 71.80 H: 5.67 

 Found : C: 71.83 H: 5.71 
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Attempted Sulfenofunctionalization of (E)-5-Phenylpent-4-enamide (57p) (Table 9 Entry 

16) [DJK-2-55] 

 

An oven-dried 5 mL Schlenk flask was charged with 56 (64.1 mg, 0.25 mmol, 1 equiv), 

and 57p (43.8 mg, 0.25 mmol). To this was added (R)-62b (13 mg, 0.025 mmol, 0.1 equiv), 

CH2Cl2 (0.7 mL). MsOH (17 µL, 0.25 mmol, 1.0 equiv) was added. After 48 h, the reaction was 

quenched with Et3N (50 µL). No desired product was observed. No further manipulations were 

done.  

 

Preparation of (4S,5R)-5-(Methoxyoctan-4-yl)(phenyl)sulfide (89a) (Table 10 Entry 1)  

[DJK-3-74] 

 

 Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 4-octene, 88a, (112 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv), 

MeOH (32 mg, 1.0 mmol, 1.0 equiv) and CH2Cl2 (2.5 mL). The mixture was cooled to -20 
o
C in 

an i-PrOH bath. Methanesulfonic acid (65 µL 1.0 mmol, 1.0 equiv) was added and the mixture 

was allowed to stir for 48 h. The reaction was worked up following the General Procedure. The 

product was purified by silica gel flash chromatography (SiO2, 20 g, 20 mm Ø, hexanes/EtOAc, 

40:1) to afford 234.7 mg (93%) of 89a as a pale yellow oil. The spectroscopic data match those 

published in the literature.
63  

Data for 89a : 
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1
H NMR: (500 MHz, CDCl3) 

  7.42 (d, J = 7.3 Hz, 2 H, HC(13)), 7.27 (t, J = 7.3 Hz, 2 H, HC(14)), 7.20 (t, 

J = 7.4 Hz, 1 H, HC(15)), 3.37 (s, 3 H, H3C(10)), 3.29 (dt, J = 8.2, 4.2 Hz, 1 H, 

HC(4)), 3.19 (m, 1 H, HC(5)), 1.57 (m, 8 H, H2C(2), H2C(3), H2C(6) and 

H2C(7)), 0.91 (t, J = 7.2 Hz, 3 H, H3C(1,8)), 0.89 (t, J = 7.2 Hz, 3 H, H3C(1,8)) 

 MS: (EI)  

  252 (M+), 166 (42), 165 (35), 123 (43), 87 (100), 55 (25) 

 Opt Rot. : [α]
 
D

24 
 -13.1 (c = 0.41, CHCl3) 

 SFC: (4R,5S)-89a, tR 6.93 min (8.2%), (4S,5R)-89a, tR 7.72 min (91.8%) (Chiralpak OD, 

1% 95:5 hexanes/i-PrOH in CO2 , 1 mL/min, 220 nm, 40 
o
C)  

 

 

Preparation of ((4S,5S)-5-Methoxyoctan-4-yl)(phenyl)sulfane (Table 10 Entry 2) [DJK-1-

29] 

 

 An oven-dried NMR tube was charged with 1 (30.6 mg, 0.12 mmol, 1.2 equiv), 88b (11.5 

mg, 0.1 mmol), (R)-62b (5.2 mg, 0.01 mmol, 0.1 equiv), MeOH (4.1 µL, 0.1 mmol, 1 equiv) and 

CDCl3. The reaction was cooled to -20 
o
C and MsOH (6.6 µL, 0.1 mmol, 1 equiv) was added. 

The reaction was stirred for 20h and then quenched with Et3N (10 µL). Silica gel flash column 

chromatography (SiO2, 5 g, 10 mm Ø, hexanes/EtOAc 40:1) afforded 5 mg (20%) of 89b as a 

thin film.   

Data for 89b: 

 1
H NMR: (500 MHz, CDCl3) 

  7.41 (d, J = 7.3 Hz, 2 H, HC(13)), 7.27 (t, J = 7.3 Hz, 2 H, HC(14)), 7.20 (t, 

J = 7.4 Hz, 1 H, HC(15)), 3.32 (s, 3 H, H3C(10)), 3.28 (m, 1 H, HC(4)), 3.22 (m, 

1 H, HC(5)), 1.8 – 1.2(m, 8 H, H2C(2), H2C(3), H2C(6) and H2C(7)), 0.94 (m, 6 

H, H3C(1,8)) 
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 SFC: (4R,5R)-89b, tR 4.12 min (47.9%), (4S,5S)-89b, tR 4.45 min (52.1%) (Chiralpak 

OD, 0.8% MeOH in CO2 , 2.3 mL/min, 220 nm, 40 
o
C) 

  

Preparation of (R)-(2-Methoxyoctyl)(phenyl)sulfide (89c) and (S)-(1-Methoxyoctan-2-

yl)(phenyl)sulfide (90c) (Table 10 Entry 3) [DJK-2-74] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 1-octene, 88c, (112 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) 

MeOH (32 mg, 1.0 mmol, 1.0 equiv) and CH2Cl2 (2.5 mL). Methanesulfonic acid (65 µL 1.0 

mmol, 1.0 equiv) was added at room temperature and the reaction was allowed to stir for 48 h. 

The reaction was worked up following the General Procedure. The product was purified by flash 

chromatography (SiO2, 20 g, 20 mm Ø, hexanes/t-BuOMe, 60:1) to afford 193 mg (77%) of 89c 

as a pale yellow oil. Kugelrohr distillation (130 
o
C ABT, 3 mm Hg) afforded 123.4 mg (49%) of 

analytically pure 89c as a clear oil. Isomer separation was achieved by flash chromatography 

(SiO2, 5 g, 10 mm Ø, hexanes/dichloromethane, 9:1). 

Data for isomer mixture : 

 bp:  116 
o
C (ABT), 3 mm Hg 

   IR: 3059 (m), 2928 (s), 2859 (s), 1584 (s), 1480 (s), 1461 (s), 1438 (s), 1377 (m), 1185 

(m), 1096 (s), 1025 (s), 738 (s), 690 (s)    

 MS: (EI) 

  252 (M+), 129 (100), 124 (20), 123 (19), 109 (18), 97 (78), 69 (19), 55 (83) 

 TLC: Rf   89c, 0.27; 90c, 0.31 (hexanes/EtOAc, 20:1) [CAM] 

Analysis: C15H24OS (252.42) 

  Calcd. : C: 71.37 H: 9.58 

  Found : C: 71.12 H: 9.32 
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Data for 89c: 

 1
H NMR:  (400 MHz, CDCl3) 

7.37 (d, 2 H, J = 7.2 Hz, HC(11)), 7.28 (t, 2 H, J = 7.3 Hz, HC(12), 7.18 (t, 1 H, J 

=7.3 Hz, HC(13)), 3.34 (s, 3 H, HC(15)), 3.34 (m, 1 H, HC(2)), 3.11 (dd, 1 H, J = 

5.6, 13.1Hz, HC(1)), 2.99 (dd, 1 H, J = 6.1, 13.1 Hz, HC(1)), 1.59 (m, 2 H, H2C(3)), 

1.29 (m, 8 H, H2C(4), H2C(5), H2C(6), H2C(7)), 0.88 (t, 3 H, J = 6.8 Hz, H3C(8)) 

13
C NMR:  (125 MHz, CDCl3) 

  
136.9 (C(10)), 129.2 (C(11)), 128.8 (C(12)), 125.9 (C(13)), 79.9 (C(2)), 57.1 

(C(15)), 37.6 (C(1)), 33.3 (C(3)), 31.7 (C-alkyl), 29.3 (C-alkyl), 25.1 (C-alkyl), 

22.6 (C-alkyl), 14.1 (C(8)) 

 Opt Rot. : [α]
 
D

24 
 5.9 (c = 0.11 , CHCl3) 

 HPLC: (S)-89c, tR 14.13 min (17.8%), (R)-89c, tR 16.92 min (82.2%) (Chiralpak AD-RH, 

45 % MeCN in H2O, 1 mL/min, 220 nm, 40 
o
C) 

Data for 90c: 

 1
H NMR:  (400 MHz, CDCl3) 

  Diagnostic Signals : 7.42 (d, J = 7.2 Hz, HC(11)), 3.51 (m, 1H, HC(1)), 3.23 (m, 

1H, HC(2))  

 

Preparation of (3R,4S)-4-(Methoxy-2-methylheptan-3-yl)(phenyl)sulfide (89d) and (3S,4R)-

3-(Methoxy-2-methylheptan-4-yl)(phenyl)sulfide (90d) (Table 10 Entry 4) [DJK-3-49] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), (E)-2-methyl-3-heptene, 88d, (112 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 

0.1 equiv), MeOH (32 mg, 1.0 mmol, 1.0 equiv) and CH2Cl2 (2.5 mL). The mixture was cooled 

to -20 
o
C in a glycol/water bath. Methanesulfonic acid (65 µL 1.0 mmol, 1.0 equiv) was added 
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and the reaction was allowed to stir for 48 h. The reaction was worked up following the General 

Procedure. The product was purified by flash chromatography (SiO2, 20 g, 20 mm Ø, 

hexanes/dichloromethane, 9:1) followed by Kugelrohr distillation to afford 144 mg (58%) of a 

pale yellow oil, determined to be an inseparable 4:1 mixture of 89d:90d. 

Data for mixture : 

 bp:  100 
o
C (ABT, 0.3 mm Hg) 

 IR: 3073 (s), 2959 (s), 2872 (s), 2823 (s), 1583 (s), 1478 (s), 1438 (s), 1383 (s), 1364 

(s), 1329 (m), 1313 (m), 1237 (m), 1179 (s), 1151 (s), 1093 (s), 1025 (s), 983 (m), 

932 (m), 827 (m), 736 (s), 690 (s)     

 MS: (EI)  

  252 (19, M+), 164 (31), 165 (43), 123 (18), 87 (100), 55 (26)  

 TLC: Rf   0.67 (hexanes/EtOAc, 20:1) [CAM] 

  

 Analysis: C15H24OS (252.37) 

  Calcd. : C: 71.37 H: 9.58 

  Found : C: 71.57 H: 9.50 

 

Data for 89d: 

 1
H NMR:  (500 MHz, CDCl3) 

  
7.45 (d, J = 7.2 Hz, 2 H, HC(11)), 7.33 – 7.22 (t, J = 7.6 Hz, 2 H, HC(12)), 7.19 (t, 

J = 7.4 Hz, 2 H, HC(13), 3.42 – 3.35 (m, 1 H, HC(4)), 3.37 (s, 3 H, HC(15)), 3.09 

(dd, J = 6.8, 4.5 Hz, 1 H, HC(3)), 2.25 (dsept, J = 6.7 Hz, 4.4 Hz, 1 H, HC(2)), 1.70 

– 1.62 (m, 2 H, HC(5)), 1.41 – 1.27 (m, 2 H, HC(6)), 1.12 (d, J = 6.8 Hz, 3 H, 

HC(7)), 1.06 (d, J = 6.7 Hz, 3 H, HC(8)), 0.85 (t, J = 7.4 Hz, 3 H, HC(1)).
 

 

13
C NMR:  (126 MHz, CDCl3) 

  
138.0 (C(10)), 131.0 (C(11)), 128.8 (C(12)), 126.1 (C(13)), 82.5 (C(4)), 60.9 

(C(3)), 57.6 (C(15)), 33.5 (C(5)), 29.1 (C(2)), 21.7 (C(7/8)), 18.9 (C(7/8)), 18.6 

(C(6)), 14.1 (C(1))  

 

Data for 90d: 

 1
H NMR:  (500 MHz, CDCl3) 
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7.42 (d, J = 7.2 Hz, 2 H, HC(11)), 7.33 – 7.29 (m, 2 H, HC(12)), 7.24-7.21 (m, 1 H, 

HC(13)), 3.56 (s, 3 H, H(C15)), 3.25 (ddd, J = 11.2, 6.0, 3.4 Hz, 1 H, HC(4), 2.99 

(dd, J = 6.9, 4.2 Hz, 1 H, HC(3), 2.01 (dsept, J = 6.8, 6.8 Hz, 1 H, HC(2)), 1.82 – 

1.70 (m, 1 H, HC(5)), 1.62 – 1.44 (m, 3 H, HC(5)), 0.93 (m, 9 H, HC(7/8), HC(1))
  

13
C NMR:  (126 MHz, CDCl3) 

  136.6 (C(10)), 131.4 (C(11)), 128.8 (C(12)), 126.4 (C(13)), 89.4 (C(4)), 61.9 

(C(15)), 52.2 (C(3)), 31.6 (C(2)), 31.3 (C(5)), 20.8 (C(7/8)), 20.0 (C(7/8)), 18.4 

(C(6)), 14.0 (C(1)). 

 

 

Preparation of (3R,4S)-4-(Methoxy-2-methylheptan-3-yl)(phenyl)sulfone (91) and (3S,4R)-

3-(Methoxy-2-methylheptan-4-yl)(phenyl)sulfone (92) (Table 10 Entry 4) [DJK-3-58] 

 

A 5-mL flame-dried Schlenk flask was charged with a 4:1 mixture of 89d:90d (25 mg, 

0.1 mmol), and CH2Cl2 (1.5 mL). m-Chloroperbenzoic acid (48 mg, 0.28 mmol, 2.8 equiv) was 

added portionwise. The reaction was stirred at 23 
o
C for 2 h. Thereupon, the reaction was poured 

into a separatory funnel containing 10 mL of a 4:1 mixture of sat. aq. Na2S2O3:H2O. The reaction 

was diluted with 9 mL CH2Cl2. The layers were separated and the organic layer was poured into 

10 mL of 1 M NaOH. The aqueous layers were then individually extracted with 10 mL CH2Cl2. 

The organic layers were combined, dried over Mg2SO4, filtered and concentrated. Passage 

through a plug of SiO2 (100% EtOAc) gave 27.0 mg (95%) of a 4:1 mixture of 91:92. The crude 

NMR showed no other products. The constitutional isomers were separated by silica gel flash 

chromatography (SiO2, 7 g, 10 mm Ø, hexanes/EtOAc, 25:1).  
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Data for mixture: 

HRMS (ESI):  Calcd. for C12H25O3S (M+H
+
) : 285.1524, found : 285.1524 

 

Data for 91: 

 1
H NMR:  (500 MHz, CDCl3) 

  
7.91 (d, J = 7.2 Hz, 2H, HC(11)), 7.63 (t, J = 7.4 Hz, 1H, HC(13)), 7.55 (t, J = 7.6 

Hz, 2H HC(12)), 3.70 (ddd, J = 7.7, 5.4, 2.5 Hz, 1H, HC(3)), 3.33 (s, 3H, HC(15)), 

3.07 (t, J = 2.7 Hz, 1H, HC(4), 2.37 (septd, J = 6.9, 2.8 Hz, 1H, HC(2)), 1.77 (dddd, 

J = 13.3, 9.9, 7.6, 5.4 Hz, 1H, HC(5)), 1.51 (ddt, J = 14.2, 9.9, 5.7 Hz, 1H, H(C(5)), 

1.37 – 1.23 (m, 2H, HC(6)), 1.21 (d, J = 7.1 Hz, 3H, HC(1)), 1.15 (d, J = 7.1 Hz, 

3H, HC(8)), 0.84 (t, J = 7.4 Hz, 3H, HC(7)). 

13
C NMR:  (126 MHz, CDCl3) 

  
133.2 (C(13)), 128.9 (C-aryl), 128.5 (C-aryl), 78.8 (C(4), 72.1 (C(3)), 58.1 (C(15)), 

35.7 (C-alkyl), 26.9 (C-alkyl), 21.7 (C-alkyl), 20.9 (C-alkyl), 19.3 (C-alkyl), 13.8 

(C-alkyl).  

 SFC:  (3R,4S)-91, tR 6.90 min (84.0%), (3S,4R)-91, tR 7.74 min (16.0%), (Welk-O, 1% 

MeOH in CO2, 3.0 mL/min, 220 nm, 40 
o
C) 

 

Data for 92: 

 1
H NMR:  (500 MHz, CDCl3) 

  
7.91 (d, J = 7.2 Hz, 2H, HC(11)), 7.65 (t, J = 7.4 Hz, 1H, HC(13)), 7.57 (t, J = 7.6 

Hz, 2H, HC(12)), 3.59 (dd, J = 7.7, 1.7 Hz, 1H, HC(3)), 3.44 (s, 3H, HC(15)), 3.06 

(td, J = 5.7, 1.6 Hz, 1H, HC(4)), 1.77 (m, 3H, H-alkyl), 1.38 – 1.26 (m, 1H, H-

alkyl), 1.24 – 1.09 (m, 2H, H-alkyl), 0.95 (d, J = 6.7 Hz, 3H, HC(1)), 0.84 (d, J = 

6.8 Hz, 3H, HC(8)), 0.78 (t, J = 7.3 Hz, 3H, HC(7)). 

 SFC:  (3S,4R)-92, tR 5.64 min (84.0%), (3R,4S)-92, tR 6.56 min (16.0%) (Welk-O, 5% 

hexane:i-PrOH, 95:5 in CO2, 2.0 mL/min, 220 nm, 40 
o
C)  
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Preparation of (4R,5S)-5-(Phenylthio)octan-4-yl acetate (89e) (Table 10 Entry 5) [DJK-2-

65] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 1 (255 mg, 1.0 

mmol, 1.0 equiv), 4-octene, 88a, (112 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv) 

acetic acid (60 mg, 1.0 mmol, 1.0 equiv) and CH2Cl2 (2.5 mL). The mixture was cooled to -20 
o
C 

in an i-PrOH bath. Methanesulfonic acid (65 µL 1.0 mmol, 1.0 equiv) was added and the 

reaction was allowed to stir for 48 h. The reaction was worked up following the General 

Procedure. The product was purified by flash chromatography (SiO2, 24 g, 20 mm Ø, 

hexanes/EtOAc, 40:1) to afford 217 mg (77%) of 89e as a clear liquid. The spectroscopic data 

match those published in the literature.
63a

 

Data for 89e : 

 1
H NMR:  (500 MHz, CDCl3) 

7.44 (d, 2 H, J = 7.5 Hz, H(C14)), 7.29 (t, 2 H, J = 7.4 Hz, HC(15)), 7.22 (t, 1 H, J 

= 7.3 Hz, H(C16)), 5.01 (td, 1 H, J = 3.7, 9.5 Hz, H(C4)), 3.29 (td, 1 H, J = 4.2Hz, 

8.5Hz, HC(5)), 1.84 (s, 3 H, HC(11)), 1.76 (m, 2 H, H(C-alkyl)) 1.63 (m, 1 H, H(C-

alkyl)), 1.52 (m, 3 H, H(C-alkyl)), 1.35 (m, 1 H, H(C-alkyl)), 1.26 (m, 1 H, H(C-

alkyl)), 0.96 (t, 3 H, J =7.1Hz, HC(1,8)), 0.90 (t, 3 H, J =7.4Hz, HC(1,8)) 

13
C NMR: 170.8 (C(10)), 136.1 (C(13)), 132.2 (C(15)), 128.8 (C(14)), 126.8 (C(16)), 75.9 

(C(4)), 53.4 (C(5)), 33.1 (C(3,6)), 32.4 (C(3,6)), 20.8 (C(2,7,11)), 20.7 (C(2,7,11)), 

18.9 (C(2,7,11)), 13.9 (C,1,8)), 13.8 (C(1,8)). 

 MS:
 

(EI) 

  280 (M+), 220 (93), 191 (44), 165 (69), 123 (100), 69 (38), 55 (35) 

 Opt Rot. : [α]
 
D

24
 -13.8 (c = 0.46, CHCl3) 

 HPLC:  (4S, 5R)-89e, tR 5.23 min (8.6%), (4R, 5S)-89e, tR 5.82 min (91.4%) (Chiralpak 

AD-RH, 45 % MeCN in H2O, 1 mL/min, 220 nm, 40 
o
C) 
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Preparation of N-((4R,5S)-5-(Phenylthio)octan-4-yl)acetamide (89f) (Table 10 Entry 6) 

[DJK-2-91] 

 

Following General Procedure 5, a 5-mL Schlenk flask was charged with 56 (255 mg, 1.0 

mmol, 1.0 equiv), 4-octene (112 mg, 1.0 mmol), (R)-62b (52 mg, 0.1 mmol, 0.1 equiv), 

acetonitrile (525 µL, 10.0 mmol, 10 equiv) and CH2Cl2 (2.5 mL). The mixture was cooled to -20 

o
C in an i-PrOH bath. Methanesulfonic acid (65 µL 1.0 mmol, 1.0 equiv) was added and the 

reaction was allowed to stir for 48 h. The reaction was worked up following the General 

Procedure. The product was purified by flash chromatography (SiO2, 24 g, 20 mm Ø, 

hexanes/EtOAc, 3:1) to afford 91 mg (35%) of 89f as a clear liquid. This compound was not 

characterized for publication. 

 

Data for 89f: 

 1
H NMR:  (500 MHz, CDCl3) 

7.39 (m, 2H, HC(15)), 7.27 (m, 2H, HC(14)), 7.19 (m, 1H, HC(16)), 5.50 (d, J = 

9.3 Hz, 1H, HN(9)), 4.20 (m, 1H, HC(4)), 3.39 (m, 1H, HC(5)), 1.73 (s, 3H, 

HC(11), 1.68 – 1.21 (m, 8H, HC(2,3,7,8)), 0.95 (m, 6H, HC(1,8)). 

 SFC:  (3R,4S)-89f, tR 3.08 min (89.1%), (3S,4R)-89f, tR 3.81 min (10.9%), (AD, 5% 

MeOH in CO2, 2.5 mL/min, 220 nm, 40 
o
C) 
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 5.4. Experimental Procedures For Chapter 3. 

 

Preparation of (R)-6-(Azepan-1-yl)-1,5,7,11-tetramethyl-5,7-dihydrodibenzo[d,f][1,3,2]-

diazaphosphepine 6-selenide (100) 

 

 To a dry, 20-mL Schlenk flask under argon was added 6,6-dimethyl-2,2-

di(methylamino)-1,1-biphenyl
134

 (580 mg, 2.45 mmol), THF (9 mL) and Et3N (780 μL, 

5.63 mmol, 2.30 equiv). The solution was cooled to 0 °C. Neat, distilled PCl3 (630 μL, 

7.36 mmol, 3.00 equiv) was added via syringe, and the reaction was allowed to stir for 3 h at 

room temperature. The resulting precipitate was filtered off via cannula with the filtrate being 

transferred to a 100-mL Schlenk flask. The THF was removed by stirring under vacuum. 

Azepane (310 μL, 2.80 mmol, 1.10 equiv), CH2Cl2 (15 mL) and Et3N (500 μL, 3.60 mmol, 

1.48 equiv) were added and the reaction allowed to stir for 16 h. Selenium powder (580 mg, 

7.36 mmol, 3.00 equiv) was added and the reaction stirred at room temperature for 24 h. The 

excess selenium was filtered off through a pad of Celite and the filtrate was concentrated to yield 

an orange foam. The material was dissolved in a minimal amount CH2Cl2 and purified by 

chromatography (SiO2, 140 g, 20 mm 18 cm, hexane/CH2Cl2, 6:1). The resulting off-white 

powder was filtered through a silica plug washing with hexane/Et2O (1:1) to yield 880 mg (82%) 

of (R)-100 (Note: The use of ether is important to remove all traces of selenium). An analytically 

pure sample was obtained by recrystallization from hexane (ca. 10 mL/g). 
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Data for (R)-100: 

 mp:  105–107 °C (hexane) 

 1
H NMR:  (500 MHz, CDCl3) 

   δ 7.27 (t, J = 7.8 Hz, 1H, H(C5)), 7.22 (t, J = 7.7 Hz, 1H, H(C5')), 7.15 (dd, J = 

8.1, 3.1 Hz, 2H, HC(4), HC(4')), 7.09 (d, J = 7.5 Hz, 1H, H(C6)), 7.06 (d, J = 7.6 

Hz, 1H, H(C6')), 3.18 (tt, J = 9.5, 4.6 Hz, 2H, HC(9)), 3.07 (d, J = 12.5 Hz, 3H, 

H(C8)), 2.95 (ddd, J = 14.3, 10.3, 4.6 Hz, 2H, H(C9')), 2.75 (d, J = 13.4 Hz, 3H, 

H(C8')), 2.13 (s, 3H, HC(7)), 2.03 (s, 3H, H(C7')), 1.59 (s, 8H, HC(10), C(11)). 

13
C NMR:  (125 MHz, CDCl3) 

  δ 144.6 (d, J = 5.5 Hz, C(1)), 143.6 (C(1')), 137.4 (C(3)), 136.8 (C(3')), 134.6 

(C(2)), 132.5 (d, J = 2.6 Hz, C(2')), 127.8 (d, J = 2.1 Hz, C(5)), 127.4 (C(5')), 127.2 

(C(6)), 126.9 (d, J = 2.5 Hz, C(6')), 122.0 (C(4)), 120.3 (d, J = 3.6 Hz, C(4')), 49.6 

(d, J = 2.0 Hz, C(9)), 38.7 (d, J = 10.1 Hz, C(8)), 35.5 (d, J = 6.3 Hz, C(8')), 30.3 

(d, J = 4.7 Hz, C(7)), 26.7 (C(7)), 20.0 (C(10)), 19.8 (C(11)) 

 
31

P NMR:  (202 MHz, CDCl3) 

   89.4, JP–Se = 818 Hz 

 IR: (ATR, cm
-1

)  

  2 934 (w), 2858 (w), 1665 (m), 1590 (w), 1510 (w), 1451 (m), 1380 (w), 1278 (s), 

1239 (s), 1223 (s), 1155 (s), 1088 (m), 1055(m), 1027 (s), 1001 (m), 920 (m), 892 

(w), 846 (w), 819 (s), 784 (m), 755 (m), 734 (m), 701 (s), 688 (m), 636 (s), 615 (s) 

 HRMS: calcd for C22H31N3PSe: 448.1425, found: 448.1421  

 TLC: Rf  = 0.52 (hexane/EtOAc, 4:1) 

  Analysis: C22H30N3PSe (446.44) 

  Calcd:  C, 59.19;  H, 6.77; N, 9.41  

  Found: C, 59.50;  H, 6.65; N, 9.12 
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Preparation of (2S,3R)-2-(2-Fluorophenyl)-3-(phenylthio)tetrahydro-2H-pyran (101) and 

(S)-2-((R)-(2-Fluorophenyl)(phenylthio)methyl)tetrahydrofuran (101') [DJK-11-17] 

 

 To a 10-mL Schlenk flask was added 5-(2-fluorophenyl)-pent-4-en-1-ol (99)
3
 (180 mg, 

1.00 mmol), sulfenylating agent 56 (256 mg, 1.00 mmol, 1.00 equiv), (S)-100 (52.2 mg, 

0.100 mmol, 0.100 equiv). To this was added CH2Cl2 (7 mL) and the flask was cooled to 0 °C. 

Neat, dry MsOH (48 μL, 0.75 mmol, 0.75 equiv) was added via syringe. The reaction was stirred 

for 24 h at 0 °C and then was quenched with Et3N (200 μL). The resulting white suspension was 

concentrated in vacuo (20–23 °C, 20 mmHg). The residue was taken up in a minimal amount of 

chloroform and the compound was purified by column chromatography (SiO2, 140 g, 

20 mm,22 cm, hexane/EtOAc, 20:1) to afford 227 mg (79%) of a 20:1 mixture of 101 and 101'. 

An analytically pure sample was obtained by Kugelrohr distillation. 

Data for 101: 

 bp:  130 
o
C (ABT), 0.4 mmHg 

 1
H NMR:  (500 MHz, CDCl3) 

  δ 7.36 (td, J = 7.4, 1.8 Hz, 1H, HC(11)), 7.25–7.10 (m, 6H, HC(9), HC(13), 

HC(14), HC(15)), 7.05 (td, J = 7.6, 1.2 Hz, 1H, H(C(10)), 6.96 (ddd, J = 9.6, 8.3, 

1.2 Hz, 1H, HC(8)), 4.57 (d, J = 10.3 Hz, 1H, HC(1)), 4.08 (ddt, J = 11.4, 4.8, 1.7 

Hz, 1H, HC(5)), 3.57 (td, J = 11.8, 2.2 Hz, 1H, HC(5)), 3.33 (ddd, J = 12.0, 10.3, 

4.0 Hz, 1H, HC(2)), 2.33 (dtd, J = 12.9, 4.7, 2.7 Hz, 1H, HC(3)), 1.91–1.82 (m, 1H, 

HC(4)), 1.75–1.71 (m, 1H, HC(4)), 1.68 (dd, J = 12.5, 4.1 Hz, 1H, HC(3)) 

13
C NMR:  (125 MHz, CDCl3) 

  δ 160.5 (d, J =247 Hz, C(7)), 133.5 (C(12)), 133.2 (C(14)), 129.6 (d, J = 8.7 Hz, 

HC(11)), 128.8 (d, J = 4.2 Hz, HC(10)), 128.5 (C(13)), 127.3 (d, J = 11.3 Hz, C(6)) 

127.2 (C(15)), 124.0 (d, J = 3.8 Hz, C(9)), 115.3 (d, J = 22.5 Hz, C(8)), 78.4 (C(1)) 

, 68.6 (C(5)) , 50.0 (C(2)) , 32.2 (C(3)) , 27.0 (C(4)) 

19
F  NMR:  (476 MHz, CDCl3) 

   117.4 
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 IR: (NaCl plate)  

  3059 (w), 2941 (m), 2850 (m), 1619 (w), 1584 (m), 1493 (s), 1453 (m), 1438 (m), 

1371 (w), 1300 (w), 1260 (w), 1232 (s), 1190 (m), 1076 (s), 1025 (s), 970 (m), 959 

(m), 829 (m), 798 (m), 757 (s) 

 HRMS: calcd for C17H18FOS: 289.1062, found: 289.1062 

 TLC: Rf  = 0.46 (hexane/EtOAc, 4:1) 

Opt. Rot. :  []D
24

 +14.2 (c = 0.97, CHCl3) 

  Analysis: C17H17FOS (288.38) 

  Calcd:  C, 70.80;  H, 5.94;   

  Found: C, 70.56;  H, 5.96;  

  

 SFC: (2S,3R)-101, tR 5.88 min (90.4%); (2R,3S)-101, tR 5.33 min (9.6%) (Chiralpak  

  AD, 5% MeOH in CO2, 2 mL/min, 200 bar, 40 °C) 

 

Data for 101':
   

 1
H NMR:   (500 MHz, CDCl3) 

  Diagnostic signals: δ 4.62 (d, J = 6.9 Hz, 1H), 4.38 (dq, J = 0.8, 6.7 Hz, 1H), 3.87–

3.68 (m, 2H), 2.21–2.12(m, 2H), 1.90–1.82 (m, 2H) 

 

19
F  NMR:  (476 MHz, CDCl3) 

   118.90 

 

Crystallization of (R)-62b [DJK-6-5] 

 To a 1-dram vial was added 62b (52 mg, 0.1 mmol). CH2Cl2 (0.5 mL) was added. The 

vial was then placed in a closed container in the presence of a 4-dram vial containing 10 mL of 

pentanes. White spindles were obtained after 48 h which were harvested and submitted for X-ray 

analysis.  
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Reaction of Selenophosphoramide 62b with [PhS(SMe2)]SbCl6 95b [DJK-6-46] 

 

To a solution of 62b (30 mg 0.06 mmol) in DME (200 μL) was added 156 

[PhS(SMe2)]SbCl6 (30 mg, 0.058 mmol). The solution was layered with benzene (1 mL). 

Precipitation was observed. The solids were partially dissolved in CDCl3. A 4:1 ratio of two 
31

P 

NMR resonances at 62.4 ppm and 58.3 ppm respectively was observed.    

 

Disproportionation Upon Attempted Crystallization of Active Species 95b [DJK-6-52] 

 

In a glovebox, 62b (50 mg, 0.098 mmol) and 156 (48 mg, 0.097 mmol) were added to a 

5-mm NMR tube. The material was dissolved in DME (250 μL) and layered with benzene 

(1 mL). Upon standing for 24 h, orange, air-stable crystals of 102 were observed. These were 

harvested and submitted for X-ray analysis.  
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Isomerization Studies of Tetrahydrofuran Products 59 

 

 

General Procedure   

 To an oven dried 5-mm NMR-tube was added substrate, catalyst, electrophile and 

phthalimide as solids. Phthalimide was included to simulate the effect of byproduct formation 

during the reaction. MsOH was added to the side of the NMR tube via syringe. The NMR tube 

was capped with a septa and shaken well. The solution was homogenous. The NMR tube was 

then kept at the appropriate temperature for the specified time. A cryocool bath filled with 2-

propanol and a NESLAB IBC-4A cryocool was used to keep constant temperature for low 

temperature reactions. Furthermore, for low temperature reactions, a Dewar was filled with 2-

propanol and cooled to below -50 
o
C with dry ice. The NMR tube was placed in the cold Dewar 

during transport to and from the NMR spectrometer. The reactions were followed by routine 
1
H 

NMR spectroscopy.  

 

Isomerization of 59k into 58k (Table 11, entry 1) [DJK-3-31] 

 

 Following General Procedure 7, to an oven-dried NMR tube was added 59k (9.7 mg, 0.05 

mmol), 62b (5.3 mg, 0.01 mmol, 0.2 equiv), 56 (12.9 mg, 0.05 mmol, 1 equiv) and CDCl3 (0.7 

mL). Methanesulfonic acid (3.3 µL, 0.05 mmol, 1 equiv) was added at room temperature and the 

mixture was shaken. NMR monitoring revealed no isomerization of 59 k after 3h.  
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Data for 59k: 

 
1
H NMR: (500 MHz, CDCl3) 

  7.37 (d, J = 7.9 Hz, 2 H, HC(9)), 7.28 (t, J = 7.7 Hz, 2 H HC(10)), 7.17 (t, J = 7.4 

Hz, 1 H, HC(11)), 4.11 – 4.00 (tt, J = 6, 7 Hz, 1 H, HC(2)), 3.91 (dd, J = 14.4, 7.3 

Hz, 1 H, HC(5)), 3.77 (dd, J = 14.4, 7.8 Hz, 1 H, HC(5)), 3.16 (dd, J = 13.0, 5.8 

Hz, 1 H, HC(6)), 2.97 (dd, J = 13.0, 6.8 Hz, 1 H, HC(6)), 2.06 (m, 1 H, HC(3)), 

1.91 (m, 2 H, HC(4)), 1.66 (m, 1 H, HC(3)). 

 

Isomerization of 59k (Table 11, entry 2) [DJK-3-36] 

 

 Following General Procedure 7,to an oven-dried NMR tube was added 5k(19 mg, 0.1 

mmol), (R)-62b (5.3 mg, 0.01 mmol, 0.1 equiv), 56 (12.8 mg, 0.05 mmol, 0.5 equiv), 

phthalimide (9.1 mg, 0.06 mmol, 0.6 equiv) and CDCl3 (0.7 mL). The mixture was cooled to -10 

o
C in a glycol/water bath. Methanesulfonic acid (3.3 µL, 0.05 mmol, 1 equiv) was added at -10 

o
C. The mixture was shaken and kept at -10

o
C for 48 h and then quenched with Et3N (5 µl). 

NMR spectroscopy revealed no isomerization of 59k after 48 h. The product was purified by 

passage through a silica plug (hexane/EtOAc, 1:1). 59k was recovered with 100% 

enantiospecificity.  

Data for 59k: 

 1
H NMR: (500 MHz, CDCl3) 

  7.37 (d, J = 7.9 Hz, 2 H, HC(9)), 7.28 (t, J = 7.7 Hz, 2 H HC(10)), 7.17 (t, J = 7.4 

Hz, 1 H, HC(11)), 4.11 – 4.00 (tt, J = 6, 7 Hz, 1 H, HC(2)), 3.91 (dd, J = 14.4, 7.3 

Hz, 1 H, HC(5)), 3.77 (dd, J = 14.4, 7.8 Hz, 1 H, HC(5)), 3.16 (dd, J = 13.0, 5.8 

Hz, 1 H, HC(6)), 2.97 (dd, J = 13.0, 6.8 Hz, 1 H, HC(6)), 2.06 (m, 1 H, HC(3)), 

1.91 (m, 2 H, HC(4)), 1.66 (m, 1 H, HC(3)). 

 SFC:  (2S)-5j, tR 4.97 min (16.6%); (2R)-5j, tR 6.07 min (83.4%) (Chiralpak AD, 5 % 

MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 
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Isomerization of 59j at 23 
o
C (Table 11 entry 3) [DJK-3-32] 

 

 Following General Procedure 7, to an oven-dried NMR tube was added 59j (15.1 mg, 

0.05 mmol), (R)-62b (5.3 mg, 0.01 mmol, 0.2 equiv), 56 (12.9 mg, 0.05 mmol, 1 equiv) and 

CDCl3 (0.7 mL). Methanesulfonic acid (3.3 µL, 0.05 mmol, 1 equiv) was added at room 

temperature and the mixture was shaken. After 3h, NMR spectra showed a 3.5:1 ratio of 58j:59j, 

after 4 d at room temperature the ratio was >19:1 58j:59j. 

Data for 59j : 

 
1
H NMR: (400 MHz, CDCl3) 

  7.42 (d, J = 7.1 Hz, 2 H, H(C-aryl)), 7.28 (app t, J = 7.4 Hz, 4 H, H(C-aryl)), 7.24 

– 7.14 (m, 4 H, H(C-aryl)), 4.08 (dt, J = 11.3, 5.6 Hz, 1 H, HC(2)), 3.93 (dd, J = 

14.8, 6.6 Hz, 1 H, HC(5)), 3.78 (dd, J = 14.3, 7.1 Hz, 1 H, HC(5)), 3.23 (dt, J = 

9.1, 4.4 Hz, 1 H, HC(6)), 2.99 (ddd, J = 14.7, 9.9, 5.3 Hz, 1 H, HC(13)), 2.81 

(ddd, J = 13.8, 9.7, 6.7 Hz, 1 H, HC(13)), 2.11 (m, 1 H, HC(12)), 2.04 – 1.96 (m, 

1 H, HC(3)), 1.94 – 1.73 (m, 4 H, HC(12), H(C3), HC(4)). 

Data for 58j: 

 1
H NMR: (500 MHz, CDCl3) 

 4.09 (ddt, J = 11.3, 4.3, 1.9 Hz, 1H), 3.60 (ddd, J = 8.6, 4.8, 2.2 Hz, 1H), 3.51 (td, 

J = 11.6, 2.6 Hz, 1H), 2.83 – 2.71 (m, 1H), 2.67 (ddd, J = 13.7, 9.2, 7.2 Hz, 1H), 

2.27 – 2.13 (m, 2H), 2.09 – 1.99 (m, 1H), 1.95 – 1.81 (m, 2H). 
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Isomerization of 59j at -10 
o
C (Table 11 entry 4) [DJK-3-35] 

 

 Following General Procedure 7, to an oven-dried NMR tube was added 5h (75 mg, 0.25 

mmol), 62b (13.1 mg, 0.025 mmol, 0.1 equiv), 1 (31.7 mg, 0.125 mmol, 0.5 equiv), phthalimide 

(18.5 mg, 0.125 mmol, 0.5 equiv.) and CDCl3 (0.7 mL). Methanesulfonic acid (17 µL, 0.25 

mmol, 1 equiv) was added at -10 
o
C and the mixture was shaken. After 48 h the reaction was 

quenched with Et3N (5 µL). NMR spectroscopy revealed pure 59j. 

Data for 59j : 

 
1
H NMR: (400 MHz, CDCl3) 

  7.42 (d, J = 7.1 Hz, 2 H, H(C-aryl)), 7.28 (app t, J = 7.4 Hz, 4 H, H(C-aryl)), 7.24 

– 7.14 (m, 4 H, H(C-aryl)), 4.08 (dt, J = 11.3, 5.6 Hz, 1 H, HC(2)), 3.93 (dd, J = 

14.8, 6.6 Hz, 1 H, HC(5)), 3.78 (dd, J = 14.3, 7.1 Hz, 1 H, HC(5)), 3.23 (dt, J = 

9.1, 4.4 Hz, 1 H, HC(6)), 2.99 (ddd, J = 14.7, 9.9, 5.3 Hz, 1 H, HC(13)), 2.81 

(ddd, J = 13.8, 9.7, 6.7 Hz, 1 H, HC(13)), 2.11 (m, 1 H, HC(12)), 2.04 – 1.96 (m, 

1 H, HC(3)), 1.94 – 1.73 (m, 4 H, HC(12), H(C3), HC(4)). 

 

Isomerization of 59g at 23 
o
C (Table 11 entry 5) [DJK-3-50] 

 

 Following General Procedure 7, to an oven-dried NMR tube was added 59g (7.3 mg, 

0.025 mmol), 56 (3.3 mg, 0.0125 mmol, 0.5 equiv), (R)-62b (1.2 mg, 0.0025 mmol), phthalimide 

(1.8 mg, 0.0125 mmol, 0.5 equiv.) and CDCl3 (0.7 mL). Methanesulfonic acid (1.6 µL, 0.025 

mmol, 1 equiv) was added at room temperature and the mixture was shaken. After 16 h, NMR 

spectra showed 30:1 ratio of 58g:59g. The reaction was quenched with Et3N (5 µL), and the 

product was purified by flash chromatography (SiO2, 3 g, 10 mm Ø, hexanes:EtOAc, 20:1) to 

yield 3.1 mg (42%) of 58g. 58g was formed with 100% enantiospecificity. 
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Data for 58g: 

 
1
H NMR: (500 MHz, CDCl3) 

  7.46 (d, J = 7.4 Hz, 2 H, H(C-aryl)), 7.26 (m, 5 H, H(C-aryl), 7.18 (t, 3 H, J = 7.4 

Hz, H(C-aryl)) , 4.00 (ddd, J = 9.5, 5.0, 3.1 Hz, 1 H, HC(6)), 3.36 (td, J = 11.8, 

2.5 Hz, 1 H, HC(6)), 3.20 (td, J = 9.5, 2.4 Hz, 1 H, HC(2)), 2.91 (ddd, J = 11.9, 

10.0, 4.1 Hz, 1 H, HC(3)), 2.82 (ddd, J = 14.3, 9.9, 4.8 Hz, 1 H, HC(8)), 2.69 

(ddd, J = 13.6, 9.5, 7.3 Hz, 1 H, HC(8)), 2.46 – 2.31 (m, 1 H, HC(7)), 2.19 – 2.09 

(m, 1 H, HC(5)), 1.87 – 1.77 (ddt, J = 14, 4.8, 9.3 Hz, 1 H, HC(7)), 1.77 – 1.66 

(m, 1 H, HC(4)), 1.66 – 1.58 (m, 1 H, HC(4)), 1.50 (app qd, J = 13.0, 4.2 Hz, 1 H, 

HC(5)). 

 SFC: (2S,3R)-58g, tR 7.42 min (3.9%); (2R,3S)-58g, tR 8.19 min (96.1%) (Chiralcel OJ, 

4 % MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 
 

Isomerization of 59g at -20 
o
C (Table 11 entry 6) [DJK-3-57] 

 

 Following General Procedure 7, to an oven-dried NMR tube was added a 1:1 mixture of 

58g:59g (15 mg, 0.05 mmol), (R)-62b (2.4 mg, 0.005 mmol), 56 (6.5 mg, 0.025 mmol, 0.5 

equiv), phthalimide (3.7 mg, 0.025 mmol, 0.5 equiv.) and CDCl3 (0.15 mL). The mixture was 

cooled to -20 
o
C in an i-PrOH bath. Methanesulfonic acid (3.2 µL, 0.05 mmol, 1 equiv) was 

added at -20 
o
C, and the mixture was shaken. After 48 h, the reaction was quenched with Et3N (5 

µL) and 0.55 mL of CDCl3 was added. NMR spectroscopy revealed a 5.5:1 mixture of 58g:59g. 

The product was purified by flash chromatography (SiO2, 5 g, 10 mm Ø, hexane/EtOAc, 50:1) to 

afford 8.9 mg of a mixture of 58g and 59g and 4.4 mg of 59g (89% combined recovery).  
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Data for 58g: 

 
1
H NMR: (500 MHz, CDCl3) 

  7.46 (d, J = 7.4 Hz, 2 H, H(C-aryl)), 7.26 (m, 5 H, H(C-aryl), 7.18 (t, 3 H, J = 7.4 

Hz, H(C-aryl)) , 4.00 (ddd, J = 9.5, 5.0, 3.1 Hz, 1 H, HC(6)), 3.36 (td, J = 11.8, 

2.5 Hz, 1 H, HC(6)), 3.20 (td, J = 9.5, 2.4 Hz, 1 H, HC(2)), 2.91 (ddd, J = 11.9, 

10.0, 4.1 Hz, 1 H, HC(3)), 2.82 (ddd, J = 14.3, 9.9, 4.8 Hz, 1 H, HC(8)), 2.69 

(ddd, J = 13.6, 9.5, 7.3 Hz, 1 H, HC(8)), 2.46 – 2.31 (m, 1 H, HC(7)), 2.19 – 2.09 

(m, 1 H, HC(5)), 1.87 – 1.77 (ddt, J = 14, 4.8, 9.3 Hz, 1 H, HC(7)), 1.77 – 1.66 

(m, 1 H, HC(4)), 1.66 – 1.58 (m, 1 H, HC(4)), 1.50 (app qd, J = 13.0, 4.2 Hz, 1 H, 

HC(5)). 

 SFC: (2S,3R)-58g, tR 7.42 min (3.8%); (2R,3S)-58g, tR 8.19 min (96.2%) (Chiralcel OJ, 

4 % MeOH in CO2, 2 mL/min, 220 nm, 40 
o
C) 

 
 

Data for 59g: 

 
1
H NMR: (400 MHz, CDCl3) 

  7.43 (m, 2 H, H(C-aryl)), 7.24 (m, 5 H, H(C-aryl)), 7.15 (m, 3 H, H(C-aryl)), 3.94 

(q , J = 7.0 Hz, 1 H, HC(2)), 3.82 (dt, J = 14.0, 6.9 Hz, 1 H, HC(5)), 3.73 (td, J = 

7.7, 5.9 Hz, 1 H, HC(5)), 3.14 – 3.05 (m, 1 H, HC(6)), 3.04 – 2.94 (m, 1 H, 

HC(8)), 2.78 (ddd, J = 13.7, 9.7, 6.8 Hz, 1 H, HC(8)), 2.17 – 2.06 (m, 1 H, 

HC(7)), 2.06 – 1.96 (m, 1 H, HC(7)), 1.93 – 1.64 (m, 4 H, H2C(3) and H2C(4)). 

 

Determination of Reactant Order in the Sulfenofunctionalization Reaction 

 

General Procedure  

 To a dried 5-mm NMR tube, electrophile 56 and substrate 101 were added. To this was 

added 300 μL of a freshly prepared stock solution of a measured amount of catalyst 100 and 

fluorobenzene standard (1.0 equiv of standard with respect to substrate) in CDCl3, followed by 

400 μL of neat CDCl3. The sample was then inserted into a 400 MHz spectrometer that had been 

pre-cooled to the appropriate temperature and then allowed to equilibrate for 20 minutes. The 

sample was then ejected, the corresponding amount of MsOH was added, the sample was shaken 

for ca. 10 s, reinserted and 
19

F data collection was begun immediately. Data acquisition 
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parameters were as follows:  

 

Spectral Window : –100 ppm to –130 ppm 

pw = 16 μs 

Acquisition Time: 1 s 

Delay Time: 9 s 

Scans per data point: 4 

  

 A delay parameter of 20 s was introduced after each data point such that one data point 

was collected every minute. For brevity, data here is presented in 15 minute intervals. The 

reactions were followed to a minimum of 12% conversion, of which the initial 10% was used to 

determine the initial rate of the reaction.  Each experiment was repeated three times and the rates 

and standard deviations were calculated. Uncertainties are given to one standard deviation. 

 

Determination of Rate for 1.0 equiv. of substrate- Run 1  [DJK-5-20-1] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

8.17E-05 M/min 

 

 [101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

  

time, min area, IS area, Substrate [Substrate] 

1 19297.7 22228.2 0.142857 

16 19207.5 21687.6 0.140037 

31 19204.7 21577.1 0.139344 
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46 19457.6 21638.5 0.137924 

61 19350.8 21279.1 0.136382 

76 19249.5 21073.9 0.135778 

91 19309.3 20996.3 0.134859 

106 19222 20736.6 0.133796 

121 19094.3 20523.5 0.133306 

136 19488.5 20758.1 0.132103 

151 19192.6 20264.5 0.13095 

166 19402.9 20421.2 0.130532 

181 19366 20080.3 0.128598 

196 19218.4 19945.7 0.128717 

211 19142.7 19666.6 0.127418 

226 19230.4 19610.6 0.126475 

241 19142.6 19375.1 0.12553 

256 19049.9 19154.7 0.124706 

 

 

 

 

Determination of Rate for 1.0 equiv. of substrate- Run 2  [DJK-5-20-2] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

y = -8.17E-05x + 1.40E-01 
R² = 9.87E-01 
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7.81E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 17254.8 19621.1 0.140476 

16 17627.1 19905.3 0.139501 

31 17521.1 19509.6 0.137555 

46 17478 19399.4 0.137115 

61 17137.5 18817.2 0.135643 

76 17228.6 18619.6 0.133509 

91 17372.4 18796.3 0.13366 

106 17489.5 18643 0.131682 

121 17126.1 18082.9 0.130436 

136 17331.5 18122 0.129169 

151 17221.4 17742.2 0.127271 

166 17284.2 17785.7 0.127119 

181 17168.8 17528 0.126119 

196 17216.2 17394.9 0.124817 

211 17072.7 17020.5 0.123157 

226 17257.6 17118.6 0.12254 
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Determination of Rate for 1.0 equiv. of substrate- Run 3  [DJK-5-20-3] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at  0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

6.52E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 17254.8 19621.1 0.140476 

16 17627.1 19905.3 0.139501 

31 17521.1 19509.6 0.137555 

46 17478 19399.4 0.137115 

61 17137.5 18817.2 0.135643 

76 17228.6 18619.6 0.133509 

y = -7.81E-05x + 1.41E-01 
R² = 9.90E-01 

0.124 

0.126 

0.128 

0.13 

0.132 

0.134 

0.136 

0.138 

0.14 

0.142 

0.144 

0 50 100 150 200 250 

C
o

n
ce

n
tr

ai
o

n
, M

 

Time, min 

1.0 Substrate Run 2 

Series1 

Linear (Series1) 



182 

 

91 17372.4 18796.3 0.13366 

106 17489.5 18643 0.131682 

121 17126.1 18082.9 0.130436 

136 17331.5 18122 0.129169 

151 17221.4 17742.2 0.127271 

166 17284.2 17785.7 0.127119 

181 17168.8 17528 0.126119 

196 17216.2 17394.9 0.124817 

211 17072.7 17020.5 0.123157 

226 17257.6 17118.6 0.12254 

 

 

Determination of Rate for 0.2 equiv. of substrate- Run 1  [DJK-5-21-1] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 5.0 equiv), 101 (3.6 mg, 0.02 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.5 equiv) and MsOH (6.5 μL, 0.1 mmol, 5.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.73E-05 M/min 

 

[101] = 0.028 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

y = -6.52E-05x + 1.41E-01 
R² = 9.73E-01 
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Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 10351.8 4602.83 0.030159 

16 10347.9 4628.25 0.030337 

31 10308.4 4578 0.030122 

46 10243.3 4513.6 0.029887 

61 10301.3 4431.66 0.02918 

76 10200 4389.33 0.029188 

91 10272.8 4376.3 0.028895 

106 10219.4 4384.53 0.029101 

121 10361.6 4209.74 0.027557 

136 10334.6 4298.13 0.028209 

151 10249.2 4179.5 0.027659 

166 10229.7 4173.67 0.027673 

181 10229 4145.93 0.027491 

196 10300.4 4053.65 0.026693 

211 10132.1 4035.01 0.027012 

226 10247.7 4022.88 0.026627 

241 10193.8 3974.25 0.026444 

256 10243.5 3950.94 0.026161 

271 10223.1 3927.23 0.026056 

286 10221.9 3774.96 0.025049 

301 10171.7 3745.46 0.024976 

316 10224.6 3739.16 0.024805 

331 10264.8 3749.75 0.024777 

346 10191.5 3756.95 0.025004 

361 10256.3 3681.87 0.024349 

376 10126.2 3588.08 0.024034 

391 10229.7 3627 0.024049 

406 10238.9 3533.67 0.023409 

421 10141.7 3532.63 0.023626 

436 10177.5 3470.67 0.02313 

451 10193.3 3532.63 0.023506 

466 10248.4 3416.93 0.022614 

481 10249.9 3301.25 0.021846 

496 10369.6 3473.14 0.022718 
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Determination of Rate for 0.2 equiv. of substrate- Run 2  [DJK-5-21-2] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 5.0 equiv), 101 (3.6 mg, 0.02 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.5 equiv) and MsOH (6.5 μL, 0.1 mmol, 5.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.93E-05 M/min 

 

[101] = 0.028 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 9026.41 4012.4 0.02619 

16 8988.09 3946.27 0.025869 

31 9064.36 3894.25 0.025313 

46 9081.38 3946.81 0.025606 

61 9039.12 3848.57 0.025086 

76 8990.63 3807.15 0.02495 

y = -1.73E-05x + 3.04E-02 
R² = 9.11E-01 
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91 9027.9 3817.54 0.024914 

106 8988.36 3697.96 0.02424 

121 9046.63 3627.46 0.023625 

136 8943.41 3652.61 0.024063 

151 8969.39 3540.14 0.023255 

166 8944.07 3416.44 0.022506 

181 8923.69 3454.11 0.022806 

196 8950.07 3438.87 0.022638 

211 9054.26 3453.97 0.022476 

226 8935.37 3377.87 0.022273 

241 9026.12 3383.39 0.022085 

256 8934.23 3213.64 0.021193 

271 8989.68 3221.75 0.021116 

286 8848.51 3147.9 0.020961 

301 8939.57 3142.65 0.020713 

316 9081.41 3135.43 0.020342 

331 8974.48 3018.45 0.019817 

346 9018.71 2973.68 0.019427 

361 8946.08 2930.68 0.019301 

376 8957.99 2915.54 0.019176 

391 8922.59 2833.7 0.018712 

406 8983.35 2776.98 0.018213 

421 9032.4 2798.19 0.018253 

436 8926.65 2745.64 0.018122 

451 8972.7 2690.03 0.017664 

466 8897.56 2540.26 0.016821 

481 8920.09 2583.62 0.017065 

496 8940.66 2667.57 0.017579 

511 8833.85 2524.29 0.016836 

526 8936.04 2444.12 0.016115 
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Determination of Rate for 0.2 equiv. of substrate- Run 3  [DJK-5-21-3] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 5.0 equiv), 101 (3.6 mg, 0.02 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.5 equiv) and MsOH (6.5 μL, 0.1 mmol, 5.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.65E-05 M/min 

 

[101] = 0.028 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 10433.8 3247.82 0.027778 

16 10269.2 3198.37 0.027793 

31 10342.2 3138.71 0.027082 

46 10391.1 3180.31 0.027312 

61 10409.4 3069.53 0.026314 

76 10333.8 3150.39 0.027205 

y = -1.93E-05x + 2.63E-02 
R² = 9.18E-01 
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91 10257.2 3061.27 0.026633 

106 10340.2 3017.41 0.026041 

121 10450.2 3026.2 0.025842 

136 10327.7 2981.53 0.025762 

151 10388.7 2967.07 0.025487 

166 10342 2878.88 0.024841 

181 10316.7 2897.85 0.025066 

196 10295.4 2771.8 0.024025 

211 10254.7 2739.3 0.023838 

226 10390 2785.99 0.023928 

241 10316.9 2793.42 0.024162 

256 10336.5 2778.54 0.023988 

271 10298.7 2721.48 0.023581 

286 10457.2 2708.39 0.023112 

301 10284.8 2612.9 0.022671 

316 10360.6 2659.21 0.022904 

331 10285.2 2534.92 0.021994 

346 10405.1 2559.95 0.021955 

361 10294.9 2501.15 0.02168 

376 10305.8 2450.44 0.021218 

391 10263.7 2408.26 0.020939 

406 10265.2 2390.41 0.02078 

421 10241.1 2438.83 0.021251 

436 10300.7 2369.27 0.020526 

451 10249 2329.19 0.02028 

466 10250 2156.45 0.018774 

481 10277 2253.95 0.019572 

496 10250.7 2188.88 0.019055 

511 10236.6 2075.83 0.018096 
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Determination of Rate for 0.33 equiv. of substrate- Run 1 [DJK-5-24-1]  

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 3.0 equiv), 101 (6 mg, 0.033 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.3 equiv) and MsOH (6.5 μL, 0.1 mmol, 3.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.3E-05 M/min 

 

[101] = 0.045 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 10275.6 7687.94 0.004762 

16 10225.2 7581.16 0.004719 

31 10331.5 7527.74 0.004637 

46 10398.8 7468.9 0.004571 

61 10360.5 7553.31 0.00464 

76 10316.8 7469.57 0.004608 

91 10366.1 7246.15 0.004449 

y = -1.65E-05x + 2.79E-02 
R² = 8.65E-01 
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106 10356.8 7107.42 0.004368 

121 10263.7 7226.15 0.004481 

136 10420.5 7183.87 0.004388 

151 10357.8 7154.04 0.004396 

166 10288.5 7002.15 0.004332 

181 10185.6 6974.49 0.004358 

196 10254.3 6961.55 0.004321 

211 10134.5 6782.09 0.004259 

226 10264.4 6822.62 0.004231 

241 10237.2 6769.8 0.004209 

256 10256.8 6766.76 0.004199 

 

 

 

Determination of Rate for 0.33 equiv. of substrate- Run 2 [DJK-5-24-2] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 3.0 equiv), 101 (6 mg, 0.033 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.3 equiv) and MsOH (6.5 μL, 0.1 mmol, 3.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.41E-05 M/min 

 

[101] = 0.045 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

y = -2.30E-06x + 4.71E-03 
R² = 8.91E-01 
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Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 9993.4 8446.41 0.047619 

16 10033.9 8251.56 0.046333 

31 10007.2 8158.9 0.045935 

46 9920.41 8172.94 0.046416 

61 9959.23 7992.45 0.045214 

76 9936.76 7928.88 0.044956 

91 10019.5 7933.09 0.044609 

106 9923.51 7837.48 0.044497 

121 10015 7787.27 0.043808 

136 9995.63 7683.35 0.043307 

151 9955.83 7682.62 0.043476 

166 9931.44 7648.62 0.04339 

181 9911.4 7502.03 0.042645 

196 9917.41 7481.08 0.0425 

211 9961.64 7479.11 0.0423 

226 10004.9 7475.35 0.042096 

241 9914.63 7260.81 0.04126 

256 9912.3 7195.83 0.0409 

271 9979.76 7220.15 0.040761 

286 9912.9 7163.52 0.040714 

301 9955.09 7123.25 0.040314 

316 9964.23 7024.42 0.039718 

331 9973.77 7038.52 0.03976 

346 9887.14 6979.61 0.039772 

361 9965.61 6873.82 0.038861 

376 9929.93 6851.09 0.038872 

391 9833.89 6797.05 0.038942 

406 9818.74 6651.6 0.038167 

421 9910.96 6645.56 0.037778 

436 9802.82 6611.23 0.037997 

451 9845.6 6472.2 0.037037 

466 9799.86 6486.67 0.037293 

481 9801.99 6379.07 0.036666 

496 9958.57 6471.34 0.036612 

511 9987.07 6342.19 0.035779 

526 9893.13 6308.6 0.035927 
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Determination of Rate for 0.33 equiv. of substrate- Run 3 [DJK-5-24-3] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 3.0 equiv), 101 (6 mg, 0.033 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.3 equiv) and MsOH (6.5 μL, 0.1 mmol, 3.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.68E-05 M/min 

 

[101] = 0.045 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 9856.83 7077.35 0.047619 

16 9821.55 7012.79 0.047354 

31 9800.34 6837.27 0.046269 

46 9894.93 6774.54 0.045406 

61 9811.66 6697.89 0.045273 

76 9868.1 6637.3 0.044607 

91 9902.04 6677.22 0.044722 

106 9883.71 6593.63 0.044244 

y = -2.41E-05x + 4.70E-02 
R² = 9.21E-01 
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121 9932.07 6621.58 0.044215 

136 9871.09 6595.42 0.044312 

151 9867.38 6372.14 0.042828 

166 9813.94 6246.19 0.04221 

181 9779.49 6326.62 0.042905 

196 9767.99 6172.65 0.04191 

211 9982.19 6196.44 0.041168 

226 9925.37 6203.28 0.04145 

241 9941.44 6070.14 0.040495 

256 9904.36 6061.91 0.040591 

 

 

 

Determination of Rate for 0.6 equiv. of substrate- Run 1 [DJK-5-26-1] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 1.7 equiv), 101 (10.8 mg, 0.06 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.017 equiv) and MsOH (6.5 μL, 0.1 mmol, 1.7 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.53E-05 M/min 

 

[101] = 0.085 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

y = -2.68E-05x + 4.69E-02 
R² = 9.43E-01 
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Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 13257.5 12996.8 0.084921 

16 13179.1 12774.6 0.083965 

31 13211.7 12586.3 0.082524 

46 13149.4 12435.7 0.081922 

61 13228.4 12388.8 0.081126 

76 13248.3 12307.1 0.08047 

91 13199.4 12108.2 0.079463 

106 13221.2 12033.5 0.078842 

121 13163 11812 0.077733 

136 13156.6 11686.5 0.076945 

151 13078.4 11564.1 0.076594 

166 13145.7 11512.4 0.075861 

181 13173 11398.6 0.074956 

196 13142 11329.9 0.07468 

211 13105.6 11097.4 0.07335 

226 13074.4 11109.1 0.073603 

 

 

 

Determination of Rate for 0.6 equiv. of substrate- Run 2 [DJK-5-26-2] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 1.7 equiv), 101 (10.8 mg, 0.06 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.017 equiv) and MsOH (6.5 μL, 0.1 mmol, 1.7 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

y = -5.53E-05x + 8.47E-02 
R² = 9.79E-01 

0.074 

0.076 

0.078 

0.08 

0.082 

0.084 

0.086 

0 50 100 150 200 

C
o

n
ce

n
tr

at
io

n
, M

 

Time, min 

0.6 Substrate - Run 1 

Series1 

Linear (Series1) 



194 

 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.05E-05 M/min 

 

[101] = 0.085 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 11883.6 12266.3 0.084921 

16 11937.4 12366.8 0.085231 

31 11926.4 12172.7 0.08397 

46 11792.9 11919.2 0.083152 

61 11841.9 11758.3 0.08169 

76 11984.6 11798.1 0.080991 

91 11768.8 11521.6 0.080543 

106 11987.7 11600.6 0.079615 

121 11774.5 11380.8 0.07952 

136 11738.5 11220.4 0.07864 

151 11780.7 11168.9 0.077999 

166 11778.4 11109.4 0.077598 

181 11813.1 10967.1 0.076379 

196 11827.6 10720.7 0.074572 

211 11782.3 10807.9 0.075467 

226 11745.1 10505 0.073585 

241 11694.9 10509.6 0.073933 

256 11733.1 10320 0.072363 

271 11677.2 10371.6 0.073073 

286 11805.3 10175.3 0.070912 

301 11815.1 10109.7 0.070396 

316 11668.2 10047 0.07084 

331 11652.6 9793.79 0.069147 

346 11739.6 9817.01 0.068798 

361 11818.6 9856.03 0.068609 

376 11657.3 9648.64 0.068095 

391 11692.5 9552.7 0.067215 

406 11714.4 9670.85 0.067919 

421 11726.2 9443.92 0.066259 

436 11653.9 9323.91 0.065823 

451 11731.4 9207.34 0.06457 

466 11792.9 9198.6 0.064172 
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481 11720.4 9078.99 0.06373 

496 11676.2 8937.52 0.062974 

511 11720.9 8899.81 0.062469 

 

 

 

Determination of Rate for 0.6 equiv. of substrate- Run 3 [DJK-5-26-3]  

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 1.7 equiv), 101 (10.8 mg, 0.06 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.017 equiv) and MsOH (6.5 μL, 0.1 mmol, 1.7 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.12E-05 M/min 

 

[101] = 0.085 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 433.599 424.951 0.084921 

16 435.414 421.24 0.083828 

y = -5.05E-05x + 8.55E-02 
R² = 9.65E-01 
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31 435.183 416.971 0.083023 

46 432.401 411.786 0.082518 

61 432.667 409.197 0.081949 

76 435.503 404.114 0.080404 

91 431.978 398.054 0.079844 

106 428.372 395.296 0.079958 

121 431.857 389.041 0.078058 

136 428.547 384.8 0.077804 

151 432.99 383.905 0.076826 

166 432.059 384.416 0.077094 

181 430.659 378.087 0.076071 

196 430.673 376.276 0.075704 

211 427.165 365.308 0.074101 

226 430.099 369.489 0.074438 

241 431.305 361.696 0.072664 

256 430.016 360.771 0.072696 

 

 

 

Determination of Rate for 2.0 equiv. of substrate- Run 1 [DJK-5-48-1] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 0.5 equiv), 101 (36 mg, 0.2 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.05 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.5 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.11E-04 M/min 

 

y = -5.12E-05x + 8.48E-02 
R² = 9.72E-01 
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[101] = 0.28 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 16554.9 20355.8 0.285714 

16 16540.5 20302 0.285207 

31 16457.9 20034.2 0.282858 

46 16374.6 19828.3 0.281375 

61 16434.3 19713.8 0.278734 

76 16514.2 19758.2 0.27801 

91 16540.2 19749.2 0.277446 

106 16507.2 19520.8 0.274786 

121 16457.1 19297 0.272463 

136 16469.3 19227 0.271273 

151 16376.4 18979.8 0.269304 

166 16452.6 18953 0.267679 

181 16448.4 18747.3 0.264841 

196 16426.5 18753.3 0.265279 

211 16341.3 18499.2 0.263049 

226 16325 18387.9 0.261727 

241 16398.7 18322.6 0.259626 

256 16474.4 18349.2 0.258808 

271 16301 18006.8 0.25668 

286 16400.6 17925.6 0.253971 

301 16495.5 17935.2 0.252645 

316 16406.4 17787.2 0.251921 

331 16371.6 17630.2 0.250228 

346 16354 17542.9 0.249257 

361 16353 17390.3 0.247104 

376 16370.3 17321.7 0.245869 

391 16288.3 17148.4 0.244635 

406 16358.4 17050.3 0.242193 

421 16401.4 17117.6 0.242511 

436 16165 16736.8 0.240584 

451 16314.2 16761.7 0.238739 

466 16288.2 16564 0.236299 

481 16327.1 16613 0.236434 

496 16147.3 16238.8 0.233682 

511 16287.4 16361.5 0.233422 

526 16245.1 16178.2 0.231408 
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Determination of Rate for 2.0 equiv. of substrate- Run 2 [DJK-5-48-2] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 0.5 equiv), 101 (36 mg, 0.2 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.05 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.5 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.17E-04 M/min 

 

[101] = 0.28 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 17650.1 20153.7 0.285714 

16 17810.7 20279.4 0.284904 

31 17467.1 19710.4 0.282357 

46 17486.1 19639.8 0.28104 

61 17727 19738.4 0.278613 

y = -1.11E-04x + 2.86E-01 
R² = 9.93E-01 
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76 17491 19368.8 0.277085 

91 17636.7 19463 0.276132 

106 17575.6 19281.6 0.274509 

121 17517.7 19059.8 0.272249 

136 17341.5 18707.2 0.269927 

151 17749.7 19064.6 0.268758 

166 17512.4 18713.5 0.267383 

181 17608 18642.6 0.264924 

196 17600.4 18561.9 0.263891 

211 17363.4 18067.8 0.260372 

226 17331.1 18015.6 0.260104 

 

 

 

Determination of Rate for 2.0 equiv. of substrate- Run 3 [DJK-5-48-3] 

 

 Following the General Procedure, 56 (25.5 mg, 0.1 mmol, 0.5 equiv), 101 (36 mg, 0.2 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.05 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.5 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.16E-04 M/min 

 

[101] = 0.28 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

y = -1.17E-04x + 2.87E-01 
R² = 9.94E-01 
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Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 18958.3 21815.2 0.285714 

16 18826.9 21599.7 0.284866 

31 18669.7 21211.6 0.282103 

46 18744.3 21140.8 0.280043 

61 18733.9 21129.5 0.280048 

76 18802.1 21011.1 0.277469 

91 18671.9 20685.8 0.275078 

106 18745.3 20750.6 0.274859 

121 18619.1 20293.7 0.270629 

136 18629.1 20323.4 0.27088 

151 18575 20085.2 0.268485 

166 18548.5 20007 0.267821 

181 18648.1 19879.9 0.264699 

196 18658 19844.6 0.264088 

211 18668.9 19701.4 0.26203 

 

 

 

Determination of Rate for 0.3 equiv. of electrophile- Run 1 [DJK-5-34-1] 

 

 Following the General Procedure, 56 (7.6 mg, 0.03 mmol, 0.3 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

y = -1.16E-04x + 2.86E-01 
R² = 9.91E-01 
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NMR spectrometer at room 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. 

Kobs = 6.43E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.042 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 20577.1 22405 0.142857 

16 20451.8 22223.6 0.142569 

31 20632 22108.3 0.14059 

46 20439.7 21790.5 0.139873 

61 20543.8 21580.2 0.137821 

76 20544 21498.4 0.137297 

91 20513.3 21199.4 0.13559 

106 20393.1 21046.7 0.135407 

121 20355.9 20951.5 0.135041 

136 20422.4 20810.9 0.133698 

151 20516.2 20833.3 0.13323 

166 20420 20483.3 0.131609 

181 20357.8 20210 0.13025 

196 20359.4 20316.1 0.130923 

211 20345.2 19920.7 0.128465 

226 20414.4 19900.7 0.127901 

241 20344.7 19739.9 0.127302 

256 20409.1 19867.6 0.127721 
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Determination of Rate for 0.3 equiv. of electrophile- Run 2 [DJK-5-34-2] 

 

 Following the General Procedure, 56 (7.6 mg, 0.03 mmol, 0.3 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.30E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.042 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 19785.3 20881.9 0.142857 

16 19979.1 21021.1 0.142414 

31 19736.8 20538.7 0.140855 

46 19740.7 20508.6 0.14062 

61 20111.2 20733.6 0.139544 

76 19575.2 19967 0.138064 

91 19730.4 20124.8 0.138061 

y = -6.43E-05x + 1.42E-01 
R² = 9.87E-01 
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106 19575 19598.8 0.13552 

121 19689.1 19646.3 0.135061 

136 19554.2 19401 0.134295 

151 19698.1 19378.7 0.13316 

166 19784.3 19467.9 0.13319 

181 19663.9 19074.8 0.1313 

196 19479.9 18792.6 0.130579 

211 19461.9 18875.1 0.131274 

226 19626.3 18781.7 0.12953 

241 19601.2 18774.1 0.129644 

256 19529.4 18360.4 0.127253 

271 19472.4 18230.9 0.126725 

286 19574.7 18191.9 0.125793 

301 19494.8 17933.2 0.124513 

316 19612 18079.1 0.124776 

331 19463.2 17807.1 0.123838 

346 19365.8 17578.2 0.122861 

361 19564.1 17590 0.121697 

376 19560.8 17613 0.121877 

391 19542.6 17303.7 0.119848 

406 19444.6 17112.2 0.119119 

421 19768.3 17625.8 0.120685 

436 19343.4 16921.3 0.118406 

451 19482.6 17013.4 0.1182 

466 19578 16926.9 0.117026 

481 19537.7 16813.5 0.116482 

496 19473.3 16702.3 0.116094 

511 19229.2 16365.2 0.115195 

526 19414.4 16431 0.114555 

541 19352.1 16226.4 0.113493 

556 19312.4 16127.3 0.113032 

571 19464.3 16282.7 0.11323 

586 19464.2 16056.3 0.111656 
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Determination of Rate for 0.3 equiv. of electrophile- Run 3 [DJK-5-34-3] 

 

 Following the General Procedure, 56 (7.6 mg, 0.03 mmol, 0.3 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

7.13E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.042 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 18383.4 21323.6 0.142857 

16 18718.9 21614 0.142207 

31 18368.3 20982.2 0.140685 

46 18225.9 20718.4 0.140002 

61 18280 20513.7 0.138209 

76 18383.7 20495.1 0.137304 

91 18464.1 20464.6 0.136503 

y = -5.30E-05x + 1.42E-01 
R² = 9.87E-01 
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106 18215.4 19905.5 0.134587 

121 18276.6 19804 0.133452 

136 18154.6 19461.7 0.132027 

151 18184.5 19492.8 0.13202 

166 18134.3 19251.8 0.130749 

181 18076.8 19048.7 0.129781 

196 18256.7 19079.8 0.128712 

211 18126.9 18818.6 0.127859 

226 18231.8 18936.8 0.127922 

 

 

 

Determination of Rate for 0.5 equiv. of electrophile- Run 1 [DJK-5-33-1] 

 

 Following the General Procedure, 56 (12.8 mg, 0.05 mmol, 0.5 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

7.22E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.07 M 

[MsOH] = 0.14 M 

 

y = -7.13E-05x + 1.43E-01 
R² = 9.85E-01 
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Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 19863 22121.4 0.142857 

16 19694.2 21807.8 0.142039 

31 19638.1 21692.6 0.141692 

46 19720 21369.2 0.139 

61 19776.3 21240 0.137767 

76 19669.1 21137 0.137846 

91 19658.7 20937.7 0.136618 

106 19629.3 20689.6 0.135201 

121 19548 20462.8 0.134276 

136 19702.6 20354 0.132514 

151 19631.7 20234.2 0.132209 

166 19614.1 20066.1 0.131229 

181 19517.3 19777 0.12998 

196 19564 19670.2 0.128969 

211 19660.8 19599.7 0.127874 

226 19579.3 19392.2 0.127047 

 

 

 

Determination of Rate for 0.5 equiv. of electrophile- Run 2 [DJK-5-33-2] 

 

 Following the General Procedure, 56 (12.8 mg, 0.05 mmol, 0.5 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

y = -7.22E-05x + 1.43E-01 
R² = 9.87E-01 
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NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

7.04E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.07 M 

[MsOH] = 0.14 M 

 

Kinetic Data:  

 

time, min area, IS area, Substrate [Substrate] 

1 14342.6 16649.4 0.142857 

16 14429 16677.6 0.142242 

31 14233.1 16226.6 0.140301 

46 14475.9 16302.7 0.138594 

61 14284.6 16014.9 0.137971 

76 14379.4 15897.5 0.136057 

91 14306.4 15807 0.135972 

106 14331.2 15745.7 0.135211 

121 14135 15334.4 0.133506 

136 14560.9 15768.2 0.133268 

151 14344.5 15457.8 0.132615 

166 14267 15130.4 0.130512 

181 14311 15070.4 0.129594 

196 14249.9 15026.5 0.129771 

211 14415.2 15123.1 0.129107 

226 14310.9 14809.4 0.127351 
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Determination of Rate for 0.5 equiv. of electrophile- Run 3 [DJK-5-33-3] 

 

 Following the General Procedure, 56 (12.8 mg, 0.05 mmol, 0.5 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

7.96E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.07 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19273.8 21606.7 0.142857 

16 19354.2 21560.9 0.141962 

31 19389.8 21212.1 0.139409 

46 19292.2 20934.5 0.138281 

61 19268 20723.8 0.137061 

76 19325.1 20707.1 0.136546 

91 19371 20546.9 0.135168 

y = -7.04E-05x + 1.43E-01 
R² = 9.74E-01 
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106 19396.8 20322.6 0.133515 

121 19209.8 19929 0.132204 

136 19406 20127.3 0.132169 

151 19308.1 19883.8 0.131232 

166 19370.7 19707.7 0.12965 

181 19349.4 19570.2 0.128887 

196 19360.8 19365.4 0.127463 

211 19419.5 19327.3 0.126828 

226 19278.3 19007.6 0.125643 

241 19300.5 18797.4 0.124111 

256 19361.4 18680.5 0.122951 

271 19309.9 18604.3 0.122776 

286 19438.2 18533.8 0.121504 

301 19394.1 18343.2 0.120528 

316 19490.1 18350.5 0.119982 

331 19324.3 17978.6 0.118559 

346 19505.9 18070.1 0.118053 

361 19626.9 18119.3 0.117644 

376 19391.7 17794.7 0.116938 

391 19310 17575.7 0.115988 

406 19409.3 17413.9 0.114332 

421 19220.2 17137.2 0.113622 

436 19402.5 17179.4 0.112832 

451 19488.2 17041.4 0.111433 

466 19364.1 16986.4 0.111785 

481 19374.3 16748.6 0.110162 

496 19489.2 16868.8 0.110299 

511 19418.1 16610 0.109004 

526 19258.9 16362.5 0.108268 

541 19534.6 16388.8 0.106911 

556 19399.4 16224.9 0.10658 

571 19506.6 16159.8 0.105569 

586 19447.8 16063.4 0.105256 
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Determination of Rate for 1.8 equiv. of electrophile- Run 1 [DJK-5-27-1] 

 

 Following the General Procedure, 56 (46 mg, 0.18 mmol, 1.8 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

7.78E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.26 M 

[MsOH] = 0.14  

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19445.7 23603.9 0.142857 

16 19345 23274.1 0.141594 

31 19170.7 22827.2 0.140138 

46 19251 22710.5 0.13884 

61 19235.8 22450.1 0.137357 

76 19221.2 22338.7 0.136779 

91 19294.7 22273.1 0.135858 

y = -7.96E-05x + 1.43E-01 
R² = 9.82E-01 
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106 19341 22090.1 0.134419 

121 19151.3 21761.4 0.13373 

136 19289 21740.5 0.132648 

151 19271.5 21409.8 0.130749 

166 19244.8 21240.1 0.129893 

181 19209.2 21038.2 0.128896 

196 19198.3 20800.3 0.127511 

211 19261.9 20837.3 0.127316 

226 19106.8 20503 0.126291 

241 19208.5 20343.1 0.124642 

256 19147 20268 0.124581 

271 19152.1 19971.5 0.122726 

286 19121.1 19808.5 0.121922 

301 19033.1 19598 0.121184 

316 19150.4 19615.9 0.120551 

331 19267.4 19579.5 0.119597 

346 19302.5 19299.4 0.117672 

361 19186.2 19142 0.117419 

376 19038.1 18842.2 0.11648 

391 19110 18882.8 0.116291 

406 19128.4 18684.9 0.114962 

421 19080.5 18483.1 0.114006 

436 19082.7 18476.7 0.113953 

451 19185.2 18215.7 0.111743 

466 19106.6 18047.3 0.111166 

481 19092.3 17859.6 0.110092 

496 19068.8 17650.1 0.108935 

511 19157.6 17674 0.108576 

 

 

 

y = -7.78E-05x + 1.43E-01 
R² = 9.87E-01 
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Determination of Rate for 1.8 equiv. of electrophile- Run 2 [DJK-5-27-2] 

 

 Following the General Procedure, 56 (46 mg, 0.18 mmol, 1.8 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

7.92E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.26 M 

[MsOH] = 0.14  

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18351.5 21274 0.142857 

16 18046.1 20808.6 0.142097 

31 17982.8 20414.2 0.139894 

46 18299.6 20546.5 0.138363 

61 18111 20105.8 0.136805 

76 18304.6 20209.6 0.136057 

91 18119.8 19698.1 0.133966 

106 18062 19634.9 0.133964 

121 17999.1 19408.3 0.13288 

136 18032.2 19258.5 0.131613 

151 17809.2 18801.6 0.130099 

166 17846.6 18862.8 0.130249 

181 17844.9 18648.2 0.12878 

196 18347.4 18822.8 0.126425 

211 17749.9 18153.3 0.126033 

226 18137.2 18365.5 0.124783 

241 18035.4 18108.9 0.123734 

256 17961.2 18050.3 0.123844 

271 18068.2 17841.5 0.121686 

286 18086.6 17762.2 0.121022 

301 18075.3 17531.2 0.119523 

316 18043.5 17488.4 0.119441 

331 17848.9 17181.3 0.118623 

346 18224.1 17332.1 0.117201 
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361 18116 17047 0.11596 

376 17977.5 16740.2 0.114751 

391 17911.1 16587.7 0.114127 

406 18222.2 16703 0.112958 

421 17929 16392.4 0.112671 

436 18214.3 16340.3 0.110553 

451 18108 16204.8 0.11028 

466 17854.9 15812.3 0.109134 

481 17968.3 15925.2 0.10922 

496 18020.7 15669.4 0.107153 

511 18104.5 15681.8 0.106742 

526 17814.7 15283.4 0.105722 

 

 

 

Determination of Rate for 1.8 equiv. of electrophile- Run 3 [DJK-5-27-3] 

 

 Following the General Procedure, 56 (46 mg, 0.18 mmol, 1.8 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

8.21E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.26 M 

y = -7.92E-05x + 1.42E-01 
R² = 9.77E-01 
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[MsOH] = 0.14  

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 17815.6 21628.9 0.142857 

16 17686.6 21177.4 0.140895 

31 17868.8 21198.9 0.1396 

46 17670.5 20799.4 0.138506 

61 17697.8 20610.7 0.137038 

76 17709.2 20398.1 0.135537 

91 17663.4 20205.7 0.134607 

106 17692.1 19970.3 0.132823 

121 17664.5 19861.2 0.132304 

136 17607.6 19625.5 0.131156 

151 17682.2 19444.5 0.129398 

166 17689.6 19226 0.127891 

181 17691.5 19179.7 0.127569 

196 17753.5 19036.1 0.126172 

211 17692.8 18787.1 0.124949 

226 17594.1 18559 0.124124 

241 17636.4 18347.2 0.122413 

256 17567.6 18266.7 0.122353 

271 17618.3 18050.1 0.120555 

286 17580.2 17895.3 0.11978 

301 17677.3 17760.1 0.118222 

316 17511.9 17619.1 0.118391 

331 17495.9 17456.9 0.117408 

346 17462.1 17192.2 0.115852 

361 17608.3 17109.6 0.114338 

376 17494.4 16867 0.113451 

391 17689.4 16759.6 0.111486 

406 17584.3 16497.7 0.110399 

421 17521.9 16495.3 0.110776 

436 17479.9 16270.6 0.10953 

451 17596.9 16243.8 0.108622 

466 17512.8 16011.8 0.107585 

481 17542.4 15880 0.10652 

496 17552.4 15790.4 0.105858 

511 17575.3 15721.3 0.105258 

526 17498.5 15485 0.104131 

541 17523.2 15280.2 0.102609 

556 17582.9 15194.3 0.101685 

571 17526.4 15045 0.101011 
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586 17561 14997.6 0.100494 

 

 

 

 

Determination of Rate for 3.0 equiv. of electrophile- Run 1 [DJK-5-29-1] 

 

 Following the General Procedure, 56 (76.6 mg, 0.3 mmol, 3.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

8.26E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.42 M 

[MsOH] = 0.14  

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18605.1 19509.4 0.142857 

16 18481.4 19098 0.140781 

31 18469.7 18806.8 0.138722 

y = -8.21E-05x + 1.42E-01 
R² = 9.84E-01 
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46 18214.1 18483.7 0.138252 

61 18402.3 18501.9 0.136973 

76 18297.8 18209.1 0.135575 

91 18469.4 18241.6 0.134555 

106 18456 18069.8 0.133385 

121 18658.4 18113.4 0.132256 

136 18256.8 17580.5 0.131189 

151 18119.8 17385.1 0.130712 

166 18346.3 17330.9 0.128695 

181 18352.5 17342.9 0.128741 

196 18285.1 17048.3 0.12702 

211 18554.4 17153.2 0.125947 

226 18933.8 17366.7 0.12496 

 

 

 

Determination of Rate for 3.0 equiv. of electrophile- Run 2 [DJK-5-29-2] 

 

 Following the General Procedure, 56 (76.6 mg, 0.3 mmol, 3.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

8.58E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.42 M 

y = -8.26E-05x + 1.42E-01 
R² = 9.82E-01 
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[MsOH] = 0.14  

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18060.7 19782.1 0.142857 

16 18220.6 19721 0.141166 

31 18231.3 19568.8 0.139994 

46 18118 19237 0.138481 

61 18227.7 19183 0.137262 

76 18065 18989.7 0.137102 

91 18247.9 18931.3 0.135311 

106 18154.8 18704.1 0.134372 

121 18196 18415 0.131996 

136 18146 18208.8 0.130877 

151 18166.6 18087.9 0.129861 

166 18181.6 17910 0.128478 

181 18159.7 17799.3 0.127838 

196 18107.5 17562.3 0.126499 

211 18277.5 17562.9 0.125327 

226 18203.3 17386.2 0.124571 

241 18342 17326.6 0.123206 

256 18150.7 16957 0.121848 

271 17924.6 16901.2 0.122979 

286 18230.7 16798 0.120176 

301 17946.4 16553.3 0.120302 

316 18128.5 16361.9 0.117716 

331 18133.1 16276.6 0.117073 

346 18174.8 16042.4 0.115123 

361 18080.8 15872.4 0.114496 

376 18202.9 15916.8 0.114046 

391 18185.2 15752.9 0.112981 

406 18199.1 15672.6 0.11232 

421 18085.6 15437.5 0.111329 

436 18135.4 15366 0.110509 

451 18073.3 15116.1 0.109085 

466 18185.1 15063.3 0.108036 

481 18164.4 15020.9 0.107855 

496 18116.7 14784.5 0.106437 

511 18296.9 14803 0.10552 

526 18093.7 14567.5 0.105008 

541 18122 14456.7 0.104046 

556 18149.8 14315 0.102869 

571 18155.3 14187.3 0.10192 
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Determination of Rate for 3.0 equiv. of electrophile- Run 3 [DJK-5-29-3] 

 

 Following the General Procedure, 56 (76.6 mg, 0.3 mmol, 3.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.01 mmol, 0.1 equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

8.06E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.42 M 

[MsOH] = 0.14  

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 15007.5 19915.5 0.142857 

16 14861.2 19527.9 0.141456 

31 14996.9 19408.1 0.139316 

46 14946.9 19151.8 0.137936 

61 15053.5 19182.7 0.13718 

y = -8.58E-05x + 1.43E-01 
R² = 9.79E-01 
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76 15028.8 18944.2 0.135697 

91 15085.7 18894 0.134827 

106 14882.2 18526 0.134009 

121 14957.2 18463 0.132884 

136 15164.9 18517.1 0.131448 

151 14971.4 18077.5 0.129986 

166 14924.6 17946.9 0.129451 

181 15064.5 17890 0.127842 

196 14894.8 17619.6 0.127345 

211 14877.1 17446.3 0.126242 

226 14952.4 17519.6 0.126134 

 

 

 

Determination of Rate for 0.03 equiv. of catalyst- Run 1 [DJK-5-43-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (1.4 mg, 0.01 mmol, 0.03  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.04E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M   

y = -8.06E-05x + 1.42E-01 
R² = 9.75E-01 
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Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 17522.5 21089.3 0.142857 

16 17528.6 20860.1 0.141255 

31 17485.9 20686.1 0.140419 

46 17471.3 20553.7 0.139637 

61 17302.8 20444.8 0.14025 

76 17523 20524.4 0.139027 

91 17461 20486.3 0.139261 

106 17420.1 20493.7 0.139639 

121 17457.3 20301.2 0.138032 

136 17513.5 20240.9 0.137181 

151 17435.2 20236.9 0.137769 

166 17428.5 20172.5 0.137384 

181 17536.4 20242.8 0.137014 

196 17446.1 20202.1 0.137447 

211 17408.1 20027.9 0.136559 

226 17517.4 20167.6 0.136653 

241 17559 20046.9 0.135514 

256 17455.2 19974.5 0.135827 

271 17412.3 19880.4 0.13552 

286 17398 19809.4 0.135147 

301 17384.3 19807.3 0.13524 

316 17544.2 20097.1 0.135968 

331 17261.2 19577.6 0.134625 

346 17398.7 19573.3 0.133531 

361 17359 19494.2 0.133296 

376 17365.8 19476.8 0.133125 

391 17312.2 19426.7 0.133193 

406 17399.9 19466.2 0.132792 

421 17394.5 19308.6 0.131757 

436 17592.8 19664.7 0.132675 

451 17368.7 19232.6 0.131434 

466 17341.2 19196 0.131392 

481 17401.4 19275.9 0.131482 

496 17303.1 19046.4 0.130655 

511 17394 19176.1 0.130857 

526 17436.8 19021.2 0.129481 

541 17381.2 19043.2 0.130046 

556 17423.9 19177.7 0.130643 

571 17287 18943.4 0.130069 

586 17435.9 18942.8 0.128954 

601 17394.7 18873.8 0.128789 



221 

 

616 17433.7 18937 0.128931 

631 17221.3 18648.2 0.128531 

646 17326.4 18676.5 0.127945 

661 17379.6 18652 0.127386 

676 17295.7 18562.9 0.127392 

691 17351.2 18521.6 0.126702 

 

 

 

Determination of Rate for 0.03 equiv. of catalyst- Run 2 [DJK-5-43-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (1.4 mg, 0.01 mmol, 0.03  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.04E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

  

y = -2.04E-05x + 1.41E-01 
R² = 9.72E-01 
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Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 17393.3 22103.9 0.142857 

16 17243.3 21780.9 0.141994 

31 17193.1 21824.6 0.142694 

46 17144.9 21593.9 0.141583 

61 17234.6 21665.1 0.141311 

76 17396.6 21872.6 0.141335 

91 17227.9 21528.1 0.140472 

106 17156.6 21483.6 0.140764 

121 17218.2 21403 0.139734 

136 17135.6 21244.4 0.139367 

151 17518.2 21693.1 0.139203 

166 17415.3 21499.6 0.138776 

181 17310.6 21260.3 0.138061 

196 17205.2 21151.6 0.138197 

211 17159.5 21066.2 0.138006 

226 17355.9 21319.4 0.138084 

241 16978.9 20970.3 0.138839 

256 17161.6 20949.5 0.137224 

271 17134.5 20933.6 0.137337 

286 17216.5 20872 0.136281 

301 17008.4 20597.3 0.136133 

316 17146.1 20787.7 0.136288 

331 17325.3 20931.2 0.135809 

346 17160.2 20577.8 0.134801 

361 17222.5 20693.2 0.135066 

376 17225.4 20513.5 0.133871 

391 17059.1 20369.4 0.134226 

406 17110 20422.2 0.134174 

421 17159.3 20394.3 0.133605 

436 17260.3 20520.5 0.133646 

451 17097.4 20293.6 0.133427 

466 17040.8 20117.3 0.132707 

481 17208.6 20074 0.13113 

496 17157.6 20161.1 0.132091 

511 17088.8 20029.1 0.131754 

526 17087.6 19975 0.131408 

541 17069.7 20082.7 0.132255 

556 17115.9 19968.7 0.131149 

571 17051.4 20002.1 0.131865 

586 17090.9 19791.1 0.130173 

601 17079.4 19705.9 0.1297 

616 17106.5 19782.3 0.129996 
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631 17105.5 19834.4 0.130346 

646 17074.1 19696.1 0.129675 

661 17049 19620.2 0.129366 

676 17150.3 19529 0.128004 

691 17102.2 19563.7 0.128592 

706 17021.9 19346 0.127761 

721 17159.1 19563.6 0.128165 

736 17062.2 19442.7 0.128096 

751 17035.5 19304.3 0.127384 

766 17158.1 19408.4 0.127156 

781 17183.3 19371.8 0.12673 

796 17076.6 19349.6 0.127375 

811 17155.4 19450.2 0.12745 

826 16876.6 19015 0.126656 

841 17038.9 19098.8 0.126003 

856 16942.4 18891.4 0.125344 

 

 

 

Determination of Rate for 0.03 equiv. of catalyst- Run 3 [DJK-5-43-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (1.4 mg, 0.01 mmol, 0.03  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.90E-05 M/min 

 

y = -2.04E-05x + 1.42E-01 
R² = 9.82E-01 
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[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19753.4 22001.6 0.142857 

16 19604.9 21904.2 0.143302 

31 19806.4 21976 0.142309 

46 19746.4 21775.8 0.141441 

61 19817 21834.7 0.141318 

76 19717.5 21713 0.14124 

91 19704.1 21674.9 0.141088 

106 19782.8 21485.5 0.139299 

121 19663.9 21472.9 0.140059 

136 19768.4 21766.5 0.141223 

151 19790.6 21507 0.139383 

166 19829.2 21471 0.138879 

181 19857.8 21405.7 0.138257 

196 19843.2 21530.2 0.139164 

211 19645.7 21237.6 0.138652 

226 19658.6 21164.1 0.138082 

241 19697.5 21266.4 0.138475 

256 19699 21060.6 0.137125 

271 19626.4 20893.2 0.136538 

286 19516 20830.6 0.136899 

301 19568.1 20905.3 0.137024 

316 19598.1 20850.6 0.136456 

331 19594.1 20835.6 0.136386 

346 19654.6 20906.7 0.13643 

361 19674 20793.9 0.13556 

376 19583.5 20663.5 0.135333 

391 19592.4 20645.4 0.135153 

406 19732.8 20776.4 0.135043 

421 19566.3 20625.7 0.135204 

436 19782.5 20753.5 0.134555 

451 19559.3 20538.1 0.134678 

466 19655.2 20490.6 0.133711 

481 19688.5 20516.5 0.133653 

496 19716.7 20442.7 0.132982 

511 19644.9 20265.5 0.132311 

526 19569.2 20269.1 0.132847 
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541 19634 20261.1 0.132356 

556 19696.4 20411.4 0.132915 

571 19568.8 20086.2 0.131651 

586 19633.7 20070.2 0.131111 

601 19721.9 20089 0.130647 

616 19666 20084.6 0.13099 

631 19531.3 19958.5 0.131065 

646 19640 19881.1 0.129834 

661 19543.2 19866 0.130378 

676 19570.4 19791.8 0.129711 

691 19594.4 19824.9 0.129768 

706 19518.7 19701.9 0.129463 

 

 

 

Determination of Rate for 0.05 equiv. of catalyst- Run 1 [DJK-5-36-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (2.3 mg, 0.01 mmol, 0.05  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

3.72E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

y = -1.90E-05x + 1.43E-01 
R² = 9.82E-01 
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[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19390.9 20728.4 0.142857 

16 19437.9 20621 0.141773 

31 19492.6 20474.5 0.140371 

46 19489.5 20460 0.140294 

61 19617.2 20555 0.140028 

76 19646 20311.9 0.138169 

91 19335.5 20034.3 0.138469 

106 19437 19998 0.137496 

121 19337.5 19882.9 0.137408 

136 19368.3 19716.2 0.13604 

151 19414.2 19667.5 0.135383 

166 19432.1 19748.2 0.135813 

181 19456.2 19711.5 0.135393 

196 19408.3 19572.6 0.134771 

211 19623.9 19433.2 0.132341 

226 19514.9 19534.7 0.133775 

241 19418.7 19374 0.133332 

256 19338.4 19277.2 0.133216 

271 19439.6 19278 0.132528 

286 19441.4 19114.3 0.131391 

301 19326.5 18901.4 0.1307 

316 19538.6 19092.3 0.130587 

331 19405 18792 0.129418 

346 19288.3 18683.6 0.12945 

361 19366.2 18733.3 0.129272 

376 19347 18635.9 0.128727 

391 19397.3 18575.2 0.127975 

406 19333.1 18440.1 0.127466 

421 19327 18414.1 0.127327 

436 19424 18302.2 0.125921 

451 19325.3 18198.9 0.12585 

466 19451.5 18246.7 0.125362 

481 19501.3 18352.8 0.125769 

496 19404.2 18050.2 0.124314 

511 19359.6 17945.1 0.123875 

526 19489.4 17914 0.122837 

541 19445.8 17796.6 0.122305 

556 19440.3 17886.3 0.122957 

571 19382.3 17746.9 0.122363 



227 

 

 

 

 

Determination of Rate for 0.05 equiv. of catalyst- Run 2 [DJK-5-36-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (2.3 mg, 0.01 mmol, 0.05  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

3.72E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18509.5 20850.5 0.142857 

16 18454.7 20723.3 0.142407 

31 18155.6 20410.6 0.142569 

46 18596.3 20860 0.142255 

61 18377 20451.9 0.141136 

y = -3.72E-05x + 1.42E-01 
R² = 9.84E-01 
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76 18248.9 20288.8 0.140994 

91 18159.4 20035.2 0.139918 

106 18302.5 20271.9 0.140464 

121 18558.1 20368.2 0.139187 

136 18651.4 20428 0.138898 

151 18330.2 19818.5 0.137115 

166 18126.8 19464.1 0.136174 

181 18244 19708.7 0.136999 

196 18243.1 19561.2 0.135981 

211 18159.2 19409.4 0.135549 

226 18394.1 19569.9 0.134924 

241 18245.7 19390.9 0.134778 

256 18459.8 19421.4 0.133424 

271 18143.2 19279.3 0.134759 

286 18113.8 18968.8 0.132804 

301 18151.2 18766.8 0.131119 

316 18035.8 18638.8 0.131058 

331 18357.6 18854.3 0.130249 

346 18191.9 18611.4 0.129742 

361 18122.5 18438.9 0.129032 

376 17810.3 18055.2 0.128562 

391 17871.2 18168.4 0.128927 

406 18383.9 18781.2 0.129558 

421 18377 18682.7 0.128927 

436 17945.8 18128.3 0.128107 

451 18062.8 18193.1 0.127733 

466 18167.6 18199.8 0.127043 

481 18088 17792.6 0.124747 

496 18170.5 18020.7 0.125772 

511 18238 17815.3 0.123879 

526 18531.6 18273.8 0.125054 

541 18241.7 17680.7 0.122918 

556 18374.8 17858.1 0.123252 

571 18051.4 17424.4 0.122413 

586 18059.4 17492.4 0.122836 
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Determination of Rate for 0.05 equiv. of catalyst- Run 3 [DJK-5-36-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (2.3 mg, 0.01 mmol, 0.05  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

4.07E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19009.1 20905.4 0.142857 

16 18968.1 20752 0.142115 

31 18936.6 20688.7 0.141918 

46 18974.2 20527.1 0.14053 

61 18996.8 20466.7 0.13995 

76 18994.6 20398.1 0.139497 

91 18910.1 20179.3 0.138617 

y = -3.72E-05x + 1.43E-01 
R² = 9.70E-01 
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106 18960 20098.6 0.1377 

121 18960.3 20031.2 0.137236 

136 18886.3 19879.4 0.136729 

151 18945.8 19732.2 0.135291 

166 18939.9 19635.5 0.13467 

181 18766.8 19496.6 0.13495 

196 18794.4 19398.4 0.134073 

211 18920.9 19428.1 0.133381 

226 18892.8 19365.7 0.13315 

241 18893.4 19236.7 0.132259 

256 18832.7 19131.5 0.13196 

271 18856.3 19063.3 0.131325 

286 18891.9 18955.9 0.130339 

301 18795.8 18840.5 0.130208 

316 18770.2 18739.9 0.129689 

331 18670.4 18589.1 0.129333 

346 18771.9 18621.7 0.128859 

361 18641.8 18435.1 0.128458 

376 18654.4 18369.1 0.127912 

391 18805.6 18314.3 0.126505 

406 18868.6 18269.1 0.125772 

421 18860.6 18256.8 0.12574 

436 18853.1 18013.3 0.124113 

451 18840.3 18045 0.124415 

466 18784.6 17953.8 0.124154 

481 18640.5 17815.8 0.124152 

496 18683.9 17687.2 0.122969 

511 18709.4 17634.9 0.122439 

526 18824.5 17687.1 0.12205 

541 18741.3 17465 0.121053 

556 18755.7 17406.4 0.120554 
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Determination of Rate for 0.18 equiv. of catalyst- Run 1 [DJK-5-39-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (8 mg, 0.018 mmol, 0.18  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.50E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 17696.8 21730.4 0.142857 

16 17770.7 21602.1 0.141423 

31 17428.9 20788.7 0.138767 

46 17368.2 20425.4 0.136818 

61 17420.1 19985.1 0.13347 

76 17477.7 19832.9 0.132017 

91 17427.9 19370.6 0.129308 

y = -4.07E-05x + 1.42E-01 
R² = 9.85E-01 
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106 17619.3 19101.5 0.126127 

121 17327.1 18721.6 0.125703 

136 17401.7 18501.1 0.12369 

151 17470.6 18264.2 0.121625 

166 17653.2 17984.8 0.118525 

 

 

 

Determination of Rate for 0.18 equiv. of catalyst- Run 2 [DJK-5-39-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (8 mg, 0.018 mmol, 0.18  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.71E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

  

y = -1.50E-04x + 1.43E-01 
R² = 9.82E-01 
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Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18995.9 20420.1 0.142857 

16 19208.1 20114.4 0.139164 

31 19001.2 19467.9 0.136158 

46 18763.3 19003.4 0.134594 

61 18926.6 18734.1 0.131542 

76 19034.5 18523.6 0.129327 

91 19190 18290.1 0.126662 

106 19117.4 17887.2 0.124342 

121 19141.4 17619.3 0.122326 

136 19031.8 17258.9 0.120514 

151 19046.8 16996.8 0.11859 

166 18883.9 16532.4 0.116345 

 

 

 

Determination of Rate for 0.18 equiv. of catalyst- Run 3 [DJK-5-39-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (8 mg, 0.018 mmol, 0.18  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.38E-04 M/min 

 

y = -1.71E-04x + 1.42E-01 
R² = 9.84E-01 
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[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19088 22538.6 0.142857 

16 18883.6 22120.5 0.141725 

31 18832.2 21603.9 0.138793 

46 18896.3 21325.8 0.136541 

61 19203.5 21345 0.134478 

76 18946 20722.8 0.132332 

91 18920.7 20292.1 0.129755 

106 18898.3 20000.4 0.128042 

121 18888.8 19845.4 0.127113 

136 18930.8 19441.4 0.124249 

151 18862.1 19120.8 0.122645 

166 18977.6 18983.6 0.121024 

 

 

 

Determination of Rate for 0.3 equiv. of catalyst- Run 1 [DJK-5-79-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (13.2 mg, 0.3 mmol, 0.3  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

y = -1.38E-04x + 1.43E-01 
R² = 9.84E-01 
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were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.05E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19078.3 21697.3 0.142857 

16 18989.6 21081.1 0.139448 

31 18886.4 20603.9 0.137036 

46 18918.3 20096.3 0.133435 

61 18953.1 19712.8 0.130648 

76 19027.1 19317.9 0.127533 

91 18856.4 18686.4 0.124481 

106 18937.7 18288.2 0.121305 

121 18972 17884.5 0.118413 

  

 

 

  

y = -2.05E-04x + 1.43E-01 
R² = 9.91E-01 
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Determination of Rate for 0.3 equiv. of catalyst- Run 2 [DJK-5-79-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (13.2 mg, 0.3 mmol, 0.3  equiv) and MsOH (6.5 μL, 0.1 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.04E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19107.6 21243.4 0.142857 
16 18980.5 20801.5 0.140822 
31 18989.7 20256.3 0.137065 
46 18614.1 19484 0.134499 
61 19040.3 19446.4 0.131235 
76 18537.8 18633.6 0.129158 
91 18804.9 18230.4 0.124569 

106 18672.7 17882.2 0.123055 
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Determination of Rate for 0.3 equiv. of catalyst- Run 3 [DJK-5-79-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (13.2 mg, 0.3 mmol, 0.3  equiv) and MsOH (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.93E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 17635.7 20259.8 0.142857 

16 17740 19923.2 0.139658 

31 17606.3 19444.2 0.137335 

46 17479.4 18785.1 0.133643 

61 17329.6 18424.4 0.13221 

76 17397.4 17884.5 0.127836 

91 17494.6 17864.8 0.126985 

y = -2.04E-04x + 1.44E-01 
R² = 9.86E-01 
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106 17642.2 17634.6 0.1243 

121 17119.8 16714.2 0.121408 

 

 

 

Determination of Rate for 0.1 equiv. of acid - Run 1 [DJK-5-59-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH (0.7 μL, 0.01 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.16E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.014 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 627.378 666.39 0.142857 

16 623.49 667.361 0.143957 

31 627.327 660.121 0.141525 

y = -1.93E-04x + 1.43E-01 
R² = 9.76E-01 
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46 618.85 659.277 0.14328 

61 627.972 658.727 0.141081 

76 623.293 658.158 0.142017 

91 621.958 655.155 0.141673 

106 625.505 650.303 0.139826 

121 624.075 650.722 0.140237 

136 623.127 648.864 0.140049 

151 621.72 647.686 0.140111 

166 621.306 645.462 0.139723 

181 626.197 644.926 0.138517 

196 627.882 644.217 0.137993 

211 621.169 638.252 0.138193 

226 623.732 640.212 0.138048 

241 621.689 633.261 0.136997 

256 623.963 634.79 0.136828 

271 615.936 632.762 0.138168 

286 623.924 631.39 0.136103 

301 619.433 626.694 0.13607 

316 617.34 629.259 0.137091 

331 620.466 629.077 0.136361 

346 613.274 622.005 0.136409 

361 622.464 624.745 0.134987 

376 619.61 622.861 0.1352 

391 618.982 618.543 0.134399 

406 619.987 618.123 0.13409 

421 619.418 612.943 0.133088 

436 619.115 615.621 0.133735 

451 621.744 616.133 0.13328 

466 616.497 611.883 0.133487 

481 616.854 609.047 0.132792 

496 619.44 609.228 0.132277 

511 621.426 608.868 0.131776 

526 619.459 607.164 0.131825 

541 621.997 605.456 0.130917 

556 617.626 601.592 0.131002 

571 617.96 598.489 0.130256 

586 617.963 597.603 0.130063 

601 619.541 600.27 0.13031 

616 614.048 594.107 0.130126 

631 616.909 592.507 0.129174 

646 614.421 591.115 0.129392 

661 614.28 589.645 0.1291 

676 618.188 587.988 0.127924 

691 614.95 585.781 0.128114 

706 614.193 585.697 0.128254 
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Determination of Rate for 0.1 equiv. of acid - Run 2 [DJK-5-59-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH (0.7 μL, 0.01 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.92E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.014 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 17787.2 21886.2 0.142857 

16 17983.8 22191.1 0.143264 

31 18084.7 22172.2 0.142343 

46 18025.4 21945.8 0.141353 

61 18151.1 22097.8 0.141347 

76 17879.4 21764.9 0.141333 

91 17956.9 21891.1 0.141539 

y = -2.16E-05x + 1.43E-01 
R² = 9.82E-01 
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106 17882.3 21765.6 0.141314 

121 17834.2 21693.1 0.141224 

136 17645.3 21403.1 0.140827 

151 17846.4 21632.3 0.140731 

166 17892.2 21533 0.139727 

181 17913.5 21543 0.139626 

196 17885.5 21364.3 0.138684 

211 17772.1 21405 0.139835 

226 17845.6 21370.1 0.139032 

241 17842.1 21343.2 0.138884 

256 17757 21170.2 0.138419 

271 17809.4 21152.2 0.137894 

286 17772.5 21229.9 0.138688 

301 17876.8 21185.4 0.13759 

316 17751.5 21033.3 0.137566 

331 17830.1 20991.1 0.136685 

346 17907.1 21049 0.136473 

361 17689 20817.2 0.136634 

376 17800.9 20933.5 0.136533 

391 17690.2 20764.9 0.136281 

406 17656.6 20680 0.135982 

421 17832.6 20738.9 0.135024 

436 17885.8 20792.2 0.134968 

451 17609.7 20474.3 0.134988 

466 17730.1 20633.7 0.135115 

481 17653.9 20478.2 0.134676 

496 17647 20449.4 0.134539 

511 17695.3 20308.5 0.133248 

526 17779 20372.4 0.133037 

541 17619.4 20208.4 0.133162 

556 17592.8 20178.8 0.133168 

571 17691.4 20113.3 0.131996 

586 17678.5 20023.5 0.131502 

601 17835.6 20083.8 0.130737 

616 17695.4 20129.1 0.13207 

631 17636.7 19976.8 0.131507 

646 17513.2 19851.7 0.131605 

661 17556.4 19855.4 0.131305 

676 17771.9 19987.5 0.130576 

691 17648 19813.3 0.130347 

706 17704.3 19800.6 0.129849 

721 17643.4 19725.3 0.129802 
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Determination of Rate for 0.1 equiv. of acid - Run 3 [DJK-5-59-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH (0.7 μL, 0.01 mmol, 0.1 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.85E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.014 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19261.1 22082.3 0.142857 

16 19156.3 21998.2 0.143092 

31 19164.2 21882.2 0.142278 

46 18933.3 21714.1 0.142907 

61 18978.2 21775.5 0.142972 

76 19082.9 21780.3 0.142219 

91 18908.8 21650.4 0.142673 

y = -1.92E-05x + 1.43E-01 
R² = 9.84E-01 
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106 19031.6 21746.7 0.142383 

121 19056.1 21545.6 0.140885 

136 19059.5 21562.3 0.140969 

151 19029 21452.7 0.140477 

166 19019.2 21480.9 0.140734 

181 18823.5 21321.9 0.141145 

196 19087.3 21350.2 0.139379 

211 18915.5 21235.1 0.139886 

226 18882.4 21171.6 0.139712 

241 19071.5 21328.2 0.13935 

256 18866.8 21153.3 0.139707 

271 18865.9 21027.8 0.138885 

286 18827.8 20923.5 0.138476 

301 18885.8 20996.1 0.138529 

316 18916 20939.5 0.137935 

331 19005.6 21026.4 0.137855 

346 19000.8 20884.2 0.136957 

361 18890.3 20721.7 0.136686 

376 18922.2 20905.1 0.137664 

391 18745.1 20586.2 0.136844 

406 18856.6 20688 0.136708 

421 18872.7 20548.8 0.135672 

436 18817.6 20476 0.135587 

451 18789.7 20440.3 0.135552 

466 18700 20341.7 0.135545 

481 18754.2 20339.3 0.135138 

496 18903.1 20458.6 0.13486 

511 18739.2 20224.7 0.134484 

526 18733.7 20097.5 0.133677 

541 18862.7 20218 0.133559 

556 18865.2 20176.5 0.133267 

571 18887.4 20154.6 0.132966 

586 18824.8 20021.9 0.13253 

601 18783 19915.8 0.132121 

616 18705.6 19850.6 0.132233 

631 18742 19822.7 0.131791 

646 18866.8 20001.7 0.132101 

661 18675.2 19728.5 0.131634 

676 18856.4 19714.1 0.130274 

691 18735.3 19770.4 0.13149 

706 18671.2 19560.2 0.130539 
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Determination of Rate for 0.2 equiv. of acid - Run 1 [DJK-5-56-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH (1.3 μL, 0.02 mmol, 0.2 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

3.87E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.028 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18989.4 21949.5 0.142857 

16 19132.4 22082.6 0.142649 

31 18808.5 21675.7 0.142432 

46 19085.5 21813.6 0.141258 

61 19028.4 21729.8 0.141137 

76 18921.9 21409.9 0.139842 

91 19005.1 21428.2 0.139349 

y = -1.85E-05x + 1.44E-01 
R² = 9.85E-01 
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106 18973.3 21365.3 0.139173 

121 18849.8 21158.5 0.138729 

136 18881.7 21148.7 0.13843 

151 18941.1 21040.2 0.137288 

166 18744.6 20809.6 0.137207 

181 18890.7 20833.6 0.136303 

196 18873.4 20713 0.135638 

211 18833.6 20514.3 0.134621 

226 18859.8 20589.6 0.134927 

241 18858.7 20464.8 0.134117 

256 18896.8 20280.9 0.132644 

271 18846.9 20172.2 0.132282 

286 18815.5 20075 0.131865 

301 18739.4 20014.9 0.132004 

316 18649 19874.3 0.131712 

331 18821.3 19782.9 0.129906 

346 18777.1 19695.5 0.129636 

361 18810.3 19664.7 0.129205 

376 18765.2 19570.4 0.128895 

391 18917.7 19479 0.127259 

406 18761.5 19375.2 0.127634 

421 18757.2 19292.3 0.127117 

436 18803.5 19254.8 0.126558 

451 18723.8 19013.8 0.125506 

466 18826.1 19096 0.125363 

481 18696.5 18860.7 0.124677 

496 18685.7 18856.7 0.124723 

511 18745.6 18829.2 0.124143 

526 18725.6 18615.3 0.122863 

541 18764.8 18605.4 0.122542 

556 18645.5 18347.8 0.121618 

571 18817.6 18363.6 0.12061 

586 18813.5 18276.8 0.120066 

601 18759.2 18185.6 0.119812 

616 18676.5 18187.3 0.120354 

631 18735.1 18004.7 0.118773 

646 18577 17815.8 0.118527 

661 18772.9 17817 0.117298 

676 18778.2 17764.8 0.116922 

691 18668.2 17522.5 0.116006 

706 18731.9 17611.5 0.116199 

721 18714.2 17416.3 0.11502 

736 18765.2 17369.9 0.114402 

751 18685.4 17283.4 0.114318 

766 18755.7 17248.7 0.113661 

781 18650.1 16925.1 0.11216 
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Determination of Rate for 0.2 equiv. of acid - Run 2 [DJK-5-56-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH (1.3 μL, 0.02 mmol, 0.2 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

3.31E-05 M/min 

 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.028 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18590.2 22080.8 0.142857 

16 18453.5 21978.6 0.143249 

31 18332 21864.7 0.143451 

46 18359.6 21731.2 0.142361 

y = -3.87E-05x + 1.43E-01 
R² = 9.87E-01 
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61 18364.9 21634.9 0.141689 

76 18306.9 21568.2 0.1417 

91 18420.1 21506.3 0.140425 

106 18236.8 21389.5 0.141066 

121 18362.3 21315.7 0.139619 

136 18333.3 21155.3 0.138787 

151 18365.2 21122.7 0.138333 

166 18282.3 21056 0.138521 

181 18429.6 21044.6 0.13734 

196 18273.1 20795.1 0.136874 

211 18348.7 20768.5 0.136135 

226 18282.3 20766.4 0.136616 

241 18309.5 20603.7 0.135344 

256 18366 20541 0.134517 

271 18138.2 20286.9 0.134522 

286 18182.5 20308.1 0.134334 

301 18249 20400 0.13445 

316 18183.2 20187.2 0.133529 

331 18299.1 20131.9 0.13232 

346 18117.6 19879 0.131967 

361 18259.9 19985.3 0.131639 

376 18131 19811 0.131418 

391 18242.2 19860.3 0.130942 

406 18118.9 19664.1 0.130531 

421 18221.1 19605.1 0.129409 

436 18300.4 19664.9 0.129242 

451 18201.3 19461.4 0.128601 

466 18242.5 19403.2 0.127926 

481 18264.9 19135.8 0.126009 

496 18207.2 19198.7 0.126824 

511 18213.7 19130.9 0.126331 

526 18165.6 19105.7 0.126498 

541 18218 19034 0.125661 

556 18140.5 18980.2 0.125841 

571 18063.2 18832.5 0.125396 

586 18155.6 18762.6 0.124295 

601 18074.4 18788.7 0.125027 

616 18084.7 18543.8 0.123327 

631 18125.6 18446.6 0.122404 

646 18002.3 18413 0.123018 

661 18255.4 18407.6 0.121277 

676 18063.5 18291.5 0.121792 

691 18133.8 18238.9 0.120971 

706 18160.9 18130.2 0.120071 
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Determination of Rate for 0.2 equiv. of acid - Run 3 [DJK-5-56-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH (1.3 μL, 0.02 mmol, 0.2 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

3.62E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.028 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 16700.8 19326.7 0.142857 

16 16585.2 19183.5 0.142787 

31 16644.4 19277.8 0.142979 

46 16664.8 19300.1 0.142969 

61 16618.4 18995.9 0.141108 

76 16741.2 18954.4 0.139767 

91 16682.3 18944 0.140184 

y = -3.31E-05x + 1.44E-01 
R² = 9.83E-01 
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106 16621.9 18806.9 0.139675 

121 16763.2 18903.9 0.139212 

136 16579.5 18603.6 0.138518 

151 16643.9 18573 0.137755 

166 16524.5 18465 0.137944 

181 16710 18380.6 0.135789 

196 16591.8 18360.7 0.136608 

211 16447.8 18132.6 0.136092 

226 16578.1 18106.1 0.134825 

241 16633.8 18047.4 0.133938 

256 16547.2 17957.1 0.133966 

271 16599.7 17926.9 0.133317 

286 16569.7 17827.7 0.13282 

301 16614.6 17742.4 0.131827 

316 16517.7 17683.4 0.132159 

331 16461.9 17553 0.131629 

346 16498.5 17581.4 0.13155 

361 16481 17534.3 0.131337 

376 16458.7 17349.4 0.130128 

391 16588 17374.4 0.1293 

406 16459.5 17182.7 0.128871 

421 16518.9 17161.1 0.128247 

436 16520.5 17055.5 0.127445 

451 16498.9 16978.8 0.127038 

466 16545.7 16802.7 0.125365 

481 16612.5 16910.3 0.12566 

496 16497.2 16706.3 0.125012 

511 16423.3 16708.7 0.125593 

526 16500.4 16553.6 0.123845 

541 16505.9 16584.5 0.124035 

556 16401 16439.5 0.123737 

571 16463.6 16406.5 0.123019 

586 16543.5 16400.2 0.122378 
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Determination of Rate for 0.35 equiv. of acid - Run 1 [DJK-5-61-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (2.2 μL, 0.035 mmol, 0.35 

equiv) were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into 

an NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.87E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.05 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 17621.8 20620.4 0.142857 

16 17504.6 20335.1 0.141824 

31 17596.9 20350.1 0.141184 

46 17526.4 20171.5 0.140508 

61 17526.3 20031.4 0.139533 

76 17512.6 20027.4 0.139614 

91 17349.8 19570.6 0.13771 

y = -3.62E-05x + 1.43E-01 
R² = 9.81E-01 
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106 17390.9 19587.3 0.137502 

121 17346.5 19417.6 0.136659 

136 17259.6 19101.3 0.13511 

151 17419.9 19177.3 0.134399 

166 17131.7 18814.9 0.134078 

181 17384.4 18842.3 0.132321 

196 17274.9 18665.5 0.13191 

211 17337.1 18569.7 0.130763 

226 17283.4 18326.7 0.129452 

241 17251 18245.4 0.12912 

256 17177.9 18090.7 0.12857 

271 17289.3 18073.6 0.127621 

286 17143.6 17757.7 0.126456 

301 17454.7 17938.4 0.125466 

316 17243.8 17683.7 0.125197 

331 17260 17542.9 0.124084 

346 17228.5 17325.9 0.122773 

361 17252.7 17227.8 0.121907 

376 17046.8 16931.9 0.12126 

391 17057.7 16869.4 0.120735 

406 17243.7 16818.8 0.119075 

421 17077.4 16656.6 0.119075 

436 17103.8 16431.3 0.117283 

451 17088.3 16405.4 0.117204 

466 17099.9 16252.8 0.116035 

481 17173.3 16260.3 0.115593 

496 17220.3 16134.9 0.114388 

511 17126.8 15862.5 0.113071 

526 17017.8 15823.5 0.113515 

541 17155.6 15723.8 0.111894 

556 17239 15731.3 0.111406 

571 16991.3 15361.8 0.110375 

586 17132.7 15328.9 0.10923 

601 17280.1 15423.8 0.108968 
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Determination of Rate for 0.35 equiv. of acid - Run 2 [DJK-5-61-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (2.2 μL, 0.035 mmol, 0.35 

equiv) were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into 

an NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

6.18E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.05 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19532.9 22364.4 0.142857 

16 19865.1 22686.6 0.142492 

31 19604.2 22291.3 0.141872 

46 19498.9 22224.3 0.14221 

61 19505.3 22121 0.141502 

76 19793.3 22353.2 0.140907 

91 19489.3 22058 0.141215 

y = -5.87E-05x + 1.43E-01 
R² = 9.84E-01 
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106 19332.2 21803 0.140717 

121 19327.1 21876 0.141225 

136 19425.6 21710.7 0.139448 

151 19501.3 21825.3 0.139639 

166 19519.5 21673 0.138536 

181 19373.7 21561.9 0.138863 

196 19475.1 21709.3 0.139084 

211 19618.7 21913 0.139362 

226 19254.9 21401 0.138677 

241 19452.1 21465.3 0.137684 

256 19571.7 21513.4 0.137149 

271 19390.1 21261.5 0.136812 

286 19269.3 21199.7 0.13727 

301 19442.4 21124 0.135562 

316 19314.7 21200.6 0.136953 

331 19439.7 21191.5 0.136014 

346 19310.6 20906.6 0.135082 

361 19546.7 21065.7 0.134466 

376 19443.9 21081 0.135276 

391 19360.3 20899.7 0.134691 

406 19194.6 20687.7 0.134476 

421 19249.5 20807.9 0.134872 

436 19252.6 20709.2 0.13421 

451 19227.5 20699.3 0.134321 

466 19153.1 20500 0.133545 

481 19289.4 20623.1 0.133397 

496 19301.4 20521.3 0.132656 

511 19385.9 20642.7 0.132859 

526 19249.9 20406.4 0.132266 

541 19190.9 20275.9 0.131825 

556 19386.6 20447.4 0.131598 

571 19214.4 20292.9 0.131774 

586 19277.1 20237 0.130983 
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Determination of Rate for 0.35 equiv. of acid - Run 3 [DJK-5-61-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (2.2 μL, 0.035 mmol, 0.35 

equiv) were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into 

an NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

6.23E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.05 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19398.7 23024 0.142857 

16 19619.6 23054.8 0.141438 

31 19541.3 22783.8 0.140335 

46 19505.9 22719.6 0.140194 

61 19355.2 22395.9 0.139272 

76 19682.2 22635.8 0.138425 

91 19462.1 22188.9 0.137227 

y = -6.18E-05x + 1.42E-01 
R² = 9.84E-01 
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106 19263.5 21723.2 0.135732 

121 19322.8 21687.7 0.135094 

136 19270.1 21456 0.134017 

151 19113.4 21280.9 0.134013 

166 19179.9 21146.5 0.132705 

181 19430.5 21271.1 0.131765 

196 19572.6 21087.7 0.12968 

211 19361.9 20821.1 0.129434 

226 19376.2 20690.6 0.128528 

241 19340.8 20416.1 0.127055 

256 19323.7 20246.9 0.126114 

271 19214.3 20043.9 0.12556 

286 19234.3 19981.8 0.125041 

301 19118.9 19587.8 0.123315 

316 19292.9 19557.9 0.122016 

331 19154.1 19454.1 0.122248 

346 19220.1 19474.4 0.121956 

361 19190 19104.2 0.119825 

376 19158.8 19068.6 0.119797 

391 19127.6 18926.7 0.119099 

406 19040.9 18625.3 0.117736 

421 19306.1 18800.2 0.117209 

436 19387.4 18739.2 0.116339 

451 19188.5 18342.4 0.115056 

466 19143.4 18331.1 0.115256 

481 19104.6 18072.4 0.11386 

496 19244.2 18061.9 0.112969 

511 19108 17783.8 0.112022 

526 19219.4 17705.7 0.110884 

541 19268.2 17685.9 0.110479 

556 19179.1 17437.8 0.109435 

 



256 

 

 

 

Determination of Rate for 0.6 equiv. of acid - Run 1 [DJK-5-68-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (3.9 μL, 0.06 mmol, 0.6 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

8.65E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.085 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18121.2 18480.9 0.142857 

16 18084.7 18422.3 0.142692 

31 18147.7 18200.3 0.140483 

46 18085.7 17973 0.139204 

61 18175 17930.1 0.138189 

76 18074.2 17721.5 0.137343 

91 18051.4 17496.2 0.135768 

y = -6.23E-05x + 1.43E-01 
R² = 9.84E-01 
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106 18048 17258.7 0.133951 

121 18050 17127.2 0.132915 

136 18030.4 17034.8 0.132342 

151 17927.2 16663.4 0.130202 

166 17958.6 16472.5 0.128485 

181 18057.7 16567.3 0.128515 

196 18035.6 16304.2 0.126629 

211 17919.1 16121.4 0.126024 

 

 

 

Determination of Rate for 0.6 equiv. of acid - Run 2 [DJK-5-68-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (3.9 μL, 0.06 mmol, 0.6 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

7.79E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.085 M 

 

  

y = -8.65E-05x + 1.43E-01 
R² = 9.87E-01 
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Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18908.7 21360.4 0.142857 

16 18977 21259.7 0.141672 

31 19027.3 20921.9 0.139052 

46 19021.5 20786.2 0.138193 

61 19065.6 20716.1 0.137408 

76 18866.5 20319.5 0.1362 

91 18865.1 20150.4 0.135076 

106 18992.4 20114.5 0.133932 

121 18833.9 19850.1 0.133284 

136 18953.5 19562.5 0.130524 

151 18807.9 19340.1 0.130039 

166 18898.3 19319.4 0.129278 

181 18826.8 18973 0.127442 

196 18769.7 18904.5 0.127369 

211 18971.1 18709.3 0.124715 

226 18819.4 18540.2 0.124584 

241 18710 18424.2 0.124529 

256 18830.1 18299 0.122894 

 

 

 

Determination of Rate for 0.6 equiv. of acid - Run 3 [DJK-5-68-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (3.9 μL, 0.06 mmol, 0.6 equiv) 

y = -7.79E-05x + 1.42E-01 
R² = 9.79E-01 
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were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

8.11E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.085 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 15095.7 18451.9 0.142857 

16 15253.6 18229.2 0.139672 

31 15253.7 18086.7 0.138579 

46 15417.1 18021.2 0.136614 

61 15213.1 17770.8 0.136522 

76 15144.6 17579.8 0.135666 

91 15395.7 17513.4 0.132949 

106 15202.6 17250.2 0.132614 

121 15100 16957.2 0.131248 

136 15194.1 16953.8 0.130409 

151 14938.4 16553.4 0.129508 

166 15066.2 16533.8 0.128258 

181 15053.3 16375.1 0.127135 

196 15015.8 16232.8 0.126345 

211 14923.1 15912.5 0.124622 

226 15005.5 15808.1 0.123124 
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Determination of Rate for 1.8 equiv. of acid - Run 1 [DJK-5-54-1] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (11.7 μL, 0.18 mmol, 1.8 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.80E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.26 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 19053.2 21171.4 0.142857 

16 19263.7 21096.3 0.140795 

31 19437.3 21305.6 0.140922 

46 19110.6 20753.6 0.139617 

61 19247.1 20686.4 0.138178 

76 19372.3 20795.3 0.138008 

91 19121.6 20365.2 0.136926 

y = -8.11E-05x + 1.41E-01 
R² = 9.80E-01 
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106 19211.7 20294.1 0.135808 

121 19270.6 20198.7 0.134756 

136 18852.8 19627.4 0.133847 

151 19284.6 20068.2 0.133788 

166 18881.1 19462.8 0.132525 

181 18866.7 19440.4 0.132474 

196 19128.4 19522.6 0.131214 

211 19188.3 19491.5 0.130596 

226 19352.4 19710.9 0.130946 

241 18965.1 18963.5 0.128553 

256 19021 18939.3 0.128012 

271 19041.3 18806.3 0.126978 

286 19064 18730 0.126312 

301 19068.6 18590.8 0.125343 

316 19050 18380.4 0.124045 

331 19043.5 18351.7 0.123894 

346 19088.8 18069.9 0.121702 

361 18896.7 17771.2 0.120907 

376 18986.7 17971 0.121687 

391 19042.3 17783.9 0.120068 

406 19034.5 17542.4 0.118486 

421 19131.3 17572.4 0.118088 

436 18915 17299.9 0.117587 

451 18978.3 17207.5 0.116568 

466 19009.8 16920.9 0.114437 

481 18998.8 16971.3 0.114844 

496 18989.5 16621.3 0.112531 

511 18968.1 16626.5 0.112693 

526 18926.6 16446.6 0.111718 

541 18886.5 16179.8 0.110139 

556 18788.7 15992.9 0.109434 

571 18855.9 15964.9 0.108853 

586 18893.8 15852.7 0.107871 
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Determination of Rate for 1.8 equiv. of acid - Run 2 [DJK-5-54-2] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (11.7 μL, 0.18 mmol, 1.8 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.85E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.26 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 18016 20748.4 0.142857 

16 17926.9 20445.4 0.141471 

31 17834.5 20196.2 0.14047 

46 17921.4 20188 0.139732 

61 17854.6 19950.6 0.138606 

76 18081.8 20386 0.139851 

91 17902.1 19793.2 0.137147 

y = -5.80E-05x + 1.42E-01 
R² = 9.80E-01 
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106 17798.9 19569.1 0.136381 

121 17852.6 19510.4 0.135563 

136 17854.6 19281.5 0.133957 

151 17658.2 19071.4 0.133971 

166 17725.9 19037.4 0.133222 

181 17833.3 18851.2 0.131124 

196 17794.1 18855.5 0.131443 

211 17791.5 18725.8 0.130558 

226 17706 18389.2 0.12883 

241 17772 18425.8 0.128607 

256 17764.8 18250.1 0.127433 

 

 

 

Determination of Rate for 1.8 equiv. of acid - Run 3 [DJK-5-54-3] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (11.7 μL, 0.18 mmol, 1.8 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 0 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

5.19E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.26 M 

y = -5.85E-05x + 1.42E-01 
R² = 9.80E-01 
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Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 16601.5 17900.1 0.142857 

16 16444 17590.9 0.141734 

31 16549.9 17659.4 0.141376 

46 16543.6 17434.1 0.139625 

61 16678.4 17489.2 0.138934 

76 16569.1 17257.8 0.138 

91 16476 17224.5 0.138512 

106 16426.9 16964 0.136825 

121 16389.9 16827 0.136027 

136 16672.5 17104.7 0.135928 

151 16549.7 16861.7 0.134991 

166 16436.6 16597.2 0.133788 

181 16400.6 16478.9 0.133126 

196 16461.4 16374.5 0.131794 

211 16404.3 16441.3 0.132792 

226 16463.9 16243.6 0.13072 

 

 

 

Determination of Rate at 10 
o
C - Run 1 [DJK-11-56] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

y = -5.19E-05x + 1.42E-01 
R² = 9.83E-01 
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were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 10 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.69E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 2559.74 3354.43 0.140476 

16 2571.18 3308.79 0.137948 

31 2543.22 3232.63 0.136255 

46 2529.03 3153.45 0.133663 

61 2532.07 3078.15 0.130315 

76 2508.46 2984.49 0.127539 

91 2492.61 2914.93 0.125358 

106 2488.31 2857.75 0.123112 

121 2487.11 2795.62 0.120493 

136 2474.38 2728.95 0.118225 

151 2468.5 2654.88 0.11529 

166 2468.76 2604.86 0.113106 

181 2472.42 2539.98 0.110126 

196 2467.17 2477.84 0.10766 

211 2457.99 2422.17 0.105634 

226 2499.78 2399.79 0.102909 

241 2489.23 2336.73 0.100629 

256 2471.02 2284.59 0.099109 

271 2482.83 2231.52 0.096346 

286 2477.38 2184.11 0.094507 
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Determination of Rate at 10 
o
C - Run 2 [DJK-11-57] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 10 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.71E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 2558.85 3354.59 0.142063 

16 2569.87 3308.73 0.139521 

31 2541.85 3232.96 0.137828 

46 2527.21 3153.2 0.135207 

61 2530.53 3078.32 0.131823 

76 2506.99 2984.56 0.129008 

91 2490.83 2915.02 0.126819 

y = -1.69E-04x + 1.41E-01 
R² = 9.96E-01 
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106 2485.98 2857.4 0.124555 

121 2485.79 2795.54 0.121868 

136 2472.38 2728.46 0.119589 

151 2466.55 2654.34 0.116615 

166 2467.25 2604.34 0.114386 

181 2470.3 2539.66 0.111407 

196 2465.64 2477.34 0.108879 

211 2456.4 2421.76 0.106837 

226 2497.99 2399.64 0.104098 

241 2487.62 2336.39 0.101777 

256 2469 2284.25 0.100256 

271 2480.55 2230.93 0.09746 

286 2475.34 2183.03 0.095568 

 

 

 

Determination of Rate at 10 
o
C - Run 3 [DJK-11-58] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 10 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

1.91E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

y = -1.71E-04x + 1.43E-01 
R² = 9.95E-01 
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[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 2632.63 3389.63 0.140476 

16 2669.72 3357.12 0.137196 

31 2664.27 3277.61 0.134221 

46 2667.96 3198.62 0.130805 

61 2658.73 3125.25 0.128248 

76 2649.64 3047.51 0.125487 

91 2660.1 2978.35 0.122157 

106 2654.94 2911.53 0.119648 

121 2649.79 2840.85 0.116971 

136 2656.62 2785.71 0.114405 

151 2633.86 2727.25 0.112972 

166 2646.5 2658.12 0.109583 

181 2629.75 2587.83 0.107365 

196 2627.55 2528.64 0.104997 

211 2620.84 2480.77 0.103273 

226 2631.92 2431.46 0.100794 

241 2622.41 2368.77 0.098551 

256 2644.87 2327.53 0.096013 

271 2628.87 2260.78 0.093827 

286 2630.9 2215.19 0.091864 

301 2637.68 2157.74 0.089252 

316 2635.36 2119.19 0.087734 

331 2622.84 2067 0.085982 

346 2618.82 2011.07 0.083784 

361 2610.2 1967.17 0.082226 

376 2590.29 1913.78 0.080609 

391 2594.44 1865.7 0.078458 

406 2580.81 1823.22 0.077077 

421 2575.34 1780.13 0.075415 

436 2563.59 1738.65 0.073995 

451 2561.28 1685.78 0.07181 

466 2562.64 1661.87 0.070754 

481 2551.46 1609.84 0.068839 
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Determination of Rate at 20 
o
C - Run 1 [DJK-11-53] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at 20 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.45E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 14353.4 15176.3 0.134921 

16 14328.3 14807.1 0.131869 

31 14251.9 14313.2 0.128154 

46 14252.9 13885.2 0.124313 

61 14138.8 13383.7 0.12079 

76 14124.8 12982.9 0.117289 

91 14107.4 12570 0.113699 

y = -1.91E-04x + 1.40E-01 
R² = 9.97E-01 
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106 14007.3 12178.6 0.110946 

121 14013.1 11779.8 0.107268 

136 14004 11418.2 0.104043 

151 13967.1 11067.5 0.101114 

166 13877.9 10705 0.098431 

181 13892.8 10435.1 0.095846 

196 13941.7 10121.2 0.092637 

211 13882.7 9813.19 0.090199 

226 13887.1 9526.65 0.087538 

241 13864.6 9245.34 0.085091 

256 13884.8 8969.75 0.082434 

271 13859 8711.64 0.080211 

286 13882.3 8462.98 0.077791 

301 13813.6 8202.65 0.075773 

316 13818.3 8005.72 0.073929 

331 13783.3 7743.26 0.071687 

346 13775.8 7513.42 0.069597 

361 13774.7 7317.23 0.067785 

376 13751.1 7091.38 0.065805 

391 13769.3 6937.72 0.064294 

406 13812.3 6741.33 0.06228 

421 13776.9 6554.02 0.060705 

436 13682.1 6320.11 0.058944 

451 13682.9 6138.33 0.057245 

466 13460.8 5870.27 0.055649 

481 13429.3 5684.86 0.054017 

496 13405.7 5509.02 0.052439 

511 13409.6 5385.85 0.051251 

526 13370 5204.31 0.049671 

541 13378.6 5032.66 0.048001 
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Determination of Rate at 20 
o
C - Run 2 [DJK-11-54] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at  20 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.67E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 11378 13502.4 0.137302 

16 11276.8 13044.4 0.133835 

31 11374.6 12739.4 0.129582 

46 11225 12183.7 0.125581 

61 11169.1 11751.5 0.121732 

76 11184.6 11410.8 0.118039 

 

y = -2.45E-04x + 1.36E-01 
R² = 9.99E-01 
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Determination of Rate at 20 
o
C - Run 3 [DJK-11-55] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at  20 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.54E-04 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 14353.4 15176.3 0.140476 

16 14328.3 14807.1 0.137299 

31 14251.9 14313.2 0.133431 

46 14252.9 13885.2 0.129432 

61 14138.8 13383.7 0.125764 

76 14124.8 12982.9 0.122118 

91 14107.4 12570 0.11838 

y = -2.67E-04x + 1.38E-01 
R² = 9.99E-01 
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106 14007.3 12178.6 0.115514 

121 14013.1 11779.8 0.111685 

136 14004 11418.2 0.108327 

151 13967.1 11067.5 0.105277 

166 13877.9 10705 0.102484 

181 13892.8 10435.1 0.099793 

196 13941.7 10121.2 0.096451 

211 13882.7 9813.19 0.093913 

226 13887.1 9526.65 0.091142 

241 13864.6 9245.34 0.088595 

256 13884.8 8969.75 0.085829 

271 13859 8711.64 0.083514 

286 13882.3 8462.98 0.080994 

301 13813.6 8202.65 0.078893 

316 13818.3 8005.72 0.076973 

331 13783.3 7743.26 0.074638 

346 13775.8 7513.42 0.072462 

361 13774.7 7317.23 0.070576 

376 13751.1 7091.38 0.068515 

391 13769.3 6937.72 0.066942 

406 13812.3 6741.33 0.064844 

421 13776.9 6554.02 0.063204 

436 13682.1 6320.11 0.061371 

451 13682.9 6138.33 0.059602 

466 13460.8 5870.27 0.05794 

481 13429.3 5684.86 0.056242 

496 13405.7 5509.02 0.054598 

511 13409.6 5385.85 0.053362 

526 13370 5204.31 0.051716 

541 13378.6 5032.66 0.049978 
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Determination of Rate at -20 
o
C - Run 1 [DJK-11-59] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at  -20 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.66E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 3072.85 3278.18 0.140872 

16 3201.49 3330.23 0.13852 

31 3199.57 3269.13 0.13606 

46 3189.11 3237.39 0.135181 

61 3144.89 3249.5 0.137595 

76 3127.28 3241.89 0.138046 

91 3124.69 3210.11 0.136806 

y = -2.55E-04x + 1.41E-01 
R² = 9.99E-01 
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106 3123.43 3215.04 0.137071 

121 3120.54 3191.67 0.136201 

136 3116.21 3172.01 0.13555 

151 3120.83 3156.89 0.134704 

166 3117.93 3141 0.134151 

181 3117.13 3152.31 0.134668 

196 3103.8 3137.9 0.134628 

211 3110.64 3115.08 0.133355 

226 3123.45 3111.12 0.13264 

241 3103.81 3096.87 0.132868 

256 3118.69 3077.45 0.131404 

271 3106.48 3073.1 0.131734 

286 3118.99 3050.78 0.130253 

301 3116.97 3046.42 0.130151 

316 3108.74 3051.92 0.130731 

331 3119.85 3024.05 0.129076 

346 3106.33 3030.07 0.129896 

361 3106.64 3023.3 0.129593 

376 3113.74 3010.44 0.128747 

391 3113.87 2986.74 0.127729 

406 3114.37 2976.37 0.127265 

421 3104.63 2973.27 0.127531 

436 3110.26 2966.8 0.127023 

451 3112.94 2971.07 0.127096 

466 3106.91 2941.07 0.126057 

481 3104.05 2947.18 0.126435 

496 3115.18 2923.1 0.124954 

511 3106.99 2926.53 0.125431 

526 3111.69 2914.94 0.124745 

541 3119.34 2909.71 0.124216 

556 3102 2881.13 0.123684 

571 3112.39 2891.51 0.123715 

586 3092.53 2880.81 0.124049 

601 797.858 714.839 0.119309 
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Determination of Rate at -20 
o
C - Run 2 [DJK-11-60] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at  -20 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.16E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 3000.29 2245.43 0.142063 

16 3074.59 2355.43 0.145422 

31 3050.52 2362.15 0.146987 

46 3014.57 2389.47 0.15046 

61 3009.69 2348.89 0.148145 

76 2999.84 2282.54 0.144433 

91 3049.22 2280.68 0.141978 

y = -2.66E-05x + 1.39E-01 
R² = 9.78E-01 
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106 3062.9 2274.73 0.140975 

121 3066.95 2324.77 0.143886 

136 3109.79 2324.62 0.141895 

151 3091.02 2345.01 0.144009 

166 3084.93 2342.46 0.144136 

181 3089.54 2342.91 0.143949 

196 3084.75 2339.35 0.143953 

211 3095.88 2346.75 0.143889 

226 3085.61 2319.04 0.142664 

241 3073.67 2303.72 0.142272 

256 3067.56 2320.48 0.143592 

271 3117.28 2321.65 0.141373 

286 3111.9 2295.67 0.140033 

301 3111.6 2302.73 0.140477 

316 3122.38 2290.04 0.139221 

331 3072.42 2292.11 0.141612 

346 3066.96 2295.82 0.142094 

361 3066.97 2257.95 0.13975 

376 3059.94 2266.25 0.140586 

391 3061.15 2234.84 0.138582 

406 3054.38 2266.19 0.140838 

421 3056.57 2223.61 0.138093 

436 3054.99 2214.08 0.137572 

451 3045.6 2248.44 0.140138 

466 3066.41 2208.28 0.136701 

481 3053.82 2196.73 0.136546 

496 3051.94 2189.68 0.136192 

511 3057.08 2188.18 0.13587 

526 3050.59 2179.59 0.135624 

541 3052.08 2161.86 0.134455 

556 3052.65 2171.2 0.135011 

571 3046.2 2176.3 0.135615 

586 3052.43 2161.43 0.134413 

601 3051.27 2167.67 0.134852 
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Determination of Rate at -20 
o
C - Run 3 [DJK-11-61] 

 

 Following the General Procedure, 56 (25.6 mg, 0.1 mmol, 1.0 equiv), 101 (18 mg, 0.1 

mmol), catalyst 100 (4.5 mg, 0.1 mmol, 0.1  equiv) and MsOH  (6.5 μL, 0.1 mmol, 1.0 equiv) 

were combined in an NMR tube containing 0.7 mL of CDCl3. The tube was inserted into an 

NMR spectrometer at  -20 
o
C. The reaction was then followed by 

19
F NMR spectroscopy. Kobs = 

2.23E-05 M/min 

 

[101] = 0.14 M 

[56] = 0.14 M 

[MsOH] = 0.14 M 

 

Kinetic Data: 

 

time, min area, IS area, Substrate [Substrate] 

1 3344.53 2336.24 0.14127 

16 3396.27 2494.94 0.148568 

31 3384.9 2461.68 0.14708 

46 3376.97 2397.4 0.143576 

61 3359.76 2411.87 0.145182 

76 3329.52 2423.51 0.147208 

91 3323.64 2410.83 0.146696 

y = -2.16E-05x + 1.48E-01 
R² = 8.54E-01 
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106 3303.49 2410.84 0.147592 

121 3286.15 2406.52 0.148105 

136 3284.41 2393.13 0.147359 

151 3279.11 2381.04 0.146851 

166 3282.1 2380.78 0.146702 

181 3277.23 2327.96 0.14366 

196 3292.09 2351.89 0.144482 

211 3279.72 2343.34 0.144499 

226 3272.9 2330.61 0.144014 

241 3276.72 2318.65 0.143108 

256 3256.73 2345.05 0.145626 

271 3264.34 2326.84 0.144158 

286 3276.35 2319.28 0.143163 

301 3260.15 2287.67 0.141913 

316 3273.86 2277.21 0.140673 

331 3267.62 2299.12 0.142297 

346 3268.15 2249.36 0.139195 

361 3255.88 2251.15 0.139831 

376 3266.07 2239.36 0.138665 

391 3259.24 2263.85 0.140475 

406 3256.42 2252.5 0.139892 

421 3254.38 2251.24 0.139901 

436 3254.91 2272 0.141168 

451 3263 2239.05 0.138776 

466 3246.81 2251.52 0.140245 

481 3261.84 2265.61 0.140472 

496 3250.91 2208.75 0.137407 

511 3266.25 2181.16 0.135053 

526 3264.14 2175.69 0.134802 

541 3253.59 2179.5 0.135476 

556 3261.75 2152.8 0.133481 

571 3259.47 2188.94 0.135817 

586 3244.85 2178.5 0.135778 

601 3260.3 2180.96 0.135287 
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 5.5. Experimental Procedures for Chapter 4. 

 

Optimization of Phenol Cinnamylation  

 

General Procedure  

 To an oven dried Schlenk flask was added washed, dry NaH (1.05 equiv) in a glovebox. 

For alkali metals, the metal was weighed in hexanes outside the glovebox and dried before 

addition to the reaction flask. The flask was transferred to a Schlenk line. Solvent (0.5M) was 

added to afford a cloudy mixture. The mixture was placed in an ice bath and the corresponding 

phenol (1 equiv) was added portionwise. During this phase, substantial gas evolution was 

observed. The insoluble material appeared to change in texture from an amorphous, cloudy 

particulate matter to a finely distributed crystallized solid. The reaction was removed from the 

ice bath and then allowed to stir at rt for 30 min. Subsequently, cinnamyl chloride (1.1 equiv) 

was added dropwise via syringe. After the addition was complete, the reaction was placed in an 

oil bath and then heated to reflux for the specified amount of time. After completion of the 

reaction as adjudged by TLC, the flask was removed from the heat source and allowed to cool to 

rt. The mixture was then transferred to a separatory funnel, diluted with water (5 mL) and 

dichloromethane (10 mL), and then acidified to pH <1 with slow addition of a 6 M HCl solution. 

The aqueous layer was separated and then back extracted with a further 10 mL of 

y = -2.24E-05x + 1.49E-01 
R² = 8.22E-01 
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dichloromethane. The combined organic layers were then washed with brine, dried over MgSO4, 

and then filtered through glass wool. The filtrate was dried by rotary evaporation (3 mm Hg, 30 

o
C). The residue was then taken up in 10 mL dichloromethane. 

1
H NMR of the crude material 

was taken at this point. Celite was added and the mixture was concentrated to afford a white 

powder, which was then subjected to flash column chromatography.  

 

Cinnamylation of Phenol with Na in Tetrahydrofuran (Table 14 Entry 1) [DJK-18-46] 

 

 

 

 Following General Procedure 8, Na (24 mg, 1.05 mmol), THF (2 mL), phenol (94 mg, 1 

mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL Schlenk flask. The 

reaction was stirred at 22 
o
C  for 16 h. The reaction was then worked up according to the General 

Procedure with the following modification: diethyl ether was used as the extraction solvent 

instead of dichloromethane. Silica gel flash column chromatography (12:1, hexanes/ethyl 

acetate, 20 mm diameter, 16 cm SiO2) afforded 25 mg (12%) of a >9:1 mixture of 114 and 115 

as a pale oil. 

Data for 114: 

 1
H NMR:  (500 MHz, CDCl3)  

 7.39 – 7.35 (m, 2H), 7.33 – 7.28 (m, 2H), 7.25 – 7.14 (m, 3H), 6.92 (td, J = 7.4, 

1.2 Hz, 1H), 6.83 (dd, J = 7.9, 1.2 Hz, 1H), 6.52 (d, J = 15.9 Hz, 1H), 6.40 (dt, J = 

15.9, 6.5 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H). 

  

Diagnostic for 115: 

 1
H NMR:  (500 MHz, CDCl3)  

  6.29 (ddd, J = 17.2, 10.2, 7.3 Hz, 1H), 5.21 (d, J = 10.2 Hz, 1H), 5.02 – 4.97 (m, 

2H) 
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Diagnostic for 116: 

 1
H NMR:  (500 MHz, CDCl3)  

 6.74 (dt, J = 15.9, 1.7 Hz, 1H), 6.49 – 6.38 (m, 1H), 4.71 (dd, J = 5.8, 1.5 Hz, 1H). 

 

Cinnamylation of Phenol with Na in Et2O (Table 14 Entry 2) [DJK-18-47] 

 

 Following General Procedure 8, Na (24 mg, 1.05 mmol), ether (2 mL), phenol (94 mg, 1 

mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL Schlenk flask. The 

reaction was stirred at 22 
o
C  for 16 h. The reaction was then worked up according to the General 

Procedure with the following modification: diethyl ether was used as the extraction solvent. 

Silica gel flash column chromatography (12:1, hexanes/ethyl acetate, 20 mm diameter, 16 cm 

SiO2) afforded 137 mg (65%) of a 4.5:1 mixture of 114 and 115 as a pale oil.  

 

Cinnamylation of Phenol with Na in CH2Cl2 (Table 14, Entry 3) [DJK-18-48] 

 

 Following General Procedure 8, Na (24 mg, 1.05 mmol), CH2Cl2 (2 mL), phenol (94 mg, 

1 mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL Schlenk flask. 

The reaction was stirred at 22 
o
C  for 16 h. The reaction was then worked up according to the 

General Procedure. Silica gel flash column chromatography (12:1, hexanes/ethyl acetate, 20 mm 

diameter, 16 cm SiO2) afforded 78 mg (37%) of a 4:1 mixture of 114 and 115 as a pale oil.  
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Cinnamylation of Phenol with Li in CH2Cl2 (Table 14, Entry 4) [DJK-18-49] 

 

 Following General Procedure 8, washed lithium (8 mg, 1.1 mmol), CH2Cl2 (2 mL), 

phenol (94 mg, 1 mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL 

Schlenk flask. The reaction was stirred at 22 
o
C  for 16 h. The reaction was then worked up 

according to the General Procedure. The crude NMR did not show appreciable amounts of 

product and the material was not purified further  

  

Cinnamylation of Phenol with K in CH2Cl2 (Table 14, Entry 5) [DJK-18-50] 

 

 Following General Procedure 8, washed potassium (42 mg, 1.05 mmol), CH2Cl2 (2 mL), 

phenol (94 mg, 1 mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL 

Schlenk flask. The reaction was stirred at 22 
o
C  for 16 h. The reaction was then worked up 

according to the General Procedure.Silica gel flash column chromatography (12:1, hexanes/ethyl 

acetate, 20 mm diameter, 16 cm SiO2) afforded 61 mg (29%) of a 2:1 mixture of 114 and 115 as 

a pale oil.  

 

Cinnamylation of Phenol with NaH in CH2Cl2 (Table 14 Entry 6) [DJK-18-51] 

 

 Following General Procedure 8, NaH (25 mg, 1.05 mmol), CH2Cl2 (2 mL), phenol (94 

mg, 1 mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL Schlenk 

flask. The reaction was stirred at reflux for 16 h. The reaction was then worked up according to 

the General Procedure. Silica gel flash column chromatography (12:1, hexanes/ethyl acetate, 20 

mm diameter, 16 cm SiO2) afforded 139 mg (66%) of a 7:1 mixture of 114 and 115 as a pale oil.  
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Cinnamylation of Phenol with NaH in CCl4 (Table 14 Entry 7) [DJK-18-52] 

 

 Following General Procedure 8, NaH (25 mg, 1.05 mmol), CCl4 (2 mL), phenol (94 mg, 

1 mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL Schlenk flask. 

The reaction was stirred at reflux for 16 h. The reaction was then worked up according to the 

General Procedure. Silica gel flash column chromatography (12:1, hexanes/ethyl acetate, 20 mm 

diameter, 16 cm SiO2) afforded 143 mg (68%) of a 9.5:1 mixture of 114 and 115 as a pale oil.  

 

Cinnamylation of Phenol with NaH in Benzene  (Table 14 Entry 8) [DJK-18-53] 

 

 Following General Procedure 8, NaH (25 mg, 1.05 mmol), benzene (2 mL), phenol (94 

mg, 1 mmol) and cinnamyl chloride (153 μL, 1.1 mmol) were combined in a 10-mL Schlenk 

flask. The reaction was stirred at reflux for 16 h. The reaction was then worked up according to 

the General Procedure with the following modification: diethyl ether was used as the extraction 

solvent. Silica gel flash column chromatography (12:1, hexanes/ethyl acetate, 20 mm diameter, 

16 cm SiO2) afforded 155 mg (74%) of a 9:1 mixture of 114 and 115 as a pale oil. 

 

Preparation of cinnamyl-substituted Phenols (Table 15) 

 

General Procedure  

 To a 50-mL oven dried Schlenk flask was added washed, dry NaH (1.05 equiv) in a 

glovebox. The flask was transferred to a Schlenk line. Solvent (0.5M) was added to afford a 

cloudy mixture. The mixture was placed in an ice bath and the corresponding phenol (1 equiv) 

was added portionwise. During this phase, substantial gas evolution was observed. The insoluble 

material appeared to change in texture from an amorphous, cloudy particulate matter to a finely 
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distributed crystallized solid. The reaction was removed from the ice bath and then allowed to 

stir at rt for 30 min. Subsequently, cinnamyl chloride (1.1 equiv) was added dropwise via 

syringe. After the addition was complete, the reaction was placed in an oil bath and then heated 

to reflux for the specified amount of time. After completion of the reaction as adjudged by TLC, 

the flask was removed from the heat source and allowed to cool to rt. The mixture was then 

transferred to a separatory funnel, diluted with water (20 mL) and dichloromethane (20 mL), and 

then acidified to pH <1 with slow addition of a 6M HCl solution. The aqueous layer was 

separated and then back extracted with a further 30 mL of dichloromethane. The combined 

organic layers were then washed with brine, dried over MgSO4, and then filtered through glass 

wool. The filtrate was dried under reduced pressure (~3 mm Hg, rotary evaporator). The residue 

was then taken up in 10 mL dichloromethane. Celite was added and the mixture was 

concentrated to afford a white powder, which was then subjected to flash column 

chromatography. If necessary, a second flash column chromatography operation was performed 

using silica impregnated with 10% AgNO3 (w/w). 

 

Preparation of (E)-2-(3-Phenyl-2-propen-1-yl)phenol (114) [DJK-11-24] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), phenol (0.94 

g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in a 50-mL Schlenk 

flask. The reaction was worked up according to the General Procedure. Silica gel flash column 

chromatography (3:1 hexanes/toluene, 30 mm diameter, 14 cm SiO2) followed by a second silica 

gel flash column chromatography (9:1, hexanes/ethyl acetate, 30 mm diameter, 50 g SiO2 (10% 

AgNO3 w/w)) afforded a pale oil. Distillation afforded 1.49 g of 114 (71%) as a pale oil that 

solidifed upon standing. The spectroscopic data matched those reported in the literature.
161
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Data for 114: 

 1
H NMR:  (500 MHz, CDCl3)  

 δ 7.39 – 7.35 (m, 2H), 7.33 – 7.28 (m, 2H), 7.25 – 7.14 (m, 3H), 6.92 (td, J = 7.4, 

1.2 Hz, 1H), 6.83 (dd, J = 7.9, 1.2 Hz, 1H), 6.52 (d, J = 15.9 Hz, 1H), 6.40 (dt, J = 

15.9, 6.5 Hz, 1H), 3.59 (d, J = 6.0 Hz, 1H). 

 13
C NMR: (126 MHz,CDCl3) 

  δ 154.2, 137.3, 131.8, 130.7, 128.8, 128.2, 128.1, 127.6, 126.5, 125.9, 121.3, 

116.0, 34.4. 

 MS: (EI, 70 eV, m/z) 

  210 (100, M
+
), 119 (33), 115 (38),  104 (66), 91 (82), 69 (45). 

 

Preparation of (E)-2-(3-Phenyl-2-propen-1-yl)-4-methylphenol (114b) [DJK-9-67] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), p-cresol (1.08 

g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in a 50-mL Schlenk 

flask. The reaction was worked up according to the General Procedure. Silica gel flash column 

chromatography (3:1 hexanes/toluene, 30 mm diameter, 16 cm SiO2) followed by a second silica 

gel flash column chromatography (9:1, hexanes/ethyl acetate, 50 g SiO2 (10% AgNO3 w/w)) 

afforded a pale oil. Distillation afforded 1.05 g of 114b (47%) as a pale oil that solidified upon 

standing. The spectral data matched those reported in the literature.
162

 

Data for 114b: 

 1
H NMR:  (500 MHz, CDCl3)  

 δ 7.40 – 7.35 (m, 2H), 7.32 (td, J = 7.6, 1.1 Hz, 2H), 7.26 – 7.21 (m, 1H), 7.06 (t, J 

= 8.3 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H), 6.56 (d, J = 16.0 Hz, 0H), 6.41 (dtd, J = 

15.8, 6.6, 1.0 Hz, 1H), 4.96 (s, 1H), 3.59 (dd, J = 6.7, 1.6 Hz, 2H), 2.28 (s, 3H) 

 13
C NMR: (126 MHz,CDCl3) 

 δ 149.7, 135.1, 129.3, 128.9, 128.2, 126.5, 126.2, 126.1, 125.2, 124.2, 124.1, 

123.4, 113.6, 32.1, 18.5. 
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 MS: (EI, 70 eV, m/z) 

  224 (100, M
+
), 209 (30), 133 (55), 115 (30), 104 (35), 91 (69), 77 (22) 

 

Preparation of (E)-2-(3-Phenyl-2-propen-1-yl)-6-methylphenol  (114c) [DJK-11-20] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), o-cresol (1.08 

g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in a 50-mL Schlenk 

flask. The reaction was worked up according to the General Procedure. Silica gel flash column 

chromatography (3:1 hexanes/toluene, 30 mm diameter, 14 cm SiO2) followed by a second silica 

gel flash column chromatography (9:1, hexanes/ethyl acetate, 30 mm diameter 50 g SiO2 (10% 

AgNO3 w/w)) afforded a pale oil. Distillation afforded 1.38 g of 114c (62%) as a pale oil that 

solidified upon standing. The spectral data matched those reported in the literature.
163

 

Data for 114c: 

 1
H NMR:  (500 MHz, CDCl3)  

  δ 7.41 – 7.35 (m, 2H), 7.34 – 7.30 (m, 2H), 7.23 (ddd, J = 12.8, 6.5, 1.7 Hz, 1H), 

7.06 (t, J = 8.7 Hz, 1H), 6.90 – 6.80 (m, 1H), 6.56 (d, J = 16.0 Hz, 0H), 6.41 (ddd, 

J = 15.9, 8.0, 5.6 Hz, 1H), 3.59 (dd, J = 6.6, 1.7 Hz, 2H). 

 13
C NMR: (126 MHz,CDCl3) 

  δ 152.5, 136.9, 131.6, 129.4, 128.5, 128.1, 127.9, 127.4, 126.2, 124.9, 124.0, 

120.4, 34.6, 15.9. 

 MS: (EI, 70 eV, m/z) 

  224 (100, M
+
), 209 (33), 168 (26), 141 (28), 120 (29), 115 (52), 105 (47), 91 (71), 

77 (76), 69 (41). 
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Preparation of (E)-2-(3-Phenyl-2-propen-1-yl)-4-methoxyphenol (114d) [DJK-10-26] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), 4-

methoxyphenol (1.24 g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in 

a 50-mL Schlenk flask. The reaction was worked up according to the General Procedure. Silica 

gel flash column chromatography (3:1, hexanes/toluene, 30 mm diameter, 14 cm SiO2) followed 

by a second silica gel flash column chromatography (9:1 hexanes/ethyl acetate, 30 mm diameter, 

50 g SiO2 (10% AgNO3 w/w)) afforded a pale oil. Distillation afforded 1.17 g of 114d (49%) as a 

pale oil that solidified upon standing. The spectral data matched those reported in the 

literature.
164

 

Data for 114d: 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.39 – 7.14 (m, 5H), 6.81 – 6.65 (m, 3H), 6.48 (d, 1H, J = 15.9 Hz), 6.35 (dt, J = 

15.9, 6.5 Hz, 1H), 3.74 (s, 3H), 3.52 (d, J = 5.7 Hz, 1H). 

 13
C NMR: (126 MHz,CDCl3) 

  δ 153.8, 147.9, 137.0, 131.5, 128.5, 127.7, 127.3, 126.8, 126.2, 116.4, 116.0, 

112.6, 55.7, 34.3. 

 MS: (EI, 70 eV, m/z) 

  240 (100, M
+
), 149 (66), 136 (99), 121 (25), 115 (31), 108 (44), 91 (79), 77 (21).  

 

Preparation of (E)- 2-(3-Phenyl-2-propen-1-yl)-4-fluorophenol  (114e) [DJK-18-44] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), 4-

fluorophenol (1.12 g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in a 

50-mL Schlenk flask. The reaction was worked up according to the General Procedure. Silica gel 

flash column chromatography (3:1 hexanes/toluene, 30 mm diameter, 16 cm SiO2) followed by a 
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second silica gel flash column chromatography (9:1, hexanes/ethyl acetate, 30 mm diameter, 50 

g SiO2 (10% AgNO3 w/w)) afforded a pale oil. Distillation afforded 1.73 g of 114e (76%) as a 

yellow oil that solidified upon standing.
165

  

Data for 114e: 

 bp: 100 
o
C  (ABT, 3*10

-5
 T) 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.40 – 7.32 (m, 2H), 7.29 (ddd, J = 7.9, 6.2, 1.3 Hz, 2H), 7.24 – 7.18 (m, 1H), 

6.88 (dd, J = 9.0, 3.0 Hz, 1H), 6.82 (td, J = 8.3, 3.1 Hz, 1H), 6.74 (dd, J = 8.7, 4.7 

Hz, 1H), 6.49 (dt, J = 15.7, 1.6 Hz, 1H), 6.33 (dt, J = 15.9, 6.6 Hz, 1H), 3.52 (dd, 

J = 6.6, 1.5 Hz, 2H). 

 13
C NMR: (126 MHz,CDCl3) 

  δ 157.2 (d, J = 232 Hz) , 149.8, 136.9, 132.0, 128.6, 127.5, 127.3 (d, J = 7 Hz), 

126.9, 126.2, 116.6 (d,  J = 23 Hz), 116.5 (d, J = 8.5 Hz), 113.9 (d, J = 25 Hz),  

34.0. 

 19
F NMR: (476 MHz,CDCl3) 

  δ -123.9 (m) 

 IR: (ATR, cm
-1

) 

  3429 (br), 3027 (w), 1619 (w), 1598 (w), 1494 (s), 1438 (s), 1327 (w), 1254 (w), 

1176 (s), 1141 (m), 1090 (w), 1028 (w), 958 (m), 928 (w), 872 (w), 809 (m), 748 (s), 

731 (m), 716 (w), 692 (s). 

 MS: (EI, 70 eV, m/z) 

  228 (100, M
+
), 137 (46), 115 (21), 109 (21), 104 (85), 91 (57) 

 HRMS: Calcd for C15H13OF 200.0950, found 200.0952, error  0.7  

 TLC: Rf 0.30 (4:1, hexanes/ethyl acetate) [UV,CAM] 

  

Preparation of (E)- 2-(3-Phenyl-2-propen-1-yl)-4-chlorophenol  (114f) [DJK-11-32] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), 4-

chlorophenol (1.28 g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in a 
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50-mL Schlenk flask. The reaction was worked up according to the General Procedure. Silica gel 

flash column chromatography (3:1 hexanes/toluene, 30 mm diameter, 16 cm SiO2) followed by a 

second silica gel flash column chromatography (9:1, hexanes/ethyl acetate, 50 g SiO2 (10% 

AgNO3 w/w)) afforded a pale oil. Distillation afforded 1.49 g of 114f (61%) as a yellow oil that 

solidified upon standing. The spectroscopic data matched those reported in the literature.
166

 

Data for 114f: 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.43 – 7.07 (m, 5H), 6.77 (d, J = 8.5 Hz, 1H), 6.57 – 6.49 (m, 1H), 6.36 (dt, J = 

15.9, 6.6 Hz, 1H), 4.97 (s, 1H), 3.60 – 3.47 (m, 2H). 

 13
C NMR: (126 MHz,CDCl3) 

  δ 159.4, 152.8, 137.1, 132.4, 130.3, 128.8, 127.8, 127.7, 127.1, 126.5, 117.2,  

34.1. 

 MS: (EI, 70 eV, m/z) 

  246 (33, M
+
+2), 244 (96, M

+
), 209 (75), 165 (19), 153 (42), 115 (42), 105 (60), 

104 (100), 91 (87), 81 (40), 77 (59), 69 (81)  

 

Preparation of (E)-2-(3-Phenyl-2-propen-1-yl)-4-bromophenol (114g) [DJK-11-31] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), 4-

bromophenol (1.73 g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in a 

50-mL Schlenk flask. The reaction was worked up according to the General Procedure. Silica gel 

flash column chromatography (3:1 hexanes/toluene, 30 mm diameter, 16 cm SiO2) followed by a 

second silica gel flash column chromatography (9:1, hexanes/ethyl acetate, 30 mm diameter 50 g 

SiO2 (10% AgNO3 w/w)) afforded a pale oil. Distillation afforded 1.62 g of 114g (56%) as a pale 

oil that solidified upon standing. The spectroscopic data matched those reported in the 

literature.
167
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Data for 114g: 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.42 – 7.19 (m, 5H), 6.74 (ddd, J = 9.9, 8.5, 1.3 Hz, 1H), 6.53 (dd, J = 15.9, 1.7 

Hz, 1H), 6.36 (dt, J = 15.9, 6.6 Hz, 0H), 4.99 (d, J = 1.3 Hz, 0H), 3.55 (dd, J = 

6.6, 1.6 Hz, 2H). 

 13
C NMR: (126 MHz,CDCl3) 

  δ 153.4, 150.1, 137.1, 133.2, 132.4, 130.8, 128.8, 128.3, 127.8, 127.1, 126.5, 

117.7, 113.2, 34.1. 

 MS: (EI, 70 eV, m/z) 

  290 (71, M
+
+2), 288 (76, M

+
), 209 (93), 131 (24), 118 (39), 115 (45), 104 (100), 

91 (82), 77 (41). 

 

Preparation of (E)- 2-(3-Phenyl-2-propen-1-yl)-4-trifluoromethylphenol (114h)  [DJK-17-

46] 

 

 Following General Procedure 9, NaH (126 mg, 5.25 mmol), toluene (10 mL), 4-

trifluoromethylphenol (810 mg, 5 mmol) and cinnamyl chloride (715 μL, 5.5 mmol) were 

combined in a 50-mL Schlenk flask. The reaction was worked up according to the General 

Procedure. Silica gel flash column chromatography (3:1 hexanes/toluene, 30 mm diameter, 16 

cm SiO2) followed by a second silica gel flash column chromatography (9:1, hexanes/ethyl 

acetate, 30 mm diameter 50 g SiO2 (10% AgNO3 w/w)) afforded a pale oil. Distillation afforded  

885 mg of 114h (64%) as a clear oil that solidified upon standing.  

Data for 114h: 

 bp: 120 
o
C (ABT, 3.2 * 10

-5
 T) 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.47 – 7.28 (m, 6H), 7.24 (dd, J = 8.6, 6.2 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 

6.54 (dt, J = 15.8, 1.6 Hz, 1H), 6.36 (dt, J = 15.9, 6.6 Hz, 1H), 5.26 (s, 1H), 3.64 – 

3.57 (m, 2H). 
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 13
C NMR: (126 MHz,CDCl3) 

 δ 156.95, 136.96, 132.57, 129.13, 129.05, 128.91, 128.85, 128.75, 127.93, 127.90, 

127.87, 127.85, 126.86, 126.50, 126.46, 126.37, 125.98, 125.69, 125.59, 125.56, 

125.53, 125.50, 116.04, 77.51, 77.46, 77.26, 77.01, 34.26. 

 19
F NMR: (500 MHz, CDCl3) 

 -61.56 

 IR: (ATR, cm
-1

) 

  3498 (br), 3027 (w), 2923 (w), 1614 (w), 1496 (w), 1485 (w), 1448 (w), 1355 (s), 

1335 (s), 1250 (w), 1201 (s), 1152 (s), 1114 (s), 1028 (w), 967 (m), 928 (w), 889 

(w), 805 (w), 743 (m), 692 (s). 

 MS: (EI, 70 eV, m/z) 

  278 (4, M
+
), 260 (83), 223 (30),  184 (23), 168 (60), 156 (35), 149 (40), 141 (60), 

128 (51), 115 (74), 104 (40), 91 (69), 77 (100).. 

 HRMS: Calcd for C16H13OF3 278.0919, found 278.0912, error  -2.4 

 TLC: Rf  0.33 (4:1, hexanes/ethyl acetate) [UV,CAM] 

 

Preparation of (E)-2-(5-Phenylpent-2-en-1-yl)phenol (114i) [DJK-9-87] 

 

 Following General Procedure 9, NaH (126 mg, 5.25 mmol), toluene (10 mL), 4-

trifluoromethylphenol (810 mg, 5 mmol) and phenethyl allyl chloride (990 mg, 5.5 mmol) were 

combined in a 50-mL Schlenk flask. The reaction was worked up according to the General 

Procedure. Silica gel flash column chromatography (3:1, hexanes/toluene, 30 mm diameter, 16 

cm SiO2) followed by a second silica gel flash column chromatography (9:1, hexanes/ethyl 

acetate, 30 mm diameter SiO2 (10% AgNO3 w/w)) afforded a pale oil. Distillation afforded 940 

mg of 114i (79%) as a clear oil.  
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Data for 114i: 

 bp: 160 
o
C (ABT, 0.05 T) 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.30 – 7.26 (m, 2H), 7.21 – 7.10 (m, 5H), 7.05 (dd, J = 7.5, 1.7 Hz, 1H), 6.87 

(td, J = 7.4, 1.2 Hz, 1H), 6.82 (dd, J = 8.0, 1.2 Hz, 1H), 5.64 (ddd, J = 5.5, 3.9, 1.7 

Hz, 2H), 5.01 (s, 1H), 3.35 (dd, J = 4.5, 1.8 Hz, 3H), 2.70 (dd, J = 8.8, 6.7 Hz, 

3H), 2.42 – 2.32 (m, 3H). 

 13
C NMR: (126 MHz,CDCl3) 

  δ 154.2, 141.7, 131.9, 130.2, 128.4, 128.3, 128.2, 127.8, 125.8, 120.8, 115.8, 35.7, 

34.2, 34.0. 

 IR: (ATR, cm
-1

) 

  3498 (br), 3027 (w), 2923 (w), 1614 (w), 1496 (w), 1485 (w), 1448 (w), 1355 (s), 

1335 (s), 1250 (w), 1201 (s), 1152 (s), 1114 (s), 1028 (w), 967 (m), 928 (w), 889 

(w), 805 (w), 743 (m), 692 (s). 

 MS: (EI, 70 eV, m/z) 

  238 (95, M
+
), 147 (100), 131 (21), 107 (42), 91 (62)    

 TLC: Rf  0.27 (4:1, hexanes/ethyl acetate) [UV,CAM] 

 Analysis: C17H18O (238.33) 

 Calcd: C,   85.67; H,  7.61%  

 Found: C,   85.31; H,  7.63% 

  

Preparation of (E)-1-(3-Phenyl-2-propen-1-yl)naphthalen-2-ol (114j) [DJK-12-54] 

 

 Following General Procedure 9, NaH (252 mg, 10.5 mmol), CCl4 (20 mL), 2-naphthol 

(1.44g, 10 mmol) and cinnamyl chloride (1.53 mL, 11 mmol) were combined in a 50-mL 

Schlenk flask. The reaction was worked up according to the General Procedure. Silica gel flash 

column chromatography (3:1 hexanes/toluene, 30 mm diameter, 16 cm SiO2) followed by a 

second silica gel flash column chromatography (9:1, hexanes/ethyl acetate, 30 mm diameter 50 g 
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SiO2 (10% AgNO3 w/w)) afforded a pale pink solid. The spectroscopic data matched those 

reported in the literature.
168

 

Data for 114j: 

 mp: 62-64 
o
C (hexanes) 

 
1
H NMR: (500 MHz, CDCl3) 

  8.00 (d, J = 8.6 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.52 

(ddt, J = 8.2, 6.9, 1.3 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.34 – 7.29 (m, 2H), 7.30 – 

7.24 (m, 2H), 7.22 – 7.18 (m, 1H), 7.16 – 7.09 (m, 2H), 6.47 (p, J = 1.9 Hz, 2H), 

4.01 (dd, J = 3.1, 1.4 Hz, 2H). 

 13
C NMR: (126 MHz,CDCl3) 

 δ 151.1, 137.2, 133.3, 130.9, 129.4, 128.6, 128.4, 128.3, 127.6, 127.1, 126.6, 

126.1, 126.0, 123.2, 123.1, 117.9, 117.1, 28.43. 

 MS: (EI, 70 eV, m/z) 

  260 (100, M
+
), 169 (59), 156 (36), 128 (38), 117 (25), 115 (24), 104 (44), 91 (38). 

 

Preparation of 2-(3-Methylbut-2-en-1-yl)phenol (114k) [DJK-14-83] 

 

 Following General Procedure 9, NaH (126 mg, 5.25 mmol), CCl4 (10 mL), phenol (470 

mg, 5 mmol) and prenyl chloride (605 μL, 5.5 mmol) were combined in a 50-mL Schlenk flask. 

The reaction was worked up according to the General Procedure. Silica gel flash column 

chromatography (3:1, hexanes/toluene, 30 mm diameter, 16 cm SiO2) followed by a second silica 

gel flash column chromatography (9:1, hexanes/ethyl acetate, 30 mm diameter 50 g SiO2 (10% 

AgNO3 w/w)) afforded a pale oil. Distillation afforded 525 mg (65%) of 114k as a clear oil. The 

spectroscopic data matched those reported in the literature.
169
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Data for 114k: 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.14 (t, J = 7.4 Hz, 1H), 6.89 (td, J = 7.5, 1.2 Hz, 1H), 6.83 (dt, J = 7.6, 1.3 Hz, 

1H), 5.35 (dddd, J = 7.3, 5.8, 2.9, 1.5 Hz, 1H), 5.09 (s, 1H), 3.38 (d, J = 7.2 Hz, 

2H), 1.80 (dd, J = 5.1, 1.4 Hz, 6H). 

 13
C NMR: (126 MHz,CDCl3) 

 δ 154.1, 129.8, 127.3, 121.8, 120.6, 115.5, 29.4, 25.7, 17.7. 

 MS: (EI, 70 eV, m/z) 

  162 (21, M
+
), 145 (39), 133 (38), 115 (33), 107 (100), 91 (77), 77 (47) 

 

Preparation of (E)-2-(3-(Furan-2-yl)allyl)phenol (119b) [DJK-17-70] 

 

 To a 5-mL Schlenk flask equipped with a stir bar was added, under argon, (E)-3-(furan-2-

yl)-1-(2-hydroxyphenyl)prop-2-en-1-one 118b (749 mg, 3.5 mmol), THF (3.5 mL) and 

triethylamine (535 μL, 3.85 mmol, 1.1 equiv). To this solution was added with vigorous stirring 

ethyl chloroformate  (370 μL, 3.85 mmol, 1.1 equiv). The color of the solution changed from 

dark brown to light gold with concomitant precipitation of solid triethylammonium chloride. The 

mixture was stirred for a further 30 min and the reaction was assayed for completion by TLC. To 

a separate 50-mL flask, under argon and equipped with a stir bar, was added ethanol (15 mL) and 

cerium chloride heptahydrate (1.56 g, 4.2 mmol, 1.2 equiv) and the resulting clear solution was 

stirred for 20 min. The solution containing the ethyl carbonate of the starting material was then 

filtered into the second flask through glass wool. THF (2x 5mL) was used to wash the flask and 

filter cake. To the resulting light yellow solution was added NaBH4 (160 mg, 4.2 mmol, 1.2 

equiv) and the solution was stirred for a further 1 h. Water (1 mL) was added to quench the 

reaction, and the solution was then stirred a further 15 min. The resulting heterogenous mixture 

was transferred to a 125-mL separatory funnel and diluted with water (15 mL) and CH2Cl2 (30 

mL). The layers were separated and the aq. layer was extracted with CH2Cl2 (2x 30 mL). The 

organic layers were combined, dried over MgSO4 and concentrated by rotary evaporation (30 
o
C, 
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3 mm Hg). The crude material thus obtained was redissolved in 10 mL of CH2Cl2 and adsorbed 

onto Celite. Purification by silica gel flash column chromatography (12:1, hexanes/ethyl acetate, 

20 mm diameter, 18 cm SiO2) followed by bulb-to-bulb diffusion pump distillation afforded 112 

mg (16%) of 119b as a pale yellow oil .    

Data for 119b: 

 bp:  70 
o
C, 2 x 10

-4
 mm Hg 

 
1
H NMR: (500 MHz,CDCl3) 

   δ 7.33 (d, J = 1.8 Hz, 1H, HC(11)), 7.17 (m, 2H, HC(3), HC(5)), 6.93 (t, J = 7.5 

Hz, 1H, HC(4)), 6.83 (d, J = 7.9 Hz, 1H, HC(6)), 6.41–6.31 (m, 2H, HC(8), 

HC(12)), 6.28 (d, J = 15.9 Hz, 1H, HC(9)), 6.18 (d, J = 3.3 Hz, 1H, HC(13)), 4.87 

(s, 1H, OH), 3.55 (d, J = 6.3 Hz, 2H, HC(7)). 

 
13

C NMR: (126 MHz,CDCl3) 

  δ 154.1 (C1), 141.9 (C2), 130.8 (C3), 128.2 (C5), 127.0 (C8), 121.3 (C9), 120.2 

(C4), 115.9 (C6), 111.4, 107.3 (C13), 33.9 (C7). 

 IR: (ATR, cm
-1

) 

  3409 (br), 1593 (w), 1489 (m), 1455 (s), 1232 (m), 1095 (w), 1012 (m), 964 (m), 

753 (s) 

 MS: (EI, 70 eV, m/z) 

  200 (100, M
+
), 171 (16), 131 (19), 107 (16), 94 (54), 81 (24)  

 HRMS: Calcd for C13H12O2 200.0837, found 200.0842, error 2.3  

 TLC: Rf 0.36 (4:1, hexanes/ethyl acetate) [UV, CAM] 

 

Preparation of (E)-2-(4-Phenylbut-3-en-1-yl)phenol 120 [DJK-12-69] 

 

 To a 5 mL oven-dried Schlenk flask was added Grubbs-I-indenylidene (92 mg, 0.1 mmol, 

0.05 equiv.) in a glovebox. The flask was transferred to a Schlenk line and CH2Cl2 (4 mL) was 

added. To this stirring solution was added styrene (1.15 mL, 10.0 mmol, 5 equiv) and 2-(but-3-

en-1-yl)phenol (296 mg, 2.0 mmol). The solution was stirred at rt for 24 h. The volatiles were 

then removed by rotary evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column 
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chromatography (12:1, hexanes/ethyl acetate, 20 mm diameter, 18 cm SiO2) afforded 274 mg 

(62%) of 120 as a pale oil. The spectral data matched those reported in the literature.
170

  

Data for 120: 

 1
H NMR:  (400 MHz, CDCl3)  

  δ 7.38 (d, J = 6.9 Hz, 2H, HC(12)), 7.33 (t, J = 7.7 Hz, 2H, HC(13)), 7.24 (t, J = 

7.2 Hz, 1H, HC(14)), 7.20 (dd, J = 7.5, 1.6 Hz, 1H, HC(3)), 7.14 (td, J = 7.7, 1.7 

Hz, 1H, HC(5)), 6.93 (td, J = 7.4, 1.1 Hz, 1H, HC(4)), 6.81 (dd, J = 8.0, 1.2 Hz, 

1H, HC(6)), 6.48 (dt, J = 15.9, 1.4 Hz, 1H, HC(10)), 6.33 (dt, J = 15.8, 6.9 Hz, 

1H, HC(9)), 4.69 (s, 1H, OH), 2.84 (dd, J = 8.8, 6.6 Hz, 2H, HC(7)), 2.62–2.54 

(app q,  J = 7.5 Hz, 2H, HC(8)). 

 

Preparation of (E)-2-(4-Phenylbut-3-en-1-yl)phenol methyl ether 130a [DJK-17-14] 

 

 To a 5 mL oven-dried Schlenk flask was added Grubbs-I-indenylidene (24 mg, 0.026 

mmol, 0.03 equiv.) in a glovebox. The flask was transferred to a Schlenk line and CH2Cl2 (3 mL) 

was added. To this stirring solution was added styrene (745 μL, 6.5 mmol, 5 equiv) and 2-(but-3-

en-1-yl)phenol methyl ether (211 mg, 1.3 mmol). The solution was stirred at rt for 24 h. After 24 

h, 8 mg of indeylidene catalyst (0.008 mmol, 0.01 equiv) was added and the reaction was stirred 

a further 12 h. The volatiles were then removed by rotary evaporation (30 
o
C, 3 mm Hg). 

Purification by silica gel flash column chromatography (40:1, hexanes/ethyl acetate, 20 mm 

diameter, 18 cm SiO2) afforded 213 mg (69%) of 130a as a pale oil. 

Data for 130a: 

 1
H NMR:  (400 MHz, CDCl3)  

  δ 7.38 (d, J = 6.9 Hz, 2H, HC(12)), 7.33 (t, J = 7.7 Hz, 2H, HC(13)), 7.24 (t, J = 

7.2 Hz, 1H, HC(14)), 7.20 (dd, J = 7.5, 1.6 Hz, 1H, HC(3)), 7.14 (td, J = 7.7, 1.7 

Hz, 1H, HC(5)), 6.93 (td, J = 7.4, 1.1 Hz, 1H, HC(4)), 6.81 (dd, J = 8.0, 1.2 Hz, 

1H, HC(6)), 6.48 (dt, J = 15.9, 1.4 Hz, 1H, HC(10)), 6.33 (dt, J = 15.8, 6.9 Hz, 

1H, HC(9)), 4.69 (s, 1H, OH), 2.84 (dd, J = 8.8, 6.6 Hz, 2H, HC(7)), 2.62–2.54 

(app q,  J = 7.5 Hz, 2H, HC(8)). 
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Preparation of (E)-2-(4-Phenylbut-3-en-1-yl)phenol  (120) [DJK-17-16] 

 

 Following the procedure of Ammann and White
96b

, to a 50-mL oven-dried Schlenk flask  

was added NaH (48 mg, 2.0 mmol, 2.2 equiv). The flask was transferred to a Schlenk line and 

DMF (1.5 mL) was added. The flask was placed in an ice bath and ethanethiol (155 μL) was 

added dropwise. In the process of addition the solution turned homogenous. Methyl ether 131b 

(238 mg, 1 mmol) was dissolved in DMF (1.5 mL) and added to the mixture. The solution was 

then heated to reflux for 3 h. After this time, the solution was cooled down to rt, and then 

transferred to a 60-mL separatory funnel. The mixture was diluted with water (5 mL) and ethyl 

acetate (10 mL), and then acidified to pH 1 with 1 M HCl. The biphasic solution was shaken 

well, and the layers were separated. The aq. layer was further extracted with a portion of ethyl 

acetate (10 mL). The organic layers were combined and then washed with water (2x 10 mL) 

followed by brine (10 mL). The organic layers were then dried over MgSO4, filtered and 

concentrated by rotary evaporation (30 
o
C , 3 mm Hg). Purification by silica gel flash column 

chromatography (12:1, hexanes/ethyl acetate, 20 mm diameter, 15 cm SiO2) afforded 169 mg 

(84%) of 120 as a pale oil. The spectral data matched those reported in the literature.
170

 

Data for 120: 

 
1
H NMR:  (400 MHz, CDCl3)  

  δ 7.38 (d, J = 6.9 Hz, 2H, HC(12)), 7.33 (t, J = 7.7 Hz, 2H, HC(13)), 7.24 (t, J = 

7.2 Hz, 1H, HC(14)), 7.20 (dd, J = 7.5, 1.6 Hz, 1H, HC(3)), 7.14 (td, J = 7.7, 1.7 

Hz, 1H, HC(5)), 6.93 (td, J = 7.4, 1.1 Hz, 1H, HC(4)), 6.81 (dd, J = 8.0, 1.2 Hz, 

1H, HC(6)), 6.48 (dt, J = 15.9, 1.4 Hz, 1H, HC(10)), 6.33 (dt, J = 15.8, 6.9 Hz, 

1H, HC(9)), 4.69 (s, 1H, OH), 2.84 (dd, J = 8.8, 6.6 Hz, 2H, HC(7)), 2.62–2.54 

(app q,  J = 7.5 Hz, 2H, HC(8)). 

 13
C NMR: (126 MHz, CDCl3) 

  δ 153.7, 137.9, 130.7, 130.6, 130.4, 128.7, 127.5, 127.2, 126.2, 121.1, 115.5, 

115.1, 33.5, 30.4. 
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 MS:  (EI, 70 eV, m/z) 

  224 (59, M
+
), 117 (100), 115 (26), 107 (97), 91 (20), 77 (20) 

 

Preparation of (E)-2-(4-Phenylbut-3-en-1-yl)phenol  (120) [DJK-15-15] 

 

 To a 50-mL Schlenk flask under argon was added BuLi (2.23 M in hexanes, 9.5 mL, 21 

mmol, 2.1 equiv) followed by a further 4 mL of hexanes. Tetramethylethylenediamine (TMEDA, 

2.44 g, 21 mmol, 2.1 equiv) was added via syringe and the flask was placed in a -78 
o
C bath (dry 

ice/i-PrOH). The internal temperature was monitored until it dropped below -40 
o
C. Cresol (1.08 

g, 10 mmol) was dissolved in hexanes (6 mL) and added to the cold mixture as a solution. To 

this cold mixture was then added solid KOt-Bu (2.36 g, 21 mmol, 2.1 equiv). The formation of a 

yellow suspension was observed. The flask was then removed from the -78 
o
C bath and placed in 

a -20 
o
C bath (i-PrOH, IBC-4A cryocool) and the solution within allowed to stir for 30 min. The 

flask was then removed and allowed to warm to rt over 15 min. THF (10 mL) was added. The 

flask was then returned to the aforementioned -78 
o
C bath and the internal temperature was 

monitored until it was below -60 
o
C and then allowed to equilibrate for a further 20 min. 

Cinnamyl chloride (1.98 g, 13 mmol, 1.3 equiv) was dissolved in THF (2 mL) and added to the 

mixture. The solution was then allowed to warm to rt and stirred for 1 h. The reaction was 

quenched by the addition of aq. sat. NH4Cl (10 mL). The mixture was transferred to a 250-mL 

separatory funnel and the pH adjusted to <1 with 6 M HCl. The layers were separated and the aq. 

layer was extracted with ether (2x 30 mL). The organic layers were combined, dried over 

MgSO4, filtered and concentrated (30 
o
C, 3 mm Hg). The product was purified by two successive 

silica gel flash column chromatography operations (1, 9:1 hexanes/ethyl acetate, 30 mm 

diameter, 15 cm SiO2; 2, 50:1 toluene/ethyl acetate, 30 mm diameter, 14 cm SiO2) and then 

distilled under vacuum to afford 330 mg (15%) of 120 a clear oil.  The spectroscopic data match 

those reported in the literature.
170
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Data for 120: 

 
1
H NMR:  (400 MHz, CDCl3)  

  δ 7.38 (d, J = 6.9 Hz, 2H, HC(12)), 7.33 (t, J = 7.7 Hz, 2H, HC(13)), 7.24 (t, J = 

7.2 Hz, 1H, HC(14)), 7.20 (dd, J = 7.5, 1.6 Hz, 1H, HC(3)), 7.14 (td, J = 7.7, 1.7 

Hz, 1H, HC(5)), 6.93 (td, J = 7.4, 1.1 Hz, 1H, HC(4)), 6.81 (dd, J = 8.0, 1.2 Hz, 

1H, HC(6)), 6.48 (dt, J = 15.9, 1.4 Hz, 1H, HC(10)), 6.33 (dt, J = 15.8, 6.9 Hz, 

1H, HC(9)), 4.69 (s, 1H, OH), 2.84 (dd, J = 8.8, 6.6 Hz, 2H, HC(7)), 2.62–2.54 

(app q,  J = 7.5 Hz, 2H, HC(8)). 

 

Preparation of  (E)-2-(5-Phenylpent-4-en-1-yl)phenol (130b) [DJK-DR-9004] 

 

 Dichloromethane was degassed by purging with argon for 30 min. To a 10-mL flask was 

added Grubbs-I-indenylidene catalyst (46 mg, 0.05 mmol, 0.033 equiv) in a glovebox. The flask 

was transferred to a Schlenk line and degassed dichloromethane (3 mL), 142q (241 mg, 1.5 

mmol) and styrene (890 μL, 7.5 mmol, 5 equiv) were added in order.  The solution was stirred 

for 24 h, whereupon a second portion of catalyst (23 mg, 0.025 mmol, 0.016 equiv) was added. 

The solution was then stirred for a further 24 h. The solution was then transferred to a 100 mL 

RB-flask, and the volatiles were removed by rotary evaporation (30 
o
C. 3 mm Hg). The material 

was redissolved in 10 mL of CH2Cl2 and adsorbed onto Celite. Purification by silica gel flash 

column chromatography (12:1, hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) followed by 

distillation afforded 150 mg (42%) of 130b as a clear oil.  
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Data for 130b: 

 bp: 150 
o
C, (ABT), 0.05 mm Hg  

 
1
H NMR:  (400 MHz, CDCl3)  

  δ 7.35 (d, J = 8.1 Hz, 2H, HC(13)), 7.30 (t, J = 7.6 Hz, 2H, HC(14)), 7.20 (t, J = 

7.2 Hz, 1H, HC(15)), 7.14 (d, J = 7.4 Hz, 1H, HC(3), 7.09 (t, J = 7.7 Hz, 1H, 

HC(5)), 6.88 (t, J = 7.4 Hz, 1H, HC(4)), 6.76 (d, J = 8.0 Hz, 1H, HC(6)), 6.42 (d, 

J = 16.1 Hz, 1H, HC(11), 6.26 (dt, J = 15.9, 6.7 Hz, 1H, HC(10), 4.65 (s, 1H, 

OH), 2.68 (t, J = 7.7 Hz, 1H, HC(7), 2.29 (q, J = 6.9 Hz, 1H, HC(9)), 1.82 (p, J = 

7.4 Hz, 1H, HC(8)). 

 
13

C NMR: (126 MHz, CDCl3) 

  δ 153.8 (C1), 138.1 (C12), 130.9 (C3), 130.6 (C11), 130.5 (C10), 128.8 (C14), 

128.6 (C2), 127.4 (C5), 127.2 (C15), 126.3 (C13), 121.1 (C4), 115.6 (C6), 33.0 

(C9), 29.7 (C7), 29.6 (C8). 

 IR: (ATR, cm
-1

)  

  3401 (br), 3059 (w), 3025 (w), 2926 (w), 2857 (w), 1650 (w), 1592.1 (w), 1490 

(m), 1454 (s), 1327 (m), 1234 (m), 1169 (w), 1104 (w), 1068 (w), 1042 (w), 1028 

(w), 963 (s), 933 (w), 911 (w), 842 (w), 747 (s), 691 (s).  

 MS:  (EI, 70 eV, m/z) 

  238 (100, M
+
), 147 (45), 131 (34), 117 (42), 107 (74), 91 (43), 77 (25)  

 TLC: Rf 0.44 (4:1 hexanes/ethyl acetate) [UV, CAM] 

 Analysis: C16H16O (224.34) 

 Calcd: C,   85.67; H,  7.61%  

 Found: C,   85.27; H,  7.43% 
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Preparation of Ethyl (E)-7-(2-Hydroxyphenyl)hept-4-enoate (138) [DJK-15-83] 

 

 To a 50-mL round bottom flask equipped with a stir bar was added, under argon, LiI 

(1.87 g, 14 mmol, 4.0 equiv) and NaCN (189 mg, 3.85 mmol, 1.1 equiv). To this was added 

DMSO (10 mL) and the solution was stirred for 15 min. The diester 137
160

 (1.12 g, 3.5 mmol) 

was then dissolved in DMSO (10 mL) and added to the stirring solution. The solution was heated 

to 160 
o
C (internal temperature, oil bath) for 3 h. Consumption of starting material was followed 

by TLC. The flask was then removed from the heat source and allowed to cool to rt. The solution 

was transferred to a 125-mL separatory funnel and diluted with water (50 mL) and ethyl acetate 

(50 mL). Use of other solvent ratios occasionally resulted in persistent emulsions. The layers 

were separated and the aq. layer was extracted with ethyl acetate (50 mL). The organic layers 

were washed thoroughly (5x 30 mL water) then was washed with brine (15 mL), dried over 

MgSO4, filtered, and concentrated by rotary evaporation (30 
o
C, 3 mm Hg). The material was 

then redissolved in 10 mL of diethyl ether and adsorbed onto Celite. Purification by silica gel 

flash chromatography (7:1, hexanes/ethyl acetate, 20 mm diameter, 18 cm SiO2) followed by 

bulb-to-bulb vacuum distillation afforded 476 mg (57%) of 138 as a clear oil.    

Data for 138: 

 bp: 130 
o
C, (ABT), 0.05 mm Hg 

 
1
H NMR:  (500 MHz, CDCl3) 

  7.15–7.05 (m, 2H, HC(3), HC(5)), 6.87 (t, J = 7.4 Hz, 1H, HC(4)), 6.78 (d, J = 7.9 

Hz, 1H, HC(6)), 5.57 (dt, J = 15.3, 6.7 Hz, 1H, HC(9)), 5.47 (dt, J = 15.3, 6.0 Hz, 

1H, HC(10)), 5.24 (s, 1H, OH), 4.16 (q, J = 7.1 Hz, 2H, HC(14)), 2.68 (dd, J = 

8.7, 6.7 Hz, 2H, HC(11)), 2.42–2.26 (m, 6H, HC(7), HC(8), HC(10)), 1.28 (t, J = 

7.1 Hz, 3H, HC(15)). 
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13

C NMR: (126 MHz, CDCl3) 

   173.8 (C13), 153.9 (C1), 131.2 (C9), 130.5 (C3), 129.1 (C10), 128.2 (C2), 127.4 

(C5), 120.9 (C4), 115.6 (C6), 60.7 (C14), 34.5 (C7/C8/C10), 32.9 (C7/C8/C10), 

30.4(C11), 28.1 (C7/C8/C10), 14.5 (C15). 

 IR: (ATR, cm
-1

) 

  3416 (br), 2981 (w), 2926 (w), 2854 (w), 1706 (s), 1608 (w), 1593 (w), 1504 (w), 

1490 (w), 1455 (s), 1372 (m), 1344 (w), 1299 (w), 1232 (s), 1176 (s), 1150 (s), 

1101 (m), 1033 (m), 968 (m), 850 (m), 751 (s). 

 MS: (EI, 70 eV, m/z) 

  248 (29, M
+
), 107 (100) 

 TLC: Rf 0.31 (4:1, hexanes/ethyl acetate) [UV, CAM] 

 Analysis: C15H20O3 (248.32) 

 Calcd: C,   72.55; H,   8.12%  

 Found: C,   72.43; H,   8.14% 

 

Preparation of (E)-7-(2-Hydroxyphenyl)hept-4-enoic acid (139) [DJK-15-34] 

  

 To a 10-mL Schlenk flask under argon was added ester 138 (447 mg, 1.8 mmol), and 

THF (10 mL). Water was added via syringe (2.5 mL) followed by solid LiOH•H2O (272 mg, 

6.48 mmol, 3.6 equiv). The solution was allowed to stir 16 h at rt. The mixture was transferred to 

a 60-mL separatory funnel,  diluted with ether (30 mL) and water (20 mL). The biphasic mixture 

was acidified with 1 M HCl to pH <2, whereupon a white precipitate formed, which disappeared 

upon thorough shaking. The layers were separated and the aq. layer was extracted with ether (2x 

15 mL). The organic layers were combined, washed with brine (15 mL), dried over MgSO4, 

filtered, and concentrated by rotary evaporation (30 
o
C, 3 mm Hg). The material was redissolved 

in 10 mL of diethyl ether and then was adsorbed onto Celite. Purification by silica gel flash 

column chromatography (4:1, hexanes/ethyl acetate, 30 mm diameter, 16 cm SiO2) followed by 

recrystallization from hexanes (5 mL) afforded 326 mg (83%) of 139 as white spindles.    
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Data for 139: 

 mp: 108-110 
o
C (hexanes) 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.17–7.08 (m, 2H, HC(3), HC(5)), 6.91 (t, J = 7.4 Hz, 1H, HC(4)), 6.80 (d, J = 

7.9 Hz, 1H, HC(2)), 5.60 (dt, J = 15.6, 6.5 Hz, 1H, HC(9)), 5.50 (dt, J = 15.4, 6.3 

Hz, 1H, HC(10)), 2.70 (dd, J = 8.5, 6.6 Hz, 2H, HC(8)), 2.45 (t, J = 7.1 Hz, 2H, 

HC(11)), 2.35 (app p, J = 6.8 Hz, 4H, HC(7), HC(12)).  

 
13

C NMR: (126 MHz, CDCl3) 

  δ 179.0 (C13), 153.6 (C1), 131.4 (C10), 130.6 (C5), 128.8 (C9), 128.0 (C2) , 

127.4 (C3), 121.1 (C4),  115.6 (C6), 34.1 (C11), 32.9 (C7), 30.3 (C8), 27.8 (C12)  

 IR: (ATR, cm
-1

) 

  3184 (br), 3042 (w), 2934 (w), 2908 (w), 1703 (s), 1613 (w), 1591 (m), 1503 (w), 

1455 (s), 1441 (m), 1425 (m), 1409 (m), 1373 (m), 1280 (m), 1262 (w), 1236 (s), 

1192 (s), 1109 (w), 1041 (w), 990 (w), 974 (s), 930 (w), 909 (w), 845 (w), 821 

(m), 747 (s), 688 (w). 

 MS: (EI, 70 eV, m/z) 

  220 (16, M
+
), 137 (16), 107 (100) 

 TLC: Rf 0.06 (4:1 hexanes/ethyl acetate) [UV, CAM] 

 Analysis: C13H16O3 (220.27) 

 Calcd: C, 70.89; H,  7.32%  

 Found: C, 71.12; H,  7.24% 

 

 

Preparation of (E)-2-(7-Hydroxyhept-3-en-1-yl)phenol (140) [DJK-15-84] 

 

 To a 50-mL Schlenk flask under argon was added lithium aluminium hydride (126 mg, 

3.3 mmol, 1.5 equiv)  and THF (4 mL). The flask was placed in an ice bath for 10 min. Ester 138 
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(520 mg, 2.2 mmol) was dissolved in THF (4 mL) and added dropwise to the cold solution. The 

solution was then allowed to stir at 0 
o
C for 2 h. The flask was then once again placed in an ice 

bath for 15 min. The reaction was quenched by the addition of water (2 mL, dropwise) with 

substantial gas evolution and the formation of copious amounts of solids. After addition of water 

was complete, a further 5 mL of water were added, followed by dropwise addition of 6 M HCl to 

pH <2. The resulting biphasic mixture was transferred to a 125-mL separatory funnel and then 

was shaken well. The layers were separated and the aq. layer was extracted with diethyl ether (3x 

20mL). The organic layers were combined, washed with brine (15 mL), dried over MgSO4, 

filtered and concentrated by rotary evaporation (30 
o
C, 3 mm Hg). The resulting material was 

dissolved in 10 mL of ether and adsorbed onto Celite. Purification by silica gel flash column 

chromatography (3:1 hexanes/ethyl acetate, 20 mm diameter, 17 cm SiO2) followed by bulb-to-

bulb distillation afforded 416 mg (91%) of 140 as a clear oil. 

Data for 140: 

 bp: 140 
o
C, (ABT), 0.05 mm Hg 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.17–7.07 (m, 2H, HC(3), HC(5)), 6.90 (t, J = 8.0 Hz, 1H, HC(4)), 6.79 (d, J = 

8.2 Hz, 1H, HC(6)), 5.56 (dt, J = 15.1, 6.5 Hz, 1H, HC(9)), 5.48 (dt, J = 15.6, 6.5 

Hz, 1H, HC(10)), 3.65 (t, J = 6.5 Hz, 2H, HC(13)), 2.71 (dd, J = 8.3, 6.8 Hz, 2H, 

HC(7)), 2.35 (q, J = 7.4 Hz, 2H, HC(8)), 2.12 (q, J = 6.8 Hz, 2H, HC(11)), 1.65 

(p, J = 6.8 Hz, 2H, HC(12)). 

 
13

C NMR:  (126 MHz, CDCl3) 

  δ 154.2 (C1), 130.8 (C10), 130.5 (C5), 130.3 (C9), 128.5 (C2), 127.3 (C3), 120.7 

(C4), 115.7 (C6), 62.6 (C13), 33.1 (C8), 32.2 (C12), 30.3 (C7), 29.0 (C11). 

 IR: (ATR, cm
-1

) 

  3307 (br), 3033 (w), 2932 (w), 2851 (w), 1607 (w), 1592 (w), 1504 (w), 1489 (w), 

1455 (m), 1354 (w), 1238 (m), 1178 (w), 1153 (w), 1094 (w), 1042 (m), 1015 (w), 

968 (w) , 929 (w), 847 (w), 750 (s). 

 MS:  (EI, 70 eV, m/z) 

  206 (20, M
+
), 120 (14), 107 (100) 

 TLC: Rf 0.1 (4:1 hexanes/ethyl acetate) [UV, CAM] 
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 Analysis: C13H18O2 (206.29) 

 Calcd: C,   75.69; H,  8.80%  

 Found: C,   75.48; H,  8.56% 

 

Preparation of (E)-2-(7-Methoxyhept-3-en-1-yl)phenol (141) [A, DJK-EK9014], [B, DJK-

16-22] 

 

 

This compound was prepared in two ways:  

Method A:  

 To a 10-mL Schlenk flask in a glovebox was added  NaH (27 mg, 1.1 mmol, 2.1 equiv). 

The flask was transferred to the Schlenk line and THF (1.5 mL) was added. To this was added  

the alcohol 140 (103 mg, 0.5 mmol) in THF (0.5 mL). The solution was stirred for 15 min at rt 

and MeI (34 μL, 0.55 mmol, 1.1 equiv) was added dropwise. The solution was then allowed to 

stir at rt for 16 h. The reaction was quenched by the addition of water (1 mL) and 1 M HCl (0.5 

mL). The mixture was transferred to a 60-mL separatory funnel, diluted with ether (10 mL) and 

water (10 mL) and the pH adjusted to <2 with 3 M HCl. The layers were separated and the aq. 

layer was extracted  with ether (2x 10 mL). The organic layers were combined, washed with 

brine (15 mL), dried over MgSO4 and concentrated by rotary evaporation (30 
o
C, 3 mm Hg) . 

Purification by silica gel flash column chromatography (12:1 hexanes/ethyl acetate, 20 mm 

diameter, 16 cm SiO2)  afforded 63 mg (57%) of 141 as a clear oil.  

Method B: 
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 To a 10-mL Schlenk flask was added 140', (368 mg, 1.3 mmol) and THF (15 mL). The 

flask was cooled to -76 
o
C (internal temperature, dry ice/i-PrOH). BuLi (2.3 M, 620 μL, 1.43 

mmol, 1.1 equiv) was added via syringe and the solution was allowed to stir for for 1 h. 

Triisopropyl borate (489 mg,  2.6 mmol, 2.0 equiv) was added via syringe and the solution was 

allowed to warm to rt. After stirring for 6 h at rt, the flask was placed in an ice bath. In a separate 

25-mL RB-flask, a basic hydrogen peroxide solution was prepared by combining 20 mL of 30% 

H2O2 with 2 g of NaOH. A portion of this solution (2 mL) was then added dropwise to the flask 

containing the borate (strong exotherm) followed by the remaining 8 mL of basic peroxide and 

the solution allowed to stir for 5 h at rt. The excess peroxide solution was quenched with sat. aq. 

Na2S2O3. After the allotted time had passed, the mixture was transferred to a 125-mL separatory 

funnel and sat. aq. Na2S2O3 was added until no more peroxide was evident  (Quantifix test strip). 

The mixture was then diluted with ether (15 mL) and water (15 mL) and acidified with 1 M HCl 

to pH <2. The layers were separated and the aq. layer was extracted with ether (3x 10 mL). The 

organic layers were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography (12:1 

hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) followed by bulb-to-bulb vacuum 

distillation afforded 213 mg of 141 as a clear oil (76%).   

 

Data for 141: 

 bp: 100 
o
C (ABT), 0.05 mm Hg  

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.15–7.05 (m, 2H, HC(3), HC(5)), 6.88 (t, J = 7.6 Hz, 1H, HC(4)), 6.77 (d, J = 

8.0 Hz, 1H, HC(6)), 5.62–5.38 (m, 2H, HC(9), HC(10)), 3.45–3.32 (m, 5H, 

HC(13), HC(14)), 2.68 (dd, J = 8.6, 6.7 Hz, 2H, HC(7)), 2.32 (app q, J = 7.8 Hz, 

2H, HC(8)), 2.11–2.01 (app q, J = 7.7 Hz, 2H, HC(11)), 1.64 (app p, J = 7.2, 6.8 

Hz, 2H, HC(12)). 

 
13

C NMR:  (126 MHz, CDCl3) 

  δ 153.8 (C1), 130.7 (C9), 130.5 (C5), 130.3 (C10), 128.2 (C2), 127.4 (C3), 120.9 

(C4), 115.6 (C6), 72.4 (C13), 58.7 (C14), 33.0 (C8), 30.5 (C7), 29.5 (C11), 29.3 

(C12). 
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 IR: (ATR, cm
-1

) 

   3308 (br), 2930 (w), 2852 (w), 1607 (w), 1593 (w), 1504 (w), 1489 (w), 1455 (s), 

1353 (w), 1234 (m), 1179 (m), 1099 (m), 1042 (w), 968 (m), 931 (w), 847 (w), 

750 (s).  

 MS:  (EI, 70 eV, m/z) 

  220 (17, M
+
), 149 (15), 107 (100), 81 (35) 

 TLC: Rf 0.33 (4:1 hexanes/ethyl acetate) [UV, CAM] 

 Analysis: C14H20O2 (220.31) 

 Calcd: C,   76.33; H,  9.15%  

 Found: C,   76.10; H,  8.91% 

 

Optimization of the Phenoxysulfenylation Reaction (Table 17) 

 

General Procedure  

 To a 1-dram vial flushed with nitrogen and equipped with a stir bar was added the 

substrate followed by CH2Cl2. The electrophile and the catalyst were then added as solids and the 

solution was placed in an i-PrOH bath maintained at -20 
o
C by a Neslab IBC-4A cryocool for 

temperature control. The solution was allowed to equilibrate for 20 min and MsOH was added 

neat via syringe. The solution was stirred for the specified time, and then was quenched with 

Et3N (50 μL).  
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Phenoxysulfenylation in the presence of catalyst 62b (Table 17 Entry 1) [DJK-7-26] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (R)-62b (5.2 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.25 mL) were combined in a 1-

dram vial. The vial was cooled to -20 
o
C in an i-PrOH bath and MsOH (5 μL, 0.077 mmol, 0.77 

equiv) was added directly. The solution was stirred for 24 h, then was quenched with Et3N (50 

μL). The volatiles were removed under rotary evaporation (30 
o
C, 3 mm Hg) and the residue was 

then directly subjected to silica gel flash column chromatography (40:1 hexanes/ethyl acetate, 10 

mm diameter, 16 cm SiO2) to afford 11 mg (35%) of 143a as a white solid. 

 CSP-SFC: (2R,3S)-143a tmaj 13.6 min, (65.6%), (2S,3R)-143a tmin 18.8 min, (34.4%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5, sCO2/MeOH, 2 mL/min) 

 

Phenoxysulfenylation in the presence of catalyst 62e (Table 17 Entry 2) [DJK-7-30] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (S)-62e (5.2 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.25 mL) were combined in a 1-

dram v ial. The solution was cooled to -20 
o
C in an i-PrOH bath and MsOH (5 μL, 0.077 mmol, 

0.77 equiv) was added directly. The solution was stirred for 24 h, then was quenched with Et3N 

(50 μL). The volatiles were removed under rotary evaporation  (30 
o
C, 3 mm Hg) and the residue 

was then directly subjected to silica gel flash column chromatography (40:1 hexanes/ethyl 

acetate, 10 mm diameter, 16 cm SiO2) to afford 14 mg (46%) of 143a as a white solid. 
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 CSP-SFC: (2R,3S)-143a tmin 13.7 min, (5.1%), (2S,3R)-143a tmaj 18.9 min, (94.9%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5, sCO2/MeOH, 2 mL/min) 

 

Phenoxysulfenylation in the presence of catalyst 62d (Table 17 Entry 3) [DJK-7-29] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (S)-62d (5.5 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.25 mL) were combined in a 1-

dram vial. The solution was cooled to -20 
o
C in an i-PrOH bath and MsOH (5 μL, 0.077 mmol, 

0.77 equiv) was added directly. The solution was stirred for 24 h, then was quenched with Et3N 

(50 μL). The volatiles were removed under rotary evaporation (30 
o
C, 3 mm Hg) and the residue 

was then directly subjected to silica gel flash column chromatography (40:1 hexanes/ethyl 

acetate, 10 mm diameter, 16 cm SiO2) to afford 9 mg (27%) of 143a as a white solid. 

 CSP-SFC: (2R,3S)-143a tmin 13.6 min, (6.9%), (2S,3R)-143a tmaj 18.8 min, (93.1%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5, sCO2/MeOH, 2 mL/min) 

 

Phenoxysulfenylation at 0.15M concentration (Table 17 Entry 4) [DJK-10-90] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (S)-62e (5.2 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.63 mL) were combined in a 1-

dram vial. The solution was cooled to -20 
o
C in an i-PrOH bath and MsOH (5 μL, 0.077 mmol, 

0.77 equiv) was added directly. The solution was stirred for 24 h, then was quenched with Et3N 

(50 μL). The volatiles were removed under rotary evaporation (30 
o
C, 3 mm Hg) and the residue 
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was then directly subjected to silica gel flash column chromatography (5:1 

hexanes/dichloromethane, 10 mm diameter, 16 cm SiO2) to afford 29 mg (92%) of 143a as a 

white solid. 

 CSP-SFC: (2R,3S)-4a tmin 13.6 min, (5.4%), (2S,3R)-4a tmaj 18.8 min, (94.6%), (Chiralpak 

AD, 220 nm, 200 bar, 40 
o
C, 95:5 sCO2/MeOH, 2 mL/min) 

  

Phenoxysulfenylation with 0.5 equiv MsOH (Table 17 Entry 5) [DJK-18-54] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (S)-62e (5.2 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.63 mL) were combined in a 1-

dram vial. The solution was cooled to -20 
o
C in an i-PrOH bath and MsOH (3.3 μL, 0.051 mmol, 

0.51 equiv) was added directly. The solution was stirred for 24 h, then was quenched with Et3N 

(50 μL). The volatiles were removed under rotary evaporation (30 
o
C, 3 mm Hg) and the residue 

was then directly subjected to silica gel flash column chromatography (5:1 

hexanes/dichloromethane, 10 mm diameter, 16 cm SiO2) to afford 30.2 mg (95%) of 143a as a 

white solid. 

 CSP-SFC: (2R,3S)-143a, tmin 13.7 min, (4.7%), (2S,3R)-143a tmaj 18.9 min, (95.3%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5, sCO2/MeOH, 2 mL/min) 
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Phenoxysulfenylation with 0.25 equiv MsOH (Table 17 Entry 6) [DJK-18-55] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (S)-62e (5.2 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.63 mL) were combined in a 1-

dram vial. The solution was cooled to -20 
o
C in an i-PrOH bath and MsOH (1.7 μL, 0.026 mmol, 

0.26 equiv) was added directly. The solution was stirred for 24 h, then was quenched with Et3N 

(50 μL). The volatiles were removed under rotary evaporation (30 
o
C, 3 mm Hg) and the residue 

was then directly subjected to silica gel flash column chromatography (5:1 

hexanes/dichloromethane, 10 mm diameter, 16 cm SiO2) to afford 29.8 mg (94%) of 143a as a 

white solid. 

 CSP-SFC: (2R,3S)-143a tmin 13.4 min, (4.3%), (2S,3R)-143a tmaj 16.0 min, (95.7%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5 sCO2/MeOH, 2 mL/min) 

 

 Phenoxysulfenylation with 0.1 equiv MsOH (Table 17 Entry 7) [DJK-18-56] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (S)-62e (5.2 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.63 mL) were combined in a 1-

dram vial. The solution was cooled to -20 
o
C in an i-PrOH bath and MsOH (0.65 μL, 0.010 

mmol, 0.10 equiv) was added directly. The solution was stirred for 24 h, then was quenched with 

Et3N (50 μL). The volatiles were removed under rotary evaporation (30 
o
C, 3 mm Hg) and the 

residue was then directly subjected to silica gel flash column chromatography (5:1 
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hexanes/dichloromethane, 10 mm diameter, 16 cm SiO2) to afford 10.3 mg (32%) of 143a as a 

white solid (32%). 10.7 mg (51%) of 142a was recovered as well. 

 CSP-SFC: (2R,3S)-143a tmin 13.4 min, (5.1%), (2S,3R)-143a tmaj 16.0 min, (94.9%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5, sCO2/MeOH, 2 mL/min) 

 

Phenoxysulfenylation with 0.5 equiv EtSO3H (Table 17 Entry 8) [DJK-18-57] 

 

 Following General Procedure 10, 142a (21 mg, 0.1 mmol), 56 (25.6 mg, 0.1 mmol, 1.0 

equiv) and (S)-62e (5.2 mg, 0.01 mmol, 0.1 equiv) and CH2Cl2 (0.63 mL) were combined in a 1-

dram vial. The solution was cooled to -20 
o
C in an i-PrOH bath and EtSO3H (4 μL, 0.049 mmol, 

0.49 equiv) was added directly. The solution was stirred for 24 h, then was quenched with Et3N 

(50 μL). The volatiles were removed under rotary evaporation (30 
o
C, 3 mm Hg) and the residue 

was then directly subjected to silica gel flash column chromatography (5:1 

hexanes/dichloromethane, 10 mm diameter, 16 cm SiO2) to afford 30.6 mg (96%) of 143a as a 

white solid. 

 CSP-SFC: (2R,3S)-143a tmin 13.4 min, (5.7%), (2S,3R)-143a tmaj 16.0 min, (94.3%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5 sCO2/MeOH, 2 mL/min) 

 

Descriptive Phenoxysulfenylation of Alkenes (Table 18) 

 

General Procedure  

 To a 10-mL, oven-dried flask equipped with a magnetic stir bar under an argon 

atmosphere was added substrate and CH2Cl2. The catalyst and the electrophile were added as 

solids and allowed to dissolve to obtain a clear or pale yellow solution. The reaction vessel was 

placed in an i-PrOH bath kept at constant temperature by means of a Neslab IBC-4A cryocool 

with probe. The reaction mixture was cooled to the appropriate reaction temperature and the 
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internal temperature was checked. After the temperature stabilized to +/- 2 
o
C, MsOH was added 

to the stirring reaction mixture via syringe. (Note: It is important to not let the acid touch the 

walls of the reaction vessel as it may immediately freeze.) After addition of the acid, rapid 

formation of a yellow color can be observed. The reaction mixture was then stirred for the 

appropriate time. Over the course of the reaction, white crystals of phthalimide precipitate out of 

the mixture. After the reaction is complete as judged by TLC and 
1
H NMR spectroscopy, Et3N 

was added directly to the cold reaction mixture. The flask was then allowed to warm to rt, 

whereupon the white crystals slowly dissolve to afford a homogenous solution. This solution was 

then either: (1) poured into a separatory funnel containing 1 M NaOH solution, shaken well, 

extracted with dichloromethane, dried and concentrated or (2) directly concentrated. 

Subsequently 
1
H NMR spectra of the crude residue was recorded. Products were purified by 

silica flash chromatography and analytically pure samples were obtained by recrystallization or 

distillation as specified.   
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Preparation of (2S,3R)-2-Phenyl-3-(phenylthio)chromane (143a) (Table 18 Entry 1) [DJK-

13-98] 

 

 Following General Procedure 11, 142a (210 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

allowed to warm to rt, whereupon the white solid dissolved. The solution was transferred to a 60-

mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). The 

phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The organic phases 

were combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 
o
C, 3 mm 

Hg). Purification by silica gel flash column chromatography (40:1, hexanes/ethyl acetate, 20 mm 

diameter, 16 cm SiO2) followed by recrystallization from hexanes (3 mL) afforded, in two crops, 

268 mg (84%) of 143a as white needles.  

Data for 143a: 

 mp: 121-122 
o
C (hexanes) 

 
1
H NMR:  (500 MHz, CDCl3)  

  δ 7.41–7.32 (m, 5 H, HC(aryl)), 7.30 (m, 2H, HC(aryl)), 7.26 (m, 3 H, HC(aryl)), 

7.20 (t, J = 7.8 Hz, 1H, HC(7)), 7.08 (d, J = 7.5 Hz, 1H, HC(5)), 6.97 (d, J = 8 

Hz, 1H, HC(8)), 6.94 (t, J = 8 Hz, 1H, HC(6)), 5.09 (d, J = 7.8 Hz, 1H, HC(2)), 

3.81 (ddd, J = 9.5, 7.7, 5.2 Hz, 1H, HC(3)), 3.15 (dd, J = 16.6, 5.1 Hz, 1H, 

HC(4)), 2.99 (dd, J = 16.6, 9.1 Hz, 1H, HC(4)) 
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C NMR:  (126 MHz, CDCl3) 

  δ 154.3 (C9), 139.4 (C15), 133.7 (C11), 133.3 (C17), 129.5 (C5), 129.1 (C13), 

128.6 (C12), 128.6 (C14), 128.1 (C7), 127.7 (C18), 127.3 (C16), 121.0 (C6), 

120.7 (C10), 116.8 (C8), 81.2 (C2), 47.2 (C3), 31.8 (C4).  

 IR:  (ATR, cm
-1

) 

  2912 (w), 1583 (w), 1487 (m), 1449 (w), 1439 (w), 1427 (w), 1306 (w), 1277 (w), 

1222 (m), 1205 (w), 1193 (w), 1150 (w), 1111 (w), 1086 (w), 1069 (w), 1024 (w), 

1000 (m), 969 (w), 904 (w), 851 (w), 831 (w), 797 (w), 757 (s), 750 (s), 727 (w), 

716 (m), 700 (s). 

 MS:  (EI, 70 eV, m/z) 

  318 (36, M
+
), 208 (40), 200 (100), 199 (98), 119 (19) 

 TLC: Rf 0.48 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -40.0 (c = 0.87, CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

 CSP-SFC: (2R,3S)-143a tmin 13.4 min, (5.1%), (2S,3R)-143a tmaj 18.5 min, (94.9%) 

(Chiralpak AD, 220 nm, 200 bar, 40 
o
C, 95:5, sCO2/MeOH, 2 mL/min) 

 Analysis: C21H18OS (318.43) 

 Calcd:   C, 79.21; H, 5.70%  

 Found:  C, 78.91; H, 5.62% 

 

Preparation of (2S,3R)-6-Methyl-2-phenyl-3-(phenylthio)chromane (143b) (Table 18 Entry 

2) [DJK-CV-1410] 

 

 Following General Procedure 11, 142b (224 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-
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PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

the mixture was then allowed to warm to rt, whereupon the white solid dissolved. The solution 

was transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M 

NaOH (15 mL). The phases were separated and the aq. layer was extracted with 15 mL of 

CH2Cl2. The organic phases were combined, dried over MgSO4, filtered and concentrated by 

rotary evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography 

(4:1, hexanes/CHCl3 to 3:1, hexanes/CHCl3, 20 mm diameter, 20 cm SiO2) followed by 

recrystallization from hexanes (3 mL) afforded, in two crops, 272 mg (82%) of 143b as white 

needles.  

Data for 143b: 

 mp:  114-115 
o
C (hexanes) 

 
1
H NMR:   (500 MHz,CDCl3)  

  δ 7.40–7.29 (m, 7H, HC(aryl)), 7.27–7.23 (m, 3H, HC(aryl))), 7.00 (d, J = 8.5 Hz, 

1H, HC(7)), 6.88, (s, 1H, HC(5)), 6.87 (d, J = 8.5 Hz, 1H, HC(8)), 5.06 (d, J = 7.7 

Hz, 1H, HC(2)), 3.80 (ddd, J = 8.8, 7.6, 5.2 Hz, 1H, HC(3)), 3.09 (dd, J = 16.6, 

5.2 Hz, 1H, HC(4)), 2.95 (dd, J = 16.6, 8.9 Hz, 1H, HC(4)), 2.31 (s, 3H, HC(19)). 

 
13

C NMR:  (126 MHz,CDCl3) 

  δ 152.1 (C9), 139.6 (C15), 133.8 (C11), 133.2 (C17), 130.2 (C6), 129.9 (C5), 

129.1 (C13), 128.7 (C7), 128.6 (C12), 128.5 (C14), 127.7 (C18), 127.3 (C16), 

120.3 (C10), 116.5 (C8), 81.1 (C2), 47.3 (C3), 31.7 (C4), 20.8 (C19).   

 IR:  (ATR, cm
-1

)  

  2923 (w), 1588 (w), 1497 (m), 1474 (w), 1457 (w), 1436 (w), 1301 (w), 1239 (m), 

1227 (s), 1148 (w), 1127 (w), 1027 (w), 988 (m), 937 (w), 909 (w), 880 (w), 852 

(w), 831 (m), 818 (w), 798 (w), 745 (s), 729 (w), 691 (s).                                                                                                                 

 MS: (EI, 70 eV, m/z) 

  332 (60, M
+
), 200 (88), 199 (80),  133 (60),  91 (100)  

 TLC: Rf 0.67 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -32.9 (c = 0.88 in CHCl3) 
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 CD: (-), Cotton sign, 230-280 nm 

 CSP-SFC: (2R,3S)-143b tmin 10.2 min (5.0%), (2S,3R)-143b tmaj 14.3 min (95.0%) (Chiralpak 

AD, 220 nm, 200 bar, 40 
o
C, 85:15 sCO2/MeOH, 2 mL/min) 

 Analysis: C22H20OS (332.46)  

 Calcd:  C, 79.48; H, 6.06%  

 Found:  C, 79.15; H, 5.97% 

 

Preparation of (2S,3R)-8-Methyl-2-phenyl-3-(phenylthio)chromane (143c) (Table 18 Entry 

3) [DJK-CV-1411] 

 

 Following General Procedure 11, 142c (224 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

the mixture was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). 

The phases were separated and the aq. layer was extracted with 15 mL CH2Cl2. The organic 

phases were combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 

o
C, 3 mm Hg). Purification by silica gel flash column chromatography (60:1, hexanes/ethyl 

acetate then 40:1, hexanes/ethyl acetate, 30 mm diameter, 16 cm SiO2) afforded a white solid.  

Recrystallization from hexanes (3 mL) afforded, in two crops, 259 mg (78%) of 143c as white 

needles (78%).  
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Data for 143c: 

 mp: 89-90 
o
C (hexanes) 

 
1
H NMR:  (500 MHz, CDCl3)  

  δ 7.38–7.30 (m, 5H, HC(aryl)), 7.28 (d, J = 2.1 Hz, 2H, HC(aryl)), 7.25–7.19 (m, 

3H, HC(aryl)), 7.05 (d, J = 7.5 Hz, 1H, HC(5)), 6.88 (dd, J = 7.7, 1.9 Hz, 1H, 

HC(7)), 6.81 (t, J = 7.4 Hz, 1H, HC(6)), 5.11 (d, J = 7.6 Hz, 1H, HC(2)), 3.75 

(ddd, J = 8.9, 7.5, 5.0 Hz, 1H, HC(3)), 3.08 (dd, J = 16.6, 5.1 Hz, 1H, HC(4)), 

2.95 (dd, J = 16.5, 8.8 Hz, 1H, HC(4)), 2.23 (s, 3H, HC(19)). 

 
13

C NMR:  (101 MHz, CDCl3)  

  δ 152.4 (C9), 139.9 (C15), 133.9 (C11), 133.0 (C17), 129.2 (C5), 129.2 (C16), 

128.6 (C13), 128.4 (C18), 127.6 (C14), 127.1 (C7, C16), 126.0 (C10), 120.4 (C6), 

120.1 (C8), 81.0 (C2),  47.3 (C3), 31.8 (C4), 16.4 (C19). 

 IR:  (ATR, cm
-1

) 

  1594 (w), 1467 (m), 1432 (w), 1379 (w), 1304 (w), 1259 (w), 1239 (w), 1204 (s), 

1101 (w), 1072 (w), 1026 (w), 985 (m), 959 (w), 924 (w), 910 (w), 828 (w), 798 

(w), 757 (s), 744 (s), 728 (m), 699 (s).      

  MS: (EI, 70 eV, m/z) 

  332 (43, M
+
), 222 (48), 200 (100), 199 (60), 149 (20),  133 (41) 

 TLC: Rf 0.77 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -4.5 (c = 0.88 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

 CSP-SFC:  (2R,3S)-143c tmin 10.5 (4.0%), (2S,3R)-143c tmaj 11.8 (96.0%) (Chiralpak AD, 220 

nm, 200 bar, 40 
o
C, 95:5, sCO2/MeOH, 2 mL/min) 

 Analysis: C22H20OS (332.46) 

 Calcd:  C, 79.48; H, 6.06%  

 Found:  C, 79.54; H, 6.19% 
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Preparation of (2R,3S)-3-Phenyl-2-(phenylthio)-2,3-dihydro-1H-benzo[f]chromene (4d) 

(Table 18 Entry 4) [DJK-12-57] 

 

 Following General Procedure 11, 143d (260 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). 

The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The organic 

phases were combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 

o
C, 3 mm Hg).  Purification by silica gel flash column chromatography (60:1, hexanes/ethyl 

acetate then 40:1, hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) followed by 

recrystallization (hexanes, 3 mL, ether, 0.2 mL) afforded, in two crops, 290 mg (79%) of 143d as 

pale pink prisms. 
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Data for 143d: 

 mp:  136-138 
o
C (hexanes/ether) 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.83 (d, J = 7.8 Hz, 1H, HC(5)), 7.77 (d, J = 8.5, 1H, HC(8)), 7.72 (d, J = 8.9 

Hz, 1H, HC(9)), 7.53 (dd, J = 8.3, 7.0 Hz, 1H, HC(7)), 7.46–7.38 (m, 4H, 

HC(aryl), HC(6)), 7.38–7.27 (m, 4H, HC(aryl)), 7.27–7.22 (m, 3H HC(aryl)), 7.19 

(d, 1H, 8.9 Hz, HC(10)), 5.15 (d, J = 8.0 Hz, 1H, HC(2)), 3.95 (ddd, J = 8.9, 8.0, 

5.6, 1H, HC(3)), 3.49 (dd, J = 16.8, 5.6 Hz, 1H, HC(4)), 3.26 (dd, J = 16.8, 8.9 

Hz, 1H, HC(4)). 

 
13

C NMR: (101 MHz, CDCl3) 

  δ 152.0 (C11), 139.1 (C19), 133.9 (C14), 133.3 (C21), 132.9 (C12), 129.4 (C13), 

129.2 (C17), 128.8 (C18), 128.7 (C5), 128.7 (C16), 128.6 (C9), 127.8 (C22), 

127.5 (C20), 126.9 (C7), 123.8 (C6), 122.0 (C8), 118.9 (C10), 112.7 (C12), 81.2 

(C2), 47.4 (C3), 28.9 (C4).   

 IR:  (ATR, cm
-1

) 

  3054 (w), 1621 (w), 1596 (m), 1508 (w), 1466 (m), 1456 (w), 1433 (m), 1397 (m), 

1259 (w), 1227 (s), 1166 (m), 1140 (w), 1080 (w), 1066 (m), 1024 (w), 991 (s), 

971 (s), 913 (w), 862 (w), 847 (w), 818 (s), 801 (m), 767 (s), 746 (s), 736 (s), 703 

(s). 

 MS:  (EI, 70 eV, m/z) 

  368 (65, M
+
), 318 (25), 258 (44), 208 (32), 200 (97), 199 (100), 169 (49), 168 

(46) 

 TLC: Rf 0.74 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -89.4 (c = 0.86 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

CSP-HPLC: (2S,3R)-143d tmin 11.3 (6.8%), (2R,3S)-143d tmaj 17.6 (93.2%) (Chiralpak AD, 

220 nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C25H20OS (368.49) 

 Calcd:  C, 81.49; H, 5.47% 

 Found:  C, 81.32; H, 5.50% 
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Preparation of (2S,3R)-6-Methoxy-2-phenyl-3-(phenylthio)chromane (4e) (Table 18 Entry 

5) [DJK-CV-1412] 

 

 Following General Procedure 11, 142e (240 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

the mixture was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography (60:1, 

hexanes/ethyl acetate to 40:1, hexanes/ethyl acetate, 30 mm diameter, 18 cm SiO2) followed by 

recrystallization from hexanes (3 mL) afforded, in two crops, 293 mg (84%) of 143e white 

needles.  

Data for 143e: 

 mp:  128-129 
o
C (hexanes) 

 
1
H NMR:  (500 MHz, CDCl3) 

   δ 7.42–7.26 (m, 7H, HC(aryl)), 7.25–7.19 (m, 3H, HC(aryl)), 6.87 (d, J = 8.9 Hz, 

1H, HC(8)), 6.75 (dd, J = 8.9, 2.8 Hz, 1H, HC(7)), 6.58 (d, J = 3.1, 1H, HC(5)), 

5.02 (dd, J = 7.7, 1.2 Hz, 1H, HC(2)), 3.83–3.72 (m, 4H, HC(3), HC(19)), 3.09 

(dd, J = 16.7, 5.2 Hz, 1H, HC(4)), 2.95 (dd, J = 16.7, 8.9 Hz, 1H, HC(4)). 
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C NMR: (126 MHz, CDCl3) 

  δ 153.9 (C9), 148.3 (C6), 139.5 (C15), 133.7 (C11), 133.2 (C17), 129.1 (C13), 

128.6 (C12), 128.6 (C14), 127.7 (C18), 127.3 (C16), 121.3 (C10), 117.5 (C8), 

114.2 (C7), 113.9 (C5), 81.1 (C2), 56.0 (C19), 47.2 (C3), 32.1 (C4).   

 IR:  (ATR, cm
-1

) 

  2835 (w), 1583 (w), 1496 (m), 1457 (w), 1429 (m), 1293 (w), 1245 (w), 1224 (s), 

1209 (s), 1151 (m), 1122 (w), 1086 (w), 1040 (s), 994 (s), 934 (w), 909 (w), 875 

(w), 851 (w), 820 (m), 787 (w), 742 (s), 727 (s). 

 MS:  (EI, 70 eV, m/z) 

  348 (69, M
+
), 199 (42), 149 (56), 91 (100) 

 TLC: Rf 0.44 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -36.2 (c = 0.96 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

 CSP-SFC: (2R,3S)-143e tmin 13.9 min (5.6%), (2S,3R)-143e tmaj 16.0 min (94.4%) (Chiralpak 

AD, 220 nm, 200 bar, 40 
o
C, 85:15, sCO2/MeOH, 2mL/min) 

 Analysis: C22H20O2S (348.46) 

 Calcd: C, 75.83; H, 5.79%  

 Found: C, 76.04; H, 5.57% 

 

Preparation of (2S,3R)-6-Bromo-2-phenyl-3-(phenylthio)chromane (4f) (Table 18 Entry 6) 

[DJK-12-58] 

 

 Following General Procedure 11, 142f (289 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 
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mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 36 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

the mixture was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography (60:1, 

hexanes/ethyl acetate, then 40:1, hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) followed 

by recrystallization (hexanes, 3 mL, ether, 0.2 mL), afforded, in two crops, 320 mg (81%) of 

143f a white solid.  

Data for 143f: 

 mp: 138-139 
o
C (hexanes/ether) 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.40–7.24 (m, 11H, HC(aryl), HC(7)), 7.19 (d, J = 2.4 Hz, 1H, HC(5)), 6.85 (d, 

J = 8.7 Hz, 1H, HC(8)), 5.10 (d, J = 7.3 Hz, 1H, HC(2)), 3.77 (ddd, J = 8.7, 7.3, 

5.1 Hz, 1H, HC(3)), 3.07 (dd, J = 16.8, 5.1 Hz, 1H, HC(4)), 2.92 (dd, J = 16.7, 8.5 

Hz, 1H, HC(4)). 
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C NMR:  (126 MHz, CDCl3) 

  δ 153.4 (C9), 139.1 (C15), 133.4 (C17), 133.3 (C11), 132.1 (C5), 131.0 (C7), 

129.2 (C13), 128.7 (C12, C14), 128.0 (C18), 127.0 (C16), 122.8 (C6), 118.6 (C8), 

113.0 (C10), 81.0 (C2), 46.7 (C3), 31.0 (C4).   

 IR:  (ATR, cm
-1

) 

  3037 (w), 1573 (w), 1473 (m), 1432 (w), 1405 (w), 1288 (w), 1232 (s), 1182 (m), 

1121 (m), 1088 (w), 1067 (w), 1027 (w), 977 (m), 935 (w), 911 (w), 890 (m), 866 

(m), 844 (w), 830 (w), 815 (w), 799 (w), 776 (w), 743 (s), 699 (s).  

 MS:  (EI, 70 eV, m/z) 

  397 (18, M
+
), 395 (18, M

+
), 199 (100), 91 (88)   

 TLC: Rf 0.44 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -49.2 (c = 0.84 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 
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CSP-HPLC: (2R,3S)-143f, tmin 9.3 (6.2%), (2S,3R)-143f, tmaj 10.4 (93.8%) (Chiralpak AD, 220 

nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C21H17BrOS (397.33) 

 Calcd: C, 63.48; H, 4.31%  

 Found: C, 63.38; H, 4.30% 

 

Preparation of (2S,3R)-6-Chloro-2-phenyl-3-(phenylthio)chromane (4g) (Table 18 Entry 7) 

[DJK-17-19] 

 

 Following General Procedure 11, 142g (245 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 36 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

the mixture was allowed to warm to rt, whereupon the white solid dissolved. The material was 

transferred to a 250-mL RB-flask using 20 mL CH2Cl2 and concentrated by rotary evaporation 

(30 
o
C, 3 mm Hg). The material was then redissolved in 10 mL of CH2Cl2 and then adsorbed 

onto Celite. Purification by silica gel flash column chromatography (5:1, hexanes/CH2Cl2, 20 

mm diameter, 16 cm SiO2) followed by recrystallization from hexanes (3 mL) afforded, in two 

crops, 248 mg (70%) of 143g as white needles.  
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Data for 143g: 

 mp: 144-145 
o
C (hexanes) 

 
1
H NMR: (500 MHz, CDCl3)  

  δ 7.38–7.29 (m, 7H, HC(aryl)), 7.29–7.25 (m, 3H, HC(aryl)), 7.15 (dd, J = 8.7, 

2.5 Hz, 1H, HC(7)), 7.04 (d, J = 2.6 Hz, 1H, HC(5)), 6.90 (d, J = 8.7, 1H, HC(8)), 

5.09 (d, J = 7.3 Hz, 1H, HC(2)), 3.77 (ddd, J = 8.5, 7.3, 5.1 Hz, 1H, HC(3)), 3.07 

(dd, J = 16.8, 5.1 Hz, 1H, HC(4)), 2.92 (dd, J = 16.8, 8.5 Hz, 1H, HC(4)). 
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C NMR:  (126 MHz, CDCl3) 

  δ 152.9 (C9), 148.7 (C6) 139.1 (C15), 133.4 (C17), 133.3 (C11), 129.2 (C13), 

129.1 (C5), 128.7 (C12), 128.1 (C7), 128.0 (C14/C18), 127.0 (C16), 125.7 

(C14/C18), 122.2 (C10), 118.1 (C8), 81.0 (C2), 46.7 (C3), 31.2 (C4).   

 IR:  (ATR, cm
-1

) 

  3059 (w), 1578 (w), 1476 (m), 1432 (w), 1411 (w), 1290 (w), 1235 (s), 1187 (m), 

1123 (m), 1068 (w), 1027 (w), 981 (m), 935 (m), 898 (m), 875 (s), 849 (w), 831 

(m), 794 (w), 781 (w), 743 (s), 699 (s). 

 MS:  (EI, 70 eV, m/z) 

  354 (12, M
+
), 352 (20, M

+
),  247 (44),  199 (89), 149 (36),  133 (41),  107 (23), 91 

(80) 

 TLC: Rf 0.45 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -42.6 (c =1.12 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

CSP-HPLC:  (2R,3S)-143g tmin 9.2 (6.2%), (2S,3R)-143g tmin 12.4 (93.8%) (Chiralpak AD, 220 

nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C21H17ClOS (352.88) 

 Calcd: C, 71.48; H, 4.86% 

 Found: C, 71.73; H, 5.11% 
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Preparation of (2S,3R)-6-Fluoro-2-phenyl-3-(phenylthio)chromane (143h) (Table 18 Entry 

8) [DJK-CV-1409] 

 

 Following General Procedure 11, 142h (228 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 36 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

the mixture was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). 

The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The organic 

phases were combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 

o
C, 3 mm Hg). Purification by silica gel flash column chromatography (6:1, hexanes/CHCl3 then 

4:1, then 3:1, hexanes/CHCl3, 20 mm diameter, 17 cm SiO2) followed by recystallization from 

hexanes (3 mL) afforded, in two crops, 289 mg (86%) of 143h as white needles. 

Data for 143h: 

 mp: 111-112 
o
C (hexanes) 

 
1
H NMR:  (500 MHz,  CDCl3) 

  δ 7.38–7.32 (m, 5H, HC(aryl)), 7.30 (m, 2H, HC(aryl)), 7.28–7.24 (m, 3H, 

HC(aryl)), 6.93–6.88 (m, 2H, HC(8), HC(5)), 6.81–6.74 (d, J = 8.4 Hz, 1H, 

HC(7)), 5.07 (d, J = 7.6 Hz, 1H, HC(2)), 3.78 (ddd, J = 8.6, 7.5, 5.2 Hz, 1H, 

(HC(3)), 3.10 (dd, J = 16.9, 5.2 Hz, 1H, HC(4)), 2.95 (dd, J = 16.8, 8.8 Hz, 1H, 

HC(4)). 
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C NMR:  (126 MHz, CDCl3) 

  δ 157.2 (d, J = 238.9 Hz, C6), 150.3 (C9), 139.2 (C15), 133.4 (C11), 133.4 (C17), 

129.2 (C13), 128.7 (C12,C14), 127.9 (C18), 127.2 (C16), 121.8 (d, J = 7.4 Hz, 

C10), 117.7 (d, J = 8.1 Hz, C8), 115.4 (d, J = 22.8 Hz, C7), 114.9 (d, J = 23.2 Hz, 

C5), 81.1 (C2), 46.8 (C3), 31.7 (C4).   

 
19

F NMR:  (470 MHz, CDCl3) 

  δ -124.03 (app q, J = 7.3 Hz). 

 IR: (ATR, cm
-1

) 

   3072 (w), 1580 (w), 1491 (s), 1473 (m), 1458 (w), 1438 (w), 1429 (m), 1374 (w), 

1332 (w), 1283 (w), 1240 (m), 1222(s), 1203 (s), 1140 (m), 1103 (w), 1087 (w), 

1067 (w), 1036 (w), 984 (s), 948 (m), 933 (m), 911 (w), 873 (m), 850 (m), 827 

(m), 792 (m), 744 (s), 730 (s). 

 MS: (EI, 70 eV, m/z) 

  336 (33, M
+
), 226 (27), 199 (100), 91 (93)  

 TLC: Rf 0.49 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -23.4 (c = 0.94 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

 CSP-SFC: (2R,3S)-143h tmin 9.0 min (6.8%), (2S,3R)-143h tmaj 11.6 min (93.2%) (Chiralpak 

AD, 220 nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C21H17FOS (336.42) 

 Calcd: C, 74.97; H, 5.09%  

 Found: C, 74.73; H, 5.02% 
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Preparation of (2S,3R)-3-((2,6-Diisopropylphenyl)thio)-2-phenyl-6-

(trifluoromethyl)chromane (143i) (Table 18 Entry 9) [DJK-17-47] 

 

 Following General Procedure 11, 143i (276 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 103 (339 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and stirred at rt. MsOH (17 μL, 0.25 mmol, 0.25 equiv) was added directly via 

syringe. The solution was allowed to stir for 12 h at constant temperature during which time 

phthalimide precipitated. Upon consumption of the starting material (TLC, 
1
H NMR), the 

reaction was quenched with triethylamine (300 μL) and the mixture was allowed to warm to rt, 

whereupon the white solid dissolved. The material was transferred to a 250 mL RB-flask using 

20 mL of CH2Cl2 and concentrated by rotary evaporation (30 
o
C, 3 mm Hg) to afford a pale 

yellow residue. The material was then redissolved in 10 mL CH2Cl2 and adsorbed onto Celite. 

Purification by silica gel flash column chromatography of the adsorbed material (5:1, 

hexanes/CH2Cl2, 20 mm diameter, 16 cm SiO2) followed by recrystallization from hexanes (3 

mL) afforded, in two crops, 416 mg (89%) of 143i as white prisms.  

Data for 143i: 

 mp:  137-140 
o
C (hexanes) 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.44 (dd, J = 8.5 Hz, 2.2 Hz, 1H, HC(7)), 7.34 (m, 4H, HC(aryl)), 7.25 (m, 2H, 

HC(aryl)), 7.22–7.20 (br s, 1H, HC(5)), 7.18 (d, J = 7.7 Hz, 2H, HC(17)), 7.04 (d, 

J = 8.6 Hz, 1H, HC(8)), 5.19 (d, J = 5.5 Hz, 1H, HC(2)), 3.75 (p, J = 6.9 Hz, 2H, 

HC(19)), 3.50 (q, J = 5.6 Hz, 1H, HC(3)), 2.77 (d, J = 5.5 Hz, 2H, HC(4)), 1.18 

(d, J = 6.9 Hz, 12H, HC(20)). 
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C NMR: (126 MHz, CDCl3) 

   δ 156.6 (C15), 154.2 (C9), 139.6 (C11), 130.0 (C14), 128.8 (C13), 128.7 (C16), 

128.6 (C18), 127.1 (C5), 126.2 (C12), 125.5 (C7), 124.1 (C17), 120.6 (C4), 117.0 

(C8), 79.8 (C2) , 47.2 (C3), 31.8 (C19), 29.1 (C4), 24.7 (m, C20).   

 
19

F NMR:  (376 MHz, CDCl3)  

  δ -61.87 (s) 

 IR: (ATR, cm
-1

) 

  2961 (w), 2926 (w), 1738(w), 1620 (w), 1594 (w), 1507 (w), 1455 (w), 1380 (w), 

1361 (w), 1330 (s), 1292 (m), 1241 (s), 1188 (w), 1159 (s), 1115 (s), 1070 (w), 

1050 (w), 1032 (w), 990 (m), 971(m), 936 (w), 905 (m), 889 (m), 846 (m), 799 

(m), 781 (w), 748 (m), 740 (m), 696 (s). 

 MS:   (EI, 70 eV, m/z) 

  470 (25, M
+
), 283 (100),  276 (21),  194 (22), 149 (51) 

 TLC: Rf 0.65 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.:  [α]D
23

 = -7.0 (c = 0.9 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

 Analysis: C28H29F3OS (470.59) 

 Calcd: C, 71.46; H, 6.21%  

 Found: C, 71.38; H, 6.22% 
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Preparation of (2S,3R)-3-((2,6-Diisopropylphenyl)sulfonyl)-2-phenyl-6-(trifluoromethyl)-

chromane (155i) [DJK-17-48] 

 

 To determine enantiomeric composition, 143i was oxidized to the sulfone 155i. To a 4-

dram vial under nitrogen was added solid 143i (20 mg, 0.04 mmol, 1 equiv), followed by CH2Cl2 

(1mL) and solid mCPBA (18 mg, 0.11 mmol, 2.5 equiv). The resulting solution was stirred at rt 

for 3 h. The solution was then diluted with hexanes (3 mL) and directly purified by silica gel 

flash column chromatography (9:1, hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) to 

afford 22 mg of 155i as a white solid. The product sulfone was then analyzed by chiral stationary 

phase HPLC. 

Data for 155i: 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.56–7.44 (m, 2H, HC(7), HC(5)), 7.35 (d, J = 7.7 Hz, 3H, HC(aryl)), 7.31–7.27 

(m, 5H, HC(aryl)), 7.19 (dd, J = 6.7, 2.9 Hz, 2H, HC(aryl)), 7.08 (d, J = 8.5 Hz, 

1H, HC(8)), 5.82 (d, J = 4.4 Hz, 1H, HC(2)), 4.04 (p, J = 6.7 Hz, 2H, HC(19)), 

3.86 (app q, J = 5.8 Hz, 1H, HC(3)), 3.30 (dd, J = 17.5, 5.5 Hz, 1H, HC(4)), 3.03 

(dd, J = 17.5, 6.4 Hz, 1H, HC(4)), 1.30 (d, J = 6.7 Hz, 6H, HC(20)), 1.25 (d, J = 

6.7 Hz, 6H, HC(21)). 

 13
C NMR: (126 MHz, CDCl3) 

  δ 151.2, 138.2, 133.6, 129.1, 128.9, 126.6, 126.4, 126.2, 119.1, 117.4, 74.9, 62.5, 

30.0, 25.3, 25.2, 22.6. 

CSP-HPLC:   (2S,3R)-155i tmaj 6.9 min (95.2%) (2R,3S)-155i tmin 7.7 min (4.8%) (Chiralpak 

AD, 220 nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 
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Preparation of (2S,3R)-2-(Furan-2-yl)-3-(phenylthio)chromane (143j) (Table 19 Entry 1) 

[DJK-DR-9009] 

 

 For compound 143j, General Procedure 11 was modified as following: To a dried 10-mL 

Schlenk flask was added CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) and 

catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-PrOH 

bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 mmol, 

0.25 equiv) was added directly via syringe, and allowed to stir for 5 min. Substrate 142j (200 

mg, 1.0 mmol) was then added directly to the cold solution. The solution was allowed to stir for 

24 h at constant temperature during which time phthalimide precipitated. Upon consumption of 

the starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) 

and then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). 

The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The organic 

phases were combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 

o
C, 3 mm Hg). The material was dissolved in CH2Cl2 (10 mL) and adsorbed onto Celite. 

Purification by silica gel flash column chromatography (5:1, hexanes/CH2Cl2, 20 mm
 
diameter, 

16 cm SiO2), followed by recrystallization from hexanes (3 mL) afforded, in two crops, 271 mg 

(88%) of 143j as white needles.  

  



333 

 

Data for 143j: 

 mp:  72-73 
o
C (hexanes) 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.44–7.38 (m, 2H, HC(17)), 7.36–7.26 (m, 4H, HC(14), HC(16), HC(18)), 7.16 

(dd, J = 8.4, 7.4, 1H, HC(7)), 7.06 (d, J = 7.2 Hz, 1H, HC(5)), 6.96–6.88 (m, 2H, 

HC(8), HC(6)), 6.45–6.39 (m, 1H, HC(12), 6.35 (ddd, J = 3.2, 1.8, 1.0 Hz, 1H, 

HC(13), 5.09 (dd, J = 8.1, 1.1 Hz, 1H, HC(2)), 3.98 (ddd, J = 9.2, 8.1, 5.4, 1H, 

HC(3)), 3.21 (dd, J = 16.6, 5.4 Hz, 1H, HC(4)), 3.03–2.89 (dd, J = 16.6, 9.2 Hz, 

1H HC(4)). 

 
13

C NMR:  (126 MHz, CDCl3) 

  δ 153.7 (C9), 151.5 (C11), 142.9 (C14), 133.6 (C117), 132.9 (C15), 129.5 (C5), 

129.1 (C16), 128.0 (C7), 127.9 (C18), 121.2 (C6), 120.5 (C10), 116.9 (C8), 110.6 

(C13), 109.9 (C12), 74.6 (C2), 44.3 (C3), 31.7 (C4).  

 IR:  (ATR, cm
-1

) 

  3058 (w), 1733 (w), 1583 (m), 1504 (w), 1487 (m), 1476 (m), 1453 (m), 1439 (w), 

1349 (w), 1331 (w), 1301 (w), 1279 (w), 1234 (s), 1217 (m), 1190 (w), 1170 (w), 

1150 (m), 1111 (m), 1079 (w), 1033 (m), 1013 (m), 978 (s), 931 (m), 902 (m), 

885 (m), 876 (m), 846 (w), 820 (m), 778 (w), 747 (s), 728 (s), 703 (m). 

 MS:  (EI, 70eV, m/z) 

  308 (31, M
+
), 199 (29), 190 (46), 81 (100). 

 TLC: Rf 0.42 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -55.5 (c = 0.96 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

CSP-HPLC: (2R,3S)-143j tmin 8.7 min (7.5%), (2S,3R)-143j tmaj 9.7 min (92.5%) (Chiralpak 

AD, 220 nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C19H16O2S (308.40) 

 Calcd: C, 74.00; H, 5.23%  

 Found: C, 73.83; H, 5.16% 
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Preparation of (2R,3R)-3-(Phenylthio)-2-(thiophen-2-yl)chromane (143k) (Table 19 Entry 

2) [DJK-DR-9008] 

 

 Following General Procedure 11, 142k (216 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) was added. The flask was placed in an i-PrOH 

bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 mmol, 

0.25 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at constant 

temperature during which time phthalimide precipitated. Upon consumption of the starting 

material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and then was 

allowed to warm to rt, whereupon the white solid dissolved. The solution was transferred to a 60-

mL separatory funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). The phases were 

separated and the aq. layer was extracted with 15 mL of CH2Cl2. The organic phases were 

combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 
o
C, 3 mm Hg). 

Purification by silica gel flash column chromatography (60:1, hexanes/ethyl acetate then 40:1, 

hexanes/ethyl acetate, 30 mm diameter, 15 cm SiO2) afforded 278 mg (86%) of 143k as white 

prisms.   

Data for 143k: 

 mp:  98-99 
o
C (hexanes/ethyl acetate) 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.39 (m, 2H, HC(17)), 7.30 (m, 4H, HC(16), HC(18), HC(7)), 7.19 (t, J = 8.3 

Hz, 1H, HC(6)), 7.13 (d, J = 3.5 Hz, 1H, HC(12)), 7.06 (d, J = 7.5 Hz, 1H, HC(5), 

6.99 (t, J  = 4.0 Hz, 1H, HC(13)), 6.94 (m, 2H, HC(14), HC(8)), 5.36 (d, J = 7.6 

Hz, 1H, HC(2)), 3.80 (td, J = 8.1, 5.4 Hz, 1H, HC(3)), 3.21 (dd, J = 16.7, 5.3 Hz, 

1H, HC(4)), 2.99 (dd, J = 16.7, 8.7 Hz, 1H, HC(4)). 
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13
C NMR: (126 MHz,

 
CDCl3) 

  δ 153.6 (C9), 142.6 (C15), 133.4 (C17), 133.3 (C11), 129.5 (C13), 129.2 (C16), 

128.1 (C12), 127.9 (C18) , 126.8 (C6), 126.5 (C5), 126.0 (C7), 121.3 (C14), 120.4 

(C10), 117.0 (C8), 77.0 (C2), 47.7 (C3), 31.6 (C4).   

 IR:  (ATR, cm
-1

) 

  2923 (w), 1582 (w), 1485 (m), 1456 (w), 1437 (w), 1345 (w), 1305 (w), 1275 (w), 

1233 (w), 1219 (s), 1191 (m), 1149 (w), 1120 (w), 1104 (w), 1078 (m), 1042 (w), 

1026 (w), 991 (m), 965 (m), 900 (w), 846 (m), 839 (m), 757 (s), 747 (s), 710 (s). 

 MS:  (EI, 70 eV, m/z) 

  324 (15, M
+
),  215 (30),  205 (26),  97 (100) 

 TLC: Rf 0.42 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -49.8 (c = 0.95 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

CSP-HPLC: (2R,3R)-143k tmaj 26.6 min (93.9%), (2S,3S)-143k tmaj 34.2 min (6.1%) (Reverse-

Phase Chiralpak OJ-RH, 220 nm, 65:35, MeCN/H2O, 0.5 mL/min) 

 Analysis: C19H16OS2 (324.46) 

 Calcd: C, 70.33; H, 4.97%  

 Found: C, 69.93; H, 4.83% 

 

Preparation of (2S,3R)-2-Phenethyl-3-(phenylthio)chromane (143l) and (R)-2-((S)-3-

Phenyl-1-(phenylthio)propyl)-2,3-dihydrobenzofuran (144l) (Table 19 Entry 3) [DJK-DR-

9054] 

 Following General Procedure 11, 142l (238 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-
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PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (17 μL, 0.25 

mmol, 0.25 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated (30 
o
C, 3 mm Hg). 

The crude 143l/144l ratio (1.5:1) was established by 
1
H NMR spectroscopy. The material was 

dissolved in 10 mL of CH2Cl2 and adsorbed onto Celite. Purification by silica gel flash column 

chromatography of this material (60:1, hexanes/ethyl acetate then 40:1, hexanes/ethyl acetate, 30 

mm diameter, 14 cm SiO2) followed by bulb-to-bulb distillation afforded 258 mg (74%) of a 

1.5:1 mixture of 143l/144l as a clear oil.  

Data for mixture: 

 bp: 120
o
C (ABT), 0.05 mm Hg 

 1
H NMR: (500 MHz, CDCl3) 

  δ 7.51–7.40 (m, 5H, HC(aryl)), 7.32 (m, 13H, HC(aryl)), 7.25 (m, 7H, HC(aryl)), 

7.21–7.09 (m, 4H, HC(aryl)), 7.02 (d, J = 7.6 Hz, 1H, HC(aryl)), 6.97–6.81 (m, 

4H), 6.74 (d, J = 8.0 Hz, 1H)  

 IR:  (ATR, cm
-1

) 

  3025 (w), 2923 (w), 1599 (w), 1584 (m), 1488 (m), 1479 (m), 1455 (m), 1437 

(m), 1303 (w), 1231 (s), 1174 (w), 1111 (w), 1088 (w), 1066 (w), 1024 (w), 964 

(w), 942 (w), 872 (w), 796 (w), 744 (s).  

 MS:  (EI, 70 eV, m/z) 

  346 (73, M
+
), 145 (30), 131 (41), 117 (65), 91 (100), 69 (29) 

 TLC: Rf 0.49 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 CSP-SFC: (2R,3S)-143l, tmin 16.2 (3.4%), (2S,3R)-143l tmaj 17.7 (96.6%), (2S,10R)-144l, tmin 

13.3 (3.7%), (2S,10R)-144l tmaj 14.7 (96.3%) (Chiralpak AD, 220 nm, 95:5 

sCO2/MeOH, 2 mL/min) 
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 Analysis: C23H22OS (346.49) 

 Calcd: C, 79.73; H, 6.40%  

 Found: C, 79.87; H, 6.51% 

  

Diagnostic for 144l: 

 1
H NMR:  (500 MHz, CDCl3) 

   δ 4.86 (dt, J = 9.1, 7.4 Hz, 1H, HC(2)), 3.35 (dd, J = 15.9, 9.2 Hz, 1H, HC(3)), 

3.29 (ddd, J = 10.2, 7.0, 3.6 Hz, 1H, HC(10)), 3.22–3.15 (m, 2H, HC(3), HC(12)), 

2.88 (m, HC(12)),  2.26 (dddd, J = 14.3, 9.6, 7.1, 3.6 Hz, 1H, HC(11)), 1.95 (dtd, 

J = 14.4, 9.6, 4.9 Hz, 1H, HC(11)). 

 
13

C NMR:  (126 MHz, CDCl3) 

   δ 85.1 (C2), 53.9 (C10), 34.2 (C3), 33.1 (C12), 32.7 (C11) 

Diagnostic for 143l: 

 1
H NMR:  (500 MHz, CDCl3) 

  δ 4.06 (td, J = 8.4, 2.9 Hz, 1H, HC(2)), 3.45 (ddd, J = 9.0, 7.9, 5.3 Hz, 1H, 

HC(3)), 3.15–3.08 (m, 1H, HC(4)), 3.00–2.91 (m, 1H, HC(4)), 2.91–2.82 (m, 2H, 

HC(12)), 2.36 (dddd, J = 14.0, 10.0, 7.3, 3.0 Hz, 1H, HC(11)), 2.10 (dtd, J = 14.0, 

9.0, 5.0 Hz, 1H, HC(11)) 

 13
C NMR:  (126 MHz, CDCl3)  

  δ 77.4 (C2), 45.0 (C3), 35.0 (C11), 31.7 (C4), 31.4 (C12) 

  

Preparation of (S)-3-((2,6-Diisopropylphenyl)thio)-2,2-dimethylchromane (143m) (Table 19 

Entry 4) [DJK-DR-9079] 

 

 Following General Procedure 11, 142m (162 mg, 1.0 mmol) was weighed into a dried 

10-mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 103 (339 mg, 1.0 mmol, 1.0 

equiv) and catalyst  (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an 
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i-PrOH bath and cooled to 0 
o
C (probe). MsOH (17 μL, 0.25 mmol, 0.25 equiv) was added 

directly via syringe. The solution was allowed to stir for 24 h at constant temperature during 

which time phthalimide precipitated. Upon consumption of the starting material (TLC, 
1
H 

NMR), the reaction was quenched with triethylamine (300 μL) and then was allowed to warm to 

rt, whereupon the white solid dissolved. The solution was transferred to a 60-mL separatory 

funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). The phases were separated and 

the aq. layer was extracted with 15 mL of CH2Cl2. The organic phases were combined, dried 

over MgSO4, filtered and concentrated (30 
o
C, 3 mm Hg). The material was then dissolved in 10 

mL of CH2Cl2 and adsorbed onto Celite. Purification by silica gel flash column chromatography 

of this material (5:1, hexanes/CH2Cl2, 20 mm diameter, 16 cm SiO2) followed by 

recrystallization (EtOH, 5 mL), afforded, in two crops, 330 mg (93%) of 143m as white needles.  

Data for 143m: 

 mp:  74-75 
o
C (EtOH) 

 
1
H NMR:  (400 MHz, CDCl3) 

  δ 7.35 (t, J = 7.8 Hz, 1H, HC(15)), 7.18 (d, J = 7.7 Hz, 2H, HC(14)), 7.08 (t, J = 

8.1 Hz, 1H, HC(7)), 6.89 (d, J = 7.3 Hz, 1H, HC(5)), 6.83–6.75 (m, 2H, HC(6), 

HC(8)), 3.89 (p, J = 6.8 Hz, 2H, HC(16)), 3.16 (dd, J = 8.1, 6.9 Hz, 1H, HC(3)), 

2.72 (d, J = 7.2 Hz, 2H, HC(4)), 1.55 (s, 3H, HC(11)), 1.49 (s, 3H, HC(11)), 1.24 

(d, J = 6.8 Hz, 6H, HC(17)), 1.18 (d, J = 6.8 Hz, 6H, HC(17)). 

 
13

C NMR:  (101 MHz, CDCl3) 

  δ 154.2 (C12), 153.2 (C9), 129.7 (C15), 129.5 (C13), 129.4 (C7), 127.9 (C5), 

124.1 (C14), 120.6 (C13), 120.4 (C6), 117.4 (C8), 77.5 (C2), 52.1 (C3), 31.8 

(C16), 31.7 (C16), 29.8 (C4), 27.9 (C11), 25.0 (C17), 24.5 (C17), 22.2 (C11).   

 IR:  (ATR, cm
-1

) 

  3058 (w), 2962 (m), 2928 (m), 2867 (w), 1609 (w), 1583 (m), 1489 (s), 1455 (s), 

1420 (w), 1382 (m), 1368 (m), 1360 (w), 1315 (w), 1301 (m), 1265 (s), 1252 (m), 

1236 (s), 1178 (m), 1150 (s), 1127 (s), 1099 (s), 1052 (m), 1033 (m), 974 (w), 944 

(s), 927 (m), 896 (w), 858 (s), 847 (w), 825 (w), 804 (m), 748 (s), 741 (s), 713 

(m).  
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 MS:  (EI, 70 eV, m/z) 

  354 (69, M
+
),  235 (98), 194 (28), 161 (100), 149 (33), 145 (60),  119 (71), 91 

(41) 

 TLC: Rf 0.60 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -104.8 (c = 0.79 in CHCl3) 

 CD: (+), Cotton sign, 230-280 nm 

 Analysis: C23H30OS (354.55) 

 Calcd: C, 77.92; H, 8.53%  

 Found: C, 77.71; H, 8.31% 

 

Preparation of (S)-3-((2,6-Diisopropylphenyl)sulfonyl)-2,2-dimethylchromane (155m) 

[DJK-14-97] 

 

 To determine enantiomeric composition, 143m was oxidized to the sulfone. To a 4-dram 

vial was added solid 143m (20 mg, 0.055 mmol, 1 equiv), followed by CH2Cl2 (1 mL) and 

mCPBA (25 mg, 0.15 mmol, 2.5 equiv) The solution was stirred at rt for 3 h. The solution was 

diluted with hexanes (3 mL) and then directly purified by silica gel flash column 

chromatography (9:1, hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) to afford 21 mg of 

155m as a white solid. The product was analyzed by chiral stationary phase HPLC.   

Data for 155m: 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.55 (t, J = 7.8 Hz, 1H, HC(15)), 7.41(d, J =7.8 Hz, 2H, HC(14)), 7.14 (t, J = 

7.7 Hz, 1H, HC(7), 6.97 (d, J = 7.6 Hz, 1H, HC(6)), 6.91–6.79 (m, 2H, HC(5), 

HC(8)), 4.26 (q, J = 7.0 Hz, 2H, HC(16)), 3.54 (ddd, J = 13.0, 5.3, 2.0 Hz, 1H, 

HC(3)), 3.36 (dd, J = 16.2, 12.7 Hz, 1H, HC(4)), 2.73 (dd, J = 16.2, 5.2 Hz, 1H, 
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HC(4)), 1.84 (s, 3H, HC(11)), 1.56 (s, 3H, HC(11)), 1.36 (d, J = 6.9, 6H, HC(17)), 

1.29 (d, J = 6.7 Hz, 6H, HC(17)). 

 
13

C NMR: (126 MHz, CDCl3) 

  δ 151.6, 133.5, 129.2, 128.3, 126.6, 121.0, 118.9, 117.6, 76.5, 66.6, 30.0, 29.3, 

25.2, 21.8. 

CSP-HPLC: (R)-155m tmin 55.9 min (4.6%), (S)-155m tmaj 60.0 (95.4%) (Reverse-phase 

Chiralpak AD-RH, 220 nm, 45:55, MeCN/H2O, 0.15 mL/min) 

 

Preparation of (2S,3R)-2-Phenyl-3-(phenylthio)-2,3,4,5-tetrahydrobenzo[b]oxepine (143n) 

(Table 19 Entry 5) [DJK-DY-7309] 

 

 Following General Procedure 11, 142n (224mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 18 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). The residue was taken up in 10 mL of CH2Cl2 and then adsorbed 

onto Celite. Purification by silica gel flash column chromatography of this material (5:1, 

hexanes/CH2Cl2, 20 mm diameter, 16 cm SiO2) followed by bulb-to-bulb distillation afforded 

304 mg (92%) of 143n as a clear oil.  
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Data for 143n: 

 bp:  150 
o
C (ABT), 0.05 mm Hg 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.49 (m, 2H, HC(aryl)), 7.43–7.34 (m, 3H, HC(aryl)), 7.25–7.12 (m, 7H), 7.05 

(t, J = 7.4, 1H, HC(7)), 6.97 (d, J = 7.9, 1H, HC(9)), 4.61 (dd, J = 10.6, 1H, 

HC(2)), 3.85 (ddd, J = 10.6, 8.6, 4.2, 1H, HC(3)), 3.05 (dt, J = 6.9, 2.8 Hz, 2H, 

HC(5)), 2.63 (ddd, J = 12.1, 10.4, 4.2 Hz, 1H, HC(4)), 1.91 (dt, J = 14.5, 8.7 Hz, 

1H, HC(4)). 

 
13

C NMR:  (126 MHz, CDCl3) 

  δ 159.25 (C10), 140.66 (C16), 134.32 (C12), 134.25 (C11), 132.92 (C18), 130.22 

(C15), 128.96 (C14), 128.49 (C13), 128.44 (C8), 127.68 (C17), 127.64 (C6), 

127.36 (C19), 123.99 (C7), 121.62 (C9), 88.36 (C2), 55.46 (C3), 33.38 (C4), 

30.88 (C5)   

 IR:  (ATR, cm
-1

) 

  3060 (w), 3031 (w), 2930 (w), 1603 (w), 1581 (w), 1487 (s), 1453 (m), 1438 (m), 

1350 (w), 1303 (w), 1260 (w), 1232 (s), 1187 (m), 1155 (w), 1106 (w), 1090 (w), 

1042 (m), 1024 (w), 978 (m), 939 (w), 914 (m), 887 (w), 754 (s), 738 (s). 

 MS:  (EI, 70 eV, m/z) 

  340 (25, M
+
), 199 (56), 133 (100), 115 (26), 107 (24)  

 TLC: Rf 0.50 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = +39.6 (0.96 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

 CSP-SFC: (2R,3S)-143n tmin 7.6 (5.6%), (2S,3R)-143n tmaj 8.1 min (94.4%) (Chiralpak AD, 

220 nm, 97:3, hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C22H20OS (332.46) 

 Calcd: C, 79.48; H, 6.06%  

 Found: C, 79.53; H, 6.09% 
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Preparation of (R)-2-((S)-((2,6-Diisopropylphenyl)thio)(phenyl)methyl)-2,3,4,5-

tetrahydrobenzo[b]oxepine (144o) (Table 19 Entry 6) [DJK-17-24] 

 

 Following General Procedure 11, 142o (238 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 103 (339 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to 0 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The material was 

transferred to a 250-mL RB flask using CH2Cl2 (20 mL) and concentrated by rotary evaporation 

(30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography (5:1 hexanes/CH2Cl2, 

20 mm diameter, 17 cm SiO2) followed by recrystallization (MeOH, 3 mL) afforded, in two 

crops, 327 mg (76%) of 144o as white needles.  

Data for 144o: 

 mp:  52-55 
o
C (MeOH) 

 
1
H NMR:  (500 MHz,CDCl3) 

  δ 7.31–7.29 (m, 1H, HC(20)), 7.28–7.24 (m, 5H, H-aryl), 7.14 (ddd, J = 7.0, 4.2 

Hz, 2H, H-aryl, HC(6), HC(8)), 7.11 (d, J = 7.7 Hz, 2H, HC(19)), 7.01 (t, J = 7.4 

Hz, 1H, HC(7)), 6.86 (d, J = 8.2Hz, 1H, HC(9)), 4.15 (ddd, J = 11.0, 6.2, 1.5 Hz, 

1H, HC(2)), 3.81–3.67 (m, 3H, HC(12), HC(21)), 2.89 (dd, J = 14.4, 12.1, 1H, 

HC(5)), 2.78–2.67 (m, 1H, HC(5)), 2.31–2.19 (m, 1H, HC(3)), 2.12–1.98 (m, 1H, 

HC(4)), 1.76 (dddd, J = 14.2, 12.0, 10.9, 3.6 Hz, 1H, HC(3)), 1.66–1.47 (m, 1H, 

HC(4)), 1.16 (d, J = 6.9 Hz, 6H, HC(22)), 0.97 (d, J = 6.8 Hz, 6H, HC(22)). 
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13

C NMR:  (126 MHz, CDCl3) 

  δ 159.62 (C17), 153.91 (C10), 140.17 (C18), 136.01 (C18), 131.07 (C13), 130.25 

(C8), 129.37 (C20), 129.27 (C15), 128.06 (C14), 127.53 (C6), 127.26 (C16), 

123.84 (C7), 123.77 (C19), 121.83 (C9), 85.71 (C2), 62.24 (C12), 36.19 (C3), 

33.96 (C5), 31.70 (C21), 26.28 (C4), 24.77 (C22), 24.16 (C22). 

 IR:  (ATR, cm
-1

) 

  3057 (w), 3026 (w), 2960 (m), 2924 (m), 2865 (w), 1602 (w), 1580 (w), 1487 (s), 

1453 (m), 1382 (w), 1360 (m), 1305 (w), 1231 (s), 1209 (m), 1178 (w), 1107 (w), 

1075 (w), 1052 (m), 953 (m), 924 (w), 861 (w), 801 (m), 755 (s), 743 (s), 733 (s), 

720 (m). 

 MS:  (EI, 70 eV, m/z) 

  430 (39, M
+
), 283 (72), 237 (61), 147 (41), 107 (62), 91 (100) 

 TLC: Rf 0.8 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.:  [α]D
23

 = -144.2 (c = 0.74 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

 Analysis: C29H34OS (430.65) 

 Calcd: C, 80.88; H, 7.96%  

 Found: C, 80.79; H, 7.91% 

 

Preparation of (R)-2-((S)-((2,6-Diisopropylphenyl)sulfonyl)(phenyl)methyl)-2,3,4,5-

tetrahydrobenzo[b]oxepine (155o) [DJK-17-50] 

 

 To determine enantiomeric composition, 5o was oxidized to the sulfone 155o. To a 4-

dram vial was added solid 144o (20 mg, 0.05 mmol 1 equiv), followed by CH2Cl2 (1 mL) and 

mCPBA (22 mg, 0.13 mmol, 2.7 equiv) The solution was stirred at rt for 3 h. The solution was 
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diluted with hexanes (3 mL) and then directly purified by silica gel flash column 

chromatography (9:1, hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) to afford 21 mg 

(99%) of 155o as a white solid which was analyzed by chiral stationary phase HPLC.   

Data for 155o: 

 1
H NMR: (400 MHz, CDCl3) 

  δ 7.40 (t, J = 7.9 Hz, 2H, HC(aryl)), 7.34–7.04 (m, 10H, HC(aryl)), 7.04–6.90 (m, 

1H, HC(aryl)), 4.86 (ddd, J = 11.0, 4.3, 1.5 Hz, 1H, HC(2)), 4.19 (d, J = 4.3 Hz, 

1H, HC(12)), 2.91–2.78 (m, 1H, HC(5)), 2.68 (dd, J = 14.3, 5.9 Hz, 1H, HC(5)), 

1.99 (tdd, J = 10.6, 7.9, 4.3 Hz, 2H, HC(4)), 1.82–1.46 (m, 2H, HC(3)), 1.43–1.00 

(m, 12H, HC(22)). 

 
13

C NMR: (126 MHz, CDCl3) 

  δ 159.3, 135.8, 134.1, 133.0, 132.3, 130.7, 130.3, 130.1, 129.2, 128.5, 127.9, 

126.0, 124.2, 122.5, 80.5, 79.7, 76.6, 36.6, 33.8, 30.0, 26.3. 

CSP-HPLC : (2S,12R)-155o  tmin 6.7 min (7.4 %), (2R,12S)-155o tmaj 7.2 min (92.6%) (BG, 220 

nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 

Preparation of (R)-2-(((2,6-Diisopropylphenyl)thio)methyl)chromane (144p) (Table 19 

Entry 7) [DJK-14-51] 

 

 Following General Procedure 11, 142p (148 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 103 (339 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) was added. The flask was placed in an i-PrOH 

bath and cooled to 0 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 mmol, 0.5 

equiv) was added directly via syringe. The solution was allowed to stir for 12 h at constant 

temperature during which time phthalimide precipitated. Upon consumption of the starting 

material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and then was 

allowed to warm to rt, whereupon the white solid dissolved. The solution was transferred to a 60-



345 

 

mL separatory funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). The phases were 

separated and the aq. layer was extracted with CH2Cl2 (15 mL). The organic phases were 

combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 
o
C, 3 mm Hg). 

The residue was dissolved in 10 mL of CH2Cl2 and adsorbed onto Celite. Purification by silica 

gel flash column chromatography (5:1, hexanes/CH2Cl2, 20 mm diameter, 16 cm SiO2) followed 

by bulb-to-bulb distillation afforded 308 mg (91%) of 144p as a clear oil.  

Data for 144p: 

 bp:  160 
o
C (ABT), 0.05 mm Hg  

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.37 (t, J = 7.7 Hz, 1H, HC(15)), 7.23 (d, J = 7.7 Hz, 2H, HC(14)), 7.17–7.11 (t, 

J = 7.6 Hz, 1H, HC(7)), 7.09 (d, J = 7.7, 1H, HC(5)), 6.89 (t, J = 7.4, 1H, HC(6)), 

6.85 (d, J = 8.3, 1H, HC(8)), 4.16–3.99 (m, 3H, HC(2), HC(16)), 3.06 (dd, J = 

12.9, 6.2 Hz, 1H, HC(11)), 2.92 (dd, J = 12.9, 6.6 Hz, 1H, HC(11)), 2.90–2.80 (m, 

2H, HC(4)), 2.24 (ddd, J = 13.4, 6.0, 3.7 Hz, 1H, HC(3)), 1.88 (dddd, J = 13.4, 

10.7, 9.7, 5.7 Hz, 1H, HC(3)), 1.30 (dd, J = 6.9, 3.9 Hz, 12H, HC(17)). 

 
13

C NMR:  (101 MHz, CDCl3)  

  δ 154.8 (C12), 153.6 (C9), 131.6 (C4), 129.7 (C7), 129.5 (C14), 127.5 (C5), 124.0 

(C10), 122.0 (C13), 120.5 (C6), 117.1 (C8), 74.8 (C2), 42.6 (C11), 31.8 (C3), 27.1 

(C4), 24.8 (C17), 24.7 C(17).   

 IR:  (ATR, cm
-1

) 

  3054 (w), 2960 (m), 2924 (m), 2866 (w), 1610 (w), 1582 (m), 1487 (s), 1456 (s), 

1420 (w), 1382 (w), 1361 (w), 1339 (w), 1301 (m), 1274 (w), 1232 (s), 1113 (m), 

1075 (w), 1050 (s), 1029 (w), 996 (m), 930 (w), 886 (w), 842 (w), 800 (m), 

750(s), 710 (w). 

 MS:  (EI, 70 eV, m/z) 

  340 (88, M
+
), 194 (29), 161 (49), 147 (47), 133 (100)  

 TLC: Rf 0.61 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = +69.7 (c = 1.01 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

  

 



346 

 

 Analysis: C22H28OS (340.53) 

 Calcd: C, 77.60; H, 8.29%  

 Found: C, 77.54; H, 7.93% 

 

Preparation of of (R)-2-(((2,6-Diisopropylphenyl)sulfonyl)methyl)chromane (155p) [DJK-

14-94] 

 

 To determine enantiomeric composition, 144p was oxidized to the sulfone. To a 4-dram 

vial was added solid 144p (20 mg, 0.06 mmol 1 equiv), followed by CH2Cl2 (1 mL) and mCPBA 

(26 mg, 0.15 mmol, 2.5 equiv) The solution was stirred at rt for 3 h. The material was then 

diluted with hexanes (3 mL) and directly purified by silica gel flash column chromatography (9:1 

hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) to afford 22 mg (99%) of 155p as a white 

solid. The product was analyzed by chiral stationary phase HPLC.  

Data for 155p: 

 1
H NMR: (500 MHz, CDCl3) 

  δ 7.53 (t, J = 7.8 Hz, 1H, HC(15)), 7.37 (d, J = 7.8 Hz, 2H, HC(14)), 7.01 (d, J = 

7.5, 1H, HC(5)), 6.95 (t, J = 7.8 Hz, 1H, HC(7)), 6.81 (t, J = 7.4, 1H, HC(7)), 6.20 

(d, J = 8.2, 1H, HC(8)), 4.77 (dddd, J = 8.8, 7.3, 4.4, 2.7 Hz, 1H, HC(2)), 4.21 (p, 

J = 6.7 Hz, 2H, HC(16)), 3.74 (dd, J = 14.3, 7.4 Hz, 1H, HC(11)), 3.37 (dd, J = 

14.4, 4.4 Hz, 1H, HC(11)), 2.88 (ddd, J = 16.0, 9.5, 6.1 Hz, 1H, HC(4)), 2.77 (dt, 

J = 16.7, 5.4 Hz, 1H, HC(4)), 2.25 (dddd, J = 13.8, 6.2, 5.1, 2.7 Hz, 1H, HC(3)), 

1.90 (dddd, J = 13.5, 9.5, 8.8, 5.7 Hz, 1H, HC(3)), 1.28 (d, J = 6.7 Hz, 6H, 

HC(17)), 1.23 (d, J = 6.8 Hz, 6H, HC(17)). 

 13
C NMR: (126 MHz, CDCl3)  

  δ 153.3, 151.3, 136.2, 133.1, 129.6, 127.6, 126.2, 121.2, 121.0, 117.0, 70.3, 62.4, 

29.9, 27.4, 25.2, 25.0, 23.7. 
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CSP-HPLC:  (R)-155p tmin 8.4 (97.2%), (S)-155p tmaj 9.0  min (2.8%) (Chiralpak AD, 220 nm, 

95:5, hexanes/i-PrOH, 0.8 mL/min) 

 

Preparation of (R)-2-(((2,6-Diisopropylphenyl)thio)methyl)-2,3,4,5-tetrahydrobenzo-

[b]oxepine (144q) (Table 19 Entry 8) [DJK-14-54] 

 

 Following General Procedure 11, 142q (162 mg, 1.0 mmol) was weighed into a dried 10 

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to 0 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 48 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, diluted with CH2Cl2 (10 mL) and 1 M NaOH (15 mL). 

The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The organic 

phases were combined, dried over MgSO4, filtered and concentrated by rotary evaporation (30 

o
C, 3 mm Hg). Purification by silica gel flash column chromatography (5:1, hexanes/CH2Cl2, 20 

mm diameter, 20 cm SiO2) followed by bulb-to-bulb distillation afforded 296 mg (84%) of 144q 

as a clear viscous oil (84%).  

Data for 144q: 

 bp: 180 
o
C (ABT), 0.05 mm Hg 

 1
H NMR:  (500 MHz, CDCl3) 

  δ 7.34 (t, J = 7.7 Hz, 1H, HC(16)),  7.21–7.17 (m, 3H, HC(8), HC(15)), 7.17–7.12 

(m, 2H, HC(6), HC(9)), 7.03 (ddt, J = 8.9, 7.2 Hz, 1H, HC(7)), 4.02 (p, J = 6.8 

Hz, 2H, HC(17)), 3.79 (ddd, J = 10.2, 8.0, 4.0 Hz, 1H, HC(2)), 3.15 (dd, J = 12.0 

Hz, 8.0 Hz, 1H, HC(12)), 2.93 (dd, J = 14.4, 12.0 Hz, 1H, HC(5)), 2.74 (ddd, J = 
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14.9, 12.6, 5.3 Hz, 2H, HC(12), HC(5)), 2.12–1.97 (m, 2H, HC(4), HC(3)), 1.91–

1.79 (m, 1H, HC(3)), 1.60–1.48 (m, 1H, HC(4)) 1.28 (d, J = 6.8 Hz, 6H, HC(18)), 

1.23 (d, J = 6.8 Hz, 6H, HC(18)). 

 
13

C NMR:  (126 MHz, CDCl3) 

  δ 159.1 (C13), 153.5 (C10), 135.8 (C14), 132.3 (C14), 130.3 (C6), 129.3 (C16), 

127.6 (C8) , 123.9 (C15), 123.8 (C7), 121.9 (C9), 110.0 (C11), 82.6 (C2) , 44.7 

(C12), 37.0 (C3), 33.9 (C5), 31.8 (C17), 25.9 (C4), 24.7 (C18), 24.6 (C18). 

 IR: (ATR, cm
-1

)  

  3055 (w), 2960 (m), 2924 (m), 2865 (w), 1602 (w), 1579 (w), 1487 (s), 1454 (m), 

1382 (w), 1360 (m), 1306 (w), 1231(s), 1194 (w), 1178 (w), 1105 (w), 1065 (m), 

1052 (m), 1035 (m), 1019 (m), 955 (s), 926 (m), 864 (w), 830 (w), 799 (s), 762 

(s), 736 (s), 718 (w).  

 MS:  (EI, 70 eV, m/z) 

  354 (82, M
+
), 194 (100), 160 (81), 153 (51), 151 (51),  107 (98) 

 TLC: Rf 0.56 (1:1 hexanes:CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = +36.9 (c = 1.1 in CHCl3) 

 CD: (+), Cotton sign, 230-280 nm 

 Analysis: C23H30OS (354.55) 

 Calcd: C, 77.92; H, 8.53%  

 Found: C, 77.75; H, 8.25% 

 

Preparation of (R)-2-(((2,6-Diisopropylphenyl)sulfonyl)methyl)-2,3,4,5-tetrahydrobenzo-

[b]oxepine (155q) [DJK-14-95] 

 

 To determine enantiomeric composition, 144q was oxidized to the sulfone. To a 4-dram 

vial was added neat 144q (20 mg, 0.06 mmol 1 equiv), followed by CH2Cl2 (1 mL) and mCPBA 

(26 mg, 0.15 mmol, 2.5 equiv) The solution was stirred at rt for 3 h. The material was diluted 
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with hexanes (3 mL) and then directly purified by silica gel flash column chromatography (9:1, 

hexanes/ethyl acetate, 20 mm diameter, 16 cm SiO2) to afford 20 mg of a white solid which was 

analyzed by chiral stationary phase HPLC.   

Data for 155q: 

 1
H NMR: (500 MHz, CDCl3) 

  δ 7.54 (t, J = 7.8 Hz, 1H, HC(16)), 7.39 (d, J = 7.7 Hz, 2H, HC(15)), 7.08 (d, J = 

7.3 Hz, 1H, HC(6)), 7.02 (t, J = 7.6, 1H, HC(8)), 6.96 (t, J = 7.3, 1H, HC(7)), 6.51 

(d, J = 7.8 Hz, 1H, HC(9)), 4.32 (dt, J = 9.0, 3.6, 1H, HC(2)), 4.22 (p, J = 6.7 Hz, 

2H, HC(17)), 3.85 (dd, J = 14.4, 7.1 Hz, 1H, HC(12)), 3.32 (dd, J = 14.3, 3.5 Hz, 

1H, HC(12)), 2.94–2.80 (m, 1H, HC(5)), 2.80–2.68 (m, 1H, HC(5)), 2.15–1.90 

(m, 3H, HC(3), HC(4)), 1.72–1.46 (m, 1H, HC(3), HC(4)), 1.30 (d, J = 6.7 Hz, 

6H, HC(18), 1.24 (d, J = 6.7 Hz, 6H, HC(18)). 

 13
C NMR: (126 MHz, CDCl3) 

  δ 158.4, 151.4, 136.0, 135.4, 133.2, 130.2, 127.6, 126.4, 126.4, 124.2, 121.9, 76.8, 

64.6, 38.2, 33.6, 29.9, 25.9, 25.3, 24.9. 

CSP-HPLC: (S)-155q tmaj 10.5 min (2.3%), (R)-155q tmin 11.1 min (97.7%) (Chiralpak AD, 

220 nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 

Preparation of Ethyl (S)-1-((R)-chroman-2-yl)-1-(phenylthio)butanoate (144r) (Table 19 

Entry 9) [DJK-DY-7308] 

 

 Following General Procedure 11, 142r (248 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 
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starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was  allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with CH2Cl2 (15 mL). The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). The material was dissolved in ethyl acetate (10 mL) and adsorbed 

onto Celite. Purification by silica gel flash column chromatography (20:1, hexanes/ethyl acetate, 

20 mm diameter, 16 cm SiO2) followed by bulb-to-bulb distillation afforded 286 mg (80%) of 

144r as a clear viscous oil.  

Data for 144r: 

 bp: 180 
o
C (ABT), 0.05 mm Hg 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.52 (d, J = 7.3 Hz, 2H, HC(19)), 7.37–7.31 (m, 2H, HC(16)), 7.30–7.28 (m, 

1H, HC(20)), 7.11 (dd, J = 8.2, 7.4, 1H, HC(7)), 7.07 (d, J = 7.5 Hz, 1H, HC(5)), 

6.87 (t, J = 7.3 Hz, 1H, HC(6)), 6.81 (d, J = 8.2 Hz, 1H, HC(8)), 4.22–4.07 (m, 

3H, HC(2), HC(15)), 3.38–3.28 (m, 1H, HC(11)), 2.91–2.73 (m, 3H, HC(13), 

HC(4)), 2.71–2.63 (m, 1H, HC(13)), 2.42–2.32 (m, 2H, HC(3), HC(12)), 2.06–

1.90 (m, 2H, HC(12), HC(3)), 1.28 (t, J = 7.2 Hz, 3H, HC(16)). 

 
13

C NMR:  (101 MHz, CDCl3) 

  δ 173.7 (C14), 154.8 (C9), 135.4 (C17), 132.7 (C19), 129.7 (C5), 129.3 (C18), 

127.5 (C7,C20), 122.2 (C10), 120.6 (C6), 117.1 (C8), 78.4 (C2), 60.7 (C15), 53.5 

(C11), 32.0 (C13), 26.4 (C3), 25.1 (C4), 24.9 (C12), 14.5 (C16).   

 IR:  (ATR, cm
-1

) 

  2930 (w), 1729 (s), 1609 (w), 1582 (m), 1487 (s), 1457 (m), 1438 (m), 1373 (m), 

1302 (m), 1273 (m), 1231 (s), 1183 (s), 1150 (m), 1103 (m), 1067 (m), 1024 (m), 

995 (m), 935 (w), 883 (w), 852 (w), 832 (w), 749 (s). 

 MS:  (EI, 70 eV, m/z) 

  356 (36, M
+
), 311 (22), 247 (100), 201 (58), 177 (43), 159 (65), 149 (81), 133 

(100), 107 (62) . 

 TLC: Rf 0.22 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = +92.0 (c = 0.70 in CHCl3) 
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 CD: (+), Cotton sign, 230-280 nm 

CSP-HPLC: (2S,11R)-144r tmin 16.5 min (6.8%),(2R,11S)-144r tmaj 24.7 min (93.2%) 

(Chiralcel OJ, 220 nm, 95:5 hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C21H24O3S (356.48) 

 Calcd: C, 70.76; H, 6.79%  

 Found: C, 70.82; H, 6.67% 

 

Preparation of (R)-2-((S)-4-Methoxy-1-(phenylthio)butyl)chromane (144s) (Table 19 Entry 

10) [DJK-EK-9062] 

 

 Following General Procedure 11, 142s (220 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The material was 

transferred to a 250-mL RB-flask using 20 mL of CH2Cl2 and concentrated by rotary evaporation 

(30 
o
C, 3 mm Hg). The material was dissolved in 10 mL of CH2Cl2 and adsorbed onto Celite. 

Purification by silica gel flash column chromatography (5:1, hexanes/CH2Cl2, 20 mm diameter, 

18 cm SiO2) followed by bulb-to-bulb distillation afforded 287 mg (88%) of 144s as a clear 

viscous oil. 
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Data for 144s: 

 bp:  150 
o
C (ABT), 0.05 mm Hg 

 
1
H NMR:

  
(500 MHz, CDCl3) 

  δ 7.56–7.48 (m, 2H, HC(18)), 7.32 (t, J = 6.8, 2H, HC(17)), 7.29–7.25 (m, 1H, 

HC(19)), 7.11 (t J = 7.3 Hz, 1H, HC(7)), 7.06 (d, J = 7.3 Hz, 1H, HC(5)), 6.86 (t, 

J = 7.4 Hz, 1H, HC(6)), 6.79 (d, J = 8.1 Hz, 1H, HC(8)), 4.12 (ddd, J = 9.9, 6.5, 

2.2 Hz, 1H, HC(2)), 3.52–3.41 (m, 2H, HC(14)), 3.37 (s, 3H, HC(15)), 3.33 (ddd, 

J = 8.9, 6.5, 3.3 Hz, 1H, HC(11)), 2.90–2.81 (m, 1H, HC(4)), 2.80–2.72 (m, 1H, 

HC(4)), 2.26 (dddd, J = 13.4, 5.8, 3.5, 2.3 Hz, 1H, HC(3)), 2.13–1.92 (m, 3H, 

HC(3), HC(12), HC(13)), 1.88–1.76 (m, 1H, HC(13)), 1.76–1.67 (m, 1H, 

HC(12)). 

 
13

C NMR:  (101 MHz, CDCl3) 

  δ 154.9 (C9), 136.1 (C16), 132.4 (C18), 129.7 (C5), 129.2 (C17), 127.5 (C7), 

127.2 (C19), 122.3 (C10), 120.4 (C6), 117.0 (C8), 78.5 (C2), 72.9 (C14), 58.9 

(C15), 54.1 (C11), 28.0 (C3), 27.5 (C12), 25.0 (C4), 24.9 (C11).   

 IR: (ATR, cm
-1

)  

  2924 (w), 2855 (w), 1736 (w), 1609 (w), 1582 (m), 1487 (s), 1456 (m), 1438 (m), 

1374 (w) 1302 (m), 1273 (w), 1232 (s), 1194(m), 1114 (s), 1051 (m), 1024 (m), 

995 (m), 886 (m), 850 (w), 830 (w), 748 (s). 

 MS:  (EI, 70 eV, m/z) 

  328 (58, M
+
), 219 (69), 195 (52), 187 (36), 163 (84), 133 (97), 107 (100), 85 (50), 

69 (66). 

 TLC: Rf 0.15 (1:1, hexanes/CH2Cl2) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = +81.4 (c = 0.68 in CHCl3) 

 CD: (+), Cotton sign, 230-280 nm 

CSP-HPLC: (2S,11R)-144s tmin 10.4 (3.3%), (2R,11S)-144s tmaj 13.4 min (96.7%) (Chiralcel 

OJ, 220 nm, 95:5, hexanes/i-PrOH, 0.8 mL/min) 

 Analysis: C20H24O2S (328.47) 

 Calcd: C, 73.13; H, 7.37%  

 Found: C, 73.41; H, 7.28% 
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Preparation of (S)-5-((R)-3-(2-Hydroxyphenyl)-1-(phenylthio)propyl)-dihydrofuran-2(3H)-

one (147t) (Table 19 Entry 11) [DJK-15-44] 

 

 Following General Procedure 11, 145t (220 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography (6:1, 

hexanes/ethyl acetate, then 3:1, hexanes/ethyl acetate then 2:1, hexanes/ethyl acetate, 30 mm 

diameter, 16 cm SiO2) followed by bulb-to-bulb distillation afforded  300 mg (92%) of 147t as a 

clear viscous oil. 

Data for 147t: 

 bp:  120 
o
C (ABT), 2.4x 10

-5 
mm Hg 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.53–7.48 (m, 2H, HC(17)), 7.37–7.31 (m, 3H, HC(16), HC(18)), 7.17–7.11 (m, 

2H, HC(12), HC(14)), 6.90 (t, J = 7.5 Hz, 1H, HC(13)), 6.82 (d, J = 8.2, 1H, 

HC(11)), 5.09 (s, 1H, OH)), 4.59 (q, J = 7.3 Hz, 1H, HC(5)), 3.26–3.15 (m, 1H, 

HC(6)), 3.08 (ddd, J = 13.9, 9.2, 4.9 Hz, 1H, HC(8)), 2.88 (ddd, J = 14.1, 9.1, 7.1 

Hz, 1H, HC(8)), 2.68–2.49 (m, 2H, HC(3)), 2.41 (dddd, J = 13.1, 9.6, 7.1, 4.9 Hz, 
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1H, HC(4)), 2.28–2.18 (m, 1H, HC(7)), 2.14–2.01 (m, 1H, HC(4)), 1.87 (dtd, J = 

14.2, 9.5, 4.9 Hz, 1H, HC(7)). 

 
13

C NMR:  (126 MHz, CDCl3) 

  δ 176.9 (C2), 153.9 (C10), 133.9 (C15), 133.0 (C17), 130.7 (C12), 129.4 (C16), 

128.1 (C18), 127.9 (C14), 127.1 (C9), 121.2 (C13), 115.8 (C11), 82.6 (C5), 54.2 

(C6), 31.8 (C8), 29.0 (C3), 27.4 (C4), 26.1 (C7). 

 IR:  (ATR, cm
-1

) 

  3360 (br), 2924 (w), 1749 (s), 1582 (w), 1504 (w), 1488 (w), 1455 (s), 1438 (w), 

1345 (w), 1303 (w), 1230 (s), 1180 (s), 1100 (w), 1068 (w), 1023 (w), 913 (w), 

846 (w), 748 (s). 

 MS:  (EI, 70eV, m/z) 

  328 (9), 249 (21),  247 (83), 201 (38),  177 (27),  159 (44), 149 (60),  133 (100), 

107 (68) 

 TLC: Rf 0.05 (4:1, hexanes/ethyl acetate) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = +35.4 (c = 0.68 in CHCl3) 

 CD: (-), Cotton sign, 230-280 nm 

CSP-HPLC:    (5R,6S)-147t tmin 20.2 min (7.8%), (5S,6R)-147t tmin 23.5 min (92.2%) (Reverse 

Phase Chiralpak AD-RH, 220 nm, 48:52, H2O/MeCN, 0.3 mL/min) 

 Analysis: C19H20O3S (328.43) 

 Calcd: C, 69.49; H, 6.14%  

 Found: C, 69.56; H, 6.08% 
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Preparation of ((R)-3-(Phenylthio)-3-((S)-tetrahydrofuran-2-yl)propyl)phenol (147u) and 2-

((R)-3-(phenylthio)-3-((S)-tetrahydrofuran-2-yl)propyl)phenol (148u) (Table 19 Entry 12) 

[DJK-EK-9063] 

 

 Following General Procedure 11, 146u (206 mg, 1.0 mmol) was weighed into a dried 10-

mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 equiv) 

and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an i-

PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). The crude ratio of 147u:148u (1.1:1) was established by 

1
H 

NMR spectroscopy. Purification by silica gel flash column chromatography (12:1, hexanes/ethyl 

acetate, 30 mm diameter, 16 cm SiO2) followed by bulb-to-bulb distillation afforded 276 mg 

(88%) of a 1:1 mixture of 147u:148u as a clear oil.  
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Data for 147u: 

 bp:  180 
o
C (ABT), 0.05 mm Hg 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.41–7.37 (m, 2H, HC(17)), 7.34–7.22 (m, 3H, HC(16), HC(18)), 7.16 (dd, J = 

7.9, 7.3 Hz, 1H, HC(12)), 7.07 (dd, J = 7.5 Hz, 1H, HC(14)), 6.89 (d, J = 8.1 Hz, 

1H, HC(11)), 6.85 (t, 7.8 Hz, 1H, HC(13)), 6.82 (br s, 1H, OH), 4.06 (ddd, J = 

8.7, 7.7, 6.4 Hz, 1H, HC(2)), 4.01 (dt, J = 8.0, 6.9 Hz, 1H, HC(5)), 3.90 (td, J = 

7.9, 6.2 Hz, 1H, HC(5)), 3.12 (dt, J = 8.9, 5.5 Hz, 1H, HC(6)), 2.93 (ddd, J = 13.9, 

9.0, 6.8 Hz, 1H, HC(8)), 2.79 (ddd, J = 14.4, 9.1, 6.1 Hz, 1H, HC(8)), 2.21 (dddd, 

J = 12.6, 7.9, 6.4, 5.0 Hz, 1H, HC(3)), 2.16–1.89 (m, 4H, HC(4), HC(8)), 1.77 

(ddt, J = 12.5, 8.4, 7.6 Hz, 1H, HC(7)).  

 
13

C NMR:  (126 MHz,CDCl3) 

  δ 154.8 (C10), 134.7 (C15), 132.0 (C17), 130.5 (C14), 129.2 (C16), 127.9 (C12), 

127.3 (C18), 127.1 (C9), 120.4 (C13), 116.3 (C11), 82.7 (C2), 68.8 (C5), 52.3 

(C6), 34.1 (C7), 31.4 (C3), 27.6 (C8), 25.9 (C4). 

 IR:  (ATR, cm
-1

) 

  3306 (br), 2927 (w), 2866 (w), 1737 (w), 1582 (m), 1488 (m), 1455 (s), 1438 (m), 

1359 (m), 1232 (s), 1177 (m), 1088 (m), 1041 (s), 921 (m), 843 (w), 746 (s). 

 MS:  (EI, 70 eV, m/z) 

  314 (47, M
+
), 133 (67), 107 (100), 71 (62) 

 TLC: Rf 0.25 (4:1, hexanes/ethyl acetate) [UV, CAM] 

 Opt. Rot.: [α]D
23

 = -17.3 (c = 0.52 in CHCl3)  

 CD: (-), Cotton sign, 230-280 nm 

Data for 148u: 

 
1
H NMR: (400 MHz, CDCl3) 

  δ 7.31 (m, 3H, HC(aryl)), 7.24 (m, 3H, HC(aryl)), 7.17–7.05 (m, 2H, HC(12), 

H(C14)), 6.86 (m, 2H, HC(11), HC(13)), 4.04 (dd, J = 11.4, 4.0, 1H, HC(2)), 3.41 

(td, J = 11.7, 2.7 Hz, 1H, HC(5)), 3.16 (td, J = 9.9, 2.8 Hz, 1H, HC(5)), 2.91–2.67 

(m, 2H, HC(3), HC(8)), 2.62 (ddd, J = 14.3, 6.1, 4.2 Hz, 1H, HC(8)), 2.45 (dddd, 

J = 13.9, 10.9, 6.1, 2.8 Hz, 1H, HC(3)), 2.17–2.01 (m, 1H, HC(4)), 2.01–1.57 (m, 

3H, HC(3), HC(4), HC(7)), 1.53–1.34 (m, 1H, HC(7)). 
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 13
C NMR:  (101 MHz,  CDCl3) 

  δ 155.0 (C10), 135.0 (C15), 133.7 (C17), 130.7 (C14), 129.2 (C16), 128.0 (C12), 

124.4 (C9), 120.7 (C13), 116.4 (C11), 79.7 (C2), 68.3 (C5), 49.3 (9), 34.6 (C8), 

31.7 (C4), 27.0 (C3), 25.2 (C7).  

  

 

CSP-HPLC: (2R,6S)-148u tmaj 19.2 min (97.1%), (2S,6R)-148u tmin 20.83 min (2.9%) 

(Chiralpak AD, 220 nm, 90:10, hexanes/i-PrOH, 0.6 mL/min) 

  (2R,3S)-147u, tmaj 14.6 min (96.9%), (2S,3R)-147u, tmin 18.1 min (3.1%) 

(Chiralpak AD 220 nm, 90:10 hexanes/i-PrOH, 0.6 mL/min) 

 Analysis: C19H22O2S (314.44) 

 Calcd: C, 72.58; H, 7.05%  

 Found: C, 72.64; H, 6.95% 

 

Preparation of ((4R,5S)-5-Phenoxyoctan-4-yl)(phenyl)sulfide (149) (Table 20 Entry 1) 

[DJK-16-40] 

 

 Following General Procedure 11, 4-octene (112 mg, 1.0 mmol) was weighed into a dried 

10-mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 

equiv) and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an 

i-PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography (5:1 
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hexanes/dichloromethane, 30 mm diameter, 16 cm SiO2) followed by bulb-to-bulb distillation 

afforded  229 mg (73%) of 149 as a clear viscous oil. This compound was not further 

characterized 

Data for 149:  

 
1
H NMR:  (500 MHz, CDCl3) 

   δ 7.55 – 7.45 (m, 1H), 7.38 – 7.10 (m, 6H), 6.91 (t, J = 7.4 Hz, 1H), 6.84 – 6.77 

(m, 2H), 4.39 (dt, J = 8.1, 4.3 Hz, 1H), 3.34 (dt, J = 8.7, 4.2 Hz, 1H), 1.55 (s, 8H), 

0.90 (dt, J = 13.4, 7.2 Hz, 6H). 

CSP-HPLC:  (4R,5S)-149 tmaj 4.8 min (93.0%), (4S,5R)-149 tmin 5.2 min (7.0%) (Chiralpak OJ-

H, 220 nm, 97:3, hexanes/i-PrOH, 0.8 mL/min) 

 

Preparation of ((1S,2R)-1-Phenoxy-1-phenylpropan-2-yl)(phenyl)sulfide (150) (Table 20 

Entry 2) [DJK-16-41] 

 

 Following General Procedure 11, 4-octene (112 mg, 1.0 mmol) was weighed into a dried 

10-mL Schlenk flask. Subsequently, CH2Cl2 (7 mL), electrophile 56 (255 mg, 1.0 mmol, 1.0 

equiv) and catalyst (S)-62e (52 mg, 0.1 mmol, 0.1 equiv) were added. The flask was placed in an 

i-PrOH bath and cooled to -20 
o
C (probe). After equilibration (ca. 20 min), MsOH (33 μL, 0.5 

mmol, 0.5 equiv) was added directly via syringe. The solution was allowed to stir for 24 h at 

constant temperature during which time phthalimide precipitated. Upon consumption of the 

starting material (TLC, 
1
H NMR), the reaction was quenched with triethylamine (300 μL) and 

then was allowed to warm to rt, whereupon the white solid dissolved. The solution was 

transferred to a 60-mL separatory funnel, then was diluted with CH2Cl2 (10 mL) and 1 M NaOH 

(15 mL). The phases were separated and the aq. layer was extracted with 15 mL of CH2Cl2. The 

organic phases were combined, dried over MgSO4, filtered and concentrated by rotary 

evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column chromatography (5:1 

hexanes/dichloromethane, 30 mm diameter, 16 cm SiO2) followed by bulb-to-bulb distillation 

afforded 140 mg (44%) of 150 as a clear viscous oil. 
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Data for 150:  

 
1
H NMR:  (500 MHz, CDCl3) 

   δ 7.41 – 7.15 (m, 13H), 6.80 – 6.74 (m, 2H), 4.04 – 3.94 (m, 1H), 3.91 (d, J = 

10.2 Hz, 1H), 1.26 (d, J = 6.5 Hz, 3H). 

CSP-HPLC: Reverse-Phase, (1R,2S)-150 tmin 16.0 min (82.1%), (1S,2R)-150 tmin 16.0 min 

(17.9%) (Chiralpak AD-RH, 220 nm, 65:35, H2O/MeCN, 0.6 mL/min) 

 

Manipulations of 143a  

Preparation of (R)-2-Phenylchromane (154a) [DJK-19-16] 

 

 To a 50-mL Schlenk flask under argon was added i-PrOH (20 mL), followed by solid 

143a (238 mg, 0.75 mmol). The solid was dissolved by heating, and the flask was then cooled in 

an ice bath (internal temperature <5 
o
C). Solid NiCl2•6H2O (600 mg, 2.5 mmol, 3.3 equiv) to 

form a green solution. In a seperate flask, NaBH4 (300 mg, 7.9 mmol, 10.5 equiv) was dissolved 

in EtOH (20 mL) with stirring. This flask was then also cooled in an ice bath (internal 

temperature 3 
o
C). The cold borohydride solution in ethanol was cannulated into the flask 

containing the substrate and the nickel chloride. The solution turned black, and gas evolution was 

observed. The flask was maintained in the ice bath for a further 4 h. The resulting black 

suspension was filtered through Celite while cold and the filter cake was washed with CH2Cl2 

(2x25 mL). The filtrate was then concentrated by rotary evaporation (30 
o
C, 3 mm Hg). 

Purification of the residue by silica gel flash column chromatography (9:1, hexanes/CH2Cl2, 20 

mm diameter, 15 cm SiO2) afforded  111 mg (71%) of 154 as a white solid. The spectroscopic 

data match those reported in the literature.
171

 Absolute configuration was established by 

correlation with the known optical rotation.
103
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Data for 154: 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.47 (d, J = 7.5 Hz, 2H, HC((11)), 7.43 (t, J = 7.4 Hz, 2H, HC(10)), 7.36 (t, J = 

7.2 Hz, 1H, HC(12)), 7.17 (t, J = 7.7 Hz, 1H, HC(7)), 7.13 (d, J = 7.1 Hz, 1H, 

HC(5)), 6.95 (d, J = 7.5 Hz, 1H, HC(8)), 6.92 (t, J = 7.4 Hz, 1H, HC(6)), 5.11 (dd, 

J = 10.2, 2.5 Hz, 1H, HC(2)), 3.05 (ddd, J = 17.0, 11.4, 5.9 Hz, 1H, HC(4)), 2.85 

(ddd, J = 16.5, 5.3, 3.3 Hz, 1H, HC(4)), 2.26 (dddd, J = 13.7, 5.9, 3.3, 2.4 Hz, 1H, 

HC(3)), 2.14 (dddd, J = 13.7, 11.2, 10.2, 5.3 Hz, 1H, HC(3)). 

 
13

C NMR: (126 MHz, CDCl3) 

  δ 155.1, 141.7, 129.5, 128.5, 128.4, 127.8, 127.3, 125.9, 121.8, 120.3, 116.9, 77.7, 

29.9, 25.0. 

 MS:  (EI, 70 eV, m/z) 

  210 (100, M
+
), 129 (32), 171 (14), 119 (14), 104 (27), 77 (12) 

 Opt. Rot: [α]D
23

 = +16.6 (c = 1.05 in CHCl3)  

 

Preparation of (2S,3R)-2-Phenyl-3-((R,S)-phenylsulfinyl)chromane (151a/b) [DJK-17-62] 

 

 To a 250-mL RB-flask under argon was added MeOH (100 mL) and 143a (2.23 g, 7.0 

mmol). Sodium periodate (1.65 mg, 7.7 mmol, 1.1 equiv) was added as a solid resulting in a 

heterogenous solution. The mixture was then heated to 50 
o
C for 16 h. TLC analysis showed 

trace amounts of remaining starting material, however, formation of the corresponding sulfone 

was also observed and the flask therefore removed from heat. After the solution cooled to rt, 

water (100 mL) and CH2Cl2 (100 mL) was added to afford a clear, biphasic mixture. The mixture 

was transferred to a 500-mL separatory funnel, was shaken thoroughly, and the layers were 

separated. The aq. layer was extracted with further CH2Cl2 (2x 50 mL). The organic layers were 

combined, washed with water (25 mL), brine (25 mL), dried over MgSO4, filtered and 
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concentrated by rotary evaporation (30 
o
C, 3 mm Hg). Analysis of the crude material by 

1
H 

NMR spectroscopy revealed a 2:1 diastereomeric mixture. Purification by silica gel flash column 

chromatography (9:1, hexanes/ethyl acetate, then 4:1, hexanes/ethyl acetate, 30 mm diameter, 16 

cm SiO2) separated the diastereomers. Recombination of the diastereomers 151a and 151b, 

followed by recrystallization (EtOH, 2 mL) afforded, in two crops, 284 mg (85% combined 

yield) of a 2:1 mixture of 151a/151b as white to pale yellow prisms. 

Data for 151a:  

 mp: 138-140 
o
C (EtOH) 

 
1
H NMR:  (400 MHz, CDCl3) 

  δ 7.59–7.39 (m, 10H, HC(aryl)), 7.12 (t, J =8.4 Hz, 1H, HC(7)), 7.03 (d, J = 8.4 

Hz, 1H, HC(5)), 6.95–6.84 (m, 2H, HC(6), HC(8)), 5.12 (d, J = 9.1 Hz, 1H, 

HC(2)), 3.50 (dd, J = 16.9, 10.2 Hz, 1H, HC(4)), 3.12 (ddd, J = 10.3, 9.1, 5.4 Hz, 

1H, HC(3)), 2.31 (dd, J = 16.8, 5.4 Hz, 1H, HC(4)). 

 
13

C NMR: (126 MHz, CDCl3) 

  δ 154.2 (C9), 141.4 (C15), 138.2 (C11), 131.3 (C18), 130.2 (C7), 129.5 (C17), 

129.4 (C14), 129.3 (C13), 127.9 (C5), 127.6 (C16), 124.6 (C12), 121.5 (C6), 

120.2 (C10), 117.0 (C8), 77.7 (C2), 63.5 (C3), 20.4 (C4). 

 IR: (ATR, cm
-1

)  

  3050 (w), 1609 (w), 1583 (w), 1487 (m), 1455 (m), 1443 (m), 1369 (w), 1298 (w), 

1232 (s), 1194 (w), 1177 (w), 1110(w), 1085 (m), 1034 (s), 999 (m), 931 (m), 910 

(m), 873 (w), 840 (w), 830 (w), 788 (m), 747 (s), 698 (s), 686 (s) 

 MS:  (EI, 70 eV, m/z)  

  335 (M+H
+
,
 
100),  209 (66) 

 TLC: Rf 0.2 (4:1 hexanes/ethyl acetate) [UV, CAM] 

 Analysis: C21H18O2S (334.43) 

 Calcd: C,   75.42; H,  5.43%    

 Found: C,   75.06; H,  5.23% 
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Data for 151b:  

 1
H NMR: (500 MHz,CDCl3)  

  δ 7.72–7.65 (m, 2H, HC(aryl)), 7.61–7.53 (m, 3H, HC(aryl)), 7.37–7.33 (m, 4H, 

HC(aryl)), 7.27 (m, 2H, HC(aryl)), 7.10 (d, J = 8.4 Hz, 1H, HC(5)), 6.97–6.92 (m, 

2H, HC(6), HC(8)), 6.09 (dd, J = 3.1, 1.5 Hz, 1H, HC(2)), 3.42 (dt, J = 5.2, 3.2 

Hz, 1H, HC(3)), 2.82 (dd, J = 17.7, 5.2 Hz, 1H, HC(4)), 2.38 (ddd, J = 17.7, 2.9, 

1.2 Hz, 2H, HC(4)). 

 

Preparation of (S)-2-Phenyl-2H-chromene (154b) [DJK-17-64] 

 

 To a 10-mL Schlenk flask under argon was added a 1:1 diastereomeric mixture of 

sulfoxides 151a,b (334 mg, 1.0 mmol) and toluene (10 mL). Trimethylphosphite (236 μL, 2.0 

mmol, 2 equiv) was added via syringe. The solution was then heated to reflux in an oil bath for 4 

h. After the reaction was complete (TLC), the flask was removed from the oil bath and allowed 

to cool to rt. The solution was concentrated by rotary evaporation (30 
o
C, 3 mm Hg). Purification 

by silica gel flash column chromatography (9:1 hexanes/CH2Cl2 then 5:1 hexanes/CH2Cl2, 20 

mm diameter, 16 cm SiO2) afforded 193 mg (92%)of 154b a clear oil. The spectroscopic data 

match those reported in the literature.
103

 The rotation is in agreement with the absolute 

configuration shown.
163

  

Data for 154b: 

 
1
H NMR: (500 MHz, CDCl3) 

  δ 7.53–7.46 (m, 2H, HC(aryl)), 7.47–7.33 (m, 3H, HC(aryl)), 7.16 (t, J = 7.8 Hz, 

1H, HC(7)), 7.06 (d, J = 7.5 Hz, 1H, HC(5)), 6.91 (t, J = 7.4 Hz, 1H, HC(6)), 6.84 

(d, J = 8.0 Hz, 1H, HC(8)), 6.58 (d, J = 9.8 Hz, 1H, HC(4)), 5.97 (d, J = 2.1 Hz, 

1H, HC(2)), 5.85 (dd, J = 9.9, 3.3 Hz, 1H, HC(3)) 

 13
C NMR:  153.2, 140.9, 129.5, 128.6, 128.3, 127.0, 126.6, 124.8, 124.0, 121.3, 121.2, 116.0, 

77.2  
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 MS:  (EI, 70 eV, m/z) 

  208 (90, M
+
), 207 (100), 178 (15), 131 (41) 

 Opt. Rot: [α]D
23

 = +97.6 (c = 1.1 in CHCl3)  

  

 

Preparation of (S)-2-Phenyl-3-(phenylthio)-2H-chromene (152) [DJK-17-63] 

 

 To a 50-mL Schlenk flask under argon was added a 1:1 mixture of  151a,b (334 mg, 1 

mmol) and toluene (8 mL). To this was added pyridine (805 μL, 10 mmol, 10 equiv) via syringe 

followed by trifluoroacetic anhydride (278 μL, 2.0 mmol, 2.0 equiv). The solution was then 

heated to 80 
o
C (internal temperature, oil bath) for 4 h. The flask was then removed from the heat 

source and allowed to cool to rt. The mixture was transferred to a 60-mL separatory funnel and 

diluted with water (10 mL) and ether (15 mL). The layers were separated and the aq. layer 

extracted with ether (2x 10 mL). The organic layers were combined, dried over MgSO4, and 

concentrated by rotary evaporation (30 
o
C, 3 mm Hg). Purification by silica gel flash column 

chromatography (9:1, hexanes/CH2Cl2 then 5:1, hexanes/CH2Cl2, 20 mm diameter, 16 cm SiO2) 

followed by recrystallization (hexanes, 2 mL) afforded 292 mg (92%) of 152 as white prisms.  

Data for 152:  

 mp: 86-88 
o
C (hexanes) 

 
1
H NMR:  (500 MHz, CDCl3) 

  δ 7.49 (d, J = 6.6 Hz, 2H, HC(aryl)), 7.43–7.32 (m, 8H, HC(aryl)), 7.12 (t, J = 7.7 

Hz, 1H, HC(7)), 7.00 (d, J = 7.6, Hz, 1H, HC(5)), 6.90 (t, J = 7.5 Hz, 1H, HC(6)), 

6.78 (d, J = 8.0 Hz, 1H, HC(8)), 6.66 (s, 1H, HC(4)), 5.75 (s, 1H, HC(2)). 
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13

C NMR: (126 MHz, CDCl3) 

  δ 151.8 (C9), 138.5 (C15), 132.5 (C17), 132.3 (C11), 131.4 (C13), 129.7 (C9), 

129.6 (C16), 129.1 (C18), 128.7 (C13), 128.3 (C14), 128.0 (C12), 126.3 (C7), 

125.4 (C4), 122.4 (C10), 121.8 (C6), 116.5 (C8), 79.6 (C2)  

 IR: (ATR, cm
-1

) 

  3047 (w), 3028 (w), 2942 (w), 1902 (w), 1736 (w), 1704 (w), 1625 (w), 1600 (w), 

1581 (w), 1570 (w), 1483 (m), 1473 (m), 1450 (m), 1437 (m), 1348 (w), 1326 

(m), 1301 (w), 1258 (m), 1223 (m), 1206 (m), 1194 (m), 1160 (w), 1148 (w), 

1115 (m), 1078 (w), 1065 (m), 1045 (m),1022 (m), 1000 (w), 962 (m), 937 (m), 

924 (m), 905 (m), 889 (m), 854 (m), 832 (w), 776 (m), 764 (m), 747 (s), 737 (s), 

697 (s), 688 (s)  

 MS:  (EI, 70 eV, m/z) 

  316 (40, M
+
), 207 (100),  178 (23)   

 TLC: Rf 0.57 (4:1 hexanes/ethyl acetate) [UV, CAM] 

 Analysis: C21H16OS (316.42) 

 Calcd: C,   79.71; H,  5.10%  

 Found: C,   79.31; H,  4.97% 

 

Attempted Conditions for the Pummerer Rearrangement of 151 

 

General Procedure  

 To a 5-mL oven- or flame-dried Schlenk flask was added a 151a, 151b or a mixture 

thereof , followed by solvent and additives. The solution was then heated to the specified 

temperature and then stirred. Aliquots for NMR were obtained by adding ~5 μL of solution to an 

NMR tube containing 0.7 mL of CDCl3. Ratios were determined by integration of peaks at 5.97 

(154b), 5.7 ppm (152) and 3.8 ppm (143a).  
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Attempted Preparation of  (S)-2-phenylchroman-3-one with Ac2O  [DJK-17-75] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask. Acetic anhydride (1 

mL) was added and the reaction heated to 110 
o
C for 2 h. Analysis by 

1
H NMR of the reaction 

showed primarily formation of elimination product 152. No further manipulations were 

performed.  

 

Attempted Preparation of  (S)-2-phenylchroman-3-one with Ac2O and AcOH [DJK-17-76] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask. Acetic anhydride (0.75 

mL) and acetic acid (0.25 mL) were added and the reaction heated to 110 
o
C for 2 h. Analysis by 

1
H NMR of the reaction showed primarily formation of 154b. No further manipulations were 

performed.  

 

Attempted Preparation of  (S)-2-phenylchroman-3-one with SOCl2 [DJK-17-82] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask, followed by CH2Cl2. 

Thionyl chloride (47.6 mg, 0.4 mmol, 4.0 equiv) was added dropwise. The solution was stirred 
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for 1 h at rt. Analysis of the reaction by 
1
H NMR spectroscopy showed a 0.75:1:0.1 mixture of 

143a:151:152. No further manipulations were performed.  

 

Attempted Preparation of  (S)-2-phenylchroman-3-one with (COCl)2 [DJK-17-81] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask, followed by CH2Cl2 (1 

mL). Oxalyl chloride (50.8 mg, 0.4 mmol, 4.0 equiv) was added dropwise. The solution was 

stirred for 1 h at rt. Analysis of the reaction by 
1
H NMR spectroscopy showed a 1:1 mixture of 

152 and 143a. No further manipulations were performed.  

 

Attempted Preparation of  (S)-2-phenylchroman-3-one with (COCl)2 and K2CO3 [DJK-17-

83] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask, followed by CH2Cl2 (1 

mL) and K2CO3 (55.3 mg, 0.4 mmol, 4.0 equiv). Oxalyl chloride (50.8 mg, 0.4 mmol, 4.0 equiv) 

was added dropwise. The solution was stirred for 2 h at rt. Analysis of the reaction by 
1
H NMR 

spectroscopy showed a 3.5:1 mixture of 143a and 152 and leftover starting material. No further 

manipulations were performed.  
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Attempted Preparation of  (S)-2-phenylchroman-3-one with (COCl)2 and KOAc [DJK-17-

84] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask, followed by CH2Cl2 (1 

mL) and KOAc (39.3 mg, 0.4 mmol, 4.0 equiv). Oxalyl chloride (50.8 mg, 0.4 mmol, 4.0 equiv) 

was added dropwise. The solution was stirred for 2 h at rt. Analysis of the reaction by 
1
H NMR 

spectroscopy showed a 4.8:1 mixture of 143a and 152 and leftover starting material. No further 

manipulations were performed.  

 

Attempted Preparation of  (S)-2-phenylchroman-3-one with (COCl)2 and Pyridine [DJK-

17-85] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask, followed by CH2Cl2 (1 

mL) and pyridine (31.6 mg, 0.4 mmol, 4.0 equiv). Oxalyl chloride (50.8 mg, 0.4 mmol, 4.0 

equiv) was added dropwise. The solution was stirred for 2 h at rt. Analysis of the reaction by 
1
H 

NMR spectroscopy showed a 1:1.25 mixture of 152 and 143a. No further manipulations were 

performed.  
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Attempted Preparation of  (S)-2-phenylchroman-3-one with PhI(OAc)2 [DJK-17-86] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask, followed by 

dichloroethane (1 mL). Diacetoxyiodobenzene (64.4 mg, 0.2 mmol, 2.0 equiv) was added 

dropwise. The solution was stirred for 12 h at rt. Analysis of the reaction by 
1
H NMR 

spectroscopy showed only starting material. No further manipulations were performed.  

 

 

Attempted Preparation of  (S)-2-phenylchroman-3-one with TBSOTf and Et3N [DJK-17-

88] 

 

 Sulfoxide 151 (33.4 mg, 0.1 mmol) was added to a Schlenk flask, followed by 

dichloromethane (1 mL) and Et3N (20.2 mg, 0.2 mmol, 2 equiv). TBSOTf (52.9 mg, 0.2 mmol, 2 

equiv) was added dropwise. The solution was stirred for 1 h at rt. Analysis of the reaction by 
1
H 

NMR spectroscopy showed an 8:1 mixture of 151:152. No further manipulations were 

performed.  
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 5.6. Crystal Structures.  

Crystallographic Data for 102  

 

  Crystal data and structure refinement for bc11tasq. 

Identification code  bc11tasq 

Empirical formula  C66 H76 Cl12 N6 O2 P2 Sb2 Se2 

Formula weight  1874.09 

Temperature  193(2) K 

Wavelength  1.54178 Å 

Crystal system  Triclinic 

Space group  P-1    

Unit cell dimensions a = 12.0050(6) Å a= 67.081(2)°. 

 b = 12.2783(6) Å b= 73.258(2)°. 

 c = 14.5779(7) Å g = 88.706(2)°. 

Volume 1885.47(16) Å3 

Z 1 

Density (calculated) 1.651 Mg/m3 

Absorption coefficient 11.470 mm-1 

F(000) 934 

Crystal size 0.374 x 0.215 x 0.172 mm3 

Theta range for data collection 3.45 to 67.82°. 

Index ranges -14<=h<=14, -14<=k<=14, -16<=l<=17 

Reflections collected 23671 
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Independent reflections 6453 [R(int) = 0.0376] 

Completeness to theta = 67.82° 94.4 %  

Absorption correction Integration 

Max. and min. transmission 0.3726 and 0.1241 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6453 / 499 / 556 

Goodness-of-fit on F2 1.047 

Final R indices [I>2sigma(I)] R1 = 0.0300, wR2 = 0.0805 

R indices (all data) R1 = 0.0315, wR2 = 0.0816 

Largest diff. peak and hole 0.511 and -0.432 e.Å-3 

 

 Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for bc11tasq.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

______________________________________________________________________________

__  

 x y z U(eq) 

______________________________________________________________________________

__   

Sb(1) -127(5) 4413(4) 2512(3) 38(1) 

Cl(1) 1698(7) 3617(9) 2293(6) 101(2) 

Cl(2) -476(8) 3773(6) 1285(4) 56(2) 

Cl(3) -1950(6) 5195(6) 2703(6) 69(1) 

Cl(4) 221(7) 5042(8) 3744(5) 74(2) 

Cl(5) -1008(8) 2579(4) 3876(4) 57(2) 

Cl(6) 771(8) 6246(6) 1151(5) 66(1) 

Sb(1B) 56(8) 4348(7) 2492(7) 42(2) 

Cl(1B) 1247(10) 2788(10) 2581(8) 82(3) 

Cl(2B) -635(15) 4023(14) 1258(11) 64(5) 

Cl(3B) -1114(14) 5917(11) 2404(10) 104(4) 

Cl(4B) 701(14) 4684(13) 3747(11) 85(5) 
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Cl(5B) -1467(9) 2969(11) 3835(8) 80(3) 

Cl(6B) 1589(11) 5721(12) 1136(9) 115(4) 

Sb(1C) 158(5) 4446(4) 2521(3) 37(1) 

Cl(1C) 2013(5) 3720(6) 2244(6) 70(1) 

Cl(2C) -203(6) 3843(7) 1287(5) 53(1) 

Cl(3C) -1657(7) 5240(9) 2754(7) 82(2) 

Cl(4C) 545(8) 5059(7) 3742(5) 69(2) 

Cl(5C) -684(6) 2591(5) 3866(5) 62(2) 

Cl(6C) 1016(9) 6304(6) 1156(6) 78(2) 

Se(1) 137(1) 9337(1) 797(1) 41(1) 

P(1) 2029(1) 9990(1) 333(1) 33(1) 

N(2) 2168(2) 11434(2) -286(2) 37(1) 

N(3) 2920(2) 9529(2) -496(2) 34(1) 

N(1) 2366(6) 9525(7) 1411(3) 40(1) 

C(1) 1801(5) 8404(5) 2307(3) 47(1) 

C(2) 926(5) 8600(5) 3210(4) 59(1) 

C(3) 1201(5) 9687(6) 3379(5) 65(2) 

C(4) 2446(6) 9969(7) 3293(4) 69(2) 

C(5) 3234(8) 10677(7) 2164(5) 59(1) 

C(6) 3449(5) 10026(6) 1444(5) 49(1) 

N(1B) 2160(20) 9400(20) 1498(9) 40(3) 

C(1B) 1409(18) 8415(16) 2428(12) 47(3) 

C(2B) 1381(17) 8417(12) 3474(10) 57(3) 

C(3B) 1474(18) 9579(15) 3562(15) 63(3) 

C(4B) 2600(20) 10350(20) 3123(16) 64(3) 

C(5B) 3220(30) 10740(20) 1950(16) 59(4) 

C(6B) 3290(18) 9770(20) 1544(17) 50(3) 

C(7) 1380(2) 12156(3) 179(2) 46(1) 

C(8) 3238(2) 12050(2) -1095(2) 37(1) 

C(9) 3883(3) 12852(2) -916(2) 46(1) 

C(10) 4881(3) 13476(2) -1644(2) 49(1) 
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C(11) 5311(2) 13330(2) -2599(2) 45(1) 

C(12) 6366(3) 13967(3) -3357(3) 57(1) 

C(13) 6795(3) 13801(3) -4257(3) 64(1) 

C(14) 6197(3) 12964(3) -4425(3) 58(1) 

C(15) 5182(2) 12320(3) -3708(2) 48(1) 

C(16) 4681(2) 12501(2) -2773(2) 40(1) 

C(17) 3595(2) 11872(2) -2011(2) 36(1) 

C(18) 2926(2) 11009(2) -2191(2) 33(1) 

C(19) 2558(2) 11330(2) -3104(2) 35(1) 

C(20) 2624(3) 12522(2) -3821(2) 45(1) 

C(21) 2298(3) 12791(3) -4697(2) 55(1) 

C(22) 1900(3) 11872(3) -4921(2) 56(1) 

C(23) 1797(3) 10730(3) -4245(2) 50(1) 

C(24) 2092(2) 10422(2) -3307(2) 40(1) 

C(25) 1916(2) 9237(2) -2565(2) 42(1) 

C(26) 2173(2) 8948(2) -1655(2) 39(1) 

C(27) 2680(2) 9845(2) -1476(2) 33(1) 

C(28) 3479(2) 8429(2) -109(2) 42(1) 

______________________________________________________________________________

__  

Bond lengths [Å] and angles [°] for  bc11tasq. 

_____________________________________________________  

Sb(1)-Cl(4)  2.350(4) 

Sb(1)-Cl(2)  2.352(4) 

Sb(1)-Cl(5)  2.356(4) 

Sb(1)-Cl(3)  2.357(4) 

Sb(1)-Cl(6)  2.358(4) 

Sb(1)-Cl(1)  2.366(5) 

Sb(1B)-Cl(3B)  2.342(7) 

Sb(1B)-Cl(2B)  2.348(7) 

Sb(1B)-Cl(1B)  2.350(7) 
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Sb(1B)-Cl(4B)  2.353(7) 

Sb(1B)-Cl(5B)  2.354(7) 

Sb(1B)-Cl(6B)  2.363(7) 

Sb(1C)-Cl(2C)  2.340(5) 

Sb(1C)-Cl(4C)  2.341(5) 

Sb(1C)-Cl(5C)  2.354(5) 

Sb(1C)-Cl(3C)  2.356(5) 

Sb(1C)-Cl(1C)  2.364(4) 

Sb(1C)-Cl(6C)  2.369(5) 

Se(1)-P(1)  2.2441(6) 

Se(1)-Se(1)#1  2.3728(5) 

P(1)-N(1)  1.619(3) 

P(1)-N(1B)  1.621(8) 

P(1)-N(2)  1.633(2) 

P(1)-N(3)  1.638(2) 

N(2)-C(8)  1.445(3) 

N(2)-C(7)  1.483(3) 

N(3)-C(27)  1.440(3) 

N(3)-C(28)  1.475(3) 

N(1)-C(6)  1.472(5) 

N(1)-C(1)  1.480(5) 

C(1)-C(2)  1.527(6) 

C(1)-H(1A)  0.9900 

C(1)-H(1B)  0.9900 

C(2)-C(3)  1.507(7) 

C(2)-H(2A)  0.9900 

C(2)-H(2B)  0.9900 

C(3)-C(4)  1.500(8) 

C(3)-H(3A)  0.9900 

C(3)-H(3B)  0.9900 

C(4)-C(5)  1.544(6) 
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C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 

C(5)-C(6)  1.515(6) 

C(5)-H(5A)  0.9900 

C(5)-H(5B)  0.9900 

C(6)-H(6A)  0.9900 

C(6)-H(6B)  0.9900 

N(1B)-C(6B)  1.466(10) 

N(1B)-C(1B)  1.477(9) 

C(1B)-C(2B)  1.517(10) 

C(1B)-H(1C)  0.9900 

C(1B)-H(1D)  0.9900 

C(2B)-C(3B)  1.491(10) 

C(2B)-H(2C)  0.9900 

C(2B)-H(2D)  0.9900 

C(3B)-C(4B)  1.487(11) 

C(3B)-H(3C)  0.9900 

C(3B)-H(3D)  0.9900 

C(4B)-C(5B)  1.535(10) 

C(4B)-H(4C)  0.9900 

C(4B)-H(4D)  0.9900 

C(5B)-C(6B)  1.517(10) 

C(5B)-H(5C)  0.9900 

C(5B)-H(5D)  0.9900 

C(6B)-H(6C)  0.9900 

C(6B)-H(6D)  0.9900 

C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

C(8)-C(17)  1.381(4) 

C(8)-C(9)  1.411(4) 
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C(9)-C(10)  1.350(4) 

C(9)-H(9A)  0.9500 

C(10)-C(11)  1.419(4) 

C(10)-H(10A)  0.9500 

C(11)-C(12)  1.415(4) 

C(11)-C(16)  1.421(4) 

C(12)-C(13)  1.358(5) 

C(12)-H(12A)  0.9500 

C(13)-C(14)  1.400(5) 

C(13)-H(13A)  0.9500 

C(14)-C(15)  1.367(4) 

C(14)-H(14A)  0.9500 

C(15)-C(16)  1.423(4) 

C(15)-H(15A)  0.9500 

C(16)-C(17)  1.439(4) 

C(17)-C(18)  1.488(3) 

C(18)-C(27)  1.377(3) 

C(18)-C(19)  1.431(4) 

C(19)-C(20)  1.417(4) 

C(19)-C(24)  1.423(4) 

C(20)-C(21)  1.360(4) 

C(20)-H(20A)  0.9500 

C(21)-C(22)  1.417(5) 

C(21)-H(21A)  0.9500 

C(22)-C(23)  1.347(5) 

C(22)-H(22A)  0.9500 

C(23)-C(24)  1.417(4) 

C(23)-H(23A)  0.9500 

C(24)-C(25)  1.409(4) 

C(25)-C(26)  1.358(4) 

C(25)-H(25A)  0.9500 
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C(26)-C(27)  1.414(4) 

C(26)-H(26A)  0.9500 

C(28)-H(28A)  0.9800 

C(28)-H(28B)  0.9800 

C(28)-H(28C)  0.9800 

 

Cl(4)-Sb(1)-Cl(2) 179.7(3) 

Cl(4)-Sb(1)-Cl(5) 89.3(2) 

Cl(2)-Sb(1)-Cl(5) 90.4(2) 

Cl(4)-Sb(1)-Cl(3) 90.4(2) 

Cl(2)-Sb(1)-Cl(3) 89.7(2) 

Cl(5)-Sb(1)-Cl(3) 90.4(2) 

Cl(4)-Sb(1)-Cl(6) 90.4(3) 

Cl(2)-Sb(1)-Cl(6) 89.8(2) 

Cl(5)-Sb(1)-Cl(6) 179.5(3) 

Cl(3)-Sb(1)-Cl(6) 90.0(3) 

Cl(4)-Sb(1)-Cl(1) 90.7(3) 

Cl(2)-Sb(1)-Cl(1) 89.2(3) 

Cl(5)-Sb(1)-Cl(1) 89.6(3) 

Cl(3)-Sb(1)-Cl(1) 178.8(3) 

Cl(6)-Sb(1)-Cl(1) 89.9(3) 

Cl(3B)-Sb(1B)-Cl(2B) 89.7(5) 

Cl(3B)-Sb(1B)-Cl(1B) 179.3(5) 

Cl(2B)-Sb(1B)-Cl(1B) 90.8(5) 

Cl(3B)-Sb(1B)-Cl(4B) 89.2(5) 

Cl(2B)-Sb(1B)-Cl(4B) 178.6(6) 

Cl(1B)-Sb(1B)-Cl(4B) 90.3(4) 

Cl(3B)-Sb(1B)-Cl(5B) 91.5(5) 

Cl(2B)-Sb(1B)-Cl(5B) 89.2(5) 

Cl(1B)-Sb(1B)-Cl(5B) 89.0(4) 

Cl(4B)-Sb(1B)-Cl(5B) 89.9(5) 
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Cl(3B)-Sb(1B)-Cl(6B) 88.9(5) 

Cl(2B)-Sb(1B)-Cl(6B) 90.5(5) 

Cl(1B)-Sb(1B)-Cl(6B) 90.7(5) 

Cl(4B)-Sb(1B)-Cl(6B) 90.4(5) 

Cl(5B)-Sb(1B)-Cl(6B) 179.5(5) 

Cl(2C)-Sb(1C)-Cl(4C) 179.3(3) 

Cl(2C)-Sb(1C)-Cl(5C) 90.5(3) 

Cl(4C)-Sb(1C)-Cl(5C) 89.9(3) 

Cl(2C)-Sb(1C)-Cl(3C) 90.6(2) 

Cl(4C)-Sb(1C)-Cl(3C) 90.0(3) 

Cl(5C)-Sb(1C)-Cl(3C) 91.5(3) 

Cl(2C)-Sb(1C)-Cl(1C) 89.7(2) 

Cl(4C)-Sb(1C)-Cl(1C) 89.8(2) 

Cl(5C)-Sb(1C)-Cl(1C) 90.6(2) 

Cl(3C)-Sb(1C)-Cl(1C) 177.9(3) 

Cl(2C)-Sb(1C)-Cl(6C) 89.1(3) 

Cl(4C)-Sb(1C)-Cl(6C) 90.5(3) 

Cl(5C)-Sb(1C)-Cl(6C) 179.4(3) 

Cl(3C)-Sb(1C)-Cl(6C) 88.9(3) 

Cl(1C)-Sb(1C)-Cl(6C) 89.1(3) 

P(1)-Se(1)-Se(1)#1 94.31(2) 

N(1)-P(1)-N(2) 114.4(3) 

N(1B)-P(1)-N(2) 119.9(10) 

N(1)-P(1)-N(3) 109.8(3) 

N(1B)-P(1)-N(3) 113.4(12) 

N(2)-P(1)-N(3) 104.41(10) 

N(1)-P(1)-Se(1) 105.4(2) 

N(1B)-P(1)-Se(1) 96.3(8) 

N(2)-P(1)-Se(1) 108.04(8) 

N(3)-P(1)-Se(1) 115.08(8) 

C(8)-N(2)-C(7) 116.9(2) 
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C(8)-N(2)-P(1) 120.66(17) 

C(7)-N(2)-P(1) 119.75(18) 

C(27)-N(3)-C(28) 117.9(2) 

C(27)-N(3)-P(1) 115.13(16) 

C(28)-N(3)-P(1) 120.11(17) 

C(6)-N(1)-C(1) 115.8(4) 

C(6)-N(1)-P(1) 120.2(4) 

C(1)-N(1)-P(1) 122.1(4) 

N(1)-C(1)-C(2) 113.3(5) 

N(1)-C(1)-H(1A) 108.9 

C(2)-C(1)-H(1A) 108.9 

N(1)-C(1)-H(1B) 108.9 

C(2)-C(1)-H(1B) 108.9 

H(1A)-C(1)-H(1B) 107.7 

C(3)-C(2)-C(1) 116.4(4) 

C(3)-C(2)-H(2A) 108.2 

C(1)-C(2)-H(2A) 108.2 

C(3)-C(2)-H(2B) 108.2 

C(1)-C(2)-H(2B) 108.2 

H(2A)-C(2)-H(2B) 107.3 

C(4)-C(3)-C(2) 117.3(5) 

C(4)-C(3)-H(3A) 108.0 

C(2)-C(3)-H(3A) 108.0 

C(4)-C(3)-H(3B) 108.0 

C(2)-C(3)-H(3B) 108.0 

H(3A)-C(3)-H(3B) 107.2 

C(3)-C(4)-C(5) 114.2(5) 

C(3)-C(4)-H(4A) 108.7 

C(5)-C(4)-H(4A) 108.7 

C(3)-C(4)-H(4B) 108.7 

C(5)-C(4)-H(4B) 108.7 
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H(4A)-C(4)-H(4B) 107.6 

C(6)-C(5)-C(4) 115.7(5) 

C(6)-C(5)-H(5A) 108.4 

C(4)-C(5)-H(5A) 108.4 

C(6)-C(5)-H(5B) 108.4 

C(4)-C(5)-H(5B) 108.4 

H(5A)-C(5)-H(5B) 107.4 

N(1)-C(6)-C(5) 113.3(4) 

N(1)-C(6)-H(6A) 108.9 

C(5)-C(6)-H(6A) 108.9 

N(1)-C(6)-H(6B) 108.9 

C(5)-C(6)-H(6B) 108.9 

H(6A)-C(6)-H(6B) 107.7 

C(6B)-N(1B)-C(1B) 117.8(10) 

C(6B)-N(1B)-P(1) 113.0(15) 

C(1B)-N(1B)-P(1) 128.2(13) 

N(1B)-C(1B)-C(2B) 115.6(10) 

N(1B)-C(1B)-H(1C) 108.4 

C(2B)-C(1B)-H(1C) 108.4 

N(1B)-C(1B)-H(1D) 108.4 

C(2B)-C(1B)-H(1D) 108.4 

H(1C)-C(1B)-H(1D) 107.4 

C(3B)-C(2B)-C(1B) 118.8(11) 

C(3B)-C(2B)-H(2C) 107.6 

C(1B)-C(2B)-H(2C) 107.6 

C(3B)-C(2B)-H(2D) 107.6 

C(1B)-C(2B)-H(2D) 107.6 

H(2C)-C(2B)-H(2D) 107.0 

C(4B)-C(3B)-C(2B) 122.3(13) 

C(4B)-C(3B)-H(3C) 106.8 

C(2B)-C(3B)-H(3C) 106.8 
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C(4B)-C(3B)-H(3D) 106.8 

C(2B)-C(3B)-H(3D) 106.8 

H(3C)-C(3B)-H(3D) 106.6 

C(3B)-C(4B)-C(5B) 117.2(12) 

C(3B)-C(4B)-H(4C) 108.0 

C(5B)-C(4B)-H(4C) 108.0 

C(3B)-C(4B)-H(4D) 108.0 

C(5B)-C(4B)-H(4D) 108.0 

H(4C)-C(4B)-H(4D) 107.2 

C(6B)-C(5B)-C(4B) 115.2(13) 

C(6B)-C(5B)-H(5C) 108.5 

C(4B)-C(5B)-H(5C) 108.5 

C(6B)-C(5B)-H(5D) 108.5 

C(4B)-C(5B)-H(5D) 108.5 

H(5C)-C(5B)-H(5D) 107.5 

N(1B)-C(6B)-C(5B) 113.3(13) 

N(1B)-C(6B)-H(6C) 108.9 

C(5B)-C(6B)-H(6C) 108.9 

N(1B)-C(6B)-H(6D) 108.9 

C(5B)-C(6B)-H(6D) 108.9 

H(6C)-C(6B)-H(6D) 107.7 

N(2)-C(7)-H(7A) 109.5 

N(2)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7B) 109.5 

N(2)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7C) 109.5 

H(7B)-C(7)-H(7C) 109.5 

C(17)-C(8)-C(9) 121.7(2) 

C(17)-C(8)-N(2) 121.0(2) 

C(9)-C(8)-N(2) 117.2(2) 

C(10)-C(9)-C(8) 120.6(3) 
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C(10)-C(9)-H(9A) 119.7 

C(8)-C(9)-H(9A) 119.7 

C(9)-C(10)-C(11) 120.8(3) 

C(9)-C(10)-H(10A) 119.6 

C(11)-C(10)-H(10A) 119.6 

C(12)-C(11)-C(10) 121.0(3) 

C(12)-C(11)-C(16) 120.1(3) 

C(10)-C(11)-C(16) 118.9(2) 

C(13)-C(12)-C(11) 121.1(3) 

C(13)-C(12)-H(12A) 119.5 

C(11)-C(12)-H(12A) 119.5 

C(12)-C(13)-C(14) 119.4(3) 

C(12)-C(13)-H(13A) 120.3 

C(14)-C(13)-H(13A) 120.3 

C(15)-C(14)-C(13) 121.4(3) 

C(15)-C(14)-H(14A) 119.3 

C(13)-C(14)-H(14A) 119.3 

C(14)-C(15)-C(16) 120.9(3) 

C(14)-C(15)-H(15A) 119.6 

C(16)-C(15)-H(15A) 119.6 

C(11)-C(16)-C(15) 117.1(2) 

C(11)-C(16)-C(17) 119.9(2) 

C(15)-C(16)-C(17) 123.0(2) 

C(8)-C(17)-C(16) 117.9(2) 

C(8)-C(17)-C(18) 121.7(2) 

C(16)-C(17)-C(18) 120.2(2) 

C(27)-C(18)-C(19) 118.1(2) 

C(27)-C(18)-C(17) 119.5(2) 

C(19)-C(18)-C(17) 122.4(2) 

C(20)-C(19)-C(24) 117.9(2) 

C(20)-C(19)-C(18) 123.0(2) 
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C(24)-C(19)-C(18) 119.1(2) 

C(21)-C(20)-C(19) 121.3(3) 

C(21)-C(20)-H(20A) 119.4 

C(19)-C(20)-H(20A) 119.4 

C(20)-C(21)-C(22) 120.2(3) 

C(20)-C(21)-H(21A) 119.9 

C(22)-C(21)-H(21A) 119.9 

C(23)-C(22)-C(21) 120.1(3) 

C(23)-C(22)-H(22A) 119.9 

C(21)-C(22)-H(22A) 119.9 

C(22)-C(23)-C(24) 121.1(3) 

C(22)-C(23)-H(23A) 119.5 

C(24)-C(23)-H(23A) 119.5 

C(25)-C(24)-C(23) 121.3(2) 

C(25)-C(24)-C(19) 119.5(2) 

C(23)-C(24)-C(19) 119.2(3) 

C(26)-C(25)-C(24) 121.3(2) 

C(26)-C(25)-H(25A) 119.4 

C(24)-C(25)-H(25A) 119.4 

C(25)-C(26)-C(27) 119.1(2) 

C(25)-C(26)-H(26A) 120.4 

C(27)-C(26)-H(26A) 120.4 

C(18)-C(27)-C(26) 122.5(2) 

C(18)-C(27)-N(3) 119.1(2) 

C(26)-C(27)-N(3) 118.4(2) 

N(3)-C(28)-H(28A) 109.5 

N(3)-C(28)-H(28B) 109.5 

H(28A)-C(28)-H(28B) 109.5 

N(3)-C(28)-H(28C) 109.5 

H(28A)-C(28)-H(28C) 109.5 

H(28B)-C(28)-H(28C) 109.5 
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_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x,-y+2,-z       

 

Anisotropic displacement parameters  (Å2x 103) for bc11tasq.  The anisotropic 

displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Sb(1) 48(1)  36(1) 27(1)  -13(1) -9(1)  7(1) 

Cl(1) 65(3)  137(5) 66(2)  -15(3) -7(2)  49(3) 

Cl(2) 99(4)  33(2) 32(2)  -14(1) -13(2)  -2(2) 

Cl(3) 65(2)  87(2) 72(2)  -47(2) -24(2)  36(2) 

Cl(4) 85(3)  99(3) 52(2)  -41(1) -24(2)  -16(2) 

Cl(5) 80(4)  48(2) 29(1)  -12(1) -1(2)  -13(2) 

Cl(6) 95(3)  40(2) 49(2)  1(1) -29(2)  -21(1) 

Sb(1B) 46(4)  33(2) 38(3)  -14(2) 3(2)  -20(2) 

Cl(1B) 94(5)  98(6) 73(5)  -58(4) -22(4)  38(5) 

Cl(2B) 98(8)  59(8) 43(5)  -20(4) -30(5)  -3(6) 

Cl(3B) 122(7)  95(6) 102(6)  -36(5) -50(5)  57(5) 

Cl(4B) 90(7)  87(8) 104(7)  -56(5) -43(5)  3(5) 

Cl(5B) 72(5)  97(7) 55(4)  -28(5) 1(4)  -2(5) 

Cl(6B) 123(7)  81(6) 101(6)  -26(5) 11(5)  -27(5) 

Sb(1C) 45(1)  34(1) 31(1)  -13(1) -10(1)  3(1) 

Cl(1C) 45(2)  82(2) 62(2)  -16(1) -5(2)  12(2) 

Cl(2C) 61(2)  67(3) 41(2)  -36(2) -11(1)  13(2) 

Cl(3C) 74(3)  129(4) 73(2)  -65(2) -33(2)  59(3) 

Cl(4C) 82(4)  76(3) 63(2)  -33(1) -36(2)  -6(2) 

Cl(5C) 67(3)  58(2) 39(1)  0(1) -10(1)  -21(1) 

Cl(6C) 109(4)  46(2) 61(2)  -10(2) -12(2)  -19(2) 

Se(1) 38(1)  44(1) 33(1)  -7(1) -8(1)  -1(1) 
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P(1) 36(1)  35(1) 30(1)  -15(1) -9(1)  4(1) 

N(2) 41(1)  36(1) 36(1)  -20(1) -8(1)  6(1) 

N(3) 39(1)  31(1) 33(1)  -13(1) -9(1)  5(1) 

N(1) 40(3)  47(2) 32(2)  -15(2) -12(1)  2(2) 

C(1) 49(3)  53(2) 35(2)  -12(2) -15(2)  4(2) 

C(2) 57(2)  77(3) 34(2)  -17(2) -6(2)  -7(2) 

C(3) 57(3)  89(3) 47(3)  -34(2) -3(2)  -1(2) 

C(4) 72(3)  92(4) 50(3)  -38(3) -15(2)  -5(3) 

C(5) 65(2)  74(3) 45(3)  -31(2) -15(2)  -14(2) 

C(6) 41(2)  65(3) 47(2)  -23(2) -18(2)  -1(2) 

N(1B) 39(5)  49(5) 38(4)  -22(4) -18(4)  0(4) 

C(1B) 51(6)  54(5) 35(4)  -12(4) -21(4)  -4(5) 

C(2B) 56(5)  70(4) 40(4)  -17(4) -14(4)  -2(4) 

C(3B) 66(5)  84(5) 42(4)  -31(4) -10(4)  -9(4) 

C(4B) 64(5)  79(5) 52(5)  -36(5) -9(4)  -13(5) 

C(5B) 56(5)  75(5) 46(5)  -26(5) -12(5)  -11(4) 

C(6B) 50(5)  59(5) 42(4)  -23(4) -11(4)  0(4) 

C(7) 52(1)  46(2) 47(2)  -30(1) -10(1)  12(1) 

C(8) 42(1)  30(1) 38(1)  -15(1) -11(1)  4(1) 

C(9) 58(2)  38(1) 47(2)  -24(1) -16(1)  3(1) 

C(10) 57(2)  37(1) 58(2)  -25(1) -18(1)  -4(1) 

C(11) 50(1)  34(1) 50(2)  -16(1) -12(1)  -1(1) 

C(12) 56(2)  42(2) 60(2)  -15(1) -7(1)  -13(1) 

C(13) 58(2)  55(2) 59(2)  -17(2) 2(1)  -16(1) 

C(14) 56(2)  59(2) 49(2)  -22(1) 2(1)  -9(1) 

C(15) 51(1)  45(2) 43(2)  -21(1) -5(1)  -3(1) 

C(16) 44(1)  32(1) 41(1)  -14(1) -10(1)  1(1) 

C(17) 42(1)  30(1) 37(1)  -16(1) -12(1)  4(1) 

C(18) 35(1)  32(1) 31(1)  -17(1) -4(1)  2(1) 

C(19) 38(1)  35(1) 32(1)  -16(1) -6(1)  4(1) 

C(20) 58(2)  37(1) 40(1)  -15(1) -13(1)  4(1) 
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C(21) 71(2)  46(2) 43(2)  -9(1) -21(1)  6(1) 

C(22) 71(2)  61(2) 35(1)  -17(1) -19(1)  5(2) 

C(23) 58(2)  56(2) 39(1)  -25(1) -13(1)  -2(1) 

C(24) 42(1)  43(1) 35(1)  -20(1) -5(1)  0(1) 

C(25) 52(1)  38(1) 39(1)  -22(1) -9(1)  -4(1) 

C(26) 46(1)  31(1) 37(1)  -14(1) -7(1)  -1(1) 

C(27) 35(1)  32(1) 32(1)  -16(1) -6(1)  5(1) 

C(28) 42(1)  36(1) 45(1)  -14(1) -10(1)  10(1) 

______________________________________________________________________________ 
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Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for bc11tasq. 

______________________________________________________________________________

__  

 x  y  z  U(eq) 

______________________________________________________________________________

__  

  

H(1A) 2413 7939 2565 56 

H(1B) 1393 7929 2065 56 

H(2A) 151 8648 3091 71 

H(2B) 858 7892 3862 71 

H(3A) 967 10381 2865 78 

H(3B) 706 9592 4083 78 

H(4A) 2781 9215 3596 83 

H(4B) 2455 10432 3715 83 

H(5A) 2875 11410 1854 71 

H(5B) 3999 10920 2194 71 

H(6A) 3893 10583 729 59 

H(6B) 3937 9375 1678 59 

H(1C) 1678 7655 2406 56 

H(1D) 601 8442 2383 56 

H(2C) 642 7962 3993 68 

H(2D) 2027 7974 3684 68 

H(3C) 910 10065 3242 76 

H(3D) 1190 9414 4317 76 

H(4C) 3140 9921 3508 76 

H(4D) 2447 11072 3268 76 

H(5C) 2816 11387 1559 71 

H(5D) 4029 11082 1798 71 

H(6C) 3859 10060 835 60 
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H(6D) 3583 9075 2002 60 

H(7A) 1248 12863 -381 69 

H(7B) 1740 12399 602 69 

H(7C) 631 11682 621 69 

H(9A) 3614 12955 -278 55 

H(10A) 5301 14019 -1515 58 

H(12A) 6781 14519 -3233 68 

H(13A) 7493 14249 -4769 76 

H(14A) 6503 12842 -5052 70 

H(15A) 4807 11744 -3835 57 

H(20A) 2902 13146 -3687 55 

H(21A) 2336 13598 -5161 66 

H(22A) 1706 12062 -5550 67 

H(23A) 1522 10122 -4399 60 

H(25A) 1612 8630 -2704 50 

H(26A) 2015 8153 -1146 47 

H(28A) 4019 8311 -703 63 

H(28B) 2877 7751 285 63 

H(28C) 3912 8493 347 63 

______________________________________________________________________________

__ 
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 Torsion angles [°] for bc11tasq. 

________________________________________________________________  

Se(1)#1-Se(1)-P(1)-N(1) 162.8(3) 

Se(1)#1-Se(1)-P(1)-N(1B) 164.4(12) 

Se(1)#1-Se(1)-P(1)-N(2) 40.12(8) 

Se(1)#1-Se(1)-P(1)-N(3) -76.06(8) 

N(1)-P(1)-N(2)-C(8) 93.6(3) 

N(1B)-P(1)-N(2)-C(8) 102.0(12) 

N(3)-P(1)-N(2)-C(8) -26.4(2) 

Se(1)-P(1)-N(2)-C(8) -149.36(17) 

N(1)-P(1)-N(2)-C(7) -67.3(4) 

N(1B)-P(1)-N(2)-C(7) -58.9(12) 

N(3)-P(1)-N(2)-C(7) 172.7(2) 

Se(1)-P(1)-N(2)-C(7) 49.7(2) 

N(1)-P(1)-N(3)-C(27) 177.5(3) 

N(1B)-P(1)-N(3)-C(27) 168.4(8) 

N(2)-P(1)-N(3)-C(27) -59.39(18) 

Se(1)-P(1)-N(3)-C(27) 58.85(17) 

N(1)-P(1)-N(3)-C(28) 27.2(3) 

N(1B)-P(1)-N(3)-C(28) 18.1(8) 

N(2)-P(1)-N(3)-C(28) 150.26(18) 

Se(1)-P(1)-N(3)-C(28) -91.49(18) 

N(1B)-P(1)-N(1)-C(6) -175(10) 

N(2)-P(1)-N(1)-C(6) -46.5(7) 

N(3)-P(1)-N(1)-C(6) 70.4(7) 

Se(1)-P(1)-N(1)-C(6) -165.1(5) 

N(1B)-P(1)-N(1)-C(1) 21(9) 

N(2)-P(1)-N(1)-C(1) 149.6(5) 

N(3)-P(1)-N(1)-C(1) -93.4(6) 

Se(1)-P(1)-N(1)-C(1) 31.1(7) 

C(6)-N(1)-C(1)-C(2) 89.3(7) 
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P(1)-N(1)-C(1)-C(2) -106.2(8) 

N(1)-C(1)-C(2)-C(3) -33.0(8) 

C(1)-C(2)-C(3)-C(4) -42.3(7) 

C(2)-C(3)-C(4)-C(5) 84.0(8) 

C(3)-C(4)-C(5)-C(6) -66.2(9) 

C(1)-N(1)-C(6)-C(5) -78.5(7) 

P(1)-N(1)-C(6)-C(5) 116.7(8) 

C(4)-C(5)-C(6)-N(1) 52.9(8) 

N(1)-P(1)-N(1B)-C(6B) -2(8) 

N(2)-P(1)-N(1B)-C(6B) -57(2) 

N(3)-P(1)-N(1B)-C(6B) 66.9(19) 

Se(1)-P(1)-N(1B)-C(6B) -172.2(17) 

N(1)-P(1)-N(1B)-C(1B) -170(12) 

N(2)-P(1)-N(1B)-C(1B) 135(2) 

N(3)-P(1)-N(1B)-C(1B) -101(3) 

Se(1)-P(1)-N(1B)-C(1B) 20(3) 

C(6B)-N(1B)-C(1B)-C(2B) 39(3) 

P(1)-N(1B)-C(1B)-C(2B) -153(2) 

N(1B)-C(1B)-C(2B)-C(3B) 34(3) 

C(1B)-C(2B)-C(3B)-C(4B) -75(2) 

C(2B)-C(3B)-C(4B)-C(5B) 57(3) 

C(3B)-C(4B)-C(5B)-C(6B) -45(3) 

C(1B)-N(1B)-C(6B)-C(5B) -90(2) 

P(1)-N(1B)-C(6B)-C(5B) 100(3) 

C(4B)-C(5B)-C(6B)-N(1B) 72(3) 

C(7)-N(2)-C(8)-C(17) -133.8(3) 

P(1)-N(2)-C(8)-C(17) 64.8(3) 

C(7)-N(2)-C(8)-C(9) 45.0(3) 

P(1)-N(2)-C(8)-C(9) -116.4(2) 

C(17)-C(8)-C(9)-C(10) 0.0(4) 

N(2)-C(8)-C(9)-C(10) -178.8(3) 
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C(8)-C(9)-C(10)-C(11) -0.7(5) 

C(9)-C(10)-C(11)-C(12) -178.9(3) 

C(9)-C(10)-C(11)-C(16) -0.9(4) 

C(10)-C(11)-C(12)-C(13) 178.1(3) 

C(16)-C(11)-C(12)-C(13) 0.0(5) 

C(11)-C(12)-C(13)-C(14) -1.6(6) 

C(12)-C(13)-C(14)-C(15) 0.8(6) 

C(13)-C(14)-C(15)-C(16) 1.6(5) 

C(12)-C(11)-C(16)-C(15) 2.3(4) 

C(10)-C(11)-C(16)-C(15) -175.8(3) 

C(12)-C(11)-C(16)-C(17) -178.7(3) 

C(10)-C(11)-C(16)-C(17) 3.2(4) 

C(14)-C(15)-C(16)-C(11) -3.1(4) 

C(14)-C(15)-C(16)-C(17) 177.9(3) 

C(9)-C(8)-C(17)-C(16) 2.3(4) 

N(2)-C(8)-C(17)-C(16) -178.9(2) 

C(9)-C(8)-C(17)-C(18) 178.8(2) 

N(2)-C(8)-C(17)-C(18) -2.4(4) 

C(11)-C(16)-C(17)-C(8) -3.9(4) 

C(15)-C(16)-C(17)-C(8) 175.0(3) 

C(11)-C(16)-C(17)-C(18) 179.6(2) 

C(15)-C(16)-C(17)-C(18) -1.5(4) 

C(8)-C(17)-C(18)-C(27) -54.7(3) 

C(16)-C(17)-C(18)-C(27) 121.7(3) 

C(8)-C(17)-C(18)-C(19) 127.5(3) 

C(16)-C(17)-C(18)-C(19) -56.1(3) 

C(27)-C(18)-C(19)-C(20) 171.4(2) 

C(17)-C(18)-C(19)-C(20) -10.7(4) 

C(27)-C(18)-C(19)-C(24) -8.0(3) 

C(17)-C(18)-C(19)-C(24) 169.8(2) 

C(24)-C(19)-C(20)-C(21) -2.6(4) 
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C(18)-C(19)-C(20)-C(21) 178.0(3) 

C(19)-C(20)-C(21)-C(22) -1.1(5) 

C(20)-C(21)-C(22)-C(23) 2.8(5) 

C(21)-C(22)-C(23)-C(24) -0.6(5) 

C(22)-C(23)-C(24)-C(25) 175.9(3) 

C(22)-C(23)-C(24)-C(19) -3.1(4) 

C(20)-C(19)-C(24)-C(25) -174.4(2) 

C(18)-C(19)-C(24)-C(25) 5.1(3) 

C(20)-C(19)-C(24)-C(23) 4.6(4) 

C(18)-C(19)-C(24)-C(23) -176.0(2) 

C(23)-C(24)-C(25)-C(26) -178.4(3) 

C(19)-C(24)-C(25)-C(26) 0.6(4) 

C(24)-C(25)-C(26)-C(27) -3.1(4) 

C(19)-C(18)-C(27)-C(26) 5.6(3) 

C(17)-C(18)-C(27)-C(26) -172.3(2) 

C(19)-C(18)-C(27)-N(3) -172.90(19) 

C(17)-C(18)-C(27)-N(3) 9.2(3) 

C(25)-C(26)-C(27)-C(18) -0.1(4) 

C(25)-C(26)-C(27)-N(3) 178.5(2) 

C(28)-N(3)-C(27)-C(18) -136.4(2) 

P(1)-N(3)-C(27)-C(18) 72.6(2) 

C(28)-N(3)-C(27)-C(26) 45.0(3) 

P(1)-N(3)-C(27)-C(26) -106.0(2) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x,-y+2,-z       

 

  



392 

 

Crystal Structure of (R)-62b 

 

  Crystal data and structure refinement for bc56ras. 

Identification code  bc56ras 

Empirical formula  C28 H30 N3 P Se 

Formula weight  518.48 

Temperature  193(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P2(1)    

Unit cell dimensions a = 16.6637(6) Å  

 b = 9.1966(5) Å  

 c = 16.8975(7) Å  

Volume 2435.84(19) Å3 

Z 4 

Density (calculated) 1.414 Mg/m3 

Absorption coefficient 2.863 mm-1 

F(000) 1072 

Crystal size 0.344 x 0.177 x 0.04 mm3 

Theta range for data collection 2.78 to 67.27°. 

Index ranges -19<=h<=19, -10<=k<=9, -19<=l<=20 

Reflections collected 17531 

Independent reflections 6815 [R(int) = 0.0730] 

Completeness to theta = 67.27° 97.5 %  

Absorption correction Integration 
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Max. and min. transmission 0.9023 and 0.6321 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6815 / 2368 / 1165 

Goodness-of-fit on F2 1.027 

Final R indices [I>2sigma(I)] R1 = 0.0520, wR2 = 0.1265 

R indices (all data) R1 = 0.0618, wR2 = 0.1359 

Absolute structure parameter 0.01(2) 

Largest diff. peak and hole 0.782 and -0.425 e.Å-3 

 

 Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for bc56ras.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

______________________________________________________________________________

__  

 x y z U(eq) 

______________________________________________________________________________

__   

P(1) 2068(1) 5405(2) 8330(1) 38(1) 

Se(1) 829(1) 4595(1) 8072(1) 61(1) 

N(1) 2671(8) 5656(13) 9356(4) 37(2) 

C(1) 2259(11) 6609(13) 9759(11) 37(2) 

C(2) 2266(9) 8094(12) 9593(10) 36(2) 

C(3) 1732(10) 9060(13) 9871(10) 34(2) 

C(4) 1593(11) 10507(15) 9627(11) 37(2) 

C(5) 1058(9) 11374(15) 9878(10) 37(2) 

C(6) 663(8) 10851(17) 10429(8) 36(2) 

C(7) 779(8) 9437(17) 10692(9) 38(2) 

C(8) 1318(8) 8484(15) 10428(8) 37(2) 

C(9) 1408(8) 7010(15) 10639(8) 37(2) 

C(10) 1834(9) 6086(15) 10303(9) 39(2) 

C(21) 3101(15) 4361(19) 9836(13) 39(3) 
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N(2) 2137(10) 7050(10) 7945(7) 44(2) 

C(11) 2770(10) 8118(18) 8357(8) 40(2) 

C(12) 2836(9) 8646(15) 9138(8) 35(2) 

C(13) 3528(9) 9641(18) 9554(8) 37(2) 

C(14) 3699(8) 10115(16) 10399(8) 39(2) 

C(15) 4324(9) 11092(17) 10749(8) 43(2) 

C(16) 4858(9) 11589(17) 10326(9) 44(2) 

C(17) 4746(8) 11123(17) 9533(9) 40(2) 

C(18) 4076(9) 10133(18) 9130(8) 38(2) 

C(19) 3968(8) 9578(16) 8325(8) 39(2) 

C(20) 3348(8) 8595(15) 7953(7) 40(2) 

C(22) 1526(15) 7430(20) 7108(10) 59(4) 

N(1B) 2587(10) 5782(16) 9360(5) 39(2) 

C(1B) 2179(14) 6831(15) 9715(14) 37(2) 

C(2B) 2223(11) 8293(14) 9513(12) 37(2) 

C(3B) 1718(12) 9356(16) 9762(12) 35(2) 

C(4B) 1637(13) 10795(16) 9493(14) 35(2) 

C(5B) 1151(11) 11762(17) 9746(12) 38(2) 

C(6B) 706(10) 11321(19) 10271(11) 38(3) 

C(7B) 746(9) 9910(20) 10538(10) 36(2) 

C(8B) 1238(9) 8864(16) 10275(10) 36(2) 

C(9B) 1259(10) 7397(17) 10501(10) 37(2) 

C(10B) 1691(11) 6398(16) 10220(12) 39(2) 

C(21B) 2923(17) 4470(20) 9873(16) 40(4) 

N(2B) 2012(12) 7050(11) 7903(8) 41(2) 

C(11B) 2669(12) 8110(20) 8249(10) 41(2) 

C(12B) 2788(11) 8713(19) 9026(10) 37(2) 

C(13B) 3488(11) 9720(20) 9382(9) 38(2) 

C(14B) 3662(10) 10368(19) 10191(9) 39(2) 

C(15B) 4339(12) 11260(20) 10515(10) 44(3) 

C(16B) 4855(11) 11633(19) 10050(11) 42(3) 
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C(17B) 4701(10) 11080(20) 9266(11) 43(2) 

C(18B) 4017(10) 10100(20) 8915(10) 39(2) 

C(19B) 3807(10) 9570(20) 8089(9) 41(2) 

C(20B) 3155(11) 8627(19) 7758(9) 43(2) 

C(22B) 1541(18) 7080(30) 6988(10) 60(5) 

N(3) 2682(10) 4292(18) 8023(15) 45(2) 

C(23) 3587(10) 4700(20) 8269(10) 48(2) 

C(24) 3911(10) 4850(20) 7535(10) 55(2) 

C(25) 3198(13) 4730(20) 6669(11) 72(3) 

C(26) 2878(14) 3290(30) 6390(11) 67(3) 

C(27) 2249(13) 2660(30) 6770(11) 61(3) 

C(28) 2511(16) 2800(20) 7713(11) 53(2) 

N(3B) 2648(6) 4320(11) 7969(8) 44(2) 

C(23B) 3472(6) 4741(13) 7912(7) 53(2) 

C(24B) 3483(8) 5112(12) 7044(7) 64(2) 

C(25B) 2857(8) 4184(14) 6327(7) 62(2) 

C(26B) 2805(7) 2649(15) 6501(6) 60(2) 

C(27B) 2205(7) 2244(13) 6967(6) 53(2) 

C(28B) 2452(8) 2770(12) 7861(6) 46(2) 

P(2) 6428(1) 8824(2) 6809(1) 42(1) 

Se(2) 5340(1) 7860(1) 6945(1) 45(1) 

N(4) 7271(5) 7811(14) 7389(7) 43(2) 

C(31) 8104(6) 8176(14) 7340(6) 38(2) 

C(32) 8230(7) 7954(15) 6587(7) 36(2) 

C(33) 8934(9) 8650(19) 6438(7) 39(2) 

C(34) 9041(11) 8620(20) 5646(8) 44(2) 

C(35) 9697(9) 9394(17) 5503(9) 47(2) 

C(36) 10263(8) 10200(16) 6157(10) 49(2) 

C(37) 10197(7) 10226(15) 6929(10) 50(2) 

C(38) 9555(6) 9412(14) 7107(8) 43(2) 

C(39) 9441(6) 9399(15) 7921(7) 47(2) 
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C(40) 8760(6) 8814(15) 8033(7) 42(2) 

C(51) 7297(9) 6951(18) 8136(7) 47(3) 

N(5) 6561(7) 8891(12) 5875(4) 37(2) 

C(41) 6779(7) 7557(14) 5580(11) 34(2) 

C(42) 7608(6) 7057(14) 5926(11) 32(2) 

C(43) 7835(9) 5669(18) 5674(17) 33(2) 

C(44) 8664(9) 5051(18) 6039(14) 38(2) 

C(45) 8836(8) 3675(15) 5851(11) 41(2) 

C(46) 8201(9) 2874(15) 5220(8) 42(2) 

C(47) 7423(9) 3443(14) 4859(9) 39(2) 

C(48) 7198(8) 4834(15) 5068(12) 36(2) 

C(49) 6357(8) 5406(15) 4721(11) 38(2) 

C(50) 6149(7) 6703(15) 4993(11) 34(2) 

C(52) 5907(9) 9807(16) 5277(10) 48(3) 

N(4B) 7352(4) 8011(14) 7346(6) 42(2) 

C(31B) 8093(6) 8544(14) 7175(7) 41(2) 

C(32B) 8213(7) 8097(14) 6449(7) 36(2) 

C(33B) 8908(8) 8685(18) 6234(8) 39(2) 

C(34B) 9007(10) 8410(20) 5450(8) 41(2) 

C(35B) 9646(8) 9105(16) 5231(8) 44(2) 

C(36B) 10209(8) 10050(15) 5805(10) 45(2) 

C(37B) 10125(7) 10371(13) 6549(10) 45(2) 

C(38B) 9472(6) 9705(13) 6786(8) 43(2) 

C(39B) 9351(6) 10012(14) 7580(8) 46(2) 

C(40B) 8692(6) 9479(16) 7759(7) 46(2) 

C(51B) 7429(9) 7620(20) 8203(6) 52(3) 

N(5B) 6428(7) 8615(12) 5814(4) 36(2) 

C(41B) 6751(6) 7296(14) 5593(11) 32(2) 

C(42B) 7617(6) 7011(14) 5901(10) 33(2) 

C(43B) 7933(9) 5622(19) 5746(16) 33(2) 

C(44B) 8788(8) 5162(17) 6172(13) 37(2) 
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C(45B) 9069(8) 3862(15) 5991(10) 43(2) 

C(46B) 8509(8) 2914(15) 5390(9) 43(2) 

C(47B) 7696(8) 3300(13) 4996(9) 40(2) 

C(48B) 7377(8) 4654(14) 5153(11) 36(2) 

C(49B) 6505(8) 5055(15) 4790(10) 37(2) 

C(50B) 6201(7) 6325(16) 5002(11) 35(2) 

C(52B) 5729(9) 9312(17) 5126(10) 50(3) 

N(6) 6363(8) 10630(8) 6777(9) 48(2) 

C(53) 6921(8) 11583(13) 6459(8) 45(2) 

C(54) 7474(9) 12659(17) 7067(10) 53(2) 

C(55) 7009(10) 14028(14) 7223(10) 57(2) 

C(56) 6514(10) 13807(15) 7802(10) 61(2) 

C(57) 6162(10) 12343(15) 7849(8) 59(2) 

C(58) 5769(8) 11468(16) 7088(9) 54(2) 

N(6B) 6558(5) 10530(7) 7138(5) 44(2) 

C(53B) 7268(6) 11436(10) 7043(7) 53(2) 

C(54B) 7183(8) 13048(12) 7113(7) 58(2) 

C(55B) 6294(7) 13690(12) 6645(6) 59(2) 

C(56B) 5692(7) 13616(12) 7130(7) 60(2) 

C(57B) 5471(6) 12158(11) 7363(6) 52(2) 

C(58B) 6170(6) 11112(11) 7741(5) 47(2) 

______________________________________________________________________________

__ 
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 Bond lengths [Å] and angles [°] for  bc56ras. 

_____________________________________________________  

P(1)-N(3B)  1.644(5) 

P(1)-N(3)  1.651(7) 

P(1)-N(2B)  1.664(7) 

P(1)-N(2)  1.665(6) 

P(1)-N(1B)  1.696(6) 

P(1)-N(1)  1.699(6) 

P(1)-Se(1)  2.0977(14) 

N(1)-C(1)  1.422(9) 

N(1)-C(21)  1.482(10) 

C(1)-C(2)  1.396(10) 

C(1)-C(10)  1.421(9) 

C(2)-C(3)  1.445(9) 

C(2)-C(12)  1.498(8) 

C(3)-C(4)  1.389(11) 

C(3)-C(8)  1.443(10) 

C(4)-C(5)  1.366(10) 

C(4)-H(4A)  0.9500 

C(5)-C(6)  1.396(13) 

C(5)-H(5A)  0.9500 

C(6)-C(7)  1.367(15) 

C(6)-H(6A)  0.9500 

C(7)-C(8)  1.431(11) 

C(7)-H(7A)  0.9500 

C(8)-C(9)  1.397(12) 

C(9)-C(10)  1.350(11) 

C(9)-H(9A)  0.9500 

C(10)-H(10A)  0.9500 

C(21)-H(21A)  0.9800 

C(21)-H(21B)  0.9800 
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C(21)-H(21C)  0.9800 

N(2)-C(11)  1.437(9) 

N(2)-C(22)  1.477(10) 

C(11)-C(12)  1.375(8) 

C(11)-C(20)  1.427(9) 

C(12)-C(13)  1.453(9) 

C(13)-C(18)  1.414(9) 

C(13)-C(14)  1.426(10) 

C(14)-C(15)  1.351(11) 

C(14)-H(14A)  0.9500 

C(15)-C(16)  1.394(12) 

C(15)-H(15A)  0.9500 

C(16)-C(17)  1.358(12) 

C(16)-H(16A)  0.9500 

C(17)-C(18)  1.422(11) 

C(17)-H(17A)  0.9500 

C(18)-C(19)  1.406(11) 

C(19)-C(20)  1.356(11) 

C(19)-H(19A)  0.9500 

C(20)-H(20A)  0.9500 

C(22)-H(22A)  0.9800 

C(22)-H(22B)  0.9800 

C(22)-H(22C)  0.9800 

N(1B)-C(1B)  1.426(9) 

N(1B)-C(21B)  1.484(10) 

C(1B)-C(2B)  1.395(11) 

C(1B)-C(10B)  1.421(9) 

C(2B)-C(3B)  1.443(9) 

C(2B)-C(12B)  1.496(8) 

C(3B)-C(4B)  1.390(12) 

C(3B)-C(8B)  1.437(10) 
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C(4B)-C(5B)  1.365(10) 

C(4B)-H(4B)  0.9500 

C(5B)-C(6B)  1.397(14) 

C(5B)-H(5B)  0.9500 

C(6B)-C(7B)  1.364(15) 

C(6B)-H(6B)  0.9500 

C(7B)-C(8B)  1.432(11) 

C(7B)-H(7B)  0.9500 

C(8B)-C(9B)  1.399(13) 

C(9B)-C(10B)  1.349(12) 

C(9B)-H(9B)  0.9500 

C(10B)-H(10B)  0.9500 

C(21B)-H(21D)  0.9800 

C(21B)-H(21E)  0.9800 

C(21B)-H(21F)  0.9800 

N(2B)-C(11B)  1.434(9) 

N(2B)-C(22B)  1.477(11) 

C(11B)-C(12B)  1.376(9) 

C(11B)-C(20B)  1.424(10) 

C(12B)-C(13B)  1.451(9) 

C(13B)-C(18B)  1.413(10) 

C(13B)-C(14B)  1.427(10) 

C(14B)-C(15B)  1.352(12) 

C(14B)-H(14B)  0.9500 

C(15B)-C(16B)  1.390(13) 

C(15B)-H(15B)  0.9500 

C(16B)-C(17B)  1.359(13) 

C(16B)-H(16B)  0.9500 

C(17B)-C(18B)  1.419(11) 

C(17B)-H(17B)  0.9500 

C(18B)-C(19B)  1.404(11) 
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C(19B)-C(20B)  1.355(12) 

C(19B)-H(19B)  0.9500 

C(20B)-H(20B)  0.9500 

C(22B)-H(22D)  0.9800 

C(22B)-H(22E)  0.9800 

C(22B)-H(22F)  0.9800 

N(3)-C(28)  1.464(12) 

N(3)-C(23)  1.470(11) 

C(23)-C(24)  1.518(15) 

C(23)-H(23A)  0.9900 

C(23)-H(23B)  0.9900 

C(24)-C(25)  1.545(15) 

C(24)-H(24A)  0.9900 

C(24)-H(24B)  0.9900 

C(25)-C(26)  1.452(18) 

C(25)-H(25A)  0.9900 

C(25)-H(25B)  0.9900 

C(26)-C(27)  1.516(15) 

C(26)-H(26A)  0.9900 

C(26)-H(26B)  0.9900 

C(27)-C(28)  1.508(12) 

C(27)-H(27A)  0.9900 

C(27)-H(27B)  0.9900 

C(28)-H(28A)  0.9900 

C(28)-H(28B)  0.9900 

N(3B)-C(23B)  1.460(9) 

N(3B)-C(28B)  1.460(10) 

C(23B)-C(24B)  1.512(14) 

C(23B)-H(23C)  0.9900 

C(23B)-H(23D)  0.9900 

C(24B)-C(25B)  1.558(14) 
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C(24B)-H(24C)  0.9900 

C(24B)-H(24D)  0.9900 

C(25B)-C(26B)  1.450(17) 

C(25B)-H(25C)  0.9900 

C(25B)-H(25D)  0.9900 

C(26B)-C(27B)  1.516(14) 

C(26B)-H(26C)  0.9900 

C(26B)-H(26D)  0.9900 

C(27B)-C(28B)  1.503(10) 

C(27B)-H(27C)  0.9900 

C(27B)-H(27D)  0.9900 

C(28B)-H(28C)  0.9900 

C(28B)-H(28D)  0.9900 

P(2)-N(6B)  1.654(6) 

P(2)-N(6)  1.665(7) 

P(2)-N(5)  1.666(6) 

P(2)-N(4B)  1.674(6) 

P(2)-N(5B)  1.692(6) 

P(2)-N(4)  1.693(6) 

P(2)-Se(2)  2.1013(13) 

N(4)-C(31)  1.457(10) 

N(4)-C(51)  1.478(10) 

C(31)-C(32)  1.373(9) 

C(31)-C(40)  1.429(10) 

C(32)-C(33)  1.432(9) 

C(32)-C(42)  1.489(8) 

C(33)-C(34)  1.410(11) 

C(33)-C(38)  1.430(10) 

C(34)-C(35)  1.391(11) 

C(34)-H(34A)  0.9500 

C(35)-C(36)  1.397(15) 
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C(35)-H(35A)  0.9500 

C(36)-C(37)  1.346(15) 

C(36)-H(36A)  0.9500 

C(37)-C(38)  1.419(14) 

C(37)-H(37A)  0.9500 

C(38)-C(39)  1.452(14) 

C(39)-C(40)  1.325(14) 

C(39)-H(39A)  0.9500 

C(40)-H(40A)  0.9500 

C(51)-H(51A)  0.9800 

C(51)-H(51B)  0.9800 

C(51)-H(51C)  0.9800 

N(5)-C(41)  1.417(9) 

N(5)-C(52)  1.474(9) 

C(41)-C(42)  1.383(8) 

C(41)-C(50)  1.413(10) 

C(42)-C(43)  1.436(9) 

C(43)-C(48)  1.424(9) 

C(43)-C(44)  1.426(9) 

C(44)-C(45)  1.359(11) 

C(44)-H(44A)  0.9500 

C(45)-C(46)  1.425(13) 

C(45)-H(45A)  0.9500 

C(46)-C(47)  1.338(13) 

C(46)-H(46A)  0.9500 

C(47)-C(48)  1.412(12) 

C(47)-H(47A)  0.9500 

C(48)-C(49)  1.423(11) 

C(49)-C(50)  1.364(12) 

C(49)-H(49A)  0.9500 

C(50)-H(50A)  0.9500 
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C(52)-H(52A)  0.9800 

C(52)-H(52B)  0.9800 

C(52)-H(52C)  0.9800 

N(4B)-C(31B)  1.445(10) 

N(4B)-C(51B)  1.455(11) 

C(31B)-C(32B)  1.372(9) 

C(31B)-C(40B)  1.428(10) 

C(32B)-C(33B)  1.432(9) 

C(32B)-C(42B)  1.490(8) 

C(33B)-C(34B)  1.412(11) 

C(33B)-C(38B)  1.428(10) 

C(34B)-C(35B)  1.392(11) 

C(34B)-H(34B)  0.9500 

C(35B)-C(36B)  1.400(14) 

C(35B)-H(35B)  0.9500 

C(36B)-C(37B)  1.343(15) 

C(36B)-H(36B)  0.9500 

C(37B)-C(38B)  1.419(14) 

C(37B)-H(37B)  0.9500 

C(38B)-C(39B)  1.451(14) 

C(39B)-C(40B)  1.328(14) 

C(39B)-H(39B)  0.9500 

C(40B)-H(40B)  0.9500 

C(51B)-H(51D)  0.9800 

C(51B)-H(51E)  0.9800 

C(51B)-H(51F)  0.9800 

N(5B)-C(41B)  1.427(9) 

N(5B)-C(52B)  1.483(9) 

C(41B)-C(42B)  1.382(8) 

C(41B)-C(50B)  1.418(10) 

C(42B)-C(43B)  1.440(9) 
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C(43B)-C(48B)  1.423(9) 

C(43B)-C(44B)  1.424(9) 

C(44B)-C(45B)  1.357(11) 

C(44B)-H(44B)  0.9500 

C(45B)-C(46B)  1.420(13) 

C(45B)-H(45B)  0.9500 

C(46B)-C(47B)  1.340(13) 

C(46B)-H(46B)  0.9500 

C(47B)-C(48B)  1.413(12) 

C(47B)-H(47B)  0.9500 

C(48B)-C(49B)  1.421(11) 

C(49B)-C(50B)  1.369(12) 

C(49B)-H(49B)  0.9500 

C(50B)-H(50B)  0.9500 

C(52B)-H(52D)  0.9800 

C(52B)-H(52E)  0.9800 

C(52B)-H(52F)  0.9800 

N(6)-C(58)  1.483(11) 

N(6)-C(53)  1.504(11) 

C(53)-C(54)  1.497(15) 

C(53)-H(53A)  0.9900 

C(53)-H(53B)  0.9900 

C(54)-C(55)  1.548(16) 

C(54)-H(54A)  0.9900 

C(54)-H(54B)  0.9900 

C(55)-C(56)  1.492(14) 

C(55)-H(55A)  0.9900 

C(55)-H(55B)  0.9900 

C(56)-C(57)  1.481(15) 

C(56)-H(56A)  0.9900 

C(56)-H(56B)  0.9900 
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C(57)-C(58)  1.470(13) 

C(57)-H(57A)  0.9900 

C(57)-H(57B)  0.9900 

C(58)-H(58A)  0.9900 

C(58)-H(58B)  0.9900 

N(6B)-C(58B)  1.480(10) 

N(6B)-C(53B)  1.499(10) 

C(53B)-C(54B)  1.498(14) 

C(53B)-H(53C)  0.9900 

C(53B)-H(53D)  0.9900 

C(54B)-C(55B)  1.540(15) 

C(54B)-H(54C)  0.9900 

C(54B)-H(54D)  0.9900 

C(55B)-C(56B)  1.497(13) 

C(55B)-H(55C)  0.9900 

C(55B)-H(55D)  0.9900 

C(56B)-C(57B)  1.479(14) 

C(56B)-H(56C)  0.9900 

C(56B)-H(56D)  0.9900 

C(57B)-C(58B)  1.478(12) 

C(57B)-H(57C)  0.9900 

C(57B)-H(57D)  0.9900 

C(58B)-H(58C)  0.9900 

C(58B)-H(58D)  0.9900 

 

N(3B)-P(1)-N(2B) 110.2(9) 

N(3)-P(1)-N(2B) 112.2(11) 

N(3B)-P(1)-N(2) 106.3(8) 

N(3)-P(1)-N(2) 108.0(10) 

N(3B)-P(1)-N(1B) 110.2(7) 

N(3)-P(1)-N(1B) 107.1(10) 
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N(2B)-P(1)-N(1B) 101.1(6) 

N(2)-P(1)-N(1B) 97.8(8) 

N(3B)-P(1)-N(1) 104.0(6) 

N(3)-P(1)-N(1) 100.9(9) 

N(2B)-P(1)-N(1) 104.2(7) 

N(2)-P(1)-N(1) 100.4(5) 

N(3B)-P(1)-Se(1) 111.6(3) 

N(3)-P(1)-Se(1) 112.7(6) 

N(2B)-P(1)-Se(1) 109.0(6) 

N(2)-P(1)-Se(1) 115.8(5) 

N(1B)-P(1)-Se(1) 114.1(7) 

N(1)-P(1)-Se(1) 117.4(5) 

C(1)-N(1)-C(21) 117.1(8) 

C(1)-N(1)-P(1) 111.0(10) 

C(21)-N(1)-P(1) 117.3(11) 

C(2)-C(1)-C(10) 120.1(7) 

C(2)-C(1)-N(1) 117.9(7) 

C(10)-C(1)-N(1) 122.0(8) 

C(1)-C(2)-C(3) 119.2(6) 

C(1)-C(2)-C(12) 119.1(7) 

C(3)-C(2)-C(12) 121.7(8) 

C(4)-C(3)-C(8) 118.5(7) 

C(4)-C(3)-C(2) 123.5(7) 

C(8)-C(3)-C(2) 118.0(7) 

C(5)-C(4)-C(3) 121.9(9) 

C(5)-C(4)-H(4A) 119.1 

C(3)-C(4)-H(4A) 119.1 

C(4)-C(5)-C(6) 120.7(10) 

C(4)-C(5)-H(5A) 119.6 

C(6)-C(5)-H(5A) 119.6 

C(7)-C(6)-C(5) 119.9(8) 
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C(7)-C(6)-H(6A) 120.1 

C(5)-C(6)-H(6A) 120.1 

C(6)-C(7)-C(8) 121.0(9) 

C(6)-C(7)-H(7A) 119.5 

C(8)-C(7)-H(7A) 119.5 

C(9)-C(8)-C(7) 122.5(8) 

C(9)-C(8)-C(3) 119.3(7) 

C(7)-C(8)-C(3) 118.0(9) 

C(10)-C(9)-C(8) 121.9(8) 

C(10)-C(9)-H(9A) 119.0 

C(8)-C(9)-H(9A) 119.0 

C(9)-C(10)-C(1) 120.5(9) 

C(9)-C(10)-H(10A) 119.7 

C(1)-C(10)-H(10A) 119.7 

C(11)-N(2)-C(22) 117.3(9) 

C(11)-N(2)-P(1) 124.6(9) 

C(22)-N(2)-P(1) 118.1(10) 

C(12)-C(11)-C(20) 120.3(7) 

C(12)-C(11)-N(2) 120.8(7) 

C(20)-C(11)-N(2) 118.9(8) 

C(11)-C(12)-C(13) 118.6(6) 

C(11)-C(12)-C(2) 120.9(7) 

C(13)-C(12)-C(2) 120.1(7) 

C(18)-C(13)-C(14) 117.8(7) 

C(18)-C(13)-C(12) 120.0(7) 

C(14)-C(13)-C(12) 122.3(7) 

C(15)-C(14)-C(13) 120.3(8) 

C(15)-C(14)-H(14A) 119.8 

C(13)-C(14)-H(14A) 119.8 

C(14)-C(15)-C(16) 121.6(9) 

C(14)-C(15)-H(15A) 119.2 
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C(16)-C(15)-H(15A) 119.2 

C(17)-C(16)-C(15) 120.3(8) 

C(17)-C(16)-H(16A) 119.8 

C(15)-C(16)-H(16A) 119.8 

C(16)-C(17)-C(18) 119.8(8) 

C(16)-C(17)-H(17A) 120.1 

C(18)-C(17)-H(17A) 120.1 

C(19)-C(18)-C(13) 118.8(7) 

C(19)-C(18)-C(17) 121.2(8) 

C(13)-C(18)-C(17) 120.0(8) 

C(20)-C(19)-C(18) 121.2(7) 

C(20)-C(19)-H(19A) 119.4 

C(18)-C(19)-H(19A) 119.4 

C(19)-C(20)-C(11) 121.0(7) 

C(19)-C(20)-H(20A) 119.5 

C(11)-C(20)-H(20A) 119.5 

C(1B)-N(1B)-C(21B) 116.4(9) 

C(1B)-N(1B)-P(1) 114.9(13) 

C(21B)-N(1B)-P(1) 113.2(14) 

C(2B)-C(1B)-C(10B) 120.4(8) 

C(2B)-C(1B)-N(1B) 118.4(8) 

C(10B)-C(1B)-N(1B) 121.0(9) 

C(1B)-C(2B)-C(3B) 119.8(7) 

C(1B)-C(2B)-C(12B) 118.6(8) 

C(3B)-C(2B)-C(12B) 121.6(8) 

C(4B)-C(3B)-C(8B) 119.0(8) 

C(4B)-C(3B)-C(2B) 123.4(8) 

C(8B)-C(3B)-C(2B) 117.4(8) 

C(5B)-C(4B)-C(3B) 121.3(10) 

C(5B)-C(4B)-H(4B) 119.3 

C(3B)-C(4B)-H(4B) 119.3 
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C(4B)-C(5B)-C(6B) 120.6(11) 

C(4B)-C(5B)-H(5B) 119.7 

C(6B)-C(5B)-H(5B) 119.7 

C(7B)-C(6B)-C(5B) 120.6(9) 

C(7B)-C(6B)-H(6B) 119.7 

C(5B)-C(6B)-H(6B) 119.7 

C(6B)-C(7B)-C(8B) 120.4(10) 

C(6B)-C(7B)-H(7B) 119.8 

C(8B)-C(7B)-H(7B) 119.8 

C(9B)-C(8B)-C(7B) 122.0(9) 

C(9B)-C(8B)-C(3B) 120.1(8) 

C(7B)-C(8B)-C(3B) 117.9(10) 

C(10B)-C(9B)-C(8B) 121.8(9) 

C(10B)-C(9B)-H(9B) 119.1 

C(8B)-C(9B)-H(9B) 119.1 

C(9B)-C(10B)-C(1B) 120.2(9) 

C(9B)-C(10B)-H(10B) 119.9 

C(1B)-C(10B)-H(10B) 119.9 

N(1B)-C(21B)-H(21D) 109.5 

N(1B)-C(21B)-H(21E) 109.5 

H(21D)-C(21B)-H(21E) 109.5 

N(1B)-C(21B)-H(21F) 109.5 

H(21D)-C(21B)-H(21F) 109.5 

H(21E)-C(21B)-H(21F) 109.5 

C(11B)-N(2B)-C(22B) 118.3(10) 

C(11B)-N(2B)-P(1) 121.2(12) 

C(22B)-N(2B)-P(1) 113.7(12) 

C(12B)-C(11B)-C(20B) 119.6(8) 

C(12B)-C(11B)-N(2B) 120.4(8) 

C(20B)-C(11B)-N(2B) 119.8(8) 

C(11B)-C(12B)-C(13B) 119.3(7) 
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C(11B)-C(12B)-C(2B) 120.4(8) 

C(13B)-C(12B)-C(2B) 120.3(8) 

C(18B)-C(13B)-C(14B) 118.0(8) 

C(18B)-C(13B)-C(12B) 119.5(7) 

C(14B)-C(13B)-C(12B) 122.5(8) 

C(15B)-C(14B)-C(13B) 120.9(9) 

C(15B)-C(14B)-H(14B) 119.6 

C(13B)-C(14B)-H(14B) 119.6 

C(14B)-C(15B)-C(16B) 120.7(10) 

C(14B)-C(15B)-H(15B) 119.7 

C(16B)-C(15B)-H(15B) 119.7 

C(17B)-C(16B)-C(15B) 120.8(9) 

C(17B)-C(16B)-H(16B) 119.6 

C(15B)-C(16B)-H(16B) 119.6 

C(16B)-C(17B)-C(18B) 120.2(9) 

C(16B)-C(17B)-H(17B) 119.9 

C(18B)-C(17B)-H(17B) 119.9 

C(19B)-C(18B)-C(13B) 118.5(8) 

C(19B)-C(18B)-C(17B) 122.0(9) 

C(13B)-C(18B)-C(17B) 119.3(9) 

C(20B)-C(19B)-C(18B) 121.8(8) 

C(20B)-C(19B)-H(19B) 119.1 

C(18B)-C(19B)-H(19B) 119.1 

C(19B)-C(20B)-C(11B) 120.6(9) 

C(19B)-C(20B)-H(20B) 119.7 

C(11B)-C(20B)-H(20B) 119.7 

N(2B)-C(22B)-H(22D) 109.5 

N(2B)-C(22B)-H(22E) 109.5 

H(22D)-C(22B)-H(22E) 109.5 

N(2B)-C(22B)-H(22F) 109.5 

H(22D)-C(22B)-H(22F) 109.5 
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H(22E)-C(22B)-H(22F) 109.5 

C(28)-N(3)-C(23) 113.5(10) 

C(28)-N(3)-P(1) 128.9(14) 

C(23)-N(3)-P(1) 115.9(11) 

N(3)-C(23)-C(24) 114.0(12) 

N(3)-C(23)-H(23A) 108.8 

C(24)-C(23)-H(23A) 108.8 

N(3)-C(23)-H(23B) 108.8 

C(24)-C(23)-H(23B) 108.8 

H(23A)-C(23)-H(23B) 107.7 

C(23)-C(24)-C(25) 113.3(11) 

C(23)-C(24)-H(24A) 108.9 

C(25)-C(24)-H(24A) 108.9 

C(23)-C(24)-H(24B) 108.9 

C(25)-C(24)-H(24B) 108.9 

H(24A)-C(24)-H(24B) 107.7 

C(26)-C(25)-C(24) 116.6(14) 

C(26)-C(25)-H(25A) 108.1 

C(24)-C(25)-H(25A) 108.1 

C(26)-C(25)-H(25B) 108.1 

C(24)-C(25)-H(25B) 108.1 

H(25A)-C(25)-H(25B) 107.3 

C(25)-C(26)-C(27) 116.2(13) 

C(25)-C(26)-H(26A) 108.2 

C(27)-C(26)-H(26A) 108.2 

C(25)-C(26)-H(26B) 108.2 

C(27)-C(26)-H(26B) 108.2 

H(26A)-C(26)-H(26B) 107.4 

C(28)-C(27)-C(26) 114.9(11) 

C(28)-C(27)-H(27A) 108.5 

C(26)-C(27)-H(27A) 108.5 
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C(28)-C(27)-H(27B) 108.5 

C(26)-C(27)-H(27B) 108.5 

H(27A)-C(27)-H(27B) 107.5 

N(3)-C(28)-C(27) 114.0(12) 

N(3)-C(28)-H(28A) 108.7 

C(27)-C(28)-H(28A) 108.7 

N(3)-C(28)-H(28B) 108.7 

C(27)-C(28)-H(28B) 108.7 

H(28A)-C(28)-H(28B) 107.6 

C(23B)-N(3B)-C(28B) 115.2(6) 

C(23B)-N(3B)-P(1) 123.2(7) 

C(28B)-N(3B)-P(1) 120.3(8) 

N(3B)-C(23B)-C(24B) 116.5(10) 

N(3B)-C(23B)-H(23C) 108.2 

C(24B)-C(23B)-H(23C) 108.2 

N(3B)-C(23B)-H(23D) 108.2 

C(24B)-C(23B)-H(23D) 108.2 

H(23C)-C(23B)-H(23D) 107.3 

C(23B)-C(24B)-C(25B) 113.9(8) 

C(23B)-C(24B)-H(24C) 108.8 

C(25B)-C(24B)-H(24C) 108.8 

C(23B)-C(24B)-H(24D) 108.8 

C(25B)-C(24B)-H(24D) 108.8 

H(24C)-C(24B)-H(24D) 107.7 

C(26B)-C(25B)-C(24B) 116.5(10) 

C(26B)-C(25B)-H(25C) 108.2 

C(24B)-C(25B)-H(25C) 108.2 

C(26B)-C(25B)-H(25D) 108.2 

C(24B)-C(25B)-H(25D) 108.2 

H(25C)-C(25B)-H(25D) 107.3 

C(25B)-C(26B)-C(27B) 116.2(9) 
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C(25B)-C(26B)-H(26C) 108.2 

C(27B)-C(26B)-H(26C) 108.2 

C(25B)-C(26B)-H(26D) 108.2 

C(27B)-C(26B)-H(26D) 108.2 

H(26C)-C(26B)-H(26D) 107.4 

C(28B)-C(27B)-C(26B) 116.0(8) 

C(28B)-C(27B)-H(27C) 108.3 

C(26B)-C(27B)-H(27C) 108.3 

C(28B)-C(27B)-H(27D) 108.3 

C(26B)-C(27B)-H(27D) 108.3 

H(27C)-C(27B)-H(27D) 107.4 

N(3B)-C(28B)-C(27B) 114.4(8) 

N(3B)-C(28B)-H(28C) 108.7 

C(27B)-C(28B)-H(28C) 108.7 

N(3B)-C(28B)-H(28D) 108.7 

C(27B)-C(28B)-H(28D) 108.7 

H(28C)-C(28B)-H(28D) 107.6 

N(6B)-P(2)-N(5) 103.8(5) 

N(6)-P(2)-N(5) 87.8(6) 

N(6B)-P(2)-N(4B) 104.5(6) 

N(6)-P(2)-N(4B) 120.1(7) 

N(5)-P(2)-N(4B) 97.9(5) 

N(6B)-P(2)-N(5B) 113.4(5) 

N(6)-P(2)-N(5B) 95.9(6) 

N(4B)-P(2)-N(5B) 100.3(5) 

N(6B)-P(2)-N(4) 109.8(6) 

N(6)-P(2)-N(4) 126.9(7) 

N(5)-P(2)-N(4) 102.6(5) 

N(5B)-P(2)-N(4) 103.5(6) 

N(6B)-P(2)-Se(2) 112.5(2) 

N(6)-P(2)-Se(2) 112.0(4) 
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N(5)-P(2)-Se(2) 121.1(4) 

N(4B)-P(2)-Se(2) 114.9(4) 

N(5B)-P(2)-Se(2) 110.6(4) 

N(4)-P(2)-Se(2) 106.3(4) 

C(31)-N(4)-C(51) 114.8(7) 

C(31)-N(4)-P(2) 117.3(8) 

C(51)-N(4)-P(2) 124.6(8) 

C(32)-C(31)-C(40) 120.3(8) 

C(32)-C(31)-N(4) 117.8(7) 

C(40)-C(31)-N(4) 121.8(8) 

C(31)-C(32)-C(33) 119.2(7) 

C(31)-C(32)-C(42) 119.4(8) 

C(33)-C(32)-C(42) 121.3(8) 

C(34)-C(33)-C(38) 117.9(8) 

C(34)-C(33)-C(32) 122.3(7) 

C(38)-C(33)-C(32) 119.8(8) 

C(35)-C(34)-C(33) 121.0(9) 

C(35)-C(34)-H(34A) 119.5 

C(33)-C(34)-H(34A) 119.5 

C(34)-C(35)-C(36) 119.5(11) 

C(34)-C(35)-H(35A) 120.3 

C(36)-C(35)-H(35A) 120.3 

C(37)-C(36)-C(35) 121.4(9) 

C(37)-C(36)-H(36A) 119.3 

C(35)-C(36)-H(36A) 119.3 

C(36)-C(37)-C(38) 120.7(10) 

C(36)-C(37)-H(37A) 119.6 

C(38)-C(37)-H(37A) 119.6 

C(37)-C(38)-C(33) 119.1(10) 

C(37)-C(38)-C(39) 123.8(9) 

C(33)-C(38)-C(39) 116.9(8) 
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C(40)-C(39)-C(38) 122.2(8) 

C(40)-C(39)-H(39A) 118.9 

C(38)-C(39)-H(39A) 118.9 

C(39)-C(40)-C(31) 120.3(9) 

C(39)-C(40)-H(40A) 119.9 

C(31)-C(40)-H(40A) 119.9 

C(41)-N(5)-C(52) 118.2(9) 

C(41)-N(5)-P(2) 115.7(11) 

C(52)-N(5)-P(2) 111.5(9) 

C(42)-C(41)-C(50) 120.6(7) 

C(42)-C(41)-N(5) 118.6(7) 

C(50)-C(41)-N(5) 120.7(7) 

C(41)-C(42)-C(43) 119.7(6) 

C(41)-C(42)-C(32) 118.3(7) 

C(43)-C(42)-C(32) 121.9(7) 

C(48)-C(43)-C(44) 118.2(7) 

C(48)-C(43)-C(42) 119.0(7) 

C(44)-C(43)-C(42) 122.7(7) 

C(45)-C(44)-C(43) 121.3(9) 

C(45)-C(44)-H(44A) 119.3 

C(43)-C(44)-H(44A) 119.3 

C(44)-C(45)-C(46) 119.6(9) 

C(44)-C(45)-H(45A) 120.2 

C(46)-C(45)-H(45A) 120.2 

C(47)-C(46)-C(45) 119.8(9) 

C(47)-C(46)-H(46A) 120.1 

C(45)-C(46)-H(46A) 120.1 

C(46)-C(47)-C(48) 122.7(9) 

C(46)-C(47)-H(47A) 118.7 

C(48)-C(47)-H(47A) 118.7 

C(47)-C(48)-C(49) 122.7(8) 
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C(47)-C(48)-C(43) 118.1(8) 

C(49)-C(48)-C(43) 119.1(8) 

C(50)-C(49)-C(48) 120.7(7) 

C(50)-C(49)-H(49A) 119.6 

C(48)-C(49)-H(49A) 119.6 

C(49)-C(50)-C(41) 120.6(8) 

C(49)-C(50)-H(50A) 119.7 

C(41)-C(50)-H(50A) 119.7 

C(31B)-N(4B)-C(51B) 119.3(8) 

C(31B)-N(4B)-P(2) 115.5(8) 

C(51B)-N(4B)-P(2) 113.8(8) 

C(32B)-C(31B)-C(40B) 121.2(8) 

C(32B)-C(31B)-N(4B) 118.1(7) 

C(40B)-C(31B)-N(4B) 120.7(8) 

C(31B)-C(32B)-C(33B) 119.4(7) 

C(31B)-C(32B)-C(42B) 119.2(8) 

C(33B)-C(32B)-C(42B) 121.5(8) 

C(34B)-C(33B)-C(38B) 117.9(8) 

C(34B)-C(33B)-C(32B) 122.3(7) 

C(38B)-C(33B)-C(32B) 119.5(8) 

C(35B)-C(34B)-C(33B) 120.8(9) 

C(35B)-C(34B)-H(34B) 119.6 

C(33B)-C(34B)-H(34B) 119.6 

C(34B)-C(35B)-C(36B) 119.5(10) 

C(34B)-C(35B)-H(35B) 120.3 

C(36B)-C(35B)-H(35B) 120.3 

C(37B)-C(36B)-C(35B) 121.8(9) 

C(37B)-C(36B)-H(36B) 119.1 

C(35B)-C(36B)-H(36B) 119.1 

C(36B)-C(37B)-C(38B) 120.1(10) 

C(36B)-C(37B)-H(37B) 119.9 
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C(38B)-C(37B)-H(37B) 119.9 

C(37B)-C(38B)-C(33B) 119.8(10) 

C(37B)-C(38B)-C(39B) 122.5(9) 

C(33B)-C(38B)-C(39B) 117.7(8) 

C(40B)-C(39B)-C(38B) 121.6(8) 

C(40B)-C(39B)-H(39B) 119.2 

C(38B)-C(39B)-H(39B) 119.2 

C(39B)-C(40B)-C(31B) 120.2(9) 

C(39B)-C(40B)-H(40B) 119.9 

C(31B)-C(40B)-H(40B) 119.9 

N(4B)-C(51B)-H(51D) 109.5 

N(4B)-C(51B)-H(51E) 109.5 

H(51D)-C(51B)-H(51E) 109.5 

N(4B)-C(51B)-H(51F) 109.5 

H(51D)-C(51B)-H(51F) 109.5 

H(51E)-C(51B)-H(51F) 109.5 

C(41B)-N(5B)-C(52B) 115.4(9) 

C(41B)-N(5B)-P(2) 118.9(10) 

C(52B)-N(5B)-P(2) 117.7(9) 

C(42B)-C(41B)-C(50B) 119.2(7) 

C(42B)-C(41B)-N(5B) 120.1(7) 

C(50B)-C(41B)-N(5B) 120.5(7) 

C(41B)-C(42B)-C(43B) 120.0(7) 

C(41B)-C(42B)-C(32B) 119.9(7) 

C(43B)-C(42B)-C(32B) 119.9(7) 

C(48B)-C(43B)-C(44B) 118.1(7) 

C(48B)-C(43B)-C(42B) 119.4(7) 

C(44B)-C(43B)-C(42B) 122.5(7) 

C(45B)-C(44B)-C(43B) 120.7(8) 

C(45B)-C(44B)-H(44B) 119.6 

C(43B)-C(44B)-H(44B) 119.6 
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C(44B)-C(45B)-C(46B) 120.6(9) 

C(44B)-C(45B)-H(45B) 119.7 

C(46B)-C(45B)-H(45B) 119.7 

C(47B)-C(46B)-C(45B) 120.1(9) 

C(47B)-C(46B)-H(46B) 120.0 

C(45B)-C(46B)-H(46B) 120.0 

C(46B)-C(47B)-C(48B) 121.4(8) 

C(46B)-C(47B)-H(47B) 119.3 

C(48B)-C(47B)-H(47B) 119.3 

C(47B)-C(48B)-C(49B) 122.8(8) 

C(47B)-C(48B)-C(43B) 119.1(8) 

C(49B)-C(48B)-C(43B) 117.9(8) 

C(50B)-C(49B)-C(48B) 121.6(7) 

C(50B)-C(49B)-H(49B) 119.2 

C(48B)-C(49B)-H(49B) 119.2 

C(49B)-C(50B)-C(41B) 120.9(8) 

C(49B)-C(50B)-H(50B) 119.5 

C(41B)-C(50B)-H(50B) 119.5 

N(5B)-C(52B)-H(52D) 109.5 

N(5B)-C(52B)-H(52E) 109.5 

H(52D)-C(52B)-H(52E) 109.5 

N(5B)-C(52B)-H(52F) 109.5 

H(52D)-C(52B)-H(52F) 109.5 

H(52E)-C(52B)-H(52F) 109.5 

C(58)-N(6)-C(53) 113.1(8) 

C(58)-N(6)-P(2) 123.5(8) 

C(53)-N(6)-P(2) 123.4(7) 

C(54)-C(53)-N(6) 116.9(10) 

C(54)-C(53)-H(53A) 108.1 

N(6)-C(53)-H(53A) 108.1 

C(54)-C(53)-H(53B) 108.1 
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N(6)-C(53)-H(53B) 108.1 

H(53A)-C(53)-H(53B) 107.3 

C(53)-C(54)-C(55) 115.3(11) 

C(53)-C(54)-H(54A) 108.4 

C(55)-C(54)-H(54A) 108.4 

C(53)-C(54)-H(54B) 108.4 

C(55)-C(54)-H(54B) 108.4 

H(54A)-C(54)-H(54B) 107.5 

C(56)-C(55)-C(54) 114.9(11) 

C(56)-C(55)-H(55A) 108.5 

C(54)-C(55)-H(55A) 108.5 

C(56)-C(55)-H(55B) 108.5 

C(54)-C(55)-H(55B) 108.5 

H(55A)-C(55)-H(55B) 107.5 

C(57)-C(56)-C(55) 118.4(10) 

C(57)-C(56)-H(56A) 107.7 

C(55)-C(56)-H(56A) 107.7 

C(57)-C(56)-H(56B) 107.7 

C(55)-C(56)-H(56B) 107.7 

H(56A)-C(56)-H(56B) 107.1 

C(58)-C(57)-C(56) 121.2(11) 

C(58)-C(57)-H(57A) 107.0 

C(56)-C(57)-H(57A) 107.0 

C(58)-C(57)-H(57B) 107.0 

C(56)-C(57)-H(57B) 107.0 

H(57A)-C(57)-H(57B) 106.8 

C(57)-C(58)-N(6) 116.2(10) 

C(57)-C(58)-H(58A) 108.2 

N(6)-C(58)-H(58A) 108.2 

C(57)-C(58)-H(58B) 108.2 

N(6)-C(58)-H(58B) 108.2 
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H(58A)-C(58)-H(58B) 107.4 

C(58B)-N(6B)-C(53B) 114.7(7) 

C(58B)-N(6B)-P(2) 122.4(6) 

C(53B)-N(6B)-P(2) 120.6(6) 

C(54B)-C(53B)-N(6B) 116.3(8) 

C(54B)-C(53B)-H(53C) 108.2 

N(6B)-C(53B)-H(53C) 108.2 

C(54B)-C(53B)-H(53D) 108.2 

N(6B)-C(53B)-H(53D) 108.2 

H(53C)-C(53B)-H(53D) 107.4 

C(53B)-C(54B)-C(55B) 116.1(9) 

C(53B)-C(54B)-H(54C) 108.3 

C(55B)-C(54B)-H(54C) 108.3 

C(53B)-C(54B)-H(54D) 108.3 

C(55B)-C(54B)-H(54D) 108.3 

H(54C)-C(54B)-H(54D) 107.4 

C(56B)-C(55B)-C(54B) 114.1(8) 

C(56B)-C(55B)-H(55C) 108.7 

C(54B)-C(55B)-H(55C) 108.7 

C(56B)-C(55B)-H(55D) 108.7 

C(54B)-C(55B)-H(55D) 108.7 

H(55C)-C(55B)-H(55D) 107.6 

C(57B)-C(56B)-C(55B) 117.4(8) 

C(57B)-C(56B)-H(56C) 108.0 

C(55B)-C(56B)-H(56C) 108.0 

C(57B)-C(56B)-H(56D) 108.0 

C(55B)-C(56B)-H(56D) 108.0 

H(56C)-C(56B)-H(56D) 107.2 

C(58B)-C(57B)-C(56B) 118.3(9) 

C(58B)-C(57B)-H(57C) 107.7 

C(56B)-C(57B)-H(57C) 107.7 
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C(58B)-C(57B)-H(57D) 107.7 

C(56B)-C(57B)-H(57D) 107.7 

H(57C)-C(57B)-H(57D) 107.1 

C(57B)-C(58B)-N(6B) 113.7(7) 

C(57B)-C(58B)-H(58C) 108.8 

N(6B)-C(58B)-H(58C) 108.8 

C(57B)-C(58B)-H(58D) 108.8 

N(6B)-C(58B)-H(58D) 108.8 

H(58C)-C(58B)-H(58D) 107.7 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

  

 Anisotropic displacement parameters  (Å2x 103) for bc56ras.  The anisotropic 

displacement factor exponent takes the form:  -2 2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

P(1) 39(1)  45(1) 29(1)  -4(1) 9(1)  4(1) 

Se(1) 43(1)  84(1) 52(1)  -7(1) 10(1)  -7(1) 

N(1) 40(4)  42(4) 30(3)  -8(3) 12(3)  4(3) 

C(1) 36(3)  46(3) 28(3)  -3(3) 10(3)  0(3) 

C(2) 35(3)  45(3) 27(3)  -5(3) 11(2)  -1(3) 

C(3) 34(3)  41(4) 24(4)  -8(3) 9(3)  -4(3) 

C(4) 35(3)  48(5) 30(5)  -6(4) 12(3)  -1(4) 

C(5) 34(4)  43(5) 34(5)  -2(4) 11(3)  1(4) 

C(6) 32(3)  43(6) 34(5)  -2(5) 14(3)  2(4) 

C(7) 34(3)  47(5) 35(4)  -5(4) 13(3)  -1(4) 

C(8) 35(3)  44(5) 33(4)  -7(3) 12(3)  -2(3) 

C(9) 35(4)  45(5) 33(4)  -5(4) 14(3)  -5(4) 

C(10) 37(4)  47(4) 31(4)  -4(3) 9(3)  0(3) 

C(21) 38(9)  43(5) 35(5)  -2(4) 12(5)  -1(4) 
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N(2) 51(4)  45(4) 31(3)  -3(3) 8(3)  9(3) 

C(11) 47(4)  42(3) 31(3)  0(3) 11(3)  13(3) 

C(12) 38(3)  42(3) 28(3)  3(3) 13(3)  8(3) 

C(13) 38(3)  46(3) 31(4)  4(3) 17(3)  5(3) 

C(14) 41(3)  54(4) 25(4)  5(4) 13(3)  0(3) 

C(15) 45(3)  61(5) 25(5)  8(4) 15(4)  -3(3) 

C(16) 47(3)  59(4) 31(5)  7(4) 20(4)  -4(3) 

C(17) 46(3)  53(4) 27(5)  8(4) 23(4)  2(3) 

C(18) 44(3)  45(3) 29(4)  5(4) 19(3)  9(3) 

C(19) 50(4)  46(3) 25(5)  12(4) 18(4)  10(3) 

C(20) 53(4)  45(3) 22(4)  4(3) 11(3)  13(3) 

C(22) 75(6)  44(8) 45(6)  -10(5) 4(5)  13(6) 

N(1B) 37(4)  42(4) 35(4)  -5(3) 9(3)  5(4) 

C(1B) 37(3)  44(4) 28(3)  -5(3) 11(3)  0(3) 

C(2B) 36(3)  45(3) 28(3)  -4(3) 10(3)  0(3) 

C(3B) 34(3)  46(4) 26(4)  -7(4) 12(3)  -3(3) 

C(4B) 32(4)  45(5) 30(5)  -2(4) 12(3)  -1(4) 

C(5B) 35(4)  45(5) 34(5)  0(4) 11(3)  -2(4) 

C(6B) 38(4)  44(6) 35(5)  -1(5) 14(3)  1(5) 

C(7B) 34(3)  44(6) 34(4)  0(5) 17(3)  -1(4) 

C(8B) 32(3)  44(5) 30(4)  -7(4) 8(3)  -1(4) 

C(9B) 34(4)  43(5) 33(4)  -5(4) 11(3)  -4(4) 

C(10B) 36(4)  42(5) 36(4)  -5(4) 9(3)  -4(4) 

C(21B) 28(8)  51(6) 36(6)  -4(5) 3(5)  9(5) 

N(2B) 48(5)  44(4) 31(4)  -5(3) 12(3)  10(3) 

C(11B) 47(4)  42(3) 32(4)  0(3) 11(3)  13(3) 

C(12B) 38(3)  42(3) 32(4)  0(3) 15(3)  8(3) 

C(13B) 40(3)  44(3) 29(4)  5(3) 13(3)  8(3) 

C(14B) 39(3)  53(4) 28(5)  8(4) 14(4)  0(3) 

C(15B) 47(4)  60(4) 29(5)  8(4) 16(4)  -4(3) 

C(16B) 44(4)  56(4) 31(6)  9(5) 20(5)  -3(3) 
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C(17B) 46(4)  51(4) 36(6)  8(5) 21(4)  8(3) 

C(18B) 44(3)  46(3) 30(5)  7(4) 17(4)  11(3) 

C(19B) 55(5)  43(4) 27(5)  10(4) 16(4)  12(4) 

C(20B) 54(5)  44(4) 30(4)  7(4) 12(4)  13(4) 

C(22B) 79(7)  44(9) 39(6)  3(7) -2(6)  23(7) 

N(3) 54(4)  49(4) 37(4)  -5(4) 22(3)  3(4) 

C(23) 57(4)  53(4) 41(4)  -9(5) 26(4)  1(4) 

C(24) 66(5)  60(5) 48(5)  -13(5) 30(4)  -10(4) 

C(25) 88(5)  72(6) 57(5)  -14(5) 25(5)  -12(5) 

C(26) 85(5)  63(6) 55(5)  -14(5) 28(4)  -7(5) 

C(27) 74(5)  56(5) 53(5)  -12(5) 23(4)  1(5) 

C(28) 65(4)  47(4) 46(4)  -5(4) 19(4)  3(4) 

N(3B) 50(3)  47(3) 37(3)  -4(3) 18(2)  3(3) 

C(23B) 57(3)  56(4) 53(4)  -12(4) 27(3)  1(3) 

C(24B) 80(5)  64(4) 59(4)  -24(4) 35(4)  -13(4) 

C(25B) 87(4)  60(5) 49(4)  -22(4) 34(3)  -15(4) 

C(26B) 79(4)  56(5) 52(4)  -12(4) 34(3)  -4(4) 

C(27B) 69(4)  46(4) 49(4)  -2(3) 26(3)  0(3) 

C(28B) 62(3)  45(3) 37(3)  0(3) 22(3)  4(3) 

P(2) 38(1)  36(1) 58(1)  -3(1) 25(1)  3(1) 

Se(2) 40(1)  48(1) 51(1)  12(1) 20(1)  3(1) 

N(4) 37(3)  54(4) 41(3)  -6(3) 15(3)  1(3) 

C(31) 36(3)  40(4) 37(3)  -7(3) 13(2)  5(3) 

C(32) 34(3)  33(3) 39(3)  -4(3) 10(2)  4(3) 

C(33) 35(3)  38(3) 44(4)  -4(4) 13(3)  1(3) 

C(34) 44(3)  39(4) 48(4)  -4(4) 14(4)  -3(3) 

C(35) 46(3)  42(5) 54(5)  -4(4) 18(4)  -3(3) 

C(36) 46(4)  42(4) 56(6)  -7(5) 14(4)  -8(3) 

C(37) 41(4)  44(4) 57(5)  -8(4) 7(4)  -3(3) 

C(38) 36(3)  39(4) 50(4)  -10(4) 10(3)  3(3) 

C(39) 43(3)  42(5) 44(4)  -10(4) -2(3)  5(3) 
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C(40) 42(3)  41(5) 39(4)  -6(4) 7(3)  12(3) 

C(51) 44(5)  59(8) 30(5)  -3(5) 1(4)  -10(5) 

N(5) 33(3)  28(4) 53(3)  7(3) 18(3)  -1(3) 

C(41) 36(3)  32(4) 33(3)  6(3) 12(2)  0(3) 

C(42) 35(3)  34(3) 30(3)  2(3) 13(3)  0(2) 

C(43) 34(3)  36(3) 31(4)  -1(3) 13(3)  0(3) 

C(44) 34(4)  41(4) 34(5)  -5(3) 6(3)  3(3) 

C(45) 32(5)  44(4) 39(5)  -5(4) 1(4)  6(4) 

C(46) 38(6)  44(4) 37(5)  -9(4) 5(5)  6(4) 

C(47) 38(5)  40(4) 31(4)  -5(3) 3(4)  1(4) 

C(48) 36(4)  39(3) 31(4)  -2(3) 9(3)  -2(3) 

C(49) 39(4)  38(5) 31(4)  1(4) 3(3)  -2(3) 

C(50) 36(3)  35(5) 28(3)  9(4) 8(3)  3(3) 

C(52) 39(6)  36(7) 66(6)  8(6) 13(5)  -2(5) 

N(4B) 37(3)  54(4) 39(3)  -8(3) 17(3)  5(3) 

C(31B) 39(3)  44(4) 40(3)  -10(3) 14(3)  2(3) 

C(32B) 33(3)  36(3) 36(3)  -3(3) 10(2)  6(3) 

C(33B) 34(3)  38(3) 45(4)  -8(3) 13(3)  3(3) 

C(34B) 44(3)  36(5) 46(4)  -7(4) 19(4)  2(3) 

C(35B) 47(4)  38(5) 48(5)  -10(4) 17(4)  -5(3) 

C(36B) 44(4)  41(4) 50(5)  -10(5) 14(4)  -3(3) 

C(37B) 44(4)  38(4) 48(5)  -8(5) 11(4)  -2(3) 

C(38B) 39(3)  39(4) 50(4)  -8(4) 11(3)  3(3) 

C(39B) 46(3)  41(5) 47(4)  -12(4) 9(3)  -4(3) 

C(40B) 46(3)  45(4) 46(4)  -12(4) 14(3)  3(3) 

C(51B) 47(5)  73(8) 31(4)  -23(5) 9(4)  -6(6) 

N(5B) 30(3)  31(4) 53(3)  8(3) 19(3)  1(3) 

C(41B) 34(3)  33(4) 33(3)  7(3) 14(2)  1(3) 

C(42B) 34(3)  34(3) 31(3)  3(3) 12(3)  1(2) 

C(43B) 35(3)  37(3) 27(4)  -2(3) 11(3)  0(3) 

C(44B) 33(4)  39(4) 33(5)  -4(3) 4(3)  2(3) 
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C(45B) 35(5)  43(4) 39(5)  -9(4) -4(4)  5(4) 

C(46B) 34(5)  43(4) 38(5)  -8(4) -4(4)  6(4) 

C(47B) 36(5)  42(4) 33(4)  -10(3) 0(4)  -2(4) 

C(48B) 34(4)  42(3) 28(4)  0(3) 7(3)  0(3) 

C(49B) 38(4)  42(5) 28(4)  1(4) 7(3)  -4(3) 

C(50B) 32(3)  39(5) 32(3)  5(4) 9(3)  1(3) 

C(52B) 47(6)  39(7) 69(6)  26(6) 25(5)  10(5) 

N(6) 57(4)  48(4) 52(5)  3(4) 35(4)  4(4) 

C(53) 63(5)  39(5) 46(5)  4(4) 36(4)  5(4) 

C(54) 70(5)  39(5) 58(4)  0(4) 32(4)  4(4) 

C(55) 79(5)  41(4) 58(4)  -1(4) 31(4)  8(4) 

C(56) 83(5)  48(5) 59(5)  -8(4) 36(4)  8(4) 

C(57) 74(4)  54(4) 56(4)  -2(4) 32(3)  10(4) 

C(58) 64(4)  50(4) 54(4)  -2(4) 29(3)  9(4) 

N(6B) 51(3)  41(3) 47(4)  2(3) 25(3)  2(3) 

C(53B) 59(4)  42(3) 62(4)  0(4) 27(3)  -1(3) 

C(54B) 71(4)  45(4) 63(4)  1(4) 28(4)  0(4) 

C(55B) 82(4)  47(4) 56(4)  8(4) 32(3)  10(4) 

C(56B) 78(4)  52(4) 58(4)  -1(4) 32(3)  13(4) 

C(57B) 67(4)  49(4) 46(4)  -2(3) 26(3)  18(3) 

C(58B) 59(4)  43(4) 46(3)  0(3) 27(3)  5(3) 

______________________________________________________________________________  

 

 Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for bc56ras. 

______________________________________________________________________________

__  

 x  y  z  U(eq) 

______________________________________________________________________________

__  
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H(4A) 1878 10905 9276 45 

H(5A) 954 12344 9675 45 

H(6A) 315 11478 10622 43 

H(7A) 496 9080 11055 46 

H(9A) 1162 6647 11031 45 

H(10A) 1849 5078 10430 47 

H(21A) 3323 4595 10437 58 

H(21B) 3574 4071 9648 58 

H(21C) 2691 3560 9740 58 

H(14A) 3371 9743 10717 47 

H(15A) 4401 11450 11298 52 

H(16A) 5302 12257 10594 52 

H(17A) 5114 11457 9249 48 

H(19A) 4336 9898 8037 47 

H(20A) 3299 8218 7414 49 

H(22A) 1839 7755 6743 88 

H(22B) 1148 8205 7165 88 

H(22C) 1185 6567 6859 88 

H(4B) 1926 11111 9127 42 

H(5B) 1115 12744 9562 46 

H(6B) 372 12006 10444 46 

H(7B) 445 9629 10900 43 

H(9B) 960 7096 10862 44 

H(10B) 1669 5402 10360 46 

H(21D) 3347 4753 10412 60 

H(21E) 3191 3826 9571 60 

H(21F) 2454 3950 9977 60 

H(14B) 3298 10168 10505 47 

H(15B) 4463 11641 11067 53 

H(16B) 5322 12277 10284 50 

H(17B) 5054 11361 8951 51 
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H(19B) 4130 9886 7754 50 

H(20B) 3021 8307 7193 51 

H(22D) 1546 8070 6776 90 

H(22E) 951 6770 6879 90 

H(22F) 1815 6419 6702 90 

H(23A) 3933 3960 8663 57 

H(23B) 3672 5639 8574 57 

H(24A) 4339 4076 7578 66 

H(24B) 4202 5797 7575 66 

H(25A) 2712 5341 6683 87 

H(25B) 3413 5161 6241 87 

H(26A) 3371 2617 6519 80 

H(26B) 2601 3307 5771 80 

H(27A) 1693 3157 6513 73 

H(27B) 2163 1619 6619 73 

H(28A) 2054 2389 7896 63 

H(28B) 3031 2206 7974 63 

H(23C) 3879 3934 8139 64 

H(23D) 3685 5594 8281 64 

H(24C) 4070 4974 7036 77 

H(24D) 3336 6152 6931 77 

H(25C) 2280 4608 6185 75 

H(25D) 3028 4275 5822 75 

H(26C) 3384 2305 6835 72 

H(26D) 2626 2118 5960 72 

H(27C) 1632 2634 6649 63 

H(27D) 2157 1171 6969 63 

H(28C) 1979 2557 8073 56 

H(28D) 2957 2214 8209 56 

H(34A) 8659 8068 5203 53 

H(35A) 9760 9373 4965 57 
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H(36A) 10703 10742 6054 59 

H(37A) 10585 10795 7360 60 

H(39A) 9868 9823 8390 57 

H(40A) 8708 8820 8576 51 

H(51A) 7715 6166 8222 70 

H(51B) 6732 6536 8050 70 

H(51C) 7461 7583 8633 70 

H(44A) 9105 5613 6421 46 

H(45A) 9376 3249 6139 50 

H(46A) 8331 1939 5056 51 

H(47A) 7005 2888 4446 46 

H(49A) 5935 4879 4295 46 

H(50A) 5575 7035 4785 40 

H(52A) 5951 9716 4716 72 

H(52B) 5995 10824 5459 72 

H(52C) 5339 9491 5259 72 

H(34B) 8634 7754 5066 50 

H(35B) 9699 8936 4696 53 

H(36B) 10663 10476 5665 54 

H(37B) 10503 11045 6916 54 

H(39B) 9753 10609 7981 55 

H(40B) 8618 9720 8276 55 

H(51D) 7888 6907 8421 77 

H(51E) 6890 7202 8208 77 

H(51F) 7561 8493 8558 77 

H(44B) 9165 5773 6586 44 

H(45B) 9645 3582 6269 52 

H(46B) 8712 2006 5268 51 

H(47B) 7325 2650 4602 48 

H(49B) 6124 4426 4390 45 

H(50B) 5614 6560 4751 42 
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H(52D) 5916 9476 4642 76 

H(52E) 5583 10245 5322 76 

H(52F) 5228 8677 4959 76 

H(53A) 7295 10946 6263 54 

H(53B) 6550 12124 5964 54 

H(54A) 7932 12974 6855 63 

H(54B) 7749 12163 7612 63 

H(55A) 7437 14801 7458 69 

H(55B) 6614 14379 6675 69 

H(56A) 6887 14078 8376 73 

H(56B) 6031 14503 7637 73 

H(57A) 6632 11755 8233 70 

H(57B) 5730 12458 8126 70 

H(58A) 5432 12125 6632 65 

H(58B) 5366 10776 7201 65 

H(53C) 7808 11127 7477 63 

H(53D) 7318 11221 6488 63 

H(54C) 7600 13526 6897 70 

H(54D) 7342 13301 7716 70 

H(55C) 6362 14720 6508 71 

H(55D) 6039 13161 6108 71 

H(56C) 5942 14185 7654 72 

H(56D) 5156 14107 6795 72 

H(57C) 5160 12292 7763 63 

H(57D) 5069 11705 6850 63 

H(58C) 5946 10291 7982 56 

H(58D) 6619 11597 8207 56 

______________________________________________________________________________

__  

 

 Torsion angles [°] for bc56ras. 
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________________________________________________________________  

N(3B)-P(1)-N(1)-C(1) 178.8(8) 

N(3)-P(1)-N(1)-C(1) 179.8(10) 

N(2B)-P(1)-N(1)-C(1) 63.4(11) 

N(2)-P(1)-N(1)-C(1) 69.0(11) 

N(1B)-P(1)-N(1)-C(1) 3(9) 

Se(1)-P(1)-N(1)-C(1) -57.3(9) 

N(3B)-P(1)-N(1)-C(21) -42.9(13) 

N(3)-P(1)-N(1)-C(21) -41.9(14) 

N(2B)-P(1)-N(1)-C(21) -158.4(15) 

N(2)-P(1)-N(1)-C(21) -152.7(12) 

N(1B)-P(1)-N(1)-C(21) 141(11) 

Se(1)-P(1)-N(1)-C(21) 81.0(12) 

C(21)-N(1)-C(1)-C(2) 145.5(17) 

P(1)-N(1)-C(1)-C(2) -76.1(17) 

C(21)-N(1)-C(1)-C(10) -36(2) 

P(1)-N(1)-C(1)-C(10) 102.5(14) 

C(10)-C(1)-C(2)-C(3) -9(2) 

N(1)-C(1)-C(2)-C(3) 169.3(14) 

C(10)-C(1)-C(2)-C(12) 169.9(12) 

N(1)-C(1)-C(2)-C(12) -11(2) 

C(1)-C(2)-C(3)-C(4) -169.7(15) 

C(12)-C(2)-C(3)-C(4) 11(2) 

C(1)-C(2)-C(3)-C(8) 10(2) 

C(12)-C(2)-C(3)-C(8) -169.4(11) 

C(8)-C(3)-C(4)-C(5) -2(2) 

C(2)-C(3)-C(4)-C(5) 177.5(14) 

C(3)-C(4)-C(5)-C(6) 3(2) 

C(4)-C(5)-C(6)-C(7) -3.1(18) 

C(5)-C(6)-C(7)-C(8) 1.7(17) 

C(6)-C(7)-C(8)-C(9) -175.8(11) 
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C(6)-C(7)-C(8)-C(3) -0.5(17) 

C(4)-C(3)-C(8)-C(9) 176.1(13) 

C(2)-C(3)-C(8)-C(9) -3.5(18) 

C(4)-C(3)-C(8)-C(7) 0.6(18) 

C(2)-C(3)-C(8)-C(7) -179.0(12) 

C(7)-C(8)-C(9)-C(10) 171.7(11) 

C(3)-C(8)-C(9)-C(10) -3.6(17) 

C(8)-C(9)-C(10)-C(1) 4.3(18) 

C(2)-C(1)-C(10)-C(9) 2(2) 

N(1)-C(1)-C(10)-C(9) -176.3(14) 

N(3B)-P(1)-N(2)-C(11) -90.6(14) 

N(3)-P(1)-N(2)-C(11) -87.7(15) 

N(2B)-P(1)-N(2)-C(11) 143(11) 

N(1B)-P(1)-N(2)-C(11) 23.2(14) 

N(1)-P(1)-N(2)-C(11) 17.5(16) 

Se(1)-P(1)-N(2)-C(11) 144.9(11) 

N(3B)-P(1)-N(2)-C(22) 87.0(19) 

N(3)-P(1)-N(2)-C(22) 90(2) 

N(2B)-P(1)-N(2)-C(22) -39(9) 

N(1B)-P(1)-N(2)-C(22) -159.2(19) 

N(1)-P(1)-N(2)-C(22) -164.9(17) 

Se(1)-P(1)-N(2)-C(22) -38(2) 

C(22)-N(2)-C(11)-C(12) 122(2) 

P(1)-N(2)-C(11)-C(12) -60(2) 

C(22)-N(2)-C(11)-C(20) -60(3) 

P(1)-N(2)-C(11)-C(20) 118.0(15) 

C(20)-C(11)-C(12)-C(13) -3(2) 

N(2)-C(11)-C(12)-C(13) 175.4(15) 

C(20)-C(11)-C(12)-C(2) -176.5(13) 

N(2)-C(11)-C(12)-C(2) 2(2) 

C(1)-C(2)-C(12)-C(11) 57.3(19) 
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C(3)-C(2)-C(12)-C(11) -123.4(17) 

C(1)-C(2)-C(12)-C(13) -116.3(17) 

C(3)-C(2)-C(12)-C(13) 63.0(18) 

C(11)-C(12)-C(13)-C(18) 5(2) 

C(2)-C(12)-C(13)-C(18) 178.5(13) 

C(11)-C(12)-C(13)-C(14) -173.0(15) 

C(2)-C(12)-C(13)-C(14) 1(2) 

C(18)-C(13)-C(14)-C(15) 5(2) 

C(12)-C(13)-C(14)-C(15) -177.0(14) 

C(13)-C(14)-C(15)-C(16) -5(2) 

C(14)-C(15)-C(16)-C(17) 2(2) 

C(15)-C(16)-C(17)-C(18) 1(2) 

C(14)-C(13)-C(18)-C(19) 174.3(14) 

C(12)-C(13)-C(18)-C(19) -4(2) 

C(14)-C(13)-C(18)-C(17) -3(2) 

C(12)-C(13)-C(18)-C(17) 179.1(14) 

C(16)-C(17)-C(18)-C(19) -177.0(14) 

C(16)-C(17)-C(18)-C(13) 0(2) 

C(13)-C(18)-C(19)-C(20) 0(2) 

C(17)-C(18)-C(19)-C(20) 177.6(12) 

C(18)-C(19)-C(20)-C(11) 1.6(19) 

C(12)-C(11)-C(20)-C(19) 0(2) 

N(2)-C(11)-C(20)-C(19) -178.6(13) 

N(3B)-P(1)-N(1B)-C(1B) 174.0(9) 

N(3)-P(1)-N(1B)-C(1B) 175.1(11) 

N(2B)-P(1)-N(1B)-C(1B) 57.5(14) 

N(2)-P(1)-N(1B)-C(1B) 63.4(12) 

N(1)-P(1)-N(1B)-C(1B) 178(11) 

Se(1)-P(1)-N(1B)-C(1B) -59.4(11) 

N(3B)-P(1)-N(1B)-C(21B) -48.9(15) 

N(3)-P(1)-N(1B)-C(21B) -47.9(16) 
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N(2B)-P(1)-N(1B)-C(21B) -165.5(14) 

N(2)-P(1)-N(1B)-C(21B) -159.5(16) 

N(1)-P(1)-N(1B)-C(21B) -45(10) 

Se(1)-P(1)-N(1B)-C(21B) 77.6(14) 

C(21B)-N(1B)-C(1B)-C(2B) 149(2) 

P(1)-N(1B)-C(1B)-C(2B) -75(2) 

C(21B)-N(1B)-C(1B)-C(10B) -35(3) 

P(1)-N(1B)-C(1B)-C(10B) 100.8(18) 

C(10B)-C(1B)-C(2B)-C(3B) -5(3) 

N(1B)-C(1B)-C(2B)-C(3B) 171.2(18) 

C(10B)-C(1B)-C(2B)-C(12B) 176.2(16) 

N(1B)-C(1B)-C(2B)-C(12B) -8(3) 

C(1B)-C(2B)-C(3B)-C(4B) -171(2) 

C(12B)-C(2B)-C(3B)-C(4B) 8(3) 

C(1B)-C(2B)-C(3B)-C(8B) 5(3) 

C(12B)-C(2B)-C(3B)-C(8B) -176.0(14) 

C(8B)-C(3B)-C(4B)-C(5B) 4(3) 

C(2B)-C(3B)-C(4B)-C(5B) 179.9(18) 

C(3B)-C(4B)-C(5B)-C(6B) -1(2) 

C(4B)-C(5B)-C(6B)-C(7B) 0(2) 

C(5B)-C(6B)-C(7B)-C(8B) -1(2) 

C(6B)-C(7B)-C(8B)-C(9B) -176.6(14) 

C(6B)-C(7B)-C(8B)-C(3B) 3(2) 

C(4B)-C(3B)-C(8B)-C(9B) 175.2(16) 

C(2B)-C(3B)-C(8B)-C(9B) -1(2) 

C(4B)-C(3B)-C(8B)-C(7B) -5(2) 

C(2B)-C(3B)-C(8B)-C(7B) 179.0(15) 

C(7B)-C(8B)-C(9B)-C(10B) 176.8(14) 

C(3B)-C(8B)-C(9B)-C(10B) -3(2) 

C(8B)-C(9B)-C(10B)-C(1B) 3(2) 

C(2B)-C(1B)-C(10B)-C(9B) 1(3) 
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N(1B)-C(1B)-C(10B)-C(9B) -175.2(17) 

N(3B)-P(1)-N(2B)-C(11B) -84.4(14) 

N(3)-P(1)-N(2B)-C(11B) -81.7(15) 

N(2)-P(1)-N(2B)-C(11B) -29(9) 

N(1B)-P(1)-N(2B)-C(11B) 32.2(17) 

N(1)-P(1)-N(2B)-C(11B) 26.7(15) 

Se(1)-P(1)-N(2B)-C(11B) 152.8(12) 

N(3B)-P(1)-N(2B)-C(22B) 66(2) 

N(3)-P(1)-N(2B)-C(22B) 69(2) 

N(2)-P(1)-N(2B)-C(22B) 122(11) 

N(1B)-P(1)-N(2B)-C(22B) -177.1(18) 

N(1)-P(1)-N(2B)-C(22B) 177(2) 

Se(1)-P(1)-N(2B)-C(22B) -57(2) 

C(22B)-N(2B)-C(11B)-C(12B) 143(2) 

P(1)-N(2B)-C(11B)-C(12B) -68(3) 

C(22B)-N(2B)-C(11B)-C(20B) -32(3) 

P(1)-N(2B)-C(11B)-C(20B) 117.2(18) 

C(20B)-C(11B)-C(12B)-C(13B) -9(3) 

N(2B)-C(11B)-C(12B)-C(13B) 176.6(19) 

C(20B)-C(11B)-C(12B)-C(2B) 173.7(16) 

N(2B)-C(11B)-C(12B)-C(2B) -1(3) 

C(1B)-C(2B)-C(12B)-C(11B) 58(2) 

C(3B)-C(2B)-C(12B)-C(11B) -121(2) 

C(1B)-C(2B)-C(12B)-C(13B) -120(2) 

C(3B)-C(2B)-C(12B)-C(13B) 61(2) 

C(11B)-C(12B)-C(13B)-C(18B) 2(3) 

C(2B)-C(12B)-C(13B)-C(18B) 179.7(15) 

C(11B)-C(12B)-C(13B)-C(14B) -178.7(19) 

C(2B)-C(12B)-C(13B)-C(14B) -1(3) 

C(18B)-C(13B)-C(14B)-C(15B) -3(2) 

C(12B)-C(13B)-C(14B)-C(15B) 177.6(18) 
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C(13B)-C(14B)-C(15B)-C(16B) 3(2) 

C(14B)-C(15B)-C(16B)-C(17B) -1(3) 

C(15B)-C(16B)-C(17B)-C(18B) -1(2) 

C(14B)-C(13B)-C(18B)-C(19B) -174.5(17) 

C(12B)-C(13B)-C(18B)-C(19B) 5(3) 

C(14B)-C(13B)-C(18B)-C(17B) 1(2) 

C(12B)-C(13B)-C(18B)-C(17B) -179.9(17) 

C(16B)-C(17B)-C(18B)-C(19B) 176.4(17) 

C(16B)-C(17B)-C(18B)-C(13B) 1(2) 

C(13B)-C(18B)-C(19B)-C(20B) -5(2) 

C(17B)-C(18B)-C(19B)-C(20B) 179.7(16) 

C(18B)-C(19B)-C(20B)-C(11B) -1(2) 

C(12B)-C(11B)-C(20B)-C(19B) 8(3) 

N(2B)-C(11B)-C(20B)-C(19B) -176.7(17) 

N(3B)-P(1)-N(3)-C(28) -80(15) 

N(2B)-P(1)-N(3)-C(28) -132.4(17) 

N(2)-P(1)-N(3)-C(28) -138.0(17) 

N(1B)-P(1)-N(3)-C(28) 117.5(19) 

N(1)-P(1)-N(3)-C(28) 117.2(19) 

Se(1)-P(1)-N(3)-C(28) -9(2) 

N(3B)-P(1)-N(3)-C(23) 116(17) 

N(2B)-P(1)-N(3)-C(23) 63.4(18) 

N(2)-P(1)-N(3)-C(23) 57.8(18) 

N(1B)-P(1)-N(3)-C(23) -46.7(19) 

N(1)-P(1)-N(3)-C(23) -47.1(18) 

Se(1)-P(1)-N(3)-C(23) -173.1(13) 

C(28)-N(3)-C(23)-C(24) 70(2) 

P(1)-N(3)-C(23)-C(24) -123.6(19) 

N(3)-C(23)-C(24)-C(25) 8(2) 

C(23)-C(24)-C(25)-C(26) -77(2) 

C(24)-C(25)-C(26)-C(27) 79(2) 
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C(25)-C(26)-C(27)-C(28) -48(3) 

C(23)-N(3)-C(28)-C(27) -94.2(19) 

P(1)-N(3)-C(28)-C(27) 101(3) 

C(26)-C(27)-C(28)-N(3) 57(2) 

N(3)-P(1)-N(3B)-C(23B) -82(15) 

N(2B)-P(1)-N(3B)-C(23B) 46.3(13) 

N(2)-P(1)-N(3B)-C(23B) 40.6(13) 

N(1B)-P(1)-N(3B)-C(23B) -64.4(14) 

N(1)-P(1)-N(3B)-C(23B) -64.9(13) 

Se(1)-P(1)-N(3B)-C(23B) 167.7(9) 

N(3)-P(1)-N(3B)-C(28B) 84(16) 

N(2B)-P(1)-N(3B)-C(28B) -147.2(9) 

N(2)-P(1)-N(3B)-C(28B) -153.0(9) 

N(1B)-P(1)-N(3B)-C(28B) 102.0(11) 

N(1)-P(1)-N(3B)-C(28B) 101.6(10) 

Se(1)-P(1)-N(3B)-C(28B) -25.9(11) 

C(28B)-N(3B)-C(23B)-C(24B) 88.9(12) 

P(1)-N(3B)-C(23B)-C(24B) -104.0(13) 

N(3B)-C(23B)-C(24B)-C(25B) -35.0(15) 

C(23B)-C(24B)-C(25B)-C(26B) -40.9(14) 

C(24B)-C(25B)-C(26B)-C(27B) 84.3(12) 

C(25B)-C(26B)-C(27B)-C(28B) -66.8(13) 

C(23B)-N(3B)-C(28B)-C(27B) -74.9(12) 

P(1)-N(3B)-C(28B)-C(27B) 117.6(12) 

C(26B)-C(27B)-C(28B)-N(3B) 50.9(13) 

N(6B)-P(2)-N(4)-C(31) -63.5(10) 

N(6)-P(2)-N(4)-C(31) -50.4(12) 

N(5)-P(2)-N(4)-C(31) 46.4(11) 

N(4B)-P(2)-N(4)-C(31) -11(5) 

N(5B)-P(2)-N(4)-C(31) 57.9(10) 

Se(2)-P(2)-N(4)-C(31) 174.5(8) 
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N(6B)-P(2)-N(4)-C(51) 94.9(13) 

N(6)-P(2)-N(4)-C(51) 108.0(13) 

N(5)-P(2)-N(4)-C(51) -155.2(12) 

N(4B)-P(2)-N(4)-C(51) 148(7) 

N(5B)-P(2)-N(4)-C(51) -143.7(13) 

Se(2)-P(2)-N(4)-C(51) -27.1(14) 

C(51)-N(4)-C(31)-C(32) 132.9(14) 

P(2)-N(4)-C(31)-C(32) -66.6(15) 

C(51)-N(4)-C(31)-C(40) -50.3(18) 

P(2)-N(4)-C(31)-C(40) 110.2(12) 

C(40)-C(31)-C(32)-C(33) -14(2) 

N(4)-C(31)-C(32)-C(33) 163.0(13) 

C(40)-C(31)-C(32)-C(42) 169.2(12) 

N(4)-C(31)-C(32)-C(42) -13.9(17) 

C(31)-C(32)-C(33)-C(34) -171.8(17) 

C(42)-C(32)-C(33)-C(34) 5(2) 

C(31)-C(32)-C(33)-C(38) 8(2) 

C(42)-C(32)-C(33)-C(38) -175.3(14) 

C(38)-C(33)-C(34)-C(35) -4(3) 

C(32)-C(33)-C(34)-C(35) 175.4(17) 

C(33)-C(34)-C(35)-C(36) 0(3) 

C(34)-C(35)-C(36)-C(37) 1(2) 

C(35)-C(36)-C(37)-C(38) 1(2) 

C(36)-C(37)-C(38)-C(33) -5(2) 

C(36)-C(37)-C(38)-C(39) -179.3(13) 

C(34)-C(33)-C(38)-C(37) 6(2) 

C(32)-C(33)-C(38)-C(37) -173.3(14) 

C(34)-C(33)-C(38)-C(39) -178.7(16) 

C(32)-C(33)-C(38)-C(39) 2(2) 

C(37)-C(38)-C(39)-C(40) 169.3(13) 

C(33)-C(38)-C(39)-C(40) -5(2) 
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C(38)-C(39)-C(40)-C(31) 0(2) 

C(32)-C(31)-C(40)-C(39) 10.3(19) 

N(4)-C(31)-C(40)-C(39) -166.4(12) 

N(6B)-P(2)-N(5)-C(41) 158.8(7) 

N(6)-P(2)-N(5)-C(41) 171.8(9) 

N(4B)-P(2)-N(5)-C(41) 51.7(9) 

N(5B)-P(2)-N(5)-C(41) -52(3) 

N(4)-P(2)-N(5)-C(41) 44.4(9) 

Se(2)-P(2)-N(5)-C(41) -73.8(8) 

N(6B)-P(2)-N(5)-C(52) -62.5(10) 

N(6)-P(2)-N(5)-C(52) -49.5(10) 

N(4B)-P(2)-N(5)-C(52) -169.6(10) 

N(5B)-P(2)-N(5)-C(52) 87(3) 

N(4)-P(2)-N(5)-C(52) -176.9(9) 

Se(2)-P(2)-N(5)-C(52) 65.0(10) 

C(52)-N(5)-C(41)-C(42) 147.7(18) 

P(2)-N(5)-C(41)-C(42) -76(2) 

C(52)-N(5)-C(41)-C(50) -37(2) 

P(2)-N(5)-C(41)-C(50) 98.7(16) 

C(50)-C(41)-C(42)-C(43) 1(3) 

N(5)-C(41)-C(42)-C(43) 176(2) 

C(50)-C(41)-C(42)-C(32) -175.6(15) 

N(5)-C(41)-C(42)-C(32) 0(3) 

C(31)-C(32)-C(42)-C(41) 64(2) 

C(33)-C(32)-C(42)-C(41) -113(2) 

C(31)-C(32)-C(42)-C(43) -113(2) 

C(33)-C(32)-C(42)-C(43) 70(3) 

C(41)-C(42)-C(43)-C(48) 0(4) 

C(32)-C(42)-C(43)-C(48) 176.9(18) 

C(41)-C(42)-C(43)-C(44) -176(2) 

C(32)-C(42)-C(43)-C(44) 0(4) 
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C(48)-C(43)-C(44)-C(45) -3(4) 

C(42)-C(43)-C(44)-C(45) 173(3) 

C(43)-C(44)-C(45)-C(46) 6(3) 

C(44)-C(45)-C(46)-C(47) -5(2) 

C(45)-C(46)-C(47)-C(48) 1(2) 

C(46)-C(47)-C(48)-C(49) -176.2(17) 

C(46)-C(47)-C(48)-C(43) 1(3) 

C(44)-C(43)-C(48)-C(47) 0(3) 

C(42)-C(43)-C(48)-C(47) -177(2) 

C(44)-C(43)-C(48)-C(49) 177(2) 

C(42)-C(43)-C(48)-C(49) 1(4) 

C(47)-C(48)-C(49)-C(50) 174.4(17) 

C(43)-C(48)-C(49)-C(50) -3(3) 

C(48)-C(49)-C(50)-C(41) 5(3) 

C(42)-C(41)-C(50)-C(49) -4(3) 

N(5)-C(41)-C(50)-C(49) -178.7(17) 

N(6B)-P(2)-N(4B)-C(31B) -63.8(9) 

N(6)-P(2)-N(4B)-C(31B) -49.2(10) 

N(5)-P(2)-N(4B)-C(31B) 42.8(9) 

N(5B)-P(2)-N(4B)-C(31B) 53.9(9) 

N(4)-P(2)-N(4B)-C(31B) 167(6) 

Se(2)-P(2)-N(4B)-C(31B) 172.4(6) 

N(6B)-P(2)-N(4B)-C(51B) 79.6(11) 

N(6)-P(2)-N(4B)-C(51B) 94.2(11) 

N(5)-P(2)-N(4B)-C(51B) -173.8(11) 

N(5B)-P(2)-N(4B)-C(51B) -162.7(11) 

N(4)-P(2)-N(4B)-C(51B) -50(5) 

Se(2)-P(2)-N(4B)-C(51B) -44.1(12) 

C(51B)-N(4B)-C(31B)-C(32B) 140.8(14) 

P(2)-N(4B)-C(31B)-C(32B) -77.9(14) 

C(51B)-N(4B)-C(31B)-C(40B) -37.6(19) 
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P(2)-N(4B)-C(31B)-C(40B) 103.7(13) 

C(40B)-C(31B)-C(32B)-C(33B) -6(2) 

N(4B)-C(31B)-C(32B)-C(33B) 175.7(13) 

C(40B)-C(31B)-C(32B)-C(42B) 174.2(13) 

N(4B)-C(31B)-C(32B)-C(42B) -4.2(18) 

C(31B)-C(32B)-C(33B)-C(34B) -171.9(16) 

C(42B)-C(32B)-C(33B)-C(34B) 8(2) 

C(31B)-C(32B)-C(33B)-C(38B) 1(2) 

C(42B)-C(32B)-C(33B)-C(38B) -178.9(13) 

C(38B)-C(33B)-C(34B)-C(35B) 1(2) 

C(32B)-C(33B)-C(34B)-C(35B) 174.3(16) 

C(33B)-C(34B)-C(35B)-C(36B) 2(2) 

C(34B)-C(35B)-C(36B)-C(37B) -3(2) 

C(35B)-C(36B)-C(37B)-C(38B) 2(2) 

C(36B)-C(37B)-C(38B)-C(33B) 0(2) 

C(36B)-C(37B)-C(38B)-C(39B) -179.9(13) 

C(34B)-C(33B)-C(38B)-C(37B) -2(2) 

C(32B)-C(33B)-C(38B)-C(37B) -175.5(14) 

C(34B)-C(33B)-C(38B)-C(39B) 178.2(15) 

C(32B)-C(33B)-C(38B)-C(39B) 5(2) 

C(37B)-C(38B)-C(39B)-C(40B) 173.9(13) 

C(33B)-C(38B)-C(39B)-C(40B) -6(2) 

C(38B)-C(39B)-C(40B)-C(31B) 2(2) 

C(32B)-C(31B)-C(40B)-C(39B) 5(2) 

N(4B)-C(31B)-C(40B)-C(39B) -177.2(12) 

N(6B)-P(2)-N(5B)-C(41B) 148.4(8) 

N(6)-P(2)-N(5B)-C(41B) 159.6(9) 

N(5)-P(2)-N(5B)-C(41B) 116(3) 

N(4B)-P(2)-N(5B)-C(41B) 37.5(10) 

N(4)-P(2)-N(5B)-C(41B) 29.4(10) 

Se(2)-P(2)-N(5B)-C(41B) -84.2(8) 
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N(6B)-P(2)-N(5B)-C(52B) -64.2(11) 

N(6)-P(2)-N(5B)-C(52B) -52.9(11) 

N(5)-P(2)-N(5B)-C(52B) -96(3) 

N(4B)-P(2)-N(5B)-C(52B) -175.0(10) 

N(4)-P(2)-N(5B)-C(52B) 176.9(10) 

Se(2)-P(2)-N(5B)-C(52B) 63.3(11) 

C(52B)-N(5B)-C(41B)-C(42B) 140.5(18) 

P(2)-N(5B)-C(41B)-C(42B) -71(2) 

C(52B)-N(5B)-C(41B)-C(50B) -34(2) 

P(2)-N(5B)-C(41B)-C(50B) 114.1(15) 

C(50B)-C(41B)-C(42B)-C(43B) -11(3) 

N(5B)-C(41B)-C(42B)-C(43B) 174(2) 

C(50B)-C(41B)-C(42B)-C(32B) 173.4(15) 

N(5B)-C(41B)-C(42B)-C(32B) -1(3) 

C(31B)-C(32B)-C(42B)-C(41B) 57(2) 

C(33B)-C(32B)-C(42B)-C(41B) -123.0(19) 

C(31B)-C(32B)-C(42B)-C(43B) -118(2) 

C(33B)-C(32B)-C(42B)-C(43B) 62(3) 

C(41B)-C(42B)-C(43B)-C(48B) 11(4) 

C(32B)-C(42B)-C(43B)-C(48B) -173.4(18) 

C(41B)-C(42B)-C(43B)-C(44B) -168(2) 

C(32B)-C(42B)-C(43B)-C(44B) 7(4) 

C(48B)-C(43B)-C(44B)-C(45B) 2(3) 

C(42B)-C(43B)-C(44B)-C(45B) -178(3) 

C(43B)-C(44B)-C(45B)-C(46B) -2(3) 

C(44B)-C(45B)-C(46B)-C(47B) 0(2) 

C(45B)-C(46B)-C(47B)-C(48B) 1(2) 

C(46B)-C(47B)-C(48B)-C(49B) -175.5(17) 

C(46B)-C(47B)-C(48B)-C(43B) 0(3) 

C(44B)-C(43B)-C(48B)-C(47B) -1(3) 

C(42B)-C(43B)-C(48B)-C(47B) 179(2) 
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C(44B)-C(43B)-C(48B)-C(49B) 174(2) 

C(42B)-C(43B)-C(48B)-C(49B) -5(3) 

C(47B)-C(48B)-C(49B)-C(50B) 175.0(17) 

C(43B)-C(48B)-C(49B)-C(50B) 0(3) 

C(48B)-C(49B)-C(50B)-C(41B) 0(3) 

C(42B)-C(41B)-C(50B)-C(49B) 6(3) 

N(5B)-C(41B)-C(50B)-C(49B) -179.7(17) 

N(6B)-P(2)-N(6)-C(58) -76.5(14) 

N(5)-P(2)-N(6)-C(58) 141.9(12) 

N(4B)-P(2)-N(6)-C(58) -120.3(11) 

N(5B)-P(2)-N(6)-C(58) 134.2(12) 

N(4)-P(2)-N(6)-C(58) -114.0(11) 

Se(2)-P(2)-N(6)-C(58) 19.1(13) 

N(6B)-P(2)-N(6)-C(53) 101.2(18) 

N(5)-P(2)-N(6)-C(53) -40.4(12) 

N(4B)-P(2)-N(6)-C(53) 57.4(14) 

N(5B)-P(2)-N(6)-C(53) -48.2(12) 

N(4)-P(2)-N(6)-C(53) 63.7(14) 

Se(2)-P(2)-N(6)-C(53) -163.2(10) 

C(58)-N(6)-C(53)-C(54) 58.1(16) 

P(2)-N(6)-C(53)-C(54) -119.8(13) 

N(6)-C(53)-C(54)-C(55) -76.6(15) 

C(53)-C(54)-C(55)-C(56) 78.1(17) 

C(54)-C(55)-C(56)-C(57) -29(2) 

C(55)-C(56)-C(57)-C(58) -41(2) 

C(56)-C(57)-C(58)-N(6) 82.6(17) 

C(53)-N(6)-C(58)-C(57) -66.8(16) 

P(2)-N(6)-C(58)-C(57) 111.2(14) 

N(6)-P(2)-N(6B)-C(58B) 114.8(15) 

N(5)-P(2)-N(6B)-C(58B) 154.5(8) 

N(4B)-P(2)-N(6B)-C(58B) -103.5(8) 
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N(5B)-P(2)-N(6B)-C(58B) 148.3(7) 

N(4)-P(2)-N(6B)-C(58B) -96.4(8) 

Se(2)-P(2)-N(6B)-C(58B) 21.8(8) 

N(6)-P(2)-N(6B)-C(53B) -83.2(14) 

N(5)-P(2)-N(6B)-C(53B) -43.6(9) 

N(4B)-P(2)-N(6B)-C(53B) 58.5(9) 

N(5B)-P(2)-N(6B)-C(53B) -49.7(9) 

N(4)-P(2)-N(6B)-C(53B) 65.6(9) 

Se(2)-P(2)-N(6B)-C(53B) -176.2(7) 

C(58B)-N(6B)-C(53B)-C(54B) -34.5(13) 

P(2)-N(6B)-C(53B)-C(54B) 162.2(8) 

N(6B)-C(53B)-C(54B)-C(55B) -43.6(14) 

C(53B)-C(54B)-C(55B)-C(56B) 84.2(12) 

C(54B)-C(55B)-C(56B)-C(57B) -61.3(13) 

C(55B)-C(56B)-C(57B)-C(58B) 47.4(13) 

C(56B)-C(57B)-C(58B)-N(6B) -71.8(11) 

C(53B)-N(6B)-C(58B)-C(57B) 87.2(10) 

P(2)-N(6B)-C(58B)-C(57B) -109.9(9) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

Crystal Structure of 58a 

X-Ray Crystal Structure of 58a 

ORTEP image of X-ray crystal structure of 58a. 
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Distillation of 58a resulted in a viscous yellow oil. Slow cooling to room temperature followed 

by storage at -20 
o
C resulted in clear crystals, which were harvested directly from the mother 

liquor. 

Identification code  bm34oas 

Empirical formula  C17 H18 O S 

Formula weight  270.37 

Temperature  193(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P 21 21 21 

Unit cell dimensions a = 6.1559(8) Å a= 90°. 

 b = 8.6293(11) Å b= 90°. 

 c = 27.248(3) Å g = 90°. 

Volume 1447.4(3) Å3 

Z 4 

Density (calculated) 1.241 Mg/m3 

Absorption coefficient 0.213 mm-1 

F(000) 576 

Crystal size 0.457 x 0.43 x 0.246 mm3 

Theta range for data collection 1.49 to 25.68°. 

Index ranges -7<=h<=7, -10<=k<=10, -33<=l<=33 
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Reflections collected 18385 

Independent reflections 2748 [R(int) = 0.0223] 

Completeness to theta = 25.68° 100.0 %  

Absorption correction Integration 

Max. and min. transmission 0.9693 and 0.9372 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2748 / 0 / 172 

Goodness-of-fit on F2 1.022 

Final R indices [I>2sigma(I)] R1 = 0.0248, wR2 = 0.0652 

R indices (all data) R1 = 0.0255, wR2 = 0.0656 

Absolute structure parameter -0.01(6) 

Largest diff. peak and hole 0.121 and -0.186 e.Å-3 

 

 Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) for 

bm34oas.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

______________________________________________________________________________  

 x y z U(eq) 

_____________________________________________________________________________   

S(1) 3082(1) 7171(1) 1017(1) 45(1) 

O(1) -168(2) 9224(1) 2140(1) 36(1) 

C(1) 827(2) 7773(2) 1410(1) 35(1) 

C(2) 1630(2) 8827(2) 1828(1) 32(1) 

C(3) -1081(2) 7871(2) 2369(1) 40(1) 

C(4) -2003(3) 6767(2) 1991(1) 41(1) 

C(5) -251(3) 6321(2) 1621(1) 43(1) 

C(6) 3137(2) 8625(2) 554(1) 35(1) 

C(7) 1369(2) 8852(2) 248(1) 42(1) 

C(8) 1466(3) 9944(2) -123(1) 52(1) 

C(9) 3345(3) 10786(2) -200(1) 55(1) 

C(10) 5123(3) 10550(2) 98(1) 56(1) 
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C(11) 5021(2) 9480(2) 481(1) 46(1) 

C(12) 2668(2) 10326(2) 1662(1) 31(1) 

C(13) 1573(2) 11355(2) 1354(1) 34(1) 

C(14) 2533(2) 12741(2) 1214(1) 39(1) 

C(15) 4599(2) 13119(2) 1375(1) 42(1) 

C(16) 5698(2) 12106(2) 1681(1) 43(1) 

C(17) 4739(2) 10717(2) 1821(1) 38(1) 

 

 

Bond lengths [Å] and angles [°] for  bm34oas. 

_____________________________________________________  

S(1)-C(6)  1.7783(14) 

S(1)-C(1)  1.8290(13) 

O(1)-C(2)  1.4371(16) 

O(1)-C(3)  1.4387(17) 

C(1)-C(5)  1.530(2) 

C(1)-C(2)  1.5382(18) 

C(1)-H(1)  1.0000 

C(2)-C(12)  1.5120(19) 

C(2)-H(2)  1.0000 

C(3)-C(4)  1.514(2) 

C(3)-H(3A)  0.9900 

C(3)-H(3B)  0.9900 

C(4)-C(5)  1.526(2) 

C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 

C(5)-H(5A)  0.9900 

C(5)-H(5B)  0.9900 

C(6)-C(7)  1.385(2) 

C(6)-C(11)  1.389(2) 

C(7)-C(8)  1.383(2) 
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C(7)-H(7)  0.9500 

C(8)-C(9)  1.382(3) 

C(8)-H(8)  0.9500 

C(9)-C(10)  1.379(3) 

C(9)-H(9)  0.9500 

C(10)-C(11)  1.394(2) 

C(10)-H(10)  0.9500 

C(11)-H(11)  0.9500 

C(12)-C(17)  1.3884(19) 

C(12)-C(13)  1.3969(18) 

C(13)-C(14)  1.387(2) 

C(13)-H(13)  0.9500 

C(14)-C(15)  1.384(2) 

C(14)-H(14)  0.9500 

C(15)-C(16)  1.384(2) 

C(15)-H(15)  0.9500 

C(16)-C(17)  1.390(2) 

C(16)-H(16)  0.9500 

C(17)-H(17)  0.9500 

C(6)-S(1)-C(1) 103.25(6) 

C(2)-O(1)-C(3) 111.34(10) 

C(5)-C(1)-C(2) 110.21(11) 

C(5)-C(1)-S(1) 108.44(9) 

C(2)-C(1)-S(1) 110.98(9) 

C(5)-C(1)-H(1) 109.1 

C(2)-C(1)-H(1) 109.1 

S(1)-C(1)-H(1) 109.1 

O(1)-C(2)-C(12) 107.33(10) 

O(1)-C(2)-C(1) 109.35(11) 

C(12)-C(2)-C(1) 114.87(10) 

O(1)-C(2)-H(2) 108.4 
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C(12)-C(2)-H(2) 108.4 

C(1)-C(2)-H(2) 108.4 

O(1)-C(3)-C(4) 111.20(10) 

O(1)-C(3)-H(3A) 109.4 

C(4)-C(3)-H(3A) 109.4 

O(1)-C(3)-H(3B) 109.4 

C(4)-C(3)-H(3B) 109.4 

H(3A)-C(3)-H(3B) 108.0 

C(3)-C(4)-C(5) 110.09(12) 

C(3)-C(4)-H(4A) 109.6 

C(5)-C(4)-H(4A) 109.6 

C(3)-C(4)-H(4B) 109.6 

C(5)-C(4)-H(4B) 109.6 

H(4A)-C(4)-H(4B) 108.2 

C(4)-C(5)-C(1) 110.37(11) 

C(4)-C(5)-H(5A) 109.6 

C(1)-C(5)-H(5A) 109.6 

C(4)-C(5)-H(5B) 109.6 

C(1)-C(5)-H(5B) 109.6 

H(5A)-C(5)-H(5B) 108.1 

C(7)-C(6)-C(11) 119.62(13) 

C(7)-C(6)-S(1) 120.73(11) 

C(11)-C(6)-S(1) 119.53(11) 

C(8)-C(7)-C(6) 120.14(14) 

C(8)-C(7)-H(7) 119.9 

C(6)-C(7)-H(7) 119.9 

C(9)-C(8)-C(7) 120.40(15) 

C(9)-C(8)-H(8) 119.8 

C(7)-C(8)-H(8) 119.8 

C(10)-C(9)-C(8) 119.77(15) 

C(10)-C(9)-H(9) 120.1 



450 

 

C(8)-C(9)-H(9) 120.1 

C(9)-C(10)-C(11) 120.20(16) 

C(9)-C(10)-H(10) 119.9 

C(11)-C(10)-H(10) 119.9 

C(6)-C(11)-C(10) 119.84(15) 

C(6)-C(11)-H(11) 120.1 

C(10)-C(11)-H(11) 120.1 

C(17)-C(12)-C(13) 118.49(13) 

C(17)-C(12)-C(2) 120.20(12) 

C(13)-C(12)-C(2) 121.31(12) 

C(14)-C(13)-C(12) 120.50(13) 

C(14)-C(13)-H(13) 119.8 

C(12)-C(13)-H(13) 119.8 

C(15)-C(14)-C(13) 120.50(14) 

C(15)-C(14)-H(14) 119.8 

C(13)-C(14)-H(14) 119.8 

C(16)-C(15)-C(14) 119.43(14) 

C(16)-C(15)-H(15) 120.3 

C(14)-C(15)-H(15) 120.3 

C(15)-C(16)-C(17) 120.21(13) 

C(15)-C(16)-H(16) 119.9 

C(17)-C(16)-H(16) 119.9 

C(12)-C(17)-C(16) 120.88(13) 

C(12)-C(17)-H(17) 119.6 

C(16)-C(17)-H(17) 119.6 

 

 Anisotropic displacement parameters  (Å2x 103) for bm34oas.  The anisotropic 

displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  
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S(1) 55(1)  36(1) 42(1)  -1(1) 7(1)  14(1) 

O(1) 41(1)  32(1) 33(1)  -1(1) 4(1)  1(1) 

C(1) 41(1)  31(1) 33(1)  -2(1) 1(1)  6(1) 

C(2) 35(1)  31(1) 31(1)  1(1) -2(1)  6(1) 

C(3) 47(1)  39(1) 34(1)  6(1) 2(1)  -1(1) 

C(4) 44(1)  37(1) 42(1)  5(1) 0(1)  -4(1) 

C(5) 53(1)  31(1) 43(1)  -2(1) -2(1)  -1(1) 

C(6) 38(1)  33(1) 34(1)  -9(1) 3(1)  4(1) 

C(7) 42(1)  48(1) 35(1)  -9(1) 1(1)  -3(1) 

C(8) 56(1)  66(1) 35(1)  2(1) -1(1)  10(1) 

C(9) 71(1)  48(1) 46(1)  5(1) 17(1)  9(1) 

C(10) 52(1)  48(1) 68(1)  -8(1) 21(1)  -8(1) 

C(11) 37(1)  51(1) 51(1)  -10(1) 3(1)  1(1) 

C(12) 35(1)  30(1) 29(1)  -3(1) 1(1)  6(1) 

C(13) 34(1)  34(1) 34(1)  -2(1) -2(1)  6(1) 

C(14) 48(1)  32(1) 36(1)  2(1) 0(1)  7(1) 

C(15) 46(1)  36(1) 45(1)  1(1) 10(1)  -2(1) 

C(16) 32(1)  47(1) 51(1)  -4(1) 0(1)  -2(1) 

C(17) 35(1)  37(1) 40(1)  0(1) -4(1)  7(1) 

 

 

Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for bm34oas. 

______________________________________________________________________________  

 x  y  z  U(eq) 

______________________________________________________________________________ 

H(1) -258 8353 1208 42 

H(2) 2715 8236 2027 39 

H(3A) -2247 8189 2598 48 

H(3B) 58 7335 2561 48 

H(4A) -3232 7267 1818 50 



452 

 

H(4B) -2556 5825 2156 50 

H(5A) -908 5710 1351 51 

H(5B) 858 5668 1784 51 

H(7) 87 8256 293 50 

H(8) 234 10116 -326 63 

H(9) 3411 11525 -458 66 

H(10) 6422 11118 43 67 

H(11) 6237 9334 690 56 

H(13) 159 11104 1238 41 

H(14) 1768 13436 1006 47 

H(15) 5256 14066 1277 51 

H(16) 7113 12360 1794 52 

H(17) 5512 10026 2029 45 
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 Torsion angles [°] for bm34oas. 

________________________________________________________________  

C(6)-S(1)-C(1)-C(5) 147.61(10) 

C(6)-S(1)-C(1)-C(2) -91.19(10) 

C(3)-O(1)-C(2)-C(12) -172.18(10) 

C(3)-O(1)-C(2)-C(1) 62.61(13) 

C(5)-C(1)-C(2)-O(1) -57.56(14) 

S(1)-C(1)-C(2)-O(1) -177.71(8) 

C(5)-C(1)-C(2)-C(12) -178.27(11) 

S(1)-C(1)-C(2)-C(12) 61.58(13) 

C(2)-O(1)-C(3)-C(4) -62.90(14) 

O(1)-C(3)-C(4)-C(5) 56.56(15) 

C(3)-C(4)-C(5)-C(1) -52.00(15) 

C(2)-C(1)-C(5)-C(4) 52.86(15) 

S(1)-C(1)-C(5)-C(4) 174.52(10) 

C(1)-S(1)-C(6)-C(7) -61.41(12) 

C(1)-S(1)-C(6)-C(11) 122.47(11) 

C(11)-C(6)-C(7)-C(8) -1.2(2) 

S(1)-C(6)-C(7)-C(8) -177.36(11) 

C(6)-C(7)-C(8)-C(9) 1.9(2) 

C(7)-C(8)-C(9)-C(10) -0.8(2) 

C(8)-C(9)-C(10)-C(11) -0.8(2) 

C(7)-C(6)-C(11)-C(10) -0.4(2) 

S(1)-C(6)-C(11)-C(10) 175.81(11) 

C(9)-C(10)-C(11)-C(6) 1.4(2) 

O(1)-C(2)-C(12)-C(17) 112.43(13) 

C(1)-C(2)-C(12)-C(17) -125.76(13) 

O(1)-C(2)-C(12)-C(13) -66.72(14) 

C(1)-C(2)-C(12)-C(13) 55.10(16) 

C(17)-C(12)-C(13)-C(14) -0.55(19) 

C(2)-C(12)-C(13)-C(14) 178.61(12) 
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C(12)-C(13)-C(14)-C(15) 0.5(2) 

C(13)-C(14)-C(15)-C(16) -0.4(2) 

C(14)-C(15)-C(16)-C(17) 0.4(2) 

C(13)-C(12)-C(17)-C(16) 0.51(19) 

C(2)-C(12)-C(17)-C(16) -178.66(12) 

C(15)-C(16)-C(17)-C(12) -0.4(2) 
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