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ABSTRACT

We study covert queueing channels (CQCs), which are a kind of covert timing

channel that may be exploited in shared queues across supposedly isolated

users. In our system model, a user modulates messages to another user via

his pattern of access to the shared resource. One example of such a channel

is the cross-virtual network covert channel in data center networks resulting

from the queueing effects of the shared resource.

First, we study a system comprising a transmitter and a receiver that share

a deterministic and work-conserving first-come-first-served scheduler, and we

compute the maximum reliable data transmission rate, i.e., the capacity, of

this channel. Next, we extend the model to include a third user who also

uses the shared resource and study the effect of the presence of this user on

the information transmission rate. The solution approach presented in this

extension may be applied to calculate the capacity of the covert queueing

channel among any number of users.

We also study a queueing covert channel between two users sharing a

round robin scheduler. Such a covert channel can arise when users share

a resource such as a computer processor or a router arbitrated by a round

robin policy. We present an information-theoretic framework to model and

derive the capacity of this channel for both noiseless and noisy scenarios. Our

results show that seemingly isolated users can communicate at a high rate

over the covert channel. Furthermore, we propose a practical finite-length

code construction, which achieves the capacity limit.
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CHAPTER 1

INTRODUCTION

The existence of side and covert channels due to the fragility of isolation

mechanisms is an important privacy and security threat in computer net-

works. Such channels may be created across users which were supposed to

be isolated, resulting in information leakage. By definition, a covert channel

is a hidden communication channel which is not intended to exist in the sys-

tem and is created furtively by users [1]. Covert channels may be exploited

by a trusted user, or possibly a malware inside a system with access to secret

information to leak it to a distrusted user. On the other hand, in a side

channel a malicious user attempts to learn private information by observing

information not intended for him. In this scenario, there is no collaboration

between the source of information and the recipient [2].

A special case of covert and side channels is a timing channel in which

information is conveyed through timing of occurrence of events (e.g., inter-

arrival times of packets). For instance, queueing covert/side timing channels

may arise between users who share a packet scheduler in a network.

Packet schedulers serve packets from multiple streams which are queued in

a single queue. This causes dependencies between delays observed by users.

Particularly, the delay that one user experiences depends on the amount

of traffic generated by other streams, as well as his own traffic. Hence, a

user can gain information about other users’ traffic by observing delays of

his own stream. This dependency between the streams can breach private

information as well as create hidden communication channels between the

users.

One example of a covert/side queueing channel is the cross-virtual net-

work covert channel in data center networks and cloud environments. In

recent years, migrating to commercial clouds and data centers is becoming

increasingly popular among companies that deal with data. The multi-tenant

nature of cloud and sharing infrastructure between several users has made
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data protection and avoiding information leakage a serious challenge in such

environments [3]. In data center networks, software-defined-networks are fre-

quently used for load balancing [4]. This generates logically isolated virtual

networks and prevents direct data exchange. However, since packet flows be-

longing to different VNs inevitably share underlying network infrastructure

(such as a router or a physical link), it is possible to transfer data across VNs

through timing channels resulting from the queueing effects of the shared re-

source(s).

In this thesis, we focus on the covert queueing channels (CQCs) that could

be created in shared schedulers. Different schedulers such as first-come-first-

served (FCFS), time division multiple access (TDMA), round robin, etc.,

can be used for resource sharing. Clearly the optimal scheme for message

transmission and the rate of communication between the users in a CQC

depend on the scheduling policy of the shared resource.

The utility of a scheduler is predominantly evaluated by its throughput.

As long as the rates at which users request the shared resource is within the

scheduler’s capacity region, an effective scheduler should be able to respond to

the users’ requests in a stable fashion. Such a scheduler is called a throughput

optimal scheduler.

It has been shown that, from the security viewpoint, TDMA is the most

secure scheduling policy [5]. In this type of scheduler, since the serving times

of the users are decoupled in time, users’ delays are independent of each other,

and hence no information can be conveyed through the scheduler. However,

the decoupling can cause significant delays in service given to users. For

instance, a user has to wait despite the other user having no jobs to be

served. Hence, TDMA is not throughput optimal.

In this thesis, we study CQCs in a shared deterministic and work-conserving

scheduler. We present an information-theoretic framework to describe and

model the data transmission in this channel and calculate its capacity.

First, in Chapter 2, we consider the setting with two users sharing an

FCFS scheduler. We will show that although this scheduler does not waste

any resource and hence is throughput optimal, it allows users to communicate

with an information rate as high as 0.8114 bits per time slot. We also study

the effect of the presence of a third user on the information transmission

rate, presented in Chapter 3. The approach for analyzing the effect of the

presence of the third user may be extended to calculate the capacity of the
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queueing covert channel serving any number of users.

In Chapter 4, we focus on a round robin scheduler, which is another

throughput optimal policy commonly used in computer processors and com-

munication networks. We show that users can communicate with an infor-

mation rate of 0.6942 bits per time slot through the covert channel created

between them in this system in the absence of noise. Additionally, we study

the noisy version of this covert channel in which packets are dropped with a

certain probability, and compute the capacity as a function of packet drop

probability.

1.1 Related Works

The existing literature on covert/side timing channels has mainly concen-

trated on timing channels in which the receiver/adversary has direct access

to the timing sequence produced by the transmitter/victim or a noisy ver-

sion of it. However, in a covert/side queueing channel, the receiver/adversary

does the inference based on the timing of his own packets which has been

influenced by the original stream.

In a queuing side channel, where a malicious user, called an attacker, at-

tempts to learn another user’s private information, the main approach used

by the attacker is traffic analysis. That is, the attacker tries to infer pri-

vate information from the victim’s traffic pattern. The attacker can have

an estimation of the features of the other user’s stream such as packet size

and timing by emitting frequent packets in his own sequence. Previous work

shows that through traffic analysis, the attacker can obtain various private

information including visited web sites [6], sent keystrokes [7], and even in-

ferring spoken phrases in a voice-over-IP connection [8].

In [9], Gong et al. proposed an attack where a remote attacker learns

about a legitimate user’s browser activity by sampling the queue sizes in

the downstream buffer of the user’s DSL link. The information leakage of a

queueing side channel in an FCFS scheduler is analyzed in [10]. The anal-

ysis of more general work-conserving policies has been done in [11] and [5].

The authors in [5] present an analytical framework for modeling informa-

tion leakage in queuing side channels and quantify the leakage for several

common scheduling policies. Kadloor and Kiyavash [12] showed that when
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dealing with queueing side channels, round robin scheduling is privacy opti-

mal within the class of work-conserving policies. In Chapter 4 of this thesis,

we focus on covert channels created in this scheduler.

Most of the work in covert timing channels is devoted to the case in which

two users communicate by modulating the timings, and the receiver sees a

noisy version of the transmitter’s inputs [13–17]. Also, there are many works

devoted to the detection of such channels [14, 18, 19]. The setup of CQC is

new in the field of covert communication and as far as we are aware, there

are very few works on this setup [20,21].
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CHAPTER 2

FCFS SCHEDULER

In this chapter, we consider the setting with two users sharing a first-come-

first-served (FCFS) scheduler. We will show that the supposedly isolated

users of an FCFS scheduler are capable to communicate with an information

rate as high as 0.8114 bits per time slot.

2.1 System Description

Consider the architecture depicted in Figure 2.1. In this model, a scheduler

serves packets from 2 users: Ue and Ud. Each user, Ui, i ∈ {e, d}, is modeled

by a transmitter and a receiver node, denoted by UT
i and UR

i , respectively.

UR
i is the node which receives UT

i ’s packet stream. Note that UT
i and UR

i

could correspond to the uplink and downlink of the same entity. Ue intends to

send a message to Ud, but there is no direct channel between them. However,

since UT
e and UT

d ’s packets share the same queue, UT
e can encode messages

in the arrival times of its packets, which are passed onto Ud via queueing

delays. Therefore, a timing channel is created between users via the delays

experienced through the coupling of their traffic due to the shared scheduler.

To receive the messages from Ue, user Ud sends a packet stream from the

node UT
d . He then uses the delays he experiences by receiving the packet

stream at UR
d to decode the message. Therefore, effectively, the nodes UT

e

and UR
e are on the encoder side and the nodes UT

d and UR
d are on the decoder

side of the channel of our interest. In the sequel, we call Ud’s sent stream the

probe stream.

We consider an FCFS scheduler, which is commonly used in DSL routers.

We assume this scheduler is deterministic and work conserving. Time is

discretized into slots, and the scheduler is capable of processing at most one

packet per time slot. At each time slot, each user either issues one packet or
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Figure 2.1: Covert queueing channel in a system with 2 users.

remains idle. Furthermore, we assume that all packets are the same size.

Figure 2.2 shows an example of the input and output streams of the system

depicted in Figure 2.1 with an FCFS scheduler. In this figure, the first stream

is the arrival stream, i.e., arrivals from both UT
e and UT

d , depicted by red and

blue, respectively. The second part is the output stream of user Ue (received

by UR
e ), and the third part is the output stream of user Ud (received by UR

d ).

In this example, we assume that one packet is buffered in the queue at time

Ai, where a packet arrives from both UT
d and UT

e . If user Ue had not sent

the two packets (depicted in red), the second packet of user Ud which arrives

at time Ai+1 could have departed one time slot earlier. Therefore, Ud knows

that Ue has issued two packets.

We assume that the priorities of the users are known. Particularly, without

loss of generality, we assume that Ud has the highest priority; i.e., in the case

of simultaneous arrivals, Ud’s packet will be served first.

As mentioned earlier, at each time slot, each user is allowed to either send

one packet or none; hence, the input and output packet sequences of each user

could be viewed as a binary bitstream, where ‘1’ and ‘0’ indicates whether a

packet was sent or not in the corresponding time slot.

Assume message W drawn uniformly from the message set {1, 2, ...,M}
is transmitted by UT

e , and Ŵ is Ud’s estimate of the sent message. Our

performance metric is the average error probability, defined as follows:

Pe , Pr(W 6= Ŵ ) =
M∑
m=1

1

M
Pr(Ŵ 6= m|W = m).
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User d's output 
stream

User e's output 
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A Ai i+1

Di Di+1

of the scheduler

Figure 2.2: An example of the input and output streams of the FCFS
scheduler serving two users. Red packets belong to Ue and blue packets
belong to Ud. We assume that one packet is buffered in the queue at time
Ai.

Ue encodes each message into a binary sequence of length n, ∆n, to create

the codebook, which is known at the decoder, Ud.

In order to send a message, UT
e emits a packet in the ith time slot if ∆i = 1

and remains idle otherwise, i.e.,

∆i =


1 ⇒ UT

e issues a

packet in time slot i.

0 ⇒ UT
e remains

idle in time slot i.

To decode this message, UT
d sends a binary length n stream (the probe

stream) to the scheduler during the same length n time period. User Ud will

use this stream and the response stream received at node UR
d to decode the

sent message.

We define the code, rate of the code, and the channel capacity similar to the

definitions in [13], [22] and [23], as follows:

Definition 1 An (n,M, ε)-code consists of a codebook of M equiprobable bi-

nary codewords, where messages take on average n time slots to be received.

The error probability satisfies Pe ≤ ε.
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Definition 2 The information transmission rate of a code, R, is the amount

of conveyed information (logarithm of the codebook size) normalized by the

average number of used time slots for the message to be received, i.e.,

R =
logM

n
.

Rate may be interpreted as the average amount of information conveyed in

a single time slot.

Definition 3 (Channel Capacity) The Shannon capacity, C, for a chan-

nel is the maximum achievable rate at which one can communicate through

the channel when the average probability of error goes to zero. In other words,

C is the supremum of rates, R, which satisfies the following property [23]:

∀δ > 0, ∃(n,M, εn)-code

s.t.

{
logM
n

> R− δ
εn → 0

as n→∞.

The following notations will be used in Chapters 2 and 3:

• ri: UT
i ’s packet rate.

• Ai: Arrival time of the ith packet in the probe stream.

• Di: Departure time of the ith packet of the probe stream.

We assume m packets are sent by Ud during n time slots and we have:

rd = lim
n→∞

m

n
.

• Xi: Number of Ue’s packets sent in the interval [Ai, Ai+1). Note that

Xi =
∑Ai+1−1

j=Ai
∆j.

• Ti = Ai+1 − Ai: inter-arrival time between ith and (i + 1)th packet of

the probe stream. We denote a realization of T by τ .

• Yi = Di+1 −Di − 1.

• X̂i: estimate of Xi by decoder.

• Ŵ : decoded message.

8



In an FCFS scheduler, Ud can have an estimation of the number of the

packets of other users between any of his own consecutive packets. The es-

timation of the number of packets in the interval [Ai, Ai+1) is accurate if

the scheduler is deterministic and work-conserving and a sufficient number

of packets is buffered in the queue at time Ai
1. In that case, the number of

other users’ packets arriving in the interval [Ai, Ai+1) could be simply cal-

culated by Di+1 −Di − 1. Note that Ud cannot pinpoint the location of the

sent packets; that is, if the inter-arrival time is τ , Ud can distinguish between

τ + 1 different sets of bit streams sent during this time. Therefore, we look

at any probe stream sent during n time slots as a combination of different

inter-arrival times.

If the sum of the packet rates of the users during sending a message of

length n is on average larger than 1, then the message will arrive on average

during more than n time slots. Also, this will destabilize the input queue of

the scheduler. For example, for a system with two users Ud and Ue, if UT
d

sends packets in every time slot, then sending a packet by UT
e in any time slot

would cause a delay in the serving of the next packet of UT
d and hence could

be detected. Therefore, in each time slot, UT
e could simply idle to signal a bit

‘0’ or send a packet to signal a bit ‘1’, resulting in the information rate of 1
1.5

bit per time slot in the case that bits are equiprobable. But, this scheme is

not feasible in practice as it would destabilize the queue and result in severe

packet drops.

In order to have queue stability, it suffices that the total packet arrival

rate does not exceed the service rate, which for a deterministic and work-

conserving scheduler is equal to 1 (see Appendix A.1 for the proof of stability

which is based on a Lyapunov stability argument for the general case that

the serving rate is assumed to be 0 ≤ ρ ≤ 1 and arbitrary number of users is

1If the service rate of the scheduler is equal to 1, there should be at least Ai+1−Ai− 1
packets buffered in the queue at time Ai. Therefore, user Ud needs to know the queue
length. This is feasible using the following formula:

q(Ai) = Di −Ai − 1,

where q(Ai) denotes the queue length at the time that the ith packet in the probe stream
arrives at the queue. The extra 1 in the formula is the time needed for the ith packet of
the probe stream to be served. Therefore, user Ud should always be aware of the queue
length and keep it sufficiently large by sending extra packets when needed.
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considered). Specifically, for the case of two users we need:

re + rd < 1. (2.1)

On the other hand, if the sum of the packet rates of the users used during

sending a message of length n is on average less than 1, the length of the

input queue may go to zero, and consequently Ud may not be able to count

the number of packets of other users correctly. Note that increasing rd in-

creases the resolution available for user Ud and hence this user can have a

better estimation of the number of the other user’s sent packets; therefore,

in the case of two users, in order to achieve the highest information rate, the

operation point should tend to the line re + rd = 1.

Therefore, we focus on the coding schemes where the sum of the rates

is held at 1, with considering a preamble stage in our communication to

guarantee sufficient queue length.

In the following section, the capacity of the introduced system will be calcu-

lated for a system with a deterministic and work-conserving FCFS scheduler

serving packets from 2 users.

2.2 Channel Coding Theorem

In this section, using achievability and converse arguments, the capacity of

the introduced system is calculated for the basic case that the scheduler has

serving rate 1 and serves packets from two users.

As depicted in figure 2.1, user Ue is attempting to send a message to Ud

through the covert queueing channel between them. Note that since we have

considered service rate of 1 for the FCFS scheduler and users can agree on

the packet stream sent by UT
d ahead of time, the feedback UR

e is already

available at the encoder. Therefore, the following Markov chain holds:

W → Xm → Y m → Ŵ . (2.2)

Note that as mentioned earlier, if there is a sufficient number of packets

buffered in the shared queue, X̂i could be accurately estimated as Yi.

10



The main result of this section is the following theorem, the proof of which

is developed in the rest of the section.

Theorem 1 The capacity of the timing channel in a shared FCFS scheduler

with service rate 1 depicted in Figure 2.1 is equal to 0.8114 bits per time slot,

which can be obtained by solving the following optimization problem:

C = sup
α,γ1,γ2

αH̃(γ1, 1) + (1− α)H̃(γ2,
1

2
)

s.t.

α(γ1 + 1) + (1− α)(γ2 +
1

2
) = 1,

(2.3)

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2

and the function H̃ : [0, 1] × { 1
k

: k ∈
N} 7→ [0, 1] is defined as:

H̃(γ,
1

k
) =

1

k
sup

X∈{0,1,...,k}
E[X]=kγ

H(X), k ∈ N, 0 ≤ γ ≤ 1. (2.4)

We first investigate some of the properties of the function H̃.

Lemma 1 Let Uk ∼ unif({0, 1, ..., k}). The distribution which achieves the

optimum value in (2.4) is the tilted version of unif({0, 1, ..., k}) with param-

eter λ, where λ = (ψ′Uk)
−1(kγ), where the function ψ′Uk(·) is the derivative of

the log-moment generating function of Uk.

See Appendix A.2 for the proof of Lemma 1.

Lemma 2 The function (γ, 1
k
) 7→ H̃(γ, 1

k
) could be computed using the fol-

lowing expression:

H̃(γ,
1

k
) =

1

k
[log2(k + 1)− ψ∗Uk(kγ) log2 e], (2.5)

where Uk ∼ unif({0, 1, ..., k}), and the function ψ∗Uk(·) is the rate function

given by the Legendre-Fenchel transform of the log-moment generating func-

tion, ψUk(·):

ψ∗Uk(γ) = sup
λ∈R
{λγ − ψUk(λ)}. (2.6)
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Figure 2.3: H̃(γ, 1
k
) for different values of γ and k ∈ {1, 2, 3}.

In order to prove this lemma, first we note that for any random variable X

defined over the set {0, 1, ..., k},

H(X) =
k∑
i=0

PX(i) log
1

PX(i)

=
k∑
i=0

PX(i) log (k + 1)−
k∑
i=0

PX(i) log
PX(i)

1
k+1

= log (k + 1)−D(PX ||Uk),

where D(PX ||Uk) denotes the KL-divergence between PX and Uk. Therefore,

in order to maximize H(X), we need to minimize D(PX ||Uk). Using the

following well-known fact concludes the lemma [24]:

min
E[X]=kγ

D(PX ||Uk) = ψ∗Uk(kγ) log2 e. (2.7)

Figure 2.3 shows the function H̃(γ, 1
k
) for different values of γ and k ∈

{1, 2, 3}.
Substituting (2.5) in (2.3) and solving it, the capacity of the timing chan-

nel in the shared FCFS scheduler with service rate 1 depicted in Figure 2.1

is equal to 0.8114 bits per time slot, achieved by α = 0.177, γ1 = 0.43 and

γ2 = 0.407.

Lemma 3 The function H̃(·, ·) is concave in pair (γ,
1

k
) in the sense that

for integers k1, k2, k3, and for values 0 ≤ γ1, γ2, γ3 ≤ 1, and for α ∈ [0, 1]

12



such that α(γ1,
1

k1
) + (1− α)(γ3,

1

k3
) = (γ2,

1

k2
), we have:

αH̃(γ1,
1

k1
) + (1− α)H̃(γ3,

1

k3
) ≤ H̃(γ2,

1

k2
). (2.8)

See Appendix A.3 for the proof of Lemma 3.

Lemma 4 H̃(γ,
1

k
) = H̃(1− γ, 1

k
).

See Appendix A.4 for the proof of Lemma 4.

In the following, the proof of Theorem 1 is given. The proof is based on

converse and achievability arguments.

2.2.1 Converse side

In the converse side, the ultimate goal is to prove that

C ≤ sup
α,γ1,γ2

αH̃(γ1, 1) + (1− α)H̃(γ2,
1

2
)

s.t.

α(γ1 + 1) + (1− α)(γ2 +
1

2
) = 1,

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2
. We break the proof in two lemmas.

Lemma 5 For any (n,M, ε)-code we have

1

n
logM ≤

n∑
τ=1

[πτH̃(µτ ,
1

τ
)] + εn (2.9)

such that
n∑
τ=1

πτ (µτ +
1

τ
) = 1 and 0 ≤ µτ ≤

1

2
, ∀τ, (2.10)

where εn = 1
n
(H(Pe) + Pe log2 (M − 1)), πτ is the portion of time that user

Ud sends packets with inter-arrival time equal to τ in the probe stream, and

µτ is UT
e ’s average packet rate when the inter-arrival time is equal to τ .

13



Proof. We first we note that for any (n,M, ε)-code we have:

1

n
logM

(a)
=

1

n
H(W )

(b)
=

1

n
H(W |τm)

=
1

n
I(W ; Ŵ |τm) +

1

n
H(W |Ŵ , τm)

(c)

≤ 1

n
I(W ; Ŵ |τm) + εn

(d)

≤ 1

n
I(Xm;Y m|τm) + εn,

where (a) holds because W is a uniform random variable over the set of

messages {1, ...,M}, (b) follows from the fact that the chosen message is

independent of the inter-arrival time of decoder’s packets, (c) follows from

Fano’s inequality with εn = 1
n
(H(Pe)+Pe log2 (M − 1)), and (d) follows from

data processing inequality in Markov chain in (2.2). Therefore:

1

n
logM ≤ 1

n
[H(Xm|τm)−H(Xm|Y m, τm)] + εn

≤ 1

n
H(Xm|τm) + εn

≤ 1

n

m∑
j=1

H(Xj|τm) + εn

≤ 1

n

m∑
j=1

max
PXj |τm

H(Xj|τm) + εn,

where, in the maximization above, the mean of the distribution PXj |τm is

E[Xj|τm]. As mentioned earlier, in order to find the maximum information

rate while having stability, we are interested in the asymptotic regime in

which the operating point is converging to the line re + rd = 1. There-

fore, the information rate is upper bounded by having the set of means,

{E[X1|τm],E[X2|τm], ...,E[Xm|τm]}, satisfying the constraint
1

n

m∑
j=1

E[Xj|τm]+

rd = 1. Let ξj =
E[Xj |τm]

τj
. Using (2.4), we have:

max
PXj |τm

E[Xj |τm]=τjξj

H(Xj|τm) = τjH̃(ξj,
1

τj
), (2.11)
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where as mentioned in Lemma 1, the distribution for each Xj which achieves

the maximum value in (2.11) is the tilted distribution of Uτj with parameter

λ, such that λ = (ψ′Uτj )
−1(τjξj).

Therefore, we will have:

1

n
logM ≤ 1

n

m∑
j=1

τjH̃(ξj,
1

τj
) + εn,

such that the set {ξ1, ξ2, ..., ξm} satisfies the constraint
1

n

m∑
j=1

τjξj + rd = 1.

The inter-arrival times take values in the set {1, 2, ..., n}. Therefore, in the

summation above we can fix the value of inter-arrival time on the value τ and

count the number of times that τj has that value. Defining mτ as the number

of times that the inter-arrival time is equal to τ (note that n =
∑n

τ=1 τ ·mτ ),

we can break the summation above as follows:

1

n
logM ≤ 1

n

n∑
τ=1

[
mτ∑
k=1

τH̃(µτ,k,
1

τ
)] + εn

=
1

n

n∑
τ=1

[τ
mτ∑
k=1

H̃(µτ,k,
1

τ
)] + εn

=
1

n

n∑
τ=1

[τ ·mτ

mτ∑
k=1

1

mτ

H̃(µτ,k,
1

τ
)] + εn,

where µτ,k is equal to the kth ξj which has τj = τ .

By Lemma 3, the function H̃(·, ·) is a concave function of its first argument.

Therefore, by Jensen’s inequality, we will have:

mτ∑
k=1

1

mτ

H̃(µτ,k,
1

τ
) ≤ H̃(µτ ,

1

τ
), (2.12)
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where µτ =
1

mτ

mτ∑
k=1

µτ,k. Using (2.12) and the equation n =
n∑
τ=1

τ ·mτ , we

have:
1

n
logM ≤

n∑
τ=1

[
τ ·mτ∑n
τ=1 τ ·mτ

H̃(µτ ,
1

τ
)] + εn

=
n∑
τ=1

[πτH̃(µτ ,
1

τ
)] + εn,

(2.13)

where πτ =
τ ·mτ∑n
τ=1 τ ·mτ

.

The packet rates of the users could be written as follows:

re =
1

n

m∑
j=1

τjξj =
1

n

n∑
τ=1

mτ∑
k=1

τµτ,k

=
1

n

n∑
τ=1

τmτ
1

mτ

mτ∑
k=1

µτ,k =
n∑
τ=1

1

n
τmτµτ

=
n∑
τ=1

τ ·mτ∑n
τ=1 τ ·mτ

µτ =
n∑
τ=1

πτµτ ,

and

rd =
n∑
τ=1

πτ
1

τ
.

Therefore, the constraint could be written as follows:

n∑
τ=1

πτ (µτ +
1

τ
) = 1. (2.14)

Suppose the set of pairs {(µτ , 1τ )}nτ=1 satisfies (2.14) and maximizes the

right hand side of (2.13). By Lemma 4, there exists another set of pairs

{(µ̂τ , 1τ )}nτ=1 with µ̂τ defined as:

µ̂τ =

{
µτ if 0 ≤ µτ ≤ 1

2
,

1− µτ if 1
2
≤ µτ ≤ 1,

that gives the same value for the right-hand side of (2.13), but it has
n∑
τ=1

πτ (µ̂τ+

1

τ
) ≤

n∑
τ=1

πτ (µτ +
1

τ
). Therefore, Ud can increase his packet rate and increase

the information rate. Therefore, in the maximizing set, for all τ , we have
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0 ≤ µτ ≤ 1
2
.

Therefore, the optimal operating point will be on the line re + rd = 1, with

0 ≤ re ≤ 1
2

and 1
2
≤ rd ≤ 1.

�

Applying Lemma 3, we can replace all pairs of form (µτ ,
1
τ
), τ ≥ 2, with a

single pair of form (µ, 1
2
):

Lemma 6 Suppose the set of pairs S = {(µτ , 1τ ), τ ∈ [n]} where for all τ ,

0 ≤ µτ ≤ 1
2
, with weights {πτ , τ ∈ [n]} gives rate

∑n
τ=1 πτH̃(µτ ,

1
τ
) and has

its operating point on the line 0 ≤ re ≤ 1
2

and 1
2
≤ rd ≤ 1. Then, there exists

0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2

such that:

α(γ1 + 1) + (1− α)(γ2 +
1

2
) = 1,

and
n∑
τ=1

[πτH̃(µτ ,
1

τ
)] ≤ αH̃(γ1, 1) + (1− α)H̃(γ2,

1

2
).

Proof. Suppose

βτ (µ1, 1) + (1− βτ )(µτ ,
1

τ
) = (µτ2,

1

2
) ∀τ ∈ {3, ..., n},

for some βτ ∈ [0, 1]. Clearly, the set {(µ1, 1), (µ2,
1
2
), (µ3

2,
1
2
), ..., (µn2 ,

1
2
)} can

also give the same operating point as S does. By Lemma 3,

βτH̃(µ1, 1) + (1− βτ )H̃(µτ ,
1

τ
) ≤ H̃(µτ2,

1

2
) ∀τ ∈ {3, ..., n}.

Therefore,

n∑
τ=1

πτH̃(µτ ,
1

τ
) = ζ1H̃(µ1, 1) + ζ2H̃(µ2,

1

2
) +

n∑
τ=3

ζτ (βτH̃(µ1, 1) + (1− βτ )H̃(µτ ,
1

τ
))

≤ ζ1H̃(µ1, 1) + ζ2H̃(µ2,
1

2
) +

n∑
τ=3

ζτH̃(µτ2,
1

2
)

≤ ζ1H̃(µ1, 1) + (1− ζ1)H̃(
ζ2µ2 +

∑n
τ=3 ζτµ

τ
2

1− ζ1
,
1

2
),

(2.15)

where π1 = ζ1 +
∑n

τ=3 ζτβτ , π2 = ζ2 and πτ = ζτ (1− βτ ) for 3 ≤ τ ≤ n and

we have used Lemma 3 again in the last inequality. �
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From Lemmas 5 and 6, we have:

1

n
logM ≤ αH̃(γ1, 1) + (1− α)H̃(γ2,

1

2
) + εn

≤ sup
α,γ1,γ2

αH̃(γ1, 1) + (1− α)H̃(γ2,
1

2
) + εn.

Letting n→∞, εn goes to zero and we have

C ≤ sup
α,γ1,γ2

αH̃(γ1, 1) + (1− α)H̃(γ2,
1

2
)

s.t.

α(γ1 + 1) + (1− α)(γ2 +
1

2
) = 1,

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1
2
.

This completes the proof of the converse part.

2.2.2 Achievability side

The sequence of steps in our achievability scheme is as follows:

• Set α = 0.177− δ, for a small and positive value of δ.

• Fix a binary distribution P1 such that P1(1) = 0.43 and P1(0) = 0.57.

Generate a binary codebook C1 containing 2αnR1 sequences of length

αn of i.i.d. entries according to P1.

Fix a ternary distribution P2 over set of symbols {a0, a1, a2} such that

P2(a0) = 0.43, P2(a1) = 0.325 and P2(a2) = 0.245. Generate a ternary

codebook C2 containing 2(1−α)nR2 sequences of length 1
2
(1−α)n of i.i.d.

entries according to P2. Substitute a0 with 00, a1 with 10 and a2 with

11, so we will have 2(1−α)nR2 binary sequences of length (1− α)n.

Combine C1 and C2 to get C, such that C has 2n(αR1+(1−α)R2) binary

sequences of length n where we concatenate ith row of C1 with jth row

of C2 to make the ((i−1)(2(1−α)nR2)+ j)th row of C (note that 2(1−α)nR2

is the number of rows in C2). Rows of C are our codewords. In above,

n should be chosen such that αnR1, αn, (1−α)nR2 and 1
2
(1−α)n are

all integers.
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• Encoding: UT
d sends the stream of all ones (one packet in each time

slot) in the first αn time slots and sends bit stream of concatenated

10’s for the rest of (1− α)n time slots.

To send message m, UT
e sends the corresponding row of C, that is, it

sends the corresponding part of m from C1 in the first αn time slots

and the corresponding part of m from C2 in the rest of (1 − α)n time

slots.

• Decoding: Assuming the queue is not empty,2 since there is no noise

in the system, the decoder can always learn the exact sequence sent by

Ue.

Consequently, we will have:

C ≥ log2 2n(αR1+(1−α)R2)

n

= αR1 + (1− α)R2.

In infinite block-length regime, where n → ∞, we can choose R1 = H(P1),

R2 = 1
2
H(P2) and find codebooks C1 and C2 such that this scheme satisfies

the rate constraint. Therefore,

C ≥ αH(P1) + (1− α)
1

2
H(P2).

Substituting the values in the expression above, and letting δ go to zero, we

see that the rate 0.8114 bits per time slot is achievable.

2Since in our achievable scheme, UT
d ’s packets are spaced by either one or two time

slots, it is enough to have one packet buffered in the queue, where since we are working
in the heavy traffic regime, it will not be a problem.
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CHAPTER 3

FCFS SCHEDULER WITH 3 USERS

As an extension to the basic problem, in this section we consider the case

that a third user is also using the shared scheduler. We add user Up to our

basic system model. This user has nodes UT
p and UR

p as his transmitter and

receiver nodes, respectively (see Figure 3.1). We assume that the node UT
p

sends packets according to a Bernoulli process with rate rp to the shared

scheduler. The shared scheduler is again assumed to be FCFS with service

rate 1 and we analyze the capacity for coding schemes satisfying queueing

stability condition, in the asymptotic regime where the operating point is

converging to the line re + rp + rd = 1. Also, in this section we consider

the extra assumption that the inter-arrival time of the packets in the probe

stream is upper bounded by the value τmax. Assuming that a sufficient

number of packets are buffered in the shared queue, user Ud can still count

the number of packets sent by the other two users between any of his own

consecutive packets, yet he cannot distinguish between packets sent by user

Ue and the packets sent by user Up. Hence, user Ud has uncertainty in

estimating the values of X. We model this uncertainty as a noise in receiving

X.

3.1 Channel Coding Theorem

Suppose UT
d sends two packets with τi = 2. Each of the other users can

possibly send at most 2 packets in the interval [Ai, Ai+1) and hence, Y ∈
{0, 1, 2, 3, 4}. Therefore, we have the channel shown in Figure 3.2 for this

instance. In the general case, for the inter-arrival time τ , given X = x, we

have Y ∈ {x+ 0, ..., x+ τ} such that

Pr(Y = i+ x|X = x) =

(
τ

i

)
(rp)

i(1− rp)τ−i i ∈ {0, ..., τ}, (3.1)
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Figure 3.1: Covert queueing channel in a system with 3 users.

which is a binomial distribution Bin(τ, rp). Therefore, the support of the

random variable Y is {0, 1, ..., 2τ}. For the mean of Y , we have:

E[Y |τ ] = E[E[Y |X, τ ]|τ ] = E[X + τrp|τ ] = τ(re + rp). (3.2)

Because of user Up’s stream, the encoder is not aware of the stream received

at node UR
e beforehand and this output can provide information to the en-

coder about UT
p ’s stream. The more packets node UT

e sends to the scheduler,

the more information this stream contains about UT
p ’s stream. Using this

information, the encoder can have an estimation of the output of the channel

at the decoder’s side and hence it could be considered as a noisy feedback to

the encoder. Figure 3.3 shows the graphical model for random variables in

our system.

The main result of this section is evaluation of the capacity of the intro-

duced channel, presented in the following theorem:

Theorem 2 If the rate of Up is rp, the capacity of the timing channel in a

shared FCFS scheduler with service rate 1 depicted in Figure 3.1 is given by:

C(rp) = sup
α,γ1,γ2,τ

αĨrp(γ1,
1

τ
) + (1− α)Ĩrp(γ2,

1

τ + 1
)

s.t.

α(γ1 +
1

τ
) + (1− α)(γ2 +

1

τ + 1
) = 1− rp,

(3.3)
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Figure 3.3: The graphical model representing the statistical relation
between W , Xm, Y m and Ŵ .

where 0 ≤ α ≤ 1 and 0 ≤ γ1, γ2 ≤ 1 and 1 ≤ τ ≤ τmax − 1. The function

Ĩrp : [0, 1]× { 1
k

: k ∈ N} 7→ [0, 1] is defined as:

Ĩrp(γ,
1

k
) =

1

k
sup

X∈{0,1,...,k}
E[X]=kγ

Irp(X;Y ), k ∈ N, 0 ≤ γ ≤ 1, (3.4)

where the subscript rp denotes that the mutual information between X and

Y is calculated when the rate of Up is rp.

The proof is based on converse and achievability arguments. Before giving

the proof, we first investigate some of the properties of the function Ĩ.

Lemma 7 The function Ĩrp(γ,
1
k
) could be computed using the following ex-

pression:

Ĩrp(γ,
1

k
) =

1

k
Ȟrp(γ,

1

k
)− 1

k
H(Bin(k, rp)), (3.5)
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Figure 3.4: Ĩrp(γ,
1
k
) for different values of γ and k ∈ {1, 2, 3} and

rp ∈ {0, 0.1, 0.2}.

where Ȟrp(γ,
1

k
) = sup

X∈{0,1,...,k}
E[X]=kγ

Hrp(Y ) and the second term is the entropy of

the binomial distribution with parameters k and rp.

See Appendix B.1 for the proof of Lemma 7.

In order to calculate Ȟrp(γ,
1
k
), the following optimization problem should be

solved:

max
PX≥0

log2 e
2k∑
i=0

PY (i) ln(
1

PY (i)
)

s.t.

{ ∑k
i=0 iPX(i) = E[X] = kγ∑k
i=0 PX(i) = 1

(3.6)

where PY = PX ∗ PBin(k,rp), i.e.,

PY (i) =
k∑
j=0

PX(j)PBin(k,rp)(i− j) i ∈ {0, 1, ..., 2k}. (3.7)

Figure 3.4 shows the functions Ĩ0(γ,
1
k
), Ĩ0.1(γ,

1
k
) and Ĩ0.2(γ,

1
k
) for different

values of γ and k ∈ {1, 2, 3}.

Lemma 8 For all 0 ≤ rp ≤ 1, integers 1 ≤ k1, k2, k3 ≤ τmax, values 0 ≤
γ1, γ2, γ3 ≤ 1, and α ∈ [0, 1] such that α(γ1,

1

k1
) + (1− α)(γ3,

1

k3
) = (γ2,

1

k2
),

we have:

αĨ(γ1,
1

k1
) + (1− α)Ĩ(γ3,

1

k3
) ≤ Ĩ(γ2,

1

k2
). (3.8)

See Appendix B.2 for the proof of Lemma 8.
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Figure 3.5: Capacity of the timing channel in the shared FCFS scheduler of
Figure 3.1 for different values of rp.

Using the mentioned properties, the capacity of the timing channel in

the shared FCFS scheduler of Figure 3.1 for different values of rp can be

calculated. Figure 3.5 shows the value of the capacity with respect to rp.

The following proof of Theorem 2 is based on converse and achievability

arguments.

3.1.1 Converse side

Suppose the rate of Up is rp. Similar to the proof of Lemma 5, for any

(n,M, ε)-code, we have:

1

n
logM ≤ 1

n
Irp(W ; Ŵ |τm) + εn

(a)

≤ 1

n
Irp(W ;Y m|τm) + εn,
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where εn = 1
n
(H(Pe) +Pe log2 (M − 1)) and (a) follows from data processing

inequality in the model in Figure 3.3. Therefore:

1

n
logM ≤ 1

n

m∑
j=1

Irp(W ;Yj|Y j−1τm) + εn

≤ 1

n

m∑
j=1

Irp(W,Y
j−1;Yj|τm) + εn

(a)

≤ 1

n

m∑
j=1

Irp(Xj;Yj|τm) + εn

≤ 1

n

m∑
j=1

max
PXj |τm

Irp(Xj;Yj|τm) + εn,

where (a) again follows from data processing inequality in the model in Fig-

ure 3.3. In the maximization above, the mean of the distribution PXj |τm

is E[Xj|τm] and in order to find the maximum information rate, the set

of means, {E[X1|τm],E[X2|τm], ...,E[Xm|τm]}, should satisfy the constraint

re + rp + rd = 1, that is
1

n

m∑
j=1

E[Xj|τm] + rp + rd = 1. Let ξj =
E[Xj |τm]

τj
.

Using (3.4), we have:

max
PXj |τm

E[Xj |τm]=τjξj

Irp(Xj;Yj|τm) = τj Ĩrp(ξj,
1

τj
). (3.9)

Therefore, we will have:

1

n
logM ≤ 1

n

m∑
j=1

τj Ĩ(ξj,
1

τj
) + εn.

Next, using Lemma 8 and similar to the proof of Lemma 5, by breaking

the summation, using Jensen’s inequality and the equation n =
τmax∑
τ=1

τ ·mτ ,

we will have:
1

n
logM ≤

τmax∑
τ=1

πτ Ĩrp(µτ ,
1

τ
) + εn, (3.10)

where µτ is the average of ξj’s which have τj = τ and πτ =
τ ·mτ∑τmax
τ=1 τ ·mτ

. In

this expression, πτ could be interpreted as the portion of time that user Ud

sends packets with inter-arrival time equal to τ .
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Also, using the same approach as the one used in the proof of Lemma 5,

the constraint of the problem could be written as follows:

τmax∑
τ=1

πτ (µτ +
1

τ
) = 1− rp. (3.11)

Suppose the set of pairs S = {(µτ , 1τ ), τ ∈ [τmax]} with weights {πτ , τ ∈
[τmax]} gives rate

∑τmax
τ=1 πτ Ĩrp(µτ ,

1
τ
) and has its operating point on the line

re + rd = 1− rp, and we have

1

τ ∗
≤

τmax∑
τ=1

πτ
1

τ
≤ 1

τ ∗ + 1
,

for some 1 ≤ τ ∗ ≤ τmax − 1. Suppose{
βτ (µτ∗+1

1
τ∗+1

) + (1− βτ )(µτ , 1τ ) = (µττ∗ ,
1
τ∗

) τ ≤ τ ∗ − 1,

βτ (µτ∗
1
τ∗

) + (1− βτ )(µτ , 1τ ) = (µττ∗+1,
1

τ∗+1
) τ ≥ τ ∗ + 2,

for some βτ ∈ [0, 1]. Clearly, the set {(µ1
τ∗ ,

1
τ∗

), · · · , (µτ∗−1τ∗ , 1
τ∗

), (µτ∗ ,
1
τ∗

),

(µτ∗+1,
1

τ∗+1
), (µτ

∗+2
τ∗+1,

1
τ∗+1

), · · · , (µτmaxτ∗+1,
1

τ∗+1
)} can give the same operating

point as S does. Therefore, by using the technique used in (2.15) and twice

use of Lemma 8 we have

1

n
logM ≤ αĨrp(γ1,

1

τ ∗
) + (1− α)Ĩrp(γ2,

1

τ ∗ + 1
) + εn

≤ sup
α,γ1,γ2,τ

αĨrp(γ1,
1

τ
) + (1− α)Ĩrp(γ2,

1

τ + 1
) + εn.

Letting n→∞, εn goes to zero and we get the desired result.

3.1.2 Achievability side

Achieving the proposed upper bound could be done by a method exactly like

the one used in Subsection 2.2.2. We need to solve the optimization problem

(3.3) to find parameters α, γ1, γ2 and τ . Because of Lemma 8, in order to

find the optimal τ , we can start with τ = 1 and optimize other parameters,

and then calculate αĨrp(γ1,
1
τ
)+(1−α)Ĩrp(γ2,

1
τ+1

) and, in each step, increase

the value of τ by 1, stopping whenever the obtained value is decreased com-
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pared to the previous step. For instance, for rp ≤ 0.1, the optimal τ is 1,

and hence the procedure stops after checking two steps. After calculating

parameters γ1, γ2 and τ , the optimal input distribution could be obtained

using optimization problem (3.6).

27



CHAPTER 4

ROUND ROBIN SCHEDULER

In this chapter we focus on the round robin scheduler, which is another

throughput optimal policy commonly used in computer processors and com-

munication networks.

Our main contributions are the following:

• We characterize the optimum signaling scheme for the covert queuing

channel with round robin scheduler (Section 4.2).

• We calculate the capacity of this covert queuing channel and show that

it is approximately equal to 0.6942 bits per time slot (Subsection 4.3.1).

• We propose practical optimal finite block length coding schemes for

both fixed and variable length codewords. Our proof along with the

simulation results shows that the rates of the proposed optimal cod-

ing schemes approach the capacity as the number of messages goes to

infinity (Subsection 4.3.2).

• Finally, we extend the model to a more realistic noisy scenario in which

users’ packets may drop, and calculate the capacity of the covert chan-

nel in this case as a function of probability of packet drop (Section

4.4).

For round robin scheduler, we only consider a system with two users; hence,

for ease of representation, in the sequel, we will refer to users Ue and Ud as

Alice and Bob respectively. Therefore, Alice will be the transmitter of the

message and Bob will be the receiver. The system used in this chapter is

depicted in Figure 4.1.
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Figure 4.1: System Setup: Alice and Bob share a resource arbitrated in
round robin fashion. Users get acknowledgments when their packets are
served.

4.1 System Description

We consider a system in which a shared resource services jobs from two users,

Alice and Bob, using round robin policy. Time is assumed to be discretized

into slots, and each packet generated by users is served in one time slot. The

scheduler can serve one packet in each time slot. We follow the common

convention that the packets arrive at the beginning of time slots and the

departures occur at the end of time slots. Each user’s packets are buffered in

a separate queue, and the round robin scheduler picks packets from the two

queues as follows. In each time slot,

• If both users’ arrival queues are empty, the system remains idle and

resumes scheduling in the next time slot.

• If only one user’s queue has a packet, the current slot is given to that

user, and the scheduler continues scheduling in the next time slot.

• If both users have waiting packets, the scheduler always gives priority to

a fixed user. That is, the current time slot is allocated to serve a packet

from the user with priority, and the next time slot will be allocated to

the other user. The system continues scheduling after both users are

served. Without loss of generality, we assume that the priority is always

given to Bob in the sequel.

We assume both Alice and Bob send at most one packet per time slot.

Thus, their packet stream can be modeled as a binary bit stream, where bit ‘1’
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Users’ departure streams: Bob’s departure stream:

Alice’s head of the queue stream: Bob’s head of the queue stream:

Alice’s arrival stream: Bob’s arrival stream:

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

(b)

(c)

(a)

Figure 4.2: (a) Arrival stream for Alice and Bob; (b) users’
head-of-the-queue streams (the gray symbol is in fact the same packet in
the previous time slot which has not yet been served, and has remained in
the head of the queue for one time slot); (c) the users’ departure streams.

indicates a packet was sent, and bit ‘0’ indicates no packet was transmitted.

Since the scheduler can serve at most one packet per time slot, the sum of

users’ packet rates should be less than one for stability. That is, λ1 + λ2 <

1, where λ1 and λ2 denote Alice and Bob’s packet rates, respectively (see

Appendix C.1 for the proof of stability). Figure 4.1 depicts the system setup.

In this depiction, each packet is marked by its arrival time. As shown in this

figure, there is a feedback line from the shared resource to the users, which

notifies them when their packet is served. Clearly, this allows the users to

infer the status of the head of their queue.

Figure 4.2 depicts an example of the system scheduling. In this and other

such figures, Alice’s packets are shown by circled tip arrows and Bob’s packets

by regular arrows. For each user, the arrival stream, the head-of-the-queue

stream and the departure stream are shown. By arrival stream, we mean the

actual packet stream sent by the user, and by head-of-the-queue stream, we

mean the packets ready to be served at the head of the corresponding user’s

queue. Therefore, at any given time slot, the head of the queue can be ‘1’

even though no packet arrived in that slot. In part (b) of Figure 4.2, the
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packet denoted by the gray dashed line indicates that it has been the same

as its previous packet, which has been made to wait in the queue for one

time slot to receive service in the next time slot (we emphasize that the gray

dashed symbols are not packet arrival). The downward streams (Figure 4.2

(c)) indicate the departure time of users’ packets.

Suppose Alice aims to send message W uniformly drawn from the set

{1, 2, . . . ,M}. To this end, Alice encodes this message to a bit stream Xm

which is sent out as a packet stream with arrival times AnA. Based on schedul-

ing policy and both Alice’s and Bob’s packet arrivals, Bob receives a stream

of acknowledgments from the system which is denoted by Dn
B. Finally, Bob

transforms this stream to a bit stream Y m which will be decoded to message

Ŵ . As a result, we have the following Markov chain:

W → Xm → AnA → Dn
B → Y m → Ŵ . (4.1)

The noise in the system is modeled as follows. The packets generated

by either Alice or Bob may be dropped in the link between the users and

the shared resource with probability δ. Note that this noise can affect the

transmissions in Xm → AnA and AnA → Dn
B in Markov chain (4.1). We will

later show that with the optimum signaling scheme between Alice and Bob,

noise will not affect the process AnA → Dn
B.

4.2 Optimum Signaling Scheme

The main idea behind the signaling scheme from Alice to Bob is to utilize the

delays occurred in Bob’s departure stream caused by Alice’s packets. First,

we investigate the optimum stream sent by Bob:

Lemma 9 In order that Bob maximizes his inference from Alice’s signaling

(the number of slots Bob receives a bit from Alice), he should have a ready-

to-be-served packet at the head of his queue in all time slots.

Proof. We state the proof by contradiction. Suppose Bob does not have any

packets to be served at time slot n. Then the round robin policy will restart

scheduling in time slot n+1 regardless of whether Alice had a packet in time

slot n or not. Therefore, Alice cannot affect the departure time of Bob as
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Alice’s head of

the queue stream:

0 1 2

Users’ departure

streams:

Bob’s

departure stream:

Bob’s head of

the queue stream:

Case 1:

Not distinguishable

Case 2:

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

Figure 4.3: The head of the queue and the departure stream of the users
when Alice sends bits ‘0’ or ‘1’ while Bob does not have a
ready-to-be-served packet at the head of his queue. As shown in the last
row, the services given to Bob in both cases are the same, and hence Bob is
not capable of distinguishing between the bits ‘0’ and ‘1’ sent by Alice.

shown in Figure 4.3. This means that Alice cannot communicate with Bob

in time slot n.

�

The requirement that Bob should have a ready-to-be-served packet at all

time slots does not mean that he has to send a packet in all time slots. It

suffices for him to fix his queue length at some nonzero length, and whenever

one of his packets is served, he generates a packet to ensure his queue length

remains nonzero. This strategy allows him to keep the sum rate of arrivals

from Alice and Bob less than 1 and keep the system stable.

In the following we illustrate the effect of Alice’s bits ‘0’ and ‘1’ on the

acknowledgments given to Bob.

• Signaling bit ‘1’: To signal bit ‘1’ in time slot n, Alice must have a

head-of-the-queue packet at the beginning of the time slot. Recall that

Bob has a ready-to-be-served packet in all time slots. Thus, round robin

policy will serve Bob and Alice at time slots n and n+ 1, respectively.
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All Alice’s packets:
0 1 2

Users’ departure

streams:

Bob’s

departure stream:

1

Bob’s head of

the queue stream:

3 4 5

1 1

Decoded message 

which is wrong:

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Figure 4.4: Visualization of the case when Alice intends to send message
1101 to Bob, but she does not idle for one time slot after she sends her
packets. As shown, bit ‘0’ disappears and Bob decodes 111.

Therefore, when Bob receives service in a time slot but does not receive

service in the next time slot, he decodes bit ‘1’.

• Signaling bit ‘0’: To signal bit ‘0’ in time slot n, Alice must not have

a head-of-the-queue packet at the beginning of the time slot. Because

Bob has a packet which is ready to be serviced in the head of the queue

in this time slot, he receives service at time slot n, and the scheduler

resets for time slot n+ 1. As a result, at time slot n+ 1, Bob is served

again. Therefore, if Bob receives service in two consecutive time slots,

he decodes it bit ‘0’.

Remark 1 Note that Alice cannot send two packets in two consecutive time

slots. This is because if Alice sends two (or more) packets in consecutive time

slots, her next (or more) ‘0’(s) would disappear as her packets are accumu-

lated in the queue. Therefore, bit ‘1’ of message W effectively requires two

time slots for transmission.

We clarify Remark 1 in more detail in the following example.

Example 1 Assume that Alice’s queue is empty and she wants to transmit

1101 to Bob. If Alice sends bits of ‘1’ in her message immediately in each

time slot (as depicted in Figure 4.4), Bob would erroneously decode message
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Users’ departure streams:

Bob’s departure stream:

1 1 1 10 0 0

Alice’s head of the queue stream:

Bob’s head of the queue stream:

Alice’s arrival stream:

Bob’s arrival stream:
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(a)
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0 1 2 3 4 5 6 7 8 9 10

(b)

(c)

Figure 4.5: Example of correct signaling between Alice and Bob.

111. This is caused by the accumulation of packets in Alice’s queue, stemming

from existence of a packet at the head of her queue before clearing the previous

‘1’.

As mentioned earlier, to solve this problem, Alice must not send two pack-

ets in consecutive time slots; i.e., she must idle for one time slot whenever she

sends a packet. Figure 4.5 shows an example of an effective communication,

in which Alice is sending the bit stream 1101001 to Bob.

In the next section, we find the maximum achievable rate at which Alice

can communicate reliably with Bob through the timing covert channel.
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4.3 Noiseless Covert Channel

In this section we calculate the capacity of the introduced covert channel and

investigate the optimum coding schemes in finite-length codeword regime.

4.3.1 Coding Theorem

We define the used performance metric, code, information transmission rate

of a code, achievable rate, and channel capacity similar to the definitions in

Chapter 2. The definitions are repeated in the following for convenience.

The performance metric used is the average error probability defined as

follows:

Pe , P(W 6= Ŵ ) =
M∑
m=1

1

M
P(Ŵ 6= m|W = m). (4.2)

Definition 4 An (n,M, ε)-code consists of a codebook of size M with equiprob-

able binary codewords of average length n satisfying Pe ≤ ε.

Definition 5 The information transmission rate of a code is

R =
logM

n
,

which is the amount of conveyed information normalized by the average num-

ber of used time slots.

Definition 6 A rate R is said to be achievable if there exists a sequence of

(n,M, εn)-codes such that εn → 0 as n→∞.

Definition 7 The channel capacity is the supremum achievable rate at which

Alice can communicate through the covert channel with Bob.

The fundamental limit of the introduced channel in information transmission

is presented in the following theorem:

Theorem 3 The capacity of the introduced covert channel between Alice and

Bob created by the shared resource arbitrated by a round robin scheduler is

C = sup
p∈[0,1]

h(p)

1 + p
, (4.3)
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where p is the probability of sending message bit ‘1’ by Alice and h(·) is the

binary entropy function. The maximum of (4.3) is approximately 0.6942

achieved at p = 3−
√
5

2
.

The proof of Theorem 3 appears in Appendix C.2. The intuition behind the

proof is as follows: Alice can send bits ‘0’ or ‘1’ to Bob in 1 and 2 time slots,

respectively. Therefore, it takes on average 2×p+(1−p) time slots for Alice

to send a bit. As a result, Alice can transmit bits ‘0’ and ‘1’ to Bob at rate
h(p)

2×p+(1−p) . The capacity can be calculated by taking the supremum on this

rate with respect to p ∈ [0, 1] while noting that the channel is memoryless.

4.3.2 Finite-length Codeword Regime

As mentioned earlier, Alice encodes each message to a binary sequence and

creates a codebook C, known to both Alice and Bob. The codewords in

the codebook could be all of the same or different lengths. In the following

two subsections, we will consider both these scenarios and find the optimum

codebook for the setting.

Variable-length Codewords

In this subsection, for any fixed number of messages, we propose an algo-

rithm which generates the optimum variable-length codebook, i.e., the list of

codewords that results in maximum communication rate between the users.

By Definition 5, the rate at which Alice can communicate with Bob is as

follows:

R =
log(M)

1
M

∑m=M
m=1 Tm

, (4.4)

where Tm is the transmission time of the m-th codeword. As we discussed in

Section 4.1, transmission of bit ‘1’ takes two time slots, while bit ‘0’ requires

one time slot. Denote the number of bits ‘0’ and ‘1’ in the codebook by n0

and n1, respectively. We have
∑m=M

m=1 Tm = 2n1 + n0, and (4.4) could be

rewritten as

R =
Mlog(M)

2n1 + n0

. (4.5)
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Figure 4.6: A tree representation of the codewords. Codewords are the
leaves of the tree. The cost of a codeword, defined to be its transmission
time, is written in the boxes.

Given that M is the fixed given parameter, maximizing the rate is equivalent

to searching for a codebook which achieves the minimum of the denominator

in (4.5).

Our technique for finding the optimum codebook is as follows. Represent

each codeword in the codebook by a leaf in a tree, as depicted in Figure 4.6.

The numbers in boxes in Figure 4.6 denote the cost of each codeword, de-

fined as the number of time slots required for transmission of that codeword.

Call the resulting graph the codeword tree. In this representation, for each

node, the branch to the left (right) side appends a 0 (1) to the codeword

corresponding to that node. For example, if a node represents 00101, its

left and right children will represent codewords 001010 and 001011, respec-

tively. The reason we use the leaves of a tree for representing the codewords

is to guarantee that the codewords are uniquely decodable [22]. Algorithm 1

describes how the M optimal codewords are selected from the tree.

After initializing the codebook to {0, 1}, in each iteration of Algorithm 1,

one of the current codewords is replaced with its two children. This procedure

is repeated until all M codewords are obtained. The codeword replaced by

its children at each iteration is one with the minimum cost. As an example,

the result of Algorithm 1 for M = 6 is depicted in Figure 4.6.

Algorithm 1 Finding the optimum codebook with M codewords

1: Initialize the codebook to be {0, 1}
2: while number of codewords is less than M do
3: Choose a codeword with the minimum cost in the current codebook and

replace it by its two children (by adding 0 and 1 to the right side of the
code) to build a new codebook.

4: end while
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Figure 4.7: The maximum rates at which Alice can communicate with Bob
versus the number of codewords for two cases of variable and fixed-length
codebooks.

Theorem 4 For a fixed given number of equiprobable messages, Algorithm

1 is optimal in the sense that it provides a codebook which maximizes the

communication rate between the users.

The proof of Theorem 4 appears in Appendix C.3.

The maximum rate at which Alice can communicate with Bob versus the

number of codewords, M , is depicted in Figure 4.7. The overall trend of

the maximum communication rate increases as the number of codewords

increases, and converges to the capacity. The following theorem formalizes

this claim.

Theorem 5 The information transmission rate of a codebook created by Al-

gorithm 1 converges to the capacity of the covert channel as the number of

messages goes to infinity.

The proof of Theorem 5 appears in Appendix C.4.

Fixed-length Codeword

In many applications, using variable-length codewords is not desirable from

the designer’s point of view. For example, in a noisy system, a variable-length

scheme may lead to loss of synchronization between encoder and decoder. To

obtain fixed-length codewords, all M codewords must be selected from the
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same level of the tree. Such a constraint on choosing codewords can lead

to reduction in information rate for a fixed number of messages, but as we

shall see, these codes can still achieve the capacity as when the length of

the codewords goes to infinity. Algorithm 2 shows how to select the optimal

fixed-length codebook for a given number of messages. Before stating the

algorithm, we need the following definition. Denote the cost of a codebook

and the cost of a codeword with η(C) and η(W), respectively. Note that

η(C) = n0(C) + 2n1(C).

Algorithm 2 Finding the optimum fixed-length codebook with M code-
words

1: Set l̂ = dlog(M)e.
2: for l = l̂ to 2l̂ do
3: Cl = Set of M codewords with the least number of bits 0 in the l-th

level of the codeword tree.
4: η(Cl) = n0(Cl) + 2n1(Cl).
5: end for
6: Output Cl∗ such that l∗ = arg min

l
η(Cl).

The optimal codebooks with the least number of bits ′1′ should be chosen

in each of the levels l̂ = dlog(M)e to 2l̂. Then, the optimal codebook is the

one with minimum cost among these created codebooks.

Theorem 6 For a fixed given number of equiprobable messages, Algorithm

2 outputs the optimal fixed-length codebook.

The proof of Theorem 6 appears in Appendix C.5.

As shown in Figure 4.7 using Algorithm 2 the overall trend of the maximum

communication rate increases as the number of codewords increases, and

converges to the capacity. The following theorem formalizes this claim.

Theorem 7 The information transmission rate of a codebook created by Al-

gorithm 2 converges to the capacity of the covert channel as the number of

messages goes to infinity.

For the proof of Theorem 7, see Appendix C.4.
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Figure 4.8: Z-channel model of the covet channel with packet drops.

4.4 Noisy Covert Channel

In this section we consider the case where the channel between the users is

noisy. The noise model is as follows. We assume that a packet generated by

a user is dropped with probability δ. In the following lemma, we investigate

the effect of the noise on the covert channel between the users.

Lemma 10 In the optimum signaling scheme proposed in Section 4.2, packet

drops converts the channel between Alice and Bob to a Z-channel. That is,

‘0’ is always transmitted error free, but ‘1’ is flipped with probability δ.

Figure 4.8 shows the resulting Z-channel. Note that the channel is depicted

between X and Y in Markov chain (4.1), but the noise occurs between X

and AA.

Proof. As discussed in Section 4.2, Bob should keep his queue length positive

at all time slots. If he keeps his queue length large enough, even if his packets

are dropped in multiple time slots, he still has remaining ready-to-be-served

packets in his queue. Thus, by letting the probability of his queue length

becoming zero be arbitrary small, Bob can avoid dropped packets impacting

the scheme.

Noise also does not affect data transmission when Alice sends ‘0’ as she

does not send any packets in this case. On the other hand, when Alice sends a

packet to communicate bit ‘1’, this ‘1’ changes to ‘0’ if the packet is dropped

which happens with probability δ. As discussed in Section 4.2, normally

Alice should wait for one time slot after she sends a packet; however, when

packet drops occur she does not need to wait out for a time slot. Alice can

always tell that a drop has occurred because she knows her queue length at

the end of each time slot. Thus the aggregate effect of noise may be modeled

as a Z-channel. �
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Figure 4.9: Capacity of the noisy covert channel versus the drop probability
δ.

In the following theorem, capacity of the covert channel with noise is given.

Theorem 8 The capacity of the noisy covert channel between Alice and Bob

with drop probability δ resulting from Round Robin scheduler is

C = sup
p∈[0,1]

h((1− δ)p)− ph(δ)

(1− p) + δp+ 2(1− δ)p
, (4.6)

where p is the probability of sending bit ‘1’ by Alice and h(·) is the binary

entropy function.

See Appendix C.2 for the proof.

Figure 4.9 depicts capacity C versus the drop probability δ.

In the noisy setting, as mentioned earlier, synchronization between the

encoder and decoder sides of the system may be lost. To prevent this from

happening, users should utilize the fixed-length codebook design presented

in Subsection 4.3.2.

41



CHAPTER 5

CONCLUSION

We studied convert queueing channels (CQCs) that can occur through delays

experienced by users who are sharing a scheduler. As the scheduling policy

plays a crucial role in the possible information transmission rate in this type

of channel, we focused on work-conserving scheduling policies and studied

two commonly used policies of this type.

First we considered first-come-first-served (FCFS) scheduling policy. An

information-theoretic framework was proposed to derive the capacity of the

CQC under this scheduling policy. We obtained the maximum information

transmission rate in this CQC and showed that an information leakage rate

as high as 0.8114 bits per time slot is possible. We also considered the effect

of the presence of other users on the information transmission rate of this

channel.

Next we studied a CQC between two users sharing a round robin scheduler.

An information-theoretic framework was again utilized to derive the capacity

of this channel in both noisy and noiseless cases. We showed that in the

noiseless case an information rate as high as 0.6942 bits per time slot is

achievable in this channel. For the noisy case, where users’ packets may drop,

we again analyzed the highest achievable information rate and obtained the

capacity for different levels of noise. Furthermore, we proposed a practical

finite-length code construction, which is of more interest from a practical

point of view. We designed and analyzed the optimum coding scheme which

achieves the capacity limit.

The achievable information transmission rates obtained from this study

demonstrate the possibility of significant information leakage and great pri-

vacy threats brought by CQCs in FCFS and round robin schedulers. Based

on this result, special attention must be paid to CQCs in high security sys-

tems.

Finding the capacity of CQCs under other scheduling policies, especially
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non-deterministic policies, remains to be done in the research area of covert

communications and is considered as the main direction for future work.

Furthermore, a comprehensive study is required to design suitable scheduling

policies that can simultaneously guarantee adequate levels of both security

and throughput. Another important direction for future work is to consider

the more practical scenario in which the sizes of packets sent by users vary,

and to investigate the role of packet size in the information rate of CQCs.
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Stability

For the system model with M users and service rate ρ, the arrival process

has a Poisson binomial distribution with probability mass function

Pr(K = k) =
∑
A∈Fk

∏
i∈A

ri
∏
j∈Ac

(1− rj),

with support k ∈ {0, 1, ...,M}, where Fk is the set of all subsets of k integers

that can be selected from {1, 2, 3, ...,M}. The mean of this distribution is

µ =
M∑
i=1

ri.

We denote arrival, service and queue length at time k, with a(k), s(k) and

q(k), respectively, and we have

q(k + 1) = (q(k) + a(k)− s(k))+.

Using Foster-Lyapunov theorem with Lyapunov function V (q(k)) = (q(k))2

and calculating the drift, we have

E[q2(k + 1)− q2(k)|q(k) = q] ≤ E[(q + a− s)2 − q2]

= E[2q(a− s)] + E[(a− s)2],

where E[(a− s)2] is a constant and we denote it by K. Therefore, for some

ε > 0, if µ < ρ, for large enough value of q, we have

E[q2(k + 1)− q2(k)|q(k) = q] ≤ 2q(µ− ρ) +K ≤ −ε,

which implies the stability.
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A.2 Proof of Lemma 1

In order to find the optimum distribution, PX , the optimization problem

could be written as follows:

max
PX≥0

log2 e
k∑
i=0

PX(i) ln(
1

PX(i)
)

s.t.

{ ∑k
i=0 iPX(i) = E[X] = kγ∑k
i=0 PX(i) = 1

(A.1)

which could be solved using the Lagrange multipliers method. The La-

grangian function would be as follows:

k∑
i=0

PX(i) ln(
1

PX(i)
) + λ(

k∑
i=0

iPX(i)− kγ) + ρ(
k∑
i=0

PX(i)− 1).

Setting the derivative with respect to PX(i) equal to zero, we get ln( 1
PX(i)

)−
1 + iλ+ ρ = 0, which implies that

PX(i) = eρ−1 · eiλ. (A.2)

Also, from the second constraint we have

k∑
i=0

eρ−1 · eiλ = 1⇒ eρ−1 =
1∑k

i=0 e
iλ
. (A.3)

Combining (A.2) and (A.3), we have:

PX(i) =
eiλ∑k
i=0 e

iλ
,

which is the tilted distribution of Uk with parameter λ.
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In order to calculate λ, from the first constraint:

kγ =
k∑
i=0

iPX(i) =
k∑
i=0

i
eiλ∑k
i=0 e

iλ
=

k∑
i=0

ieiλ

k∑
i=0

eiλ

=
E[Uke

Ukλ]

E[eUkλ]
=

d

dλ
(lnE[eUkλ])

= ψ′Uk(λ).

A.3 Proof of Lemma 3

First we note that

H̃(γ,
1

k
) =

1

k
[log2(k + 1)− ψ∗Uk(kγ) log2 e]

= [
1

k
log2(k + 1)− 1

k
sup
λ
{kγλ− log(

∑k
i=0 e

iλ

k + 1
)} log2 e]

= −sup
λ
{γλ log2 e−

1

k
log2(

k∑
i=0

eiλ)}.

Therefore, if we can show that for any given λ the function h(γ,
1

k
) =

γλ log2 e−
1

k
log2(

k∑
i=0

eiλ) is convex, then since the supremum of convex func-

tions is convex, we can conclude the desired concavity of the function H̃(·, ·).

Noting that
1

k
log2(

k∑
i=0

eiλ) =
1

k
log2(

1− e(k+1)λ

1− eλ
), to prove the convexity

of h(·, ·), it suffices to prove that the function g(x) = x log(
1− e( 1

x
+1)λ

1− eλ
),

0 < x ≤ 1, is concave. This is true from the concavity of the function

ĝ(x) = log(
1− e(x+1)λ

1− eλ
), and the fact that for any function f , xf( 1

x
) is con-

cave if f(x) is concave. The concavity of the function ĝ(·) can be easily seen

by taking its second derivative.
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A.4 Proof of Lemma 4

For a given γ and support set {0, 1, ..., k}, suppose the distribution P ∗X is

defined over {0, 1, ..., k} and has mean EP ∗ [X] = kγ and

sup
X∈{0,1,...,k}
E[X]=kγ

1

k
H(X) =

1

k
H(P ∗X).

Define distribution QX as follows:

QX(i) = P ∗X(k − i) 0 ≤ i ≤ k.

Therefore the entropy of QX will be the same as the entropy of P ∗X and we

have

EQ[X] =
k∑
i=0

iQX(i) =
k∑
i=0

iP ∗X(k − i) = −
k∑
i=0

(−k + (k − i))P ∗X(k − i)

= k −
k∑
i=0

(k − i)P ∗X(k − i) = k − kγ = k(1− γ).

Hence, we have

H̃(γ,
1

k
) = sup

X∈{0,1,...,k}
E[X]=kγ

1

k
H(X) =

1

k
H(P ∗X) =

1

k
H(QX) ≤ sup

X∈{0,1,...,k}
E[X]=k(1−γ)

1

k
H(X)

= H̃(1− γ, 1

k
).

(A.4)

Similarly, suppose for the distribution Q∗X , defined over {0, 1, ..., k} and

with mean EQ∗ [X] = k(1− γ)

sup
X∈{0,1,...,k}
E[X]=k(1−γ)

1

k
H(X) =

1

k
H(Q∗X).

Define distribution PX as follows:

PX(i) = Q∗X(k − i) 0 ≤ i ≤ k.

Therefore the entropy of PX will be the same as the entropy of Q∗X and we
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have

EP [X] =
k∑
i=0

iPX(i) =
k∑
i=0

iQ∗X(k − i) = −
k∑
i=0

(−k + (k − i))Q∗X(k − i)

= k −
k∑
i=0

(k − i)Q∗X(k − i) = k − k(1− γ) = kγ.

Hence, we have

H̃(1− γ, 1

k
) = sup

X∈{0,1,...,k}
E[X]=k(1−γ)

1

k
H(X) =

1

k
H(Q∗X) =

1

k
H(PX) ≤ sup

X∈{0,1,...,k}
E[X]=kγ

1

k
H(X)

= H̃(γ,
1

k
).

(A.5)

Comparing (A.4) and (A.5) gives the desired result.
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proof of Lemma 7

Ĩrp(γ,
1

k
) = sup

X∈{0,1,...,k}
E[X]=kγ

1

k
Irp(X;Y )

= sup
X∈{0,1,...,k}
E[X]=kγ

1

k
[Hrp(Y )−Hrp(Y |X)]

= sup
X∈{0,1,...,k}
E[X]=kγ

1

k
[Hrp(Y )−

k∑
x=0

PX(x)Hrp(Y |X = x)]

(a)
= sup

X∈{0,1,...,k}
E[X]=kγ

1

k
[Hrp(Y )−

k∑
x=0

PX(x)H(Bin(k, rp))]

= sup
X∈{0,1,...,k}
E[X]=kγ

1

k
[Hrp(Y )−H(Bin(k, rp))]

= sup
X∈{0,1,...,k}
E[X]=kγ

1

k
Hrp(Y )− 1

k
H(Bin(k, rp))

=
1

k
Ȟrp(γ,

1

k
)− 1

k
H(Bin(k, rp)),

where (a) follows from (3.1).

B.2 Proof of Lemma 8

We first prove that the function Ĩ(·, ·) is concave in its first argument: Let P ∗X1

and P ∗X3
be the optimum distributions resulted from optimization problem

(3.6) for parameters (γ1,
1
k
) and (γ3,

1
k
), respectively. Therefore for any 0 ≤
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α ≤ 1,

αĨrp(γ1,
1

k
) + (1− α)Ĩrp(γ3,

1

k
)

(a)
=

1

k
αH(P ∗X1

∗Bin(k, rp)) +
1

k
(1− α)H(P ∗X3

∗Bin(k, rp))−
1

k
H(Bin(k, rp))

(b)

≤ 1

k
H(α(P ∗X1

∗Bin(k, rp)) + (1− α)(P ∗X3
∗Bin(k, rp)))−

1

k
H(Bin(k, rp))

≤ 1

k
sup

X∈{0,1,...,k}
E[X]=k(αγ1+(1−α)γ3)

H(PX ∗Bin(k, rp))−
1

k
H(Bin(k, rp))

= Ĩrp(αγ1 + (1− α)γ3,
1

k
),

where (a) follows from Lemma 7 and (b) follows from the concavity of the

entropy function.

Because of the complexity and lack of symmetry and structure in the func-

tion Ĩ, there is no straightforward analytic method for proving its concavity.

But, we notice that it suffices to show that for all 2 ≤ k ≤ τmax − 1, and α

such that

α
1

k − 1
+ (1− α)

1

k + 1
=

1

k
, (B.1)

we have

αĨrp(γ1,
1

k − 1
) + (1− α)Ĩrp(γ3,

1

k + 1
) ≤ Ĩrp(αγ1 + (1− α)γ3,

1

k
). (B.2)

From (B.1) we have α =
k − 1

2k
, hence using Lemma 7, (B.2) reduces to

2Ȟ(γ2,
1

k
)− Ȟ(γ1,

1

k − 1
)− Ȟ(γ3,

1

k + 1
) + f(k, rp) ≥ 0, (B.3)

where f(k, rp) = H(Bin(k − 1, rp)) + H(Bin(k + 1, rp)) − 2H(Bin(k, rp)).

Noting that the left-hand side is a Lipschitz continuous function of γ1, γ3, and

rp and the fact that k takes finitely many values, the validation of inequality

(B.3) can be done numerically.

50



APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Proof of Stability

As mentioned in Section 4.1, each user has a separate queue. Denote the

queue length and the number of packet arrivals at each queue at time slot

n by qi(n) and ai(n), respectively. Let E[ai(n)] = λi and E[a2i (n)] < ∞,

where i ∈ {A,B} signifies Alice or Bob. We assume the arrival processes

of Alice and Bob are independent of each other and the system state. The

system is stable if neither user’s queue length grows to infinity in the steady

state of the system, as long as the arrivals are in the capacity region of the

scheduler. Thus, it suffices to prove that the sum of the queue lengths is finite

with probability one, which implies the stability of both queues. We use the

Foster-Lyapunov theorem to prove this statement (for more applications of

Foster-Lyapunov theorem refer to [25] and the references inside). Denote

the sum of the queue lengths with q̂(n) = qA(n) + qB(n), and the sum of

packet arrivals for Alice and Bob with â(n) = aA(n) + aB(n). Note that

E[â(n)] = λA + λB and the second moment of â(n) is finite. As long as a

task is available in one of the two queues, the round robin scheduler serves a

task; that is, the service rate is one packet per time slot. Thus q̂ evolves as:

q̂(n+ 1) = (q̂(n) + â(n)− 1)+, (C.1)

where (x)+ , max{x, 0}.
Choose the Lyapunov function V (q̂(n)) = q̂2(n)

2
. Note that this choice of

Lyapunov function satisfies the requirements of nonnegativity, being equal to

zero only at q̂ = 0, and going to infinity as q̂ goes to infinity. We show that

the drift of this Lyapunov function is negative outside of a bounded region of

the state space, and is positive and finite inside this bounded region, which

implies that the system state is positive recurrent.
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E[V (q̂(n+ 1))− V (q̂(n))
∣∣q̂(n) = q]

= E[
(q + â(n)− 1)2+ − q2

2

∣∣q]
≤ E[

â2(n) + 1 + 2â(n)q − 2q − 2â(n)

2
]

≤ E[
â2(n) + 1− 2â(n)

2
− 2q + 2â(n)q]

= c− 2q(1− λA − λB),

(C.2)

where in the last equality, c is a constant because â has bounded first and

second moments. For λA + λB < 1, the drift of the Lyapunov function is

bounded by the constant c in the bounded set B = {q̂ | q̂ ≤ c
2(1−λA−λB)

}, and

is negative in the complement set, Bc. Therefore, with our queueing structure

and round robin scheduler, the system is stable as long as λA + λB < 1.

C.2 Proof of Theorems 3 and 8

Since Theorem 3 is a special case of Theorem 8 (δ = 0), we will only prove

Theorem 8 here. The proof consists of achievability and converse arguments.

Converse: For any (n,M, ε)-code we have

1

n
logM

(a)
=

1

n
H(W )

=
1

n
I(W ; Ŵ ) +

1

n
H(W |Ŵ )

(b)

≤ 1

n
I(W ; Ŵ ) + εn

(c)

≤ 1

n
I(Xm;Y m) + εn,

where (a) holds because W is a uniform random variable over the mes-

sage set {1, ...,M}, (b) follows from Fano’s inequality with εn = 1
n
(H(Pe) +

Pe log2 (M − 1)) and (c) follows from application of data processing inequal-

ity to the Markov chain in (4.1).

Since the channel model is memoryless,

I(Xm;Y m) ≤
m∑
i=1

I(Xi;Yi).
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Therefore,
1

n
logM ≤

m∑
i=1

1

n
I(Xi;Yi) + εn

≤ sup
PX

m

n
I(X;Y ) + εn.

(C.3)

Note that
n = (1− δ)pm× 2 + (δpm+ (1− p)m)× 1

= ((1− p) + δp+ 2(1− δ)p)m,
(C.4)

and
I(X;Y ) =h(Y )− h(Y |X)

=h((1− δ)p)− ph(δ).
(C.5)

Substituting (C.4) and (C.5) in (C.3), we have

1

n
logM ≤ sup

p∈[0,1]

h((1− δ)p)− ph(δ)

(1− p) + δp+ 2(1− δ)p
+ εn.

As n→∞, εn → 0 and we have

C ≤ sup
p∈[0,1]

h((1− δ)p)− ph(δ)

(1− p) + δp+ 2(1− δ)p
.

Achievability: Fix a Bernoulli distribution P with parameter p∗, where

p∗ = arg sup
p∈[0,1]

h((1− δ)p)− ph(δ)

(1− p) + δp+ 2(1− δ)p
,

and generate a binary codebook C containing 2mR length m i.i.d. sequences

drawn according to P , where m = n
(1−p)+δp+2(1−δ)p .

In order to send a bit ‘1’, Alice sends a packet and then idles for one time

slot. To send a bit ‘0’, she just idles for one time slot. Thus, each message on

average takes m× ((1−p) + δp+ 2(1− δ)p) = n time slots to be transmitted.

At the same time, Bob keeps his head of the queue always full.

Since this is a discrete memoryless channel, by the standard typicality

decoding arguments [22], the error can be kept arbitrary close to zero as long

as

R ≤ max
p∈[0,1]

I(X;Y ).
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Consequently,

C ≥ log 2m×maxp∈[0,1] I(X;Y )

n

≥ max
p∈[0,1]

h((1− δ)p)− ph(δ)

(1− p) + δp+ 2(1− δ)p
.

(C.6)

The achievability and converse complete the proof of the coding theorem.

Therefore,

C = sup
p∈[0,1]

h(p)

1 + p
.

Since the function h(.) is differentiable, to find the optimum point, it suf-

fices to take the derivative with respect to p and set it to zero:

d

dp
(
h(p)

1 + p
) =

2log(1− p)− log(p)

(1 + p)2
= 0.

Therefore,

p =
3−
√

5

2
.

C.3 Proof of Theorem 4

We show that Algorithm 1 minimizes the sum of costs of codewords which

is 2n1 + n0. Note that replacing codeword W with cost η(W) results in two

codewordsW0 andW1 with costs η(W)+1 and η(W)+2, respectively. As a

result, replacing codeword W with its two children causes additional cost of

η(W) + 3, and an additional codeword to the codebook. Therefore, since the

added cost is increasing in η(W), to obtain the optimal codebook, it suffices

to replace the minimum cost codeword by its children.

Suppose Algorithm 1 outputs codebook C1, but one claims that codebook

C2 resulting from another algorithm is optimum where both C1 and C2 have

M codewords. We first find the subtree which is common between C1 and C2,
which implies that two algorithms are equivalent until, say, step m. From

that step, all the replacements are different in two algorithms. The first

replacement in Algorithm 1 gives a smaller cost (because we assumed to

choose the minimum cost replacement). For the next replacement in step

m+1, Algorithm 1 had the option of the other algorithm’s replacement in step

m, yet it did not choose that. This means that again a better replacement
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was possible. Adding this to the fact that the costs of children of a codeword

are greater than its own cost leads to the conclusion that the replacement in

step m + 1 for Algorithm 1 was also a better choice. This reasoning applies

to all steps in which two algorithms are different and leads to the conclusion

that C2 cannot be optimum.

C.4 Proof of Theorems 5 and 7

To show that as the number of messages goes to infinity, the information

rates of our proposed optimum codebooks resulting from Algorithms 1 and 2

converge to the capacity, we do the following: We prove that the information

rate of another non-optimum codebook with rate lower than the rates of both

aforementioned codebooks achieves the capacity.

Consider a codebook with fixed-length codewords from the l-th level of

the codeword tree. We choose each codeword to have exactly blpc bits ‘1’,

where the parameter p ∈ [0, 1] can be selected in a manner to maximize the

information rate. Such a codebook consists of M =
(

l
blpc

)
messages, all of

which have equal transmission time 2× blpc+ (l − blpc). We show that the

information rate of this codebook asymptotically converges to the capacity as

l (or equivalently the number of messages) goes to infinity. From Definition

5, we have

sup
p

lim
n→∞

Rp = sup
p

lim
n→∞

log
(

l
blpc

)
n

(a)
= sup

p
lim
l→∞

l · h( blpc
l

) + o(l)

l + blpc
(b)
= sup

p

h(p)

1 + p
= C,

where n = l+ blpc, (a) follows because using Stirling’s approximation it can

be shown that log
(
l
k

)
= l · h(k

l
) + o(l), (b) holds since the entropy function,

h(·), is continuous, and the last equality follows from Theorem 3.
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C.5 Proof of Theorem 6

It suffices to show that the best rate is contained in the search range of l = l̂

to 2l̂. First, note that if l < l̂, then 2l < M which implies that there is

an insufficient number of codewords in level l to cover all messages. On the

other hand, since l < η(Cl)
M

< 2l, we have:

logM

2l
< Rl <

logM

l
.

Therefore, for all l > 2l̂,

Rl <
logM

l
<

logM

2l̂
< Rl̂,

where Rl is the information rate of the optimum codebook at level l. In other

words, for all l > 2l̂ the optimum information rate is less than the optimum

information rate of Cl̂. This implies that there is no need to check any level

lower than l̂.
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