
c© 2016 Kushagra Singhal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158318189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNDERSTANDING THE IMPORTANCE OF SIDE INFORMATION IN
GRAPH MATCHING PROBLEM

BY

KUSHAGRA SINGHAL

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Associate Professor Negar Kiyavash

ABSTRACT

Graph matching algorithms rely on the availability of seed vertex pairs as

side information to deanonymize users across networks. Although such al-

gorithms work well in practice, there are other types of side information

available which are potentially useful to an attacker. In this thesis, we con-

sider the problem of matching two correlated graphs when an attacker has

access to side information either in the form of community labels or an im-

perfect initial matching. First, we propose a naive graph matching algorithm

by introducing the community degree vectors which harness the information

from community labels in an efficient manner. Next, we analyze the ba-

sic percolation algorithm for graphs with community structure. Finally, we

propose a novel percolation algorithm with two thresholds which uses an im-

perfect matching as input to match correlated graphs. We also analyze these

algorithms and provide theoretical guarantees for matching graphs generated

using the Stochastic Block Model.

We evaluate the proposed algorithms on synthetic as well as real world

datasets using various experiments. The experimental results demonstrate

the importance of communities as side information especially when the num-

ber of seeds is small and the networks are weakly correlated. These results

motivate the study of other types of potential side information available to

the attacker. Such studies could assist in devising mechanisms to counter

the effects of side information in network deanonymization.

ii

To the Almighty God, and

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I take this opportunity to thank God for giving me the power to believe in

myself. I would never have been able to do this without the faith I have

in You, the Almighty. I express my deepest sense of gratitude to my thesis

supervisor, Professor Negar Kiyavash, for providing her constant motivation

and valuable guidance. Her keen interest and enthusiastic approach have

helped me throughout and beyond this thesis. Regular discussions with her

have always resolved bottlenecks and gave this thesis a proper shape. Her

expert directions have taught me valuable qualities, which I will treasure

throughout my life. It has been a great experience working under her guid-

ance. I am grateful to her for giving me an opportunity to come to the

University of Illinois and spend time with the best brains of the world. I

would like to thank Daniel, who has imparted knowledge to me at many

times and helped me solve difficult problems throughout my research. It

was great fun to work with my office mates Ali, Sara, Qiaomin, and Weihao,

who always encouraged knowledge sharing besides gossip, keeping a lively

atmosphere in the lab and providing all the memorable moments. I am very

thankful to all my friends, especially Krishnan, Ameya, Daewon and Ashish

who made my stay in Urbana-Champaign pleasantly unforgettable. Finally,

I express my cordial honor to my caring family for their unconditional sup-

port and encouragement and for bringing me to this stage of my life. I am

indebted to them for their endless love, inspiration and care.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Thesis Contributions . 2
1.3 Thesis Organization . 4

CHAPTER 2 THE GRAPH MATCHING PROBLEM 5
2.1 Preliminaries . 5
2.2 Problem Formulation . 7

CHAPTER 3 LITERATURE REVIEW 9
3.1 Heuristic Algorithms . 9
3.2 Algorithms with Theoretical Guarantees 10
3.3 Other Related Work . 10

CHAPTER 4 GRAPH MATCHING ALGORITHMS WITH SIDE
INFORMATION . 12
4.1 The Naive Algorithm . 12
4.2 Percolation Algorithms . 17

CHAPTER 5 EXPERIMENTAL EVALUATION 24
5.1 Description of Datasets . 25
5.2 Probability of Error . 25
5.3 Effect of Number of Communities 27
5.4 Effect of Seeds . 28
5.5 Effect of Sampling Parameter 33

CHAPTER 6 CONCLUSION . 37

REFERENCES . 39

v

LIST OF TABLES

5.1 Statistics of Astro Physics and Condense Matter Physics
Datasets . 25

vi

LIST OF FIGURES

2.1 A toy example for generating two correlated graphs. 6

5.1 Probability of error versus parameter b for SBM graphs
with s = 0.7. 26

5.2 Effect of number of communities on the error rate of the
naive algorithm for SBM graphs with parameters n = 10000,
b = 2. 26

5.3 Effect of number of communities on the performance of
the proposed percolation algorithm for SBM graphs with
parameters n = 10000, b = 2, s = 0.5. 27

5.4 Box plot comparing distributions of error rate for algo-
rithms A2 and A4 for 100 random seed sets of size 5. X
and Y represent algorithms A4 and A2 respectively. Suf-
fixes 1,2, and 3 represent datasets, 1: SBM (s = 0.8, K =
20), 2: CondMat (s = 0.7), 3: As-Physics (s = 0.7). Box
represents the Inter Quartile Range (IQR), horizontal line
in the box denotes the median, +, ◦ denote mean and out-
liers respectively, horizontal lines above and below the box
denote maximum and minimum respectively. 28

5.5 Deanonymization results for SBM dataset with parameters
n = 10000, b = 2, s = 0.8, and K = 20. 29

5.6 Deanonymization results for As-Physics dataset with s = 0.9. . 30
5.7 Deanonymization results for CondMat dataset with s = 0.7. . 31
5.8 Percolation threshold for algorithms A2 and A3. 34
5.9 F1-score comparison for different levels of correlation for

the synthetic dataset. 35
5.10 F1-score comparison for different levels of correlation for

the As-Physics dataset. 35
5.11 F1-score comparison for different levels of correlation for

the CondMat dataset. 36

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Graph matching algorithms have become a heavily researched topic in the re-

cent past [1, 2, 3, 4, 5, 6, 7, 8]. Given two graphs, G1 and G2 with correlated

vertex and edge sets, a graph matching algorithm tries to find a mapping

between the vertex sets of G1 and G2. Graph matching algorithms find

relevance in different domains. For example, alignment of protein-protein

interaction (PPI) networks is an important step in understanding the biolog-

ical processes involved in cell interactions [7]. In this case, vertices of a graph

represent proteins and a direct physical interaction between two proteins is

represented by an edge.

Another domain, which is the focus of this work, is the study of privacy

risks involved in sharing data of social network users [9, 10, 11]. This data

helps data mining researchers in understanding network related properties

[12, 13, 14, 15, 16] as well as organizations to generate revenues using product

advertisements and recommendations [17, 18, 19, 20]. Although of great

utility, this data has the potential to leak user privacy [21, 22] and this

privacy-utility trade-off has been noted in the literature [23, 24]. Privacy

leakage is a very general problem [25, 26, 27, 28, 29], for example, delay-

privacy trade-off was studied in [30, 31] for router scheduling policies [32, 33].

Each user in a social network can be represented as a vertex, and an

interaction (friendship, message etc.) between two users is indicated by an

edge. The two networks, G1 and G2, may represent two different social

networks, for example Facebook and Google+, or may even be the snapshots

of the same network at two different times. The target network, G2, often

contains private information about network users, while real identities may

be known in the auxiliary network, G1. A correct mapping between the

1

vertex sets of the two graphs results in associating private information in

G2 to real world individuals, which is a breach of user privacy. Identifying

individuals across two such networks is termed as network deanonymization.

Previous studies have focused on availability of some seed vertex pairs to

match correlated graphs. For example, Narayan and Shmatikov [6] success-

fully matched a fraction of users in two real world networks using a heuristic

algorithm. Nilizadeh et al. [5] incorporated the community level information

to improve upon this work. Wondracek et al. [34], solving a slightly different

problem, utilized the group membership information to identify users in a

network. Some studies also approached this problem from a theoretical view-

point. For example, Yartseva and Grossglauser [4] proposed and analyzed a

graph matching algorithm based on bootstrap percolation. Chiasserini et al.

[35] studied the effect of clustering on network deanonymization and showed

empirically that clustering can potentially decrease the initial seed set size

required to percolate in random geometric graphs.

Almost all of the recent works on network deanonymization have focused

only on one type of side information, i.e., seeds. This motivates us to ask the

following question: What side information, apart from seeds, could be avail-

able to the attacker and how could it be used in network deanonymization?

As more and more user data is being shared today, identifying such side

information and understanding the risk it poses to privacy is an important

problem. Such an understanding could help us in designing mechanisms to

counter the deanonymization attacks on the privacy of users.

1.2 Thesis Contributions

In this thesis, we explore the importance of community labels as side infor-

mation for network deanonymization. As a motivating example, consider the

work by Fire and Puzis [36]. They analyzed data from several commercial

organizations by mining data which their employees have exposed on Face-

book, LinkedIn, and other publicly available sources. They found that the

communities detected using the friendship links were highly correlated with

the position of the employees within the organization. More importantly,

the information about the level at which an employee works was available on

the public profiles of most employees. Similar information that is publicly

2

available may include city of residence, college, major, age etc. This kind of

information can be used to partition the users into communities which can

potentially reduce the candidate set for many users and therefore assist in

the deanonymization process.

To analyze the problem theoretically, we consider two correlated graphs,

G1 and G2, generated using the Stochastic Block Model (SBM) [37]. Assum-

ing that an attacker has access to community labels in the two graphs, we

demonstrate the feasibility of the attacker using this information to assist

him in deanonymization. The contribution of this work is twofold. First, we

propose and analyze a naive algorithm which uses community degree vectors

of the network users to deanonymize them. Assuming that the number of

communities grows slowly with network size, we derive conditions on model

parameters such that it is possible to match the graphs perfectly using this

algorithm. Next, we analyze the simple percolation algorithm [4] for graphs

with community structure. We show that the matching threshold r = 2 is

sufficient to match almost all users correctly when the number of communi-

ties K = ω(log2n). Second, we propose a two-threshold percolation algorithm

which uses an imperfect matching as an input. The imperfect matching is

used to identify pairs of users which have high probability of being correct

pairs. These special pairs are assigned a lower threshold for the percolation

step, while the rest of the pairs are assigned a higher threshold. The use of

different thresholds for different kinds of pairs is useful in two ways. When

the correct pairs are more probable to get a lower threshold, the number of

seeds required to percolate decreases. Also, as the percolation algorithms

tend to make more errors in the beginning, mapping the correct pairs early

reduces the overall error made by the algorithm. Assuming that the algo-

rithm percolates, we derive conditions under which the algorithm does not

make an error with high probability.

We conduct experiments on synthetic as well as real world networks by

varying the number of seeds, levels of correlation, and fraction of community

labels known to the attacker. Based on our results, we find that availability

of side information in the form of community labels is very useful when (i)

the number of seeds is small, and (ii) the correlation between the datasets is

weak. We also find that the availability of community labels for a fraction

of users is enough for the proposed percolation graph matching algorithm to

perform better than other similar algorithms.

3

In the end, we discuss some implications of our work and experimental

results for network privacy. We also discuss possible future directions and

questions that need to be answered in order to design better techniques to

mitigate the effects of side information in network deanonymization.

1.3 Thesis Organization

The thesis is organized into the following chapters. Chapter 2 discusses the

required preliminaries for the thesis and introduces the graph matching prob-

lem that the thesis aims to solve. Chapter 3 reviews the previous literature

related to the considered problem. We discuss works which use heuristic

algorithms followed by works with theoretical guarantees. Chapter 4 is the

main contribution of the thesis. We discuss three graph matching algorithms

with theoretical guarantees for matching random graphs. Chapter 5 evalu-

ates the proposed algorithm using various experiments on synthetic as well

as real datasets. Chapter 6 concludes the thesis with some discussion and

future directions.

4

CHAPTER 2

THE GRAPH MATCHING PROBLEM

This chapter introduces the graph matching problem that the thesis aims to

solve. First, representation of social networks as graphs is discussed followed

by the Stochastic Block Model (SBM). Next, the process of generating cor-

related graphs is explained along with the attacker and problem description.

2.1 Preliminaries

2.1.1 Social Networks as Graphs

As noted in previous literature [6, 5, 38, 39, 40], a social network can be

easily modeled as a graph (directed or undirected). In this thesis, the vertex

set of a graph G is denoted by V (G), while the edge set is denoted by E(G).

The users of a social network are represented as vertices in a graph whereas

the existence of an interaction (e.g. friendship link, messages etc.) between

two users is denoted by an edge between them. For the purpose of this thesis,

social networks are modeled as undirected graphs.

2.1.2 Stochastic Block Model

Communities are an integral part of any social network [41, 42, 43, 12].

Community detection in networks [44, 45, 46, 42] is one of the most widely

studied problem in social network analysis. The Stochastic Block Model

(SBM) is a random graph model used to generate graphs with community

structure [37]. The random graphs are generated as follows. Consider an n

vertex graph, G, with vertex set V (G) and edge set E(G). Also, let there

be a community label assignment function C : V (G)→ {1, 2, . . . , K} , [K],

where K is the number of communities in G. This function associates a

5

Figure 2.1: A toy example for generating two correlated graphs.

community label with every vertex in G and hence partitions V (G) into

disjoint sets called communities. Let Ck , {v ∈ V (G) : C(v) = k} denote

the vertex set of the kth community. We assume that communities are equally

sized, i.e., |Ci| = |Cj|∀i, j ∈ [K]. Let P (X) denote the probability of an event

X. The edge set, E(G), is generated as follows. For vertices u, v ∈ V (G), let

P (uv ∈ E(G)) = p if C(u) = C(v); otherwise let P (uv ∈ E(G)) = q, where

p, q ∈ (0, 1) and both can depend on n. Here p and q denote the probability

that an edge exists between vertices belonging to the same community and

different communities respectively. The existence of an edge is independent of

the existence of any other edge. We assume that p ≥ q for the rest of this work

as the communities are assortative in real networks. The graph distribution

associated with this generative method is denoted by SBM(n, p, q,K). When

p = q or K = 1, this model degenerates to the Erdös-Rényi random graph

model [47].

6

2.2 Problem Formulation

2.2.1 Generating Correlated Graphs

We model the social networks by undirected graphs on n vertices. We use the

following model to generate correlated graphs. Consider an underlying graph

G with vertex set V (G) = {1, 2, . . . , n} , [n] and G ∼ SBM(n, p, q,K).

Generate graph G1 with V (G1) = V (G). The edge set, E(G1), is generated as

follows. For every edge e ∈ E(G), P (e ∈ E(G1)) = s and P (e ∈ E(G1)) = 0

if e /∈ E(G). The sampling of every edge is independent of other edges.

Generate G2 independently and identically. Figure 2.1 depicts a toy exam-

ple of this generating process. Note that this is the same model as used

in many previous studies [48, 2, 3]. We further assume that the vertices of

G2 are anonymized using naive anonymization in which any personal identi-

fiers are replaced by random identifiers. Although it is a simple anonymiza-

tion technique, naive anonymization is still the most widely used method

to anonymize datasets before publishing [6, 11]. Hence, we index the ver-

tices of G2 by {1′, 2′, . . . , n′} , [n′]. Without loss of generality, we assume

that i ∈ V (G1) and i′ ∈ V (G2) correspond to the same vertex in G. This

notation proves beneficial for the analysis later. It is useful to note that

G1, G2 ∼ SBM(n, ps, qs,K). Let the vertex set of the kth community in G1

and G2 be denoted by C1
k and C2

k respectively. More formally, for z ∈ {1, 2},
Cz
k = {v ∈ V (Gz) : C(v) = k}. We consider graphs with logarithmic average

degree, i.e., p = a logn
n

and q = b logn
n

, where a, b are constants which are

called model parameters. Also, the number of communities K = nα (unless

otherwise stated), α ∈ (0, 1], which means that the number of communities

grows with number of vertices sublinearly.

2.2.2 Modeling the Attacker

An attacker is any entity that aims to match the vertices of G1 to those

of G2, which in turn breaches the privacy of the users in a social network.

More formally, the goal of an attacker is to construct a bijective mapping

π : V (G1)→ V (G2) such that π = π0 where π0(i) = i′ for all i ∈ V (G1). We

call π0 the ground truth mapping.

We will make three assumptions about the attacker (which assumption

7

holds true is made clear in the particular sections later). First, an attacker is

assumed to have access to a set of seed vertices, S0 = {(i, i′) : i ∈ V (G1), i
′ ∈

V (G2)}, |S0| = Φ. This set provides an attacker with Φ vertex pairs which

are already matched in the two graphs. Second, we also assume that the

attacker has access to community labels of all vertices in both the graphs.

For a vertex i ∈ V (G1), this information restricts the set of candidate vertices

to C2
C(i). As discussed earlier, this information could be available on public

profiles in the form of job title, city of residence, college, major, age etc.

Third, an attacker has access to an imperfect matching of the graphs. This

information can be obtained from various sources, random guessing being

one. In this thesis, we analyze the importance of this side information in

matching correlated graphs.

Remark 1. We will only consider mappings which preserve the community

structure because we assume that an attacker knows the community labels of

the users. For the graph G1, let π(E(G1)) , {π(u)π(v) : u, v ∈ V (G1), uv ∈
E(G1)}. Also, let π−1 : V (G2)→ V (G1) denote the inverse of mapping π.

Remark 2. Although the Stochastic Block Model is not completely repre-

sentative of the community structure found in real world networks, it is used

often in the theoretical analysis for problems involving communities in graphs.

The main reasons for this choice are as follows. First, it captures the assorta-

tivity property exhibited by the real networks. Second, the theoretical analysis

of the problem becomes tractable, and also results in providing an intuitive

explanation of the problem for real networks.

8

CHAPTER 3

LITERATURE REVIEW

The problem of graph deanonymization has become a hot area of research

in the past years. The problem has mostly been studied from a practical

viewpoint but some theoretical aspects have been studied as well. In this

chapter, we discuss some of the important literature associated with the

problem.

3.1 Heuristic Algorithms

Narayan and Shmatikov [6] were among the first researchers to study the

network deanonymization problem. They proposed a heuristic algorithm to

deanonymize users of a network when an adversary has access to a correlated

auxiliary network. The algorithm first identifies some seed vertex pairs and

then uses this information to propagate and map the remaining users. They

were successful in mapping a fraction of the users of Twitter and Flickr net-

works with small error rate. Nilizadeh et al. [5] extended this method to

incorporate the community structure of the networks. Utilizing the commu-

nity structure reduces the size of candidate user pairs and helps in identifying

more seed vertices, thereby reducing the error rate. They were able to map

correlated large Twitter networks with as few as 16 seeds. They also noted

that their method only works if the correlation between the networks is high.

Wondracek et al. consider the problem of deanonymizing users when their

communities’ memberships are known in a network. They also create com-

munity fingerprints of users by stealing their browser history. They showed,

by comparing fingerprints and memberships, that some of the users could

be identified uniquely while the candidate set is greatly reduced for others.

Although these works give insight into the problem of deanonymization, they

lack a theoretical framework. In contrast, we seek to understand the theo-

9

retical aspects of these problems and provide results which emphasize the

importance of community structure in network deanonymization.

3.2 Algorithms with Theoretical Guarantees

Some efficient deanonymization algorithms have been proposed recently. Ji

et al. [1] analyzed the graph matching problem for the configuration model.

They proposed an optimization based deanonymization algorithm to match

the two graphs, but did not provide rigorous theoretical guarantees for the

algorithm. Yartseva and Grossglauser [4] proposed and analyzed a percola-

tion algorithm for matching correlated Erdös-Rényi graphs. The algorithm

begins by considering a set of seed pairs which spread their marks to other

pairs of vertices. As soon as a particular pair of vertices reaches a fixed

threshold, r, it is considered as matched. They established a phase transi-

tion in the size of initial seed set for matching the graphs almost completely.

There are two main drawbacks of their method. First, the theoretical guar-

antee is only proved for r ≥ 4, which makes the algorithm impractical as

it requires a huge number of seeds in that case. Second, the threshold r

is same for all vertex pairs. This can be remedied by exploiting the graph

structure, which gives useful positive information about some vertex pairs

and could be used to assign a lower threshold to such pairs. In [3], Kazemi

et al. proposed a variant of percolation algorithm which requires fewer ini-

tial seeds but the error increases slightly compared to the former algorithm.

They also show that r = 2 is enough to match most of the vertex pairs with

o(n) pairs matched incorrectly. In contrast, our percolation algorithm utilizes

the community structure to identify two types of vertex pairs with different

thresholds which enables us to use fewer seeds. We also provide guarantees

such that it does not match, with high probability, wrong pairs of vertices.

3.3 Other Related Work

Recently, some information theoretic results have been derived for match-

ing correlated graphs drawn from random models. Pedarsani and Gross-

glauser [38] analyzed the graph matching problem theoretically for Erdös-

10

Rényi random graphs and derived an achievability result for matching two

correlated graphs perfectly. They established that the average degree has to

grow slightly faster than the logarithm of the size of the graphs in order to

achieve perfect deanonymization. Cullina and Kiyavash [49] improved upon

their result for achievability and also derived an almost tight converse for

the problem. In [50], Cullina et al. proved similar achievability and converse

results for the graphs drawn from the Stochastic Block Model. They also

derived conditions on model parameters which enable perfect community re-

covery while preventing perfect deanonymization simultaneously. Onaran et

al. [51] also derived an achievability result for this problem when the net-

work is divided into two possibly unequally sized communities. Ji et al. [48]

considered the exact as well as partial deanonymization problem when seed

vertex pairs are available to the attacker. They derived achievability bounds

for Erdös-Rényi random graphs and extended the results to more general

graphs. Although these information theoretic results provide good insights

into the problem, they do not provide efficient algorithms to deanonymize

networks.

Very recently, Chiasserini et al. [52] proposed a deanonymization algorithm

for matching graphs with power law degree distribution. They use degree

distribution to divide the user pairs into categories. Based on their degrees,

the matching thresholds are assigned to these pairs. The algorithm first uses

higher threshold to match moderately higher degree users, then progressively

reduces the threshold to match low degree users, and in the end matches

users with very high degrees. Although they use different thresholds for

different pairs, the minimum threshold used is rmin = 3, and as seen in their

experiments, the algorithm requires many seeds to percolate when the scale-

free graphs are moderately correlated. In contrast, our algorithm requires

far fewer seeds to percolate even when the correlation between the datasets

is weak.

11

CHAPTER 4

GRAPH MATCHING ALGORITHMS WITH
SIDE INFORMATION

This chapter discusses the main contribution of the thesis. We discuss three

graph matching algorithms in this chapter. The first, called naive algorithm,

leverages the community label information and does not require seeds to

match users across two correlated graphs. This is in contrast to most of

the algorithms proposed in the literature, which depend on seeds to match

users further. We derive an achievability bound for this algorithm, and thus,

identify the parameter space where the algorithm matches the graphs per-

fectly with high probability. The second algorithm is an extension of the

basic percolation algorithm [4] to graphs with community structure. We

show that when the community labels are known, the graph matching al-

gorithm becomes much easier and the matching threshold can be as small

as r = 2 when the number of communities is K = ω(log2n). The third al-

gorithm assumes that an imperfect matching of the users is given as input

and uses this information along with a modified percolation algorithm with

two thresholds. We derive conditions under which the imperfect information

helps the percolation algorithm to match users in the two graphs without

making errors.

4.1 The Naive Algorithm

Consider two graphs, G1 and G2, generated as in Section 2.2.1. For some

k0 ∈ [K], consider a vertex i ∈ C1
k0

. For each k ∈ [K], let di(k) = |{j ∈ C1
k :

ij ∈ E(G1)}| be the size of the neighborhood of i in community k. Similarly,

for a vertex j′ ∈ C2
k0

define dj′(k). Then the community degree vector of i,

denoted by di, is defined as

di = [di(1), . . . , di(k0 − 1), di(k0 + 1), . . . , di(K)]T (4.1)

12

Similarly, let dj′ denote the community degree vector of j′. The community

degree vectors represent the pattern in which a user connects to various com-

munities in the network. If the number of communities is big enough, there is

a nontrivial amount of information in these vectors which can be utilized to

deanonymize the network. In particular, when the graphs are sparse, users

are connected to only a few communities, which results in enough informa-

tion to deanonymize the users in the network. Intuitively, we expect di to

be closer to di′ than dj′ for j′ 6= i′. To make the further analysis tractable,

we define the distance between the pair (i, j′) as

dij′ =
K∑

k=1,k 6=k0

min(1, |di(k)− dj′(k)|) (4.2)

This distance measures the dissimilarity of the community degree vectors of

the vertices i and j′. If both i and j′ have the same number of neighbors in

a particular community, the contribution of this community to the distance

in (4.2) is 0. In all other cases, the contribution is 1.

We now propose a naive algorithm to match the graphs G1 and G2. This

algorithm works as follows. For every vertex i ∈ V (G1), the algorithm returns

j′i ∈ V (G2) such that i and j′i have the same community label and j′i is closest

to i in terms of the distance defined in (4.2), that is, j′i = argminj′∈C2
C(i)

dij′ .

The pseudo code is described in Algorithm 1. This algorithm is conceptually

simple and computationally efficient.

Algorithm 1 Naive Algorithm

Require: G1, G2, C
Compute the community degree vectors, di and dj′ , for all vertices i ∈
V (G1) and j′ ∈ V (G2)
for all vertex pairs (i, j′) ∈ V (G1)× V (G2) such that C(i) = C(j′) do

Calculate dij′ using Equation (4.2)
end for
for i ∈ V (G1) do
j′i = argminj′∈C2

C(i)
dij′

Return (i, j′i) as a matched pair
end for

The rest of this section is aimed at deriving conditions under which the

above described algorithm matches the graphs G1 and G2 perfectly with high

probability. An important observation is that the individual terms in (4.2)

13

are independent because they correspond to edges to different communities.

Also, they are identically distributed. We are interested in the conditions on

the model parameters such that P (dii′ ≥ dij′) → 0 as n → ∞ for all i and

j′. This means that all correct pairs of vertices are closer to each other, in

terms of distance in (4.2), compared to incorrect pairs, asymptotically with

high probability.

First, we bound the probability that an arbitrary incorrect pair of vertices

are closer to each other than the correct pair in terms of distance in (4.2).

Lemma 1. For any k0 ∈ [K], i ∈ C1
k0

, j′ ∈ C2
k0

, j′ 6= i′, and s > 0,

P{dii′ ≥ dij′} ≤ n−2bs(1−
√
1−s2)+o(1) → 0 as n→∞

Proof. We need to analyze P (dii′ − dij′ ≥ 0).

Let d(k) = min(1, |di(k)− di′(k)|)−min(1, |di(k)− dj′(k)|). We have

P (dii′ − dij′ ≥ 0)

= P (
K∑

k=1,k 6=k0

min(1, |di(k)− di′(k)|)

−
K∑

k=1,k 6=k0

min(1, |di(k)− dj′(k)|) ≥ 0)

= P (
K∑

k=1,k 6=k0

d(k) ≥ 0) (4.3)

Note that d(k)′s are independent and identical. Let pi = P (d(k) = i), i ∈
(−1, 0, 1). We have for any ϕ > 0,

P (
K∑

k=1,k 6=k0

d(k) ≥ 0) = P (eϕ
∑K

k=1,k 6=k0
d(k) ≥ 1)

≤ E(eϕ
∑K

k=1,k 6=k0
d(k)) = [E(eϕd(k))]K−1

= (p0 + p1e
ϕ + p−1e

−ϕ)K−1

≤ exp((K − 1)(p0 + p1e
ϕ + p−1e

−ϕ − 1))

≤ exp(−(K − 1)(
√
p1 −

√
p−1)

2) (4.4)

Now we need to calculate p1 and p−1. Let dii′(k) = min(1, |di(k) − di′(k)|)
and dij′(k) = min(1, |di(k) − dj′(k)|). Also, let Di(k) denote the number of

14

neighbors of vertex i in community k in the underlying graph G. Then

p1 = P (d(k) = 1)

= P (dii′(k) = 1, dij′(k) = 0)

=

n/K∑
mi=1

n/K∑
mj=0

P (Di(k) = mi, Dj(k) = mj)×

P (dii′(k) = 1, dij′(k) = 0|Di(k) = mi, Dj(k) = mj)

= P (dii′(k) = 1, dij′(k) = 0|Di(k) = 1, Dj(k) = 0)×

P (Di(k) = 1, Dj(k) = 0) + o(
nq

K
)

= P (Di(k) = 1, Dj(k) = 0) + o(
nq

K
)×

P (di(k) = 0, di′(k) = 1, dj′(k) = 0|Di(k) = 1, Dj(k) = 0)

= s(1− s)nq
K

(1− q)
2n
K
−1 + o(

nq

K
)

= s(1− s)nq
K

(1− o(nq
K

)) + o(
nq

K
)

= s(1− s)nq
K

+ o(
nq

K
) (4.5)

Similarly,

p−1 = P (d(k) = −1)

= P (dii′(k) = 0, dij′(k) = 1)

= P (dii′(k) = 0, dij′(k) = 1|Di(k) = 0, Dj(k) = 1)×

P (Di(k) = 0, Dj(k) = 1) + o(
nq

K
)

+ P (dii′(k) = 0, dij′(k) = 1|Di(k) = 1, Dj(k) = 0)×

P (Di(k) = 1, Dj(k) = 0) + o(
nq

K
)

= s
nq

K
(1− q)

2n
K
−1 + s2

nq

K
(1− q)

2n
K
−1 + o(

nq

K
)

= s(1 + s)
nq

K
(1− o(nq

K
)) + o(

nq

K
)

= s(1 + s)
nq

K
+ o(

nq

K
) (4.6)

15

So we have

P (
K−1∑
k=1

d(k) ≥ 0) ≤ exp(−(K − 1)(
√
p1 −

√
p−1)

2)

= exp(−(K − 1)
2snq

K
(1−

√
1− s2 ± o(1)))

= exp(−2nqs(1−
√

1− s2 ± o(1)))

= exp(−2bs(1−
√

1− s2 ± o(1)) log n)

≤ n−2bs(1−
√
1−s2)+o(1) (4.7)

Now, applying the union bound, the following theorem provides sufficient

conditions to match G1 and G2 perfectly using only the community degree

vectors.

Theorem 1. If b > 2−α
2s(1−

√
1−s2) , and s > 0, then the naive algorithm matches

the graphs G1 and G2 perfectly with high probability.

Proof. Let Pe denote the probability that at least one vertex of G1 is matched

incorrectly. Note that, for every vertex i ∈ V (G1), there are exactly n1−α

candidates j′. Using Lemma 1 and union bound over i, j′, we have

Pe ≤
⋃
i,j′

P (dii′ ≥ dij′)

≤ n2−α−2bs(1−
√
1−s2)+o(1)

→ 0 if b >
2− α

2s(1−
√

1− s2)

This result implies that when the inter-community edge probability is high

enough (recall that q = b logn
n

), the community degree vectors contain enough

information to de-anonymize all the users in the network.

Note that the right-hand side of the condition in Theorem 1 is a decreasing

function of s. When the value of s is large enough, the naive algorithm can

deanonymize even very sparse graphs. On the other hand, when s is small

(say s < 0.75), it requires denser graphs (large value of b) to deanonymize all

the users. Hence, the algorithm may not be very useful in practical scenarios.

16

Even if it cannot deanonymize all the users, a small fraction of users are still

deanonymized correctly by the naive algorithm. In such situations, it can be

used as a preprocessing step to other algorithms. In the next chapter, we

show how the naive algorithm can be used to modify the constant threshold

percolation algorithm to achieve almost perfect deanonymization.

4.2 Percolation Algorithms

Percolation based graph matching algorithms have been recently proposed

in literature [4, 3, 53]. Such algorithms are computationally very efficient

while providing good deanonymization results. In this section, we describe

variants of the basic percolation algorithm [4] for matching correlated graphs.

We first review the basic percolation algorithm introduced in [4], followed by

the variant with community label information and the description of the

proposed algorithm with two thresholds.

4.2.1 Basic Percolation Algorithm

The basic percolation algorithm [4] begins by considering a seed set S0 as

defined in Section 2.2.2. At every time step, a seed pair (u, u′) is selected

from this set. For all potential vertex pairs (i, j′) ∈ V (G1)×V (G2) such that

(i, u) ∈ E(G1) and (j′, u′) ∈ E(G2), the score of the pair (i, j′), denoted by

Mij′ , is increased by one. When the score of a pair reaches a threshold r, it

is added to the seed set and all other pairs involving i and j′ are removed

from further considerations. If the size of the initial seed set is large enough,

then the algorithm percolates to n− o(n) correct vertex pairs if r ≥ 4.

4.2.2 Percolation with Community Label Information

Suppose that an attacker knows the community labels of the users in graphs

G1 and G2. We show that when the number of communities, K, is large

enough, the basic percolation algorithm percolates to n
K
−o
(
n
K

)
correct pairs

in each community with high probability. We establish this by using a better

union bounding technique than that used in [4].

17

Assume a variant of the previous algorithm such that instead of picking a

seed at every time instant, the algorithm picks one seed from each community.

It is shown in [54] that the number of seeds needed to percolate in this case

is equivalent to the scenario when we pick seeds individually. The aim here is

to show that this algorithm does not make errors with high probability even

when r = 2. Hence, we will establish that the community label information

helps in relaxing the threshold from r = 4 to r = 2 and thus the algorithm

can percolate with small number of seeds.

Theorem 2. Let the percolation threshold be r ≥ 2. When the community

labels of the users in G1 and G2 are known, the percolation algorithm does

not make errors with high probability if K = ω(log2 n). Furthermore, the

critical number of seeds required to percolate to n
K
− o
(
n
K

)
vertices in each

cluster is upper bounded as Φ ≤ (1− 1
r
)
(Kr(r−1)!
n(p+(K−1)q)r

) 1
r−1 .

Proof. The proof is provided for r = 2, other values of r can be dealt in a

similar manner. Let k ∈ [K]. Consider a vertex pair (i, j′) ∈ C1
k × C2

k and

j′ 6= i′. Let Xij′(t) be the event that the pair (i, j′) is matched at time t. We

want to bound the probability of this event, P (Xij′(t)), conditioned on the

fact that before time t only correct pairs were matched. We have

P (Xij′(t)) ≤ P [Mij′(t) = 2,Mii′(t) ≤ 2,Mjj′(t) ≤ 2]

≤ P [Mij′(t) = 2]

= P [Bin(t, (ps)2) +Bin((K − 1)t, (qs)2) = 2]

≤ (t((ps)2 + (K − 1)(qs)2))2

2

An important observation here is that, before time step t, the algorithm

already used t vertex pairs from every community. Hence, to union bound

the above probability only
(
n
K
− t
)

vertices remain to be considered at time

t. Now, we union bound the above probability as follows:

⋃
k,t,i,j′

P (Xij′(t)) ≤ K

n/K∑
t=1

(n
K
− t
)2 (t((ps)2 + (K − 1)(qs)2))2

2

≤ C
log4 n

K2

for some constant C, which completes the first part of the proof. The second

18

part follows in a straightforward manner from [54].

The above theorem shows that the number of communities needs to scale

just faster than log2n so that the percolation algorithm does not make errors

with r = 2. In this case, the community label information is very helpful in

decreasing the number of seeds required to percolate.

4.2.3 Two Threshold Percolation Algorithm

A drawback of the basic percolation algorithm [4] is that with r ≥ 4, the

algorithm requires many seeds to percolate. In fact, the number of seeds

required to achieve percolation is an increasing function of the threshold value

r. As has been noted in the literature [4, 3], the percolation algorithm makes

errors in the initial steps when there are only a few seeds to deanonymize the

graphs. Hence, to reduce such errors, we propose a two-threshold percolation

algorithm which takes as input an imperfect matching and builds upon this

information to percolate further. Assuming that the algorithm percolates,

we also prove the derive conditions under which the algorithm does not make

errors with high probability.

Consider, as before, two graphs G1 and G2, but we do not assume that

we have access to the community labels of the users. Suppose that there

exists an algorithm, A, which gives us the following output. For each vertex

i ∈ V (G1), let j′i ∈ V (G2) be the vertex matched to i using the algorithm A.

Let us call this set of matched pairs F . Consider two thresholds, rc and rm,

with rc < rm. For the percolation process, starting with a set of seed pairs,

S0, the following strategy is used. Pick a seed pair from the seed set. For

vertex i, the pair (i, j′i) is considered as matched as soon as its score, Mij′i
,

reaches rc. For all other potential pairs (i, j′), the matching threshold is rm.

More compactly, the vertex pairs which were matched by algorithm A are

given a lower threshold than the other potential pairs. If algorithm A made

errors, we expect the percolation algorithm to correct them. Using a lower

threshold for the pair (i, j′i) is helpful in reducing errors in the initial stages

of the percolation process if j′i = i′. As the correct pairs are more probable

to accumulate marks earlier than incorrect pairs [4], the lower threshold also

helps in reducing the required number of seeds. Hence, the more correct

pairs algorithm A matches, the fewer seeds required to percolate and the

19

lower the error in the second step. Algorithm 2 describes the pseudo code of

the proposed algorithm.

Algorithm 2 Percolation Algorithm with Two Thresholds

Require: G1, G2,S0,F , {(i, j′i), i ∈ [n]}
S = S0,P = ∅,M = 0n×n
while S \ P 6= ∅ and |S| 6= n do

Pick a seed pair (u, v) ∈ S \ P
Add (u, v) to P
for all (i, j′) ∈ V (G1) × V (G2) such that ui ∈ E(G1) and vj′ ∈ E(G2)
do
Mij′ = Mij′ + 1
if ((j′i = j′ and Mij′ = rc) ‖ (j′i 6= j′ and Mij′ = rm)) and both i, j′

are unmatched then
S = S ∪ (i, j′)
Mark i and j′ as matched

end if
end for

end while
Return S as the set of matched vertices

4.2.4 Asymptotic Analysis

The similarity of graph matching algorithms to bootstrap percolation is noted

in the literature [4]. The latter, in general, studies the spread of infection

among vertices in graphs where the infected vertices contribute to the in-

fection of their neighbors [55]. When the number of infected neighbors of

a vertex reaches a certain threshold, it gets infected as well. The graph

matching algorithm can be thought of along similar lines. Instead of vertices

spreading infection, it is the pair of vertices spreading it in the intersection

graph G∩ , G1∩G2 with vertex set V (G1) and edge set E(G1)∩π−10 (E(G2)).

To make the two problems isomorphic, one first needs to establish that the

percolation algorithm does not make errors whenever it percolates. Next,

we analyze the proposed algorithm and derive conditions under which the

algorithm does not make errors with high probability. In particular we aim

to characterize the performance of algorithm A required to guarantee that

no errors are made while percolating.

We assume that algorithm A is independent of the percolation step and

20

vice versa. The following theorem provides the conditions under which the

algorithm does not make errors with high probability, assuming that it per-

colates.

Theorem 3. Let rm ≥ 4 and rc ≥ 1. Consider any i ∈ V (G1) and

j′ ∈ V (G2). Let pf = P ((i, j′) ∈ F). If pf = o(nrc−3(log n)−2rc), then the

percolation algorithm with two thresholds does not match wrong pairs with

high probability.

Proof. Consider a vertex pair (i, j′) ∈ V (G1)×V (G2) and j′ 6= i′. Let Xij′(t)

be the event that the pair (i, j′) is matched at time t. We want to bound

the probability of this event, P (Xij′(t)), conditioned on the fact that before

time t only correct pairs were matched. Define a random variable fij′ as

fij′ =

1 if j′ = j′i

0 if j′ 6= j′i

Now, we can bound the above probability as

P (Xij′(t)) ≤ P (fij′ = 1,Mij′(t) = rc,Mii′(t) ≤ rm,Mjj′(t) ≤ rm)

+ P (fij′ = 0,Mij′(t) = rm,Mii′(t) ≤ rm,Mjj′(t) ≤ rm)

= P (E1) + P (E2) (4.8)

where E1 is the event [fij′ = 1,Mij′(t) = rc,Mii′(t) ≤ rm,Mjj′(t) ≤ rm] and

E2 is the event [fij′ = 0,Mij′(t) = rm,Mii′(t) ≤ rm,Mjj′(t) ≤ rm]. Till time

t, let T1, and T2 be the random variables corresponding to the number of

seeds with community labels C(i) and C(j′) respectively. First, consider that

C(i) 6= C(j′) The other case is easier and can be proved in the same manner.

21

Then

P (E2) ≤ P [Mij′(t) = rm]

=
t∑

t1=0

t∑
t2=t−t1

P [Mij′(t) = rm|T1 = t1, T2 = t2]P (T1 = t1, T2 = t2)

=
t∑

t1=0

t∑
t2=t−t1

P (Bin(t1 + t2, pqs
2) +Bin(t− t1 − t2, (qs)2) = rm)P (T1 = t1, T2 = t2)

(a)

≤
t∑

t1=0

t∑
t2=t−t1

P (Bin(t, pqs2) = rm)P (T1 = t1, T2 = t2)

≤ (tpqs2)rm
(b)

≤ (npqs2)rm

= (ab)rms2rmn−rm(log(n))2rm (4.9)

where (a) follows from q < p and because n(qs)2 → 0, and (b) follows from

t ≤ n. If rm ≥ 4, then⋃
i,j′,t

P (E2) ≤ (ab)rms2rmn3−rm(log(n))2rm → 0 (4.10)

For event E1, we have

P (E1) ≤ P [fij′ = 1,Mij′(t) = rc]

= P [fij′ = 1]× P (Mij′(t) = rc)

≤ pf (tpqs
2)rc

Using union bound and the condition in the theorem, we have⋃
i,j′,t

P (E1) ≤ pf (ab)
rcs2rcn3−rc(log(n))2rc → 0 (4.11)

Consider rc = 3. Then we need pf = o((log n)−6). In this case, even

if algorithm A matches pairs randomly, the percolation algorithm does not

make any error. For rc = 2, algorithm A needs to do only a little better than

the random algorithm.

When the community label information is available, the naive algorithm

proposed earlier can be used as a preprocessing algorithm before percolation.

22

In the next chapter we show experimentally that this algorithm, with rc = 1

and rm = 2, performs much better than similar graph matching algorithms.

This in turn shows that the community labels serve as excellent side infor-

mation, helping both in reducing the number of seeds needed to percolate

and achieving lower error rates.

23

CHAPTER 5

EXPERIMENTAL EVALUATION

In this chapter, we evaluate the proposed algorithms on synthetic as well as

real world datasets. The first goal of the experiments is to show that the

proposed algorithm performs well on the real world datasets even though

the theoretical guarantees are provided for a particular graph model. Our

second goal is to show that information about community labels, if used

intelligently, enhances the deanonymization results especially when the cor-

relation between the networks is low.

In the experiments below, we compare the following algorithms:

• A1: percolation with rc = rm = 1

• A2: percolation with rc = 1, rm = 2 (proposed)

• A3: percolation with rc = rm = 2

• A4: ExpandWhenStuck Algorithm [3]

Algorithms A1 and A3 correspond to percolation graph matching with

uniform thresholds [4], but match vertices belonging to the same community

only. Algorithm A4 is the ExpandWhenStuck algorithm proposed in [3]. To

the best of our knowledge, it achieves the best time-accuracy trade-off for

matching large graphs. Algorithm A2 is the proposed algorithm which uses

two different thresholds for matching the graphs. We evaluate the algorithm

with rc = 1 and rm = 2, which achieves excellent results with minimal seeds.

We compare the performance of the algorithms in terms of percolation

strength and error rate with varying numbers of seeds (Φ) and values of

sampling parameter (s). For all the experiments, the seeds are chosen uni-

formly at random. To measure the percolation strength we compare the

fraction, f , of vertices matched by the algorithms, i.e., f = #vertices matched
n

.

The error rate, e, is measured by the fraction of vertices matched incorrectly,

i.e., e = #incorrect matches
#vertices matched

.

24

Table 5.1: Statistics of Astro Physics and Condense Matter Physics
Datasets

Datasets As-Physics CondMat
No. of Users (n) 17903 21363

No. of Edges 196972 91286
Average Degree 22.01 8.55

Clustering Coefficient 0.63 0.63
No. of Communities (K) 36 55

5.1 Description of Datasets

We evaluate the proposed algorithm on synthetic as well as real world datasets.

For the synthetic networks, the underlying graph, G, is generated using the

Stochastic Block Model with parameters n = 10000, and b = 2 (unless stated

otherwise). The real world datasets are the collaboration networks of authors

who submitted papers to Astro Physics (As-Physics) and Condensed Matter

Physics (CondMat) categories on arXiv [16]. In these networks, two authors

are connected if they co-authored a paper. We consider only the largest con-

nected component in these graphs. We run Louvain community detection

algorithm implemented in Pajek on the underlying graph to detect the com-

munity structure [56]. The statistics of these datasets are provided in Table

5.1. To generate correlated networks, G1 and G2, we sample the edges in the

underlying graphs with probability s (values of s are described in subsequent

subsections). As we aim to demonstrate the importance of community labels

in graph matching, we assume that the attacker knows the community labels

of the vertices.

5.2 Probability of Error

Although the results derived in this paper hold asymptotically, it is important

to assess their validity on finite graphs. Let perr denote the probability

that the proposed percolation algorithm makes an error. To evaluate this

probability, we generate 200 random instances of the problem and match

25

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

b

P
ro

b
ab

ili
ty

 o
f

E
rr

o
r

K=10 (α=0.25)

K=20 (α=0.3253)

Figure 5.1: Probability of error versus parameter b for SBM graphs with
s = 0.7.

graphs G1 and G2 using the proposed algorithm. Let nerr denote the number

of instances when the proposed algorithm makes an error. Then, we have

perr = nerr

200
. Figure 5.1 shows the obtained results as a function of parameter

b for two values of K and s = 0.7. For small values of b, perr is high and

it decreases as b increases. For large values of b and K = 10, the algorithm

attains perr of around 0.08 while for K = 20, perr is almost zero. This shows

that more side information in the form of community labels is extremely

helpful in matching the graphs.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Number of Communities

E
rr

o
r

R
at

e
(%

)

s=0.5
s=0.7
s=0.9

Figure 5.2: Effect of number of communities on the error rate of the naive
algorithm for SBM graphs with parameters n = 10000, b = 2.

26

10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

125

150

175

200

225

250

Number of Communities (K)

N
u

m
b

er
 o

f
S

ee
d

s

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

E
rr

o
r

R
at

e
(%

)

Error Rate

Number of Seeds

Figure 5.3: Effect of number of communities on the performance of the
proposed percolation algorithm for SBM graphs with parameters
n = 10000, b = 2, s = 0.5.

5.3 Effect of Number of Communities

We first measure the influence of number of communities on the proposed

naive (Algorithm 1) and percolation (A2) algorithms. Figure 5.2 shows the

error rate achieved by the naive algorithm for SBM graphs with different

values of the sampling parameter. It can be noted that as the number of

communities increases, the error rate decreases. For larger values of s, even

a very small number of communities is enough to deanonymize a large per-

centage of users.

In Figure 5.3, we depict the performance of algorithm A2 for s = 0.5. For

K = 10, the algorithm requires around 245 seeds to percolate as virtually all

the correct pairs of vertices get a higher threshold using the naive algorithm

in the first step (see Figure 5.2). However, for K = 20, the number of seeds

required to percolate decreases drastically to 35 even though the fraction of

correct pairs assigned a lower threshold is less than 10%. As the number of

communities increases further, a greater fraction of correct pairs get lower

threshold and hence percolation is immediate for larger values of K. This

shows that the performance of our algorithm improves with the number of

communities as expected. With only 20 communities, the algorithm achieves

less than 0.4% error rate although the correlation between the networks is

very weak.

27

0

20

40

60

80

100

Datasets

E
rr

or
 R

at
e

(%
)

X1 Y1 X2 Y2 X3 Y3

+

+

+

+

+

+

Figure 5.4: Box plot comparing distributions of error rate for algorithms
A2 and A4 for 100 random seed sets of size 5. X and Y represent
algorithms A4 and A2 respectively. Suffixes 1,2, and 3 represent datasets,
1: SBM (s = 0.8, K = 20), 2: CondMat (s = 0.7), 3: As-Physics (s = 0.7).
Box represents the Inter Quartile Range (IQR), horizontal line in the box
denotes the median, +, ◦ denote mean and outliers respectively, horizontal
lines above and below the box denote maximum and minimum respectively.

5.4 Effect of Seeds

First, we compare the variation in the performance of algorithms A2 and A4

by varying the initial seed set S0. We use 100 random seed sets of size 5 to

obtain the results. Figure 5.4 shows the comparison of error rate distributions

for three datasets. It can be seen that our algorithm is insensitive whereas

algorithm A4 is highly sensitive to the quality of seeds. We observed during

the experiments that the median provides a good estimate of the error rate

for algorithm A4. Also, as the median is robust to outliers, we report the

median of error rates over 100 random seed sets for algorithm A4 in the

experiments.

Figure 5.5 shows the deanonymization results for the synthetic networks

with s = 0.8 and K = 20 for varying number of seeds. Figure 5.5(a) depicts

the percolation behavior of the algorithms. Algorithm A3 is dropped because

28

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of Seeds

F
ra

ct
io

n
 M

at
ch

ed
 (

%
)

A1: r
c
=1, r

m
=1

A2: r
c
=1, r

m
=2

A4: ExpandWhenStuck

(a) Fraction of vertices matched vs Number of seeds

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of Seeds

E
rr

o
r

R
at

e
(%

)

A1: r
c
=1, r

m
=1

A2: r
c
=1, r

m
=2

A4: ExpandWhenStuck

(b) Error Rate vs Number of Seeds

Figure 5.5: Deanonymization results for SBM dataset with parameters
n = 10000, b = 2, s = 0.8, and K = 20.

29

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of Seeds

F
ra

ct
io

n
 M

at
ch

ed
 (

%
)

A1 : r
c
=1, r

m
=1

A2 : r
c
=1, r

m
=2

A3 : r
c
=2, r

m
=2

A4 : ExpandWhenStuck
intersection degree ≥ 1
intersection degree ≥ 2

(a) Fraction of vertices matched vs Number of seeds

0 2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

Number of Seeds

E
rr

o
r

R
at

e
(%

)

A1 : r
c
=1, r

m
=1

A2 : r
c
=1, r

m
=2

A3 : r
c
=2, r

m
=2

A4 : ExpandWhenStuck
Naive Algorithm

(b) Error Rate vs Number of Seeds

Figure 5.6: Deanonymization results for As-Physics dataset with s = 0.9.

30

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of Seeds

F
ra

ct
io

n
 M

at
ch

ed
 (

%
)

A2 : r
c
=1, r

m
=2

A4 : ExpandWhenStuck
intersection degree ≥ 1
intersection degree ≥ 2

(a) Fraction of vertices matched vs Number of seeds

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

100

Number of Seeds

E
rr

o
r

R
at

e
(%

)

A2 : r
c
=1, r

m
=2

A4 : ExpandWhenStuck
Naive Algorithm

(b) Error Rate vs Number of Seeds

Figure 5.7: Deanonymization results for CondMat dataset with s = 0.7.

31

it required more seeds to percolate than the other three algorithms. It can

be seen that all three algorithms percolate instantaneously, but the proposed

algorithm A2 maps almost the complete network. Note that algorithm A4

achieves the same number with 10 seeds. The error rate comparison is shown

in Figure 5.5(b). The proposed algorithm outperforms both algorithms A1

and A4 and achieves near zero error rate with only 1 seed. It is interesting

to note that algorithm A4 is able to perform well with around 5 seeds and

is worse than A1 for fewer seeds.

Figure 5.6 shows the deanonymization results for the As-Physics dataset

with s = 0.9. The fractions of users in the intersection with degree greater

than or equal to 1 and 2 are approximately 98% and 90% respectively. The

community detection algorithm partitions the network into 36 disjoint com-

munities. It can be noted that using constant threshold rc = rm = 1, algo-

rithm A1 maps around 83% of the users but results in very high error rate.

Algorithm A3 needs around 9 seeds to percolate to 72% of the users. The

error rate in this case is more than 40%. The proposed algorithm performs

much better than the other two. It maps more than 82% users with error

rate around 24%. Also note that our algorithm percolates with only 2 seeds.

Although algorithm A4 maps more users, our algorithm achieves lower error

rate.

Figures 5.7 shows the deanonymization results for the CondMat dataset,

which is much sparser than the previous dataset, with s = 0.7. The fractions

of users with degrees at least 1 and 2 in the intersection graph are around 96%

and 70% respectively. Algorithm A1 resulted in more than 80% error rate

and algorithm A3 needed more than 20 seeds to percolate hence the results

of these algorithms are not shown. The other two algorithms percolate with

only 2 seeds, as can be seen in Figure 5.7(a), with algorithm A4 mapping

slightly higher number of users than the proposed algorithm. However, as

depicted in Figure 5.7(b), the former algorithm makes more errors than our

algorithm. Figure 5.7(b) also shows the IQR for algorithm A4. Note that

even the 25th percentile is well above the error rate achieved by the proposed

algorithm, even with 10 seeds.

32

5.5 Effect of Sampling Parameter

In this subsection, we compare the performance of algorithms by varying the

levels of correlation. In the first experiment, we compare the percolation

threshold (minimum number of seeds required to percolate) of algorithms

A2 and A3 for the synthetic dataset with K = 10, 20. As seen in Figure

5.8, the proposed algorithm requires far fewer seeds to percolate than the

percolation algorithm with uniform threshold. In particular, for s = 0.5,

assigning a lower threshold to less than 10% correct pairs (see Figure 5.2)

changes the percolation threshold from 285 to 35 for K = 20. At higher

values of s, algorithm A2 requires only 1 seed to percolate. Also note that

for K = 20, the algorithm requires fewer seeds than for K = 10. The

reason for this is the fact that when K = 20, more correct pairs get a lower

threshold for matching. This highlights the importance of community labels

as side information, especially when number of communities is bigger.

In the next set of experiments, we compare the overall performance of the

algorithms A1-A4 on synthetic and real datasets. The number of seeds is

fixed at 10 for all the experiments. To measure the performance, we use the

F1-score defined as follows:

F1 = 2
PR

P +R
(5.1)

where P = 1− e, R = #correct matches
nint

are the precision and recall respectively.

Here nint is the number of vertices in the giant component of the intersection

graph G∩. The F1 score combines both the percolation strength and error

rates achieved by the algorithms into a single index. An F1 score closer to

1 means better performance of an algorithm in terms of both percolation

strength and error rate.

Figure 5.9 shows the F1 scores for the synthetic dataset with K = 20.

Algorithm A3 is not shown as it did not percolate for any value of s. Note

that our algorithm outperforms algorithm A1 for most values of s; at s = 0.5

our algorithm did not percolate. Compared to algorithm A4, our algorithm

achieves better scores when the datasets are weakly correlated (s ≤ 0.7).

Even when s = 0.8, our algorithm is slightly better than algorithm A4.

Figure 5.10 shows the F1 scores for the As-Physics dataset. As before,

for low values of s, the proposed algorithm outperforms the other three algo-

33

rithms. Algorithm A1 percolates, but makes many errors and hence achieves

low scores even at higher values of s. At s = 0.9, the proposed algorithm

obtains a score which is better by a value of 0.1 than that of algorithm A4.

Note that the IQR at s = 0.7 for A4 is large, which shows the sensitivity of

the algorithm to the quality of seeds.

Figure 5.11 shows the F1 scores for the CondMat dataset. At high values

of s, algorithm A4 achieves slightly better scores than the proposed algo-

rithm. However, at lower values, the proposed algorithm outperforms other

algorithms. It is worth noting that algorithm A4 results in almost 100%

error rate for s ≤ 0.6, although it percolates.

0.5 0.6 0.7 0.8 0.9
0

25

50

75

100

125

150

175

200

225

250

275

300

s

N
u

m
b

er
 o

f
S

ee
d

s

A1 : r
c
=1, r

m
=2 (K=10)

A2 : r
c
=1, r

m
=2 (K=20)

A3 : r
c
=r

m
=2

Figure 5.8: Percolation threshold for algorithms A2 and A3.

34

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

s

F
1−s

co
re

A1 : r
c
=r

m
=1

A2 : r
c
=1, r

m
=2

A4 : ExpandWhenStuck

Figure 5.9: F1-score comparison for different levels of correlation for the
synthetic dataset.

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s

F
1−s

co
re

A1 : r
c
=r

m
=1

A2 : r
c
=1, r

m
=2

A3 : r
c
=r

m
=2

A4 : ExpandWhenStuck

Figure 5.10: F1-score comparison for different levels of correlation for the
As-Physics dataset.

35

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s

F
1−s

co
re

A1 : r
c
=r

m
=1

A2 : r
c
=1, r

m
=2

A3 : r
c
=r

m
=2

A4 : ExpandWhenStuck

Figure 5.11: F1-score comparison for different levels of correlation for the
CondMat dataset.

36

CHAPTER 6

CONCLUSION

In this thesis, we investigate the importance of side information in graph

matching problems. We first propose a graph matching algorithm based on

the community degree vectors and provide theoretical guarantees for match-

ing graphs generated using the SBM perfectly. We analyze the basic perco-

lation algorithm for graphs with community structure. Using an imperfect

matching as input, we also propose a novel percolation algorithm with two

thresholds to match two correlated graphs. We prove the conditions under

which the algorithm does not make errors whenever it percolates. We show

that our algorithm performs extremely well on the synthetic and real world

networks and outperforms other percolation algorithms when the correlation

between the networks is low. We also show that our algorithm percolates

with only a few seeds, is robust to the quality of seeds and works well even

when the community labels are known only for a fraction of users.

There are two main practical implications of our work. First, it shows that

side information in the form of community labels has the capability to assist

an attacker in network deanonymization, especially in the low correlation

regime. Most of the datasets released publicly are only weakly correlated,

for example, a person would have very few common friends on Facebook

and LinkedIn social networks as these are meant for different purposes. For

such datasets, community label information may pose a threat to user pri-

vacy. Second, in situations where the correlation is strong, information about

community labels helps in reducing the number of seeds needed to percolate

and mitigates the effect of seed quality on the deanonymization results.

There are various future directions to explore as a result of our findings.

For example, it is pertinent to study other types of side information which

could help an attacker to match correlated networks. Such studies could

help in designing mechanisms to mitigate the effect of such side information

in network deanonymization. Studying similar two-threshold percolation al-

37

gorithms for other random graph models like preferential attachment [57],

and configuration models [58], can provide more insights into the problem of

matching real world graphs. A more realistic modification of this problem in-

volves considering overlapping communities. We would like to point out that

our algorithm can be modified to account for overlapping communities, but

a theoretical analysis of this problem would be more challenging. We expect

our results to motivate research in these directions in order to understand

the graph matching problem more concretely.

38

REFERENCES

[1] S. Ji, W. Li, M. Srivatsa, and R. Beyah, “Structural data de-
anonymization: Quantification, practice, and implications,” in Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, 2014, pp. 1040–1053.

[2] S. Ji, W. Li, M. Srivatsa, J. S. He, and R. Beyah, “Structure based data
de-anonymization of social networks and mobility traces,” in Informa-
tion Security. Springer, 2014, pp. 237–254.

[3] E. Kazemi, S. H. Hassani, and M. Grossglauser, “Growing a graph
matching from a handful of seeds,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 10, pp. 1010–1021, 2015.

[4] L. Yartseva and M. Grossglauser, “On the performance of percolation
graph matching,” in Proceedings of the first ACM Conference on Online
Social Networks. ACM, 2013, pp. 119–130.

[5] S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn, “Community-enhanced de-
anonymization of online social networks,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 537–548.

[6] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in
Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 2009, pp.
173–187.

[7] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple protein
interaction networks with application to functional orthology detection,”
Proceedings of the National Academy of Sciences, vol. 105, no. 35, pp.
12 763–12 768, 2008.

[8] P. Pedarsani, D. R. Figueiredo, and M. Grossglauser, “A Bayesian
method for matching two similar graphs without seeds,” in Communi-
cation, Control, and Computing (Allerton), 2013 51st Annual Allerton
Conference on. IEEE, 2013, pp. 1598–1607.

[9] C. Dwork, “Differential privacy,” in Encyclopedia of Cryptography and
Security. Springer, 2011, pp. 338–340.

39

[10] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art thou r3579x?:
Anonymized social networks, hidden patterns, and structural steganog-
raphy,” in Proceedings of the 16th International Conference on World
Wide Web. ACM, 2007, pp. 181–190.

[11] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using social
network as a side-channel,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security. ACM, 2012, pp. 628–637.

[12] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group for-
mation in large social networks: membership, growth, and evolution,”
in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2006, pp. 44–54.

[13] G. Kossinets, J. Kleinberg, and D. Watts, “The structure of information
pathways in a social communication network,” in Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge discovery and
data mining. ACM, 2008, pp. 435–443.

[14] M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili, “Theory of rumour
spreading in complex social networks,” Physica A: Statistical Mechanics
and its Applications, vol. 374, no. 1, pp. 457–470, 2007.

[15] L. Weng, F. Menczer, and Y.-Y. Ahn, “Predicting successful memes us-
ing network and community structure,” arXiv preprint arXiv:1403.6199,
2014.

[16] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, p. 2, 2007.

[17] J. Golbeck, “Generating predictive movie recommendations from trust
in social networks,” in International Conference on Trust Management.
Springer, 2006, pp. 93–104.

[18] J. Tang, X. Hu, and H. Liu, “Social recommendation: a review,” Social
Network Analysis and Mining, vol. 3, no. 4, pp. 1113–1133, 2013.

[19] Y. Zhang and M. Pennacchiotti, “Predicting purchase behaviors from
social media,” in Proceedings of the 22nd international Conference on
World Wide Web. ACM, 2013, pp. 1521–1532.

[20] Y.-M. Li, C.-T. Wu, and C.-Y. Lai, “A social recommender mechanism
for e-commerce: Combining similarity, trust, and relationship,” Decision
Support Systems, vol. 55, no. 3, pp. 740–752, 2013.

40

[21] J. M. Kleinberg, “Challenges in mining social network data: processes,
privacy, and paradoxes,” in Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2007, pp. 4–5.

[22] L. Manovich, “Trending: The promises and the challenges of big social
data,” Debates in the Digital Humanities, vol. 2, pp. 460–475, 2011.

[23] J. Brickell and V. Shmatikov, “The cost of privacy: Destruction of data-
mining utility in anonymized data publishing,” in Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge discovery and
data mining. ACM, 2008, pp. 70–78.

[24] T. Li and N. Li, “On the tradeoff between privacy and utility in data
publishing,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge discovery and data mining. ACM, 2009, pp.
517–526.

[25] S. K. Gorantla, S. Kadloor, N. Kiyavash, T. P. Coleman, I. S. Moskowitz,
and M. H. Kang, “Characterizing the efficacy of the nrl network pump in
mitigating covert timing channels,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 1, pp. 64–75, 2012.

[26] S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam, “Mitigating tim-
ing based information leakage in shared schedulers,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 1044–1052.

[27] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation of tim-
ing channels in interactive systems,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security. ACM, 2011,
pp. 563–574.

[28] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitiga-
tion of timing channels,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security. ACM, 2010, pp. 297–307.

[29] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous peer-to-peer
voip calls on the internet,” in Proceedings of the 12th ACM conference
on Computer and Communications Security. ACM, 2005, pp. 81–91.

[30] S. Kadloor and N. Kiyavash, “Delay-privacy tradeoff in the design of
scheduling policies,” IEEE Transactions on Information Theory, vol. 61,
no. 5, pp. 2557–2573, 2015.

[31] S. Kadloor and N. Kiyavash, “Delay optimal policies offer very little
privacy,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 2454–
2462.

41

[32] S. Kadloor, X. Gong, N. Kiyavash, and P. Venkitasubramaniam, “De-
signing privacy preserving router scheduling policies,” in Information
Sciences and Systems (CISS), 2011 45th Annual Conference on. IEEE,
2011, pp. 1–6.

[33] S. Kadloor, X. Gong, N. Kiyavash, and P. Venkitasubramaniam, “De-
signing router scheduling policies: A privacy perspective,” IEEE Trans-
actions on Signal Processing, vol. 60, no. 4, pp. 2001–2012, 2012.

[34] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A practical attack
to de-anonymize social network users,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 223–238.

[35] C.-F. Chiasserini, M. Garetto, and E. Leonardi, “Impact of clustering
on the performance of network de-anonymization,” in Proceedings of the
2015 ACM on Conference on Online Social Networks. ACM, 2015, pp.
83–94.

[36] M. Fire and R. Puzis, “Organization mining using online social net-
works,” Networks and Spatial Economics, pp. 1–34, 2012.

[37] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social Networks, vol. 5, no. 2, pp. 109–137, 1983.

[38] P. Pedarsani and M. Grossglauser, “On the privacy of anonymized net-
works,” in Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM, 2011, pp.
1235–1243.

[39] V. Etter, M. Kafsi, and E. Kazemi, “Been there, done that: What your
mobility traces reveal about your behavior,” in Mobile Data Challenge
by Nokia Workshop, in conjunction with Int. Conf. on Pervasive Com-
puting, no. EPFL-CONF-178426, 2012.

[40] E. Kazemi, L. Yartseva, and M. Grossglauser, “When can two unlabeled
networks be aligned under partial overlap?” in 2015 53rd Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton).
IEEE, 2015, pp. 33–42.

[41] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defin-
ing and identifying communities in networks,” Proceedings of the Na-
tional Academy of Sciences of the United States of America, vol. 101,
no. 9, pp. 2658–2663, 2004.

[42] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

42

[43] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual Review of Sociology, pp. 415–
444, 2001.

[44] B. Hajek, Y. Wu, and J. Xu, “Achieving exact cluster recovery threshold
via semidefinite programming,” arXiv preprint arXiv:1412.6156, 2014.

[45] B. Hajek, Y. Wu, and J. Xu, “Achieving exact cluster recovery
threshold via semidefinite programming: Extensions,” arXiv preprint
arXiv:1502.07738, 2015.

[46] E. Abbe, A. S. Bandeira, and G. Hall, “Exact recovery in the stochastic
block model,” arXiv preprint arXiv:1405.3267, 2014.

[47] P. Erdos and A. Renyi, “On random graphs I,” Publ. Math. Debrecen,
vol. 6, pp. 290–297, 1959.

[48] S. Ji, W. Li, N. Z. Gong, P. Mittal, and R. A. Beyah, “On your social
network de-anonymizablity: Quantification and large scale evaluation
with seed knowledge,” in NDSS, 2015.

[49] D. Cullina and N. Kiyavash, “Improved achievability and con-
verse bounds for Erdos Renyi graph matching,” arXiv preprint
arXiv:1602.01042, 2016.

[50] D. Cullina, K. Singhal, N. Kiyavash, and P. Mittal, “On the simulta-
neous preservation of privacy and community structure in anonymized
networks,” arXiv preprint arXiv:1603.08028, 2016.

[51] E. Onaran, S. Garg, and E. Erkip, “Optimal de-anonymization
in random graphs with community structure,” arXiv preprint
arXiv:1602.01409, 2016.

[52] C. Fabiana et al., “Social network de-anonymization under scale-free
user relations,” IEEE-ACM Transactions on Networking.

[53] N. Korula and S. Lattanzi, “An efficient reconciliation algorithm for
social networks,” Proceedings of the VLDB Endowment, vol. 7, no. 5,
pp. 377–388, 2014.

[54] P. Ballen and S. Guha, “Behavioral intervention and non-uniform boot-
strap percolation,” arXiv preprint arXiv:1512.00834, 2015.

[55] S. Janson, T. Luczak, T. Turova, T. Vallier et al., “Bootstrap percola-
tion on the random graph g {n, p},” The Annals of Applied Probability,
vol. 22, no. 5, pp. 1989–2047, 2012.

[56] V. Batagelj and A. Mrvar, “Pajek-program for large network analysis,”
Connections, vol. 21, no. 2, pp. 47–57, 1998.

43

[57] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[58] M. Newman, Networks: An Introduction. Oxford University Press,
2010.

44

