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Abstract

The characteristics of ignition and extinction in thermites and intermetallics are a subject of interest

in developing the latest generation of energetic materials. An experimental “striker confinement”

shock compression experiment was developed in the Prof. Glumac’s research group at the University

of Illinois to study ignition and reaction in composite reactive materials. These include thermitic

and intermetallic reactive powders. We discuss our model for the ignition of copper oxide-aluminum

thermite in the context of the striker experiment and how a Gibbs formulation model, that includes

multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum

oxide, can predict the events observed at the particle scale in the experiments. Furthermore,

the characteristics of a steady diffusion flame that arises at the interfaces of two condensed phase

reactant (titanium-boron) and gas reactant (methane-air) streams that form an opposed counterflow

are discussed. In the the gas flow scenario, the asymptotic analysis is carried on both constant and

variable density formulations and compared the solutions to those obtained numerically. In the

case of condensed phase reactants, several types of analyses are carried out at increasing levels of

complexities: an asymptotic analysis valid in the limit of low strain rates (high residence time in the

reaction zone), a constant mixture density assumption that simplifies the flow description, diffusion

models with equal and unequal molecular weights for the various species, and a full numerical

study for finite rate chemistry, composition-dependent density and strain rates extending from low

to moderate values.
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Chapter 1

Introduction

1.1 Background

Energetic materials are a broad class of manufactured materials that traditionally include both

propellants and explosives, but thermite and intermetallic/metal mixtures as well. These materials

are made from a set of initial components, elements or compounds, that may have been subjected

to processing or may have imperfections and contaminants such as cracks, inclusions or surface

oxidation. Energetic compounds include molecular explosive and molecular oxidizer crystallites, like

HMX and ammonium perchlorate (AP), plastic binders and resins like HTPB, metals like aluminum

(Al) and titanium (Ti), metal oxides like iron oxide, copper oxide, and intermetallic elements like

carbon, silicon and boron. Our examples of constituents are not exhaustive, but include those

commonly used in the manufacture of energetic materials. Each component in the mixture, prior

to the composite assembly, has its individual mechanical and thermo-chemical identity that is

often well-characterized as an inert material. The individual components are combined to make an

agglomerated composite mixture that is pressed or cast into a mold for explosive and propellant

applications. The powders and crystallites of the constituent compounds have a characteristic mean

dimension that varies from hundreds of to one micron and particle size distribution that is known

and can be controlled.

As an alternative to an agglomerated composite, there is interest in forming layers of the con-

stituent components in laminates or regular arrays, with specific interstitial spacing between com-

ponents. A prominent example is related to the development of reactive nano-foils that are used in

special joining and welding applications [1]. In this case thin, approximately 10 micron layers of foil
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(of say nickel and aluminum) are pressed into a laminate ply. The reaction to form nickel/aluminum

products is started with thermal initiation (heating) that first melts the aluminum and allows the

reaction to proceed. The speed of the reacting front that moves perpendicular to the plies dependent

on the foil spacing and ply composition and construction [2].

Reactive energetic material, as defined in a 2004 US National Academy of Sciences report [3], is

a class of materials that generally combines two or more nonexplosive solids that upon ignition react

and release energy. The source of the ignition energy is assumed to come from a shock wave caused

by impact of the reactive material with a stationary target. The ignition energy is obtained from the

fact that a composite agglomerate has interstitial voids that are in the range of 1 to 20 % by volume.

After impact a densification of the composite occurs, and because of the density and acoustic

impedance contrast between composite constituents, local energy concentrations occur. This leads

to localized heating (hot spots) that in turn lead to the thermal events that are required to melt the

constituent components and initiate the reaction at interfaces. Once melting occurs, then in addition

to greater species mobility of reactants, there are relative motions of the constituent material. The

underlying specification of the particle sizes and the characteristic spatial features introduces an

additional length scale. On particle-size scale the interfaces may not be planar thus flows can

be generated in contiguous interacting regions on the microscale dimensions of the composite.

Thus relative motions of the condensed phase constituents occur in the decomposition regions

of propellants. Consider a standard composite solid propellant matrix composed of ammonium

perchlorate (AP) and small aluminum particles embedded in a rubbery binder. Under standard

operating conditions, the region between the surface of the propellant exposed to hot products of the

rocket chamber to the cold core of the propellant suffers an extremely large temperature gradient.

The materials in this thermal layer change from solids, to liquids, to mixed liquids, and eventually to

mainly gases. There are significant differences in the thermal expansion of the oxidizers, the binders

and the metals and those differences can generate flows of molten materials in chemically active

condensed phase region, with local flow speeds in the micro-scale environment that are comparable

to those of propellant regression rates (i.e., on the order of 1 cm/s). The majority of propellants

investigation have focused on the gas-phase reactions that occur above the propellant surface, with
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minimal attention given to the internal condensed phase phenomena [4]. In part this is because

decomposition and chemical reactions in composite propellants are quite complex and involve phase

transformation and/or gas products.

1.2 Rationale

There is interest in engineering energetic nano-composite reactive material, made from sub micron

metal and metal oxides to enable rapid and localized high temperature heating which can be

activated by shock impact. Therefore, this dissertation focuses on modeling ignition and extinction

in condensed phase combustion. Before we proceeded to analyze the condensed phase behavior,

we focused on understanding the phenomenon in gas phase. The second chapter is concerned with

the asymptotic analysis of combustion equations in counterflow geometry and their validation to

numerical methods. The asymptotic analysis yields analytic insights into extinction behavior for

large activation energy and it is compared to numerical solutions for both constant and variable

density formulations.

The third chapter analyzes the steady diffusion flame that forms at the interface of two condensed

phase reactant streams. Because of experiments done by Glumac et al. [5], we have focused on the

Ti/B system and describe it simply with three components; two reactants Ti and B, and the product

TiB2. We have ignored the intermediary species TiB in this model. We analyze the effect of density

variation and diffusion on the reaction between titanium and boron. The diffusion model for the

components is described by Maxwell-Stefan diffusion law, which is formulated in terms of binary

diffusivities. We analyze the microscale length and relative motion between the reactants, which

represent the characteristic scales, and in particular the strain rate that determines the conditions

that differentiate between vigorous and weak burning between titanium and boron. [6]

Finally, we present a model for ignition between aluminum (Al) and and copper oxide (CuO),

which produces aluminum oxide (Al2O3). The diffusion and reaction model presented in chapter

3 is updated by incorporating phase change for all the materials. The liquid and solid phases of

each species is treated as a separate material while the phase change itself is modeled as a reaction.
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The experiments done by Glumac et al. [7], show rapid ignition and quenching events once the

shock passes through the unreacted sample. An typical size of such events is approximately 100

µm. Therefore, a slab geometry with a mixing region of 100 µm is chosen and a thermal impulse

is induced on the aluminum side of the slab. Two different thermal impulses (3000K and 2000K)

were studies to analyze the effect of local temperature on the reaction.

Overall, this dissertation presents a model for handling phase change and material diffusivities

during ignition and extinction of condensed phase combustion. The second chapter analyzes gas

phase counterflow combustion to develop an analytic understanding of the governing equations. The

third chapter models the Ti/B counterflow system without considering phase change or intermediary

species. The fourth chapter analyzes ignition in Al/CuO system while considering phase change

and material diffusivities for all 8 constituent species.
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Chapter 2

Counterflow Diffusion Flames -
Numerical Solutions vs
Asymptotic Approximation

2.1 Introduction

The governing equations for diffusion flames consists of fluid mechanics equations in addition to the

mass balance equations for various species involved in the chemical reaction [8]. These equations

are too difficult to solve analytically so people choose to solve them either using numerical methods

or other approximate methods, such as asymptotics. Liñán [9], in his seminal work, thoroughly

analyzes the structure of a constant-density planar diffusion flame in a counterflow geometry with

unity Lewis numbers, which assumes that the chemical reactions are all confined to a thin reaction

zone. After his work, many others have looked into the asymptotic structure of counterflow diffusion

flame near extinction under various conditions [10–12]. Cheatham and Matalon [13] derive a general

formulation, unrestricted to any particular diffusion flame geometry, and it is multidimensional and

time-dependent. The asymptotic methods give a clear insight of the solution dependence on various

variables in the governing equations at limiting cases.

Numerical methods used to solve diffusion flame equations have been employed to approximate

various features of the flame under different conditions. Smooke et al. [14], has examined the

numerical solution of two-dimensional axis-symmetric laminar diffusion flames for methane-air con-

figuration with full reaction chemistry. He also presents a generalized computational method using

boundary value methods with adaptive gridding [15]. Ribert et al. [16] have even included non-

ideal equation of state (Soave-Redlich-Kwong EOS) in their equations to model O2/H2 reactions in

subcritical and supercritical conditions. Many others have also numerically computed the structure

and extinction of counterflow diffusion flames for various input and chemical configurations [17–22].
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Experimental investigations into the structure and extinction of diffusion flames are necessary

to validate the theoretical and numerical calculations. Different techniques used in counterflow dif-

fusion flame experiments are summarized by Tsuji [23]. Ishizuka and Tsuji [24] measure the effect

of inert gas in initial mixtures on the extinction of diffusion flames. Sung et al. [25] captured the

structure of counterflow diffusion flames for various strain rates and compared it to numerical solu-

tions. Many others have also experimentally looked into the structure and extinction of counterflow

diffusion flames for various conditions [26,27].

In this chapter, we are looking into the effects of density variations in counterflow diffusion

flame. The similarity solution is used to essentially transform the governing equations to quasi

one-dimensional system. An asymptotic analysis is presented for both constant and variable den-

sity formulations and compared to numerical solutions. The numerical solution is verified with

the asymptotic approximation at the Burke-Schumann limit. We present the comparisons for

large/small Lewis number and mixture strength under constant and variable density formulations.

The asymptotic extinction temperature had moderate agreement with numerical solution while the

corresponding flame position matched well with each other. The asymptotic extinction Damköhler

number for both formulations also matched well with the numerical solution.

2.2 Formulation

A counterflow geometry, as shown in Figure 3.1, consists of two opposing streams of equal strain

rate, 2ε, one containing fuel with mass fraction ỸF0 , and the other containing oxidizer with mass

fraction, ỸO1
. When successfully ignited combustion occurs in the form of a flat diffusion flame

parallel to, and located on one side of the stagnation plane (see Figure 3.1). The temperature

and density of the streams are assumed equal and given by T̃0 and ρ̃0 respectively. The chemical

reaction is modeled by an overall irreversible reaction of the form:

νF Fuel + νO Oxidizer→ Products + {Q}

6



where νi is the stoichiometric coefficient of species i (subscripts F and O stand for Fuel and Oxidizer,

respectively) and Q represents the total chemical heat release. The reaction rate obeys an Arrhenius

type relation with an activation energy E and a pre-exponential factor B, namely

ω̃ = B

(
ρ̃ ỸF
WF

)(
ρ̃ ỸO
WO

)
e−E/R T̃ (2.1)

where ρ̃ and T̃ represent density and temperature of the mixture, Wi is the molecular weight of

species i and R is the universal gas constant.

Figure 2.1: Schematic of a counterflow diffusion flame.

In the following, the effect of gravitational forces is assumed to be negligible. The mixture

properties such as thermal conductivity λ, specific heat at constant pressure cp and viscosity µ are

all assumed constant. Diffusion of each of the two reactants obeys Fick’s law with DF and DO the

binary diffusivities of the fuel/oxidizer into the inert gas. The mass diffusivities are assumed to

vary linearly with temperature such that ρ̃DF and ρ̃DO remain constant. The mixture is assumed

to behave as an ideal gas, satisfying P̃0 = ρ0RT0/W , where W is the molecular mass of the mixture

assumed constant. The combustion process is nearly isobaric, which implies that pressure variations

from the ambient pressure P̃0 are small, on the order of the squared (representative) Mach number.

We normalize the mass fractions ỸF and ỸO with ỸF0 and νỸF1 respectively, where ν =
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νOWO/νFWF is the mass-weighted stoichiometric coefficient ratio. The initial mixture strength

is then given by φ = νỸF0
/ỸO1

. The pressure and temperature are made dimensionless by P̃0 and

q/cp, where q =QỸF0
/νFWF is the heat release parameter, and density by ρ̃c = P̃0Wcp/qR. Us-

ing ε−1 as a characteristic time, the characteristic velocity and length are
√

Dth ε and
√

Dth/ε

respectively, where Dth = λ/ρ̃ccp is the thermal diffusivity of the mixture.

The flow field, assumed two-dimensional with u, v representing the x, y velocity components,

admits a “similarity solution” of the form

u = u(x) , v = y v(x) , p = p(x, y) (2.2)

such that the transverse pressure gradient varies linearly with distance from the axis, namely

∂p/∂y = −Cy, with the constant C is determined by boundary conditions. For a flat steady flame

T , YF and YO vary only along the axial direction x. The steady state governing equations in

dimensionless form become:

d(ρu)

dx
+ ρv = 0 (2.3)

ρu
du

dx
= −∂p

∂x
+ Pr

(
d2u

dx2
+

1

3

d

dx

(
du

dx
+ v

))
(2.4)

ρu
dv

dx
+ ρv2 = C + Pr

d2v

dx2
(2.5)

ρu
dYF
dx

= L−1F
d2YF
dx2

− ω (2.6)

ρu
dYO
dx

= L−1O
d2YO
dx2

− ω (2.7)

ρu
dT

dx
=
d2T

dx2
+ ω (2.8)

ρT = 1 (2.9)

The parameters that appear in these equations are the Lewis numbers LF = λ/ρ̃cpDF , LO =
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λ/ρ̃cpDO and Prandtl number Pr = µcp/λ. The reaction rate ω is:

ω = Dθ3(ρ/ρa)2 YF YO exp

{
θ(T−Ta)

T/Ta

}
(2.10)

where,

D =
1

ε

(
R T̃a
E

)3
νOB

ρ̃cWF
ρ̃2a ỸF0

e−E/RT̃a (2.11)

is the Damköhler number, which represents the flow-to-chemical reaction times ratio, and θ =

qE/cpRT̃
2
a is the activation energy parameter. Here T̃a is the adiabatic flame temperature corre-

sponding to complete combustion of reactants (to be determined) and ρ̃a is the associated density.

We note that hereafter when the same symbols are used for dimensional and dimensionless vari-

ables, the one without a “tilde” denotes the same quantity but in dimensionless form. Hence, for a

given mixture and for given state conditions, the Damköhler D ∝ ε−1 is controlled by the flow.

Far upstream on either side of the stagnation plane, taken without loss of generality at x = 0,

the state of the gas is uniform and the velocities v ∼ 2y and u ∼ −2x. Hence, the boundary

conditions are:

v = 2, T = T0, YF = 1, YO = 0 as x→ −∞ (2.12)

v = 2, T = T0, YF = 0, YO = φ−1 as x→∞ (2.13)

When applying these conditions to (2.5), one finds that C = 4ρ0. Finally, to ensure that the

stagnation plane remains at the origin, the condition

u(0) = 0 (2.14)

is imposed.

In the following sections, the coupled nonlinear boundary value problem will be solved using

two different approach: (i) an asymptotic approach that exploits the limit of a large activation

energy parameter and (ii) a direct numerical approach. Moreover, to elucidate the role of thermal

expansion on the combustion process both cases of constant and variable density flows will be
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discussed.

2.3 Large Activation Energy Asymptotics

In deriving the solution for θ � 1, we follow the formulation of Cheatham and Matalon [13], which

is valid for distinct and non-unity Lewis numbers and carried to O(θ−1). The analysis covers

the whole range ∞ > D > Dext, namely from complete combustion to extinction. The reaction

is confined to a thin reactive-diffusive region which, when θ → ∞, shrinks to a sheet located at

x = xf . Jump conditions across xf account for the heat released and the degree of fuel and oxidizer

consumed in the reaction zone.

Equations (2.3)-(2.9) must then be solved on either side of the reaction sheet with ω = 0 and

subject to:

[u] = [v̄] = [T ] = [YF ] = [YO] = 0 (2.15)[
dv̄

dx

]
= 0 , [p] = 4

3Pr

[
du

dx

]
(2.16)

[
dT

dx

]
= − 1

LF

[
dYF
dx

]
= − 1

LO

[
dYO
dx

]
(2.17)

YF |x=x+
f

= θ−1LFSF (γ, δ) (2.18)

YO|x=x−
f

= θ−1LOSO(γ, δ) (2.19)

where all variables consist here of the combined first two terms1 in their expansion in θ−1, for

example T = T (0) + θ−1T (1) + · · · . Here the operator [·] denotes the jump in the quantity, namely

the difference between its values at x+f and x−f . The reactant leakage through the reaction sheet

(2.18)-(2.19) is expressed in terms of the “leakage functions” SF and SO, which depend on the two

auxiliary O(1) parameters

γ =
dT/dx|x+

f
+ dT/dx|x−

f

[dT/dx]
(2.20)

1If the equations are solved for the leading and first terms recursively, the jump relations that must be satisfied
for each term in the expansion are different than those listed above; for detail see [13].
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δ =
4LFLO

[dT/dx]2
Dehf (2.21)

The parameter γ, which depends only on the leading order temperature, measures the excess heat

conducted on one side of the reaction sheet, or equivalently on the mixture strength. The parameter

δ is a measure of the reactivity of the chemical reaction and depends primarily on the total enthalpy

available at the reaction sheet

hf = 1
2 (1− γ)hF + 1

2 (1 + γ)hO ,

where hF and hO are the enthalpies associated with the fuel and oxidizer, determined from

T + L−1F YF |x=x+
f

= Ta + θ−1hF

T + L−1O YO|x=x−
f

= Ta + θ−1hO .

The above formulation is restricted to −1 < γ < 1, or to what has been termed by [9] the “diffusion-

flame regime”, excluding the “premixed-flame regime” associated with O(1) leakage of one of the

reactants.

The leakage functions SF and SO are obtained as matching conditions from the numerical

solution describing the inner structure of the reaction zone [13], and due a symmetry property of

these equations may be expressed as

SF =

 S1 for 0 ≤ γ < 1

S2 for − 1 < γ ≤ 0
(2.22)

SO =

 S2 for 0 ≤ γ < 1

S1 for − 1 < γ ≤ 0 .
(2.23)

For a given δ > δc, the solution in the reaction zone is multi-valued; the two distinct solutions

merge at δ = δc and no solution exists otherwise. When expressed in terms of δ, each of the leakage

functions traces two branches. Along one of the branches, referred to as the lower-branch, S1 and
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S2 are both decreasing functions of δ that tend to zero, or to the Burke-Schumann limit, as δ →∞.

Along the other branch, referred to as the upper-branch, S1 and S2 are both increasing functions

of δ that tend, in the limit, to a state associated with O(1) reactant leakage, a state that is of no

interest believed to be unstable.

In order to have direct access to the leakage functions, without the necessity to repeatedly

integrate numerically the structure equations, [13] provided the following formulae

S1 =

 a0 δ
−4/3 exp

{
− a1(δ − δc)a2

}
lower branch

δ−1/3
(
q0 + q1(δ − δc)q2

)
upper branch

(2.24)

S2 =

 b0 δ
−4/3 exp

{
− b1(δ − δc)b2

}
lower branch

δ−1/3
(
r0 + r1(δ − δc)r2

)
upper branch

(2.25)

that best fit the numerical data, where

δc =
(

1−|γ| − (1−|γ|)2 + .26(1−|γ|)3 + .055(1−|γ|)4
)
e1 (2.26)

is an approximation for the critical δc, first obtained by [9]. The coefficients ai, bi, qi and ri, which

depend on γ only, are given by Cheatham and Matalon [13], which should be consulted for further

detail.

We are thus faced with a free surface, nonlinear boundary value problem that consists of solving

equations (2.3)-(2.9) with ω = 0 on either side of the reaction sheet, subject to the the jump

conditions at (2.15)-(2.19) at x = xf and the boundary conditions (2.12)-(2.14). As noted in [13]

the aforementioned jump conditions are sufficient to determine the mass fraction and temperature

profiles as well as the location xf of the reaction sheet. The flame temperature Tf is determined

as the value of the temperature at the reaction sheet, namely Tf = T (xf ).
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2.3.1 Constant density flow

It must be noted that for the constant density case, ρ = 1 is effectively the equation of state that

replaces (2.9), with ρa = 1 in the reaction rate (2.10). The velocity field in this case is exactly

satisfied by

u = −2x, v = 2y, p = ps−2(x2 + y2)

where ps is the stagnation pressure. The remaining equations admit the explicit solution

T =


T0 + (Tf − T0) 1 + erf x

1 + erf xf
for −∞ < x < xf

T0 + (Tf − T0) 1− erf x
1− erf xf

for xf < x <∞
(2.27)

YF =


1− (1− θ−1LFSF )

1 + erf(
√
LFx)

1 + erf(
√
LFxf )

for −∞ < x < xf

θ−1LFSF
1− erf(

√
LFx)

1− erf(
√
LFxf )

for xf < x <∞
(2.28)

YO =


θ−1LOSO

1 + erf(
√
LO x)

1 + erf(
√
LO xf )

for −∞ < x < xf

φ−1−(φ−1−θ−1LOSO)
1− erf(

√
LO x)

1−erf(
√
LO xf )

for xf < x <∞
(2.29)

where the determination of the position of the reaction sheet xf and the flame temperature Tf

result from solving the following transcendental relations

1−erf2(
√
LFxf )

1−erf2(
√
LOxf )

{
1+erf(

√
LOxf )−2θ−1φLOSO

1−erf(
√
LFxf )−2θ−1LFSF

}
e(LF−LO)x2

f = φ

√
LO
LF

(2.30)

Tf = T0 +
1

2LF

{
1−erf(

√
LFxf )−2θ−1LFSF

(1−erf2(
√
LFxf )/(1−erf2xf )

}
e(1−LF )x2

f (2.31)

respectively. Consistency of the asymptotic solution requires retaining only the first two terms

in the expansion of (2.30)-(2.31) in powers of θ−1. The leading terms are obtained by setting

SF = SO = 0, leading to

1 + erf(
√
LFxf )

1− erf(
√
LOxf )

e(LF−LO)x2
f = φ

√
LO
LF

(2.32)
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Ta = T0 +
1

2
√
LF

(1− erf2 xf )e(1−LF )x2
f

1 + erf(
√
LFxf )

, (2.33)

and corresponding to the Burke-Schumann limiting solution. Solving for the O(θ−1) terms results

in cumbersome relations; instead, the solution of (2.30)-(2.31) was sought numerically using a root

solving algorithm.

2.3.2 Variable density flow

For a variable density flow, the equations for the temperature and mass fractions are coupled to

the fluid dynamic equations and must satisfy the jump conditions (2.15)-(2.19) at a location xf

that remains to be determined. In the absence of an analytical solution, a numerical procedure is

used to solve the boundary value problem (2.3)-(2.9). An initial guess for the flame position xf ,

temperature T ∗, transverse v̄∗ and axial u∗ velocities at the reaction sheet location (denoted by ∗),

represented by αi with i = 1, 4, respectively, is first made and the equations solved using the Matlab

boundary value solver bvp5c. The solver uses the four-stage Lobatto-IIIa collocation algorithm to

solve the boundary value problem. [28]. A Newton-Raphson algorithm is then used to iterate on the

guessed values until the four conditions Fi = 0 {i = 1, . . . , 4} are satisfied simultaneously, where

F1 =
1

LF

[
dYF
dx

]
− 1

LO

[
dYO
dx

]
F2 =

[
dT

dx

]
+

1

LF

[
dYF
dx

]
(2.34)

F3 = [dv̄/dx] F4 = u|x=0 (2.35)

The Newton-Raphson algorithm requires a numerical Jacobian, which is populated by second order

central difference analysis of the guessed values with ∆αi = 10−6, and is implemented until con-

vergence is achieved, namely |Fi| < 10−6. The x-momentum equation (2.4) is used together with

the jump condition (2.16) a-posteriori, in order to solve for the axial dependence of the pressure.

For a given set of parameters, an arc-length continuation procedure is followed for the determi-

nation of the solution over the entire range δc < δ < ∞ as described next. For the construction

of the lower branch, the analytical constant density flow solution is used as an initial guess in the
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algorithm for solving the variable density Burke-Schumann limit solution. Starting with a large

value of δ, here taken as δ = 10, the Burke-Schumann solution is used as the initial guess and when

decreasing δ incrementally, the previous solution is used as the initial guess until δ = δc is reached.

The upper branch solution is obtained starting from δ = δc, and increasing δ by small increments.

2.4 Numerical Approach

The numerical solution of the boundary-value problem (2.3)-(2.9) is computed by using a modified

psudo-time relaxation method with uniform grid to solve the equations. Therefore, a time derivative

is imposed to the left hand side of Eqs. (2.5)-(2.8), which are used to compute v, YF , YO and T

respectively. u is computed by integrating Eqn (2.3) using the trapezoidal rule with the boundary

condition given in Eqn (2.14) at the end of each time step. Since x spans from −∞ to +∞, a

sufficiently large computational domain size must be selected, beyond which the changes in variables

are negligible. Therefore, the Burke-Schumann limit solution is first computed and used as guidance

for setting the domain boundaries. It should be noted that the flame position in the numerical

approximation is determined as the location where the flame temperature is at its maximum.

Along a unit length of domain, there exists typically 250 to 500 grid points. For example,

a domain of [-3, 3] contains 1500 to 3000 points. The length of reaction zone gets smaller as

Damköhler number increases. Therefore, in order to resolve accurately the reaction zone at higher

Damköhler numbers, a larger number of grid points is needed. We used fourth order Runge-Kutta

for time derivative and the time step is determined by trial and error. Typically, time step usually

varies between 10−7 and 10−6. The Burke-Schumann solution is used as an initial condition at time

t = 0 for large Damköhler number. Let f be the solution of variable at t = n and f̂ be the solution

of variable at t = n + 1, which is a full computational second later. The solution is assumed to

have approached steady state when maxi|fi − f̂i| < 10−6, where i corresponds to the domain node

number.

The explicit direct approach fails as the Damköhler number gets closer extinction value because

the equations become unstable. To extend the curve around the extinction point we adopt a version
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of the continuation method used by Kurdyumov and Matalon [29] to compute the unstable portion

of a response diagram. The governing equations are solved with an additional constraint that the

temperature remains constant at some reference point, say T (x∗) = T ∗. This additional constraint

is used to iterate on the value of Damköhler number, D, by solving the temperature equation at

this fixed point during each time step. Convergence is achieved when both the Damköhler number

and the space distribution of solution do not vary within a computational second.

For the results presented below the following parameters were held fixed (unless otherwise

stated):

T0 = 0.134, θ = 20, P r = 0.7

which correspond to typical values of hydrocarbon combustion at atmospheric conditions. The

mixture strength and fuel Lewis number (LF ) are varied over the range

0.5 < LF < 2, 0.4 < φ < 4,

corresponding to various degree of dilution [30]. The results obtained by varying fuel Lewis number

is equivalent to that obtained by varying oxidizer Lewis number due to symmetry. Hence, we set

LO = 1. The entire range of strain rates, from low up to the extinction value are covered by varying

the Damköhler number from sufficiently large values down to extinction.

2.5 Results

For sufficiently large Damköhler number (or small strain rate), the Burke-Schumann solution should

match the computational solution, which is used as a validation step for the numerical method and

as a starting point for the response curve calculation. In Figure 2.2, we compare the numerical

and asymptotic solutions for the variable density configuration. As it can be seen, the numerical

solution matches the asymptotic solution extremely well, with the small difference attributed to the

finite reaction rate used in the numerical solution compared to the infinitely fast chemistry of the

the asymptotic solution. Also, the domain boundaries seem more than sufficient to span the infinite
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physical domain as there is negligible change in temperature or mass fraction profiles beyond the

numerical boundaries. We conducted this validation step for all considered parameter variations

and they yielded similar results.
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Figure 2.2: Comparison of the variable density numerical and asymptotic solutions for D = 1000,
with LF = 1, LO = 1, φ = 1.
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2.5.1 Reaction sheet location

The reaction in the Burke-Schumann limit is confined to a sheet located at xf obtained from the

asymptotic expressions (2.30) and (2.17) for the constant- and variable-density flows, respectively.

In Figure 2.3, we show the dependence of xf on the mixture strength for various values of the fuel

Lewis number. For unity Lewis numbers, i.e., when LF is also equal to one, the reaction sheet lies

on the fuel side for φ < 1 (lean conditions) and on the oxidizer side for φ > 1 (rich conditions).

Density variation has a strong effect on the flame position. For low mixture strength values, the

variable density solution is higher than the constant density solution and vice-versa for high mixture

strength values. As LF increases, the flame position moves more towards the oxidizer region and

has a larger difference between constant and variable density solutions. In the numerical solution,

as D decreases from complete combustion to extinction, the thickness of the reaction zone, which

is centered at xf , increases.
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Figure 2.3: The dependence of the reaction sheet position xf in the Burke-Schumann limit on the
mixture strength φ, for various fuel Lewis numbers LF , with oxidizer Lewis number LO = 1. The
dashed line represents the variable density solution, while the solid line represents the constant
density solution.
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Figure 2.4: x-velocity comparison for constant and variable density formulations at complete com-
bustion and extinction. The solid and dashed lines represent the asymptotic variable and constant
density solution respectively. The dotted line represents the offset in the x-velocity due to density
variation.

2.5.2 Flow field

The displacement effect of a premixed flame in stagnation point flow is studied by Eteng et al. [31]

A similar analysis is presented here for the counterflow diffusion flame. In Figure 2.4, we compare
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Figure 2.5: ∆F as a function of heat release (as included in T0) when LF = 1, LO = 1, φ = 1.

the effect of density variation in the x-velocity at complete combustion and extinction. The offset

due to density variation in the fuel and oxidizer region is characterized by ∆F and ∆O respectively.

∆F is larger/smaller than ∆O depending on the values of Li and φ. For the case of unity Lewis

number and mixture strength, ∆F and ∆O are equal due to symmetry. Both ∆F and ∆O are

affected by changes in leakage functions (due to variations in Damkohler number) and heat release.

It is evident from Figures 2.4(a) and 2.4(b) that as D approaches extinction, the decrease in flame

temperature causes a reduction in the offset due to density variation. Similarly, as heat release is

increased (or T0 is decreased), there is a greater offset in the x-velocity as shown in Figure 2.5.

The variation in density can cause a jump in pressure as seen in Eqn (2.16). Due to the boundary

condition in (2.14), when the reaction sheet is located at x = 0, there is no jump in pressure (as

evident in Figure 2.6(a)). When the reaction sheet is not located at the center (as shown in Figure

2.6(b)), there is a jump in pressure whose magnitude corresponds to heat release. In Figure 2.7, it

is evident that as heat release increases (or T0 decreases), the jump in pressure also increases.
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Figure 2.6: Asymptotic and numerical solutions of pressure profiles at complete combustion for
various mixture strength.

2.5.3 Response curves: complete combustion to extinction

It is important to note that the extinction Damköhler number does not always correspond to

the critical Damköhler number (the corresponding value of δc). They are only equal for the case

of complete combustion unity Lewis numbers (or hf = 0) when D is directly proportional to
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1, φ = 0.4

δ. Otherwise, there is an implicit relation between D and δ due to excess/deficiency in available

enthalpy hf at the reaction sheet (as seen in Eqn (2.21)). Therefore, Eqn (2.21) is used to iteratively

solve for δ as a function of D or vice-versa. The relationship between D and δ is listed in [10] and

discussed in [13].

The formulation adopted in this work is based on the general time-dependent and multi-

dimensional asymptotic theory that exploits the limit of a large activation energy. Hence, if we

increase θ, the difference between the exact (numerical) solution and asymptotic approximation

should decrease as well. This should apply both to the constant and variable density formula-

tions. In our analysis, we are primarily interested in how well the asymptotic solution predicts the

extinction Damköhler number, flame temperature and flame position.

In Figure 2.8, we compare the asymptotic approximation with the numerical solution in both

constant and variable density scenario for the configuration: LF = 1, LO = 1, φ = 1 and θ = 20.

When the Lewis numbers and mixture strength are unity, the flame position, xf is zero across all

Damköhler number. Similarly, the fuel and oxidizer leakage are also equal to each other for unity

Lewis numbers. It is clear that for both scenarios, the Burke-Schumann limit flame temperature is

0.634. For the constant density formulation, the asymptotic extinction Damköhler number is 0.27
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Figure 2.8: Extinction profiles of uniform configuration with standard value for activation parameter
(LF = 1, LO = 1, φ = 1, θ = 20).

with a flame temperature of 0.595 and a fuel leakage of 0.04; the numerical extinction Damköhler

number is 0.46 with a flame temperature of 0.545 and a fuel leakage of 0.09. Similarly for the

variable density formulation, the asymptotic extinction Damköhler number is 0.99 with the same

flame temperature and fuel leakage as the constant density formulation; the numerical extinction

Damköhler number is 1.2 with a flame temperature of 0.54 and a fuel leakage of 0.095. When

comparing the asymptotic and numerical solutions, we see that extinction flame temperatures and

fuel leakage match relatively well with a difference of 0.05. The asymptotic extinction Damköhler
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Figure 2.9: Extinction profiles of uniform configuration with large activation parameter (LF = 1,
LO = 1, φ = 1, θ = 40).

number is shown to match well with the numerical simulation.

In Figure 2.9, we compare the asymptotic approximation with the numerical solution for the

configuration: LF = 1, LO = 1, φ = 1 and θ = 40. It is evident from the governing equations that

the Burke-Schumann limit does not change with the activation energy parameter. For the constant

density formulation, the asymptotic extinction Damköhler number is 0.27 with a flame temperature

of 0.615 and a fuel leakage of 0.02; the numerical extinction Damköhler number is 0.37 with a flame

temperature of 0.585 and a fuel leakage of 0.05. Similarly for the variable density formulation,
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the asymptotic extinction Damköhler number is 0.99 with almost the same flame temperature and

fuel leakage as the constant density formulation; the numerical extinction Damköhler number is

1.1 with a flame temperature of 0.58 and a fuel leakage of 0.053. When comparing the constant

density asymptotic and numerical solutions, we see that extinction flame temperatures match rel-

atively well with a slight difference of 0.03. Likewise, the asymptotic variable density extinction

Damköhler number and flame temperature match well with the numerical solutions. This shows

that as activation energy parameter increases, the difference between numerical and asymptotic

solution decreases.

2.5.4 Lewis number variation

We are interested in comparing asymptotic approximation of extinction values to numerical sim-

ulation for large and small Lewis number in both constant and variable density formulations. In

Figure 2.10, we present the solutions for large Lewis number scenario (LF = 2). Unlike the unity

Lewis number case, there is a small difference in Burke-Schumann flame temperature between the

constant and variable density formulations. Since the numerical grid is discrete, the numerical

flame position also progresses in discrete steps as Damköhler number varies. There is a small

uncertainty associated with this approximation because the reaction zone is of finite length. For

constant density formulation, the asymptotic extinction Damköhler number is 0.115 with a flame

temperature of 0.535 and flame position of -0.1; the numerical extinction Damköhler number is

0.23 with a flame temperature of 0.48 and a flame position of -0.1. Similarly for variable density

formulation, the asymptotic extinction Damköhler number is 0.43 with a flame temperature of 0.52

and a flame position of -0.06; the numerical extinction Damköhler number is 0.58 with a flame

temperature of 0.465 and a flame position of -0.06. Once again, there is a good match between the

asymptotic and numerical solutions of extinction Damköhler number for both formulations with

the flame temperature having a difference on the order of θ−1. The flame position is predicted well

for both formulations.

In Figure 2.11, we analyze the asymptotic and numerical solutions for small Lewis number

scenario (LF = 0.6). The Burke-Schumann flame temperature decreases as Lewis number increases
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Figure 2.10: Extinction profiles of large Lewis number (LF = 2, LO = 1, φ = 1, θ = 20).

because of low species diffusivity. For constant density formulation, the asymptotic extinction

Damköhler number is 0.55 with a flame temperature of 0.67 and flame position of 0.09; the numerical

extinction Damköhler number is 0.83 with a flame temperature of 0.62 and a flame position of 0.09.

Similarly for variable density formulation, the asymptotic extinction Damköhler number is 2.02

with a flame temperature of 0.68 and a flame position of 0.07; the numerical extinction Damköhler

number is 2.26 with a flame temperature of 0.62 and a flame position of 0.07. As in the large Lewis

number scenario, the variable density Burke-Schumann limit is slightly larger than the constant

density formulation, which results in a lower extinction temperature. There is good agreement
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Figure 2.11: Extinction profiles of small Lewis number (LF = 0.6, LO = 1, φ = 1, θ = 20).

between the numerical and asymptotic flame position for both formulation.

2.5.5 Mixture strength variation

Finally, we analyze the effect of mixture strength variation on the comparison between numerical and

asymptotic solutions for constant and variable density formulation. In Figure 2.12, the case of large

mixture strength (φ = 4) is analyzed. It is easily visible that, unlike Lewis number variation, there

is no change in Burke-Schumann limit values between the two formulations. For constant density

formulation, the asymptotic extinction Damköhler number is 0.043 with a flame temperature of
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Figure 2.12: Extinction profiles of large mixture strength (LF = 1, LO = 1, φ = 4, θ = 20).

0.29 and flame position of 0.23; the numerical extinction Damköhler number is 0.063 with a flame

temperature of 0.25 and a flame position of 0.20. Similarly for variable density formulation, the

asymptotic extinction Damköhler number is 0.21 with a flame temperature of 0.29 and a flame

position of 0.11; the numerical extinction Damköhler number is 0.17 with a flame temperature of

0.24 and a flame position of 0.08. It is evident that there is a strong consensus between numerical

and asymptotic extinction values for constant and variable density formulations.

In Figure 2.13, the results for small mixture strength (φ = 0.4) is presented. For constant

density formulation, the asymptotic extinction Damköhler number is 0.58 with a flame temperature
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Figure 2.13: Extinction profiles of small mixture strength (LF = 1, LO = 1, φ = 0.4, θ = 20).

of 0.81 and flame position of -0.32; the numerical extinction Damköhler number is 0.82 with a flame

temperature of 0.765 and a flame position of -0.30. For variable density formulation, the asymptotic

extinction Damköhler number is 1.80 with a flame temperature of 0.81 and a flame position of -

0.21; the numerical extinction Damköhler number is 1.95 with a flame temperature of 0.76 and

a flame position of -0.2. The extinction flame temperature has an approximate difference of 0.05

between asymptotic and numerical solution. The match between the two formulations for extinction

Damköhler number and flame position show similar trends as the previous cases.
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2.6 Conclusion

The calculations presented in this chapter illustrates the effect of density variation on the extinc-

tion curves for a counterflow diffusion flame. The similarity solution was used for two-dimensional

counterflow problem to simplify the governing equations. The values chosen lie within the range

of methane-air combustion. We assume low Mach number approximation, which results in small

pressure variations from the ambient state. The governing equations are analyzed using numerical

solutions and asymptotic approximations. For numerical solutions, a fourth order Runge-Kutta is

used for temporal discretization while a fourth-order central difference is used for spatial discretiza-

tion. Since the solution is unstable near extinction point, we employed a version of continuation

method to extend the response curve.

The asymptotic analysis of counterflow diffusion flame presented in this chapter is an application

of the general theory presented by Cheatham and Matalon [13], which works under the assumption of

large activation energy. We present the results of this theory in both constant and variable density

formulation and compare it to numerical solutions for large/small Lewis numbers and mixture

strengths. The asymptotic analysis of constant density formulation yields an analytical solution

while the variable density formulation can only be computed by integrating the governing equations

with appropriate jump conditions. In all considered cases, both formulations match almost exactly

with each other at the complete combustion limit, which is used as a validation for the numerical

procedure. It is worth nothing that the Burke-Schumann limit flame temperature for constant and

variable density formulations differ only in the case of non-uniform Lewis numbers. The asymptotic

extinction Damköhler number for both formulations matched well with the numerical solution.

The extinction flame temperature and position also had good agreement between asymptotic and

numerical solution for both formulations. Overall, the asymptotic analysis is shown to be relatively

accurate for wide array of parameters.
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Chapter 3

Modeling Extinction of Diffusion
flames in Titanium-Boron
Combustion

3.1 Introduction

A prominent example we have chosen to highlight in our following discussion, is nano-composite

made from titanium and boron that reacts to make titanium diboride. The overall equilibrium

reaction of titanium (Ti) and boron (B) to make titanium diboride (TiB2), is

Ti + 2B→ TiB2 . (3.1)

with a heat of reaction of approximately -323.8 KJ/mol [5]. In the wider class of metal/metal

oxide and metal/intermetallic pairs, this is a very high energy release reaction. The Ti/2B system

offers an advantages over metal/metal oxide thermites, since it is possible to mix the reactants

and make nano-scale composites safely without reaction, and consequently make a material that

remains essentially inert until activated. Trunov et al. [32] describes the manufacture of nano-

composite mixtures produced by arrested reactive milling. titanium and boron powders are placed

in a ball mill and blended at cold temperature to prevent reaction while making the finely blended

composite. Photomicrographs of a section in a region of the blended nano-composite shows fully

dense regions of titanium adjacent to regions of boron at the 1 micron length scale. However even

at that scale, one still observes distinct interfaces of pure titanium next to regions of pure boron.

Mixing by ball milling produces large increases of the titanium/boron reaction surface that is likely

orders of magnitudes larger than prior to ball milling.

Rogachev [33] identifies the nature of three different reaction waves that occur in multilayer
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nanofilms. Self-propagating reaction waves (or self-sustained high-temperature synthesis SHS waves

- 0.1 to 10 m s−1) are observed in films separated from an inert substrate and the layer thickness is

heavily dependent on the combustion rate. Very fast reaction waves (10 - 100 m s−1) are initiated

by a laser pulse in films deposited on a cold substrate. Slow reaction waves (less than 0.01 m

s−1) occur in films with thickness smaller than a micrometer and heated together with substrate.

Adams and Weihs [34] [35] present an overview of current developments in the theoretical and

experimental investigations into reactive multilayered energetic materials. They summarize the

efforts on the effect of bilayer thickness on ignition and combustion velocities of many energetic

compounds, including Ti/2B. Weihs also explores the experimental techniques to measure atomic

diffusion in condensed phase reactive materials.

Reeves et al. [36] studied the effect of various gas environments and bilayer thickness in high-

purity Ti/2B reactive multilayers. He found that for relatively large bilayer thickness samples

(greater than 857 nm), the reaction failed to occur in very low pressure, while smaller thickness

samples did not show such dependency on the surrounding air pressure. He also found that the

oxidation of these thicker foils was able to augment intermixing between the Ti and B layers,

primarily due to the reactivity of Ti layers with environmental gas.

Sraj et al. [37] studied the response of Ni/Al multilayered composites to shock compression.

A simplified approach was adopted in which CTH calculations were first applied to estimate the

impact of shock heating. The resulting predictions were then used to initialize the computations of

the transient, adiabatic, behavior of the reaction initiated by the shock heating. In particular, the

analysis aimed at investigating the effects of the bilayer thickness, shock velocity and orientation

on the evolution of reaction and consumption of reactants. Zhao et al. [38] approaches the problem

from a molecular dynamics perspective by analyzing the effect of porosity on initiation and energy

release rate in Ni/Al nanolaminates.

Our modeling approach differs from the ones presented above in that we analyze the effect

of a planar flame created through material deformation at high temperatures and low pressure.

Also unlike the previous work, we have chosen to simultaneously analyze both the mechanical and

chemical reactions. This inclusion of formation of products makes this a three-species model, while
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Sraj et al. [37] considered only a two species model.

The basic formulation of diffusion that most literature follow is:

∂C

∂t
= ∇ · (D∇C) (3.2)

∂H

∂t
= K

∂2T

∂2x
− ∂Q

∂t
(3.3)

with an atomic diffusion, D, given as:

D(T ) = D0 exp

(
− E

RT

)
(3.4)

Where, C describes mixing as a time dependent conserved scalar, H is the section averaged enthalpy

and Q is the chemical energy source term.

Different types of nano-composite materials were burned in a Methane-air flame and we assessed

the effect of the additives on the output of the resulting combustion products. Trunov et al.

[32] found that the very high temperatures created by the burning of stoichiometric Ti/2B nano-

composite was the most effective in the generation of heated gas products. Their work suggests that

the Ti/2B nano-composite might be useful as an active ingredient in composite explosive fills that

could be used for biocidal agent defeat. The basic concept for agent defeat is to add the Ti/2B nano-

composite as an additive or fill along with another component, such as lithium perchlorate, that

at high temperature evolves to a lethal biocidal gas like chlorine, which is able to defeat biological

toxins and kill spores. Along these same lines, Glumac et al. [5] carried out a series of experiments

in which Ti/2B powders and Ti/2B nano-composites. Ti/2B powders and Ti/2B nano-composites

were pressed into pellets that were shock initiated with explosives. The quasi-static pressure in

a small blast chamber was measured to assess the energy release output of pressed pellets. Once

again, in a selection of variants of pressed pellets of titanium and boron mixtures that were mixed by

different means, the stoichiometric, milled reactive Ti/2B nano-composite was the best performer

with the highest observed temperatures and pressure outputs.

The engineering design of novel energetic and reactive materials requires that we have a funda-
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mental understanding of the processes of chemical reactions of condensed phase reactants that are

initially separated. In all the cases discussed above, the energetic material is a designed material

where the micro scale features are defined by the manufacture of the material. The individual com-

ponents are generally inert, and only react when they are exposed to thermal heating and or shock

stimulus that leads to a chemical reaction at interfaces of adjacent components. Almost always the

initial chemical reaction first takes place in the condensed phase, most often in a liquid melt and

in an environment where the characteristic thermal diffusivity in the surrounding material is large

compared to the mass diffusivity of the reactants. The reaction products can be gaseous or liquid

but they evolve at least initially in the condensed phase environment.

3.1.1 Basic approach and summary

In this chapter we analyze a steady diffusion flame that arises at the interfaces of two condensed

phase reactant streams that form an opposed counterflow. We assume that the flow is due to

deformation from compaction or local heating and thermal expansion processes in the microscale

environment of composite energetic materials. Figure 3.1 shows the planar configuration of the

reaction front. Because of our interest in the applications described above, we have focused on

the Ti/B system and describe it simply with three components; two reactants Ti and B, and the

product TiB2 . The equation of state of the three components, and the formulation that defines

the equilibrium equation of state of the mixture, is based on multicomponent thermodynamics

formulations that are similar to those used in the study of metallurgy and materials [39]. As such,

the formulation is based on Gibbs thermodynamic potentials where one assumes that at each point

of the condensed phase mixture, there is a single stress state and temperature.

We make some simplifying assumptions in this first work. The chemical reactions take place at

nearly constant pressure so that the stress is spherical and hence is represented by the hydrostatic

pressure. Each isolated component is assumed to have its own distinct reference density, and we

neglect thermal expansion in the components. This is consistent with the notion that the change

in composition due to reaction is much larger than changes due to thermal expansion. As a result

the mechanical equation of state for the mixture takes a simple form whereby the specific volume
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of the mixture is simply a sum of the intrinsic densities weighted with the mass fraction of each

component. This form of the mechanical equation of state stands in contrast with that for a mixture

of reacting gases that is a relation between the specific volume, pressure, temperature and mass

fractions. The diffusion model for the components is derived from an effective Fickean diffusion

formulation as described by Curtiss [40] and Curtiss and Bird [41], whereby a Maxwell-Stefan law

formulated in terms of binary diffusivities is expressed as a generalized Fick diffusion law with

symmetric diffusion coefficients. The resulting diffusion coefficients used in our model are then

chosen to be consistent with experiments reported in [32].

In this study we analyze the effect of density variation and diffusion on the reaction between

titanium and boron. The microscale length and relative motion between the reactants provide the

characteristic scales, and in particular the representative strain rate that determines the conditions

that differentiate between vigorous and weak burning between titanium and boron. This is ad-

dressed first under the assumption of constant mixture density, which enables the construction of

an analytical solution. We use that solution to estimate the binary diffusion coefficients required

for a given adiabatic flame temperature, as well as estimate the strain rates that leads to extinction

in reaction for the counterflow geometry. We then address the general case when the density of

the mixture varies as it reflects the local composition of the mixtures. When comparing the con-

stant and variable density formulation, the change in extinction strain rate is minimal. The viscous

transport is neglected in our formulation during this first attempt and will be considered in the

future.

3.2 Formulation

The counterflow geometry under consideration is shown in Figure 3.1, where far to the left (state

1) there is only titanium and far to the right (state 2) there is only boron; the intrinsic densities

are denoted by ρ̂10 and ρ̂20 , respectively. Under steady conditions, the material deformation may

be described by a velocity field v =
{
u(x), y ϑ̄(x)

}
. This “similarity solution” implies that the

pressure gradient in the transverse direction y is necessarily linear and admits planar combustion
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fronts such that all state variables, the mass fractions Yi, the density ρ, and temperature T , are

functions of x alone. The constituents in the combustion zone include titanium of mass fraction

Y1, boron of mass fraction Y2, and titanium diboride products of mass fraction Y3. An overall

conservation of mass implies that

Y1 + Y2 + Y3 = 1 . (3.5)

The conductivity k and specific heat (at constant pressure) cp of the mixture (defined as mass-

weighted averages) are, in general, functions of temperature but for simplicity will be considered

here as constants. Finally, the chemical reaction (3.1) between Ti and B is assumed to proceed at

a rate

ω = BY1Y 2
2 e
−E/RT (3.6)

where E is the activation energy, R is the universal gas constant and B is an appropriately de-

fined pre-exponential factor. Diffraction reaction orders could be considered without difficulty; the

present form that simplifies the reaction to one-step process was made for simplicity.

3.2.1 Conservation equations

The governing equations, describing conservation of mass, momentum, and energy under steady

conditions simplify to

d

dx
(ρu) + ρ ϑ̄ = 0 (3.7)

ρu
dϑ̄

dx
+ ρ ϑ̄2 = C (3.8)

ρcpu
dT

dx
−Kd2T

dx2
= Qω (3.9)

ρu
dY1
dx

+
d

dx
(ρY1V1) = −W1ω (3.10)

ρu
dY2
dx

+
d

dx
(ρY2V2) = −2W2ω (3.11)
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Figure 3.1: Schematic of the condensed phase counterflow diffusion flame, with titanium entering
from the left and boron from the right.

where Vi,Wi stand for the diffusion velocity and molecular weight of species i, and Q is the overall

heat release. As noted earlier, the pressure gradient in the transverse y-direction is linear, given by

∂p/∂y = −Cy, where C is a constant determined by the far field conditions. Equation (3.8) implies

that there is a relation between the densities and strain rates at the far ends, such that

ρ̂10ε
2
1 = ρ̂20ε

2
2 = C . (3.12)

Hence the motion of the reactants impinging on each other is characterized by a single strain rate

ε (in units of 1/s) which we choose as ε = ε1/2; the factor of 2 is introduced solely to facilitate the

form of the analytical asymptotic solution described below. The axial dependence of the pressure

can be obtained a-posteriori by solving the x-component of the momentum equation (not written

above).
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Equations (3.7)-(3.11) must be supplemented with constitutive relations for the diffusion veloc-

ities and an equation of state for the mixture. Starting with the assumption that the Gibbs free

energy of each component of the mixture can be summed, the Gibbs potential for the mixture which

is a function of the pressure temperature and mixture composition is

g =

3∑
i=1

gi(p, T )Yi , (3.13)

where the energies related to mixing has been neglected. The specific volume υ = 1/ρ of the mixture

and individual components are given by the thermodynamic relation:

υ =
∂g

∂p

∣∣∣
T,Yi

and υi =
∂gi
∂p

∣∣∣
T
, (3.14)

where υi are the partial volumes or volume of the components. This leads to

υ =

3∑
i=1

υi(p, T )Yi . (3.15)

which is the mechanical equation of state for the mixture. If we further assume that the volume

change under variation of pressure is small and we neglect the effect on temperature as well, then

the component volumes υi can be approximated by their reference values υ̂i0. By expressing eqn

(4.9) in terms of the densities, the mechanical equation of state becomes

ρ−1 =

3∑
i=1

Yi ρ̂
−1
i0

(3.16)

where ρ̂i0 is the intrinsic density and ρ̂−1i0 is the intrinsic specific volume, of the species i. Using

(3.5) the equation of state simplifies to

1

ρ
=

1

ρ̂30
+

(
1

ρ̂10
− 1

ρ̂30

)
Y1 +

(
1

ρ̂20
− 1

ρ̂30

)
Y2 . (3.17)

The material properties, far to the left (denoted by subscript 1) and far to the right (denoted

by subscript 2), are uniform such that the boundary conditions associated with (3.7)-(3.11) are:
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du/dx ∼ −2ε as |x| → ∞ , (3.18)

ρ = ρ̂10 , Y1 = 1, Y2 = 0, T = T∞ as x→ −∞ , (3.19)

ρ = ρ̂20 , Y1 = 0, Y2 = 1, T = T∞ as x→ +∞ . (3.20)

Note that there is no need to specify a condition for ϑ̄, because it is obtained by differentiation

ϑ̄ = −1

ρ

d

dx
(ρu) . (3.21)

When note that density variations remain small, the equation of state (3.17) can be effectively

replaced by ρ =constant, and the velocity field everywhere is given by

u = −2εx , v = 2εy . (3.22)

The problem reduces to the reaction-diffusion system (3.9)-(3.11). The constant-density approxima-

tion will be used for simplicity in the asymptotic description described below. In general, variations

in the density affect the overall velocity fields. In Section 3.5, numerical computations are carried

out in order to assess the importance of density variations in condensed-phase combustion.

3.2.2 Diffusion

The most common expressions used for multi-component diffusion are the Maxwell-Stefan (MS)

relations, [42]

∇Xi =
∑
j

XiXj

Dij
(Vj −Vi) , (3.23)

where Xi is the molar fraction and Vi is the diffusion velocity vector of species i, Dij = Dji is the

binary diffusivity of a pair of species (i, j), and the summation is taken over all species present.
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Although this relation was derived for a dilute ideal gas mixture, it has been often applied to

condensed phase media [43].

The use of the Maxwell-Stefan relations is quite complicated because the diffusion velocities Vi

are not expressed explicitly in terms of the concentration gradients. A common practice is to use

the generalized Fick equations

Vi =
∑
j

Dij ∇Xj (3.24)

where coefficients Dij referred to as Fick diffusivities are related to the binary diffusivities Dij , but

they are concentration dependent and may not necessarily be all positive. They must satisfy the

constraints

Dij = Dji, for all i, j ,
∑
i

DijYi = 0 for all j .

The relation between the Fick diffusivities Dij and binary diffusivities Dij for a ternary mixture

are given by

D11 = −

(Y2 + Y3)
2

X1 D23
+

Y2
2

D13X2
+

Y3
2

X3 D12

X1

D12 D13
+

X2

D12 D23
+

X3

D13 D23

(3.25)

D22 = −

(Y1 + Y3)
2

D13X2
+

Y3
2

X3 D12
+

Y1
2

X1 D23

X1

D12 D13
+

X2

D12 D23
+

X3

D13 D23

(3.26)

D33 = −

(Y2 + Y1)2

X3D12
+

Y 2
1

X1D23
+

Y 2
2

X2D13

X1

D12D13
+

X2

D12D23
+

X3

D13D23

(3.27)

D12 =

Y1(Y2 + Y3)

X1D23
+
Y2(Y1 + Y3)

X2D13
− Y 2

3

X3D12

X1

D12D13
+

X2

D12D23
+

X3

D13D23

(3.28)
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D13 =

Y3(Y2 + Y1)

X3D12
+
Y1(Y2 + Y3)

X1D23
− Y 2

2

X2D13

X1

D12D13
+

X2

D12D23
+

X3

D13D23

(3.29)

D23 =

Y2(Y1 + Y3)

X2D13
+
Y3(Y2 + Y1)

X3D12
− Y 2

1

X1D23

X1

D12D13
+

X2

D12D23
+

X3

D13D23

(3.30)

Converting eq. (3.24) from mole to mass fraction yields:

YiVi = ai∇Y1 + bi∇Y2 , i = 1, 2 (3.31)

where

a1 =
W1(Y2 + Y3)(−Y2W3 −W2 + Y2W2)D13D12 + Y1Y2W2(W1 −W3)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

− W3Y1(W2 − Y2W2 + Y2W1)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

b1 = −Y1W1(Y2 + Y3)(W2 −W3)D13D12 + Y1W2(−W1 + Y1W1 −W3Y1)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

+
Y1W3(−Y1W2 −W1 + Y1W1)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

a2 = −Y2W1(−W2 + Y2W2 − Y2W3)D13D12 + Y2W2(Y1 + Y3)(W1 −W3)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

− Y2W3(−Y2W2 + Y2W1 +W2)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12
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b2 =
Y2Y1W1(−W3 +W2)D13D12 +W2(Y1 + Y3)(−W1 + Y1W1 − Y1W3)D23D12

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

+
Y2W3(−Y1W2 −W1 + Y1W1)D23D13

Y1W2W3D23 + Y2W1W3D13 + Y3W2W1D12

The species equations (3.10)-(3.11) can then be written as

ρu
dY1
dx

+
d

dx

[
ρ
(
a1
dY1
dx

+ b1
dY2
dx

)]
= −W1 ω , (3.32)

ρu
dY2
dx

+
d

dx

[
ρ
(
a2
dY1
dx

+ b2
dY2
dx

)]
= −2W2 ω . (3.33)

A simplification that can be used for analytical convenience result from assuming equal molecular

weights W1 = W2 = W3, then

a1 = −D13
D12 + (D23 −D12)Y1

(D23 −D12)Y1 + (D13 −D12)Y2 + D12

b1 =
D23(D12 −D13)Y1

(D23 −D12)Y1 + (D13 −D12)Y2 + D12

a2 =
D13(D12 −D23)Y2

(D23 −D12)Y1 + (D13 −D12)Y2 + D12

b2 = −D23
D12 + (D13 −D12)Y2

(D23 −D12)Y1 + (D13 −D12)Y2 + D12

3.3 Asymptotic Solution - the Burke-Schumann limit

We first present analytical results in the limit of infinitely fast chemical reaction, which is known

as the Burke-Schumann limit. The solutions obtained in this limit provide a simple illustration of

the flame structure. A characteristic time may be defined based on a characteristic length between

particles divided by a typical local microscale flow velocity due to deformation. The inverse of

this time is the characteristic strain rate, and the fast chemistry limit corresponds to weak strain
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rates.Therefore, the corresponding Damköhler number, or ratio of the flow-to-chemistry time scales

is large. Although asymptotic methods that span a wider range of strain rates including flame

extinction are available for the related gaseous problem [13], their extension to energetic materials

will be discussed in a future publication. Here we rely on numerical methods to examine the

dependence of the solution on the strain rate for steady combustion.

In the fast chemistry limit the chemical reaction occurs along a sheet, say at x = xf , where the

two reactants are in contact. Elsewhere, the chemical reaction is negligibly small and we are left

solving the energy and species equations on either side of the sheet, with ω = 0. The flame sheet

separates a region where there is only titanium (x < xf ), from a region where there is only boron

(x > xf ). Hence for x < xf , since Y2 = 0, we find

a1 = −D13 , b1 =
D23(D12 −D13)Y1

D23Y1 + D12(1− Y1)
,

a2 = 0 , b2 = − D23D12

D23Y1 + D12(1− Y1)
.

Similarly for x > xf , since Y1 = 0, we find

a1 = − D13D12

D13Y2 + D12(1− Y2)
, b1 = 0 ,

a2 =
D13(D12 −D23)Y2

D13Y2 + D12(1− Y2)
, b2 = −D23 .

We note parenthetically that the simplification of the coefficients ai, bi applies even for unequal

molecular weights. All variables must be continuous at the flame sheet, but the mass and energy

fluxes must satisfy the jump relations

α

Q/cp

[dT
dx

]
=

1

W1

[
a1
dY1
dx

+ b1
dY2
dx

]
=

1

2W2

[
a2
dY1
dx

+ b2
dY2
dx

]
, (3.34)
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obtained by integrating (3.9) and (3.32)-(3.33) across the sheet. Here the square brackets denote

the jump, namely the difference between the values on the burned and unburned sides. These

conditions imply that the fluxes of titanium and boron towards the flame sheet are in stoichiometric

proportions, and they specify the proportion of heat from the total heat released conducted to one

or the other side of the sheet.

For simplicity in this section, we have also adopted the constant density approximation. The

mathematical problem on either side of the flame sheet then consists of

2εx
dT

dx
+ α

d2T

dx2
= 0 for x ≶ xf (3.35)

2εx
dY1
dx

+ D13
d2Y1
dx2

= 0 for x < xf (3.36)

Y1 ≡ 0 for x > xf (3.37)

Y2 ≡ 0 for x < xf (3.38)

2εx
dY2
dx

+ D23
d2Y2
dx2

= 0 for x > xf (3.39)

where α = k/ρcp is the thermal diffusivity, together with the boundary conditions (3.19)-(3.20)

where ρ is assumed constant. At x = xf ,

[T ] = [Y1] = [Y2] = 0 (3.40)

α

Q/cp

[dT
dx

]
=− D13

W1

[dY1
dx

]
= − D23

2W2

[dY2
dx

]
. (3.41)

The solution of this problem is readily obtained as
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T =



T∞ + (Tf − T∞)
1 + erf

(√
ε/α x

)
1 + erf

(√
ε/α xf

) x < xf

T∞ + (Tf − T∞)
1− erf

(√
ε/α x

)
1− erf

(√
ε/α xf

) x > xf

Y1 =


1−

1 + erf
(√

ε/D13 x
)

1 + erf
(√

ε/D13 xf

) x < xf

0 x > xf

Y2 =


0 x < xf

1−
1− erf

(√
ε/D23 x

)
1− erf

(√
ε/D23 xf

) x > xf

with the position xf of the flame sheet and the adiabatic flame temperature Tf , defined as the value

of T at the flame sheet, satisfying

1 + erf(
√
ε/D13 xf )

1− erf(
√
ε/D23 xf )

= ν

√
D13

D23

eεx
2
f/D23

eεx
2
f/D13

(3.42)

Tf = T∞ +
1

2

Q/cp
W1

√
D13

α

1− erf 2(
√
ε/α xf )

1 + erf(
√
ε/D13 xf )

eεx
2
f/α

eεx
2
f/D13

(3.43)

where ν = 2W2/W1 is a mass-weighted stoichiometric ratio. The position xf is determined from

the transcendental equation (3.42) using an iterative process. We note that for a given strain rate

ε the position xf depends only on the binary diffusivities Ti-TiB2 and B-TiB2 and independent of

the diffusivity of Ti-B, since there is no boron in the titanium region and vice-versa. Once xf is

determined, the flame temperature can be calculated from (3.43) by direct evaluation. Evidently,

the latter depends on the heat released Q and thermal diffusivity α.

For equal diffusivities D13 = D23 ≡ D , eq. (3.42) reduces to
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erf
(√

ε/D xf
)

=
ν − 1

ν + 1
.

For the titanium-boron reaction the mass-weighted stoichiometric ratio ν ≈ 0.45, implying that

xf ≈ −0.41
√

D/ε and the flame sheet lies on the titanium side of the stagnation plane. If the

Lewis number is assumed equal to one, i.e., D = α, the flame temperature is given by

Tf = T∞ +
Q/cpW1

1 + ν
.

In the absence of differential (unity Lewis number) and preferential (unequal mass diffusivities)

diffusion the flame temperature results from a simple energy balance.

3.4 Results from the Asymptotic Calculations
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Figure 3.2: Variation of the position of the flame sheet with variations of the thermal diffusivities.

Table 1 lists representative values of physical parameters based on a literature survey. Some

values required by the model are easier to estimate than others and are obtained fromt standard

thermal properties measurements. Table 1 lists values for the constant pressure heat capacity, cp,
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Figure 3.3: Variation of the adiabatic flame temperature (a) with D13 for given D23, and (b) with
D23 for given D13.

and thermal conductivity, k, that represent averaged values for the mixture. However determination

of values for the binary mass diffusivities, is more problematic. Experimental values for D13 and D23

have been obtained [44] [45], but not at conditions that are present in the reaction zone structure.

Figure 3.2 is drawn by using formulas (3.42)-(3.43), for a fixed ν and displays how the scaled flame
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sheet location varies with the ratio D23/D13. This ratio is typically larger than one, since boron

atoms have an effectively smaller atomic radius and hence diffuse more readily through titanium-

diboride than does the titanium atom, [44] [45]. We find that the flame sheet location will generally

reside on the titanium side of the stagnation plane and move further to the left when the diffusivity

of boron the product titanium-diboride increases, relative to that of titanium.

The values for the mass diffusivities are not well-known or measured, especially for the condition

near the reaction zone. Thus we use known facts about the experimentally observed flame tem-

perature. Trunov et al., [32] measured adiabatic flame temperature to be approximately between

2400-3300 K, when titanium and boron react. We expect that both mass diffusivities, D13 and

D23 must be much less than the thermal diffusivities, and we expect that the boron diffusivity is

significantly larger than the titanium diffusivity, in titanium diboride, i.e. we expect D23 >> D13,

similar to that that is found verified experimentally at lower temperatures [45]). Specifically we

take D23/D13 = 10 as a base-line model value, and a base-line estimate of the flame-sheet tem-

perature to be 3000K. Then formulas (3.42)-(3.43) are used to estimate these coefficients based on

our description being required to be consistent with the observed flame temperature. Then the

base-line mass diffusivitiies are found to be D13 ≈ 5× 10−7 m2/s and D23 ≈ 5× 10−6 m2/s. Figure

3.3(a) and (b) correspond to change in flame temperature with binary diffusivities D13 and D23

relative to the base-line values for the fixed ratio of D13/D23.

3.5 Numerical solution - finite-rate chemistry

To examine the effects of finite-rate chemistry, the boundary value problem consisting of (3.7)-

(3.9) and (3.32)-(3.33) subject to the boundary conditions (3.18)-(3.20) is solved numerically. The

numerical procedure is described in the Appendix and we present the results pertaining to titanium-

boron combustion in the next section.
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Property Symbol Value
Heat release Q -323.8 kJ/mol [46]
Molar mass of Ti W1 47.87 g/mol
Molar mass of B W2 10.81 g/mol
Molar mass of TiB2 W3 69.85 g/mol
Averaged molar mass Wc 50 g/mol
Intrinsic density of Ti ρ̂10 4.5 g/cc
Intrinsic density of B ρ̂20 2.34 g/cc
Intrinsic density of TiB2 ρ̂30 4.52 g/cc
Averaged density ρ̂c0 3.8 g/cc
Heat capacity cp 900 J/(kg K) [46]
Thermal conductivity k 36 W/(m K) [47] [48] [49]
Pre exponential factor B 7.6e16 mol/(m3 s) [50]
Activation energy Ea 318 kJ/mol [50]
Binary diffusivity of Ti-B D12 0.2 m2/s [51]

Table 3.1: Propperty values used for the for Ti-B problem

3.6 Numerical Results

3.6.1 Low strain rates

We start by presenting results pertaining to low strain rates, where the solution can be compared

directly to the asymptotic solution discussed above. Since the latter was obtained under the constant

density assumption, we selected an average value of ρ = 3.8 g/cc while abandoning thewidth=2.8in

equation of state (3.17). However, the expressions for the diffusion coefficients were used without

resorting to the approximation of equal molecular weights, since the reduced form of these relations

led to nearly identical results.

Figures 3.4(a)-(b) show a comparison of the temperature and mass fraction profiles between

the computed solution for ε = 0.01 s−1 and the corresponding asymptotic expressions. The spatial

coordinate has been normalized with the thermal diffusion length ld =
√
α/ε = 3.2410−4 cm. For

such low values of strain rate combustion is nearly complete, with both reactants consumed in

a very thin reaction zone. There is excellent agreement between the computed and asymptotic

profiles except for very small changes near the reaction zone, as shown in the inserts. It should be

noted that for finite ε, however small, the reaction zone has a finite thickness and Figure 3.4(c)
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Figure 3.4: Comparison between the numerical solution and asymptotic solutions for a small strain
rate ε = 0.01 s−1

shows that our numerical grid is sufficiently dense to capture the reaction zone adequately. The

excellent agreement between the numerical and asymptotic solutions also serves as a validation

of our numerical methodology that properly accounts for the stiffness of the governing equations

arising from the exponential Arrhenius term.

3.6.2 Moderate strain rates - constant density

Next we consider the entire response of the flame to increasing strain rates, from complete combus-

tion corresponding to low strain rates to flame extinction occurring at significantly higher values

50



of ε. We first examine the difference in the solution obtained using the two diffusion formulations:

The complete expressions for the diffusion coefficients ai, bi and the simplified form resulting from

equal molecular weights. We note that the general diffusion expressions add increased nonlinearity

to an already very stiff problem. To facilitate the computations we have therefore retained the

constant-density approximation, which effectively decouples the flow and combustion fields; vari-

able density solutions will be presented in the next subsection. Figure 3.5 shows a comparison of the

flame position and flame temperature using the two diffusion formulations. The flame position xf

is defined as the location where the temperature reaches its maximum value, the flame temperature

Tf . Figure 3.6 shows the mass fractions evaluated at the flame position xf , which represent the

amount of unconsumed reactants, as a function of the strain rate for the two formulations. We

note that the precise evaluation of the flame position, and consequently the solutions evaluated at

this location, depend on the step size used in the computations and on the value of the thermal

diffusion length ld, which decreases from 3.24 · 10−5 cm to 1.3 · 10−6 cm as the strain rate increases

from ε = 0.01 s−1 to ε = 6.5 s−1 (which is very near extinction). Therefore, a Matlab Curve Fit [28]

tool was used to fit the numerical data to a smoothing spline. The same tool was also used to fit a

smoothing spline curve to the discrete numerical results presented in all figures.

From the response curves of Figures 3.5-3.6 the following physical picture emerges. At low strain

rates the chemical reaction time is much smaller than the flow time and consequently, the reaction

proceeds immediately as titanium and boron get in contact. The reaction occurs in a very thin zone

(or a sheet), where the reactants are completely consumed. The flame temperature then reaches

its maximum value. Upon increasing the strain rate, the flow time relative to the chemical reaction

time is shortened and some titanium escapes to mix with boron leaking through the reaction zone,

and vice-versa. As a result of incomplete combustion, the flame moves towards the boron side and

the flame temperature drops. The relatively larger leakage of titanium as opposed to boron stems

from the fact that D13 � D23, which implies much larger fluxes of boron towards the reaction

zone and consequently more complete combustion of boron. When the unconsumed mass fractions

exceed a critical threshold, the flame temperature has been lowered significantly and steady burning

is no longer possible. The critical state, represented by the turning point on the response curves,
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Figure 3.5: Response curves of (a) flame position and (b) flame temperature versus strain rate.
The two curves (red/blue) correspond to the complete and simplified diffusion formulations.

identifies flame extinction. We believe the lower branch on the temperature response curve and the

upper branches in Figure 3.6 to be unstable and therefore physically inaccessible.

The two diffusion formulations lead to identical results at low strain rates and predict the exact

same extinction strain rates. There are small, insignificant differences in flame temperature at and

near extinction, which can be traced to the slight difference in flame location. Being influenced

primarily by the binary diffusivity D13 � D23, the simplified diffusion formulation predicts a flame

position that is slightly tilted towards the titanium (x < 0) side. Due to the negligible difference

between the two formulations, the simplified diffusion formulation will be used in the following
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Figure 3.6: The extent of unconsumed reactants leaking through the reaction zone. The two curves
(red/bliue) correspond to the complete and simplified diffusion formulations.

section in order to save computational time.

3.6.3 Moderate strain rates - variable density

When variations in density are accounted for, the flow field no longer satisfies (3.22) and must be

obtained by solving eq. (C.1) with ρ given by (3.17). The boundary condition (3.18) implies that

ϑ̄ is approximately constant, as |x| → ∞, with the asymptotes subject to the constraint (3.12).

Figure 3.7 shows profiles of ϑ̄ computed for two values of ε, the low strain rate corresponding to

conditions close to the Burke-Schumann solution and the larger strain rate corresponding to near-
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Figure 3.7: Profiles of the transverse velocity ϑ̄ across the combustion zone for two values of strain
rates.

extinction conditions. In both cases the solution behaves as expected: at low x, the solution does

not change but at large x there is a slight variation due to density variation.
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Figure 3.8: Density profiles across the combustion zone for two values of strain rates

Density profiles are shown in Figure 3.8 for the same two values of ε. Due to the density of TiB2

being only slightly higher than Ti, we have a noticeable jump in density only at lower strain rates.

At lower strain rates, the reaction rate is higher, thus the production of TiB2 is also higher. At

higher strain rates, because of increased diffusion, the density curve gradually decays from titanium

to boron due to decrease in production of TiB2.

Response curves of flame position and temperature vs strain rates, for constant and variable
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density conditions, are shown in Figure 3.9. The flame temperature Tf = 3000 K at the Burke-

Schumann limit for the constant density case is slightly higher than for the variable density case,

where Tf = 2950 K. This difference is due to the selected mean density adopted in the constant

density formulation. Elsewhere the two solutions are very close indicating that the composition

effect on density is of little significance, for practically all strain rate values. The flame temper-

ature at extinction, for both constant and variable density formulation, is approximately 2500 K,

corresponding to a drop in approximately 500 K from the adiabatic fame temperature.
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Figure 3.9: Comparison of flame position and temperature between constant and variable density
conditions.

The flame position between the two flame formulations is compared in Figure 9(a). As in the

constant density case, the flame position is an arbitrary concept because the reaction zone is of
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Figure 3.10: Y1 response curve comparison between constant and variable density approximations

finite length in the numerical simulation. To maintain consistency, xf is chosen at the location

of flame temperature. The variable density solution has a lower xf than the constant density

solution. This is once again due to the chosen parameters and the density variation in the species

equation. As seen through the asymptotic analysis, the temperature equation has little effect on

the flame position at the complete combustion limit. Therefore, the reason for the slight variation

between the two flame position graphs at this limit could be directly attributed to the dependence

of species equation on density. As with the flame temperature case, xf at extinction between the

two formulations are almost exactly the same, with the difference between them being less than

0.1%.
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As mentioned before, one parameter of leakage through the reaction zone is the value of Y1

and Y2 at xf . In Figure 3.10, we compare the leakage of titanium and boron between the two

formulations. In both scenarios, there is a strong match at low strain rates. But as the strain rate

increases, the variable density solutions for both Y1 and Y2 show a slight deviation from the constant

density solutions. This is more evident in the case of Y1 because the diffusion region for titanium

is much smaller than that of boron, thus causing a sharper response to the density dependence.

The difference between the two solutions at extinction is about 0.005 for Y2 and 0.05 for Y1. The

differences are approximately 10% of the actual extinction value.

3.7 Conclusion

In this chapter, we use a multi-component mixture theory to describe condensed phase diffusive

combustion, in particular for a counterflow geometry. The traditional Fick diffusion model is

informed by binary diffusion constants that are defined by the Maxwell-Stefan model of diffusion.

Low temperature measurement of binary diffusion coefficients D23 range from 10−13 to 10−20 m2/s

[52], [44] while D13 is predicted to be three orders of magnitude lower than that of D23, [45].

But the temperature dependence of these coefficients is not known at high temperatures. Trunov

et al. [32] predicts the combustion temperature of Ti-B nano-composite around 3000K, for states

where diffusion coefficients are unavailable. With asymptotic analysis we have made an estimate

of these diffusion coefficients that are consistent with respect to Trunov et al. [32] macroscopically

observed adiabatic flame temperatures.

The proposed diffusion expressions are cumbersome to handle numerically. Therefore a reduced

diffusion expressions were proposed by assuming equal molecular weights. The comparison between

the two diffusion models, is carried using the constant density formulation. The numerical solution

is validated by comparing it to the analytical limit of complete combustion at the lowest chosen

strain rate. The analytical solution does not vary between two diffusion expression since both

of them go to the same value at this limit. The response curve of flame temperature, position
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and leakage of titanium and boron with respect to strain rate is computed using both diffusion

expressions. Explicit numerical methods are difficult to implement for this model due to large

stiffness in the governing equations. Therefore an implicit method is used and combined with

continuation algorithm to compute the extinction point and the unstable solutions. We find that

both diffusion expressions yield almost the same extinction strain rate of 6.5 s−1. The response

curves between the two diffusion expressions are identical to each other at large strain rates and

vary to about less than 2% near extinction. Thus, we found we could safely use the constant

molecular weight approximations in the diffusion terms with minimal loss in accuracy, while saving

computational time and complexity.

We then proceed to compute the full flow problem with varying density. The mixture equa-

tion of state is simply assumed to be weighted summation of the species reference density. The two

dimensional counterflow is simplified by using a similarity solution for the x and y component of ve-

locity. The numerical procedure for density variation formulation is different than constant density

due to integration of continuity equation to compute x-velocity, which increases the computational

time to achieve convergence. Once again, the response curves mentioned above were computed

for the variable density solution and compared with the constant density. Because of the chosen

values for parameters, the complete combustion limit for the two solutions are different by about

50K with the constant density plot being greater than that of variable density. The difference in

extinction strain rate is about 0.2 s−1 which is less than 0.5 % of the strain rate value of 6.5 s−1.

The extinction flame temperature between the two formulation is almost exactly the same at 2500

K. There is similar behavior in the analysis of the flame position. When comparing the leakage of

Y1 and Y2 between the two formulation, we notice that they are very close to each other with little

difference at both the complete combustion limit and extinction. Although the two formulations

are close to each other, different set of parameters can lead to a larger more significant difference.

It is important to note that the adiabatic flame temperature used in this chapter differs from the

values presented by Fisher and Grubelich [53], which is approximately 3500K. This means that the

binary diffusivities used in the model might be larger than predicted but it does not change the

methods used in this calculation.
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Chapter 4

Theoretical and Experimental
Investigations of Fast
Ignition/Quenching in Al/CuO
Thermite

4.1 Introduction

An alternative to the well-structured layered composites are agglomerated materials made of a

mixture of reactive and inert components. Glumac et al. [7] have recently reported results of shock

compaction experiments on porous materials that are initially composed of two reactive components.

Systems that have been studied include the aluminum (Al), copper oxide (CuO) thermite, and the

metal/intermetallic system composed of titanium, silicon, and titanium, boron. A typical shock

compaction experiment is carried out for 80% porous, stoichiometric mixture of components, with

the initial mass fractions based on the overall equilibrium products. For the Al-CuO system the

stoichiometric reaction is

2Al + 3CuO→ Al2O3 + 3Cu (4.1)

The reactive material sample is placed in a striker assembly, and compacted by the action of two

metal bars that are shock loaded by the firing of detonators on each end. A sustained heterogeneous

front was found to propagate at an average speed of approximately 6-20 cm/sec. High speed

microscopic photography was used to record the emitted light seen through a small observation

window. On a length scale of 10 to 200 µm, one observes the sudden formation and disappearance

of intense spots of light, corresponding to intense and weak chemical reactions recurring within
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a time interval of approximately 100 µs. These experiments clearly demonstrate that the overall

combustion process is highly unsteady. While the lead reactive front after shock compaction is

observed to propagate at a well-defined average velocity, measurable and robust, time-dependent

heterogeneous reaction-diffusion processes occur on the micro-scale, corresponding to the initial

size of the reactive component particles, before and after the passage of the lead shock. Since the

component materials and their reactants are very hot and experience significant thermal expansion,

the chemically reacting material experiences a distribution of local flow velocities and strain rates,

primarily at the material interface of the reacting components.

The theoretical modeling approach for the finely-space laminate, or regular structured materials,

can be summarily described as an approach that lumps, or relies on cross-sectional averages for all

transport phenomena, such as bulk heat transfer and diffusion, and for all material properties of the

laminate/arrays [34]. These reduced models seem to appropriately describe observed phenomena

that depend on average properties of the system, such as bulk temperature and reaction extent,

or the self-propagation speed of a reactive front propagating along the axis of the plane of the

plies. They do not explicitly describe the reaction-diffusion phenomena at material interfaces,

and cannot delineate separate molecularly distinct reactants. The focus in this work is exactly

on the processes taking place on a small-scale of the the initially-separated component materials

that comprise the mixtures, that are not necessarily layered or structured. Our approach delineates

separate molecularly distinct reactants and employs a multicomponent, thermodynamic formulation

with separated reactants and products, each with their own properties. While we employ some

simplifications, we do not use a lumped, averaged formulation in the same sense of the reduced

models found in the analysis of finely-spaced laminates or arrays. Fundamental understanding of

these local events will serve as a basis for future modeling of time-dependent reaction processes

in both classes of energetic materials, agglomerated composites and finely-spaced, structured or

layered composites.

The phase change in the system consists of melting and refreezing of Al, CuO, Cu and Al2O3

(which will be called AlOx for the rest of the chapter). It is important to note that we have

neglected the reaction between CuO and Al2O3, which produces CuAl2O4. In the model presented
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here, the different phases of a material are treated as separate species. Therefore, the phase change

is treated similar to reaction. We propose a set of 10 reactions as seen in Equation (4.11), in which

the two exothermic reactions only progress forward. All four materials can melt or freeze depending

on the local temperature which results in a total of 8 species. The material diffusion between the

constituent materials is described using a Maxwell-Stefan diffusion model, which is formulated in

terms of binary diffusivities. In order to simplify the analysis, we assumed that solid-solid diffusion

is negligible while all solid-liquid and liquid-liquid diffusion are equal. Each isolated component

is assumed to have its own distinct reference density, and we neglect thermal expansion in the

components. This is consistent with the notion that the change in composition due to reaction is

much larger than changes due to thermal expansion. As a result the mechanical equation of state

for the mixture takes a simple form whereby the specific volume of the mixture is simply a sum

of the intrinsic densities weighted with the mass fraction of each component. This form of the

mechanical equation of state stands in contrast with that for a mixture of reacting gases that is a

relation between the specific volume, pressure, temperature and mass fractions.

We propose a slab geometry with a mixing region of 100 µm between the initial reactants. By

creating a thermal impulse at one end of the domain, this results in melting of Al and CuO which

in turn causes the reaction. Two different thermal impulses (3000K and 2000K) were studies to

analyze the effect of local temperature on the reaction. In the case of 2000K, once sufficient time

passes post ignition, the product AlOx re-freezes, which does not occur in the 3000K case.

4.2 Experimental setup

The experiments were preformed by Glumac’s group at the University of Illinois [7]. The material

tested was a stoichiometric thermite mixture of aluminum and copper oxide. The copper oxide has a

-325 mesh designation and the aluminum is nominally 3 µm flake. The components of the thermite

are blended by hand and then ultrasonically mixed under hexane for 20 minutes. Once consistent

mixing is achieved, the hexane is removed through a vacuum drying process. Upon preparation,

the reactive material was subjected to cold pressing in a 50 ton press to achieve an 80% theoretical
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Figure 4.1: Schematic of sample die with front plate removed

mass density (TMD). The sample die consists of a back plate, two center plates, and a front plate,

all of which are created using 4142 alloy steel. The center plates, once attached to the back plate,

leave a channel where the material powder is compacted by two square steel bars, each 3/8 inches

to a side. This arrangement creates a cube of reactive material with a constant volume of 0.8641

cm3. A diagram of this die is shown in Figure 4.1. The loose powder was loaded into the sample

die and compacted. Once the reactive material cube is pressed, the front plate of the sample die is

replaced with the viewing window plate and the compaction bars are replaced with longer collision

driver rods for the experimental setup. The experimental setup, as shown in Figure 4.2 consists of

the sample holder and shock drivers, a telephoto lens, the high speed camera, and a flash lamp. The

sample holder doubles as the sample die, but with a modified front plate that contains a viewing

window for high speed imaging. There are two 3/8-inch square 4142 steel bars that are 1.5 inches in

length, housed in the channel between the center plates. On one end the rods contact the reactive

material cube, and on the other end the detonators are mounted flush against the rod ends. The

detonators are housed in a cylinder of low-density polyethylene (LDPE), which absorbs much of the

detonator fragmentation after initiation. The entire sample holder is mounted in a 4142 steel base,

which is then fixed to an optical table for rigidity. The shock initiation of the reactive material

sample is imaged using a Nikon AD-EF 80-200 mm telephoto lens. The telephoto lens is reversed
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Figure 4.2: Schematic of experimental setup [7]

and detached from the imaging camera in order to produce a higher magnification when viewing

the reactive material at short distances. In this magnified viewing arrangement the zoom of the

lens can be selected in order to produce viewing windows that are on the order of 4 mm wide. The

detector used for this study is a Phantom 5 high speed imaging camera from Vision Research. The

images analyzed for quantitative data were taken with a 42 µs interval and 2µs exposure. This rate

was achieved using a reduced portion of the chip (256 x 104 pixels). An image sequence is shown

in Figure 4.3 below. This is a series of images from a stoichiometric Al-CuO thermite test with

an entire face of the RM cube in the FOV. In this sequence, the first image shows the unreacted

sample cube (outlined in red) while the second image shows the ’crush up’ of the 80% TMD reactive

material just after the detonators are initiated at time t = 0 ms. The remaining images show the

reaction that takes place after shock loading has occurred. According to the timing of the images,

there is a rather long delay between the material crush up and the initiation of the reaction at

23 ms. This shows that the reaction is indeed shock assisted, rather than shock induced, for the

aluminum-copper oxide thermite. In Figure 4.4, the high speed image sequences demonstrated

localized bright spots that flicker which is correlated to an ignition and quenching processes. To

analyze the emissive behavior of hot spots in these images, an algorithm(which was developed by

Christopher Murzyn of Prof. Glumac’s group at University of Illinois) was written to select a very

small region around any spot in the image, and integrate the 16 bit pixel intensity vales within the
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Figure 4.3: Image sequence of Al/CuO thermite reaction progress [7]

Figure 4.4: Targeted image sequence of a localized ignition/quenching event (left), averaged inten-
sity analysis in select region (right) [7].

cropped region of each picture. From these values we can see the relative change in spot emission

corresponding to each frame in the high speed video.
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4.3 Formulation

We used the recently developed [54], Gibbs formulation, to model an ignition event that is motivated

by the experiment, where ignition of reaction occurs via rapid heating of thin one dimensional

laminate of initially separated solid Al and CuO reactants. This numerical framework is developed

in collaboration with Kibaek Lee, another member of Prof. Stewart’s group. The Gibbs formulation

assumed that there is a single, well-defined stress tensor, and temperature at any point in the

material that is defined by the assumption of local equilibrium (EQB). Chemical changes and

phase changes are not assumed to be in EQB, and the formulation thus is based on non-EQB

thermodynamics, well-grounded in the principles of classical Physical Chemistry. All components

including different phases of the same molecular material must have a complete EQB potential.

Unlike classical phase field theory, that uses an order parameter or differences in molecular density

to switch the constitutive description of the phases, the mass fraction is the order parameter(s), and

equilibrium EOS descriptions for the multi-component materials are derived in a straightforward

way.

Consideration of the basic processes of a thermite, that generates two products by oxygen

exchange, from two reactants with consideration of the importance of phase change (melting from

solid to liquid), leads to model that minimally has eight components. For our example and the

experiment these would be Al-solid and liquid, CuO-solid and liquid, Cu-solid and liquid and

Al2O3-solid and liquid. In the limit of sufficiently slow phase and chemical changes, the thermal

and reaction extent is uncoupled from the stress/displacement field. And when inertial effects are

insignificant, one can ignore the advection contribution to the material rate of change. Once the

thermal field is solved for, the stress displacement field can be solved for, if needed. In the simplest

case, the model leads to energy equation for temperature (T ) that is coupled to mass fraction (Yi)

equations, i.e.

ρcp
∂T

∂t
= −

∑
i

ωih
(i)
0 +

∂

∂x

(
K
∂T

∂x

)
(4.2)
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ρ
∂Yi
∂t

= ωi −∇ · (ρYiVi) (4.3)

where ρ, cp and K are the density, constant pressure heat capacity and thermal conductivity of the

mixture. h
(i)
0 , ωi, and Vi represent the enthalpy of formation, reaction rate, and diffusion velocity

of species i respectively. The mass fraction and diffusion velocities are subject to the constraint:

8∑
i

Yi = 1 (4.4)

8∑
i

YiVi = 0 (4.5)

The constant pressure heat capacity and thermal conductivity are modeled by mass-weighted sum-

mation of intrinsic values of individual components. Hence,

cp =

8∑
i

cp,iYi and K =
1∑8

i Yi ρ/(ki ρi)
(4.6)

where, cp,i and ki are the constant pressure heat capacity and thermal conductivity of species i,

which are assumed constant. In order to capture the density variation, we start with the assumption

that the Gibbs free energy of each component of the mixture can be summed. The Gibbs potential

for the mixture, which is a function of the pressure temperature and mixture composition, is

g =

8∑
i=1

gi(p, T )Yi , (4.7)

where the energies related to mixing has been neglected. The specific volume υ = 1/ρ of the mixture

and individual components are given by the thermodynamic relation:

υ =
∂g

∂p

∣∣∣
T,Yi

and υi =
∂gi
∂p

∣∣∣
T
, (4.8)
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where υi are the partial volumes or volume of the components. This leads to

υ =

8∑
i=1

υi(p, T )Yi . (4.9)

which is the mechanical equation of state for the mixture. If we further assume that the volume

change under variation of pressure is small and we neglect the effect on temperature as well, then

the component volumes υi can be approximated by their reference values υ̂i0. Hence, the density

variation can be described as:

ρ−1 =

8∑
i=1

Yi ρ̂
−1
i0

(4.10)

where ρ̂i0 is the intrinsic density and ρ̂−1i0 is the intrinsic specific volume, of the species i.

4.3.1 Reaction

In what follows Y1,2 refers to solid/liquid aluminum, Y3,4 solid/liquid copper oxide, Y5,6 solid/liquid

copper, and Y7,8 solid/liquid aluminum oxide, respectively. For the kinetic scheme, we assume all

materials can melt and freeze and only the reaction between liquid aluminum and cooper oxide

creates solid or liquid aluminum oxide. Thus

Al(s) 
 Al(l)

CuO(s) 
 CuO(l)

Cu(s) 
 Cu(l)

AlOx(s) 
 AlOx(l)

2Al(l) + 3CuO(l) → 3Cu(l) +AlOx(s)

2Al(l) + 3CuO(l) → 3Cu(l) +AlOx(l)

(4.11)

The freezing rate (i.e. the production of solid) of the components is assumed to be simply propor-

tional to the mass fraction of its liquid if the temperature is below its melting point, and proportional

to the negative of the mass fraction of the solid if the temperature is above its melting point. The

melting rate of the component is the negative of its freezing rate. The rate of depletion of liquid
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aluminum and liquid copper oxide have contributions from the reactions that produce liquid cop-

per, and solid/liquid aluminum oxide. Similarly for the rate of production of liquid copper and

solid/liquid aluminum oxide. Hence, the global rates for the eight components, according to the

assumed reaction set are:

ω1 = WAl

[
−ω(1) + ω(2)

]
, (4.12)

ω2 = WAl

[
ω(1) − ω(2) − 2ω(9) − 2ω(10)

]
, (4.13)

ω3 = WCuO

[
−ω(3) + ω(4)

]
, (4.14)

ω4 = WCuO

[
ω(3) − ω(4) − 3ω(9) − 3ω(10)

]
, (4.15)

ω5 = WCu

[
−ω(5) + ω(6)

]
, (4.16)

ω6 = WCu

[
ω(5) − ω(6) + 3ω(9) + 3ω(10)

]
(4.17)

ω7 = WAlOx

[
−ω(7) + ω(8) + ω(9)

]
, (4.18)

ω8 = WAlOx

[
ω(7) − ω(8) + ω(10)

]
(4.19)

where, Wi is the molecular weight of species i. The individual reaction rates for the reactions

are modeled by a dependence on concentration and a reaction coefficient ki. In the model, we

assume that the reaction coefficients are constant and independent of temperature. We further

assume that the melting and freezing reaction rates are equal to each other, krate. The reaction

that produces AlOx(s) and AlOx(l) are governed by the reaction rate coefficients, k
(AlOx(s))
react and

k
(AlOx(l))
react respectively.

ω1 = k
(Al)
rateWAl

 Y2 if T < T
(Al)
m

−Y1 if T ≥ T (Al)
m

(4.20)

ω2 = k
(Al)
rateWAl

 −Y2 if T < T
(Al)
m

Y1 if T ≥ T (Al)
m

− 2k
(AlOx(s))
react WAlY2Y4 − 2k

(AlOx(l))
react W2Y2Y4 (4.21)
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ω3 = k
(CuO)
rate WCuO

 Y4 if T < T
(CuO)
m

−Y3 if T ≥ T (CuO)
m

(4.22)

ω4 = k
(CuO)
rate WCuO

 −Y4 if T < T
(CuO)
m

Y3 if T ≥ T (CuO)
m

−3k
(AlOx(s))
react WCuOY2Y4−3k

(AlOx(l))
react WCuOY2Y4 (4.23)

ω5 = k
(Cu)
rate WCu

 Y6 if T < T
(Cu)
m

−Y5 if T ≥ T (Cu)
m

(4.24)

ω6 = k
(Cu)
rate WCu

 −Y6 if T < T
(Cu)
m

Y5 if T ≥ T (Cu)
m

+ 3k
(AlOx(s))
react WCuY2Y4 + 3k

(AlOx(l))
react WCuY2Y4 (4.25)

ω7 = k
(AlOx)
rate WAlOx

 Y8 if T < T
(AlOx)
m

−Y7 if T ≥ T (AlOx)
m

+ k
(AlOx(s))
react WAlOxY2Y4 (4.26)

ω8 = k
(AlOx)
rate WAlOx

 −Y8 if T < T
(AlOx)
m

Y7 if T ≥ T (AlOx)
m

+ k
(AlOx(l))
react WAlOxY2Y4 (4.27)

4.3.2 Diffusion

The most common expressions used for multi-component diffusion are the Maxwell-Stefan (MS)

relations, [42]

∇Xi =
∑
j

XiXj

Dij
(Vj − Vi) , (4.28)

where Xi is the molar fraction and Vi is the diffusion velocity vector of species i, Dij = Dji is the

binary diffusivity of a pair of species (i, j), and the summation is taken over all species present. It

is important to note that this model neglects self diffusion. Although this relation was derived for
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a dilute ideal gas mixture, it has been often applied to condensed phase media [43].

The use of the MS relations is quite complicated because the diffusion velocities Vi are not

expressed explicitly in terms of the concentration gradients. In order to simplify the analysis,

we assume that there is no solid-solid diffusion and equal molecular weight. Furthermore, we

assume that all solid-liquid diffusion are equal (DSL) and all liquid-liquid diffusion are equal (DLL).

Therefore, we must root-solve Equation (4.28) with the constraint (4.5) to find:

Vi = ai∇Y1 + bi∇Y2 + ci∇Y3 + di∇Y4 + ei∇Y5 + fi∇Y6 + gi∇Y7 (4.29)

The coefficients ai, bi, ci, di, ei, fi and gi are provided in the Appendix.

4.4 Numerical procedure

4.4.1 Physical parameters

Before we proceed on to the numerical procedure, we must first find the appropriate parameters

needed for the governing equations.

Species ρ0 [g/cc] cp [J/(kg K)] k [W/(m K)] h0 [kJ/mol]

Als 2.7 [55] 24.2 [46] 236 [56] 0 [46]
All 2.375 [57] 31.59 [46] 91 [56] 10.74 [58]
CuOs 6.315 [55] 42.3 [46] 6 [59] -162 [60]
CuOl 5.7 [61] 50.76 [46] 3 -160 [58]
Cus 8.94 [55] 24.443 [46] 401 [56] 0 [46]
Cul 8.02 [57] 32.844 [46] 166 [56] 13.2 [58]
AlOxs 3.97 [62] 79.038 [46] 30 [63] -1675.7 [46]
AlOxl 3.053 [64] 138.934 [58] 15 -1620.6 [58]

Table 4.1: Property values of representative physical parameters used in the computations

In Table 4.1, we list representative values found in literature for constituent species in both

solid and liquid phases. The melting point of Al, CuO, Cu and AlOx are 933K, 1600K, 1350K and

2327K [46]. The enthalpy, density, and thermal conductivity of liquid phase of materials are taken

at the melting point. There is no available thermal conductivity data of liquid CuO and liquid
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AlOx. Therefore, a conservative estimate of 50% of solid thermal conductivity values is taken as

an approximation for its liquid thermal conductivity.

The mass diffusion between these materials have not been studied enough to obtain individual

binary-diffusion coefficients. Therefore, we have qualitatively categorized the interactions into three

phase: solid-solid diffusion, solid-liquid diffusion and liquid-liquid diffusion. Solid-solid binary dif-

fusivities typically range between 10−20−10−48 cm2/s [65], which are small and therefore neglected

from our model. Liquid-liquid binary diffusivities (DLL) are on the order of 10−5 cm2/s [65] while

solid-liquid binary diffusivities (DSL) are on the order of 10−9 cm2/s [66].

4.4.2 Numerical implementation

The governing equations (4.2-4.3) are solved by a parallel finite-difference solver, which uses a fourth

order central difference scheme for spatial discretization and fourth order Runge-Kutta methods for

temporal discretization. Equation (4.20-4.27) as implemented would cause extreme stiffness around

the melting point due to phase change. Therefore, a ‘tanh’ function is used in order to make the

reaction rates continuous in temperatures through the melting point. For example, Equation (4.20)

is rewritten as:

ω1 = W2 k
Al
rate

Y2 1− tanh(
T−T (Al)

m

ε )

2
− Y1

1 + tanh(
T−T (Al)

m

ε )

2

 (4.30)

where, the factor ε corresponds to the length of the region that the ‘tanh’ function takes to go from

1 to -1. For our analysis, we use ε = 10, which is illustrated in Figure 4.5 for the case of aluminum

(Tm = 933K).

4.5 Results

4.5.1 Domain and rate characterization

As it can be seen in Figure 4.3, there are many fast ignition/quenching events across the sample

after the burning front passes through. To simplify the analysis to a 1-D system of equations, a
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Figure 4.5: Function used to make phase change in reaction rate continuous. The graph presented
here represents phase change in Al.

sample ignition event was chosen to find the reaction zone length. In Figure 4.6 (left), we see that

the length of reaction zone is approximately 100 µm. Therefore, we constructed a computational

domain (1-D slab) with a mixing region between the reactants approximately equaling 100 µm.

Therefore the initial condition for species is:

Y1(x, t = 0) =
1

2
(1− tanh(30(x− 0.15))) (4.31)

Y3(x, t = 0) =
1

2
(1− tanh(30(x− 0.15))) (4.32)

Yi(x, t = 0) = 0 (i 6= 1, 3) (4.33)

The temperature across the domain is set at room temperature initially.

Due to conservation of mass, which neglects infulx/outflux of species outside of the domain, we

set the boundary condition at both ends to be:

dYi
dx
|x=0 = 0 (4.34)

dYi
dx
|x=l = 0 (4.35)
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Figure 4.6: A sample ignition/quenching event is presented with the reaction length being 100
µm (left). A representative sample of 10 ignition/quenching event in normalized intensity vs time
(right) [7].
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Figure 4.7: Slab domain characterization of the profile between initial reactants

We chose two different types of boundary condition for temperature; 1. 3000K at the left-end, 2.

2000K at the left-end. Both of them have adiabatic conditions at the right-end. These two cases

display different physics, which will be discussed in the upcoming sections.

The reaction and melting/freezing rates for the set of proposed reaction in this chapter are not

well known to our knowledge. Therefore, we have assumed that at high temperatures, the melting

and reaction rate coefficients are equal to each other. This rate is then found by matching the

ignition time in experiments, which is shown in Figure 4.6 (right). To capture the ignition time of

approximately 100 µs, the rate coefficient (ki) need to be approximately 500 mol/(mm3 ms).

4.5.2 Comparison between numerical solution and experimental results

The first attempt at simulation of Al-CuO thermite combustion was to pick a thermal impulse which

is larger than all melting temperatures of constitutive species. Therefore, a temperature of 3000K

is used as a boundary condition at the left end in Figure 4.8. In Figure 4.8a, we see that aluminum

starts melting due to the thermal impulse and diffusion has caused an increase in temperature across

the domain. CuO has not started to melt because the temperature is not high enough yet. As time

passes (Figure 4.8b), the temperature diffusion ensures that almost all the aluminum has melted.
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Figure 4.8: Image sequence of ignition/quenching simulation for the initial temperature case of
3000K

The temperature increase has also started to melt CuO, which results in the start of the reaction

and production of Cu and AlOx. The onset of ignition is observed in the temperature profile due

to exothermic nature of the reaction. Because of the chosen reaction rate coefficient observed from

experiments, the total ignition time is approximately 100 µs (as seen Figure 4.8c). At this point,

the maximum temperature is seen to be 3500K. Due to the stoichiometric ratio, it is observed that

there is more Cu produced than AlOx. Due to the low thermal diffusivity of CuO and high thermal

diffusivity of Al, temperature to the left of ignition increases at a significiantly faster pace than the

CuO portion of the domain. The thermal spike due to ignition rapidly disappears by the quenching

event. After the initial fast quenching, the rate at which the temperature decreases is considerably

lowered due to thermal diffusivity of CuO.

By analyzing the local maximum temperature near the ignition event, the rapid ignition/quenching

event can be easily observed, as seen in Figure 4.9. This graph is divided into four regions: 1) pre-
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Figure 4.9: Local maximum temperature around ignition vs time for the initial temperature case
of 3000K

ignition 2) rapid ignition 3) quenching 4) thermal diffusion. The pre-ignition event is the time until

both Al and CuO melt. The rapid ignition and quenching correspond to the fast increase and de-

crease in temperature due to reaction and thermal diffusivity. The quenching even is characterized

by: ∣∣∣∣∣
∂T
∂t |p.i
∂T
∂t |max

∣∣∣∣∣ < 5% (4.36)

where, p.i stands for post ignition. Thus, the quenching time is approximately 170 µs. Finally, the

thermal diffusion is where temperature equilibrates to the environment.

By decreasing the initial temperature to a value less than the melting temperature of AlOx, we

can observe more phenomenon. Hence, a value of 2000K was chosen as the boundary condition at

the left end in Figure 4.10. Due to the lower initial temperature, it can be clearly seen that it takes

longer to melt both Al and CuO (Figure 4.10 a-b). This results in a longer pre-ignition event. When

compared to 3000K case, the slightly lower ignition time and larger thermal spike is due to the local

mixture at the interface (Figure 4.10 b-c). After fast quenching, the temperature is further lowered

due to thermal diffusion. Eventually, the temperature drops below 2350K, which causes AlOx to
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Figure 4.10: Image sequence of ignition/quenching simulation for the initial temperature case of
2000K

re-freeze (Figure 4.10 d). Similar to the 3000K case, we analyzed the local maximum temperature

around ignition in Figure 4.11. We found the quenching time to be approximately 260 µs with

Equation (4.36).

4.6 Conclusion

An experiment was performed using a stoichiometric thermite mixture aluminum (Al) and copper

oxide (CuO), which are blended by hand and the ultrasonically mixed under hexane until consistency

is achieved. The mixture is then cold pressed to achieve 80% TMD. The sample is ignited by two

shock drivers with RP-80 detonators attached at the end of it. A Nikon AD-EF 80-200 is used

to view the shock initiation of the reactive material. A Phantom 5 high speed imaging camera

detector from Vision Research is used for this study. This is used to produce a series of images from
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Figure 4.11: Local maximum temperature around ignition vs time for the initial temperature case
of 2000K

an Al-CuO thermite test. The images show a propagating front with many fast igntion/quenching

events (hot spots) behind it. An algorithm is used to compute the image intensity values around a

localized small hot spot. From this analysis, we can see the ignition and quenching time of these

events.

A multi-component multi-phase mixture theory is used to describe condensed phase ignition in

Al and CuO reaction. The solid and liquid phase of each species is treated as a separate material.

The phase change in materials is characterized as a reaction and incorporated in the reaction rate.

Therefore, there are 8 species in the model which involve the solid and liquid phase of Al, CuO,

Cu and AlOx. The reaction takes place when both Al and CuO melt to produce liquid copper

and either solid or liquid AlOx. The Maxwell-Stefan (MS) model for multicomponent mixtures is

informed by the binary diffusivities of any pair of species comprising the mixture. The use of MS

relations is quite complicated because of the nonlinear relationship between diffusion velocities and

concentration gradients. To simplify the analysis, we assume that there is no solid-solid diffusion

and that all solid-liquid diffusion are equal while all liquid-liquid diffusion are equal. By analyzing

a sample hot spot, we picked a slab domain with the reaction region between the initial reactants
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equaling 100 µm. The ignition time seen in the experiment is used to characterize the reaction rate

coefficients.

The ignition event is modeled by a thermal impulse set at the left end of the boundary with

an adiabatic condition on the other end. Two different thermal impulse was analyzed: 3000K

and 2000K. In each of these cases, Al and CuO melt and react to produce an ignition event and

the maximum flame temperature observed is around 3500K. To compare the simulation with the

experiment, the local maximum temperature near the ignition event is plotted as a function of

temperature. The plots are separated into 4 regions: pre-ignition, rapid ignition, quenching and

thermal diffusion. The quenching time for the 3000K and 2000K case are 170 µs and 260 µs

respectively, which are within the observed experiment region. The ignition is characterized by

the reaction rates while quenching is due to the thermal diffusivity of local mixture. In the 2000K

case, once sufficient time has passed post ignition, the AlOx re-freezes from liquid to solid due to

low temperature. The model presented in this chapter matches well with experimental data and

could be used to predict hot spots in condensed phase reactive material simulations that captures

both phase change and material diffusion. The analysis of ignition can be made more accurate by

choosing to include pressure variations. Also, the initial conditions could be fine tuned to better

capture the scenario which exists after the reaction front passes through the Al/CuO sample.
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Chapter 5

Summary and Future Work

This dissertation proposes a model and computational framework for ignition and extinction in

condensed phase combustion. The theory proposed here is based on a recently developed Gibbs

formulation [54], and it is expanded to analyze ignition and extinction in initially separated reac-

tants. The model takes into account phase change, multiple species as well as inter-species diffusion.

The chapters presented in this thesis describe the model as it is carried out at increasing levels of

complexities.

The second chapter analyses extinction due to strain rate in counterflow gas combustion. An

asymptotic approximation to governing equations at large activation energy is compared with nu-

merical solution for constant and variable density formulations. A low Mach number approximation

is used, which accounts for small pressure variations from the ambient state. The analysis is carried

out for large/small Lewis number and mixture strength variations. The asymptotic approximation

is shown to match well with numerical solutions for all cases considered.

The thrid chapter explores the effect of strain rate in counterflow condensed phase combustion

with application to Titanium/boron system. There are only three species and the reaction is mod-

eled as a one-step Arrhenius kinetics. The traditional Fickean diffusion model is informed by binary

diffusion constants that are defined by the Maxwell-Stefan model of diffusion. Through asymptotic

analysis we have made an estimate of these diffusion coefficients that are consistent with respect

to macroscopically observed adiabatic flame temperatures. A constant density approximation is

first analyzed to understand the behavior of the diffusion model. Finally, the full flow problem is

computed with varying density. The model is able to predict reaction zone length at varying strain

rates and the criteria for extinction.
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Finally, the fourth chapter extends the theory presented in chapter 3 to incorporate multiple

reactions and phase change. This theory is applied to understand the fast ignition/quenching event

witnessed in aluminum/copper oxide experiments [7]. The solid and liquid phase of each species is

treated as a separate material. By analyzing a sample hot spot, a slab domain is picked with the

reaction region between the initial reactants equaling 100 µm. The ignition event is modeled by

a thermal impulse at the aluminum side of the boundary. The ignition time in the experiment is

used to characterize the reaction rate coefficients. The phase change in materials is characterized

as a reaction and incorporated in the reaction rate. The simulation is shown to closely match the

ignition/quenching time seen in the experiments.

The research presented here lays the foundation for analysis of condensed phase combustion.

These models can easily be transitioned to 2D and 3D geometries. A full shock ignited hot spot

formulation simulation must be carried out to understand the full mechanics of such energetic

materials. Some systems of interest include TATB, HMX, RDX, and Al/Al2O3. In particular, the

aluminum droplet combustion is generating interest in the scientific community. The interaction

between aluminum and oxygen and the formation of oxide layer is key for many applications.

For many materials of interest, the experimental data required for running such simulations are

scarce. Therefore, data derived from Molecular Dynamics (MD) simulations is a good approach to

filling this gap. For example, a mirrored atomistic and continuum framework is used to describe

the ignition of energetic materials at high-pressure phase of RDX [67]. The model presented in this

thesis, in conjunction with the method presented by Lee et al. [67], can be instrumental in tackling

the current needs of the energetic materials community.
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Appendix A

Application of Gibbs Free Energy
Equation of State

A.1 Formulation

The Gibbs free energy equation of state, proposed by Fried and Howard [68] is based on an explicit

functional form for G(P,T), which yields accurate results for pressures between 0 ≤ P ≤ 600 GPA,

and temperatures between 300K ≤ T ≤ 15, 000K:

G (P, T ) = G0 (T ) + ∆G (P, T )

Where, G0 is the reference portion while ∆G is the equation of state portion of the EOS. The

reference portion is defined as follows:

G0 (T ) = H0 (T )− TS0 (T )

The functions H0(T ) and S0(T ) are expressed in terms of the constant pressure heat capacity,

Cp,0(T ), at 1 atm.

H0 (T ) = ∆H0 +

∫ T

T0

CP,0 (T ) dT

and

S0 (T ) = ∆S0 +

∫ T

T0

CP,0 (T )

T
dT

∆H0 and ∆S0 are the standard entropy and standard enthalpy of formation at T0 = 298K. The

specific heat at constant pressure is represented by the sum of two Einstein oscillators and a linear
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term:

CP,0 (T ) =

2∑
i=1

aiE

(
Θ

T

)
+ a3T

Where the Einsten form is represented as,

E (x) =
x2exp(x)

(exp(x)− 1)
2

Thus, we have:

H0(T ) = ∆H0 +

2∑
i=1

aiθi

[
1

exp(x)− 1

](xi)

(xi0)

+ a3T

and

S0(T ) = ∆S0 +

2∑
i=1

ai

[
x

exp(x)− 1
− log(1− exp(x))

]xi

xi0

+ a3(T − T0)

We have now completely defined G0(T ). Now we must obtain an equation for ∆G(P, T ), the EOS

portion. Since dG = V dP − SdT , ∆G(P, T ) is defined by estimating a form for V (P, T ):

∆G (P, T ) =

∫ P

P0

V (P, T ) dP

Where, V (P, T ) is the modified Murnaghan form:

V (P, T ) = V0 (nκ0P + f (T ))
−1/n

Where, κ0 is the inverse of Bulk modulus at room temperature and n is the first derivative of the

Bulk modulus. The functional form of f(T ) is chosen to reproduce the thermal expansion of the

material at zero pressure. The following form is suggested to by Fried:

f(T ) = exp [−n(g(T )− g(T0))]

Where,

g(T ) = α0T + α1

(
T − T ∗

2
{exp[−T/T ∗]− 2}2

)
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Thus, we find an expression for ∆G(P, T ):

∆G(P, T ) =
V0

(n− 1)κ0
[ηn−1 − ηn−10 ]

Where,

η =
V0
V

= [nκ0P + f(T )]1/n

We define η0 as η0 = η(T, P0).

The coefficient of thermal expansion is found to be:

α =
1

V

∂V

∂T

∣∣∣∣
P

= g′(T )η−nf(T )

For small expansion and when T << 1/α, η ≈ 1, and f(T ) ≈ 1. Thus, we can determine that the

thermal expansion is dominated by g′(T ). In order to accurately model the coefficient of thermal

expansion, g′(T ) is chosen as:

g′(T ) = α0 + α1(1− exp[−T/T ∗])2

As we can see, this function increases from α0 to α1 + α0 as T increases from 0 to ∞. The rate of

increase is controlled by T ∗, which makes it easy to program and model any given thermal expansion

data.

Thus, we can use the following steps to calculate all the necessary parameters for the EOS:

Step 1: Find the standard heat of formation and standard entropy values for the given state of

the material. Fit the constant pressure heat capacity values to the following equations:

CP,0 (T ) =

2∑
i=1

aiE

(
Θ

T

)
+ a3T

E (x) =
x2exp(x)

(exp(x)− 1)
2

This will gives us, ∆H0, ∆S0, a0, a1, a3, θ1, and θ2.
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Step 2: Find the Bulk Modulus and its pressure derivative, B0 and n, from a room temperature

isotherm. If these terms were debated, we can fit the modified Murnaghan EOS to the isotherm to

determine the two parameters:

V (P, T ) = V0 (nκ0P + 1)
−1/n

Thus, we can find V0, B0 and n.

Step 3: The coefficient of thermal expansion is modeled by:

α =
1

V

∂V

∂T

∣∣∣∣
P

= g′(T )η−nf(T )

g′(T ) = α0 + α1(1− exp[−T/T ∗])2

Thus, we can get α0, α1 and T ∗.

With all the parameters now found, it would be a simple matter to construct the phase diagram

for any material. The phase boundaries and transition is governed by the chemical potential, µ.

For a one component system, the molar Gibbs energy, Gm, and the chemical potential are equal.

A system wanted to have the lowest Gibbs energy possible for any given P and T . The slope of

phase transition is given by the Clapeyron equation:

dP

dT
=

∆Sm
∆Vm

=
Sβ,m − Sα,m
Vβ,m − Vα,m

We can set: (
∂Gm
∂T

)∣∣∣∣
P

= −Sm

(
∂Gm
∂P

)∣∣∣∣
T

= Vm

For any phase α and β to be in equilibrium, we must have:

µα(P, T ) = µβ(P, T )
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An example phase diagram of carbon derived using this method is shown in Figure A.1.

Figure A.1: Phase Diagram of Carbon [68]

A.2 Equation of state of Aluminum

In this section, we will focus on the results of applying this EOS procedure to Aluminum. We have

one solid phase and one liquid phase and the parameters are found in the literature. The matching

between the thermal expansion is given below, as well as the matching between constant pressure

heat capacity models. The models are fit to a high degree of precision (r2 > 0.99). The algorithm

for fitting the model to experiment is derived by iterating various values for the fitting parameters

and then calculating the r2 values of each of these iterations. The range of values accepted for each

of these fitting parameters is predicted through the values used for Carbon. These procedures are

similarly replicated for liquid Aluminum as well. For liquid Aluminum, we could not find the data

for coefficient of thermal expansion. Instead, we used thermal expansion data at constant pressure

to find the necessary fitting parameters.

Figures A.2 and A.3 show the thermal expansion and constant pressure heat capacity graph
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Figure A.2: EOS - Thermal expansion fit to experimental data [69] for solid Aluminum at 1 atm
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Figure A.3: EOS - Constant pressure heat capacity fit to experimental data [46] for solid Aluminum

for solid Aluminum. Figures A.4 and A.5 show the thermal expansion and constant pressure heat

capacity graph for liquid Aluminum. The density, bulk modulus and pressure derivative were found

in [71] and [72]. After following the procedure, we have found all the necessary values for Aluminum

and they are given below in Tables A.1 and A.2.

After finding the necessary values, it is relatively easy to solve for the Hugoniot and compare

it to experiments performed by Marsh [73]. Both the solid and liquid model match the Hugoniot

well, as seen in Figures A.6 and A.7, thus validating this approach. Since the bulk modulus and
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Figure A.4: EOS - Thermal expansion fit to experimental data [70] for liquid Aluminum at 1 atm
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Figure A.5: EOS - Constant pressure heat capacity fit to experimental data [46] for liquid Aluminum

Phase V0(cc/mol) B0(GPa) n α0 (K−1) α1 (K−1) T ∗(K)
Solid 9.99 [55] 72.7 [72] 4.3

[72]
6.5 × 10−5 17.01 × 10−2 54815

Liquid 11.36 [70] 72.7 4.3 -0.99 × 10−2 1.0 × 10−2 94

Table A.1: EOS values for Aluminum

its pressure derivative are not known for liquid-Al, they are assumed to be equal to the solid-Al

values. The solid-Al Hugoniot matches the experiment well for lower pressures while the liquid-Al
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Figure A.6: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for solid Aluminum
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Figure A.7: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for liquid Aluminum

Phase ∆H0(kJ/mol) ∆S0(J/mol K) a1/R θ1 (K) a2/R θ2 (K) a3/R
Solid 0 [46] 28.3 [46] 3.3 360 3 4000 0
Liquid 28.837 [46] 71.408 [46] 3.82 85 0 0 0

Table A.2: Reference values for Aluminum
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Hugoniot matches the experiment well for higher pressures.

The next step is to calculate the phase diagram for Aluminum but they are not presented here

because the temperature calculated does not seem to be the correct temperature. Once this issue is

resolved, we can easily compute this phase diagram and find the transition line between solid and

liquid Al and match it to experiments.

A.3 Equation of state of Aluminum Oxide

Solid Al2O3:

• The coefficient of thermal expansion data is used to get α0, α1 and T ∗ for this phase of

Al2O3 [74]. It is compared in Figure A.8.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph

is shown in Figure A.9.

• From literature, we are able to find the bulk modulus and its pressure derivative for this

phase [75].

• Using this EOS, we are able to compare the shock Hugoniot produced by this model with the

experiments by Marsh [73]. This graph is shown in Figure A.12.

• The standard heat of formation and standard entropy is given in literature [76].

Liquid Al2O3:

• The thermal expansion data is used to get α0, α1 and T ∗ for this phase of Al2O3 [77]. It is

compared in Figure A.10.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph

is shown in Figure A.11.

• The bulk modulus and its pressure derivative are found in literature [78].
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• Using this EOS, we are able to compare the shock Hugoniot produced by this model with the

experiments [73]. This graph is shown in Figure A.12.

• The standard heat of formation and standard entropy is given in literature. Al2O3 melts at

2360 K [76].

The final EOS and reference tables for Boron(both liquid and solid) that contains all the pa-

rameters for the Fried EOS are listed in Tables A.3 and A.4.
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Figure A.8: EOS - Thermal expansion fit to experimental data [74] for solid Al2O3 at 1 atm

Phase V0(cc/mol) B0(GPa) n α0 (K−1) α1 (K−1) T ∗(K)
Solid 25.64 [74] 255.9 [75] 4.92

[75]
1.6 × 10−5 1.35 × 10−5 345

Liquid 29.55 [77] 36 [78]5 9.27
[78]

-178 × 10−5 214 × 10−5 410

Table A.3: EOS values for Al2O3

Phase ∆H0(kJ/mol) ∆S0(J/mol K) a1/R θ1 (K) a2/R θ2 (K) a3/R
Solid -1675.7 [76] 51 [76] 5 250 10 950 0.8×10−3

Liquid -1620.6 [76] 67.3 [76] 23.15 96 0 0 0

Table A.4: Reference values for Al2O3
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Figure A.9: EOS - Constant pressure heat capacity fit to experimental data [46] for solid Al2O3
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Figure A.10: EOS - Thermal expansion fit to experimental data [77] for liquid Al2O3 at 1 atm

A.4 Equation of state of Titanium

Solid Titanium (α):

• The coefficient of thermal expansion data is used to get α0, α1 and T ∗ for this phase of

Titanium [79]. It is compared in Figure A.14.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph
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Figure A.11: EOS - Constant pressure heat capacity fit to experimental data [46] for liquid Al2O3
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Figure A.12: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for solid Al2O3

is shown in A.15.

• From literature, we are able to find the bulk modulus and its pressure derivative for this

phase [80].

• Now, we are able to compare the shock Hugoniot produced by this model with the experiments

[73]. This graph is shown in A.20.

93



3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
Density (g/cc)

0

50

100

150

P
re

s
s
u

re
 (

G
P

A
)

Fried EOS Prediction
Experimental Data

Figure A.13: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for liquid Al2O3

• The standard heat of formation and standard entropy is given in literature [76].

Solid Titanium (β):

• The thermal expansion data is used to get α0, α1 and T ∗ for this phase of Titanium [81]. It

is compared in Figure A.16.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph

is shown in Figure A.17.

• From literature, we are able to find the bulk modulus and its pressure derivative for this

phase [80].

• Using this EOS, we are able to compare the shock Hugoniot produced by this model with the

experiments [73]. This graph is shown in Figure A.21.

• The standard heat of formation and standard entropy is given in literature. α-Ti goes to β-Ti

at 1166 K [76].

Liquid Titanium:
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• The thermal expansion data is used to get α0, α1 and T ∗ for this phase of Titanium [81]. It

is compared in Figure A.18.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph

is shown in Figure A.19.

• The bulk modulus and the pressure derivative is assumed to be same as the one for β-Titanium.

• Thus, we are able to compare the shock Hugoniot produced by this model with the experiments

[73]. This graph is shown in Figure A.22.

• The standard heat of formation and standard entropy is given in literature. β-Ti goes to

liquid Ti at 1939 K [76].

The final EOS and reference tables for Titanium(both solid and liquid) that contains all the pa-

rameters for the Fried EOS are listed in Tables A.5 and A.6.
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Figure A.14: EOS - Thermal expansion fit to experimental data [79] for solid α-Titanium at 1 atm

A.5 Equation of state of Boron

Solid Boron (β):
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Figure A.15: EOS - Constant pressure heat capacity fit to experimental data to experimental
data [46] for solid α-Titanium at 1 atm
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Figure A.16: EOS - Thermal expansion fit to experimental data [81] for solid β-Titanium at 1 atm

Phase V0(cc/mol) B0(GPa) n α0 (K−1) α1 (K−1) T ∗(K)
α-Solid 10.574 [79] 110 [80] 3.48

[80]
1.55 × 10−5 4.15 × 10−5 800

β-Solid 10.596 [81] 105 [80] 3.25
[80]

-1.45 × 10−5 8.65 × 10−5 890

Liquid 11.38 [81] 105 3.25 -2.25 × 10−5 15.45 × 10−5 560

Table A.5: EOS values for Titanium
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Figure A.17: EOS - Constant pressure heat capacity fit to experimental data to experimental
data [46] for solid β-Titanium at 1 atm
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Figure A.18: EOS - Thermal expansion fit to experimental data [81] for liquid Titanium at 1 atm

Phase ∆H0(kJ/mol) ∆S0(J/mol K) a1/R θ1 (K) a2/R θ2 (K) a3/R
α-Solid 0 [76] 30.759 [76] 3 250 1 4600 0.7×10−3

β-Solid 26.8 [76] 70.8 [76] 2 115 0.5 1150 0.9×10−3

Liquid 66.7 [76] 94.8 [76] 5.7 465 0 0 0

Table A.6: Reference values for Titanium
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Figure A.19: EOS - Constant pressure heat capacity fit to experimental data to experimental
data [46] for liquid Titanium at 1 atm
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Figure A.20: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for solid α-Titanium

• The coefficient of thermal expansion data is used to get α0, α1 and T ∗ for this phase of

Boron [82]. It is compared in Figure A.23.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph

is shown in Figure A.24.
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Figure A.21: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for solid β-Titanium
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Figure A.22: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for liquid Titanium

• From literature, we are able to find the bulk modulus and its pressure derivative for this

phase [83].

• Using this EOS, we are able to compare the shock Hugoniot produced by this model with the
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experiments by Marsh [73]. This graph is shown in Figure A.27.

• The standard heat of formation and standard entropy is given in literature [76].

Liquid Boron:

• The coefficient of thermal expansion data is used to get α0, α1 and T ∗ for this phase of

Boron [84]. It is compared in Figure A.25.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph

is shown in Figure A.26.

• The bulk modulus and its pressure derivative are assumed to be the same as that of β-Boron.

• Using this EOS, we are able to compare the shock Hugoniot produced by this model with the

experiments [73]. The experimental data is for titanium in general. This graph is shown in

Figure A.27.

• The standard heat of formation and standard entropy is given in literature. Boron melts at

2349 K [76].

The final table for Boron(both liquid and solid) that contains all the parameters for the Fried

EOS are listed in Tables A.7 and A.8.

Phase V0(cc/mol) B0(GPa) n α0 (K−1) α1 (K−1) T ∗(K)
Solid 4.6 [82] 210 [83] 2.23

[83]
0.2 × 10−5 2.45 × 10−5 370

Liquid 4.982 [84] 210 2.23 5.65 × 10−5 7.8 × 10−5 1170

Table A.7: EOS values for Boron

Phase ∆H0(kJ/mol) ∆S0(J/mol K) a1/R θ1 (K) a2/R θ2 (K) a3/R
Solid 0 [76] 50.936 [76] 2.5 970 0.3 980 0.4×10−3

Solid 28.837 [76] 339.655 [76] 3.82 190 0 0 0

Table A.8: Reference values for Boron
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Figure A.23: EOS - Thermal expansion fit to experimental data [82] for solid Boron at 1 atm
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Figure A.24: EOS - Constant pressure heat capacity fit to experimental data [46] for solid Boron

A.6 Equation of state of Titanium Diboride

Solid TiB2:

• The thermal expansion data is used to get α0, α1 and T ∗ for this phase of TiB2 [85]. It is

compared in Figure A.29.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph
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Figure A.25: EOS - Thermal expansion fit to experimental data [84] for liquid Boron at 1 atm
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Figure A.26: EOS - Constant pressure heat capacity fit to experimental data [46] for liquid Boron

is shown in Figure A.30.

• From literature, we are able to find the bulk modulus and its pressure derivative for this

phase [86].

• Using this EOS, we are able to compare the shock Hugoniot produced by this model with the

experiments [73]. This graph is shown in Figure A.31.
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Figure A.27: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for solid β-Boron
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Figure A.28: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for liquid Boron

• The standard heat of formation and standard entropy is given in literature [76].

Liquid TiB2:

• There is not enough data to conduct a complete EOS for this phase of TiB2. Thus, this part

will be updated as we get more data.

103



The final table for TiB2 that contains all the parameters for the Fried EOS are listed in Tables A.9

and A.10.
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Figure A.29: EOS - Thermal expansion fit to experimental data [85] for solid TiB2 at 1 atm
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Figure A.30: EOS - Constant pressure heat capacity fit to experimental data [46] for solid TiB2

Phase V0(cc/mol) B0(GPa) n α0 (K−1) α1 (K−1) T ∗(K)
Solid 15.37 [49] 292 [86] 3.34

[86]
1.85 × 10−5 2.5 × 10−5 780

Table A.9: EOS values for TiB2
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Figure A.31: Hugoniot comparison between Fried-Howard EOS prediction to experimental data [73]
for solid TiB2

Phase ∆H0(kJ/mol) ∆S0(J/mol K) a1/R θ1 (K) a2/R θ2 (K) a3/R
Solid -315.9 [76] 28.5 [76] 5 360 3.8 1520 1.3×10−3

Table A.10: Reference values for TiB2

A.7 Equation of state of Titanium Monoboride

Solid TiB:

• The coefficient of thermal expansion data is used to get α0, α1 and T ∗ for this phase of

TiB [87]. It is compared in Figure A.32.

• The constant pressure heat capacity data is used to get a1, θ1, a2, θ2, and a3 [46]. This graph

is shown in Figure A.33

• From literature, we are able to find the bulk modulus and its pressure derivative for this

phase [87]. The reference density is given by Decker and Kasper [88].

• The experimental shock Hugoniot is not available for TiB. Hence, we make a prediction for

Hugoniot in Figure A.34.
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The final table for TiB2 that contains all the parameters for the Fried EOS are listed in Tables

A.11 and A.12.
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Figure A.32: EOS - Thermal expansion fit to experimental data [87] for solid TiB at 1 atm
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Figure A.33: EOS - Constant pressure heat capacity fit to experimental data [46] for solid TiB

Phase V0(cc/mol) B0(GPa) n α0 (K−1) α1 (K−1) T ∗(K)
Solid 12.87 [88] 320 [87] 4 [87] 7.1 × 10−5 6.8 × 10−5 1095

Table A.11: EOS values for TiB
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Figure A.34: Hugoniot Prediction for solid TiB

Phase ∆H0(kJ/mol) ∆S0(J/mol K) a1/R θ1 (K) a2/R θ2 (K) a3/R
Solid -160.2 [46] 34.7 [46] 3.8 820 2.7 780 0.02×10−3

Table A.12: Reference values for TiB

A.8 Phase diagram for Ti-B system

The experimental phase diagram for the Ti-B system is provided by Murray et al [89], shown in

Figure A.35. The phase diagram depicts temperature as a function of molar fraction of Boron.

There are other species included in Murray’s work that we are not interested in, such as Ti3B4.

By working with just four species (Ti, B, TiB2, and TiB), the experimental phase diagram can be

approximated using Fried and Howard’s equation of state. This is done by minimizing the Gibbs

free energy of the mixture. The mixture of species and phases which yields the lowest Gibbs free

energy is the local stable state. Figure A.36 shows the comparison between the phase diagram

predicted by Fried-Howard EOS and the experimental data. It is clear that Fried-Howard’s EOS

matches well with experimental data.
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Figure A.35: Experimental phase diagram for the Ti-B system [89]

A.9 Conclusion

As shown through these examples, we can construct a very high quality equation of state through

the method proposed by Fried and Howard [68]. This can be applied to any system of interest

and used in continuum simulations of energetic materials. This method does have a downside in

that it relies heavily on heat capacity and thermal expansion data at room temperature. Also, it

is important to have information on the bulk modulus and its pressure derivative. The EOS of a

material cannot be approximated without these data.
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Figure A.36: Comparison between experimental [89] and fitted data of the phase diagram for the Ti-
B system. XB represents the molar fraction of Boron. The dotted line represents the experimental
data while solid line represents the data using Fried-Howard [68] model.
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Appendix B

Diffusion Coefficients in Al/CuO

The diffusion velocities, Vi, in Equation (4.29) are a function of mass fractions. The diffusion

coefficients for each Vi are listed below.

Diffusion coefficients of V1:

a1 = c1 = e1 = g1 = − DSL

Y1 + Y3 + Y5 + Y7

b1 = d1 = f1 = 0

Diffusion coefficients of V2:

a2 = c2 = e2 = g2 = − DSL(DLLY2 −DSLY2)

Y2(DSL + DLLY1 + DLLY3 + DLLY5 + DLLY7 −DSLY1 −DSLY3 −DSLY5 −DSLY7)

b2 = − DLLDSL

Y2(DSL + DLLY1 + DLLY3 + DLLY5 + DLLY7 −DSLY1 −DSLY3 −DSLY5 −DSLY7)

d2 = f2 = 0

Diffusion coefficients of V3:

a3 = c3 = e3 = g3 = − DSL

Y1 + Y3 + Y5 + Y7

b3 = d3 = f3 = 0

Diffusion coefficients of V4:
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a4 = c4 = e4 = g4 = − DSL(DLLY4 −DSLY4)

Y4(DSL + DLLY1 + DLLY3 + DLLY5 + DLLY7 −DSLY1 −DSLY3 −DSLY5 −DSLY7)

d4 = − DLLDSL

Y4(DSL + DLLY1 + DLLY3 + DLLY5 + DLLY7 −DSLY1 −DSLY3 −DSLY5 −DSLY7)

b4 = f4 = 0

Diffusion coefficients of V5:

a5 = c5 = e5 = g5 = − DSL

Y1 + Y3 + Y5 + Y7

b5 = d5 = f5 = 0

Diffusion coefficients of V6:

a6 = c6 = e6 = g6 = − DSL(DLLY6 −DSLY6)

Y6(DSL + DLLY1 + DLLY3 + DLLY5 + DLLY7 −DSLY1 −DSLY3 −DSLY5 −DSLY7)

f6 = − DLLDSL

Y6(DSL + DLLY1 + DLLY3 + DLLY5 + DLLY7 −DSLY1 −DSLY3 −DSLY5 −DSLY7)

b6 = d6 = 0

Diffusion coefficients of V7:

a7 = c7 = e7 = g7 = − DSL

Y1 + Y3 + Y5 + Y7

b7 = d7 = f7 = 0

The diffusion coefficients for V8 can be found by using Equation (4.5). Therefore:

V8 = −(Y1V1 + Y2V2 + Y3V3 + Y4V4 + Y5V5 + Y6V6 + Y7V7)/Y8
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Appendix C

Numerical Procedure of Ti-B
Counterflow Equations

The numerical procedure is based on the time-dependent equations

ρ
∂ϑ̄

∂t
+ ρu

∂ϑ̄

∂x
+ ρ ϑ̄2 = C (C.1)

ρ
∂Y1
∂t

+ ρu
∂Y1
∂x

+
∂

∂x

[
ρ
(
a1
∂Y1
∂x

+ b1
∂Y2
∂x

)]
= −W1 ω (C.2)

ρ
∂Y2
∂t

+ ρu
∂Y2
∂x

+
∂

∂x

[
ρ
(
a2
∂Y1
∂x

+ b2
∂Y2
∂x

)]
= −2W2 ω (C.3)

ρcp

(∂T
∂t

+ u
∂T

∂x

)
−K∂2T

∂x2
= Qω , (C.4)

with u obtained from

ρϑ̄ = − d

dx
(ρu) (C.5)

and ρ from (3.17). Initially, we solved the equations using an explicit time marching method until

the solution converges to its equilibrium state. The integration in time starts with an initial guess,

taken here as the asymptotic solution discussed in the previous section. We used a fourth order

approximation to compute the first order and second order space derivatives and a fourth order

Runge-Kutta (RK4) method for time stepping. The extent of the numerical domain depends on

the strain rate value, with lower strain rates requiring a larger domain. This, however, can be

overcome by normalizing x with the thermal diffusion length ld =
√
α/ε, as is also evident from

the analytical form of the asymptotic solution. Due to large stiffness arising from the Arrhenius

exponential in the reaction rate term, we found that the time step in general could not exceed 10−9

and to properly describe the solution at low strain rates where the reaction zone becomes extremely

thin, a fine grid is also required. As a result, the convergence was very slow even after parallelizing
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the numerical code. Determining the solution over a wide range of strain rate conditions requires

a faster converging algorithm.

Thus, Implicit time relaxation methods were implemented to overcome the computational stiff-

ness, and are described next. First and second order spatial derivatives are approximated by second

order finite difference schemes on a uniform grid. For time stepping we use a backward Euler method

such that a generic equation of the form

∂φ

∂t
= f(t, φ) ,

is approximated by

φn+1 = φn + ∆t f(tn+1, φn+1) ,

where n denotes the time step and ∆t the time increment. A damped Newton-Raphson solver is then

used for solving this nonlinear system at each time step. We used a relaxation value of 0.1 during

each iterative update to limit the fluctuations that occur due to stiffness in the governing equations,

which causes sharp gradients in the Jacobian matrix. Therefore, without the relaxation parameter

the numerical solution may diverge due to strong fluctuations. The PetSC sparse solver [90] is used

for the system that arises during the Newton-Raphson iteration. We note that this approach has

significantly reduced the time step relative to the explicit scheme from 10−9 required to 10−2, for

the same spatial grid distribution.

An objectives is to generate solutions for increasing values of the strain rate ε and draw response

curves of quantities of interest (e.g., flame temperature, mass fraction of unconsumed reactants,

etc.) as a function of ε. We start with a small strain rate value of ε = 0.01 s−1, using the asymptotic

solution as an initial guess and advance in time until the incremental changes in the solution at all

points in the domain of integration are less than a tolerance error, here taken as 10−3.

This direct approach works well for small values of ε but fails at larger values when the solution

becomes multi-valued, and the response curve develops a turning point with stable and unstable

branches. Near the turning point we adopted an approach continuation proposed by Kurdyumov
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and Matalon [29], whereby the time-dependent equations were solved with an additional constraint

that the temperature remains constant at some reference point, say T (x∗) = T ∗. The constraint is

used to iterate on the value of ε, until both the strain rate and the space distribution of solution do

not vary significantly from one time step to the next. By selecting T ∗ judiciously, this procedure

converges to a solution that may be stable or unstable, allowing us to generate the entire response

curve.

It is important to note that the time steps must be adaptively changed while keeping the damped

newton iterations to achieve convergence. This is iteratively done by trial and error. At the start of

simulation, a time step is guessed and the solution is closely watched over the first few iterations.

If these solutions are not stable, then the time is decreased; otherwise, the time step is increased

until the solutions in the few iterations become unstable. This determines the maximum time

step that the problem allows us to take at the start of the simulation, which in this Ti-B case is

approximately 10−6. Then, after the first few iterations at this time step, it is again increased

slowly. This procedure is repeated until the volatility at the start of the simulation disappears,

which leads us to take larger time time steps. After approximately 2000 initial iterations, the time

step can be increased as high as 10−2.
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