
c⃝ 2016 Saurabh Jha

ANALYSIS OF GEMINI INTERCONNECT RECOVERY MECHANISMS:
METHODS AND OBSERVATIONS

BY

SAURABH JHA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Ravishankar K. Iyer

ABSTRACT

This thesis focuses on the resilience of network components, and recovery

capabilities of extreme-scale high-performance computing (HPC) systems,

specifically petaflop-level supercomputers, aimed at solving complex science,

engineering, and business problems that require high bandwidth, enhanced

networking, and high compute capabilities. The resilience of the network is

critical for ensuring successful execution of the applications and overall sys-

tem availability. Failure of interconnect components such as links, routers,

power supply, etc. pose a threat to the resilience of the interconnect net-

work, causing application failures and, in the worst case, system-wide failure.

An extreme-scale system is designed to manage these failures and automati-

cally recover from such failures to ensure successful application execution and

avoid system-wide failure. Thus, in this thesis, we characterize the success

probability of the recovery procedures as well as the impact of the recov-

ery procedures on the applications. We developed an interconnect recovery

mechanisms analysis tool (I-RAT), a plugin built on top of LogDiver [1] to

characterize and assess the impact of recovery mechanisms. The tool was

used to analyze more than two years of network/system logs from Blue Wa-

ters, a supercomputer operated by the NCSA at the University of Illinois.

Our analyses show that recovery mechanisms are frequently triggered (in as

little as 36 hours for link failovers) that can fail with relatively high prob-

ability (as much as 0.25 for link failover). Furthermore, the analyses show

that system resilience does not equate to application resilience since execut-

ing applications can fail with non-negligible probability during (or just after)

a successful recovery. Our analyses show that interconnect recovery mech-

anisms are frequently triggered (the mean time between triggers is as short

as 36 hours for link failovers), and the initiated recovery fails with relatively

high probability (as much as 0.25 for link failover). We also show that as

many as 20% of the executing applications fail during the recovery phase.

ii

To my family and friends, for their love and support.

iii

ACKNOWLEDGMENTS

Foremost, I would like to thank my adviser Prof. Ravishankar K. Iyer and

Prof. Zbigniew Kalbarczyk for their guidance and input throughout the

completion of this work. It is their confidence that kept me motivated and

determined to complete this thesis. My special thanks to Dr. Catello Di

Martino and Dr. Valerio Formicola for their contribution in this research,

for developing my research skills, and for their continued support beyond the

scope of this research. This work would not have been possible without the

help and support from Prof.William Kramer (Director of the Blue Waters

Project and NCSAs @Scale Programs and professor at UIUC), Mark Dalton

(Cray), Joshi Fullop (NCSA), Jeremy Enos (NCSA), Gregory Bauer (NCSA),

Timothy Bouvet (NCSA), Sharif Islam (NCSA) and Larry Kaplan (Cray). I

would like to thank my peers in DEPEND lab for their insightful and useful

discussions.

This work is partially supported by NSF CNS 13-14891, NSF award num-

ber 1513051, DOE award number 2015-02674, an IBM faculty award, and an

unrestricted gift from Infosys Ltd. This research is part of the Blue Waters

sustained-petascale computing project, which is supported by the National

Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of

Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-

Champaign and its National Center for Supercomputing Application.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contribution and Results . 2
1.3 Thesis Organization . 4
1.4 Related publications . 4

CHAPTER 2 BLUE WATERS SYSTEM DETAILS 5
2.1 Blue Waters System Architecture 5

CHAPTER 3 INTERCONNECTS 9
3.1 Interconnection Networks . 9

CHAPTER 4 DEFINITIONS . 20

CHAPTER 5 METHODOLOGY AND TOOLS 22
5.1 Approach . 22
5.2 Data Sources . 23
5.3 Measuring Application Resiliency : LogDiver 24
5.4 Interconnect Recovery Analysis Workflow Tool : I-RAT 26

CHAPTER 6 RESULTS . 36
6.1 Measuring Occurrence and Success of Recovery Procedures . . 36
6.2 Analyzing impact of recovery procedures 39

CHAPTER 7 RELATED WORK . 42

CHAPTER 8 CONCLUSION AND FUTURE WORK 43
8.1 Future Directions . 43

REFERENCES . 45

v

APPENDIX A INTERCONNECT RELATED EVENTS 50

APPENDIX B CASE STUDY - LINK FAILOVER 57

vi

LIST OF TABLES

2.1 XE Node Specs . 6

2.2 XK7 GPU Node Specs . 7

3.1 Failure modes for a typical interconnection network (adapted

from [2]) . 13

5.1 Summary of data sources . 24

5.2 An example log from Blue Waters indicating Gemini ASIC

failure. 27

5.3 An example line from rules database 28

5.4 Tag categories with representative tag examples and re-

lated counts, as observed in the logs 30

5.5 Example of Recovery Sequence Cluster(Output of Coalesc-

ing Algorithm) . 34

6.1 Mean Node-Hour Between Recovery Events 38

A.1 Regular expressions used for filtering Gemini failure/recov-

ery related events. 50

B.1 Trace of a successful link failover from Blue Waters. 57

B.2 Trace of a failed link failover from Blue Waters. 59

vii

LIST OF FIGURES

2.1 Blue print of Blue Waters blades 6

2.2 State transition diagram of the job from start to end. 8

3.1 Interconnect Topologies (a) Binary 4-tree fat tree Topol-

ogy, (b) 2-D Torus Topology, (c) 1,4,1 Dragon fly Topology

- arrangement of network nodes (shown as boxes) and com-

pute nodes (shown as circles) 10

3.2 Unrouteable topology configuration for 2-D torus. Red

boxes are the failed network nodes and disabling the blue-

colored network node will restore the connectivity of the

network . 14

3.3 Blue Waters 3-D Torus Gemini interconnect layout. XE

and XK are CPU and GPU nodes respectively where as

LNET is Lustre NETwork routers running on top of the

Gemini interconnect . 15

3.4 State transition diagram for lane recovery procedure. 3

lane failures (in the same link) result in an inactive link. . . . 18

3.5 State transition diagram of Gemini link failover operations. . . 19

3.6 State transition diagram of Gemini warm swap operation

(which is always invoked by a system administrator). 19

5.1 LogDiver : An HPC log data analysis toolkit 26

5.2 Block diagram of the pipeline for analyzing Gemini recov-

ery procedures (I-RAT) built on top of LogDiver. 27

5.3 Reduced recovery-sequence state-transition diagram. All

state-transition diagrams described in Section 3.1.4 are mapped

to this reduced state-transition diagram. 29

viii

5.4 Gemini topology-aware fault model. The model helps track

the effects of events in sub-components. 32

6.1 Recovery completion status for lane, link, and warm swap. . . 37

6.2 Count of total failure of recovery procedures for (a) lane

(b) link (c) warm swap per month. The vertical line shows

a major software upgrade fixing bugs in the Gemini inter-

connect resiliency management code. 38

6.3 An example of a successful link failover sequence (taken

from the output of the coalescing algorithm). Orange circle

represents faults, red circle represents failures, and green

circles represents recovery operations. 40

ix

LIST OF ABBREVIATIONS

ALPS Application Level Placement Scheduler

ASIC Application Specific Integrated Circuit

BER Bit Error Rate

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CUDA Compute Unified Device Architecture

ECC Error-correcting Codes

GPU Graphics Processing Unit

HPC High-Performance Computing

HSN High Speed Network

MNBF Mean Node-hours Between Failure

MTBE Mean Time Between Error

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

NCSA National Center for Supercomputing Applications

SDB System Database

SECDED Single Error Correction Double Error Detection

SWO System-wide Outage

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

This work was motivated by the failures of the recovery procedures observed

in the high-performance interconnection network during the first two years

of operational hours of Blue Waters, the 13.1-petaflop Cray hybrid super-

computer at the University of Illinois, managed by the National Center for

Supercomputing Applications (NCSA). A high-performance interconnection

network is a key infrastructure providing communication paths for inter-

process communication and file accessibility in a supercomputer. A high-

performance computing (HPC) interconnect must meet the following needs

– (1) high performance (low latency and high bandwidth to ensure appli-

cation scalability [3, 4]), and (2) resilience (ability to continuously provide

services without disruption in the face of failures via quick recovery and fail-

ure containment [5]). The research on interconnects has primarily focused

on the performance and reliable delivery of messages/data transmitted over

the network. However, the research on the resiliency of the network in-

frastructure itself, specifically building recovery procedures for large-scale

systems is limited to handling one failure at a time disregarding concurrent

failures and other system activities occurring in the system during the recov-

ery time. In the past, the resilience of network infrastructure was improved

through methods such as link redundancy, data protection (checksum, ECC),

rerouting and link retransmission. This approach works well for a relatively

small-scale system as the time to recover/switch to redundant components

is negligible. However, with the growing system scale, the mean time be-

tween failures (MTBF) of components has decreased leading to the increase

in triggers of recovery procedures and the manifestation of complex recovery

scenarios (e.g., concurrent execution of multiple recovery procedures). Such

1

behavior has resulted in new challenges such as 1) the increase in duration

of the recovery (due to increase in convergence time of the routing algorithm

and additional checking to ensure correctness of the system state) and 2)

arbitration and management of concurrently executing recovery procedures

that can interfere with each other. These new challenges limit interconnect

resiliency scaling and potentially can affect the resilience of future extreme-

scale systems [6]. However, to understand the severity of these challenges for

future systems, we need to study and characterize the impact of interconnect

failures and recoveries on system and applications for current systems and

model these failures for future generations of supercomputers. We developed

interconnect recovery mechanisms analysis tool (I-RAT), a plugin built on

top of LogDiver[1] to characterize and assess the impact of recovery mecha-

nisms. The tool was used to analyze more than two years of network/system

logs from Blue Waters a supercomputer operated by NCSA. Our study is

based on mining failure data logs, application logs, and human- written fail-

ure reports collected from Blue Waters over two years, from January 2013 to

March 2015.

1.2 Contribution and Results

Key contributions of this thesis are:

• Development of techniques to extract, track, and cluster recovery proce-

dure events from system logs, and correlate these clusters with applica-

tion logs and manual failure reports. I-RAT extends the LogDiver tool

previously presented in [1, 7], and includes a filter that is able to extract

and decode events generated during Gemini recovery procedures, and a

novel state-aware coalescing algorithm. This algorithm coalesces events

based on: (1) the system hierarchy, a tree-like structure that captures

topological dependencies among system components (e.g., cabinet →
blade → node/ASIC → link) and helps track event propagation across

the levels of the system hierarchy; and (2) a state machine, which cap-

tures sequences of activities (or actions) corresponding to recovery pro-

cedures. The coalescing algorithm reconstructs recovery sequences from

filtered events. In addition, the analysis pipeline: (1) determines the

termination status of recovery procedures (successful/fail), (2) matches

2

recovery sequences with system-wide outage (SWO) events from failure

reports, and (3) evaluates the impact of recovery procedures and related

SWOs on the applications executed on the compute nodes involved in

the recovery operations.

• Demonstration of the proposed methodology in characterizing the re-

covery procedures of the Gemini interconnect system. Specifically, we

provide results on (1) distribution of failures/successes of recovery pro-

cedures caused by lane, link, and warm-swap failures; (2) trends in the

rates of recovery procedure failures; and (3) the impact of interconnect

recovery procedures on applications.

• This thesis provides the following crucial findings :

1. Showcasing that failure of recovery mechanisms lead to a signif-

icant number of SWOs and application failures. Despite having

various levels of hardware redundancy and error-protection mech-

anisms, Blue Waters suered from 28 SWOs due to interconnect

failures during two years of production. In our study, we found

that interconnect-related problems caused SWOs only once due to

unrouteable topology configuration.

2. Our analyses provide evidence that applications can fail during

successful execution of recovery. Statistically, on Blue Waters

20.13% of applications failed during failed execution of recovery

and 0.20% of the applications failed during successful execution

of recovery.

3. The analyses further show that the mean time between trigger

of recovery events (and hence, MTBF) for interconnect-network

components are either comparable or much lower than that for

other system components such as nodes, memory, etc. For ex-

ample, Martino et al. [8] showed the MTBF of node failures to

be approximately 6.7 hours compared with 2.8 minutes for lane

recovery, 36.2 hours for link recovery, and 20.6 hours for warm

swap. A failure of a node only affects the application running on

the system. However, failure of a link and its recovery affects the

whole system. This is a serious issue for overall reliability of the

3

system due to the low success probability associated with the re-

covery of interconnect-network failures. For example, the success

probability of link recovery is only 75.8%.

Our methodology and tools can be used to create models and analyze

logs different from Gemini, with a reasonable adaptation effort. This

makes the proposed approach valuable for researchers and practitioners

that aim to generate system-level models to analyze field data.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides the details

of the Blue Waters system. Chapter 3 provides background on interconnects

and a detailed overview of the Gemini interconnect. Chapter 4 defines a list of

technical words used in this thesis. Chapter 5 describes models, methodology,

and tools developed to analyze and understand the impact of recoveries on

applications and systems using field data. Chapter 6 describes the results

obtained from the analysis of field data. Chapter 7 describes the related

work. Finally, chapter 8 presents the conclusions drawn from the thesis and

discusses the future directions of this work.

1.4 Related publications

Some of the work presented in this dissertation has previously been published

in various venues. The relevant publications are:

FTXS15 Martino, Catello Di, Saurabh Jha, William Kramer, Zbigniew

Kalbarczyk, and Ravishankar K. Iyer. ”Logdiver: a tool for measuring re-

silience of extreme-scale systems and applications.” In Proceedings of the 5th

Workshop on Fault Tolerance for HPC at eXtreme Scale, pp. 11-18. ACM,

2015.

CUG16 Jha, Saurabh, Valerio Formicola, Z. Kalbarczyk, C. Di Martino,

William T. Kramer, and Ravishankar K. Iyer. ”Analysis of Gemini Intercon-

nect Recovery Mechanisms: Methods and Observations.” Cray User Group:

8-12.

4

CHAPTER 2

BLUE WATERS SYSTEM DETAILS

In this chapter, we will describe the Blue Waters system architecture, job

submission and scheduling, and error logging details. All our insights and

data are based on the data collected from Blue Waters.

2.1 Blue Waters System Architecture

Blue Waters is a sustained petaflop system capable of delivering approx-

imately 13.34 petaflops (at peak) for a range of real-world scientific and

engineering applications. The system is equipped with —

• 288 Cray liquid-cooled cabinets hosting 26,496 nodes and 1.66 PB of

RAM. Each cabinet consists of an L1 cabinet controller, several fan

trays, power conversion electronics, breakers, a blower and chiller, and

related piping. Each cabinet is organized in 3 chassis, and each chassis

hosts 8 blades

• 26,496 compute nodes (based on AMD Opteron processors) with a total

of 362,240 cores

• 4,228 GPU hybrid nodes equipped with Nvidia K20X GPU accelerators

and AMD Opteron processors with 33,792 cores

• 672 service nodes

• The high-speed Cray Gemini network, to provide node connectivity

• The online storage system, consisting of 198 Cray Sonexion 1600 stor-

age units equipped with 20,196 disks, and 396 SSDs (used to store

file system metadata) that provide access to 26 petabytes (36 raw) of

usable storage over a Lustre distributed file system

5

(a) Blue Waters XE Blade (b) Blue Waters XK Blade

Figure 2.1: Blue print of Blue Waters blades

• 300 petabytes (380 raw) of usable near-line tape storage.

Compute node hardware Compute nodes are hosted in 5,660 Cray XE6

blades (see Figure 2.1a), 4 nodes per blade. A compute node consists of 2 16-

core AMD Opteron 6276 processors [9] at 2.6 GHz. Each Opteron includes 8

dual-core AMD Bulldozer modules. Each compute node is equipped with 64

GB of DDR3 RAM in 8 GB DIMMs. System memory is protected with x8

Chipkill [9, 10] code. XE node specifications are summarized in Table 2.1.

AMD 6276 Interlagos Processors 2

Bulldozer Cores 16

Integer Scheduling Units 32

Memory / Bulldozer Core 4 GB

Total Node Memory 64 GB

Peak Performance 313.6 GF

Memory Bandwidth 102.4 GB/s

Table 2.1: XE Node Specs

GPU node hardware GPU nodes are hosted in 768 Cray XK7 blades, 4

nodes per blade (see Figure 2.1b). A GPU node consists of a 16-cores Opteron

6272 processor equipped with 32 GB of DDR3 RAM in 8 GB DIMMs and a

Nvidia K20X accelerator. The accelerators are equipped with 2,880 single-

precision CUDA cores and 6 GB of DDR5 RAM memory with the latter

protected with ECC. XK node specifications are summarized in Table 2.2.

6

AMD 6276 Interlagos Processors 1

Bulldozer Cores 8

Integer Scheduling Units 16

Memory / Bulldozer Core 4 GB

Node System Memory 32 GB

GPU Memory 6 GB

Peak CPU Performance 156.8 GF

CPU Memory Bandwidth 51.2 GB/s

CUDA cores 2688

Peak GPU Performance (DP) 1.31 TF

GPU Memory Bandwidth (ECC off)*** 250 GB/s

Table 2.2: XK7 GPU Node Specs

Service node hardware Service nodes are hosted on 166 Cray XIO blades

and 30 XE6 blades, 4 nodes per blade. Each XIO service node consists of a

6-core AMD Opteron 2435 working at 2.3 GHz and equipped with 16 GB of

DDR2 memory in 4 GB DIMMs protected by x4 Chipkill (with single symbol

error correction and dual-symbol error detection capabilities). Service nodes

host special PCI-Express cards such as Infiniband and fiber-channel cards. A

service node can be configured as 1) a boot node to orchestrate system-wide

reboots, 2) a system database node to collect event logs, 3) a MOM node

for scheduling jobs, 4) a network node to bridge external networks through

Infiniband QDR IB cards, or 5) as an Lnet (Lustre filesystem network) node

to handle metadata (via Lustre metadata servers, or MDSes, to keep track of

the location of the files in the storage servers) and file I/O data (via Lustre

Object Storage Servers, or OSSes, to store the data stripes across the storage

modules) for file system servers and clients.

Inteconnect Blue Waters high-speed network consists of a Cray Gemini

System Interconnect. A detailed description of the interconnect is given in

chapter 3.

File System. All blades are diskless and use the shared parallel file system

for IO operations. Blue Waters hosts the largest Lustre installation to date.

It consists of parallel file system used to manage data stored in Cray Sonexion

1600 [11] storage modules. Each Sonexion module has 1) 2 SSD of 2 TB in

a RAID 1 configuration for journaling and logging, 2) 22 disks of 2 TB

7

for metadata storage, and 3) 80 disks of 2 TB for data storage, organized

in units of 8 disks in RAID 6. All disks are connected to two redundant

RAID controllers. In each unit, two additional disks serve as hot spares,

which automatically provide failover for a failed drive. Data are accessed

transparently from the nodes via the Lustre service nodes (Lnet), which

interface with the Sonexion storage modules. Blue Waters includes three file

systems, i.e., project, scratch, and home, and provides up to 26 PB of usable

storage over 36 PB of raw disk space.

Running Jobs on Blue Waters Blue Waters users can submit their jobs

using aprun command which submits the job to Application Level Placement

Scheduler (ALPS) [12]. ALPS then launches applications on compute nodes.

For submitting batch jobs or interactive jobs, users can use qsub command.

Blue Waters is configured to use Moab/Torque [13] for launching batch jobs.

Figure 2.2 shows the transition of job state from its start to end. For each

of these states, Torque writes an event message in the torque logs which can

then be used to track the status of the job in the system. In [14, 15] studied

the job exit status for Blue Waters system.

UNSUBMITTED PENDING

RUNNING

DEAD
SUBMIT

Schedule

FAIL, KILL, LOST

EVICT, FAIL, FINISH, KILL, LOST

SUBMIT

Figure 2.2: State transition diagram of the job from start to end.

8

CHAPTER 3

INTERCONNECTS

In this chapter, we will first briefly give an overview of interconnects and

dive deeper into the details of torus networks. Then, we will describe the ar-

chitecture and system design of the Cray Gemini interconnects. Blue Waters

uses the Cray Gemini interconnect, which is a torus network.

3.1 Interconnection Networks

An interconnection network is a programmable system that transports data

between terminals. The main design aspects of interconnection networks are

(1) topology, (2) routing, (3) flow control, and (4) recovery. Topology deter-

mines the connection between compute nodes and network nodes (routers,

switches, etc.). Routing, flow control, and recovery heavily depend on the

topology of the interconnection system. The most widely used topologies in

high-performance computing (HPC) are (1) fat tree (e.g. Roadrunner HPC

system [16]), (2) dragonfly (e.g., Trinity [17]), and (3) torus (e.g., Blue Wa-

ters [18]). At the time of writing of this thesis, 40% of top 10 HPC systems

are using torus, another 40% dragonfly and 20% use fat-tree topologies in

their interconnect technologies. Fig. 5.4 shows the arrangement of nodes in

these three topologies.

3.1.1 Torus Networks

Torus networks can support N = kn nodes which are arranged in a k-ary

n-cube grid (i.e., nodes are arranged in regular n-dimensional grid with k

nodes in each dimension). In the case of Blue Waters, n = 3. In torus

networks, each node serves simultaneously as an input terminal, output ter-

minal and switching node of the network. Torus networks are regular (i.e.,

9

(a) Binary 4-tree fat tree Topology

(b) 2-D Torus Topology (c) 1,4,1 Dragon fly Topology

Figure 3.1: Interconnect Topologies (a) Binary 4-tree fat tree Topology, (b)
2-D Torus Topology, (c) 1,4,1 Dragon fly Topology - arrangement of
network nodes (shown as boxes) and compute nodes (shown as circles)

10

all nodes have the same degree) and are also edge-symmetric (useful for load-

balancing). Torus networks are very popular for exploiting physical locality

between communicating nodes, providing low latency and high throughput.

However, the average hop count to route packets to a random node is high

compared with that of logarithmic networks. On the other hand, extra hop

counts provide path diversity, which is required for building fault-tolerant

architecture.

Path diversity is given by the total number of minimum routes from a to

b that are possible in a topology. For a torus network, it is given by equation

3.1

|Rab| =
(
n−1∑
i=0

δi)!

n−1∏
i=0

δi!

(3.1)

where δi is the number of hops between the ith dimension of a and b. The

number of unique paths increases rapidly with dimension and distance. This

makes interconnects more tolerant to single failures. However, situations

exist in which the topology becomes unrouteable due to multiple failures.

Unrouteable topology configurations can be enumerated for any given n and

k.

Maximum throughput in a torus network [19, 20] is achieved when

equation 3.2 is satisfied -

nk ≤ N ∗Wn

Ws

(3.2)

where Wn is the channel width limit (highest attainable frequency on the

channel) due to node pin-out (which determines the the ability to send bits

in parallel) and Ws is the channel width limit due to bisection (highest at-

tainable frequency on the channel across the bisection).

Latency in a network is a function of serialization latency and hop count.

Serialization latency is the time required for a packet of length L to cross

a channel with bandwidth b. On the other hand minimum hop count in a

torus network is determined by equation 3.3.

Hmin,T =

nk
4
, if k even

n(k
4
− 1

4k
), if k odd

(3.3)

11

Routing involves selection of the path from the source node (src) to des-

tination node (dst) among many possible paths in a given topology. In torus

networks, routing is done through the dimensional-order routing algorithm.

In dimensional-order routing, each packet travels in the network by resolving

each dimension one at a time. Once the algorithm resolves a dimension, it

does not account for the solution to reenter the resolved dimensions. For ex-

ample, in a 3-D torus, the router first resolves the X dimension, then the Y

dimension, and finally the Z dimension. Note that packets in torus networks

can travel in a clockwise or counterclockwise direction. Thus, the first step

in routing is to determine the direction of routing. Routing direction can be

determined by equation 3.4.

Di =

0, if |δi| = k/2

sign(δi), otherwise
(3.4)

where δi is given by

δi = mi −

0, if mi ≤ k
2

k, otherwise
(3.5)

and mi is given by

mi = (dsti − srci) mod k (3.6)

3.1.2 Errors, Failures, and Recovery

The first step in building a resilient network is to identify the nature and

types of errors and failures and then build abstract models that can help to

understand and prevent errors and failures. In [2], Dally and Towels have

summarized the existing failure modes. We adapt their table in Table 3.1

and give a brief summary of these failure modes. We advise readers to read

chapter 21 from ”Principles and Practices of Interconnection Networks” [2].

12

Failure Modes Fault Model

Gaussian noise on a channel Transient bit error

Alpha-particle strikes on memory (per chip) Soft error

Alpha-particle strikes on logic (per chip) Transient bit error

Electomigration of a conductor Stuck-at fault

Threshold shift of a device Stuck-at fault

Connector corrosion open Stuck-at fault

Cold solder joint Stuck-at fault

Power supply failure Fail-stop

Operator removes good modules Fail-stop

Software failures Fail-stop or Byzantine

Table 3.1: Failure modes for a typical interconnection network (adapted
from [2])

Transient failures cause one or more bits to flip, causing temporary er-

rors. These can be easily detected and corrected using checksums and error-

correcting codes (ECCs) or a retry. Transient errors are typically harmless,

and the problem dies on its own over time. An example of transient errors

includes Gaussian noise on the channel and alpha-particle strikes on logic

gates. Transient errors are measured in bit-error rate (BER). Soft errors, on

the other hand, change the values of data, which continue to affect the system

for a long period, thus have a lasting eect. An example of such a case includes

alpha-particle strikes on memory, such as routing tables. These errors are

handled by using memory scrubbers, or simple reboots can be detected using

ECCs. Soft errors are measured by soft-error rate (or SER). The stuck-at

fault permanently damages the component where the logic is either always

high or low. Fail-stop failures are permanent failures in the interconnection

system, such as link failures, router failures, etc. These failures are measured

in mean time between failures (MTBF) or failures in time (FIT).

It is surprising that models do not exist for failure modes of recovery

mechanisms for interconnection networks and the behavior of the system

during the execution of these recovery mechanisms.

13

3.1.3 Unrouteable Topology Configurations

Depending on the state of the system and manual recovery/replacement

strategy of failed components, a series of failures can lead to an unrouteable

topology configuration. An ideal interconnect-recovery mechanism would fail

only when it encounters the case of unrouteable topology configurations. An

unrouteable configuration can be defined as a state under which the packets

cannot be routed from source node (src) to destination node (dst) using the

specified routing rules. In Fig. 3.2, we show such a configuration for a 2-D

torus. The failure of two network nodes (indicated in red) blocks all traffic

to the network node (indicated in blue) that tries to send packets using the

loop in the Y direction on which the network node is located. For example,

in this configuration packets from node (0,1) cannot be sent to node (1,2).

Figure 3.2: Unrouteable topology configuration for 2-D torus. Red boxes
are the failed network nodes and disabling the blue-colored network node
will restore the connectivity of the network

3.1.4 Cray Gemini Architecture

To keep the section description comprehensive, we have combined some of

the exploratory results gained from the analysis of field data, with the infor-

mation contained in Cray official documentation on the Gemini interconnect

resiliency mechanisms [21]. An overview of the Gemini interconnect is pro-

vided in [22]. Evolution of interconnect technologies for Cray systems can be

tracked using [23, 24, 25] The Blue Waters’ high-speed network consists of an

anisotropic 3-D torus using Cray Gemini router (see Figure 3.3) to connect

14

System Management Workstation

G
em

in
i H

SN
 (H

ig
h

Sp
ee

d
N

et
w

or
k)

XE

XE

XK

XK

XE

Blade

L0

LNET

Figure 3.3: Blue Waters 3-D Torus Gemini interconnect layout. XE and
XK are CPU and GPU nodes respectively where as LNET is Lustre
NETwork routers running on top of the Gemini interconnect

all the nodes in the system. Each blade includes two Gemini application

specific integrated circuits (ASICs), each housing two network interface con-

trollers (NICs) and a 48-port router. A NIC is attached to one node using a

HyperTransportTM3 host interface. Each ASIC is connected to the network

by means of 10 torus connections, two each in X+, X-, Z+, Z- and one each

in Y+ and Y-. An ASIC also connects internally two nodes using NICs.

Each connection is composed of four links and each link is composed of 3

single-bit bidirectional lanes. Thus, each connection consists of 12 lanes, and

an ASIC connects to the other ASICs on the network via 24 lanes in the

X/Z and 12 in the Y dimension. A channel is a logical connection between

two link end-points. Further, each channel comprises two virtual channels

to prevent request-response dependency cycle. A multidimensional torus in-

terconnect is susceptible to deadlocks due to possible: (1) dimensional turn

dependency cycles, (2) torus dependency cycles, and (3) request/response

dependency cycles. To avoid these dependencies, the Gemini interconnect

system uses packet adaptive virtual cut-through directional ordering routing

algorithm. In Gemini, each channel supports two virtual channels (VC0 and

VC1). However, in order to avoid both request-response and torus depen-

dency cycle, each channel would need four virtual channels. To address this,

15

Gemini router chips are divided into two groups (CG0 and CG1). These

two groups along with two available virtual channels make up for the need

for four virtual channels required to avoid request-response dependency cycle

(via VC0 and VC1) and torus dependency cycles (via CG0 and CG1).

3.1.5 Fault Tolerance and Resiliency in Gemini

Gemini provides several levels of protection from errors and failures. Packets

are protected through 16 bit cyclic redundancy check (CRC) and are checked

at each Gemini ASIC (and between the transition from NIC to router as well).

Gemini ensures reliable delivery of packets using sliding window protocol.

Most of the memory regions are protected via single error correction double

error detection (SEC-DED); however, the buffer storing the router tables are

not protected by an error-correcting code.

In terms of path availability for successful delivery of packets, there are

two redundant connections between any two Gemini ASICs in the X and Z

directions whereas only one connection connecting Gemini ASICs in the Y

direction. Each of these connections has two redundant links, and each link

has three redundant lanes. Gemini interconnect is capable of running in de-

graded mode as long as there is at least one active link with a minimum of one

lane functioning properly. In the general literature, software and hardware

designers have used links and channels interchangeably for different purposes

with significant differences in meaning. For the purpose of consistency and

readability with respect to Cray system logs, we refer to a channel as a logi-

cal connection between link end points, and, therefore, use channel and link

interchangeably. Thus, in this work, a link down does not necessarily mean

that there is no active communication path between two ASICs.

3.1.6 Fault Detection and Recovery in Gemini

Fault detection and recovery of the network is managed through the super-

visor block that connects Gemini to an embedded control processor (L0) on

the blade. The L0 is connected to system management workstation (SMW)

through the Cray Hardware Supervisory System (HSS) network. This is

shown in a block diagram in Figure 3.3. The L0 blade controller detects

16

failed links and power loss to Gemini mezzanine cards (mezzanine is a board

on which two ASICs are situated) using the “gmnwd” daemon. System

responses to failures are logged (via the “xthwerrlogd” daemon) and orches-

trated (via the “xtnlrd” daemon) by the SMW. In this work, we study three

specific recovery mechanisms: (1) lane recovery (2) link failover, and (3)

warm swap.

Lane Recovery

The availability of 3 lanes in each link allows the network to tolerate up to

two lane failures and operate in a degraded mode. When all the three lanes

fail in a link, the link is marked as inactive and a link failover is triggered.

Each time a lane goes down, an error is written in the logs and a lane recovery

is triggered by the L0. The controller attempts to recover the lane a certain

number of times (as configured by the system administrator) before marking

the lane as a permanent failed. No lane recovery is triggered for an inactive

link.

A state-transition diagram for the lane recovery is depicted in Figure 3.4.

The two outgoing transitions form the “All Lanes Healthy” state report a

lane failure (one or two lanes unavailable) or the whole link failure (three

lanes unavailable). Lane mask represents a three-digit bitmap (0 indicates a

lane down; 1 indicates a lane healthy). A lane mask 7 means that the lane

recovery is successful. Any other values indicate the position of active lanes

in a bit mask (e.g., a lane mask of 5 means lanes 1 and 3 are active, whereas

lane 2 is inactive).

Link Failover

Figure 3.5 shows the state-transition diagram for the link failover and warm

swap operation of the Gemini interconnect. The failover procedure consists of

(1) waiting 10 seconds to aggregate failures, (2) determining which blade(s)

is/are alive, (3) quiescing the Gemini network traffic, (4) asserting a new

route in the Gemini chips (performed by the SMW), and (5) cleaning up and

resuming Gemini. The total time to execute the procedure varies from ∼ 30

to ∼ 1000 seconds. Links can become unavailable due to one of the following

reasons:

17

1 or 2
Lane(s)
Down

Lane
Recovery

State

N
Attempts

Lane
Recovered

Recovery
Fails/Re-init failed

Lane
Problems,
No Active

Lane

All Lanes
Healthy

Three Lanes
Down, Link

Failed/Inactive

Mode
Exchanges

Degraded
Mode

Lane
Problems,
atleast 1

Active Lane

Lane Problems,
No Active Lane

Figure 3.4: State transition diagram for lane recovery procedure. 3 lane
failures (in the same link) result in an inactive link.

• All three lanes failed in the link

• Power loss in a mezzanine, blade, or cabinet

• Faulty cable

• Other reasons such as routing table corruption, software deadlocks, etc.

A faulty cable causes 32 link endpoints to become unavailable. Power loss

on a mezzanine, blade, and cabinet causes 32, 32, and 960 end points to fail,

respectively. Link failover is triggered whenever a link becomes unavailable.

The link failover operation masks failed links whenever possible without caus-

ing interruption of the network. However, when there is a complete disruption

between the communication of two ASICs or a node/blade/cabinet becomes

unavailable, the failover mechanism has to quiesce the whole network to in-

stall the routes safely. A successful failover restores the communication path

in the network and the functioning of the system, whereas a failed failover

causes the whole network to completely fail, and leads to system-wide out-

age. In Figure 5.3, a state-transition diagram shows the various steps and

conditions leading to a successful or failed link failover. Appendix B shows

a real trace of successful and failed link failover scenario obtained from Blue

Waters.

18

Cabinet/Blad
e/Mezzanine

Failure

Other
Failures

Routing Table
Corruption

Cable Failure

Additional
Failures

Determined
Aggregate failures

for T seconds

Determine
Active Blades

ASIC’s
Disconnected

Routes
Computed

Active Blades
Determined

Quisce
Network

Cross Check
and Install

unquisce
Network

Link Failover
Success

Initial, Watch
Failures

Link
Failover

Fail

Errors

Failover
Finished

No Discconect
Bet/n ASIC’s

Link
Masked

Link
Failure(s)

Mask failed
link(s)

Figure 3.5: State transition diagram of Gemini link failover operations.

Warm swap

Warm swap is the addition or removal (disabling) of compute blade/cabinet

in a running system. This operation cannot be performed on service blade/-

cabinets. A warm swap is invoked by human administrators by logging into

the SMW and calling warm swap procedures; hence this procedure is highly

controlled. Warm swap procedure is similar to link failover mechanism with

certain exceptions. Details are shown in the state-transition diagram for

warm swap in Figure 3.6.

Figure 3.6: State transition diagram of Gemini warm swap operation
(which is always invoked by a system administrator).

19

CHAPTER 4

DEFINITIONS

In this chapter, we have defined the terms used in this thesis.

Availability — Availability is the ratio of time a system or component is

functional to the total time it is required or expected to function.

Bisection bandwidth— It is the highest bandwidth that can be achieved

across the smallest cut that divides network into two equal halves (parti-

tions).

Fault — Fault is the hypothesized cause of error(s).

Dependability — Dependability is the ability of a system to deliver a

specified service.

Error — Error is the observed incorrect result of an operation after the

computation is finished.

MTBF — MTBF is defined as mean time between failures. MTBF of

event X is given by :

MTBF(X) =
Total Production Hours

Total # Recovery Event X of type Y
(4.1)

MNBR — MNBR is defined as mean node-hours between recovery op-

erations. MNBR of event X of type Y for a fixed time period is defined

as:

MNBR(X,Y) =
Total Production Hours

Total # Recovery Event X of type Y
(4.2)

Where, the total number of production node hours is calculated as total

system availability hours (i.e., hours the system is available) * total number

of available nodes, X is the event and Y is the event type. For, example X

can be one of success, failed, or total recovery procedures and Y can be one

of lane, link, warm swap.

Failure — Failure is an event that transitions the state of the system from

good (healthy) to bad (unhealthy).

20

Failover — Failover is a method of switching to a standby or redundant

component when the primary fails.

Interconnect — An interconnect is a programmable network that pro-

vides communication paths and protocols for interaction between terminals.

Recovery — Recovery is a method of restoring the system operation(s)

(i.e. returning to desired functionality). Note that the system-state may

change during recovery, however, the system is able to produce outputs when

presented with a valid input after recovery.

Recovery Procedure — A recovery procedure consists of an isolated

recovery operation.

Recovery Process — A recovery process is a combination of recovery

procedures and represents either concurrent or sequential execution of mul-

tiple recovery procedures (e.g., multiple failover operations to recover the

system).

Reliability — Reliability is defined as the probability that a device will

perform its required function under stated conditions for a specific period of

time.

Resiliency — Resilience is the ability to provide and maintain an accept-

able level of service in the face of faults and challenges to normal operation

System-wide Outage — In scientific literature, system-wide outage is

a loosely defined term and is site-specific. In the context of NCSA/Blue

Waters, it is used to declare situations in which the system is not able to

perform as expected.

21

CHAPTER 5

METHODOLOGY AND TOOLS

5.1 Approach

To understand and analyze the recovery procedures of the Gemini intercon-

nect, we augmented LogDiver[1], a tool for measuring application resiliency

in HPC systems, with additional capabilities to implement an interconnect-

recovery analysis workflow. Interconnect-recovery analysis workflow tool (I-

RAT) in that sense is a plugin built on top of LogDiver.

I-RAT filters, coalesces, and correlates Gemini-related errors with applica-

tion failures, and human-written system failure reports managed by system

administrators. I-RAT uses a state-machine model to determine the recovery

type — lane recovery, link failover, warm swap category- and recovery exit

status as successful or failed from logs.

In addition to the characterization of the recovery procedures, I-RAT is

used to evaluate the impact of recovery (successful/failed) on user applica-

tions and the system availability by using LogDiver utilities.

We briefly summarize the steps of our approach here before diving deeper

into the details. These steps are —

• Data collection and filtering — In this step, we created a set of rules

that can be used to extract interconnect-specific event logs. Raw logs

from Blue Waters do not directly indicate the source of these logs and

relationship between these logs, thus making it most time-consuming

step. We used a series of strategies to learn about these rules such as

reading the technical manuals from Cray describing the logging mech-

anism, interaction with Blue Waters system admins/Cray engineers,

automatic discovery, and extraction of interconnect-related logs dur-

ing interconnect-related failures found in system-wide outage reports.

The relevant event logs are shown in Table A.1 and the relationship

22

between these logs is described in section 3.1.6. The filters obtained

at the end of this step are used in filtering stage of LogDiver in addi-

tion to the filters that were used for extracting application event logs

(described later in this section). Other datasets (see 5.1) used in this

study were readily available from Blue Waters. The formats of these

logs are described in section 5.2.

• Clustering/coalescing the event logs — In this step, we cluster

the interconnect-related events according to the failure recovery model

described in this section. This is a clear addition to LogDiver and forms

the core part of I-RAT. Differently from LogDiver clustering algorithm

which tries to cluster system errors to find the cause of application fail-

ures, I-RAT traces the failure-recovery path to understand the cause of

the failure of the recovery as well as the conditions that triggered those

failures in the first place. This required building a custom coalescing

engine which could cluster the events to enable this study.

• Analyzing the impact on application and system — In this step,

we take the output of LogDiver application parser and correlate the

application failures with the recovery-sequence clusters obtained in the

previous step. In addition, we correlate the failure reports maintained

by the system admins of Blue Waters to correlate the system-wide

outages to recovery clusters. Currently, I-RAT/LogDiver produces the

following output for studying interconnect-related recovery mechanisms

—

– Recovery-sequence clusters and the final state of the recovery

– Number of applications impacted by the recovery and a boolean

variable indicating if it caused SWO or executed during recovery.

– Measure of mean-time between recovery, mean-time between fail-

ures, etc.

5.2 Data Sources

Our tool takes three inputs (see Table 5.1): (1) syslogs, (2) consolidated

application workload (obtained from ALPS and Torque logs), and (3) manual

23

failure reports (created by administrators). The consolidated application

workload logs are filtered so as to contain only user applications (i.e., all

debug and benchmark jobs run by system administrators are removed from

this analysis).

Table 5.1: Summary of data sources

Data time span: January 2013-March 2015
Datasource Count Dataset Size
Raw syslogs* 75,760,682,632 13 TB
Manual failure reports 4,184 1.4 MB
Coalesced Workload 20,600,030 8 GB

5.3 Measuring Application Resiliency : LogDiver

DiMartino et. al. implemented LogDiver to measure the resiliency of appli-

cations in HPC systems. LogDiver produces measurements for 1) measuring

resiliency of different application scales, from single node application up to

full-scale applications, and 2) analyzing the sensitivity of applications to dif-

ferent errors. In [15], authors measured the resiliency of the application for

5 million application runs to system and application errors. In [1], authors

discussed the general architecture of LogDiver and further showed the re-

siliency of application to GPU errors on XK nodes of Blue Waters. We

briefly describe the general architecture of LogDiver here to help understand

the interaction of I-RAT with LogDiver.

LogDiver operates in four main steps, depicted in Fig. 5.1. Each step

produces several output files that are fed downstream to the subsequent

steps.

• Data Collection— In this step, data is collected from multiple sources

such as syslogs, torque logs, and alps logs. To ease the porting of this

tool to different systems, data are parsed to an internal format that is

system-agnostic.

• Parsing and Filtering Data — In this step, syslogs are parsed

through filters (that were created manually) to convert the raw logs

to events using standard error templates. The error template consists

24

of specific unique numerical template ID, tag, category, and group to

each error template. The tag is a textual description of the event of

interest (e.g., GPU DOUBLE BIT EXCEPTION or LUSTRE CLIENT

EVICT), the category refers to the subsystem generating the event (i.e.,

NVIDIA GPU or LUSTRE), and the group corresponds to the type of

the subsystem involved in the event (e.g., NODE HW or STORAGE).

At the time of writing this thesis, LogDiver has over 700 error tem-

plates.

• Workload Consolidation — The required application data (i.e., ex-

ecuted aprun commands, see Figure 1) are scattered over several non-

consecutive entries in the ALPS logs and need to be retrieved and

assembled for each user application. The output of the step is an ex-

tended data set of user applications (referred to as application data in

Figure 3.(c)), which contains one entry for each application. The entry

includes i) start and end time, ii) reservation ID, job ID, user, group,

and application name, iii) resources data, e.g., number, ID, and type

of nodes, memory, and virtual memory, iv) application exit code and

job exit code, v) job- and application-required wall time and used wall

time, and vi) the command used to launch the application.

• Workload-Error Matching — In this step, error data is merged with

the workload data generated in the previous step. Error data is first

coalesced using a sliding window algorithm as described in [26, 27] to

approximate the ground truth occurrence of events.

• Metric Estimation — LogDiver estimates various metrics of interest

with respect to applications that fail because of system related issues.

Metrics used in this study include:

– Mean Node Hours Between Failures (MNBF) computed as a ratio

of the total number of production node hours to the total number

of application failures

– Mean Time Between Interrupt (MTBI) computed as a ratio of the

total number of production hours to the total number of applica-

tion failures

– Probability of an application failure

25

Software Sensors/Detectors
eg. Timeouts, crashes, etc

• Machine Check Exceptions
• GPU Hardware Counters
• Gemini Counters
• ….

Syslogs Extract
Templates

Sys. Admins
(Validation)

Error Event Templates
300/22082

Data Filtering Data Tagging

Metric estimation
• MTBI, MNBF
• Node Hours,
duration, scale
• Failure Probability
• …

Error
Logs

Torque Logs
Data

Cleaning/Parsing

Jobs
Database

Application
Exit Codes
Database

• Evaluate Estimators (time series) on rates,
counts, and inter-arrvial for tagged error for
each node

• Group errors happening in app [Start Time,
End Time] on the nodes in app node list with
high correlation in a time window T

ID
60931
9545
19842
56724

Template
passive node first up after deadtime
* this client was evicted by * in …
error: syslog 52 unxexpected text
machine check events logged

Count
320
1187
9987
10023

Filter
0
0
1
0

ID

19842
9545
56724

TAG

GEMINI_CRC_ERROR
LUSTRE_EVICTED
CPU_MACHINE_CHECK

Category

GEMINI
LUSTRE
NODE_HW

Workload Logs
Consolidator

ALPS Logs

Consolidated
application

and jobs
database

Step3: Workload Consolidation
St

ep
 1

: D
at

a
Co

lle
ct

io
n Step 2: Create Event

Templates and filter

Step 4: W
orkload Error M

atching

Step 5: Calculate
Metric

Figure 5.1: LogDiver : An HPC log data analysis toolkit

5.4 Interconnect Recovery Analysis Workflow Tool :

I-RAT

Figure 5.2 shows the block diagram of the I-RAT plugin built on top of Log-

Diver. I-RAT consists of six operations, indicated by diamond shapes (in

Figure. 5.2): Filter Gemini logs, Gemini aware coalescing, Job impact ana-

lyzer, and System impact analyzer. In order to support I-RAT on LogDiver,

some of the steps of LogDiver was modified. These steps are indicated as

Modified in 5.2. Plugin was developed in C++14.

In the following, we describe all the operations of the I-RAR in detail, that

have been added to LogDiver.

5.4.1 Filter Gemini Logs

Date filtering and tagging operation from LogDiver applies regular expression

(regex) rules onto the raw system logs line by line to extract interconnect-

related logs from syslogs. We added over 100 regex rules to the existing

LogDiver database for extracting interconnect-related events. These regex

rules were selected based on our understanding of Gemini recovery proce-

dures, as discussed in section 3.1.4 and each event is matched to only one

rule. All these rules are listed in Appendix A. These extracted logs are

then filtered and transformed into a set of features, represented by nple

26

Syslogs
Regex
Filtering

Data Filtering
and Tagging

Metric estimation

Extracted and
Tagged Error

Logs

Torque Logs

Data
Cleaning/Parsing

Jobs
Database

Step 3: Workload
Logs Consolidator

ALPS Logs

Consolidated
application

and jobs
database

Step 2: Workload
Consolidation

Step 1: Create Event
Templates and filter

Step 4: Calculate
Metric

10

Step 4:
Workload

Error
Matching

Filter Gemini
Logs

Gemini Aware
Coalescing

Job Impact
Analyzer

Failure
Reports

Failover
Clusters

System Impact
Analyzer

Step 6: Analyze Failure of Interconnect Failovers

LogDiver

I-RAT

Modified

Figure 5.2: Block diagram of the pipeline for analyzing Gemini recovery
procedures (I-RAT) built on top of LogDiver.

< Time, Location, Tag, Info >. The Time field is the timestamp of the

logged event; Location is the component that either suffered from errors/-

failures, or where the recovery procedure was running; Tag is an identifier of

the matched regex rule; Info is used for storing other important information,

such as completion time or error exit reason. Location of the log message,

is determined either through the location field in the logging protocol [28]

or from the Tag and the body of the message itself. It is important to ex-

tract the exact location to evaluate the impact. For this reason, we modified

the LogDiver data filtering and tagging operation. As an example, below we

show a message taken from syslog, which is written by the xtlnlrd daemon

on the SMW, upon a failure of a Gemini ASIC module.

1368343836 local3 5 2013-05-12T02:30:36.909109-05:00 smw xtnlrd 15324

p0-20130503t234552 [hss nlrd@34] 2013-05-12 02:30:36 smw 15325

cb hw error: failed component c17-10c1s6g1, type 21, error code 0x0d10,

error category 0x0002

Table 5.2: An example log from Blue Waters indicating Gemini ASIC
failure.

In the log example shown in Table 5.2, filter operation determined the

< Time > as the unix time - “1368343836”, < Location > as “c17-10c1s6g1”,

27

which is the failed component, < TAG > as “ASIC FAILED”, and < Info >

as “ error code=0x0d10”. In this case, the identification label of the failed

component is ”c17-10c1s6g1”, and contains the < Location > of the Gemini

ASIC failure event, which is not directly indicated in the syslog header. How-

ever, this is more of an exception as in many cases the reporting component

can directly be used as < Location >.

Tag ID Regex Expression Tag

2020
Link recovery operation

was successful
LINK RECOVERY SUCCESS

Table 5.3: An example line from rules database

An example line from our rules database is shown in Table 5.3. These tags

are divided into 4 categories: faults/errors, failures, recovery transition, and

recovery finish. Table 5.4 gives representative examples of tags for each of the

four broader categories. These four tag categories are created based on the

general understanding of the failure manifestation and propagation (as shown

in Fig. 5.3) in the system. The problem starts with faults, which manifest as

an error in the system. Errors lead to failure(s) either immediately or some

time later. A failure invokes a recovery mechanism, which can either succeed

or fail. The details of these categories are as follows —

• Faults/errors —These tags represent errors which can lead to failure or

are indicative of failures that have not been detected yet. Since these

tags do not cause immediate failure of the link/lane, they do not trig-

ger any recovery procedures. However, some of these events result in

disabling of lanes/links, which in turn generates new events (belonging

to Failure category). For example, when a single lane has more er-

rors than its companion lanes, it is deactivated leading to ‘Lane Down

’event in the system. We refer to these errors as trigger latent as these

events are indicative of interconnect-component failures. For examples,

an increased number of misrouted packet can indicate routing issues.

Similarly, increased number of one lane down event can indicate link

issues and may lead to failure of the link itself.

• Failures—These tags indicate activity in the system that modifies or af-

fects the network topology directly, i.e., link addition, link disable, link

28

unavailability, thus causing the invocation of recovery procedures to

handle these changes. For example, “ASIC FAILED” indicates a fail-

ure of Gemini ASIC on a blade, causing the links to be unavailable and

making the network unrouteable. In almost all cases, when events from

this category are observed, recovery procedures are expected to han-

dle these events. Since these events trigger immediate recovery action

in the system to restore the topology and functioning of interconnect,

these events are also called as trigger-immediate.

• Recovery start and transition steps —These tags indicate the starting

point and the intermediate steps of the recovery procedures, and, hence

help to keep track of the system actions taken for failure mitigation.

Also, this data helps to understand if any other failures in the system

interfere with the recovery procedure. For example, “LINK AGG -

FAILURES” tag indicates that the recovery procedure is waiting and

collecting any additional failures for T seconds before calculating new

routes for the network.

• Recovery final —These tags include all the states that indicate the

final state (success/fail/missing) of the recovery procedure. For ex-

ample, “LINK FAILOVER SUCCESS” indicates that the link failover

operation finished successfully.

Fault/Error
(Trigger
Latent)

Failure
(Trigger

Immediate)

Transition
Step

SuccessfulFailed Missing

Failover/Recovery Finish

Failover/
Recovery

Start

Figure 5.3: Reduced recovery-sequence state-transition diagram. All
state-transition diagrams described in Section 3.1.4 are mapped to this
reduced state-transition diagram.

29

FAULTS/ERRORS RECOVERY START & TRANSITION

BLADE ELECTRICAL IS-

SUE

2.24E+07 BLADE RECOVERY 2.79E+02

CABINET HEARTBEAT -

FAILED

5.37E+05 BLADE RECOVERY SUC-

CESS

2.79E+02

BUFFER OVERFLOW 4.90E+07 CABINET READDED 7.11E+06

CHECKSUM ERROR 8.64E+03 FINISHED LINK RECOV-

ERY

3.72E+02

ECC ERROR 1.16E+06 ROUTING TIMEOUT 4.50E+01

MISROUTED PACKET 5.06E+08 HSN NETWORK QUISCED 4.67E+02

HWERR CMD MISMATCH 1.00E+03 HW ERR LINKF IDENTI-

FIER

3.04E+02

HWERR MISROUTE -

PACKET

4.05E+05 INIT NEW BLADES 2.78E+02

HWERR NIF SQUASHED -

REQ

7.17E+07 INIT NEW LINKS 4.04E+02

SSID RESP PROT ERROR 2.58E+07 LINK FAILED HANDLED 4.50E+05

LINK INACTIVE 4.39E+05 LINK AGG FAILURES 4.24E+02

ONE LANE DOWN 3.50E+07 NETWORK QUISCE 9.19E+02

RX VC DESC INV 7.22E+05 NETWORK UNQUISCE 9.15E+02

SSID UNEXPECTEDR-

SPSSID

2.14E+05 REROUTE SUCCESS 1.68E+03

TWO LANE DOWN 5.69E+05 ROUTE COMPUTE 1.05E+03

ROUTING RETRY 1.09E+02

FAILURES STARTED LINK RECOV-

ERY

2.51E+05

ASIC FAILED 1.85E+04 WARM SWAP FINISH TIME 7.02E+02

BLADE DOWN DETECTED 3.73E+02 WARM SWAP STARTED 7.04E+02

EPO FAULT 1.60E+03 RECOVERY FINISH

FAN FAULT 1.27E+03 LINK RECOVERY FAILED 9.60E+01

LINK FAILED 2.51E+05 LANE RECOVERY FAILED 2.85E+03

MEZZANINE POWER -

FAILED

5.18E+04 LINK RECOVERY FAILED 9.60E+01

NODE DOWN 1.95E+06 LINK RECOVERY SUC-

CESS

3.22E+02

ROUTING TABLE COR-

RUPTION

1.17E+02 WARM SWAP DELAYED 4.00E+00

THREE LANE DOWN 5.76E+05 WARM SWAP FAILED 5.10E+01

NODE UP 3.93E+05 WARM SWAP SUCCESS 6.51E+02

Table 5.4: Tag categories with representative tag examples and related
counts, as observed in the logs

30

In a complex system like Blue Waters, it is hard to build (and then track)

deterministic model of the state transitions (described in section 3.1.4) during

recovery due to the following reasons —

• Failure during recovery procedure: A failure during a recovery proce-

dure can alter the state, and, hence the state transition of the recovery

path, depending on the type of failure. This failure acts as interfer-

ence, and thus, alters the normal recovery path. It is impossible to

know all the transition paths in advance due to - (1) unavailability of

the underlying code, and (2) non-determinism in the system.

• Issue of bias versus variance in modelling : Explicitly coding all the

recovery paths into the model increases the model complexity, and

hence, can lead to a high bias in the model. This hinders the discovery

of true causes of the failures.

• Logging issues : The timestamps stored in the logs represent the logging

time of an event. Sometimes, there can be incoherency in the logging as

the different events are logged by different subsystems, and writes (to

the log file) may not follow a strict order. An event can be completely

missed when the system is heavily stressed, e.g., the logging service

itself is down, the memory is corrupted, or the network is unavailable.

To cope with these problems and represent all recovery procedures using a

general model (i.e. a common state-transition diagram) of failure manifesta-

tion and propagation in the system, the state-transition diagrams described

in section 3.1.4 are mapped injectively onto a reduced state-transition dia-

gram depicted in Figure 5.3. This abstraction does not only help us cope with

the problems discussed above, but also reduces the time to do our analysis

as there are many fewer states to track.

5.4.2 Gemini Aware Coalescing

The coalescing algorithm is executed on the output of Filter. The algorithm

shown in Algorithm 1 creates clusters of events (corresponding to messages

logged) to form Gemini recovery-sequences. The algorithm coalesces tags

based on the fixed sliding window algorithm proposed in [29, 30]. The algo-

rithm starts by initializing an empty tree. The tree is essentially based on a

31

fault tree model (see Figure 5.4), which captures the topology of the system

and. Hence, potential error propagation paths in the Gemini interconnect.

The idea of using this model lies in the fact that an event at a higher level in

the topology affects all the sub-levels, and hence, all events that occurred in

the lower levels during the same time window (as the high-level event) need

to be merged. Similarly, an event at a lower level can only affect components

located at a higher level in this tree. In this way, the fault tree model ef-

fectively captures Gemini recovery events, as well as it provides an effective

way to index the clusters (generated by the coalescing algorithm) and com-

ponents of the system. Such indexing speeds up the processing time, by at

least an order of magnitude.

SYSTEM

CABINET

BLADE

CABINET

BLADE BLADE BLADE

ASIC/
NODE

ASIC/
NODE

ASIC/
NODE

ASIC/
NODE

LINK LINK LINK LINK

Figure 5.4: Gemini topology-aware fault model. The model helps track the
effects of events in sub-components.

The algorithm first tries to find the index where log line (refer to Algo-

rithm 1) can be inserted in the cluster tree. If no index is found, a new leaf

is created at the appropriate level by traversing the tree. If the log line is

inserted at a level that has a sub-tree, all the clusters in the sub-tree are

merged with the cluster of the current level, as required by our fault tree

model described earlier. For example, if the log line belongs to the blade-4

level, all the clusters (if any) below this level are merged with this cluster.

When the cluster is complete, the final state of the sequence is decided using

the state-transition diagram shown in Figure 5.3. The algorithmic complex-

ity of the outlined model is O(n log(m)), where n is the number of lines and

m is the system size determined by the total number of unique components

(e.g., links, ASICs, blades, cabinets, etc.).

32

Algorithm 1 Coalescence of Gemini recovery procedures related events.

1: Tree = initialize cluster tree()
2: for log line in filtered logs do
3: current cluster = find cluster index(Tree, log line.location)
4: if ((current cluster.timestamp− log line.timestamp) ≤ slide time)

&& (current cluster ̸= NULL) then
5: current cluster.timestamp = log line.timestamp
6: current cluster.add(log line)
7: merge all clustrs in subtree(current cluster)
8: current cluster.transitions.add(determine cluster states(current cluster)
9: else
10: if (current cluster ̸= NULL) then
11: current cluster.final state =

determine cluster states(current cluster)
12: write(current cluster)
13: end if
14: start new cluster(Tree, log line.location)

▷ Start new cluster with log line being it’s first member at the
appropriate location in tree

15: end if
16: end for
17: write active clusters(Tree) ▷ Write all active clusters

33

Table 5.5: Example of Recovery Sequence Cluster(Output of Coalescing
Algorithm)

Start Time [Unix Time] 1431583171
End Time [Unix Time] 1431583401
Locations blade c11-8c1s1, blade c14-10c0s3, smw1,

blade c9-8c1s3, blade c14-3c0s1, blade -
c13-6c2s0, blade c19-0c2s3, blade c1-9c2s5,
blade c12-7c0s4, blade c16-1c2s7, asic c11-
8c1s1g0, blade c21-0c0s4

First Tag CORRUPT ROUTING TABLES
End Tag LINK RECOVERY SUCCESS
Tag Counts ROUTING TABLE CORRUPTION [1],

ASIC FAILED [1], CABINET READDED
[6912], ROUTE COMPUTE [1], NET-
WORK QUIESCE [1], NETWORK UNQUI-
ESCE [1], FINISHED LINK RECOVERY
[1], LINK FAILOVER SUCCESS [1],

Total Events 6919
Duration [Seconds] 230
Recovery Status SUCCESS
Additional Info RECOVERY HANDLING TIME= 120.09

Table 5.5 provides an example output of coalescing. This example shows

a successful link failover operation, as indicated by Recovery Status. The

problem starts with the corruption of routing tables in one of the ASICs as

indicated First Tag. This results in failure of links, and hence, triggering of

the failover. The End Tag indicates the unquiesce of the node. Although

the failover ran for 120.09 seconds (indicated by Additional Info), the time,

from the beginning of the first event to the last event, in the cluster was 230

seconds. When the < Location > tag contains smw1 in the output, it means

that the whole system is affected. In particular, the time between quiescence

to unquiescence stops the traffic in the whole system.

5.4.3 System Impact Analyzer

The System impact analyzer processes SWO failure reports filed by the tech-

nical staff of Blue Waters/Cray, and correlates them with recovery-sequence

clusters obtained from Gemini aware coalescing step. This operation looks

at the overlapping time between recovery-sequence clusters and SWO dura-

34

tion mentioned in the reports. This merging does not necessarily indicate

causation. For causality inference, we manually verified the merged output.

This was a feasible task due to the small number of SWOs (approximately

∼ 101 in this study) that needed to be analyzed manually.

5.4.4 Job Impact Analyzer

The Job impact analyzer evaluates the impact of successful and failed re-

covery procedures on applications. It finds applications -from the database

of consolidated workload- that overlap in time and location with any of the

recovery-sequence clusters. The final output of this operation is a statistical

characterization of affected applications. It provides the number of appli-

cations running during the time window of the recovery-sequence clusters

and applications terminated during this time window; further, it extracts

the number of applications terminated with success, and the number of ap-

plications terminated with failing status, both system-wide and on the nodes

involved in the recovery operations.

35

CHAPTER 6

RESULTS

This section shows our preliminary results from the analysis of the outputs

obtained from the methodology and tools, as described in section 5. We

discuss completion status and failure rates of recovery procedures, and their

impact on the system and applications.

6.1 Measuring Occurrence and Success of Recovery

Procedures

In this section, we measure the following —

• Completion status

• Failure Rate

• Mean-node hours between recovery

6.1.1 Completion Status of Recovery Procedures

Figure 6.1 shows the breakdown in the percentage of successful lane recovery,

link failover, and warm swap procedures. The Gemini interconnect is highly

resilient to lane failures. Specifically, 99.1% of lane failures are successfully

recovered. Moreover, the impact of lane recovery failures is very limited since

a disabled lane does not cause link failure, as explained in section 3.1.4 (ex-

cept for three lanes down). Since lane recovery operations are managed by

the L0, they may potentially interfere with other recovery procedures man-

aged by the SMW through the L0, such as link failovers and warm swaps. For

example, after analyzing recovery-sequence cluster summaries generated by

our tool, we found out that in one case, the failure of the lane recovery nega-

tively affected a link failover procedure running in the system. This resulted

36

in an interconnect network deadlock that led to congestion and ultimately

system-wide outage. There are other cases where such synchronization issues

lead to failure of Gemini recovery procedures.

99.1%
75.8%

92.1%

0%

20%

40%

60%

80%

100%

Lane Link Warm Swap

Figure 6.1: Recovery completion status for lane, link, and warm swap.

Link failovers are successful only in 75.8% of the cases. Although warm-

swap operations are highly controlled (since they are triggered by system

administrators), around 7.9% of warm swaps fail. Apart from maintenance

reasons, warm swaps are initiated when the network becomes unrouteable.

By analyzing recovery-procedure clusters, we observe that most failures in

the link failovers and warm swaps are caused by other simultaneous failures

in the system. These simultaneous failures could not be managed by the

SMW and, in the end, resulted in a SWO.

6.1.2 Recovery Procedure Failure Rate

Figure 6.2 shows the total count of failures of recovery procedures per month

in Blue Waters for (a) lane, (b) link, and (c) warm swap. Failures of recovery

procedures have decreased over time.

There is a sharp decrease in failures of recovery procedures after November

1, 2013. On that day, Blue Waters SMW software was updated and further

patched (a day later) to fix major software bugs related to handling failures in

the Gemini interconnect. Beyond this point, the recovery procedures failure

had been continuously decreasing over time, thus showing the increase in

stability of the system.

37

0

50

100

150

200

250

300

10
/2

01
2

1/
20

13

4/
20

13

7/
20

13

10
/2

01
3

1/
20

14

4/
20

14

7/
20

14

10
/2

01
4

1/
20

15

4/
20

15

7/
20

15

Co
un

ts
 P

er
 M

on
th

0

5

10

15

20

25

30

35

10
/2

01
2

1/
20

13

4/
20

13

7/
20

13

10
/2

01
3

1/
20

14

4/
20

14

7/
20

14

10
/2

01
4

1/
20

15

4/
20

15

7/
20

15

0

2

4

6

8

10

12

14

10
/2

01
2

1/
20

13

4/
20

13

7/
20

13

10
/2

01
3

1/
20

14

4/
20

14

7/
20

14

10
/2

01
4

1/
20

15

4/
20

15

7/
20

15

(a) (b) (c)

Figure 6.2: Count of total failure of recovery procedures for (a) lane (b)
link (c) warm swap per month. The vertical line shows a major software
upgrade fixing bugs in the Gemini interconnect resiliency management code.

6.1.3 Mean Node-Hours Between Recovery Procedures

Next, we calculated mean node-hours between recovery procedures (MNBR)

to understand the frequency of recovery operations with respect to scale.

In this study, we define two metrics: (1) mean-node hours between launched

recovery operations, i.e., X is launched recovery operations of type Y, and (2)

mean-node hours between failed recovery operations (i.e., X is failed recovery

operations of type Y). Y can be lane recovery, link failover, and warm swap.

Recovery Procedure

Name

Failed Recoveries [h] Launched Recover-

ies [h]

Lane Recovery 133,968.5 1223.2

Link Failover 4,019,056.3 973,167.7

Warm Swap 7,033,348.5 533,608.8

Table 6.1: Mean Node-Hour Between Recovery Events

Table 6.1 summarizes the MNBR for lanes, links, and warm swaps for

failed recovery procedures and the total number of launched recovery proce-

dures. Lane recovery, link recovery, and warm-swap procedures are launched

every 2.8 minutes, 36.2 hours, and 20.6 hours, respectively. Given the high

probability of failure of recovery procedures, a low mean-time be-

tween trigger of recovery procedures poses a significant threat to

system availability and reliability. Our results show that mean time

between recovery events of interconnect is significantly lower than

the other components present in the system. For example, Martino

et. al. reported an MTBF of 6.7 hours for the nodes in the same system.

38

6.2 Analyzing impact of recovery procedures

In this section, we analyzed the impact of a recovery procedure for successful

and failed recovery procedures on system and applications. System impact is

quantified by counting system-wide outages that were caused by interconnect

recovery procedures.

6.2.1 System-Wide Outages

Of 101 SWOs observed in human-written reports filed by NCSA Blue Wa-

ters staff, the system-impact analyzer (see Figure 5.2) identified 28 SWOs

related to Gemini interconnect recovery procedures. Of these 28 cases, 14 of

these are strictly due to the failure of the recovery procedures in the Gemini

interconnect. A deeper analysis of the recovery-sequence clusters associated

with interconnect-related SWOs shows that only one instance of recovery-

procedure failed due to unrouteable topology configuration. a significant

number of system-wide outages are caused by the failure of inter-

connect recovery procedures. Hence, failure of recovery procedures

decreases the overall MTBF of the system.

6.2.2 Application Impact

Using the methodology in chapter 5, we have analyzed the impact of intercon-

nect related recovery procedures on running applications. The impact was

assessed in terms of percentage of applications that failed during the recovery-

sequence clusters. We calculated this metric for the 28 SWOs and found that

20.13% of the applications failed during these SWOs. Additionally, we found

that 0.20% of the applications failed during successful recoveries. This shows

that successful recovery can also lead to the failure of applications due to the

delay in handling the failures. A successful recovery can last anywhere be-

tween 60 to 1000 of seconds depending on failure type and invoked recovery

procedure.

In Figure 6.3, we show an example of a link failover sequence that ended

successfully but lead to the failure of two applications. Through this example,

we describe the all the potential phases due to which the applications can

fail. A fault (Routing Table Corruption) occurred at time T . A short time

39

ASIC
failed

Routing Table
Corruption

Begin Link
Failover

Rerouting
required

Rerouting
success

Link Failover
Success

T + 82 T +127T = 1431583171 T + 132

Unquiesce
Network

Quiesce
Network

Figure 6.3: An example of a successful link failover sequence (taken from
the output of the coalescing algorithm). Orange circle represents faults, red
circle represents failures, and green circles represents recovery operations.

later, the failure (ASIC Failed) occurred, and the failover operation (Begin

Link Failover) was triggered. The failover procedure determined the need

for calculating new routes to handle this failure (Rerouting required), and

calculated new routes to be installed on the routers. Finally, at time T + 82

seconds, the network was quiesced, and the routes were installed. Once

the new routes were installed and asserted, the network operation was fully

restored. In this scenario, in the time interval from T to T +82 seconds, the

network was still active (quiesce had not yet begun), and hence, there was

a chance (in this 82 seconds) for the failure to propagate across the system,

and amplify the impact of the initial fault (the Routing Table Corruption)

on the system and applications. At T + 82 seconds, network was quiesced

to install the calculated routes. However, quiescence does not guarantee

protection from application failures and hence, the application can fail due

to - (1) lag in the propagation of quiescence in the network, and (2) packet

loss. From T + 127 seconds to T + 132 seconds, applications that do not

employ workload redistribution, or checkpointing could potentially fail due

to unavailability of the nodes, blades, or cabinets. In this particular example,

the two applications failed between T to T +82. This example concretely

shows that the failure containment by recovery procedures does not

always hold in practice. Hence, applications can fail even during a

successful recovery for different reasons, as discussed above.

40

6.2.3 Validation on Mutrino Dataset

The methodology and tools presented in this thesis, work out of the box for

Cray Aries interconnect. We ran I-RAT on ‘Mutrino dataset ’[31] for testing

and validating our models. Mutrino is a Cray XC40 based testbed system

consisting of 100 nodes connected through Aries interconnect for testing the

readiness of applications on Trinity Supercomputer. The dataset consists

of 100 days of logs. We were able to extract and report the Aries errors

from this dataset. Thus, our approach to analyze failure data from

a supercomputer interconnect can be suitably extended to other

interconnect technologies for studying and characterizing intercon-

nect recovery capabilities of the system.

41

CHAPTER 7

RELATED WORK

There are several studies on analyzing the behavior and resiliency of large-

scale systems such as [32, 33, 34, 35, 36, 37, 38]. These studies have focused on

overall system behavior and system resilience for understanding failure causes

and predicting failures from logs. [39, 40, 41, 42], etc. focused on one of the

HPC components such as file system, interconnect, compute hardware, etc.

However, there is no study detailing the failure of the recovery mechanisms in

HPC systems. This is the first work that describes the failure of interconnect-

recovery mechanisms in large-scale HPC system such as Blue Waters.

Most of the work in interconnect system focuses on the design and scal-

ability of the networks such as in [43, 44, 45, 19, 2]. With respect to re-

siliency, the scientific community has focused on failures and recovery of

data-transmission [46], network-links [47, 48] and network-devices [49, 50].

The MIT Reliable Router [49] describes techniques for link monitoring, link-

level retry, link shutdown and fault-masking techniques. Error control codes

for data transmission is given [46]. Adaptive routing algorithms are useful for

routing around faulty links (fail-stop model) and is first described in [48]. In

[41], Ezell presents micro-benchmarks to diagnose problems in HPC systems

with the Gemini interconnect, using performance registers. That analysis is

performed in unloaded network scenarios. In contrast to existing literature

on interconnect-resiliency, we describe an abstract recovery model to under-

stand the causes for the failure of the recovery mechanisms in interconnection

networks. In this work, we primarily proposed the model and then measured

the impact of failures of recovery-mechanisms on system and applications.

42

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we presented a study to understand the Gemini intercon-

nect recovery operations. Based on this understanding, we proposed and

implemented I-RAT as a plugin on top of LogDiver, a tool to extract and

reconstruct recovery sequences to measure system and application resiliency

to interconnect recovery operations.

Through our detailed analysis, we showed that the failure of interconnect

recovery procedures in a large-scale system posses a real threat to availability

and reliability of the overall system. We further analyzed the impact of

interconnect-failures on system and applications. Out of 101 SWOs, 28 were

shown to be caused by interconnect-related. As many as ∼ 20% of the

executing applications fail during the recovery procedures. We also show

that the applications can fail even during a successful recovery.

We found only one instance of unroutable topology configuration, however

as many 28 SWO’s were due to interconnect-related failures. This calls for

revisiting recovery models and mechanisms for HPC interconnects.

8.1 Future Directions

In the future, we plan to take steps to delve deeper into understanding the

cause of the failure of the recovery procedures and have an elaborate dis-

cussion on the need for building abstract recovery models for interconnects.

We also plan to implement and validate our abstract models through fault

injection experiments.

We also plan to compare the performance and resiliency of the Gemini and

Aries interconnect in two large-scale systems using the developed method-

ologies.

The goal of this thesis is to enable data-driven resiliency mechanisms. Our

43

work provides a strong foundation to understand and build data-driven ap-

proaches for building monitoring and resiliency mechanisms for future large-

scale systems.

44

REFERENCES

[1] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer,
“Logdiver: A tool for measuring resilience of extreme-scale systems and
applications,” in Proceedings of the 5th Workshop on Fault Tolerance
for HPC at eXtreme Scale. ACM, 2015, pp. 11–18.

[2] W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. Elsevier, 2004.

[3] R. F. Barrett, C. T. Vaughan, S. D. Hammond, and D. Roweth, “Ap-
plication explorations for future interconnects,” in Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International. IEEE, 2013, pp. 1717–1724.

[4] P. Yebenes, J. Escudero-Sahuquillo, P. J. Garcia, and F. J. Quiles, “To-
wards modeling interconnection networks of exascale systems with om-
net++,” in 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. IEEE, 2013, pp. 203–207.

[5] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon,
L. Kaplan, and M. Erez, “Containment domains: A scalable, efficient
and flexible resilience scheme for exascale systems,” Scientific Program-
ming, vol. 21, no. 3-4, pp. 197–212, 2013.

[6] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “To-
ward exascale resilience,” International Journal of High Performance
Computing Applications, 2009.

[7] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study
of 5,000,000 hpc application runs,” in Dependable Systems and Net-
works (DSN), 2015 45th Annual IEEE/IFIP International Conference
on, June 2015, pp. 25–36.

45

[8] C. Di Martino, , G. Goel, S. Sarkar, R. Ganesan, Z. Kalbarczyk,
and R. Iyer, “Characterization of operational failures from a
business data processing saas platform,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE
Companion 2014. New York, NY, USA: ACM, 2014. [Online].
Available: http://doi.acm.org/10.1145/2591062.2591172 pp. 195–204.

[9] A. Inc., “Bios and kernel developers guide, for amd family 16th.”

[10] T. D. I. M. Division, “A white paper on the benefits of chipkill-correct
ecc for pc server main memory, 1997.”

[11] “http://www.cray.com/Products/Storage/Sonexion/Specifications.aspx.”

[12] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The application
level placement scheduler,” in Cray User Group - CUG, 2008.

[13] “http://www.adaptivecomputing.com/products/hpc-products/moab-
hpc-suite-enterprise-edition.”

[14] M. Ezell, “Collecting application-level job completion statistics,” ser.
CUG 2010, Edinburg, UK, 2010.

[15] C. Di Martino, M. Cinque, and D. Cotroneo, “Assessing time coalescence
techniques for the analysis of supercomputer logs,” in In Proc. of 42nd
Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks
(DSN), 2012, 2012, pp. 1–12.

[16] K. Koch, “The new roadrunner supercomputer: What, when, and how,”
Presentation at SC06, 2006.

[17] N. Wichmann, C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis,
R. Baker, E. W. Draeger, S. Domino, A. Agelastos et al., “Performance
on trinity (a cray xc40) with acceptance-applications and benchmarks,”
Memory, vol. 2, p. 4, 2016.

[18] B. Bode, M. Butler, T. Dunning, W. Gropp, T. Hoe-fler, W.-m. Hwu,
and W. Kramer, “The blue waters super-system for super-science. con-
temporary hpc architectures, jeffery vetter editor,” 2012.

[19] W. J. Dally, “Performance analysis of k-ary n-cube interconnection net-
works,” Computers, IEEE Transactions on, vol. 39, no. 6, pp. 775–785,
1990.

[20] A. Agarwal, “Limits on interconnection network performance,” IEEE
Transactions on Parallel and Distributed Systems, vol. 2, no. 4, pp. 398–
412, 1991.

46

[21] Network Resiliency of Cray XE Systems. Cray. [Online].
Available: https://fs.hlrs.de/projects/craydoc/docs/books/S-0032-
3101/html-S-0032-3101/S-0032-3101-toc.html#toc

[22] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system intercon-
nect,” in 2010 18th IEEE Symposium on High Performance Intercon-
nects. IEEE, 2010, pp. 83–87.

[23] G. Faanes, A. Bataineh, D. Roweth, E. Froese, B. Alverson, T. Johnson,
J. Kopnick, M. Higgins, J. Reinhard et al., “Cray cascade: a scalable
hpc system based on a dragonfly network,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 103.

[24] S. L. Scott et al., “The cray t3e network: adaptive routing in a high
performance 3d torus,” 1996.

[25] R. E. Kessler and J. L. Schwarzmeier, “Cray t3d: A new dimension for
cray research,” in Compcon Spring’93, Digest of Papers. IEEE, 1993,
pp. 176–182.

[26] J. P. Hansen and D. P. Siewiorek, “Models for time coalescence in event
logs,” in Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers.,
Twenty-Second International Symposium on. IEEE, 1992, pp. 221–227.

[27] R. K. Iyer, L. T. Young, and P. V. K. Iyer, “Automatic recognition
of intermittent failures: An experimental study of field data,” IEEE
Transactions on Computers, vol. 39, no. 4, pp. 525–537, 1990.

[28] R. Gerhards, “The syslog protocol,” 2009.

[29] R. Iyer, L. Young, and P. Iyer, “Automatic recognition of intermittent
failures: an experimental study of field data,” Computers, IEEE Trans-
actions on, vol. 39, no. 4, pp. 525–537, 1990.

[30] J. P. Hansen and S. D. P., “Models for time coalescence in event logs,”
in Proc. of 1992 Fault Tolerant Computing FTCS 92, 1992, pp. 221–227.

[31] A. G. J. Brandt and J. Repik, “Mutrino Dataset 2/15-5/15.”
SAND2016-2449 O. 2016, Accessed: 2016-03-23. [Online]. Available:
http://portal.nersc.gov/project/m888/resilience/datasets/mutrino/

[32] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang,
“Failure data analysis of a large-scale heterogeneous server environ-
ment,” in DSN ’04: Proc. of the 2004 Int. Conference on Dependable
Systems and Networks, 2004, pp. 772–781.

47

[33] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction
under the microscope: A closer look into hpc systems,” in Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. IEEE Computer Society Press, 2012,
p. 77.

[34] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“Bluegene/l failure analysis and prediction models,” in Dependable Sys-
tems and Networks, 2006. DSN 2006. Int. Conference on, 2006, pp.
425–434.

[35] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-
performance computing systems,” in Proceedings of the International
Conference on Dependable Systems and Networks, ser. DSN ’06.
Washington, DC, USA: IEEE Computer Society, 2006. [Online].
Available: http://dx.doi.org/10.1109/DSN.2006.5 pp. 249–258.

[36] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” Dependable Systems and Networks, 2007. DSN ’07. 37th
Annual IEEE/IFIP Int. Conference on, pp. 575–584, June 2007.

[37] X. Chen, C. Lu, and K. Pattabiraman, “Predicting job completion times
using system logs in supercomputing clusters,” in Dependable Systems
and Networks Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP Con-
ference on, June 2013, pp. 1–8.

[38] J. M. Brandt, F. X. Chen, V. De Sapio, A. C. Gentile, J. Mayo, P. P.
Pebay, D. C. Roe, D. Thompson, and M. H. Wong, “Quantifying failure
prediction in large scale hpc systems: A case study.” Sandia National
Laboratories Albuquerque, NM; Sandia National Laboratories (SNL-
CA), Livermore, CA (United States), Tech. Rep., 2009.

[39] B. Schroeder and G. A. Gibson, “Disk failures in the real world: what
does an mttf of 1,000,000 hours mean to you?” in Proceedings of the 5th
USENIX conference on File and Storage Technologies, ser. FAST ’07.
Berkeley, CA, USA: USENIX Association, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267903.1267904

[40] G. Shipman, D. Dillow, S. Oral, F. Wang, D. Fuller, J. Hill, and
Z. Zhang, “Lessons learned in deploying the worlds largest scale lus-
tre file system,” in The 52nd Cray user group conference. Citeseer,
2010.

[41] M. Ezell, “Understanding the impact of interconnect failures on system
operation,” in Proceedings of Cray User Group Conference (CUG 2013),
2013.

48

[42] J. R. Mayo, F. X. Chen, P. P. Pebay, M. H. Wong, D. Thompson, A. C.
Gentile, D. C. Roe, V. De Sapio, and J. M. Brandt, “Understanding large
scale hpc systems through scalable monitoring and analysis.” Sandia
National Laboratories, Tech. Rep., 2010.

[43] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus et al., “Blue gene/l
torus interconnection network,” IBM Journal of Research and Develop-
ment, vol. 49, no. 2/3, p. 265, 2005.

[44] R. Brightwell, K. Pedretti, and K. D. Underwood, “Initial performance
evaluation of the cray seastar interconnect,” in High Performance In-
terconnects, 2005. Proceedings. 13th Symposium on. IEEE, 2005, pp.
51–57.

[45] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidel-
berger, S. Singh, B. Steinmacher-Burow, T. Takken, and P. Vranas,
“Design and analysis of the bluegene/l torus interconnection network,”
IBM Research Report RC23025 (W0312-022), Tech. Rep., 2003.

[46] R. E. Blahut, Algebraic codes for data transmission. Cambridge uni-
versity press, 2003.

[47] A. A. Chien and J. H. Kim, Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors. ACM, 1992, vol. 20, no. 2.

[48] D. H. Linder and J. C. Harden, “An adaptive and fault tolerant worm-
hole routing strategy for k-ary n-cubes,” IEEE Transactions on Com-
puters, vol. 40, no. 1, pp. 2–12, 1991.

[49] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos,
“The reliable router: A reliable and high-performance communication
substrate for parallel computers,” in International Workshop on Parallel
Computer Routing and Communication. Springer, 1994, pp. 241–255.

[50] W. J. Dally and C. L. Seitz, “Torus routing chip,” June 12 1990, uS
Patent 4,933,933.

49

APPENDIX A

INTERCONNECT RELATED EVENTS

Table A.1 contains a list of all the rules used to filter the raw systems logs

obtained from Blue Waters. The table contains three columns – (1) template

ID (unique numerical identifier used internally by the tools), (2) regex rules

containing regular expressions, and (3) tag (uniquely identifying the error).

Table A.1: Regular expressions used for filtering Gemini failure/recovery
related events.

Template

ID

Regex Rule Tag

1 ERROR\s*powerSlotDown: blade emergency -

power off

5 Response\s*Protocol\s*Error protocol error

12 ERROR:\s*Routing\s*fault routing failure

133 ERROR\s*\w+:\s*
cab\s*health\s*fault\s*detected.

cabinet degraded -

health

142 \s*table\s*full\s*dropping\s*packet. packet drop on -

buffer overflow

165 SSID\s*Detected\s*Misrouted\s*Packet misrouted packet

103 SSID\s*Correctable\s*Memory\s*Error ecc error

104 ipogif rx irq:Received

\s*packet\s*checksum\s*error
checksum error

180 ERROR:\s*route \s*command\s*
for\s*partition.*timed\s*out

routing timeout

238 Gemini\s*Error:\s*lost\s*
\d+\s*messages?\s*due\s*to\s*full

message lost on -

buffer overflow

2001 HSN\sASIC\sLCB\slane.*\sreinit\sfailed lane recovery failed

2002 TX\slanemask=[356]+ one lane down

2003 TX\slanemask=[124]+ two lane down

50

Table A.1: (cont.)

Template

ID

Regex Rule Tag

2004 TX\slanemask=0 three lane down

2005 cb hw error: failed compo-

nent\s.*\stype\s23
link failed

2006 cb hw error:\sfailed compo-

nent\s.*\stype\s21
asic failed

2007 alert\—Mezzanine\sVoltage\sFault mezzanine power -

failed

2008 generic rsp timeout:\sERROR.*L0 blade power failed

2009 dispatch:\scurrent state warm swap warm swap started

2010 bwsmw1\s[\d]+\sWarm\s
swap\soperation\swas\ssuccessful

warm swap success

2011 WARNING:\sTimed\sout\s wait-

ing\sfor\sreply\s to\sSDB\supdate\s
event\sfrom\sboot\s node

warm swap delayed

2012 routing\stable\scorruption\sfound routing table corrup-

tion

2013 ;\s*reroute\srequired routing reroute trig-

gerred

2014 All\scomponents\sreturned\ssucces reroute success

2015 do throttle:\sTelling\sall\sblades\s
to\sunthrottle\snetwork\sbandwidth

throttle sys

2016 do node quiesce stop network traffic

2017 do node unquiesce start networ traffic

2018 cb hw error:\shandling\sfailed\slink started link recovery

2019 done\shandling\sfailed\slinks\s
in\s[\d+.\d+]*\sseconds

finished link recovery

2020 bwsmw1\s[\d]+\sLink\s recov-

ery\soperation\swas successful
link recovery success

2021 ALERT:\sEmergency\sPower\sOff\sFault. epo fault

2022 ALERT:\sFan\sRPM\sFault fan fault

2023 done\shandling\swarm\sswap\sin warm swap finish time

51

Table A.1: (cont.)

Template

ID

Regex Rule Tag

2024 set\ warm\ swap\ err set warm swap err

2025 do throttle:\sTelling\sall\sblades
\sto\s\throttle \sGemini

do network throttle

2026 (\d\d:\d\d:\d\d).*(handling\s cor-

rupted\srouting\stable\serror)
handling corrupt rout-

ing table

2027 HSN\sBoot\sfailed hsn node boot failed

2028 dispatch.*(current state\squiesce\s) network quisce

2029 dispatch.*(current state\sunquiesce) network unquisce

2030 (\d\d:\d\d:\d\d).*\s(c\d+-

\d+c\d+s\d+).*\sauto-throttled
blade throttled

2031 Link\srecovery\soperation\sfailed link recovery failed

2032 Warm\sswap\soperation\sfailed warm swap failed

2033 HWERR.*0x0(00([1-9]—a)—30[1-

4]—4(0e—0f—10—11)—50([1-

9]—a—b—c)—60[1-3]—70([1-

8]—c—d)—80(6—7—c—d—e—f)—81[0-

5]—90[1-6]—b(0—2)4—b3([3-

8]—a)—c0[1-6]—d0(6—c—d—e—f))

asic logic failure

2034 HWERR.*(BTE\s\wX\sDescriptor\s Ta-

ble\sIndex\s\d\sSBE):Info
bte error

2036 L0 T BAX NODE0 VRM VDD:\s\d+ l0 vdd error

2037 send slot down rsp:\sbladefailedlist blade down detected

2038 dispatch:\scurrent state route compute route compute

2039 Retry\s\d\s-
\srouting\swith\s[XYZ]+\srouting\sorder

routing retry

2040 ERROR:\sroute\scommand\sfor\s parti-

tion\sp0\stimed\sout
routing timeout

2041 add link to list:\sadding\slink link failed handled

2042 l0sys healthmon:\sL0SYS HEALTH-

MON\sfailed
blade electrical issue

2043 Warm\sswap\sbeginning warm swap begin

52

Table A.1: (cont.)

Template

ID

Regex Rule Tag

2044 Attempting\sto\sadd\sblades warm swap transition

2045 Appending\sL0\sc\d+-

\d+c\ds\d\sstate\sready
cabinet readded

2046 build modulelist:\ssetting\sblade\sc\d+-

\d+c\ds\d\sto\sdisabled\smodule\slist
blade recovery gemini

2047 Clearing\sblade\swarnings blade recovery success

2048 Clearing\sblade\salerts blade recovery

2049 Installing\snew\sroutes rerouting

2050 Links\sthat\swill\sbe\s un-

used\sare\snow\s turned\soff
disable links

2051 Finished\sinstalling\snew\sroutes reroute complete

2052 Unquiescing\sthe\shigh\-speed\snetwork hsn network uniquisce

2053 Computing\snew\sroutes reroute compute

2054 Waiting\sfor\sthe\shigh-
speed\snetwork\straffic\sto\sdrain

hsn wait network -

drain

2055 Finished\squiescing\sthe\shigh-
speed\snetwork

hsn network quisced

2056 Test\sreroute\sproceeding test reroute

2057 Turning\slink\smonitoring\s
on\sfor\sblades\sthat\swere\sadded

warmswap blade on

2058 Finished\supdating\sSDB\sdatabase sdb update success

2059 cb node unavailable:\snode\sc\d+-

\d+c\ds\dn\d\sfound\s
in\sunavailable\sevent

node down

2060 cb node available:\sfound\snode\sc\d+-

\d+c\ds\dn\d
node up

2061 Cabinet\sReceived\sUnexpected\s
Blade\sController\sHeartbeat

cabinet heartbeat -

failed

2062 Link\sInactive link inactive

2063 HWERR.*0x0801 hwerr misroute packet

53

Table A.1: (cont.)

Template

ID

Regex Rule Tag

2064 HWERR.*0x0802 hwerr request with -

no entry orb

2065 HWERR.*0x0803 hwerr command mis-

match

2066 HWERR.*0x0816 hwerr dword flit mis-

match

2067 HWERR.*0x0b2b hwerr b2b

2068 handling\slack \sof\sforward
\sprogress\serror\s.*for \s node\s(c\d+-

\d+c \d+s \d+n \d+)

lack of forward -

progress

2069 set warm swap err warm swap err info

2071 HWERR.*0x0b2e hwerr ssid response -

protocol error

2080 HWERR.*0x0d08 hwerr nif bad req -

packet

2081 HWERR.*0x0d09 hwerr nif bad re-

sponse packet hsn -

bug 1

2088 HWERR.*0x0814 hwerr flow ctl orb to -

nl hsn bug 2

2094 HWERR.*0x0(401—b15—b1d—b30—b2d) hwerr ssid

2095 HWERR.*0x0d0(4—5) hwerr nif squashed req

2142 HWERR.*0x080d illegal r flag

2143 HWERR.*0x080e illegal pid flag

2144 HWERR.*0x080f illegal pt flag

2150 HWERR.*0x0815 orb tail on head flag

2154 HWERR.*0x0904 overflow flit vc1

2158 HWERR.*0x0b24 resp malformedpacket

2172 HWERR.*0x0d06 buffer overflow

2173 HWERR.*0x0d0c nic0 req bubble

2186 HWERR.*0x0403 malformed

54

Table A.1: (cont.)

Template

ID

Regex Rule Tag

2187 HWERR.*0x0404 npes err

2188 HWERR.*0x0405 already ssid alloc

2189 HWERR.*0x040c ht bad nonposted re-

quest

2194 HWERR.*0x0a03 rx vc desc inv

2195 HWERR.*0x0b05 lreq uncortranserror

2196 HWERR.*0x0b0e lreq npes violation

2197 HWERR.*0x0b11 rreq misroutedpacket

2199 HWERR.*0x0b19 rreq membounderror

2200 HWERR.*0x0b1a rreq writepermission-

error

2207 HWERR.*0x0b39 ssid unexpectedrspssid

2208 dispatch.*\scurrent state\saggregate fail-

ures\s*****
link failover agg fail-

ures

2209 dispatch.*\scurrent state\shw er-

ror.*****
hw err linkf identifier

2210 dispatch.*\scurrent state\sfinish failover finish

2211 CMD:\s*****\salive\s***** cmd alive

2212 CMD:\s*****\sunload\s***** cmd unload

2213 CMD:\s*****\sdownload\s*****cmd download

2214 CMD:\s*****\snode -

down\s*****
cmd node down

2215 CMD:\s*****\smodule -

down\s*****
cmd module down

2216 CMD:\s*****\smodule -

up\s*****
cmd module up

2217 CMD:\s*****\snode -

up\s*****
cmd node up

2218 CMD:\s*****\scoldstart\s***** cmd cold start

2219 dispatch:\scurrent state\sdown unused -

links

down unsused links

55

Table A.1: (cont.)

Template

ID

Regex Rule Tag

2220 dispatch:\scurrent state\sinit new links init new links

2221 dispatch:\scurrent state\scheck init new -

blades

init new blades

2222 ***ERROR***\sMMR\s
or\sMemory\sRead\sFailed

mmr memory read -

failed

2223 *****\sdispatch:\scurrent -
state\sinitial\s*****

failover initial

2224 TX\slanemask=7 lane recovery success

2225 do throttle:\ssending\sthrottle\smask unthrottle sys

2226 at\stop\sof\scongestion\slist\sfor app kill

2227 add component to node fault list nlink victim node -

added

2228 cb aggregate timeout:\sonly\scritical\s
node\serrors;\sskipping\s alive\s steps

nlink id

2229 send node nmi -

req:\snumber\sof\snodes\sfailed
nlink node disabling

2230 send node nmi -

req:\ssending\sHALT\sNMI\sto\snode
nlink node disabled

2231 no\sreroute\srequired no reroute required

56

APPENDIX B

CASE STUDY - LINK FAILOVER

This appendix summarizes the trace of successful and failed link failover

procedures. Successful failover trace is given in Table B.1 and failed failover

trace is given in Table B.2

Table B.1: Trace of a successful link failover from Blue Waters.

Time Action Action Information

2015-11-02

16:51:39

dispatch: current state: aggregate failures

2015-11-02

16:51:49

dispatch: current state: hw error

2015-11-02

16:51:50

dispatch: current state: alive

2015-11-02

16:52:23

dispatch: current state: check alive

2015-11-02

16:52:23

dispatch: current state: interrupt bounce

2015-11-02

16:52:24

dispatch: current state: check interrupt bounce

2015-11-02

16:52:24

dispatch: current state: alive2

2015-11-02

16:52:40

dispatch: current state: check alive2

2015-11-02

16:52:40

dispatch: current state: set alerts

2015-11-02

16:52:47

dispatch: current state: route compute

57

Table B.1: (cont.)

Time Action Action Information

2015-11-02

16:52:47

Executing Com-

mand

/opt/cray/hss/default/bin/rtr -S

2015-11-02

16:54:41

dispatch: current state: check route compute

2015-11-02

16:54:41

dispatch: current state: quiesce

2015-11-02

16:54:48

dispatch: current state: check quiesce

2015-11-02

16:54:48

dispatch: current state: quiesce drain

2015-11-02

16:54:52

dispatch: current state: switch netwatch

2015-11-02

16:54:56

dispatch: current state: check switch netwatch

2015-11-02

16:54:56

dispatch: current state: down unused links

2015-11-02

16:55:32

CMD: get class

2015-11-02

16:55:32

CMD: get nids

2015-11-02

16:55:32

CMD: gather partition info

2015-11-02

16:55:32

CMD: check partition info

2015-11-02

16:55:32

CMD: gather user components

2015-11-02

16:55:32

CMD: gather partition components

2015-11-02

16:55:32

CMD: cross check

2015-11-02

16:55:32

CMD: interrupt sysd

58

Table B.1: (cont.)

Time Action Action Information

2015-11-02

16:55:32

CMD: alive

2015-11-02

16:55:32

CMD: gather mezz up

2015-11-02

16:55:32

CMD: link down unused

2015-11-02

16:55:33

dispatch: current state: check down unused -

links

2015-11-02

16:55:33

dispatch: current state: down drain

2015-11-02

16:55:36

dispatch: current state: route install

2015-11-02

16:55:36

Executing Com-

mand

/opt/cray/hss/default/bin/rtr -P

2015-11-02

16:55:42

dispatch: current state: check route install

2015-11-02

16:55:42

dispatch: current state: unquiesce

2015-11-02

16:55:49

dispatch: current state: check unquiesce

2015-11-02

16:55:49

dispatch: current state: finish

2015-11-02

16:55:49

switch warm-

swap led:

switching warmswap LED blink for

blade C9-7c2s1

2015-11-02

16:55:50

set warm swap -

err:

appending warm swap text: Link re-

covery operation was successful

Table B.2: Trace of a failed link failover from Blue Waters.

Time Action Action Information

2014-11-

08T02:21:50

INFO: c20-8c0s7g0l52 ***ERROR*** HSN

ASIC LCB lanes(s) reinit failed

59

Table B.2: (cont.)

Time Action Action Information

2014-11-

08T12:52:41

dispatch: current state: aggregated failures

2014-11-08

12:52:51

dispatch: current state: hw err

2014-11-08

12:53:28

dispatch: current state: finish

2014-11-08

12:53:28

INFO: handling: failed links in 37.76 seconds

2014-11-08

12:53:28

ERROR: recovery operation failed; error 5

2014-11-08

12:53:28

dispatch: initial

2014-11-08

12:53:28

dispatch: aggregate failures

2014-11-08

12:53:39

dispatch: hw error

2014-11-08

12:54:09

dispatch: finish

2014-11-08

12:54:09

INFO: handling failed links in 30.19 seconds

2014-11-08

12:54:09

ERROR: recovery operation failed; error 5

2014-11-08

12:54:09

dispatch: current state: initial

2014-11-08

12:54:09

dispatch: current state: aggregated failures

2014-11-08

12:54:19

dispatch: current state: hw err

2014-11-08

12:54:49

dispatch: current state: finish

2014-11-08

12:54:49

INFO: handling failed links in 30.04 seconds

60

Table B.2: (cont.)

Time Action Action Information

2014-11-08

12:54:49

ERROR: recovery operation failed; error 5

2014-11-

08T12:54:49

dispatch: current state: initial

2014-11-08

12:54:49

dispatch: current state: aggregated failures

2014-11-08

12:54:59

dispatch: current state: hw err

2014-11-08

12:55:17

dispatch: current state: alive

2014-11-08

12:55:50

dispatch: current state: check alive

2014-11-08

12:55:51

dispatch: current state: alive2

2014-11-08

12:55:54

dispatch: current state: check alive2

2014-11-08

12:55:54

dispatch: current state: set alerts

2014-11-08

12:55:54

dispatch: current state: finish

2014-11-08

12:55:54

INFO: handling failed links in 54.5 seconds

2014-11-08

12:55:54

ERROR: recovery operation failed; error 11

2014-11-08

12:55:54

dispatch: current state: initial

61

