
c© 2016 Abhishek Sharma

PROTOCOL-DIRECTED TRACE SIGNAL SELECTION FOR
POST-SILICON VALIDATION

BY

ABHISHEK SHARMA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Associate Professor Shobha Vasudevan

ABSTRACT

Due to the increasing complexity of modern digital designs using NoC (network-

on-chip) communication, post-silicon validation has become an arduous task

that consumes much of the development time of the product. The process of

finding the root cause of bugs during post-silicon validation is very difficult

because of the lack of observability of all signals on the chip. To increase ob-

servability for post-silicon validation, an effective silicon debug technique is

to use an on-chip trace buffer to monitor and capture the circuit response of

certain selected signals during its post-silicon operation. However, because

of area limitations for debug structures on chip and routing concerns, the

signals that are selected to be traced are a very small subset of all available

signals. Traditionally, these trace signals were chosen manually by system

designers who determined what signals may be needed for debug once the

design reaches post-silicon. However, because modern digital designs have

become very complex with many concurrent processes, this method is no

longer reliable. Recent work has concentrated on automating the selection

of low-level signals from a gate-level analysis. But none of them has ever

been able to interpret the trace signals as high-level meaningful debugging

information.

In this work, we present an automated protocol-directed trace selection

where the guiding force is the set of system-level protocols. We use a prob-

abilistic formulation to select messages for tracing and then further analyze

these solutions. This method produces traces that allow a debugger to ob-

serve when behavior has deviated from the correct path of execution and

localize this incorrect behavior for further analysis. Most importantly, unlike

the previous gate-level analysis based methods, this method can be applied

during the chip design phase when most of the debug features are also de-

signed. In addition, this method drastically reduces the time needed to select

signals, as we automate a currently manual process.

ii

To my family and friends, for their love and support.

iii

ACKNOWLEDGMENTS

I take this opportunity to express my gratitude to everyone who has sup-

ported me through the course of my master’s study. I am thankful for their

guidance and encouragement. I am not sure if I would have been able to

make it through without their support.

I would like to express my sincere gratitude to my adviser, Professor

Shobha Vasudevan, for the continuous support during my graduate study

and research. I am truly grateful for all her help and expertise that she

provided for this project. Her motivation and dedication to work played an

important role.

I thank Sandip Ray for his help in formulating this problem and sharing his

expertise in this area. I would like to express my appreciation to Debjit Pal

for his help with tools and hardware verification concepts during this work.

Without their help, this work would not have been possible. I would also like

to express my heartfelt thanks to wonderful colleagues in my research group

for sharing their experience and ideas on various topics.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 IC Design Process . 1
1.2 Pre-silicon Verification and Post-silicon Validation 3
1.3 Validation Process . 6
1.4 Post-silicon DfD Structures 9
1.5 Motivation . 12
1.6 Contributions . 15
1.7 Outline . 16

CHAPTER 2 PRELIMINARIES . 18
2.1 Overview . 18
2.2 Messages . 19
2.3 Protocols . 21
2.4 Trace Buffer Architecture . 21
2.5 Information Theory . 23

CHAPTER 3 PROTOCOL DIRECTED TRACE SIGNAL SE-
LECTION . 27
3.1 System-on-Chip and Message Specification 27
3.2 Protocol Specification . 27
3.3 Labelled Transition System 31
3.4 Problem Formulation . 34
3.5 Cross Validation . 38

CHAPTER 4 IMPLEMENTATION AND RESULTS 41
4.1 Implementation . 41
4.2 Experiments . 42
4.3 Results for Message Selection 43
4.4 Cross-validation of Selected Message Set 58

v

CHAPTER 5 CONCLUSION . 65
5.1 Conclusion . 65
5.2 Future Work . 65

APPENDIX A PROTOCOLS . 67
A.1 Mondo Interrupt . 67
A.2 PIO Read . 68
A.3 PIO Write . 69
A.4 Network Data Packet Processing 70
A.5 DMA Read Request . 71
A.6 CPU-Main Memory Load . 72
A.7 NCU-XBAR Upstream & Downstream Protocols 73

REFERENCES . 74

vi

LIST OF TABLES

2.1 Reference list of terms . 19

vii

LIST OF FIGURES

1.1 Design flow of digital IC . 2
1.2 Scan chain . 10
1.3 Embedded logic analyzer . 11
1.4 Principle operations for state restoration. (a) Forward. (b)

Backward. (c) Combined. (d) Not defined. 13

2.1 Protocol for power-on of radio block from CPU request.
The vertical lines represent the three functional units and
the lines between them represent messages sent on the in-
terconnection network. Time progresses downward, hence
the downward slope of the message lines. 18

2.2 Example message format . 20
2.3 Example of message tracing 20
2.4 Trace buffer architecture for a 2-view, n-bit architecture 22
2.5 Usage flow chart for system-level debugger using system-

level signal selection with views 23
2.6 Venn diagram for various information measures associated

with correlated random variables X and Y . The area con-
tained by both circles is the joint entropy H(X, Y). The
circle on the left (red and violet) is the individual entropy
H(X), with the red being the conditional entropy H(X|Y).
The circle on the right (blue and violet) is H(Y), with the
blue being H(Y |X). The violet is the mutual information
I(X;Y). 25

3.1 Block diagram of OpenSPARC T2 processor 28
3.2 Protocol diagram for an upstream write. The symbols

marked with + indicate synchronization points where all
the incoming messages must have arrived before continuing. . 29

3.3 The components of the railroad crossing 31
3.4 Example of interleaving operator for transition systems 32
3.5 Interleaved LTS for railroad crossing 34

4.1 Mutual information for different message sets 44
4.2 Mutual information for different message sets 45

viii

4.3 Mutual information for different message sets 46
4.4 Mutual information for different message sets 48
4.5 Mutual information for different message sets 49
4.6 Mutual information for different message sets 50
4.7 Mutual information for different message sets 51
4.8 Mutual information for different message sets 52
4.9 Mutual information for different message sets 53
4.10 Mutual information for different message sets 55
4.11 Mutual information for different message sets 56
4.12 Mutual information for different message sets 57
4.13 Mutual information for different message sets 59
4.14 Progress of simulation along a LTS path 61
4.15 Evaluation of different message sets for 32 bit trace buffer . . . 63
4.16 Evaluation of different message sets for 64 bit trace buffer . . . 64
4.17 Evaluation of different message sets for 128 bit trace buffer . . 64

A.1 Mondo Interrupt . 67
A.2 PIO Read . 68
A.3 PIO Write . 69
A.4 Network Data Packet Processing 70
A.5 DMA Read Request . 71
A.6 CPU-Main Memory Load . 72
A.7 NCU-XBAR Upstream & Downstream Protocols 73

ix

LIST OF ABBREVIATIONS

DfD Design for Debug

FPGA Field-Programmable Gate Array

IC Integrated Circuit

IP Intellectual Property

LTS Labelled Transition System

NoC Network-on-Chip

RTL Register Transfer Level

SoC System-on-Chip

x

CHAPTER 1

INTRODUCTION

1.1 IC Design Process

The design process for integrated circuits (ICs) starts with an initial customer

requirements specification. This specification is driven by the current and

future market needs and consists of high-level features and behavior the

design should contain and ensure. From these high-level specifications, the

design is slowly refined into a final product. Figure 1.1 shows this design

process.

From the initial back-of-the-envelope sketches/calculations done by sys-

tem architects, the design moves to estimation models, which likely consist

of various high-level and fast performance models to ensure the design re-

quirements are met. It is during this stage that much of the exploration of

the design is done, before it moves onto an abstract model that allows for

execution. This stage of design would typically be done in a system-level

design language such as SystemC [1] or SystemVerilog [2]. These languages

create non-cycle accurate models that can be used for further verification and

performance checking. After the abstract model phase, the model is imple-

mented in RTL and can be simulated, or run on other platforms. RTL will

typically be run on small FPGA boards for smaller portions of the design

or large emulation machines that combine many FPGA chips to run larger

portions or even whole designs together. Once the design reaches a certain

level of health, it will be laid out and fabricated on silicon, leading to a chip

that can be used for post-silicon validation.

Validation happens at every step of the design process to help ensure that

bugs are caught as early as possible and to further refine the design. Once

a bug is found at any stage in the design process, the design is refined (at

the necessary level) and then validated once again. As indicated by the

1

Figure 1.1: Design flow of digital IC

right-hand axis in Figure 1.1, the further down the design flow a design is,

the more costly in terms of both time and money it is to make changes.

Products have to be delivered in a strict time frame as it affects the market

share and potential earnings. The problem is compounded by the left-hand

axis, which indicates that the design is easier to change early in the design

flow. Both of these factors lead to the need to eliminate bugs as early as

possible to keep changes easy to make and, in turn, keep costs down.

2

1.2 Pre-silicon Verification and Post-silicon Validation

Keeping with Moore’s law, integrated circuits are becoming more complex

and hence difficult to debug. Recent studies have shown that validation in

modern IC designs takes up to 70% of design time in current designs and

has become the single most challenging bottleneck of current industry [3].

In order to design and test products in a timely manner, much effort has

been put into automated methods to test and check large digital designs.

Many of these efforts have been focused in pre-silicon verification, where

access to the entire design is available for checking. However, without a

substantial increase in the speed at which simulations can be performed or

tests can be run on FPGAs or emulation machines, tests for functionality

have been pushed to post-silicon where they are faster to run. These tests

for functional correctness, in addition to tests for electrical bugs, defined as

bugs that appear due to electrical reasons such as crosstalk or vdroop, have

made post-silicon validation the bottleneck in many designs [4, 5].

Pre-silicon verification can be defined as the process that is undertaken by

verification engineers to ensure the correctness of a design before the design

is fabricated into an actual silicon chip. Pre-silicon verification occurs at

every phase of design until fabrication, but for the purposes of this work, pre-

silicon verification will refer mainly to the verification that is done at the RTL

level on simulators, FPGAs, or emulators just before layout and fabrication.

Validating for electrical bugs in pre-silicon is limited, and therefore most of

pre-silicon verification is concerned with finding and fixing functional bugs,

defined as bugs in the specified behavior of the design or its implementation in

RTL. At this stage, verification engineers have full observability of the design

under verification (DUV), but the number of cycles in which the DUV can

be simulated is several orders of magnitude smaller than actual hardware.

Therefore, untested cases and corner cases introduce bugs into the post-

silicon phase, in which a manufactured chip only has standard inputs and

outputs.

Post-silicon validation, as the name suggests, refers to the process under-

taken by validation engineers to ensure the correctness of a design after the

design is fabricated. It involves operating one or more manufactured chips in

actual application environments to validate correct behaviors over specified

operating conditions. Post-silicon validation, as the last step in the valida-

3

tion process, must be as exhaustive as possible, testing for both electrical

bugs and functional bugs. According to several industry reports, post-silicon

validation is becoming significantly difficult and prohibitively expensive be-

cause existing techniques cannot cope with the sheer complexity of future

systems [6–8]. Both pre-silicon and post-silicon validation have their own

challenges and advantages that contribute to the overall effort of validation:

• Execution Speed

Pre-silicon validation tests are run on simulators, emulators, or FP-

GAs that implement the design’s RTL. Simulators are very slow and

suitable only for very small portions of the design. FPGAs are able to

implement portions of RTL for large designs or even the entire RTL of

smaller designs, and are much faster than simulation, up to 3 orders of

magnitude faster [9]. Emulators combine many FPGAs to implement

the entire (or near entire) RTL for large designs; however, the size of

the implementation comes at the cost of speed, as these machines typ-

ically run on the order of hundreds of kHz or several MHz compared

to hundreds of MHz for a single FPGA [10]. Post-silicon tests are run

at full speed on the actual silicon chip, usually on the order of GHz

for the whole design. The difference in speed allows more exhaustive

tests to be run in post-silicon that touch the entire design. The large

speed difference between emulation and post-silicon test means that a

test that takes 1 hour in post-silicon would take more than a month

to run a on full-chip emulation model. In addition to the execution

speed improvement, post-silicon validation usually has the advantage

of offering the ability to run full-chip tests on many prototypes at once.

Emulators are typically limited to many fewer available prototypes be-

cause of the costs associated with each emulator. From all of these

factors, we can conclude that post-silicon tests can cover a much larger

portion of the design than pre-silicon tests.

• Observability

Pre-silicon validation has the advantage of having a fully observable

design, where every signal can be observed during execution. Limited

pin-out and other factors in post-silicon limit the observability of inter-

nal signals to a small portion of all signals. The limited observability in

post-silicon creates a challenge in both detecting bugs and debugging

4

them. Design-for-debug (DfD) structures on chip attempt to create as

much observability as possible, but are still limited by factors including

area and routing. Some DfD techniques to improve observability are

described later in this chapter.

• Iterations

Once a bug and its root cause are found, it will be fixed and the design

will change. In pre-silicon, these changes are relatively low-cost as

they only involve changing RTL and the added time to revalidate that

portion of the design. However, in post-silicon, the costs of fixing a bug

are much higher. The process of fixing the bug can be more involved

than in pre-silicon if layout changes need to be made, but the main cost

is in the re-spin of the silicon. Once changes are made to the design,

it takes weeks or months to receive the next spin of the silicon, which

would then need to be validated again. In addition to the increased

time cost, the actual monetary cost of creating another spin is not

trivial.

Post-silicon validation has significant overlap with pre-silicon design verifi-

cation and manufacturing (or production) testing. Traditionally, most hard-

ware design bugs are detected during pre-silicon verification, and manufac-

turing defects are targeted by manufacturing testing. While both manu-

facturing testing and pre-silicon verification continue to be essential, post-

silicon validation is becoming extremely important because of several unique

aspects [4, 11,12].

1. Pre-silicon verification alone cannot be relied upon to capture all bugs

since simulation is several orders of magnitude slower that actual hard-

ware. Popular pre-silicon verification techniques such as constrained

random simulation and formal verification all suffer from scalability;

therefore, they are infeasible for full-chip verification.

2. As circuits become more and more complex and hard to correctly

model, electrical bugs, such as signal integrity (cross-talk, power supply

noise) and thermal effects, can only be detected once a chip is manufac-

tured; therefore, it is impossible to test before post-silicon validation.

3. Unlike manufacturing defects, post-silicon bugs may be caused by sub-

tle interactions between a design and physical effects (the so-called

5

electrical bugs) or by design errors (the so-called logic bugs). It may

be very difficult to create accurate and effective fault models for such

bugs.

1.3 Validation Process

According to [6], 35% of design time is spent in post-silicon debug. This is

a significant portion of time for any design, and in a competitive market the

difference in time to market (TTM) can be the difference between a successful

and an unsuccessful product. To understand why debug time is currently the

bottleneck in the entire TTM, we can refer to the four major steps in the

validation process [13].

• Finding a bug: Bugs must be both activated and detected to be found.

Test plans for a given design may rely on different coverage statistics

to determine when a design has been tested fully.

• Localizing the bug: If a bug is found, the process of localizing it begins.

Localizing refers to narrowing the search for the bug to a smaller area of

the design. Localizing a bug can involve using debug tools and looking

at traces, using a variety of tests and checking the end result, using

some flavor of signature checking [14,15], reducing fault latency in the

initial detection [16], and other methods [17,18].

• Finding the root cause: Finding the root cause of a bug is related to

localizing the bug, but in large systems, different techniques may be

used to localize and find the root cause.

• Fixing the bug: Once the root cause of a bug is determined, potential

fixes can be proposed. In some cases, the fix may be trivial, but in

other cases, a fix could necessitate other changes in the design. Once a

bug is fixed, the design will need to be tested again to verify that the

fix for one bug did not cause more bugs.

Numerous challenges exist in every aspect of post-silicon validation. In-

stead of a comprehensive survey of all challenges, we highlight a few most

important ones as follows:

6

1. Test pattern generation: In order to check a circuit for functional cor-

rectness, it is necessary to verify the internal signal states of the circuit

with some golden reference. While tests can be run at-speed on the

hardware, test generation and simulation constitute the bottleneck in

this process, limiting it to the performance level of pre-silicon sim-

ulation. Consequently, design houses are forced to spend enormous

computational resources on test generation and simulation servers [18].

2. Reliance on system-level simulation: System-level simulation is several

orders of magnitude slower than actual silicon (e.g., 1,000 cycles / sec-

ond in simulation vs. 1 billion cycles / second for a 1GHz chip) [11].

In order to obtain a golden reference design, system-level simulation is

required to achieve correct signal values of every cycle for the entire

design. This simulation is very slow; therefore, a functional bug typi-

cally takes hours to days to be localized vs. electrical bugs that require

days to weeks.

3. Failure reproduction: When a bug is detected, we need to restore the

circuit to bug-free state and then re-simulate the circuit with error

causing stimuli. Unfortunately, many bugs, such as electrical bugs, and

bugs in complex SoCs with multiple clock domains and asynchronous

I/Os, are very hard to reproduce [19,20].

4. Coverage metrics: Code coverage analysis is already a very hard do-

main of pre-silicon verification. Quantifying coverage of post-silicon

validation tests is very challenging due to limited controllability and

observability; hence, it is harder to mutate a design or monitor an

assertion failure [21,22].

5. Observability enhancement: A major challenge in post-silicon valida-

tion is the limited observability of internal states caused by the limited

storage capacity available for post-silicon validation. For one to be able

to gather as much data as possible from the DUV in order to understand

the nature of the error, design-for-debug (DFD) hardware is commonly

inserted into the design. Scan chains and trace buffers are the two

most commonly used DFD techniques. However, as the hardware and

software interactions between different blocks in an SOC are difficult

to verify during pre-silicon verification, it is expected that more DFD

7

hardware will be deployed in the future. In order to reduce the imple-

mentation cycle, while at the same time avoiding an excessive overhead

introduced by the DFD hardware, it is becoming a significant challenge

to reach the suitable decisions for DFD insertion [18] [23–33,33–42].

6. Error detection: Long error detection latency, the time elapsed be-

tween the occurrence of an error due to a bug and its manifestation as

an observable failure, limits the effectiveness of existing bug localiza-

tion techniques. Simulation is orders of magnitude slower than actual

silicon [43]; formal analysis over more than hundreds of cycles can be

difficult [44]; and tracing is limited by the availability of on-chip stor-

age [6]. In addition, long error detection latencies may also result in

increased error masking, i.e., an error may not propagate to an observ-

able point [16, 45, 46]. Bugs in uncore components of SoCs, such as

cache controllers, memory controllers and on-chip networks, can result

in very long error detection latencies of several millions to billions of

clock cycles unless special attention is paid to shorten these long error

detection latencies [47].

7. Bug localization: The process of identifying the location of a detected

hardware bug and the cycle(s) during which the bug produces error(s),

is a major bottleneck for complex integrated circuits. Among the four

major steps we mentioned in this chapter, bug localization dominates

the cost [13]. Many post-silicon bug localization techniques can be

used, such as IFRA [14, 48, 49] and BLoG [15], simulation-based de-

bug [50, 51], or debug techniques based on formal methods [52–54].

These techniques can directly benefit from the extremely short error

detection latencies and improved coverage of QED. With the increasing

complexity of uncore components in SoCs, new techniques for localizing

bugs inside uncore components are required.

To tackle the aforementioned challenges, many excellent and inspiring

works have been proposed. They can be categorized in, but not restricted

to, the following fields. In this thesis, we will focus on observability enhance-

ment; specifically, we will propose new methods to select high quality trace

buffer signals to help debugging for post-silicon validation.

8

1. Error detection

(a) Test suites generation

(b) Quick error detection

2. Observability enhancement

(a) Efficient scan/trace signal selection

(b) Trace signal compression

(c) Bridging pre-silicon verification and post-silicon validation

3. Bug localization

(a) Formal method for error localization

(b) Special on-chip recorder, collecting footprints of execution

(c) Root cause identification

4. Bug fixing

(a) Microcode patches or special design techniques

5. Error-resilient system design

1.4 Post-silicon DfD Structures

To combat the problem of low observability in post-silicon debug there are

a variety of well-known DfD structures that are inserted into designs that

allow validation engineers to observe portions of the design and root cause

bugs.

1.4.1 Scan Chains

The primary goal of the scan-based technique is to reuse the internal scan

chains, which are placed in the DUV to increase the controllability and ob-

servability during manufacturing test [55]. Scan chains are DfD structures

created by appending a 2:1 mux to each flip-flop in a portion of the design.

The idea behind a scan chain is to halt the design, enable the scan chain,

9

Figure 1.2: Scan chain

then run the clock to output the values of a large set of flip-flops serially

on a single output pin. During manufacturing test, the functional pins are

used as scan pins for loading multiple scan chains concurrently to reduce

test time. However, during debug, these scan chains are concatenated, as

shown in Figure 1.2. In this case the scan chain is loaded/unloaded through

a serial interface, which is accessible in-system. By capturing data in the

internal state elements and offloading them through the scan chains (called

scan dump), failure analysis can be performed offline to identify bugs in a

design [56].

Scan chains are useful for finding stuck-at bugs, where a given signal is

stuck at either a logic 0 or 1, because they allow the capture of a large set

of signals. The combinational logic between two signals in a scan chain is

known, so they can also be used to detect faulty gates. Scan chains are also

used in signature checking schemes and in manufacturing testing. However,

before the debug experiment is reproducible, which is not the case for most

failures in-field, there is little knowledge about what caused the failure at

the observable outputs. Therefore, stopping the debug experiment and re-

running it will not guarantee that the failure will occur again. One can let

the circuit execution continue by offloading the scan chains through shadow

latches, but this may incur a larger area penalty; besides, until a scan dump

is completed it is not possible to capture data in consecutive clock cycles.

More importantly, the captured data is always done in reaction to an event

of interest, and hence it is difficult to record the states that lead to that

particular event, which may be crucial during debugging [57, 58]. For this

reason, scan changes are not well suited to gain temporal observability in a

10

Figure 1.3: Embedded logic analyzer

design. This is usually left to trace buffers

1.4.2 Trace Buffers

An embedded logic analyzer [59], an example of which is shown in Figure

1.3, is divided into four components: control unit, trigger unit, sample unit,

and offload unit. The control unit contains one or more finite state machines

(FSMs) with programmable registers. The programmable registers can be

configured using a serial interface like JTAG for receiving control instructions.

This allows the FSMs to control the other units in the ELA to gather different

sets of data in multiple experiments. Embedded logic analysis has enabled

storing some of the signal states onto an on-chip trace buffer, which can later

be used to reconstruct the unknown signals. A trace buffer can be thought

of as a storage structure that can hold N bits. A trace buffer is said to have

both a width and length. We will call the number of bits we are allowed to

write simultaneously the width of the trace buffer. The number of entries in

the trace buffer would be the length, such that N = width.length. Typically,

a trace buffer will write a new entry every clock cycle.

The size of the trace buffer, N, must be limited so that the area overhead

associated with adding a trace buffer does not become too large compared

to the size of the design. In addition, the width of the trace buffer is also

limited due to routing concerns and write speed considerations. Therefore,

we will always be limited in the width. This limited capacity constrains the

11

number and cycles of signals to be stored; hence, selecting a powerful subset

of internal signals becomes one of the most important topics in post-silicon

validation.

As mentioned before, scan chain is more like a snapshot of a system mo-

ment while trace buffer records more temporal information of the system

execution [60]. Scan chain can provide the value of many signals, but only

in a short time span, say, one cycle; in contrast, trace buffer can only store a

small amount of signals, but each of them can have thousands of cycles. Since

this trace buffer is very small, the amount of data that can be collected dur-

ing a single post-silicon validation run is ultimately limited by the capacity of

on-chip trace buffers [61]. Trace buffers are used extensively in industry and

usually combined with triggers and other functionalities to create embedded

logic analyzers (ELAs). As trace buffers allow a debugger to capture many

clock cycles, these are usually preferred for localizing bugs when the location

of the bug is still not well known. For further debugging, scan chains or trace

buffers at a lower abstraction level may be used.

1.5 Motivation

1.5.1 Current Approaches to Trace Signal Selection

As mentioned before, trace buffers are limited in the number of signals that

can be simultaneously observed, which has led to the question of what signals

should be prioritized for tracing. Many previous works have focused on

increasing the observability of gate-level signals. One metric for determining

how well a selection of trace signals improves observability is restoration

ratio [25,27–29,33]. This metric is used by selecting a set of flip-flops from a

gate-level netlist specification, and then, by knowing the outputs and inputs

of certain gates, we can infer the values of other signals within the circuit.

For example, if we trace the output value of an AND gate to 1, then we can

infer that both inputs are also 1, which may allow us to infer other signals.

Other examples of restoration are shown in Figure 1.4. However, this metric

fails to include the notion of an error or bug and the essence of the design, so

while we may be able to infer a larger set of signals, we are not guaranteed

to observe an error or bug in the design with any greater capacity.

12

Figure 1.4: Principle operations for state restoration. (a) Forward. (b)
Backward. (c) Combined. (d) Not defined.

Other gate-level signal selection methods have used the notion of bugs

or errors in their metrics [34, 41, 60, 62–64]. Some of these techniques still

rely on restoration to observe these errors, while others do not. In either

case, the observability of errors is limited to a gate-level analysis in these

methods, which does not provide any information on the expected higher

level functionality of the circuit. As a result, these methods usually focus

on finding electrical bugs. These electrical bugs usually manifest themselves

as some deviation from the specified behavior of the design in the higher

abstraction levels, so to find these electrical bugs, we must first localize at

a higher level. In addition to localizing electrical bugs, localizing a bug to a

small portion of the design such that it can be replicated using pre-silicon is

a widely used method for finding functional bugs.

For complete and efficient validation, we must be able to localize bugs at

a higher level before using gate-level traces. High-level debug architectures

are used within a design to attempt to observe these bugs [6, 12, 17, 65–69].

Many of these architectures introduce run-stop mechanisms that increase the

complexity and can be intrusive to the original design. Run-stop mechanisms

are also only helpful if the debugger knows what trigger conditions to set

to observe a bug. As is the case with many bugs, the erroneous behavior

that has occurred may not give any hint about the root cause of a problem

and an initial localization is needed so that further debug can begin. This

initial debug effort should show system operation at a high level that is easy

for the debugger to understand without much effort so that this first-level

localization can happen quickly and allow the debugger to move into further

localization. Also, the choice of where to place these structures to allow

13

them to trace signals that are important for localizing bugs is currently an

ad-hoc procedure where designers attempt to place these structures within

the design to the best of their knowledge. The increased use of reusable IP

blocks in modern SoC (System-on-chip) designs has made this choice easier

for designers as bugs are less likely to appear within the functionality of these

areas; however, the communication between IPs has become a riskier area

because this changes with each design.

1.5.2 Message Passing Communication

In traditional SoCs, communication has been conducted along a bus or possi-

bly a small number of buses that are connected in some manner. To observe

the communication between masters and slaves, one has simply needed to ob-

serve the signals on the bus. However, because of the increasing number of

IPs used in modern high-end SoC designs and the lack of scalability of buses,

designs have shifted to networks-on-chip (NoCs) for IP communication. In

this configuration, messages between IPs are packetized and sent along a net-

work of routers and switches until they reach their final destination. Groups

of packets along the network will form a message, which will give the receiv-

ing IP information that it should react to. The communication between IPs

is not as easily observed as it is on a bus because there is no centralized com-

munication point. To observe all possible communication, one would need

to observe all incoming and outgoing channels at each IP. A channel is the

physical, traceable location where portions of each message can be observed

as they arrive or leave an IP. However, because communication is done in pre-

defined sequences of messages, called protocols, between functional units to

perform a specific task, a small subset of all channels may be able to observe

a large portion of all expected communication. This subset would be helpful

to a debugger and should help observe the maximum amount of bugs that

appear in the communication across IPs. In order to know what this subset

is, we propose a method that uses protocol specifications to select trace sig-

nals. These protocols are specified early in the design process and determine

the sequence of messages that should occur to complete a high-level action,

similar to a message sequence chart (MSC). MSCs have been used in the

past to verify communication protocols and therefore are a natural format

14

from which to extract information when attempting to validate protocols as

well [70–72]. We define a textual format to specify MSCs and analyze all

protocols and find a subset of messages that allows maximum observability

of bugs. The goals of our selection method are:

1. Provide a selection of trace signals that can localize bugs (specific bugs

types will be defined later on) by observing the receipt and sending of

messages between IPs in an NoC-based digital design.

2. Constrain our trace signal selection to a fixed trace buffer width size.

We assume that the length of the buffer is unlimited, as methods exist

to either offload trace buffer data in real-time or store the trace buffer

data to main memory [73, 74]. While we assume a fixed-width buffer

size, compression methods exist that can effectively increase this size,

although guarantees on available sizes still need to be made. While

these compression techniques allow an overall decrease in trace size,

specialized architectures may be needed to utilize this compression to

increase the buffer width for our purposes.

1.6 Contributions

To reduce debug time, we propose a method that leverages system-level com-

munication information to create traces that allow for quick localization. Us-

ing system-level information allows debuggers to use behavioral specifications

as a means for debug and, because of increased IP (intellectual property) us-

age in modern day SoCs, many bugs appear in the communication between

already well validated IP blocks. The contributions of this work are:

1. An automated system-level trace selection method. Previous work in

the area of trace signal selection has been focused on gate-level analysis

of digital designs, which do not consider the high-level functionality of

the design. Our method considers only the high-level functionality from

the messages passed between functional units within an NoC.

2. A probability and information theory based formulation of this prob-

lem. Currently, this high-level, message-based trace signal selection

is done manually by system designers who must somehow determine

15

what functionality needs to be captured from all correct behaviors of

their system. Even a moderately sized SoC design will have many be-

haviors captured in the messages sent between functional units than

a system designer can understand, to accurately select trace signals.

As mentioned earlier, communication is done in predefined sequences

of messages, called protocols, between functional units to perform a

specific task. We define protocols in more detail in subsequent chap-

ters. There are a large number of protocols in a system at any point of

time, which are inter-leaved with each other. All of the individual pro-

tocols might be at different stages in their sequence of messages, and

can move ahead independent of each other. This is what we call an

inter-leaving of protocols. We define it in more detail later. To be able

to localize a bug for debugging, it is important to identify and narrow

down on an inter-leaving as much as possible. Our information theory

formulation selects trace signals to maximize mutual information over

a formal structure representing inter-leaving of different protocols. We

then show how these selected signals are beneficial for bug localization

and debugging.

Our high-level trace signal selection will allow debuggers to identify the

inter-leaving of protocols in the system and narrow down on it. This will

allow them to quickly localize bugs in a system using the provided traces.

Quickly localizing a bug to a smaller portion of a design is one way to help

reduce the overall time spent debugging. Once a bug is localized to a smaller

portion of a design, lower level debug structures or simulation can be used to

further localize and debug. The narrow protocol inter-leaving can be replayed

in simulation where all the signals are visible. And since the scenario being

replayed is localized and narrow, it can be simulated in reasonable time.

1.7 Outline

The rest of the thesis is organized as follows:

1. Chapter 2 provides preliminaries of NoC communication between IPs.

It describes what are messages, protocols and protocol inter-leavings.

It also gives a brief introduction to information theory and mutual

16

information.

2. Chapter 3 describes our protocol specification format and construction

of the structure representing protocol inter-leaving. Information theory

formulation of the problem and the method to select trace signals is

then presented.

3. Chapter 4 presents results with examples and OpenSPARC T2 SoC

from Oracle.

4. Chapter 5 concludes the thesis with a brief discussion of possible future

work.

17

CHAPTER 2

PRELIMINARIES

2.1 Overview

In digital systems with NoC-based communication, communication between

functional units is done in the form of packetized messages sent along the

network. Messages are sent within protocols, which we define as predefined

sequences of messages between functional units that perform specific tasks.

An example of a simple protocol is shown in Figure 2.1. This protocol defines

the messages and the sequence in which they should occur in order to power

on the Radio functional unit. We define a functional unit as any design com-

ponent that receives and/or sends messages on the on-chip network. This

term may be used interchangeably with the term block throughout the rest

of this work for brevity. A reference list of the terms used in this work is

presented in Table 2.1.

Figure 2.1: Protocol for power-on of radio block from CPU request. The
vertical lines represent the three functional units and the lines between
them represent messages sent on the interconnection network. Time
progresses downward, hence the downward slope of the message lines.

18

Table 2.1: Reference list of terms

functional unit - a module within a design that is able to send and receive
messages to and from other functional units. Also called IP or block.

message - a single unit of information sent from one functional unit to
another with header information and one or more payload fields. In this
thesis, payload fields are either command, address, or data.

protocol - a predefined sequence of messages between functional units
that perform a specific task

protocol family - a group of protocols that achieve the same function, but
have different initiators and/or targets

protocol inter-leaving - at any point of execution in the system, there are
several protocols which have been initiated by different functional units
and are in action. They are referred to as an instance of the protocol. All
of these live protocol instances are at different stages in the predefined
sequence of messages. These protocol instances at different stages during
any point of execution in the system are called a protocol inter-leaving.

2.2 Messages

An example of a message with header and three possible payload fields of

command, address, and data is shown in Figure 2.2. The header informa-

tion is used by the network and contains the source, destination, and other

information needed to route the message, while one, two, or all three of the

other fields are used by the receiving block. The payload field contains in-

formation based on which the receiving block acts, performs certain tasks

and may send a message forward to one of the blocks in the system. In this

work, we assume the three payload fields of command, address, and data,

and we assume each field has a fixed bit length and can be traced indepen-

dently of the other fields. One or more signals (single bit or word) make

up these messages. Furthermore, these messages could be sent over a single

19

clock cycle or could last for multiple clock cycles. Trace signal selection for

system level, protocol-based debug in these systems is achieved by selecting

a set of messages, or in other words the signals that compose these messages.

An illustration of a message and its tracing is shown in Figure 2.3.

Figure 2.2: Example message format

Figure 2.3: Example of message tracing

In the design of NoCs, communication for each block is managed by a

network interface (NI) that lies between the functional unit and the net-

work. Each NI would covert incoming packetized messages that flow across

the NoC into specific signals that the functional unit can understand, and,

vice-versa, convert internal communication signals into packetized messages

to send across the NoC. In most cases, this involves some sort of translation

between packetized messages to a set of bus signals of a specific bus protocol.

One example may be the AHB bus protocol [75]. The NI may communicate

with the functional unit by asserting certain signals on the AHB interface. To

20

capture the incoming and outgoing messages to and from a specific functional

unit, a designer simply needs to trace the signals within the NI or a simple

extension can be added to the NI to make these signals visible. Tracing only

a portion of a message is very rarely useful, so in our work we focus on trac-

ing entire incoming or outgoing messages. Each field in a message is always

a predefined amount of bits. The number of fields and length of each field

vary from message to message and across different NoC architectures. For

example, an NoC that has separate high and low power fabrics can denote

the difference between these two fabrics by adding more field types. In our

problem formulation, we assume the interconnection network does not lose or

corrupt messages as they are sent from one functional unit to another. Sep-

arate debugging solutions can be used to debug the interconnection network

itself for the cases when this is the root cause [17,65,76].

2.3 Protocols

Protocols are predefined sequences of messages between functional units that

perform specific tasks. Examples of such tasks could be memory read, mem-

ory write, cache coherence, interrupt handling, system boot, power manage-

ment etc. An example of a simple protocol is shown in Figure 2.1, which

defines the messages and the sequence in which they should occur in order

to power on the Radio functional unit.

2.4 Trace Buffer Architecture

Currently, selecting messages to trace is a manual process undertaken by

a system designer. A common approach in trace signals is using a multi-

plexer to select between different sets of trace signals [37, 60, 62, 77]. Other

approaches do so dynamically, but for this trace signal solution, we will as-

sume a multiplexer to allow the debugger to choose between different sets of

signals. A system designer or team of system designers use their knowledge

of the system’s protocols to select sets of messages that can help debug in

post-silicon. Each set of messages, or view, can be selected together using the

selection bits of multiplexers as shown in Figure 2.4. The example shown has

21

only 2 views and n-bits, but typically a system would include more views.

Figure 2.4: Trace buffer architecture for a 2-view, n-bit architecture

In this approach, each view would observe a different portion of the design

in such a way that each view will allow a debugger to focus on the messages

to and from a specific block within the design. An example of the debug

procedure undertaken by a system debugger is shown in Figure 2.5.

This debug methodology is used as a first pass debug that can allow a

system level debugger to localize bugs to a single block or a portion of a single

block to be further analyzed using block-specific debug structures. However,

because the width of the trace buffer is usually less than the number of bits

needed for all the messages of even a single block, creating a selection that

can allow a post silicon debugger to observe erroneous behavior caused by

bugs in the system is an arduous task. The vast number of protocols that are

defined in most systems and the subtle communication patterns within those

protocols mean that a manual selection is not done in a systematic fashion

and, therefore, the quality of selection can be very poor as no definitive

statements can be made about its ability to aid in the debug at the system

level. In addition, a manual selection takes a considerable time as the system

designer or team must carefully look over each and every protocol to attempt

22

Figure 2.5: Usage flow chart for system-level debugger using system-level
signal selection with views

to capture the important features. We present an automated, systematic,

hierarchical, block-level, selection method for these messages that can aid in

identifying and narrowing the protocol inter-leaving and hence localizing the

bug. This will be described in detail later. Given a protocol specification

and trace buffer width constraint, this selection method will provide trace

signals to aid system-level post-silicon debug.

2.5 Information Theory

Information theory studies the transmission, processing, utilization, and ex-

traction of information. Abstractly, information can be thought of as the

resolution of uncertainty. Information theory is based on probability the-

23

ory and statistics. Information theory often concerns itself with measures

of information of the distributions associated with random variables. Im-

portant quantities of information are entropy, a measure of information in a

single random variable, and mutual information, a measure of information in

common between two random variables.

A random variable can take on a set of possible different values, each with

an associated probability. The mathematical function describing the possible

values of a random variable and their associated probabilities is known as a

probability distribution. Entropy gives a measure of the uncertainty of the

random variable. It is sometimes called the missing information: the larger

the entropy, the less a priori information one has on the value of the random

variable. Entropy of a discrete random variable X with probability mass

function p(x) is defined as

H(X) = −
∑
x∈χ

p(x) log2 p(x) (2.1)

In case of a continuous random variable, sum is replaced by an integral

and probability mass function by probability density function. The entropy

is meant to measure the uncertainty in a realization of X. Now, we want

to quantify how much uncertainty does the realization of a random variable

X have if the outcome of another random variable Y is known. We define

conditional entropy as

H(X|Y) = −
∑
x,y

p(x, y) log
p(x, y)

p(y)
=
∑
y

p(y)H(X|Y = y) (2.2)

Here p(y) is the marginal distribution of Y , so p(y) =
∑

x p(x, y). It

is easy to see that the conditional entropy can be written as H(X|Y) =

H(X, Y)−H(Y), where

H(X, Y) = −
∑
x,y

p(x, y) log p(x, y) (2.3)

Mutual information measures the amount of information that can be ob-

tained about one random variable by observing another. The mutual infor-

mation of X relative to Y is given by

24

I(X;Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(2.4)

where p(x, y) is the joint probability distribution function of X and Y, and

p(x) and p(y) are the marginal probability distribution functions of X and

Y respectively. A basic property of the mutual information (Figure 2.6) is

that

I(X;Y) = H(X)−H(X|Y) = H(X) +H(Y)−H(X, Y) (2.5)

Figure 2.6: Venn diagram for various information measures associated with
correlated random variables X and Y . The area contained by both circles is
the joint entropy H(X, Y). The circle on the left (red and violet) is the
individual entropy H(X), with the red being the conditional entropy
H(X|Y). The circle on the right (blue and violet) is H(Y), with the blue
being H(Y |X). The violet is the mutual information I(X;Y).

Intuitively, mutual information measures the information that X and Y

share: it measures how much knowing one of these variables reduces un-

certainty about the other. For example, if X and Y are independent, then

knowing X does not give any information about Y and vice versa, so their

mutual information is zero. At the other extreme, if X is a deterministic

function of Y and Y is a deterministic function of X then all information

conveyed by X is shared with Y : knowing X determines the value of Y and

vice versa. Mutual information is a measure of the inherent dependence ex-

pressed in the joint distribution of X and Y relative to the joint distribution

of X and Y under the assumption of independence. Mutual information

25

therefore measures dependence in the following sense: I(X;Y) = 0 if and

only if X and Y are independent random variables.

In many applications, one wants to maximize mutual information (thus

increasing dependencies), which is often equivalent to minimizing conditional

entropy. Examples include search engine technology, telecommunications,

clustering of data set, Bayesian networks and decision tree learning.

26

CHAPTER 3

PROTOCOL DIRECTED TRACE SIGNAL
SELECTION

3.1 System-on-Chip and Message Specification

A system-on-chip consists of a set of IPs or functional units and has a set

of communication fabrics connecting different IP components. An interface

across two different IPs is such that at least one communication fabric exists

between the IP pair. Each of the IP comprises of a set of interface signals

which delivers data/command payload to the communication fabric. The

communication fabric consists of routers to route the signals to appropriate

destination.

As an example for experiments, we will be using the OpenSPARC T2

processor which is an open source system-on-chip (SoC) consisting of several

heterogeneous IPs. A block-level diagram of OpenSPARC processor is shown

in Figure 3.1.

A message m is a 3-tuple m = 〈o, d,S〉 where:

• o is the origin IP

• d is the destination IP

• S ⊆ So ∩ Sd, called the sets of signals

A message may consist of a control payload or a data payload along with

error correcting code or commands to be executed.

3.2 Protocol Specification

To aid the specification of protocols, we define a family of protocols. A family

of protocols may contain similar messages to perform a general task, but have

a different initiator and target block. The example in Figure 2.1 may belong

27

Figure 3.1: Block diagram of OpenSPARC T2 processor

to the protocol family that defines the power-on of all units. In this case,

the initiator is the CPU and the target is the Radio. As another example

in Figure 3.2 shows, an upstream memory write from the GFX block to

the USB block may be contained within the family of protocols that defines

upstream memory writes, but for this specific protocol, the GFX block is

the initiator and the USB block is the target. Thinking of protocols in this

manner makes them easier to specify and use as an input into the trace

signal selection problem. Instead of trying to identify all possible protocols

that may occur to complete a certain task, we can group them into families

and specify initiators and targets.

The goal for our trace signal selection at this level of abstraction is to

quickly identify and narrow down on the protocol inter-leaving. This would

allow the debuggers to localize any observed bugs in the design to a small

set of possibly buggy functional units. Once a bug can be localized to only a

small subset of all the functional units in a design, more specific debug tools

can be used to further root-cause the problem if needed. In some cases, the

goal may be to identify the possible stimulus that can be used to recreate

the bug in pre-silicon from our trace signal selection information. In either

28

case, analyzing all the protocols to select our signals can help trace selection

for the localization of specific bug types.

Figure 3.2: Protocol diagram for an upstream write. The symbols marked
with + indicate synchronization points where all the incoming messages
must have arrived before continuing.

Some common bug types from the system level that can be captured are

halting bugs, data bugs, and control bugs. A halting bug is any bug that

causes a protocol to fail to complete. A halting bug can be caused by a variety

of internal issues from a functional block simply failing to send a message,

to an incorrect field on a sent message, to setting an incorrect recipient on

a message, which may cause the recipient to ignore the message and halt

the protocol. A data bug passes along incorrect values in any field during

the execution of a protocol. This can be caused by any incorrect handling

of data at any point in the protocol. A control bug is when a functional

block sends a message to an incorrect block which may cause unspecified

final behavior. From the above definitions, one can observe that a single bug

may belong to multiple types. For example, a bug that halts a protocol by

sending a message to an incorrect block would classify as both a halting bug

29

and control bug. In either case, if we attempt to capture traces that show

either a control bug or halting bug, we will be able to localize this bug to

some extent.

To select trace signals based on protocol specifications, we need some

method to specify protocols in a format that can be analyzed. Protocols

are often defined in diagrams such as those in Figure 2.1 and Figure 3.2.

These diagrams provide information on the flow of the protocol: the tim-

ing sequence, the information sent on each message, the sender and receiver

of each message, and any possible conditional messages. Here the vertical

columns are different functional units or IPs involved in the protocol. A

circle represents the starting point of the protocol, whereas a bold circle

represents the end of the protocol. Tasks performed by an IP as part of

the protocol are shown within rectangles in the vertical column correspond-

ing to the IP. Diagonal boxes are decision points. Diagonal boxes with +

sign are synchronization points, where forward movement happens only after

all incoming edges have been completed. Arrows within a vertical column

show in what order the tasks are performed by an IP as the protocol moves

forward. Arrows across vertical column represent messages travelling from

source IP/block to destination IP/block.

A protocol R can be defined as a 4-tuple R = 〈V ,L, δ, v0〉 where:

• V 6= ∅ called the set of states. V = T ∪ D where T = set of nodes

representing a task in an IP,D = set of nodes representing pre-condition

internal to an IP to initiate a messages.

• L is the set of all observable messages across all valid interfaces. L does

not contain the internal events e of an IP.

• δ ⊆ S × (L ∪ e)× S, where (s, α, s′) ∈ δ and is written as s
α→ s′.

• v0 ∈ V is the initial state of the protocol.

For a set of protocols {Rk} k ≥ 1, an interleaving G of the protocols is

defined as an ordered sequence of multiple instances of concurrently executing

protocols.

For our running example we will consider the three protocols in Figure 3.3.

These protocols are for a railroad crossing. On receipt of a signal indicating

that a train is approaching, it closes the gates and only opens them after the

30

train has sent a signal indicating that it crossed the road. For simplicity, it is

assumed that all trains pass the relevant track section in the same direction

from left to right. The states of the protocol for the Train have the following

intuitive meaning: in state far the train is not close to the crossing, in state

near it is approaching the crossing and has just sent a signal to notify this,

and in state in it is at the crossing. The states of the Gate have the obvious

interpretation. The state changes of the Controller stand for handshaking

with the trains (via the actions approach and exit) and the Gate (via the

actions lower and raise via which the Controller causes the gate to close or

to open, respectively).

Figure 3.3: The components of the railroad crossing

3.3 Labelled Transition System

A labelled transition system (LTS) T can be defined as a 4-tuple T =

〈S, I,A, δ〉 where:

• S is the set of states

• I is the set of initial states

• A is the set of actions

• δ is a total transition relation: δ ⊆ S ×A× S

We construct a LTS to represent the overall system with concurrent exe-

cution of protocols. The LTS captures all the different possible interleavings

of the set of protocols. Concurrency is represented by interleaving, that is,

31

the non-deterministic choice between activities of the simultaneously act-

ing protocols. Consider the transition systems of two traffic lights for non-

intersecting (i.e., parallel) roads. It is assumed that the traffic lights switch

completely independent of each other. For example, the traffic lights may be

controlled by pedestrians who would like to cross the road. Each traffic light

is modeled as a simple transition system with two states, one state model-

ing a red light, the other one modeling a green light. The transition system

of the parallel composition of both traffic lights is sketched at the bottom

of Figure 3.4 where ||| denotes the interleaving operator. In principle, any

form of interlocking of the actions of the two traffic lights is possible. For

instance, in the initial state where both traffic lights are red, there is a non-

deterministic choice between which of the lights turns green. Note that this

non-determinism is descriptive, and does not model a scheduling problem

between the traffic lights.

Figure 3.4: Example of interleaving operator for transition systems

We are now in a position to formally define the interleaving (denoted |||) of

32

transition systems. The transition system TS1|||TS2 represents an interleav-

ing resulting from the weaving (or merging) of the actions of the components

as described by TS1 and TS2. The states of TS1|||TS2 are pairs 〈s1, s2〉 con-

sisting of states si of the components TSi. The outgoing transitions of the

global state 〈s1, s2〉 consist of the outgoing transitions of s1 together with

those of s2. Accordingly, whenever the composed system is in state 〈s1, s2〉,
a non-deterministic choice is made between all outgoing transitions of local

state s1 and those of local state s2.

Algorithm 1 ConstructInterleavedLTS

T1 and T2 be individual transition systems

T = T1 ||| T2
for each node si in T 1 do

for each node sj in T 2 do

for each outgoing edge from si to sk do

draw corresponding outgoing edge from 〈si, sj〉 to 〈sk, sj〉
end for

for each outgoing edge from sj to sk do

draw corresponding outgoing edge from 〈si, sj〉 to 〈si, sk〉
end for

end for

end for

Algorithm 1 describes the procedure for construction of the interleaved LTS

for two protocols represented by T1 and T2. For more than two protocols, the

algorithm can be modified suitably. Interleaving of the first two systems can

be constructed, which can then be interleaved with the third system and so

on until all the individual systems have been inter-leaved. For our running

example of railroad crossing, the individual protocols are shown in Figure

3.3. The interleaved LTS for the three protocols is shown in Figure 3.5.

33

Figure 3.5: Interleaved LTS for railroad crossing

3.4 Problem Formulation

The LTS constructed represents the interleaving of individual protocols. If

we have the capacity to trace all the messages then we can deterministically

say what state of the LTS we are in, that is, identify all the individual

protocol instances and their states. We can also tell the complete path taken

in the LTS during the execution. However, due to limited trace buffer width

constraint we can only select a few messages to trace. So we cannot identify

the LTS state or protocol interleaving exactly but can try our best to identify

it. We want to select messages which can help identify and narrow down on

the protocol interleavings. We associate two random variables with the LTS

structure representing the protocol interleaving.

Let X be a random variable representing different states in the LTS, i.e.,

34

it can take any value in the set S of the different states of the LTS. Let A
be the set of all possible messages in the LTS. Let Yi be a random variable

representing a candidate set of messages. Out of all possible messages, we

can only trace a few that satisfy the trace buffer width constraint, i.e., whose

combined width is less than the trace buffer width. Several sets of messages

may satisfy the trace buffer width constraint and are candidates for tracing.

Yi, i ∈ I are random variables representing all such candidates for tracing.

The values taken by any such Yi are a subset of A. In our working example

from Figure 3.5 we have:

S = {(far, 0, up), (near, 1, up), (near, 2, down), (in, 1, up), (in, 2, down),

(far, 1, up), (far, 3, down), (far, 2, down), (near, 3, down), (in, 3, down),

(near, 0, up), (in, 0, up)}.

A = {approach, lower, enter, exit, raise}

Suppose we cannot trace all five messages in A and the trace buffer width

is 3, that is, we can only trace three messages. There are
(
5
3

)
= 10 possible

candidates for tracing which satisfy the trace buffer width:

Y1 takes values in the set A1 = {approach, lower, enter}
Y2 takes values in the set A2 = {approach, lower, exit}
Y3 takes values in the set A3 = {approach, lower, raise}
Y4 takes values in the set A4 = {approach, enter, exit}
Y5 takes values in the set A5 = {approach, enter, raise}
Y6 takes values in the set A6 = {approach, exit, raise}
Y7 takes values in the set A7 = {lower, enter, exit}
Y8 takes values in the set A8 = {lower, enter, raise}
Y9 takes values in the set A9 = {lower, exit, raise}
Y10 takes values in the set A10 = {enter, exit, raise}

Yi, 1 ≤ i ≤ 10 are the random variables representing various candidates

for tracing. We want to select the best candidate for tracing which helps

us to identify and narrow the protocol interleaving. Protocol interleaving is

represented by various states of the LTS. So in other words we want to select

a Yi which helps identify X as best as possible. This notion is captured in

35

mutual information which one random variable conveys about another. The

best candidate for tracing is Yi, 1 ≤ i ≤ 10, which maximizes I(X;Yi).

All values of X are equally probable since the LTS can be in any state.

Therefore

pX(x) =
1

total number of states in the LTS
∀x ∈ S

For finding the marginal distribution of Yi, we count the number of occur-

rences of each message in the set A over the entire LTS. Then the marginal

distribution of Yi is:

pYi(y) =
number of occurrences of y in the LTS∑
z∈Ai

number of occurrences of z in the LTS

For finding the joint probability, we use the conditional probability and the

marginal distributions.

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (3.1)

p(x) and p(y) are known and p(x|y) can be calculated from the fraction of

times the LTS state x is reached after the message Yi = y has been observed,

that is, has y as an incoming edge in the LTS. Or in other words, p(x|y) is

the fraction of times x is reached, from the total number of occurrences of

the message y in the LTS.

pX|Yi(x|y) =
number of occurrences of y in the LTS leading to state x

total number of occurrences of y in the LTS

We can now apply the formula to calculate I(X;Yi) and select the candidate

Yi that maximizes the mutual information over X. Calculation of I(X;Y1)

for our example from Figure 3.5 is shown below:

pX(x) =
1

12
∀x ∈ S

36

pY1(y) =

4
11

if y = approach

3
11

if y = lower

4
11

if y = enter

pX|Y1(x|approach) =

2
4

if x = (near,1,up)

1
4

if x = (near,2,down)

1
4

if x = (near,3,down)

pX|Y1(x|lower) =

1
3

if x = (near,2,down)

1
3

if x = (in,2,down)

1
3

if x = (far,2,down)

pX|Y1(x|enter) =

1
4

if x = (in,1,up)

1
4

if x = (in,2,down)

1
4

if x = (in,3,down)

1
4

if x = (in,0,up)

pX,Y1(x, approach) =

2
11

if x = (near,1,up)

1
11

if x = (near,2,down)

1
11

if x = (near,3,down)

pX,Y1(x, lower) =

1
11

if x = (near,2,down)

1
11

if x = (in,2,down)

1
11

if x = (far,2,down)

37

pX,Y1(x, enter) =

1
11

if x = (in,1,up)

1
11

if x = (in,2,down)

1
11

if x = (in,3,down)

1
11

if x = (in,0,up)

I(X;Y1) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
2

11
log

2
11
1
12

4
11

+
6

11
log

1
11
1
12

4
11

+
3

11
log

1
11
1
12

3
11

= 0.3765

Similarly we have:

I(X;Y2) = 0.5683

I(X;Y3) = 0.7308

I(X;Y4) = 0.5324

I(X;Y5) = 0.5975

I(X;Y6) = 0.5972

I(X;Y7) = 0.5181

I(X;Y8) = 0.5856

I(X;Y9) = 0.5865

I(X;Y10) = 0.5425

Hence the set represented by Y3 should be selected because I(X;Yi) is max-

imum for i = 3.

3.5 Cross Validation

In order to cross-validate our method, we need to keep in mind the fact

that we can trace only a few messages out of the total. In other words,

due to the messages that are not traced there are some unobserved actions.

During an execution we do not know how many times one of the un-traced

messages occurred before we observe a traced message. Since we cannot

38

deterministically say how the system is progressing or how the execution

moves forward in the LTS, we can only try to fill in the gaps in the sequence

of observed messages and try to predict the path taken during execution. We

can associate a probability with which a path might have been taken in the

LTS during execution. We have to try and infer from the sequence of traced

messages observed during an execution.

In our case, we have some messages that are being traced while others are

not. During an execution, we will be able to observe the traced messages

as the execution run moves forward. However we do not know which of the

untraced messages might have happened at different stages of the execution.

These are the unobserved messages during an execution run. Therefore an

execution run corresponds to a sequence of messages, some of which are

observed (recorded on trace buffer) and some unobserved (not traced). Due

to the unobserved messages, we cannot deterministically say what path is

taken in the LTS during an execution, what state of the LTS the system is

presently in and hence what interleaving of protocols is present. We can draw

conclusions from the observed messages, make predictions on the unobserved

messages and try to assign a probability to what path might have been taken

in the LTS.

We apply the depth-first search (DFS) algorithm on the LTS representing

the interleaving of protocols to get all the paths from the start node to

the end node. We extract the message sequence for each such path. From

these message sequences we delete the untraced messages so that they now

represent the message sequence which would be recorded on the trace buffer

if the actual execution is along the corresponding path in the LTS. So now we

have pairs of LTS paths and the corresponding message sequence (without

un-traced messages).

During a post-silicon execution of the chip the traced messages are recorded

on the trace buffer. This sequence of messages from the trace buffer is

matched against the message sequences extracted from the LTS. If there

is a unique match then we know what path in the LTS was followed during

the execution. This information is passed on to the debuggers who replay

this in a pre-silicon environment. Replaying all the protocols in a pre-silicon

environment is not possible due to slow speed. However, once we are able to

identify the path or state from the LTS, the debugger can replay this smaller

scenario in simulation and look at it in more detail to debug since simulation

39

has full observability of signals.

If there are multiple matches, then we cannot be certain which path was

followed in the LTS. As such, all the matching paths are possible candidates

for further investigation by the debugger, but even this information is very

valuable to the debugger as we have given him several possible paths, one

of which was followed during the actual execution and resulted in the bug.

This set is much smaller than the complete massive design.

40

CHAPTER 4

IMPLEMENTATION AND RESULTS

4.1 Implementation

Our experiments are performed on the OpenSPARC T2 SoC from Oracle.

OpenSPARC T2 contains eight SPARC physical processor cores. The eight

physical cores are connected through a crossbar to an on-chip unified 4 Mbyte,

16-way associative L2 cache. The L2 cache connects to four on-chip DRAM

controllers, which directly interface to a pair of fully buffered DIMM (FBD)

channels. Each SPARC physical core is supported by system-on-chip hard-

ware components.

OpenSPARC T2 has four memory control units (MCUs), one for each

memory branch with a pair of L2 banks interacting with exactly one dynamic

random-access memory (DRAM) branch. The data management unit (DMU)

manages transaction layer packet (TLP) to/from the PCI-express unit (PEU)

and maintains the ordering from the PEU and then to the system interface

unit (SIU). The network interface unit (NIU) connects a pair of on-chip 10

Gb/s Ethernet MACs to the rest of the system. The SIU connects the NIU,

DMU and L2 cache. SIU is the L2 cache access point for the network and

PCI-express subsystems. The non-cacheable unit (NCU) performs an address

decode on I/O-addressable transactions and directs them to the appropriate

block (for example, NIU, DMU, clock control unit). A block level diagram

of OpenSPARC processor is shown in Figure 3.1.

The complete specification and design of the OpenSPARC T2 SoC is avail-

able from Oracle [78]. The specification document gives details on each of the

individual IPs. It gives information on how two IPs communicate with each

other for different purposes and what interface they use. It describes the mes-

sage structure, signals involved in the message and its timing diagram. We

use all this information to construct complete protocols for different tasks.

41

The protocols are shown in Appendix A.

Various regression suites are provided along with the OpenSPARC design

by Oracle. Regression tests are used to test the functionality of different

parts of the design. These regression suites stimulate different blocks and

IPs in the SoC, thus instantiating different protocols. We use monitors writ-

ten in Verilog to keep track of different interface signals between IPs. These

monitors record various signals that make up messages between IPs along

with their time stamp. Or in other words they record the sequence of mes-

sages during a simulation. This mimics an actual recording from post-silicon

execution on a trace buffer and is used for cross-validation.

We have implemented our LTS construction and method selection method-

ology in Python. The user or debugger provides the specifications of dif-

ferent protocols, the bit width of individual messages and the trace buffer

width budget. The tool reads the protocol specifications provided by the user

and parses them. The tool then performs the complete analysis, processing

through the protocols iteratively. It merges them iteratively to construct the

LTS (Algorithm 1) and then performs the analysis to select the trace signals

as described in Sections 3.3 and 3.4 respectively. It gives the set of messages

for tracing which satisfy the trace buffer width.

4.2 Experiments

We perform experiments on different groups of protocols. Individual proto-

cols from OpenSPARC are shown in Appendix A. We group together pro-

tocols which have similar IPs and perform similar tasks. We then apply

our LTS construction and message selection algorithm to select the messages

which should be traced. We then apply the cross-validation method. We do

not have access to an actual OpenSPARC chip with post-silicon debug fea-

tures. So instead we simulate the SoC using regression suites which stimulate

different IPs and hence instantiate various protocols. These simulations are

extremely slow as compared to an actual chip execution. This is the reason

we make groups of protocols for our analysis, as a simulation which sensitizes

all the IPs and instantiates all protocols is not possible. The monitors which

we have written record the traced messages in a sequence. We then match

it against the message sequences extracted from the LTS. These results for

42

different groups of protocols are presented next.

4.3 Results for Message Selection

4.3.1 PIO Read, PIO Write and Mondo Interrupt

PIO Write has 3 nodes, PIO Read has 7 nodes and Mondo Interrupt has

8 nodes. There are 168 nodes in the constructed LTS. The set of all the

messages is given below.

A = {pioreq, piowcrd, dmusiidata, reqtot, grant, siincu, monacknack}

We are using shorthand for messages. A more detailed description can be

found in Appendix A. The bit widths of the messages are listed below in the

same order.

A width = {pioreq : 65 bits, piowcrd : 6 bits, dmusiidata : 130 bits, reqtot :

1 bit, grant : 1 bit, siincu : 32 bits, monacknack : 8 bits}

Next we present the analysis for message selection for different sizes of the

trace buffer.

Trace Buffer Width: 32

Candidate message sets are listed below.

Y1 takes values in the set A1 = {reqtot, piowcrd, monacknack}
Y2 takes values in the set A2 = {reqtot, piowcrd, grant}
Y3 takes values in the set A3 = {reqtot, monacknack, grant}
Y4 takes values in the set A4 = {piowcrd, monacknack, grant}
Y5 takes values in the set A5 = {reqtot, piowcrd, monacknack, grant}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.3821

I(X;Y2) = 1.2903

43

I(X;Y3) = 1.3364

I(X;Y4) = 1.3821

I(X;Y5) = 1.3896

Figure 4.1 shows the mutual information for different message sets. A5 =

{reqtot, piowcrd, monacknack, grant} is selected.

Figure 4.1: Mutual information for different message sets

Trace Buffer Width: 64

There are a large number of candidate message sets, some of which are listed

below.

Y1 takes values in the set A1 = {grant, piowcrd, monacknack}
Y2 takes values in the set A2 = {siincu, reqtot, piowcrd, monacknack}
Y3 takes values in the set A3 = {siincu, reqtot, piowcrd, grant}
Y4 takes values in the set A4 = {siincu, reqtot, monacknack, grant}
Y5 takes values in the set A5 = {siincu, piowcrd, monacknack, grant}
Y6 takes values in the set A6 = {reqtot, piowcrd, monacknack, grant}
Y7 takes values in the setA7 = {siincu, reqtot, piowcrd, monacknack, grant}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.3821

44

I(X;Y2) = 1.2692

I(X;Y3) = 1.2187

I(X;Y4) = 1.3589

I(X;Y5) = 1.2692

I(X;Y6) = 1.3896

I(X;Y7) = 1.3963

Figure 4.2 shows the mutual information for different message sets. A7 =

{siincu, reqtot, piowcrd, monacknack, grant} is selected.

Figure 4.2: Mutual information for different message sets

Trace Buffer Width: 128

Some of the candidate message sets are listed below.

Y1 takes values in the set A1 = {pioreq, siincu, reqtot, grant, piowcrd,
monacknack}
Y2 takes values in the setA2 = {pioreq, siincu, reqtot, piowcrd, monacknack}
Y3 takes values in the set A3 = {pioreq, siincu, reqtot, piowcrd, grant}
Y4 takes values in the setA4 = {pioreq, siincu, reqtot, monacknack, grant}
Y5 takes values in the setA5 = {pioreq, siincu, piowcrd, monacknack, grant}
Y6 takes values in the setA6 = {pioreq, reqtot, piowcrd, monacknack, grant}
Y7 takes values in the setA7 = {siincu, reqtot, piowcrd, monacknack, grant}

45

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.4103

I(X;Y2) = 1.1531

I(X;Y3) = 1.1261

I(X;Y4) = 1.2100

I(X;Y5) = 1.1531

I(X;Y6) = 1.2247

I(X;Y7) = 1.3963

Figure 4.3 shows the mutual information for different message sets. A1 =

{pioreq, siincu, reqtot, grant, piowcrd, monacknack} is selected.

Figure 4.3: Mutual information for different message sets

4.3.2 PIO Read, PIO Write and Network Data Packet
Processing

PIO Write has 3 nodes, PIO Read has 7 nodes and Network Data Packet

Processing has 7 nodes. There are 147 nodes in the constructed LTS. The

set of all the messages is given below.

A = {pioreq, piowcrd, dmusiidata, reqtot, grant, siincu, niusiidata}

46

We are using shorthand for messages. A more detailed description can be

found in Appendix A. The bit widths of the messages are listed below in the

same order.

A width = {pioreq : 65 bits, piowcrd : 6 bits, dmusiidata : 130 bits, reqtot :

1 bit, grant : 1 bit, siincu : 32 bits, niusiidata : 130 bits}

Next we present the analysis for message selection for different sizes of the

trace buffer.

Trace Buffer Width: 32

Candidate message sets are listed below.

Y1 takes values in the set A1 = {reqtot, piowcrd}
Y2 takes values in the set A2 = {reqtot, grant}
Y3 takes values in the set A3 = {piowcrd, grant}
Y4 takes values in the set A4 = {reqtot, piowcrd, grant}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.2154

I(X;Y2) = 1.2517

I(X;Y3) = 1.2154

I(X;Y4) = 1.2585

Figure 4.4 shows the mutual information for different message sets. A4 =

{reqtot, piowcrd, grant} is selected.

Trace Buffer Width: 64

Some of the candidate message sets are listed below.

Y1 takes values in the set A1 = {siincu, reqtot, piowcrd}
Y2 takes values in the set A2 = {siincu, reqtot, grant}
Y3 takes values in the set A3 = {reqtot, piowcrd, grant}
Y4 takes values in the set A4 = {siincu, piowcrd, grant}

47

Figure 4.4: Mutual information for different message sets

Y5 takes values in the set A5 = {reqtot, siincu, piowcrd, grant}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.1188

I(X;Y2) = 1.1921

I(X;Y3) = 1.2585

I(X;Y4) = 1.1188

I(X;Y5) = 1.2687

Figure 4.5 shows the mutual information for different message sets. A5 =

{reqtot, siincu, piowcrd, grant} is selected.

Trace Buffer Width: 128

Some of the candidate message sets are listed below.

Y1 takes values in the set A1 = {pioreq, siincu, reqtot, piowcrd}
Y2 takes values in the set A2 = {pioreq, siincu, reqtot, grant}
Y3 takes values in the set A3 = {pioreq, reqtot, piowcrd, grant}
Y4 takes values in the set A4 = {pioreq, siincu, piowcrd, grant}
Y5 takes values in the set A5 = {reqtot, siincu, piowcrd, grant}
Y6 takes values in the set A6 = {pioreq, reqtot, siincu, piowcrd, grant}

48

Figure 4.5: Mutual information for different message sets

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.0443

I(X;Y2) = 1.0916

I(X;Y3) = 1.1281

I(X;Y4) = 1.0443

I(X;Y5) = 1.2687

I(X;Y6) = 1.2929

Figure 4.6 shows the mutual information for different message sets. A6 =

{pioreq, reqtot, siincu, piowcrd, grant} is selected.

4.3.3 PIO Read, PIO Write, Mondo Interrupt and Network
Data Packet Processing

PIO Write has 3 nodes, PIO Read has 7 nodes, Mondo Interrupt has 8 nodes

and Network Data Packet Processing has 7 nodes. There are 1176 nodes in

the constructed LTS. The set of all the messages is given below.

49

Figure 4.6: Mutual information for different message sets

A = {pioreq, piowcrd, dmusiidata, reqtot, grant, siincu, monacknack,
niusiidata}

We are using shorthand for messages. A more detailed description can be

found in Appendix A. The bit widths of the messages are listed below in the

same order.

A width = {pioreq : 65 bits, piowcrd : 6 bits, dmusiidata : 130 bits, reqtot :

1 bit, grant : 1 bit, siincu : 32 bits, monacknack : 8 bits, niusiidata :

130 bits}

Next we present the analysis for message selection for different sizes of the

trace buffer.

Trace Buffer Width: 32

Candidate message sets are listed below.

Y1 takes values in the set A1 = {reqtot, grant, monacknack}
Y2 takes values in the set A2 = {reqtot, piowcrd, grant}
Y3 takes values in the set A3 = {reqtot, monacknack, piowcrd}
Y4 takes values in the set A4 = {piowcrd, monacknack, grant}

50

Y5 takes values in the set A5 = {reqtot, piowcrd, monacknack, grant}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.1067

I(X;Y2) = 1.0810

I(X;Y3) = 1.1280

I(X;Y4) = 1.1280

I(X;Y5) = 1.1785

Figure 4.7 shows the mutual information for different message sets. A5 =

{reqtot, piowcrd, monacknack, grant} is selected.

Figure 4.7: Mutual information for different message sets

Trace Buffer Width: 64

There are a large number of candidate message sets, some of which are listed

below.

Y1 takes values in the set A1 = {reqtot, grant, siincu, monacknack}
Y2 takes values in the set A2 = {grant, reqtot, piowcrd, monacknack}
Y3 takes values in the set A3 = {siincu, reqtot, piowcrd, grant}
Y4 takes values in the set A4 = {siincu, reqtot, monacknack, piowcrd}
Y5 takes values in the set A5 = {siincu, piowcrd, monacknack, grant}

51

Y6 takes values in the setA6 = {siincu, reqtot, piowcrd, monacknack, grant}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 0.9855

I(X;Y2) = 1.1785

I(X;Y3) = 0.9315

I(X;Y4) = 0.9864

I(X;Y5) = 0.9864

I(X;Y6) = 1.2047

Figure 4.8 shows the mutual information for different message sets. A6 =

{siincu, reqtot, piowcrd, monacknack, grant} is selected.

Figure 4.8: Mutual information for different message sets

Trace Buffer Width: 128

Some of the candidate message sets are listed below.

Y1 takes values in the set A1 = {pioreq, siincu, reqtot, grant, piowcrd,
monacknack}
Y2 takes values in the setA2 = {pioreq, siincu, reqtot, grant, monacknack}
Y3 takes values in the setA3 = {pioreq, monacknack, reqtot, piowcrd, grant}
Y4 takes values in the set A4 = {pioreq, siincu, reqtot, piowcrd, grant}
Y5 takes values in the setA5 = {pioreq, siincu, piowcrd, monacknack, reqtot}

52

Y6 takes values in the setA6 = {pioreq, siincu, piowcrd, monacknack, grant}
Y7 takes values in the setA7 = {siincu, reqtot, piowcrd, monacknack, grant}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.2804

I(X;Y2) = 0.9617

I(X;Y3) = 1.0977

I(X;Y4) = 0.9210

I(X;Y5) = 0.9615

I(X;Y6) = 0.9615

I(X;Y7) = 1.2047

Figure 4.9 shows the mutual information for different message sets. A1 =

{pioreq, siincu, reqtot, grant, piowcrd, monacknack} is selected.

Figure 4.9: Mutual information for different message sets

Trace Buffer Width: 256

Some of the candidate message sets are listed below.

Y1 takes values in the set A1 = {pioreq, siincu, reqtot, grant, piowcrd,
monacknack, niusiidata}
Y2 takes values in the set A2 = {pioreq, siincu, reqtot, grant, piowcrd,
monacknack, dmusiidata}

53

Y3 takes values in the setA3 = {piowcrd, siincu, reqtot, grant, monacknack,
niusiidata}
Y4 takes values in the setA4 = {piowcrd, monacknack, reqtot, siincu, grant,
dmusiidata}
Y5 takes values in the setA5 = {pioreq, siincu, monacknack, piowcrd, grant,
niusiidata}
Y6 takes values in the setA6 = {pioreq, siincu, piowcrd, monacknack, grant,
dmusiidata}
Y7 takes values in the setA7 = {pioreq, siincu, piowcrd, monacknack, reqtot,
niusiidata}
Y8 takes values in the set A8 = {siincu, reqtot, piowcrd, pioreq, grant,
niusiidata}
Y9 takes values in the setA9 = {monacknack, reqtot, piowcrd, pioreq, grant,
niusiidata}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.4495

I(X;Y2) = 1.4090

I(X;Y3) = 1.3363

I(X;Y4) = 0.9267

I(X;Y5) = 0.9975

I(X;Y6) = 0.9296

I(X;Y7) = 0.9975

I(X;Y8) = 0.9575

I(X;Y9) = 1.1194

Figure 4.10 shows the mutual information for different message sets. A1 =

{pioreq, siincu, reqtot, grant, piowcrd, monacknack, niusiidata} is se-

lected.

4.3.4 DMA Read Request and CPU-Main Memory Load

DMA Read Request has 11 nodes and CPU-Main Memory Load has 9 nodes.

There are 99 nodes in the constructed LTS. The set of all the messages is

54

Figure 4.10: Mutual information for different message sets

given below.

A = {dmusiidata, siil2t, l2tmcu, mcul2tack, mcul2tdata, l2bsio, siodmu,
pcxl2t, pcxl2tdata, l2tcpxreq, l2tcpxdata, cpxl2t}

We are using shorthand for messages. A more detailed description can be

found in Appendix A. The bit widths of the messages are listed below in the

same order.

A width = {dmusiidata : 130 bits, siil2t : 32 bits, l2tmcu : 41 bits, mcul2tack :

1 bit, mcul2tdata : 134 bits, l2bsio : 34 bits, siodmu : 130 bits, pcxl2t :

2 bits, pcxl2tdata : 130 bits, l2tcpxreq : 8 bits, l2tcpxdata : 146 bits, cpxl2t :

8 bits}

Next we present the analysis for message selection for different sizes of the

trace buffer.

Trace Buffer Width: 32

Candidate message sets are listed below.

Y1 takes values in the set A1 = {mcul2tack, l2tcpxreq, pcxl2t}
Y2 takes values in the set A2 = {mcul2tack, l2tcpxreq, cpxl2t}

55

Y3 takes values in the set A3 = {mcul2tack, pcxl2t, cpxl2t}
Y4 takes values in the set A4 = {l2tcpxreq, pcxl2t, cpxl2t}
Y5 takes values in the set A5 = {mcul2tack, l2tcpxreq, pcxl2t, cpxl2t}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.9455

I(X;Y2) = 1.9455

I(X;Y3) = 1.9455

I(X;Y4) = 1.8972

I(X;Y5) = 1.9977

Figure 4.11 shows the mutual information for different message sets. A5 =

{mcul2tack, l2tcpxreq, pcxl2t, cpxl2t} is selected.

Figure 4.11: Mutual information for different message sets

Trace Buffer Width: 64

Some of the candidate message sets are listed below.

Y1 takes values in the set A1 = {l2tcpxreq, pcxl2t, siil2t, cpxl2t}
Y2 takes values in the set A2 = {l2tcpxreq, pcxl2t, l2bsio, cpxl2t}
Y3 takes values in the set A3 = {l2tcpxreq, pcxl2t, cpxl2t, l2tmcu}

56

Y4 takes values in the setA4 = {mcul2tack, l2tcpxreq, pcxl2t, siil2t, cpxl2t}
Y5 takes values in the setA5 = {mcul2tack, l2tcpxreq, pcxl2t, l2bsio, cpxl2t}
Y6 takes values in the setA6 = {mcul2tack, l2tcpxreq, pcxl2t, cpxl2t, l2tmcu}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.9402

I(X;Y2) = 1.9234

I(X;Y3) = 1.9977

I(X;Y4) = 2.0558

I(X;Y5) = 1.9234

I(X;Y6) = 1.9076

Figure 4.12 shows the mutual information for different message sets. A4 =

{mcul2tack, l2tcpxreq, pcxl2t, siil2t, cpxl2t} is selected.

Figure 4.12: Mutual information for different message sets

Trace Buffer Width: 128

Some of the candidate message sets are listed below.

Y1 takes values in the setA1 = {mcul2tack, l2tcpxreq, pcxl2t, siil2t, l2bsio,
cpxl2t}

57

Y2 takes values in the setA2 = {mcul2tack, l2tcpxreq, pcxl2t, siil2t, l2bsio,
l2tmcu}
Y3 takes values in the setA3 = {mcul2tack, l2tcpxreq, pcxl2t, siil2t, cpxl2t,
l2tmcu}
Y4 takes values in the setA4 = {mcul2tack, l2tcpxreq, pcxl2t, l2bsio, cpxl2t,
l2tmcu}
Y5 takes values in the setA5 = {mcul2tack, l2tcpxreq, siil2t, l2bsio, cpxl2t,
l2tmcu}
Y6 takes values in the set A6 = {mcul2tack, pcxl2t, siil2t, l2bsio, cpxl2t,
l2tmcu}
Y7 takes values in the set A7 = {l2tcpxreq, pcxl2t, siil2t, l2bsio, cpxl2t,
l2tmcu}
Y8 takes values in the setA8 = {mcul2tack, l2tcpxreq, pcxl2t, siil2t, l2bsio,
cpxl2t, l2tmcu}

Mutual information for candidate message sets are listed below.

I(X;Y1) = 1.9768

I(X;Y2) = 1.8803

I(X;Y3) = 1.9614

I(X;Y4) = 1.8674

I(X;Y5) = 1.8803

I(X;Y6) = 1.8803

I(X;Y7) = 1.9768

I(X;Y8) = 1.9952

Figure 4.13 shows the mutual information for different message sets. A8 =

{mcul2tack, l2tcpxreq, pcxl2t, siil2t, l2bsio, cpxl2t, l2tmcu} is selected.

4.4 Cross-validation of Selected Message Set

In this section, we describe the cross-validation flow for one set of protocols,

namely Mondo Interrupt, CPU-Main Memory Load, and NCU-XBAR Up-

stream & Downstream Protocols. For this purpose we perform simulation of

58

Figure 4.13: Mutual information for different message sets

the OpenSPARC design using regression suites which trigger these protocols.

We use monitors to record messages during the simulation. We then follow

the steps described in Section 3.5 and use the message sequence recorded on

the trace buffer to come up with possible paths in the LTS which could have

been followed during the execution. We check if the actual simulation path

is in the set of reconstructed execution paths or not.

The list of all possible messages and their frequency of occurrence is shown

below. They are arranged in decreasing order of frequency of occurrence. The

bit width of each message is shown in brackets.

A = {dmusiidata(130 bits) : 108, siincu(32 bits) : 108, cpxncugnt(8 bits) :

72, ncucpxdata(146 bits) : 72, ncucpxreq(8 bits) : 72, pcxncudata(130 bits) :

72, pcxncurdy(1 bit) : 72, grant(1 bit) : 54, reqtot(1 bit) : 54,

monacknack(8 bits) : 54, l2tcpxdata(146 bits) : 48, cpxl2t(8 bits) :

48, mcul2tdata(134 bits) : 48, mcul2tack(1 bit) : 48, pcxl2tdata(130 bits) :

48, l2tmcu(41 bits) : 48, pcxl2t(2 bits) : 48, l2tcpxreq(8 bits) : 48}

The complete sequence of messages recorded during a simulation is given

below. The corresponding message shorthands are shown in angular brack-

ets.

59

PCX initiating data transfer to NCU 〈pcxncurdy〉
PCX Sending data to NCU = 21000ff88006410200000000000000040 〈pcxncudata〉
NCU sending Request to CPX for CPU = 01 〈ncucpxreq〉
NCU transferring data = 28200040000ff000000000000000000000040 to CPX

for CPU = 1 〈ncucpxdata〉
CPX indicating packet reached at CPU = 01 〈cpxncugnt〉
L2T7 receiving a Request from PCX 〈pcxl2t〉
DATA Cycle started at L2T7 from PCX 〈pcxl2tdata〉
L2T7 Read Request to MCU3 〈l2tmcu〉
MCU3 to L2T7 Read Request Acknowledgement 〈mcul2tack〉
MCU3 to L2T7 Read Data 〈mcul2tdata〉
L2T7 sending request to CPX 〈l2tcpxreq〉
Data Cycle started from L2T7 to CPX 〈l2tcpxdata〉
ACKNOWLEDGE from CPX Detected 〈cpxl2t〉
Mondo Interrupt Request Sent to SIU Ordered Queue 〈dmusiidata〉
DMU to SIU Mondo Interrupt Request / PIO Read Data Return Payload

Cycle 〈dmusiidata〉
SIU Signalling a Transfer to NCU 〈reqtot〉
NCU Granting SIU for Transfer 〈grant〉
NCU Granting SIU for Transfer 〈grant〉
SIU to NCU Header and Payload Cycle 〈siincu〉
NCU sending Mondo Packet acknowledge (ack) to DMU for Mondo ID = 00

〈monacknack〉
Figure 4.14 shows a section of the LTS and the progress of simulation

along a path. The path taken during the simulation is marked in red. The

messages which are traced and recorded on the trace buffer during the sim-

ulation are marked in blue. (mon 1, cpu 1, xbar 1) is the start state and

(mon 8, cpu 9, xbar 6) is the end state. Multiple transitions may be possible

from a state. The transition taken during the simulation and the next state

reached is shown in red. The message is shown on the corresponding tran-

sition. If it is a traced message and is recorded on the trace buffer during

simulation, it is shown in blue. A dotted transition means that a few states

and transitions have not been shown due to limited space.

60

(mon_1 ,
 cpu_1', x

bar_1')

(mon_2 ,
 cpu_1', x

bar_1')

(mon_1 ,
 cpu_1', x

bar_2')

(mon_1 ,
 cpu_2', x

bar_1')

(mon_2 ,
 cpu_2', x

bar_1')

(mon_2 ,
 cpu_1', x

bar_2')

(mon_1 ,
 cpu_2', x

bar_2')

pcxncurdy

dmusiidata pcxl2t

pcxncurdy

(mon_1 ,
 cpu_1', x

bar_3')

pcxncudata

pcxl2tdmusiidata

pcxl2t

dmusiidata

(mon_1 ,
 cpu_1', x

bar_6')

(mon_3 ,
 cpu_1', x

bar_1') (mon_1 ,
 cpu_3', x

bar_1')

pcxl2tdata

dmusiidata

(mon_1 ,
 cpu_2', x

bar_6')

(mon_2 ,
 cpu_1', x

bar_6')

pcxl2t

dmusiidata

(mon_1 ,
 cpu_9', x

bar_6')

(mon_2 ,
 cpu_9', x

bar_6')

(mon_3 ,
 cpu_9', x

bar_6')

(mon_4 ,
 cpu_9', x

bar_6')

(mon_5 ,
 cpu_9', x

bar_6')

dmusiidata

grant

(mon_6 ,
 cpu_9', x

bar_6')

(mon_7 ,
 cpu_9', x

bar_6')

(mon_8 ,
 cpu_9', x

bar_6')

dmusiidata

reqtot

siincu

siincu

monacknack

pcxncurdy

Figure 4.14: Progress of simulation along a LTS path

4.4.1 32 bit Trace Buffer

Message set selected by our method for tracing: {cpxl2t, grant, pcxncurdy,
mcul2tack, monacknack, pcxl2t, reqtot, l2tcpxreq}

61

Sequence of messages recorded on trace buffer during simulation: {pcxncurdy,
pcxl2t, mcul2tack, l2tcpxreq, cpxl2t, reqtot, grant, monacknack}

Out of 10,000 different paths extracted from the LTS in Figure 4.14, 81

paths had matching message sequences and could have been followed during

execution. The actual simulation path was also among the 81 matching LTS

paths.

4.4.2 64 bit Trace Buffer

Message set selected by our method for tracing: {cpxncugnt, cpxl2t, grant,
pcxncurdy, mcul2tack, ncucpxreq, monacknack, pcxl2t, reqtot, l2tcpxreq}

Sequence of messages recorded on trace buffer during simulation: {pcxncurdy,
ncucpxreq, cpxncugnt, pcxl2t, mcul2tack, l2tcpxreq, cpxl2t, reqtot, grant,

monacknack}

Out of 10,000 different paths extracted from the LTS in Figure 4.14, 45

paths had matching message sequences and could have been followed during

execution. The actual simulation path was also among the 45 matching LTS

paths.

4.4.3 128 bit Trace Buffer

Message set selected by our method for tracing: {cpxncugnt, cpxl2t, siincu,
grant, pcxncurdy, mcul2tack, ncucpxreq, monacknack, l2tmcu, pcxl2t,

reqtot, l2tcpxreq}

Sequence of messages recorded on trace buffer during simulation: {pcxncurdy,
ncucpxreq, cpxncugnt, pcxl2t, l2tmcu, mcul2tack, l2tcpxreq, cpxl2t, reqtot,

grant, siincu, siincu, monacknack}

Out of 10,000 different paths extracted from the LTS in Figure 4.14, 45

paths had matching message sequences and could have been followed during

execution. The actual simulation path was also among the 45 LTS paths.

62

4.4.4 Evaluation of Different Message Sets

In this sub-section we evaluate different message sets which can be traced.

Our method selects the message set with highest mutual information for trac-

ing over message sets with lower mutual information. To evaluate different

message sets, we follow the procedure described in Section 3.5 for each of

them. We consider each set for tracing and calculate the number of LTS

paths which could have been followed during execution. It is expected that a

message set with higher mutual information should help us more in identify-

ing the possible LTS path than a message set with lower mutual information.

That is, a message set with higher mutual information should give fewer LTS

paths which could have been followed during execution.

On the X-axis we plot mutual information for different message sets. The

number of possible LTS paths for each message set is plotted on the Y-

axis. Figures 4.15, 4.16 and 4.17 show the graphs for 32 bit trace buffer, 64

bit trace buffer and 128 bit trace buffer respectively. It can be seen in the

figures that as the mutual information of a message set increases, the number

of possible LTS paths for it decreases. This implies that a message set with

higher mutual information gives a more definitive selection of set of paths

which could have been followed during execution.

Figure 4.15: Evaluation of different message sets for 32 bit trace buffer

63

Figure 4.16: Evaluation of different message sets for 64 bit trace buffer

Figure 4.17: Evaluation of different message sets for 128 bit trace buffer

64

CHAPTER 5

CONCLUSION

5.1 Conclusion

The results of the experiments above demonstrate that our selection method

does the following:

1. Provides an automated selection of trace signals that capture system-

level behavior

2. Provides a trace signal selection method which can be used early in the

design process unlike the gate-level methods which work on synthesized

netlists

3. Provides the engineer specifying the protocols some degree of guidance

in the final solution

4. Is effective at localizing bugs using a realistic trace buffer width relative

to the overall design size

We have performed experiments on a real world complex SoC, namely

OpenSPARC. We have used the available specifications to construct the pro-

tocols. The experiments have been performed on the groups of these proto-

cols. These results have been cross-validated by comparing against full chip

simulation of the SoC, obtained from Oracle.

5.2 Future Work

As part of further work we can try scaling the solution. At present the LTS

constructed from individual protocols can blow up very quickly. We could

come up with an algorithm to construct and analyze the LTS on the fly.

65

Future work could include a better cross-validation method as compared to

running simulations of the design. Simulations are very slow and hence limit

the scope of possible chip behaviors that can be analyzed. We could try

implementing the design on FPGA and use signal tap hardware to trace the

signals. We could also try a more formal approach to proving the method

using theorems and proofs.

We could test the method on multiple designs to further substantiate the

method. At present OpenSPARC is the only available open-source SoC with

documentation and specifications to construct the protocols and do the anal-

ysis. Lack of open-source SoC is a big constraint. We do not really know

what kind of hardware specifications, IPs, NoC architecture and protocols

exist for real world SoCs such as those in our smart phones. Using multiple

designs can help improve our method.

66

APPENDIX A

PROTOCOLS

Shown in this appendix are the protocols used in our experiments.

A.1 Mondo Interrupt

Usage Scenario : Mondo Interrupt from I/O (Via SIU’s Ordered Queue)

T
im

e

F
ra

m
e

NCUDMU (DSN) SIU

INT Credit

Available

Task 1

Task 1

Task 3

Reduce DMA-INT Credit

B2B DMA

INT?

Prior

DMA

write?

˅

˄

No

No

Yes

Yes

Header

+

Dest Queue

+

Data Req

Task 2

Mondo Data

Payload

Yes

No

Req to transfer

Task 2

Task 2

Header

Task 3 Mondo Payload

More

Work?

Yes

Task 1

Two

Cycles to

Curr

Pack?

No

Grant

NCU has

Space?

Yes

No

Task 3

ACK + Mondo ID

Task 3

NACK + Mondo ID

Return

INT

Credit

˅ Credit

Credit

Retry

Parameters of Protocol

DMU to SIU Interrupt Credit: 16

Figure A.1: Mondo Interrupt

67

A.2 PIO Read

Usage Scenario : PIO Read (Via SIU’s Bypass Queue)
T
im

e
 F

ra
m

e
NCUDMU (DSN) SIU

Task 1

Task 1

Header + Data Req

+ Data Queue

Task 2

PIO Read

CSR?

Task 3

Yes No

˅
Task 4

Replicate lower 64 bit

To upper 64 bit

PIO Read

Data Payload

More PIO

Read

Data?

Yes

PIO Read

Credit?

No

Task 1

Yes

Task 2

Reduce PIO Read Credit (-1)

PIO Read

Request

Task 0

Gather all PIO Read Data

Task 2

Task 4Task 3

PIU Read Packet

+

PIO Read Credit

More

Work?

Yes

Task 3

Two

Cycles to

Curr

Pack?

No

Grant

NCU has

Space?

Yes

No

Req to

Transfer

Increase

PIO Read

Credit

Parameters of Protocol

NCU to DMU PIO Read / Write Credit: 16

Figure A.2: PIO Read

68

A.3 PIO Write

Usage Scenario : PIO Write (Bypassing SIU completely)
T
im

e
 F

ra
m

e
NCUDMU (DSN)

Task 1

PIO Write

Credit?

No

Task 1

Yes

Task 2

Reduce PIO Write Credit (-1)

PIO Write

Request

Task 0

Write PIO Write data

Task 3

Increase

PIO Read

Credit

Return PIO Write Credit

Parameters of Protocol

NCU to DMU PIO Read / Write Credit: 16

Figure A.3: PIO Write

69

A.4 Network Data Packet Processing

Usage Scenario : Network data packet processing (Inbound DMA Write Request)
T
im

e
 F

ra
m

e
NCUNIU SIU

Credit

Available?

No

Task 1

Yes

Header and Queue

Task 2 Task 1Data

Task 3

Reduce Credit (-1)

B2B DMA

Write

Yes

No

Task 2 Task 1Transaction Req

Task 3

2 Cycles

 to finish

No

Task 2

Grant

Header

Buffer

Available

Yes

No

Task 4 Data

Increase Credit (+1)

Parameters of the protocol:

NIU to SIU Data Credit: 16

NCU Buffer Size:

Figure A.4: Network Data Packet Processing

70

A.5 DMA Read Request

Usage Scenario : Data Read Request (DMA read from Memory via Ordered Queue of SIU with Cache Miss)
T
im

e
 F

ra
m

e
MCUDMU (DSN) SIU L2

Credit

Available

No

Task 1

Task 1

Send
Header

Task 2

Drive
Data

Request
+

Dest
Queue

Sig

Task 3

Reduce Credit

B2B DMA

Read

Yes

No

Read Req

Token?

16 clock

cycles

over?

˅
No

No

˄ Yes

Yes

Outboud

Buffer?

No

Task 2

Yes
+

Decrement
credit

Task 1

Read
Request

Pending

tran ack?

Enough

buff?

˅
No

No

˄ Yes

Yes

Task 2

Task 1

Read Req
+

Read Req ID
+

Read Addr

Task 3

Task 2

Record and Process

Ack

Task 3

Task 4

Data
+

Data valid
+

ECC

Task 3
Read Completion +

Header

Task 5

Task 4 Data + Parity

Increment Credit

Task 6Buff ¾ Full + Credit Received

Task 4 Header

Task 5

Task 5

Data Req

Task 6 Data

Increase
Credit

Parameters of Protocol

DMU to SIU Write Credit: 16

Figure A.5: DMA Read Request

71

A.6 CPU-Main Memory Load

Usage Scenario : CPU-Main Memory Load / Ifetch (Instruction Fetch) Requests (Detailing Cache miss)
T
im

e
 F

ra
m

e
MCUXBAR L2

Task 1

Data Valid

To IQ

Task 1

Task 2

Data

Task 2

Decoding in

Address, Data

Instruction

Task 3

Forward to

Arbiter Logic

Arbiter

Acceptan

ce?

Task 4Yes

2 cycles

over?

No

Yes

No

Cache

Hit?

Task 4b

No

Won Arb

Pending

Reads?

Pending

tran to

MCU for

ACK?

Fill buffer

space?

˅
No

No

No

˄ Yes

Yes

Yes

Task 1

Read

Request

+

Read

Address

+

Read Req

ID

Task 4

Read

Address 2

Fill BUffer

Request

Accepted

ACK

Task 5

Task 2

Data Ready

Task 6

Send Data Valid

+

Data

+

Read Request ID

+

ECC Info

Task 6

Record Read to

Fill Buffer

Task 7
Replay Miss IFETCH

/ LOAD in L2 PIPE

Send Data

 to

 Requesting

Core

Task 4a Yes

˅ Send Data to

Requesting Core

Task 8

Task 3

Request

Task 4

Data

Packet

Packet

Consume

PCX?

Task 9

Yes

+

ACK

<= 2

cycles

sending

data

No

Task 9

No

Retry

from

OQ

ACK

Received

after 2

cycles?

Yes

Yes

Task 9

No

OQ fills up +

L2 pipeline stalls

Task 5

Reduce IQ Num (-1)

More

Load /

IFETCH?

Yes

No

Yes

+

IQ

Increase

Parameters of Protocol

XBAR to L2 Input Queue depth : 16

Figure A.6: CPU-Main Memory Load

72

A.7 NCU-XBAR Upstream & Downstream Protocols

Usage Scenario : NCU-XBAR Upstream and Downstream Protocols
T
im

e
 F

ra
m

e
NCUXBAR PCX XBAR CPX

Data ReadyTask 1

Task 2

Task 1

Task 1

Task 2Data

Task 3

Task 4

Request

Task 2 Data

Task 3 Grant Task 5

Figure A.7: NCU-XBAR Upstream & Downstream Protocols

73

REFERENCES

[1] “IEEE Standard for Standard SystemC Language Reference Manual,”
IEEE Std 1666-2011, pp. 1–638, Jan 2012.

[2] IEEE Standard for System Verilog, IEEE Standard, 2012.

[3] H. D. Foster, “Why the Design Productivity Gap Never Happened,” in
Proceedings of the International Conference on Computer-Aided Design,
pp. 581–584, IEEE Press, 2013.

[4] S. Mitra, S. A. Seshia, and N. Nicolici, “Post-silicon Validation Oppor-
tunities, Challenges and Recent Advances,” in Proceedings of the 47th
Design Automation Conference, pp. 12–17, ACM, 2010.

[5] J. Keshava, N. Hakim, and C. Prudvi, “Post-silicon Validation Chal-
lenges: How EDA and Academia Can Help,” in Proceedings of the 47th
Design Automation Conference, pp. 3–7, ACM, 2010.

[6] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A Reconfigurable Design-for-debug Infrastructure for SoCs,”
in Proceedings of the 43rd annual Design Automation Conference, pp. 7–
12, ACM, 2006.

[7] P. Patra, “On the Cusp of a Validation Wall,” Design & Test of Com-
puters, IEEE, vol. 24, no. 2, pp. 193–196, 2007.

[8] S. Yerramilli, “Addressing Post-silicon Validation Challenge: Leverage
Validation & Test Synergy (invited address),” in Intl. Test Conf, 2006.

[9] P. T. Wolkotte, J. H. Rutgers, P. K. Hölzenspies, M. Westmijze, R. Blu-
mink, and G. J. Smit, “An Automated Design-flow for FPGA-based
Sequential Simulation,” Technology Foundation STW, 2008.

[10] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya,
R. Plate, T. Mattner, F. Olbrich, P. Hammarlund, et al., “Intel Nehalem
Processor Core Made FPGA Synthesizable,” in Proceedings of the 18th
Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pp. 3–12, ACM, 2010.

74

[11] D. Lin and S. Mitra, “QED Post-silicon Validation and Debug: Fre-
quently Asked Questions,” in Design Automation Conference (ASP-
DAC), 2014 19th Asia and South Pacific, pp. 478–482, IEEE, 2014.

[12] X. Liu and Q. Xu, “Interconnection Fabric Design for Tracing Signals
in Post-silicon Validation,” in Proceedings of the 46th Annual Design
Automation Conference, pp. 352–357, ACM, 2009.

[13] D. Josephson, “The Good, the Bad, and the Ugly of Silicon Debug,” in
Proceedings of the 43rd annual Design Automation Conference, pp. 3–6,
ACM, 2006.

[14] S.-B. Park and S. Mitra, “IFRA: Instruction Footprint Recording and
Analysis for Post-silicon Bug Localization in Processors,” in Design Au-
tomation Conference, 2008. DAC 2008. 45th ACM/IEEE, pp. 373–378,
IEEE, 2008.

[15] S.-B. Park, A. Bracy, H. Wang, and S. Mitra, “BLoG: Post-silicon Bug
Localization in Processors Using Bug Localization Graphs,” in Proceed-
ings of the 47th Design Automation Conference, pp. 368–373, ACM,
2010.

[16] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “QED: Quick Error Detection
Tests for Effective Post-silicon Validation,” in Test Conference (ITC),
2010 IEEE International, pp. 1–10, IEEE, 2010.

[17] C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and A. Boon, “Trans-
action Monitoring in Networks on Chip: The On-chip Run-time Per-
spective,” in Industrial Embedded Systems, 2006. IES’06. International
Symposium on, pp. 1–10, IEEE, 2006.

[18] I. Wagner and V. Bertacco, “Reversi: Post-silicon Validation System
for Modern Microprocessors,” in Computer Design, 2008. ICCD 2008.
IEEE International Conference on, pp. 307–314, IEEE, 2008.

[19] I. Silas, I. Frumkin, E. Hazan, E. Mor, and G. Zobin, “System-level
Validation of the Intel Pentium M Processor,” Intel Technology Journal,
vol. 7, no. 2, pp. 37–43, 2003.

[20] T. J. Foster, D. L. Lastor, and P. Singh, “First Silicon Functional Valida-
tion and Debug of Multicore Microprocessors,” Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, vol. 15, no. 5, pp. 495–504,
2007.

[21] P. Lisherness and K.-T. T. Cheng, “An Instrumented Observability Cov-
erage Method for System Validation,” in High Level Design Validation

75

and Test Workshop, 2009. HLDVT 2009. IEEE International, pp. 88–
93, IEEE, 2009.

[22] A. Adir, A. Nahir, A. Ziv, C. Meissner, and J. Schumann, “Reaching
Coverage Closure in Post-silicon Validation,” in Hardware and Software:
Verification and Testing, pp. 60–75, Springer, 2010.

[23] H. F. Ko and N. Nicolici, “Algorithms for State Restoration and Trace-
signal Selection for Data Acquisition in Silicon Debug,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 28, no. 2, pp. 285–297, 2009.

[24] X. Liu and Q. Xu, “Trace Signal Selection for Visibility Enhancement
in Post-silicon Validation,” in Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1338–1343, European Design and
Automation Association, 2009.

[25] X. Liu and Q. Xu, “On Signal Selection for Visibility Enhancement
in Trace-based Post-silicon Validation,” Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, vol. 31, no. 8,
pp. 1263–1274, 2012.

[26] H. F. Ko and N. Nicolici, “Automated Trace Signals Selection Using the
RTL Descriptions,” in Test Conference (ITC), 2010 IEEE International,
pp. 1–10, IEEE, 2010.

[27] K. Basu and P. Mishra, “RATS: Restoration-aware Trace Signal Selec-
tion for Post-silicon Validation,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 21, no. 4, pp. 605–613, 2013.

[28] K. Basu and P. Mishra, “Efficient Trace Signal Selection for Post Sili-
con Validation and Debug,” in VLSI Design (VLSI Design), 2011 24th
International Conference on, pp. 352–357, IEEE, 2011.

[29] D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based Sig-
nal Selection for State Restoration in Silicon Debug,” in Computer-
Aided Design (ICCAD), 2011 IEEE/ACM International Conference on,
pp. 595–601, IEEE, 2011.

[30] A. Nahir, A. Ziv, R. Galivanche, A. Hu, M. Abramovici, A. Camilleri,
B. Bentley, H. Foster, V. Bertacco, and S. Kapoor, “Bridging Pre-silicon
Verification and Post-silicon Validation,” in Proceedings of the 47th De-
sign Automation Conference, pp. 94–95, ACM, 2010.

[31] H. F. Ko and N. Nicolici, “Combining Scan and Trace Buffers for En-
hancing Real-time Observability in Post-silicon Debugging,” in Euro-
pean Test Symposium, pp. 62–67, 2010.

76

[32] K. Basu, P. Mishra, and P. Patra, “Constrained Signal Selection for
Post-silicon Validation,” in High Level Design Validation and Test
Workshop (HLDVT), 2012 IEEE International, pp. 71–75, IEEE, 2012.

[33] K. Han, J.-S. Yang, and J. A. Abraham, “Dynamic Trace Signal Selec-
tion for Post-silicon Validation,” in VLSI Design and 2013 12th Inter-
national Conference on Embedded Systems (VLSID), 2013 26th Inter-
national Conference on, pp. 302–307, IEEE, 2013.

[34] K. Rahmani and P. Mishra, “Efficient Signal Selection Using Fine-
grained Combination of Scan and Trace Buffers,” in VLSI Design and
2013 12th International Conference on Embedded Systems (VLSID),
2013 26th International Conference on, pp. 308–313, IEEE, 2013.

[35] M. Li and A. Davoodi, “A Hybrid Approach for Fast and Accurate
Trace Signal Selection for Post-silicon Debug,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 33, no. 7,
pp. 1081–1094, 2014.

[36] A. DeOrio, J. Li, and V. Bertacco, “Bridging Pre-and Post-silicon
Debugging with BiPeD,” in Computer-Aided Design (ICCAD), 2012
IEEE/ACM International Conference on, pp. 95–100, IEEE, 2012.

[37] M. Li and A. Davoodi, “Multi-mode Trace Signal Selection for Post-
silicon Debug,” in Design Automation Conference (ASP-DAC), 2014
19th Asia and South Pacific, pp. 640–645, IEEE, 2014.

[38] S. Prabhakar and M. Hsiao, “Using Non-trivial Logic Implications for
Trace Buffer-based Silicon Debug,” in Asian Test Symposium, 2009.
ATS’09., pp. 131–136, IEEE, 2009.

[39] K. Zhao and J. Bian, “Pruning-based Trace Signal Selection Algorithm,”
in Proceedings of the 16th Asia and South Pacific Design Automation
Conference, pp. 639–644, IEEE Press, 2011.

[40] K. Rahmani, P. Mishra, and S. Ray, “Scalable Trace Signal Selection
Using Machine Learning,” in Computer Design (ICCD), 2013 IEEE 31st
International Conference on, pp. 384–389, IEEE, 2013.

[41] H. Shojaei and A. Davoodi, “Trace Signal Selection to Enhance Timing
and Logic Visibility in Post-silicon Validation,” in Proceedings of the In-
ternational Conference on Computer-Aided Design, pp. 168–172, IEEE
Press, 2010.

[42] N. Nicolici and H. F. Ko, “Design-for-debug for Post-silicon Validation:
Can High-level Descriptions Help?,” in High Level Design Validation and
Test Workshop, 2009. HLDVT 2009. IEEE International, pp. 172–175,
IEEE, 2009.

77

[43] K. Olukotun, M. Heinrich, and D. Ofelt, “Digital System Simulation:
Methodologies and Examples,” in Proceedings of the 35th annual Design
Automation Conference, pp. 658–663, ACM, 1998.

[44] C. R. Ho, M. Theobald, B. Batson, J. Grossman, S. C. Wang,
J. Gagliardo, M. M. Deneroff, R. O. Dror, and D. E. Shaw, “Post-silicon
Debug Using Formal Verification Waypoints,” in Design and Verification
Conf, 2009.

[45] D. Lin, T. Hong, Y. Li, F. Fallah, D. S. Gardner, N. Hakim, and S. Mitra,
“Overcoming Post-silicon Validation Challenges Through Quick Error
Detection (QED),” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2013, pp. 320–325, IEEE, 2013.

[46] D. Lin, T. Hong, Y. Li, S. Eswaran, S. Kumar, F. Fallah, N. Hakim, D. S.
Gardner, and S. Mitra, “Effective Post-silicon Validation of System-on-
Chips Using Quick Error Detection,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 33, no. 10,
pp. 1573–1590, 2014.

[47] D. Lin, T. Hong, F. Fallah, N. Hakim, and S. Mitra, “Quick Detection of
Difficult Bugs for Effective Post-silicon Validation,” in Design Automa-
tion Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 561–566,
IEEE, 2012.

[48] S.-B. Park, T. Hong, and S. Mitra, “Post-silicon Bug Localization
in Processors Using Instruction Footprint Recording and Analysis
(IFRA),” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 28, no. 10, pp. 1545–1558, 2009.

[49] S.-B. Park and S. Mitra, “IFRA: Post-silicon Bug Localization in Pro-
cessors,” in High Level Design Validation and Test Workshop, 2009.
HLDVT 2009. IEEE International, pp. 154–159, IEEE, 2009.

[50] K.-h. Chang, I. L. Markov, and V. Bertacco, “Automating Post-silicon
Debugging and Repair,” in Computer-Aided Design, 2007. ICCAD 2007.
IEEE/ACM International Conference on, pp. 91–98, IEEE, 2007.

[51] A. Krstic, L.-C. Wang, K.-T. Cheng, and T. Mak, “Diagnosis-based
Post-silicon Timing Validation Using Statistical Tools and Methodolo-
gies,” in International Test Conference, p. 339, IEEE, 2003.

[52] F. M. De Paula, A. J. Hu, and A. Nahir, “nuTAB-BackSpace: Rewrit-
ing to Normalize Non-determinism in Post-silicon Debug Traces,” in
Computer Aided Verification, pp. 513–531, Springer, 2012.

78

[53] F. M. De Paula, M. Gort, A. J. Hu, S. J. Wilton, and J. Yang,
“Backspace: Formal Analysis for Post-silicon Debug,” in Proceedings
of the 2008 International Conference on Formal Methods in Computer-
Aided Design, p. 5, IEEE Press, 2008.

[54] M. Gort, F. M. De Paula, J. J. Kuan, T. M. Aamodt, A. J. Hu,
S. J. Wilton, and J. Yang, “Formal Analysis-based Trace Computation
for Post-silicon Debug,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 20, no. 11, pp. 1997–2010, 2012.

[55] M. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Dig-
ital, Memory and Mixed-signal VLSI Circuits, vol. 17. Springer Science
& Business Media, 2000.

[56] X. Liu and Q. Xu, “On Reusing Test Access Mechanisms for Debug Data
Transfer in SoC Post-silicon Validation,” in Asian Test Symposium,
2008. ATS’08. 17th, pp. 303–308, IEEE, 2008.

[57] D. Josephson and B. Gottlieb, “The Crazy Mixed up World of Silicon
Debug,” in Custom Integrated Circuits Conference, pp. 665–670, 2004.

[58] H. F. Ko and N. Nicolici, “Functional Scan Chain Design at RTL for
Skewed-load Delay Fault Testing,” in Asian Test Symposium, pp. 454–
459, IEEE, 2004.

[59] G. J. Van Rootselaar and B. Vermeulen, “Silicon Debug: Scan Chains
Alone Are Not Enough,” in Test Conference, 1999. Proceedings. Inter-
national, pp. 892–902, IEEE, 1999.

[60] X. Liu and Q. Xu, “On Multiplexed Signal Tracing for Post-silicon Val-
idation,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 32, no. 5, pp. 748–759, 2013.

[61] E. Anis and N. Nicolici, “On Using Lossless Compression of Debug Data
in Embedded Logic Analysis,” in Test Conference, 2007. ITC 2007.
IEEE International, pp. 1–10, IEEE, 2007.

[62] K. Basu, P. Mishra, P. Patra, A. Nahir, and A. Adir, “Dynamic Selection
of Trace Signals for Post-silicon Debug,” in Microprocessor Test and
Verification (MTV), 2013 14th International Workshop on, pp. 62–67,
IEEE, 2013.

[63] X. Liu and Q. Xu, “On Signal Tracing for Debugging Speedpath-related
Electrical Errors in Post-silicon Validation,” in Test Symposium (ATS),
2010 19th IEEE Asian, pp. 243–248, IEEE, 2010.

79

[64] Y. Lee, T. Matsumoto, and M. Fujita, “On-chip Dynamic Signal Se-
quence Slicing for Efficient Post-silicon Debugging,” in Proceedings of the
16th Asia and South Pacific Design Automation Conference, pp. 719–
724, IEEE Press, 2011.

[65] B. Vermeulen, K. Goossens, R. van Steeden, and M. Bennebroek,
“Communication-centric SoC Debug Using Transactions,” in Test Sym-
posium, 2007. ETS’07. 12th IEEE European, pp. 69–76, IEEE, 2007.

[66] H. F. Ko, A. B. Kinsman, and N. Nicolici, “Design-for-debug Architec-
ture for Distributed Embedded Logic Analysis,” Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, vol. 19, no. 8, pp. 1380–
1393, 2011.

[67] R. Abdel-Khalek and V. Bertacco, “DiAMOND: Distributed Alteration
of Messages for On-chip Network Debug,” in Networks-on-Chip (NoCS),
2014 Eighth IEEE/ACM International Symposium on, pp. 127–134,
IEEE, 2014.

[68] E. Singerman, Y. Abarbanel, and S. Baartmans, “Transaction Based
Pre-to-post Silicon Validation,” in Proceedings of the 48th Design Au-
tomation Conference, pp. 564–568, ACM, 2011.

[69] K. Goossens, B. Vermeulen, R. Van Steeden, and M. Bennebroek,
“Transaction-based Communication-centric Debug,” in Networks-on-
Chip, 2007. NOCS 2007. First International Symposium on, pp. 95–106,
IEEE, 2007.

[70] H. Vranken, T. G. Garciá, S. Mauw, and L. Feijs, “IC Design Validation
Using Message Sequence Charts,” in Proceedings of the 26th Euromicro
Conference, 2000., vol. 1, pp. 122–127, IEEE, 2000.

[71] A. Bunker, G. Gopalakrishnan, and K. Slind, “Live Sequence Charts
Applied to Hardware Requirements Specification and Verification,” In-
ternational Journal on Software Tools for Technology Transfer, vol. 7,
no. 4, pp. 341–350, 2005.

[72] R. Kumar and E. G. Mercer, “Verifying Communication Protocols Us-
ing Live Sequence Chart Specifications,” Electronic Notes in Theoretical
Computer Science, vol. 250, no. 2, pp. 33–48, 2009.

[73] M. Barnum, L. Lambrecht, and T. Ozguner, “Method and Apparatus
for Guaranteeing Memory Bandwidth for Trace Data,” Feb. 3 2006. US
Patent App. 11/347,415.

[74] B. Mihajlović and Ž. Žilić, “Real-time Address Trace Compression for
Emulated and Real System-on-Chip Processor Core Debugging,” in Pro-
ceedings of the 21st edition of the Great lakes symposium on VLSI,
pp. 331–336, ACM, 2011.

80

[75] AMBA Documentation, ARM Holdings, 2011.

[76] H. Yi, S. Park, and S. Kundu, “On-chip Support for NoC-based SoC De-
bugging,” Circuits and Systems I: Regular Papers, IEEE Transactions
on, vol. 57, no. 7, pp. 1608–1617, 2010.

[77] S. Prabhakar and M. S. Hsiao, “Multiplexed Trace Signal Selection
Using Non-trivial Implication-based Correlation,” in Quality Electronic
Design (ISQED), 2010 11th International Symposium on, pp. 697–704,
IEEE, 2010.

[78] OpenSPARC T2 SoC Documentation, Oracle Corporation, 2007.

81

