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ABSTRACT

In this thesis, we evaluate content-based acoustic features for musical genre classi-
fication. Effectiveness of various acoustic features are compared using a k-nearest
neighbor (KNN) classifier. By utilizing the combinations of acoustic features, an
average classification accuracy of 89% for GTZAN database is achieved, which is
comparable to prior work. A statistical test, McNemar’s test, is applied to support
the idea that musical genre is intrinsically related to content-based acoustic fea-
tures. Especially for some genres, we are able to identify the particular associated
acoustic property. In addition, by comparing our KNN results to a psychoacous-
tic listening experiment, we associate various human perceptual dimensions with
low-level acoustic features.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, with the rapid development of the Internet, advancement in net-
work bandwidth and tremendous increase in personal computer storage, people
are gaining countless opportunities to enlarge their digital audio collections. Mu-
sic, which can be traced back to the stone age, is one of the most important cre-
ations by humans for entertainment. Nowadays, while people are finding their
music of interest to become more and more accessible, the Internet is glutted with
an overwhelming number of digital copies of music. Hence, the organization of
music pieces becomes crucial and a symbolic description of music is necessary.

Musical genres serve as a fundamental criterion for categorizing large digital
music databases. In fact, individuals almost always refer to genre label when they
describe their musical taste. Therefore, genre is an important metadata element for
the description of music content. Since 2002, with the aim of having a robust and
accurate autotagging system for electronic copies of music, music record retailers
and music researchers in the music information retrieval (MIR) community have
paid much more attention to music genre recognition (MGR).

As a matter of fact, genre labels are probably the most widely used descriptors
for music [1–3]. Under implicit agreement, we cluster and categorize the vast
universe of music into different musical genres such as classical, jazz, hip-hop,
rock, and country, etc. However, there are no strict definitions and boundaries for
musical genres, as they tend to be easily affected by historical, cultural, public
and marketing factors [2]. Most commonly, the distributor of the song or the artist
who is responsible for the song creation gets to assign the music to a genre.

Due to the ambiguous nature of musical genre, some [1] argue that genre is in-
trinsically ill-defined and arriving at a realistic and useful musical taxonomy can
be extremely difficult. The boundaries of musical genres are vague, and definition-
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s of musical genre labels are subject to social and historical influences. Though
no explicit definition of musical genre exists, the work on automatic genre classi-
fication still achieves promising results by employing different feature extraction
strategies and various types of classifiers. Most feature extraction frameworks
are based on psychoacoustic experiments; that is, genre taxonomy is dictated by
human perception of acoustic features such as melody, instrumentation, harmony
and rhythm, etc.

The concept of musical genre can be interpreted both intentionally and exten-
sionally [1]. By the intentional definition, the concept of genre is a generalization
agreed on by a group of people, which is similar to how we come up with a phrase
to necessarily and sufficiently define a level of abstraction. Hence, genre belongs
to a linguistic category in this regard and it is used to associate itself to music
titles: Yesterday by the Beatles is a Brit-pop title because it is by the Beatles, and
we all share cultural knowledge about this group, the 60s, etc. On the other hand,
musical genre can be extensional, which is a more analytical approach in which
a music track is described in terms of musical elements such as timbre, pitch,
tempo, energy distribution, rhythm, or other characteristics. Again, Yesterday by
the Beatles is a mellow pop song because it has a cheesy medium tempo melody,
string backup and it is sung with a melancholic voice.

The fundamental problem of categorizing music according to genre is that mu-
sic serves as a way for the artist to express his/her feelings about the world. Feel-
ing or emotion itself is complicated and hard to describe. Sometimes, we indeed
do have a clear definition of angry, happy, sad, and relaxed. However, most of the
time, people are sentimental and their feelings are complicated and tend to be a
mixture of those well-defined emotions. Music is an outcome of those feelings
and a means to an end for the creator to vent their emotional state. It is obvi-
ous that if description of one’s feeling suffers from ambiguity then this kind of
categorization of music genre surely endures ambiguity, originating in our dualist
view of the world. In other words, genre is intrinsically ill-defined and attempts at
defining genre precisely have a strong tendency to end up in circular, ungrounded
projections of fantasies [1]. According to a psychoacoustic listening experiment
by Seyerlehner et al. [4], not only are there huge variations between individuals
in differentiating genres, but also people tend to categorize an unfamiliar music
excerpt into folk or country due to vagueness of the categories. Moreover, they
find that the majority of the participants strongly agree on just one or two possible
genre assignments for most of the songs.
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With that being said, genre is intrinsically related to classification: it is useful
to assign a genre to a music excerpt, as it contains some musical features that are
recognized by humans and can be used to describe the similarity within a genre
and the difference across genres. This high level of abstraction of a descriptor for
a musical excerpt can be found in our natures and in our irrepressible tendency
to classify. Though some genres are ill-defined, some genres can be significantly
differentiated from others. There is strong consensus for genres like blues, coun-
try and classical as they are aggregates of individual perceptions of one particular
kind of music. The main contribution of this thesis is to unravel the intrinsic
relationships between different categories of music genre and content based psy-
choacoustic features.

This rest of this thesis is organized as follows:

• Chapter 2 provides an overview of the current state-of-art music information
retrial (MIR) system. In addition, the development of various techniques
and approaches for musical feature extraction for music genre classification
are discussed.

• Chapter 3 describes our method of musical feature extraction and compares
various classifiers. Furthermore, detailed experimental methods are elabo-
rated.

• Chapter 4 presents the numerical results obtained from the experiment con-
ducted in Chapter 3. The KNN classification rate for different choices of k
and confusion pattern are demonstrated.

• Chapter 5 discusses the results from Chapter 4 and demonstrates their im-
plications based on statistical significance analysis. In the meantime, the
intrinsic and extrinsic properties of each genre are explained. Moreover,
Chapter 5 addresses future applications and concerns.

• Chapter 6 summarizes the main idea of this thesis and reinstates the main
conclusion based on the experimental results.
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1.2 Thesis Statement

What defines a musical genre? Is genre mainly a term dictated by the user’s
experience and taste? Or is genre intrinsically related to human perception or
extrinsically associated with the acoustic features of the song clip?

In this thesis, we answer the above questions by performing a thorough eval-
uation of different acoustic feature selections. The relation between genres and
acoustical features is examined using a KNN classification framework. The ex-
perimental results show that genre is actually intrinsically related to content-based
acoustic features of various types. There are underlying psychoacoustic proper-
ties that are shared within one genre and they are quite distinctive from those of
other genres. Furthermore, we are able to link acoustic properties with human
perception of genres by analyzing a listening experiment.
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CHAPTER 2

BACKGROUND AND LITERATURE
REVIEW

2.1 Music Genre Classification

Music genre recognition (MGR) was introduced in the work by Tzanetakis and
Cook [5]. The increasing need to autotag music motivates the development of this
kind of work. As of 2007, nearly 70% of music autotagging consisted of genre
labels [6]. This topic is studied by many researchers, and various frameworks
for automatic genre recognition have been proposed. Following is a summary of
related work on feature extraction strategies and classifiers:

• Costa et al. [7] extract visual features from spectrograms of music excerpts.
Similar to Tzanetakis [5], who extract timbral texture features for classifi-
cation, they treat time-frequency representation as texture image. A recog-
nition rate of 67.2% is obtained by their proposed framework.

• A Gabor filtering and LPQ texture descriptors approach is utilized by Cos-
ta et al. [8] to perform automatic genre classification on a Latin Music
Database (LMD). 80% recognition rate is achieved by using a support vec-
tor machine (SVM) classifier.

• The texture features are based on Local Binary Pattern, a structural texture
operator that has been successful in recent image classification research.
Experiments are performed with two well-known datasets: the LMD, and
the ISMIR 2004 dataset [9]. The performance of their approach reaches
about 82.33%.

• Panagakis et al. [10] presented a novel framework that utilizes joint spare
low-rank classification for music genre classification. Their result is compa-
rable or slightly superior to state-of-the-art music genre classification mod-
els.
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• On-line Dictionary Learning model is proposed by Srinivas et al. [11], and
they achieve accuracy of 99.41% on LMD dataset which outperforms all
other existing work.

• In the work by Schindler and Rauber [12], the authors combine audio-visual
features for music genre classification. Results show that visual features can
provide a boost to non-timbral and rhythmic features.

• Lee et al. [13] build a music recommendation system based on users’ fa-
vorite songs. The genre is categorized based on usage history and a distance
metric learning algorithm is applied in order to reduce the dimensionality
of feature vector with a little performance degradation.

• In Lykartsis and Lerch [14], a beat histogram is constructed for rhythm-
based musical genre classification based on beat analysis [15]. Accuracy of
76.6% is obtained using proposed the approach.

• Burred and Lerch [16] construct a system in a hierarchical way such that the
feature selection and the classification are carried out systematically. They
achieve 94.59% for differentiating speech and background music.

• Pikrakis [17] proposes a deep-learning architecture which is capable of
modelling signatures that represent the rhythm of music recordings. The pa-
per provides supporting evidence that deep-learning networks can be adopt-
ed to discriminate between genres based on extracted rhythmic signatures.

• Peeters [18] and Papadapoulos [19] propose a probabilistic framework in
which the time of the beats and their associated positions inside a measure,
hence the downbeats, are considered as hidden states and are estimated si-
multaneously using signal observations.

• In Seyerlehner et al. [20], the authors use a set of block-level features for
three different tasks: genre classification, tag classification and music simi-
larity estimation. Accuracy of 85.49% is achieved on GTZAN dataset.

• Li et al. [21] propose a new feature extraction method for music genre
classification, DWCHs, which captures the local and global information of
music signals simultaneously by computing histograms on their Daubechies
wavelet coefficients. The result shows that the classification rate of given
framework for GTZAN dataset is 76.8%.
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These studies employed different features ranging from acoustic to visual ele-
ments. Various types of supervised and unsupervised learning classifiers are tested
based on all kinds of extracted features.

2.2 Musical Features

The concept of genre can be associated with various acoustic features [2, 22];
one generally attempts to include features from all possibly relevant musical cat-
egories for better classification rate. In traditional music theory, we have defined
various broad musical dimensions associated with different low-level features of
music [23]. In addition, these low-level features are the key elements in our high-
level perceptual space. According to McKay and Fujinaga [24], they accumulate
109 different features devised from a catalog of 160 features [25]. 109 differ-
ent features can be divided into 7 high-level perceptual spaces: instrumentation,
timbral texture, rhythm, dynamics, pitch statistics, melody and chord. Detailed
description of low-level features that are associated with music dynamics, timbre,
rhythm and pitch are presented as follows:

2.2.1 Dynamic Feature

The dynamics of a musical excerpt can be best characterized by a song-level fea-
ture such as the root-mean-square (RMS) of the music clip or the energy distri-
bution of the whole piece. Dynamics characterize the general shape and trend of
certain musical properties. Song dynamics serve as a high-level descriptor that
describes the global shape of the song rather than local spectral shape. RMS, s-
lope, attack, and low energy are the most widely used descriptors for representing
song dynamics.

RMS

RMS is calculated based on a texture window. It can be calculated as follows:

RMS =

√
∑

N
n M[n]2

N
(2.1)
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where M[n] is the discrete sampled signal in time domain and N is the total number
of samples. RMS is used to characterize the amplitude of the signal within a
texture window.

Slope

Slope provides the general trend and shape of the musical excerpt in time domain.

Attack

Attacks are associated with the onset detection curve as the mark the hit phase of
each onset. We retrieve the average of attack phase and attack magnitude for our
experiment.

Low-Energy

Low-energy feature: Low energy is the only feature that is based on the texture
window rather than the analysis window. Texture window provides information
about the whole clip while analysis window segments the music excerpt into a
number of frames. Low energy is defined as the percentage of analysis windows
that have less RMS energy than the average RMS energy across the texture win-
dow. As an example, vocal music with silences will have large low-energy value
while continuous strings will have small low-energy value [5].

2.2.2 Rhythm Feature

Rhythm of music is a well-studied topic. Formal researchers have achieved promis-
ing results by taking advantage of rhythmic features. Rhythmic content features
characterize the movement of music signals over time and contain such informa-
tion as the regularity of the rhythm, the beat, the tempo, and the time signature.
The feature set for representing rhythmic structure is based on detecting the most
salient periodicities of the signal [5].
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Tempo

Tempo feature is achieved by detecting periodicities from the onset detection
curve. Traditionally, the paradigm for tempo estimation is based on detecting pe-
riodicities, and choosing the maximum periodicity score for each frame separately
[26].

Fluctuation Peak

One way of estimating the rhythm is based on spectrogram computation trans-
formed by auditory modeling, followed by spectrum estimation in each band [27].
Fluctuation peak captures the maximum magnitude of spectrum estimation within
each band.

2.2.3 Timbral Texture Feature

Timbral texture feature describes the difference between consecutive frequency
spectrals of the song. Timbral texture feature originated from music-speech dis-
crimination [28], and speech recognition [29] as it is a powerful descriptor that
can help us to differentiate the mixture of a song within common rhythmic and
pitch patterns [30]. In order to extract the timbral texture feature, one applies
short time Fourier transform (STFT) to the song excerpt and calculates various
attributes within the spectral domain.

Spectral Flux

Spectral flux proposes to calculate the difference between spectral frames. It is de-
fined as the squared difference between the normalized magnitudes of successive
spectral distributions [5].

Ft =
N

∑
n=1

(Nt [n]−Nt−1[n])2 (2.2)

where Nt [n] and Nt−1[n] are the normalized magnitude of the Fourier transform
at the current frame t, and the previous frame t− 1, respectively. As such, it is a
measure of the change in spectral shape of consecutive frames.
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MFCCs

In the area of speech and music classifiers, one of the most commonly used de-
scriptors for timbre texture feature is mel-frequency cepstral coefficients (MFCC-
s) [31]. MFCCs preserve the stability of the signal by averaging the spectrogram
using a mel scale that is logarithmic at high frequencies. The signal becomes in-
variant to deformation. At the same time, temporal structures such as transients
and time-varying characteristics of the signal will be lost due to averaging the
spectrogram at a mel scale. In order to minimize the loss, a window size of 23
ms is introduced to prevent losing locally non-stationary signals. There are three
steps to calculate MFCCs for speech and music. The first step is to divide the
signal into frames. The second step involves taking the amplitude spectrum of the
signal. A short-time Fourier transform of signal x(t) is computed as follows:

xt,T (u) = x(u)ωT (u− t) (2.3)

x̃t,T (ω) =
∫

xt,T (u)e−iωudu (2.4)

where ωT denotes a window of length 23 ms and x̃t,T is the Fourier transform of
xt,T . MFCCs are cosine transforms of MFSCs, which average the spectrogram
along the frequency axis, giving

MT,x(t, j) =
1

2π

∫
|x̃t,T (ω)|2|ψ̃ j(ω)|2dω (2.5)

These intervals have a constant frequency bandwidth below 1000 Hz and a con-
stant octave bandwidth above 1000 Hz, where each ψ̃ j(ω) covers a mel-frequency
interval indexed by j. Then we take the log of MT,x(t, j) at each of the mel frequen-
cies. The last step is to take a cosine transform of log(MT,x(t, j)). The MFCCs
are the amplitudes of the resulting spectrum. Typically, 13 MFCC coefficients are
used to characterize the signal.

DMFCCs and DDMFCCs

The MFCC feature vector describes only the power spectral envelope of an analy-
sis window, but it seems like speech would also have information in the dynamics,
prompting one to ask: What are the trends of the MFCC coefficients over time?
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Delta-MFCCs (DMFCCs) calculates the trajectories based on the static MFCC:

dt =
∑

N
n=1 n(ct+n− ct−n)

2∑
N
n=1 n2

(2.6)

where dt is a delta coefficient, from frame t computed in terms of the static coef-
ficients ct+N to ct−N . Delta-delta (acceleration) coefficients are calculated in the
same way, but they are calculated from the deltas, not the static coefficients [31].

Zero Crossing Rate

Zero crossing rate represents the number of zero crossings of the time domain
signal. Hence, it can provide a reliable measure of the noisiness of the signal [32].

Spectral Rolloff

Spectral rolloff is another descriptor for the measurement of local change within
the frequency domain. It is defined as the frequency below Rt where 85% of the
magnitude distribution is concentrated [33].

Rt

∑
n=1

Mt [n] = 0.85∗
N

∑
n=1

Mt [n] (2.7)

Spectral Centroid

The spectral centroid is the barycentre point of the spectral distribution within a
frame [5].

SC =
∑n k ∗S[n]

∑n S[n]
(2.8)

where S is the magnitude spectrum of a frame. Spectral centroid delivers a fine
sense of the spectral shape.

Spectral Irregularity

The irregularity of a spectrum is the degree of variation of the successive peaks
of the spectrum. Spectral irregularity is defined as the sum of the squares of the
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difference in amplitude between adjoining frames [5].

Irr =
N

∑
n=1

(M[n]−M[n+1])2/
N

∑
n=1

M[n]2 (2.9)

Brightness

Spectral brightness is the amount of energy above the frequency of interest. This
term is intrinsically associated with loudness in our perceptual space. Hence,
brightness can differentiate sharpness from softness for the timbral structure of
the song.

Spectral Spread

Spectral spread computes the standard deviation of the data. Being the squared
deviation of the random variable from its mean value, the variance is always pos-
itive and is a measure of the dispersion or spread of the distribution. The square
root of the variance is called the standard deviation, and is more useful in describ-
ing the nature of the distribution since it has the same units as the random variable
[5].

Skewness Feature

Spectral skewness calculates the third-order statistical moments of the given spec-
trum. Skewness is an efficient descriptor for the shape of spectrum based on the
texture window [34].

Spectral Flux

Spectral flux is defined as the spectral correlation between adjacent windows [35].
It reflects the degree of change in the spectrum between consecutive texture win-
dows.
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Kurtosis

Spectral kurtosis calculates the fourth-order statistical moments of the given spec-
trum. Similar to skewness, kurtosis also measures the shape of spectrum based on
the texture window.

Flatness

Flatness indicates whether the distribution is smooth or spiky, and results from the
simple ratio between the geometric mean and the arithmetic mean [32]:

N
√

∏
N−1
n=0 x(m)

∑
N−1
n=0 x(n)

N

(2.10)

Roughness

Compared to spectral flatness, roughness provides the opposite information re-
garding the energy distribution for sequence of spectrum.

Entropy

Entropy computes the relative entropy of one frame spectrum with respect to other
frames. The Shannon entropy, used in information theory, is based on the follow-
ing equation [36]:

H(x) =−
n

∑
i=1

p(xi)logb p(xi) (2.11)

where b is the base of the logarithm.

2.2.4 Pitch

Pitch serves as a primary measure for harmonics and melody information about
musical signals. Using the pitch detection algorithm, we are able to identify the
dominant peaks of the autocorrelation function, calculated via the summation of
envelopes for each frequency band obtained by decomposing the signal. The en-
velopes are accumulated into pitch histograms, and the pitch content features are
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then extracted from the pitch histograms. The common low-level features asso-
ciated with pitch content features are: the amplitudes and periods of maximum
peaks in the histogram, pitch intervals between the two most prominent peaks and
the overall sums of the histograms [33].

Chromagram Peak

The spectrum is converted from the frequency domain to the pitch domain by
applying a log-frequency transformation. The distribution of the energy along
the pitches is called the chromagram [37]. The chromagram is then wrapped by
fusing the pitches belonging to same pitch classes. The wrapped chromagram
therefore shows a distribution of the energy with respect to the 12 possible pitch
classes [38]. Chromagram peak provides the magnitude of each tonality peak for
all twelve possible pitches.

Chromagram Centroid

The chromagram centroid is defined as the center of gravity of the magnitude
spectrum of the chromagram [5].

Key Clarity

Key information provides a broad estimation of tonal center positions and their
respective strengths. Key clarity indicates the key strength associated with the
best key(s), i.e., the peak ordinate(s) [32].

Key Mode

Key mode estimates the modality, i.e. major vs. minor, returned as a numerical
value between -1 and +1: the closer it is to +1, the more major the given excerpt
is predicted to be, the closer the value is to -1, the more minor the excerpt might
be [32].
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HCDF

The harmonic change detection function (HCDF) is the flux of the tonal centroid
[39]. Tonal centroid corresponds to a projection of the chords along circles of
fifths, of minor thirds, and of major thirds.
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CHAPTER 3

EXPERIMENTAL METHODS

3.1 Algorithms

There are three commonly used classifiers for the task of musical genre classi-
fication: support vector machine (SVM) [40], Gaussian mixture model (GMM)
[41], and K-nearest neighbor (KNN) [42]. Although SVM has proven to be the
most effective in music genre classification [43], it has extensive training time
with high computational cost. For the purpose of our experiment, in which we are
trying to determine the intrinsic properties of a genre instead of build up a novel
system for better classification rate, we restrained ourselves to time-efficient and
computationally cheap classifiers. GMM assumes the multidimensional Gaussian
distribution of the parameters [44] and estimates the parameters from training data
using Expectation Maximization (EM) algorithm [45]. The GMM parameters are
mean vectors, covariance matrices and mixture weights from all component den-
sities. Lastly, KNN classifier is an example of a nonparametric classifier where
the testing sample is labeled according to the distance measurement from its near-
est neighbors [42]. In other words, no explicit probability distribution function is
expressed for training model and it is approximated locally using the training set.

For the purpose of our experiment, we choose KNN classifier because it re-
quires relatively no training time and it is easy to compare the classification rate
across all different feature selections. From human perception perspective, we
tend to associate a new song with the known genre label, and KNN classifier is
suitable for this kind of assignment. In addition, compared to other classifiers,
KNN enables us to take account of all the low-level features vectors, while oth-
er classifiers such as GMM and SVM require us to do dimension reduction for a
large chunk of feature vectors, which could result in potential loss of information.
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3.2 Multidimensional Scaling

Multidimensional scaling (or MDS) is a set of mathematical operations that ex-
plores the hidden structure of the dataset [46]. In our experiment, multidimension-
al scaling is used to determine the theoretical meaning of the spatial representation
of different kinds of genre. We try to represent 10 different genre recognition s-
cores is based on the result of a human listening experiment [4] geometrically
by 5 dimensions, such that the interpoint distances correspond in some sense to
experimental dissimilarities between genres.

For example, given a confusion matrix D = [di j], where di j is the classification
score which shows the percentage of the ith genre being classified as the jth genre,
we can now fully characterize the coordinates of each genre in an n dimensional
space, where n is the number of different genres in the confusion matrix.

D :=


d1,1 d1,2 d1,3 . . . d1,n

d2,1 d2,2 d2,3 . . . d2,n

. . . . . . . . . . . . . . . . . . . . . . . .

dn,1 dn,2 dn,3 . . . dn,n


The goal of MDS is, given D, is to find n vectors d1, ...,dn ∈ℜN such that

‖xi− x j‖ ≈ di, j (3.1)

This can be formulated as a optimization problem,

min
x1,...xn

∑
i< j

(‖xi− x j‖−di, j)
2 (3.2)

We named xi as the semantic feature vector for the ith genre. In our work, we
map the coordinates of each genre into a 5-dimensional space with 75.5% energy
conserved according to eigenvalue decomposition [47]. In other words, instead of
taking x1, ...,xn, we only use x1, ...,x5, where xi is in the descending order associ-
ated with its eigenvalue.
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3.3 Experimental Setup

3.3.1 Training and Testing dataset

In our experiments, we used a well-known dataset: GTZAN, which consists of
10 genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and
rock), each with 100 music clips. All clips are 16-bit and are sampled at 22,050
Hz monotonically. Due to mechanical limitation and because the goal of this
experiment is to evaluate the relationship between content-based acoustic features
and musical genre labels, we only take 10 music clips of each genre. Hence, our
dataset consists of 100 song excerpts from 10 different genres. In each run, we
select one excerpt out of 100 as testing data and leave the remaining 99 as training
data.

3.3.2 Feature Extraction

We retrieve all the acoustic features provided in section 2.2 with MIR toolbox,
[32] shown in table 3.1. MIR toolbox is resourceful and powerful as it has numer-
ous built-in functions that enable us to obtain the low-level features conveniently.
For the purpose of our experiment, we only used 4 out of 7 categories based on
popularity of the feature usage in recent years for music genre taxonomy. The
music perceptual spaces we utilized are dynamics, timbral texture, rhythm and
pitch. Similar to Song et al. [48], we calculate the mean and standard deviation of
each low-level feature to form perceptual or acoustic feature vector.

Means and standard deviations of individual low-level features are stacked into a
column to represent the overall musical structure of each song excerpt. For exam-
ple, dynamic feature vector is column vector which stacks the mean and standard
deviation of RMS, slope, attack and low energy. In order to make sense of our
classification result, normalization of the feature vector is necessary, which en-
sures equal weight of each feature space. We normalize each feature vector on a
0 to 1 scale:

fnew =
fold− fmin

fmax− fmin
(3.3)
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Table 3.1: List of extracted low-level features and their corresponding perceptual
feature spaces

Perceptual Feature Low-level Features

Dynamic RMS
Slope
Attack

Low energy
Rhythm Tempo

Fluctuation peak
Timbre Spectrum centroid

Brightness
Spread

Skewness
Kurtosis
Rolloff95
Rolloff85

Spectral Entropy
Flatness

Roughness
Irregularity

Spectral flux
MFCC

DMFCC
DDMFCC

Pitch Chromagram peak
Chromagram centroid

Key clarity
Key mode

HCDF

where fold is the unscaled feature vector, fmax and fmin represent the maximum
and minimum element in that low-level feature vector space respectively, and fnew

is the normalized low-level feature vector after scaling. As a result, there are alto-
gether 4 acoustic/perceptual feature vectors being constructed: dynamic, rhythm,
timbre and pitch perceptual vector.

3.3.3 Classification

All possible combinations of perceptual vectors are tested on a KNN classifier
with k = 1,2,3,4,5,6,7. We use Euclidean distance as the metric for evaluating
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the similarity between testing and training dataset. Owing to the fact that there
is basically no training required for KNN classifier, we use leave-one-out cross
validation for classification. Results are presented in Chapter 4.

3.4 McNemar’s Test

In order to quantitatively evaluate and verify the correlation between content-
based acoustic feature and musical genre, a statistical test, McNemar’s test, is
employed for validation. The McNemar test is used to determine if there are d-
ifferences in a dichotomous dependent variable between two related groups [49].
It can be conceptualized as testing two different properties of a repeated measure
dichotomous variable. For instance, the test can be applied to table 3.2, which
tabulates the outcomes of two tests on a sample of n subjects.

Table 3.2: An example showing the number of testers that pass and fail the first
and second test

Test 2 pass Test 2 fail Row total
Test 1 pass a b a+b
Test 1 fail c d c+d

Column total a+c b+d n

The null hypothesis of marginal homogeneity states that the two marginal proba-
bilities for each outcome are the same [50]: i.e., pa + pb = pa + pc and pc + pd =

pb + pd . Thus the null and alternative hypotheses are

H0 : pb = pc (3.4)

H1 : pb 6= pc (3.5)

Here, pa etc., denote the theoretical probability of occurrences in cells with the
corresponding label. The McNemar test statistic is:

χ
2 =

(b− c)2

b+ c
(3.6)

Under the null hypothesis, with a sufficiently large number of discordants (cells
b and c), χ2 has a chi-squared distribution with 1 degree of freedom. If the χ2

result is significant, this provides sufficient evidence to reject the null hypothesis
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in favor of the alternative hypothesis that pb 6= pc, which would mean that the
marginal proportions are significantly different from each other.

In our case, we have a well-defined dependent variable that is dichotomous with
two mutually exclusive categories (i.e., dynamic feature is associated with jazz
and dynamic feature is not associated with jazz). The McNemar test is applied to
determine whether some particular acoustic features are relevant in defining one
particular genre.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Overall KNN Classification Result

All combinations for 4 acoustic feature vectors are tested. Hence, there is a total
of 15 different combinations, and we assign a feature selection number for each
combination. Table 4.1 indicates the features that have been utilized for a given
feature selection choice. The average classification rate over various choices of k
with different feature selection is shown in figure 4.1.

Table 4.1: List of acoustic features used and their corresponding feature selection
numbers

Feature Selection Perceptual Feature
1 Dynamic
2 Rhythm
3 Timbre
4 Pitch
5 Dynamic + Rhythm
6 Dynamic + Timbre
7 Dynamic + Pitch
8 Rhythm + Timbre
9 Rhythm + Pitch

10 Timbre + Pitch
11 Dynamic + Rhythm + Timbre
12 Dynamic + Rhythm + Pitch
13 Rhythm + Timbre + Pitch
14 Dynamic + Timbre + Pitch
15 Dynamic + Rhythm + Timbre + Pitch

Notice that with k = 2 and with all the acoustic features combined, we achieve
the highest recognition rate of 89%. Also, even with different selection of feature,
2NN classifier out performs others by considerable amount. Therefore, we choose
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Figure 4.1: Overall classification rate for the choice of k = 1,2,3,4,5,6,7

k = 2 for the later comparison of classification rate for a single genre across vari-
ous features and the mapping from acoustic feature to music genre. It is obvious
that as the number of features being included increases, so does the classification
rate, confirming the validity of our feature selection. One can easily see that the
timbre feature plays a major role in deciding the average classification rate across
all genres when only one acoustic feature is incorporated. On the other hand, we
aim to relate and evaluate various acoustic features for individual genres instead
of generalizing one or a few efficient acoustic features for all genres.

4.2 Pairwise Distance and Confusion Matrices

In order to find the correlation between each acoustic feature and the potential
corresponding music genre, we compute the pairwise distance between the testing
song and all the remaining songs of each feature selection. A confusion matrix is
attached for enhanced visualization of how diverse features could affect the genre
taxonomy. The results are shown in figures 4.2-4.16.

As we can see from figures 4.2, 4.3, 4.5 and 4.6, some songs from one particular
genre stand out easily by having a relatively large Euclidean distance from other
songs. For example, songs from classical and blues exhibit a high recognition
rate regardless of which acoustic feature is selected, while for other genres, the
classification rate is closely associated with the chosen acoustic feature.
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(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.2: Distance measure and confusion matrix for dynamic feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.3: Distance measure and confusion matrix for rhythm feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.4: Distance measure and confusion matrix for timbre feature
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(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.5: Distance measure and confusion matrix for pitch feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.6: Distance measure and confusion matrix for the combination of
dynamic and rhythm feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.7: Distance measure and confusion matrix for the combination of
dynamic and timbre feature
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(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.8: Distance measure and confusion matrix for the combination of
dynamic and pitch feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.9: Distance measure and confusion matrix for the combination of
rhythm and timbre feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.10: Distance measure and confusion matrix for the combination of
rhythm and pitch feature
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(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.11: Distance measure and confusion matrix for the combination of
timbre and pitch feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.12: Distance measure and confusion matrix for the combination of
dynamic, rhythm and timbre feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.13: Distance measure and confusion matrix for the combination of
dynamic, rhythm and pitch feature
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(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.14: Distance measure and confusion matrix for the combination of
rhythm, timbre and pitch feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.15: Distance measure and confusion matrix for the combination of
dynamic, timbre and pitch feature

(a) Pairwise distance for each song in
dataset

(b) Confusion matrix. Columns stand
for the ground truth label and rows
correspond to the predicted label.

Figure 4.16: Distance measure and confusion matrix for the combination of
dynamic, rhythm, timbre and pitch feature
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4.3 Classification Rate for Each Genre

In this section, in order to visualize the relationship between the selection of a-
coustic feature and individual genre more straightforwardly, we provide the recog-
nition rate of each genre with respect to varied chosen features. Table 4.2 and table
4.3 display the numerical results.

Table 4.2: Classification accuracy in % for each genre for varied chosen feature

Feature Selection Blues Classical Country Disco Hiphop
1 60 90 90 70 20
2 60 60 50 80 70
3 70 100 90 70 70
4 70 100 80 60 70
5 90 100 90 90 40
6 80 100 100 80 60
7 100 100 100 80 60
8 80 100 90 70 40
9 90 90 60 100 50

10 80 100 90 70 70
11 90 100 90 90 40
12 100 100 100 90 60
13 80 100 90 80 70
14 80 100 100 80 70
15 90 100 100 100 70

4.4 Semantic Features

In Seyerlehner et al. [4], a listening experiment is done for recording the recog-
nition score of genres by human listeners. A multidimensional scaling approach
is applied to the recognition score to represent genres with hidden perceptual sub-
spaces. In other words, we hope to characterize genres in terms of a weighted
combination of hidden perceptual subspaces. In order to associate hidden percep-
tual subspaces with content-based acoustic features, the multidimensional scaling
results from a listening experiment are shown in figure 4.17, 4.18, 4.19, 4.20, and
4.21.
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Figure 4.17: Multidimensional scaling results for genres, dimension 1 vs. 2,
dimension 1 vs. 3

Figure 4.18: Multidimensional scaling results for genres, dimension 1 vs. 4,
dimension 1 vs. 5

Figure 4.19: Multidimensional scaling results for genres, dimension 2 vs. 3,
dimension 2 vs. 4
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Figure 4.20: Multidimensional scaling results for genres, dimension 2 vs. 5,
dimension 3 vs. 4

Figure 4.21: Multidimensional scaling results for genres, dimension 3 vs. 5,
dimension 4 vs. 5
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Table 4.3: Classification accuracy in % for each genre for varied chosen feature

Feature Selection Jazz Metal Pop Reggae Rock
1 40 70 20 70 30
2 30 50 0 60 10
3 80 90 50 80 70
4 30 70 40 60 60
5 50 60 20 70 10
6 100 90 60 80 80
7 60 70 50 80 40
8 80 90 50 80 60
9 40 50 50 50 40

10 80 90 80 80 80
11 100 90 60 80 80
12 40 60 50 60 40
13 70 90 50 80 80
14 90 90 60 80 80
15 100 90 80 80 80

To associate each dimension with some given acoustic features, correlation be-
tween human perceptual space and acoustic feature is calculated. Correlation fac-
tor and associated P value are shown in tables 4.4 and 4.5.

Table 4.4: Correlation factor for perpetual dimension vs. acoustic feature
selection

Feature selection/Dimension 1 2 3 4 5
1 -0.1329 0.0478 0.0943 0.2341 -0.8314
2 0.7560 0.3220 0.1194 0.2389 0.4634
3 0.0661 0.6907 0.1422 0.3294 0.049
4 -0.0094 0.4137 0.7366 0.2195 0.0477

4.5 McNemar’s Test Result

Although McNemar’s test is performed on each pair of combinations chosen above,
we only present the tests that are statistically significant in table 4.6. The abbre-
viations for dynamic, rhythm, timbre and pitch are D, R, T and P respectively.
Among all the genres, we observe that for some genres, such as blues, classical,
disco and metal, regardless of which perceptual feature is selected for classifica-
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Table 4.5: P value for perpetual dimension vs. acoustic feature selection

Feature selection/Dimension 1 2 3 4 5
1 0.7143 0.1944 0.7956 0.5151 0.009
2 0.0118 0.3642 0.7424 0.5063 0.1773
3 0.8668 0.0270 0.6951 0.3527 0.8930
4 0.9794 0.2346 0.0127 0.5423 0.8959

tion, they are fairly recognizable. On the other hand, genres like jazz, pop and
rock are heavily influenced by the selection of perceptual vector.

Table 4.6: P value for varied feature selection

Genre Jazz Pop Rock Country Hiphop
Feature selection 1 D+R+T+P D+R+T+P D+R+T+P D+R+T+P D+R+T+P
Feature selection 2 D+R+P D+R D+R R D

P value 0.0156 0.0156 0.0078 0.0313 0.0313
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CHAPTER 5

DISCUSSION

5.1 Result Analysis

Firstly, a promising result of 89% recognition rate is obtained by combining all
low-level features with a 2NN classifier. Figure 4.1 confirms the validity of our
chosen content-based acoustic feature due to the fact that as the number of acous-
tic features being involved increases, so does the recognition rate. Also, notice
that by only utilizing one acoustic feature for genre taxonomy, the rhythm fea-
ture performs the worst while timbre works the best. This is interesting because
according to Perrott and Gjerdigen [51], humans can identify musical genre in
concurrence with the record companies 71.68% of the time (among a total of 10
genres), based on 300 ms of audio. This indicates that the musical information
used to help human perception is short segments rather than whole general mu-
sical structure. Our experimental results show otherwise: the dynamic feature is
used to characterize the general shape of the music, but it actually works better
than rhythm, which corresponds to temporal change within short segments, e.g.,
tempo and fluctuation.

Regarding individual genres, timbre feature serves as an efficient descriptor for
jazz, rock, pop and country, suggesting that these genres are intrinsically related
to a certain type of timbral texture. This is especially true for jazz; as shown in
table 4.2, by solely including timbre we achieve 80% classification rate. In other
words, jazz is a generalization term corresponding to some type of timbre, e.g.,
we define the mood anger based on certain facial expression and behavior. The
same reasoning may apply to rock and pop, but in this case, pop and rock are the
nicknames for different combinations of timbre and pitch. Statistical test verifies
the idea that jazz is closely related to timbre by showing the statistical significance
with a P value of 0.0156, which is less than 0.05. Similarly, the combination of
dynamic, timbre and pitch plays a crucial role for country genre classification.
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On the other hand, genres like blues, classical, disco, metal and reggae exhibit
high recognition rate regardless the feature selection. A possible explanation for
this is that genres such as classical contain perceptual features that are so distinc-
tive with respect to other genres that one can easily identify them.

Gouyon et al. [52] address the fact that humans tend to confuse classical music
with country and jazz. Our confusion pattern, figure 4.3, which only captures the
rhythm pattern, concurs with this. Also, it is clear that the confusion pattern shifts
across different choices of acoustic feature, as seen in figure 4.2, 4.3, 4.4 and 4.5.

Strong correlations between various human perceptual dimensions and acoustic
spaces are shown in table 4.4 and 4.5. Notice that the first dimension is closely
related to rhythmic features by having a correlation factor of 0.756. Similarly,
we can associate dimension 2 with timbre, dimension 3 with pitch and dimension
5 with dynamics. The P value analysis agrees with the observation by having P
less than 0.05 for all those acoustic features. Interestingly, dimension 4 is almost
equally weighted across all acoustic feature selections. In general, the one-to-one
correspondence of acoustic feature to perceptual space is found for dimension 1, 2,
3 and 5. These results provide the theoretical meaning of the spatial representation
of genres; that is, we are able to interpret the hidden structure of perceptual space
according to acoustic features.

Also, new grouping techniques of music genres are possible. Observe that there
is literally zero Euclidean distance between rock and blues in dimension 1, which
suggests that blues and rock have similar rhythm, and so do metal and hip-hop.
According to this grouping technique, we can cluster musical genres in terms of
acoustic features. For example, rock, reggae and disco are grouped together due
to similar pitch, blues and metal are grouped together owing to similar dynamics,
etc. This can lead to a hierarchy modeling of genres categorization.

5.2 Extension

The dataset should be extended from 100 songs to 1000 songs if there is no ma-
chine and time limitation. In order to identify the intrinsic attributes that are
related to music genres, supplemental feature need to be added, i.e., lyrics and
instrumental features. A hierarchy modeling of low-level features can be utilized
to enhance the classification rate. In addition, more types of classifiers could be
tested for comparison of different feature selections.
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CHAPTER 6

CONCLUSION

In this thesis, we provide a comparative study of various feature extraction sce-
narios and investigate the classification performance of those features based on
a k-nearest neighbor (KNN) classifier. By utilizing the combinations of acous-
tic features, an average classification accuracy of 89% for the GTZAN database
is achieved, which is comparable to the state-of-the-art. We can conclude that
content-based acoustic features are proven to be useful for automatic music genre
classification. Statistical methods were used to determine which features are sig-
nificant for a specific music genre.

Experimental results showed that music genre is indeed intrinsically related to
music attributes. For some genres, we are able to identify the particular associated
acoustic property. Though Talupur et al. [53] argued that different genres have
different classification criteria, our results demonstrate that using the combination
of all low-level features provides the optimal recognition rate. In addition, we
are able to associate various human perceptual dimensions with content-based
acoustic features.
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