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ABSTRACT

Wireless sensor networks (WSNs) should collect accurate measurements to reliably capture

the state of the environment that they monitor. However, measurement data collected from

one or more sensors may drift or become erroneous due to hardware failures or sensor degra-

dation. In WSNs with remote deployments, detecting those measurement errors through a

centralized reporting approach can result in a large number of message transmissions, which

in turn dramatically decreases the battery life of sensors in the network. In this thesis,

we address this issue through three main contributions. First, we propose a protocol in

which sensors detect errors in a peer-to-peer (P2P) fashion, and that extends the life of the

WSN by minimizing the number of messages transmitted. Second, we propose an effective

anomaly detection approach that has low memory and processing requirements, allowing for

easy deployment on low-cost sensor hardware. Third, we develop a trace-driven, discrete-

event simulator that allows us to evaluate the developed protocol and approach. In doing so,

we use three datasets from real WSN deployments, which include indoor air temperature,

sea surface water temperature and seismic wave amplitude sensors. Our results show that

our P2P protocol can accurately detect errors and simultaneously extend the effective WSN

lifetime dramatically compared to the centralized protocol.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSNs) are being increasingly deployed in a number of differ-

ent areas, most recently in scenarios involving the Internet of Things (IoT devices). In

remote monitoring applications, sensors measure temperature and humidity of forest envi-

ronments [3], animal habitats [4], crops [5], etc., and measure vibrations in volcanoes [6]

and in civil structures [7], such as bridges [8]. It is essential that those WSNs are designed

in a way that minimizes energy consumption of sensors, since the sensors are typically

battery-powered. Therefore, extensive research has been performed in designing protocols

that extend the lifetime of sensor networks [9].

Measurements from sensors in a WSN may become faulty or drift with time from their

true values because of natural degradation of hardware, hardware failures, or manufacturing

defects [10]. This can lead to poor measurement quality, which can in turn undermine the

monitoring benefits of installing the sensors. There is a need to develop an automated error

detection protocol, but the challenge is to minimize its overhead and impact on battery life

of individual sensors as well as the connectivity of the network.

Sensor measurement errors manifest themselves as anomalies, and these anomalies need

to be reported to the sink (i.e., base station of the sensor network) in a timely fashion, so

that the faulty sensors can be investigated. In a naive centralized protocol for validating

measurements [10] [11], every sensor periodically reports its measurements to the sink (e.g.,

via a spanning tree or a DAG topology). The sink then runs a centralized anomaly detec-

tion algorithm on these collected measurements, to detect anomalies. While this scheme is

attractive in its simplicity, it has two major drawbacks. First, sensors farthest from the sink

(by number of hops) may have to route their sensor data through many other sensors to

reach the sink. As message transmission consumes significantly more energy than other sen-
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sor functions [12], the number of message transmissions should be minimized when possible

to extend the sensor network’s life. Second, over a long timeframe, sensors closest to the

sink will have more data routed through them on behalf of other sensors farther from the

sink. As a result, those sensors closest to the sink will exhaust their battery power and die

before sensors farthest from the sink. This disconnects the network earlier, and results in far

away sensors needing to transmit at higher amplitudes to reach the sink, further depleting

their batteries. Unreachable sensors are effectively “dead” from the sink’s point of view.

In this thesis we adopt a peer-to-peer (P2P) approach for error detection. Such an ap-

proach drains the power of sensors in the network more equitably. As a result, sensors closest

to the sink can last longer in the P2P approach than in the centralized approach. That al-

lows sensors farther from the sink to communicate with the sink for a longer time than

possible in the centralized approach. While the usefulness of such a distributed protocol was

acknowledged in [6] (in the context of seismic activity monitoring in volcanoes), the authors

did not propose an energy-efficient solution.

To the best of our knowledge, ours is the first measurement error detection protocol for

WSNs that minimizes the energy cost of transmitting the additional messages required to

report measurement errors. The protocol is distributed, and is designed to be widely applica-

ble in the context of battery-constrained sensor monitoring, for environments including (but

not limited to) indoor spaces, forests, agricultural soil, oceans, volcanoes, distant planets,

etc.

Although the P2P protocol reduces the number of message transmissions needed to capture

a sensor that is in error, it shifts the onus of anomaly detection from the sink onto the

sensors themselves. Therefore, the CPU consumption on sensors increases, and this has an

impact on sensor battery life. However, we show that increasing computation costs while

decreasing communication costs leads to a net benefit in extending the life of the WSN

because communication drains sensor battery faster than computation.

We make three main contributions in designing an energy-efficient protocol to validate

sensor measurements. First, we design a P2P error detection protocol that is optimal in

that it minimizes message transmissions, thereby extending sensor battery life. Second, we

provide a theoretically supported error detection mechanism that has properties required by

2



the protocol in order to minimize message transmissions. Finally, we evaluate our protocol

using a custom-built simulator that uses data traces from two real WSN deployments, as well

as real topologies. Our results show that the P2P approach dramatically extends network

lifetime.

The thesis is organized as follows. The assumptions within which the protocol is energy-

optimal are stated in Chapter 2. The datasets we use to motivate and evaluate our approach

are described in Chapter 3. The protocol is described and analyzed in Chapter 4. A val-

idation mechanism to support the protocol is presented in Chapter 5. The results of the

evaluation of our protocol on the datasets are presented in Chapter 6. Related work is

discussed in Chapter 7, and we conclude in Chapter 8.
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CHAPTER 2

PRELIMINARIES

In this chapter, we describe our assumptions for the model within which our error detection

protocol is energy-optimal with regard to minimizing message transmissions.

2.1 System Model

A WSN comprises a multitude of sensors that use wireless radio communications to transmit,

receive, and forward measurements to a base station or sink. Depending on the application,

the measurements may be of temperature or humidity of environments, seismic vibrations,

etc. Our protocol was designed to be broadly applicable to a range of WSN applications,

and is thus agnostic to the application or physical quantities being measured by the sen-

sors in the network. We do, however, require that every sensor have at least two other

neighboring sensors that can be used for voting on whether that sensor’s measurements are

anomalous. The WSN may comprise heterogeneous and multimodal sensors that measure

different physical quantities, such as temperature and pressure.

In this thesis, we design the error detection approach for a WSN model in which each sensor

has a finite, exhaustible, and non-renewable power supply. That is the case for sensors that

rely solely on batteries and do not have access to external power sources (e.g., solar power,

or the power grid). Each sensor communicates wirelessly. There are many different wireless

communication technologies that a sensor could employ; laser, infrared, and radio frequency

(RF) are the most common. We chose to focus on an RF-based system with omnidirectional

antennae, which implies that all communication is broadcast to sensors within wireless range.

Upon system deployment, there are a multitude of sensors alive in the WSN. The sensors

sample and report measurements at discrete time intervals ∆t, whose value is set by the

4



network administrator depending on the application (e.g., ∆t = 15 s). Between consecutive

reports, sensors can go into a low-powered state to reduce battery consumption (see [13]).

2.2 Failure Model

In our model, a sensor is faulty if it reports measurements that statistically deviate sig-

nificantly from past measurements, given the same environmental conditions. We refer to

measurements that are not erroneous as “proper.” We assume sensors will not intentionally

act in a malicious manner, and that Byzantine faults do not occur.

We do not assume a fail-stop model. In the event of a transient error, the network

administrator may allow the sensor to continue reporting measurements to the sink. In the

event of a persistent error, the sensor may be forced by the network administrator to fall

back to a “routing-only mode,” in which it serves as a routing node in a multi-hop network,

but does not generate measurement packets itself.

We say that sensors in our model are alive until their batteries are depleted, in which case

they are dead. Our P2P protocol operates at the application level of the networking stack,

and can run on top of lower-level routing protocols such as SPMS [14] and MBCR [15], or

gossip style failure detection protocols such as [16] to detect node failures that occur before

battery depletion. Our protocol may be able to run along with the methods in [17], for

robustness to message drops or ordering issues, but that is not the focus of this thesis.

2.3 Protocol Requirement

The WSN network administrator requires erroneous measurements to be reported immedi-

ately after detection. Since the detection is performed at the sink in the centralized protocol,

the sensors must synchronously report measurements periodically (at every discrete time in-

terval) to the sink for real-time error detection. In the P2P approach, however, sensors

exchange readings among themselves synchronously for error detection, but messages are

reported to the sink asynchronously, only when an error is detected. In addition, the sensors
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in the P2P approach could report their measurements to the sink in large batches if the net-

work administrator needs to keep a record of all measurements at the sink. Such batching

prolongs the overall lifetime of the network [18].

The error may be due to a fault or a legitimate rare event in the environment being

monitored (such as an earthquake). We believe both events are of interest to the network

administrator, and show in Section 5.7 that they can be easily differentiated using appropri-

ate detection thresholds. The Hidden Markov Model-driven approach presented in [19] may

also be applicable in making that differentiation.

2.4 Evaluation Metrics

Sensors with finite, nonrenewable energy sources will inevitably expend all of their energy

and cease to report measurements, so it is important to design protocols that extend the

lifetime of the WSN. At start-up, all sensors are alive with full battery power, and as time

progresses their battery power gets depleted. The rate at which that depletion happens

depends mostly on how much radio and CPU are used by the sensor.

We quantify the lifetime of the entire WSN by defining two metrics from different per-

spectives:

Longevity quantifies the WSN’s lifetime from each sensor’s perspective. We define

longevity(λ) as the time it takes for λ sensors to die because of battery depletion.

Reachability quantifies the WSN’s lifetime from the sink’s perspective. We define

reachability(ω) as the time it takes before ω sensors lose end-to-end connectivity with the

sink (or become unreachable).

Together, longevity and reachability quantify the survivability of the WSN. We say that

the validation protocol is energy-efficient if it extends the survivability of the WSN.

In examining the shortcomings of the centralized validation approach, one can see that the

survivability of the WSN is constrained by the time it takes for sensors closest to the sink to

expend their energy, and the repercussions that has on the reachability of sensors farthest

from the sink. Similarly, survivability is constrained in the P2P validation approach, where

CPU consumption increases on the sensors, affecting longevity. Because of that trade-off, it
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is not immediately clear that the P2P approach is more beneficial.
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CHAPTER 3

POTENTIAL APPLICATIONS

In this chapter, we use three independent datasets to motivate the applications of our dis-

tributed validation protocol. The datasets illustrate the kinds of anomalies seen in measure-

ments taken from sensors measuring air temperature of buildings, water temperature of seas

and seismic waves on the Earth’s surface.

We use these datasets to evaluate our approach, and refer to them in the thesis by the

shorthand given in the parenthesis.

3.1 Indoor Air Temperature of an Office (Berkeley)

This is a dataset of temperature measurements from 54 Mica2Dot sensors with weather

boards deployed at the Intel Berkeley Research Lab [2], in the US. The dataset in its entirety

is plotted as a heatmap in Fig. 3.1. The temperatures are nearly all below 30 ◦C, which is

normal for an indoor environment. However, it can be clearly seen that sensor 14 (in the

14th row) has reported temperatures of over 120 ◦C between 2 and 9 March 2004. The sensor

readings proceed to deteriorate and ultimately all become anomalous. These anomalies were

present in the dataset despite averaging of measurements in one-hour periods, and are clearly

indicative of errors, which are most likely due to battery drain.

3.2 Sea Surface Temperatures (TAO)

This dataset was obtained from the Tropical Atmosphere Ocean Project (TAO) by the Pacific

Marine Environmental Laboratory (PMEL), and supported by the US National Oceanic and

Atmospheric Administration. We extract-time aligned data from 8 moorings located in the
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Figure 3.1: Sample of temperature data from Intel Berkeley Research. The white spots are
anomalous measurements.
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Figure 3.2: Sample of sea surface temperature data from the Tropical Atmosphere Ocean
Project by the Pacific Environmental Laboratory. The white spot in Sensor 2 is an
anomaly.
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Figure 3.3: TAO Dataset: linear relationships and closeness in measurements values as a
function of physical distance.

Pacific Ocean on the equator (0◦N) at 95◦W, 110◦W, 125◦W, 140◦W, 155◦W, 170◦W, and

165◦E. Several sensors are located on the moorings, as described in [20], and we analyze the

sea water temperature data measured by the thermistors at 1 to 1.5 m below the surface.

The data for all 8 sensors was available between 2 Aug 2005 and 16 Jan 2006, and is

illustrated in Fig. 3.2. The anomaly in the dataset is the obvious white mark for Sensor 2.

The reason for the anomaly was not described by the providers of the dataset, and we assume

that the sensor malfunctioned in those time periods. Note that water temperatures can go

below 0 ◦C, but that only happens near the North and South poles, and the temperature

never goes below −2 ◦C. Therefore, the anomalies in this particular dataset could be detected

by trivial thresholds set with that prior knowledge.

Figure 3.3 shows how linearly related the ocean temperatures seem to be over a five hour

period. There are 30 measurements in the plot and it can be seen that the magnitudes of the

temperatures bear some relationship to the physical distance between the sensors. Sensor

sst0n125w measures temperatures in the range of 24 ◦C. Among the sensors plotted, Sensor
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sst0n140w is the nearest to sst0n125w in distance (it is 15 degrees west of sst0n125w, as

measured by longitudinal geodesic distance). It can be seen that the measurements taken by

sst0n140w are nearest in magnitude to sst0n125w. The next sensor west of sst0n140w on

the equator is sst0n155w, and its magnitude is the next closest to sst0n125w. That trend

continues on till sst0n165e, which is farthest (both in geodesic distance and measurement

magnitude) to sst0n125w.

The highest resolution data obtained from the sensors was a 10 minute average reading.

That data was stored internally in the mooring, and acquired from the memory later when

recovering the mooring. Daily averages were transmitted to satellites for what the PMEL

refers to as real-time monitoring. We do not know why the more fine-grained information

is not transmitted, but we assume it is because of the sensors are battery-powered and the

energy cost of transmission is high.

Since the data is monitored once a day, the more fine-grained weather changes cannot be

monitored. If anomalous readings were to be recorded, they would not be discovered until

the end of the 24 hour cycle (assuming they significantly alter the daily mean). For example,

if changes in sea temperature were important to monitor to identify potential cyclones, the

necessary granularity would be missing in this data. The TAO project was set up to study

the El Nino Southern Oscillations, which can lead to severe cyclones.

In order to capture and report the fine-grained changes in measurements, our energy-

efficient P2P validation protocol can be applied in a way that minimizes the transmission

cost for the sensors. The protocol can be used to monitor and report anomalies in more fine-

grained temporal resolution so that the appropriate actions can be taken (raise an alarm

for a storm, or disregard the reading as unreliable). The non-anomalous readings could

continue to be recorded once a day, or on recovering the mooring, and are not as important

to transmit since they do not contain information that needs to be acted upon immediately.

In addition, more spatially fine-grained data can be obtained by installing more moorings in

the area, forming a more dense sensor network.
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Figure 3.4: Sample of the seismic waveform data in the GeoNet National Seismograph
Network in New Zealand. Note that the seismic amplitude has no unit specified since the
data is uncalibrated.

3.3 Seismic Wave Measurement Data (NZ)

This dataset was obtained from the GeoNet National Seismograph Network in New Zealand [1].

Broadband seismic data was obtained from stations evenly distributed throughout the coun-

try.

This dataset is the most interesting of the three that we study in this thesis. That is

because the anomalies in this dataset not only correspond to sensor failures, but also are

caused by extreme events (an earthquake).

The seismic waveform data we extracted is from 41 stations in the seismograph network,

for the 24hr period between 12:00hrs on 3 January and 12:00hrs on 4 January 2016. The

sampling rate is 100 samples per second. We take the average of each second and detect

anomalies in those averages. As a result, we do not perform anomaly detection at the same

rate at which the data is sampled, but at a much lower rate. The lower rate at which

we perform anomaly detection is sufficiently high to capture anomalies, and sufficiently
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low to ensure that anomalies are reported in a timely manner. The lower rate also helps

dramatically minimize computation and network usage related costs. The averaged data is

shown as a heat map in Fig. 3.4.

The seismic amplitude has no unit specified since the data is uncalibrated. The providers

of the data informed us that calibrating the data is a complex procedure, and we avoided

the need for that procedure by normalizing the data in our models so that the normalized

values are inherently unitless.

The large white gap for Sensor 7 was due to a failure. That anomaly is illustrated along

with another anomaly with Sensor 10 in time series plots in Fig 3.5.

There were other, less noticeable, white spots (most noticeable in Sensor 1, at high zoom)

at 00:08 hrs on 4 January, and they coincided with a strong earthquake that had occurred at

the same time (with a magnitude of 5.0 on the Richter scale). Based on separate earthquake

data provided by GeoNet, we found the ground truth on the earthquake recorded at 00:08

hrs on 4 January. The details of the earthquake are available at http://www.geonet.org.

nz/quakes/region/newzealand/2016p008122.

The impact of the earthquake on the seismic waveforms for three seismic stations (closest

to the earthquake epicenter) is illustrated in Fig 3.6. The spike due to the earthquake is

noticeable in the measurements taken by all the stations in the seismograph network, but to

varying degrees. For example, the spike due to the earthquake is less prominent for Sensors

7 and 10, but is still visible in Fig 3.5.

13



20000

15000

10000

5000

0

5000

10000

S
e
is

m
ic

 A
m

p
lit

u
d
e

Sensor 10

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2

S
e
is

m
ic

 A
m

p
lit

u
d
e

1e7

Sensor 7

14:00
01/03

17:00
01/03

20:00
01/03

23:00
01/03

02:00
01/04

05:00
01/04

08:00
01/04

11:00
01/04

Time/Date in January 2016

10000

5000

0

5000

10000

S
e
is

m
ic

 A
m

p
lit

u
d
e

Sensor 7 Zoomed-In

Figure 3.5: NZ Dataset: Anomalies observed in the measurements taken by Sensors 7 and
10.
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Figure 3.6: NZ Dataset: Earthquake observed in the measurements taken by three sensors.
It is manifested as a spike in the waveform.
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CHAPTER 4

P2P ERROR DETECTION PROTOCOL

We propose a P2P sensor measurement error detection protocol as an alternative to the

centralized protocol described in Chapter 1, which we use as a comparison baseline. In

this section, we describe that protocol and show that it minimizes the number of message

transmissions within the assumptions stated in Chapter 2. In that sense, it is energy-optimal.

4.1 Protocol Description

The protocol comprises three stages: reference sensor identification, telemetry/detection, and

response. In the first stage, each sensor identifies neighboring sensors whose measurements

are most similar to its own, and marks those sensors as reference sensors. The reference

sensors are used in the second stage of the protocol, which combines telemetry with error

detection and fault reporting. In the third stage, the sink identifies the faulty sensor from

fault reports, and responds to the reports.

The main algorithm running on each sensor, which encompasses all three stages, is de-

scribed in Fig. 4.1. Note that Stage 2 cannot be started until Stage 1 is completed. Also,

note that Stage 3 happens at the sink, and is only reflected in the sensor behavior in lines

17–18 of the algorithm in Fig. 4.1. Stage 3 happens after a fault has been reported in Stage

2, and if a sensor has been commanded to operate in a forwarding-only mode, the sensor

remains in that mode, effectively exiting from Stage 2.

Each sensor in the WSN operates independently and its stage does not need to be in sync

with other sensors’ stages. For example, sensor S(1) might have just joined the WSN and be

in Stage 1, while sensor S(2) is in Stage 3.

In this Stages 1 and 2, each sensor broadcasts its measurements to its immediate neighbors
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using its omnidirectional antenna at all discrete time steps given by the sampling interval.

Figure 4.1: P2P protocol at each sensor

1: stage1 complete ← False
2: candidates ← empty 1D array(size M)
3: reference sensors ← empty 1D array(size R)
4: candidate measurements ← empty 2D array(size M,size T)
5: in forwarding only mode ← False
6: while True do
7: neighbor messages ← get messages from buffer()
8: for message in neighbor messages do
9: if message.id = sink.id and message.command = forwarding only then

10: in forwarding only mode ← True
11: else if message.destination id = sink id then
12: forward message(message)
13: else if message.command = routing details then
14: update routing details(message)
15: end if
16: end for
17: if in forwarding only mode then
18: continue
19: end if
20: if not stage1 complete then
21: complete stage1(neighbor messages)
22: stage1 complete ← True
23: else
24: complete stage2(neighbor messages)
25: end if
26: sleep(sampling interval)
27: end while

4.1.1 Stage 1

Stage 1 is illustrated at a high level in Fig. 4.2 and inherits the global variables defined in

Fig. 4.1. Let sensor S(1) be within range of N sensors. In Stage 1, S(1) randomly selects up

to M candidate sensors from those N sensors, as shown in line 1 of Fig. 4.2. S(1) then stores

T measurements that have been broadcast by each of those M sensors, as shown in in line

5 of Fig. 4.2. The store function overwrites the oldest measurement in memory if T values

are already stored. Thus, the memory requirement for the sensors is O(MT ), where M and
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T are fixed.

After S(1) has received T measurements for a candidate sensor, it determine its similarity

with that candidate sensor using the function get similarity with self() (line 7 of Fig. 4.2).

That function uses a similarity metric, for which we present a detailed example in Chapter 5.

S(1) then chooses the top R most similar sensors to be its reference sensors (R ≤M ≤ N),

as shown in line 8 of Fig. 4.2). Stage 1 is completed once the reference sensors have been

determined.

The parameters M , R, and T can be set by the WSN administrator during installation

as needed (for example, M = 10, R = 5, and T = 30). N is a feature of the physical sensor

layout, and is not as flexible as the other parameters. Note that S(2) may be a reference

sensor for S(1), but the reverse relationship may not hold, as there may be R sensors within

S(2)’s range that are more similar to S(2) than S(1) is to S(2).

Figure 4.2: P2P protocol for Stage 1 (complete stage1) at each sensor

1: broadcast current reading to neighbors()
2: candidates ← randomly select M sensors(neighbor messages)
3: for i = 1 to M do
4: m ← get measurement from messages(candidates[i],neighbor messages)
5: candidate measurements[i].store(m)
6: if count(candidate measurements[i]) = T then
7: similarity ← get similarity with self(candidate measurements[i])
8: reference sensors.insert at sorted position(candidates[i],similarity)
9: end if

10: end for

Note that we have an extension to the P2P protocol, in which Stage 1 is repeated pe-

riodically to accommodate changes in the network (discussed in Section 4.4). Thus, the

neighbors are not preconfigured in each sensor, but determined from the messages received

from broadcasts (as shown in line 1 of Fig. 4.2).

4.1.2 Stage 2

Stage 2 is described at a high level in Fig. 4.3. In Stage 2, at every time period, S(1) examines

the new measurement received from each of its R reference sensors. S(1) uses the T past
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measurements to model the behavior of each of its reference sensors, using an approach

detailed in Chapter 5. If a sensor measurement from one of the reference sensors is found

to be anomalous as per that model (line 5 of Fig. 4.3), S(1) marks its own measurement as

anomalous. If S(1)’s measurement is found to be anomalous with respect to the majority of its

R reference sensors’ measurements, S(1) declares its own measurement as erroneous. S(1) then

immediately reports itself to the sink as faulty along with the erroneous measurement. If S(1)

has only two reference sensors, it reports the fault only if its measurement is anomalous with

respect to the measurements of both those reference sensors. The majority vote increases the

confidence in a fault report, and is a measure against false positives. A scenario is possible

in practice, although unlikely, wherein the majority of reference sensors are faulty, and the

sensor incorrectly marks itself as being faulty, following the majority. To enable investigation

in that scenario, when a sensor reports itself as faulty, it includes in that message a list of

all reference sensors that it used to find itself faulty (suspecting sensors). That allows a

network administrator to investigate those suspecting sensors (line 10 of Fig. 4.3).

Figure 4.3: P2P protocol for Stage 2 (complete stage2) at each sensor

1: broadcast current reading to neighbors()
2: suspecting sensors ← empty queue()
3: for reference sensor in reference sensors do
4: r ← get measurement from messages(reference sensor,neighbor messages)
5: if is anomalous(r,candidate measurements) then
6: suspecting sensors.enqueue(reference sensor)
7: end if
8: end for
9: if count(suspecting sensors) > count(reference sensors)/2 then

10: report fault to sink(current measurement,suspecting sensors)
11: end if

4.1.3 Stage 3

Stage 3 happens at the sink after a sensor has asynchronously reported a fault in Stage

2. In this stage, the sink responds to the fault report by taking one of three decisions: 1)

commanding that sensor to serve purely as a forwarding node in a multi-hop network, 2)
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ignoring the error, assuming it will be transient, or 3) treating the error as an indication

of an event of interest (e.g., earthquake or cyclone), and taking appropriate steps to alert

stakeholders (administrators, government agencies, the public, etc.). We illustrate the first

response in Fig. 4.4. The other two responses may not be automated, so we do not illustrate

them.

When a sensor receives the forwdaring only message from the sink (line 9 of Fig. 4.1), it

remains in forwarding mode and does not run Stages 1 or 2 (line 17–18 of Fig. 4.1).

Figure 4.4: P2P Protocol for Stage 3 at sink

1: sensor messages ← get messages from buffer()
2: for message in sensor messages do
3: if message.command = report fault then
4: update sensor fault stats(message)
5: if is persistent fault(message) then
6: send sensor command(message.sender id,forwarding only)
7: end if
8: end if
9: end for

4.2 Required Properties of the Anomaly Detection Approach and

Similarity Metric

The similarity metric, which is used to find reference sensors in get similarity with self()

(line 7 of Fig. 4.2), and the anomaly detection approach (used in is anomalous() in line 5

of Fig. 4.3) are key to ensuring that the P2P protocol minimizes error report transmissions.

Consider three sensors, S(1), S(2), and S(3), each of which is a reference sensor for the other

two. Let their readings at time t be S
(1)
t , S

(2)
t , and S

(3)
t , respectively. In order to minimize

error report transmissions, the P2P protocol may use any anomaly detection approach and

similarity metric that have the following two properties:

Property 1 (Symmetry): The probability that S(2) finds S
(1)
t to be anomalous is equal

to the probability that S(1) will simultaneously find S
(2)
t to be anomalous.

Property 2 (Greater similarity implies greater sensitivity to anomalies): Assume that
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the similarity between S(1) and S(2) is greater than the similarity between S(1) and S(3).

Then, the probability that S(2) will mark S
(1)
t as anomalous is greater than the probability

that S(3) will mark S
(1)
t as anomalous, because S(2) was more similar to S(1).

We prove energy-optimality assuming the above properties in Section 4.5, and present an

anomaly detection approach and similarity metric that have both properties in Chapter 5.

4.3 Memory Requirement

In all stages, each sensor stores T measurements broadcast by each of the M candidate sen-

sors. At each time period, a new measurement is stored and oldest of the T measurements is

discarded, so that the memory requirement is bounded to MT floating point measurements.

As a result, the memory requirement is O(MT ) = O(1), since M and T are fixed for a given

WSN. A typical experiment may have R = 3, M = 10, T = 300, and N = 200. Thus, the

memory requirement is well within low-cost sensor hardware capabilities.

4.4 Handling Changes in the Network

The WSN may change over time because of churn (in mobile settings) or changes in the

environment being monitored (resulting in a need for an updated model of sensor measure-

ment behavior). To account for those changes, the latest T measurements are refreshed after

a new set of M measurements (from the M candidate sensors) are received at every time

interval. Stage 1 of the protocol may be repeated, and a new set of R reference sensors may

be selected if the similarity rankings of the candidate sensors changed.

Instead of randomly selecting a new set of M candidates, Stage 1 as given in Fig.4.3 can be

modified as follows. The Q least similar sensors are occasionally removed from the candidate

sensor list and replaced with Q other randomly chosen sensors from the N −M neighbors,

where Q ≤M − R. This allows those Q other sensors to be given a chance to be chosen as

reference sensors. All that is implemented in place of line 1 of Fig.4.3. The remaining lines

of Fig.4.3 remain the same.
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In order to accurately realize the energy-efficient protocol, it is necessary for the reference

sensors to represent the most similar sensors within a given sensor’s range.

4.5 Proof of Energy-Optimality

Many strategies for energy-optimized communication have been proposed that highlight the

importance of minimizing the number and length of messages to extend the lifetime of the

network (as surveyed in [9]). The advantage of our protocol is that a single message sent by

the erroneous sensor (solid red arrows in Fig. 4.5) is sufficient to correctly report an error.

Therefore, our approach is energy-optimal in that it minimizes the number of messages

required to report the error to the sink.

S(3) S(2)

S(4)

S(1)

Sink

S(6)

S(7)

S(8)

S(5)
X

Figure 4.5: WSN showing the routing path of the optimal message in our protocol that
reports the erroneous measurement (solid red arrow), unnecessary messages that report
anomalous measurements (dashed red arrows), and messages containing measurements
(dotted blue arrows). Sensor S(1) is faulty.

Figure 4.5 illustrates the various relationships among sensors in the protocol. In that illus-

tration, sensor S(1) is in error. The bidirectional blue dotted arrows show mutual reference

sensor relationships between S(1) and S(2), S(3), and S(4). S(1) uses S(5) as a reference sensor,

but the reverse relationship does not hold. S(1) and S(7) are not reference sensors for each
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other, but S(7) is in S(1)’s shortest path to the sink.

Consider S(1), S(2), and S(3) in the example in Fig. 4.5. Let their readings at time t

be S
(1)
t , S

(2)
t , and S

(3)
t , respectively. Each sensor receives the readings from the other two

sensors at time t. Then, when S(1) exchanges its readings with S(2) and S(3), all three sensors

would immediately detect that there is an anomaly (by the two properties in Section 4.2).

In that situation, a suboptimal approach (such as the one in [6]) would have S(2) and S(3)

report the anomaly to the sink, leaving the sink to count votes and make a decision on the

error. That decision would affect not only the battery life of S(2) and S(3), but also that of

S(6) and S(8), which are on their respective routing paths to the sink. Another suboptimal

alternative would be for S(2) and S(3) to let S(1) know that they believe S(1)’s measurement

is anomalous, so that S(1) can then report its own error to the sink. While that approach

is significantly more energy-efficient than the previous one, it is still suboptimal. In our

approach, S(1) implicitly recognizes that S(2) and S(3) must have found it to be in error, and

it reports itself as erroneous to the sink.

It is obvious that at least one message must be necessary in order for S(1) to implicitly

recognize the fact that the majority of its 3 reference sensors found it to be anomalous.

The fact that one message is sufficient is not obvious, and is crucial in ensuring that the

protocol correctly reports the anomaly, while minimizing message transmissions (which is

the objective of this thesis). In order to show that one message is sufficient, we use Properties

1 and 2, as stated in Section 4.2.

Lemma 1. Assume that the similarity between S(1) and S(2) is greater than the similarity

between S(1) and S(3). Then the probability that S(1) would mark its own measurement as

anomalous with respect to S(2)’s measurement is greater than the probability that it would

mark its own measurement as anomalous with respect to S(3)’s measurement.

Proof. We know from Property 2 that, if S
(1)
t were anomalous, the anomaly would be recog-

nized with greater probability by S(2) than by S(3). From Property 1, we know that if S(2)

finds S
(1)
t to be anomalous, then S(1) would find S

(2)
t to be anomalous with equal probability.

The Lemma follows.

Lemma 1 is phrased from the perspective of S(1) as it is detecting whether its own mea-
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surement is anomalous with respect to measurements from S(2) and S(3) at time t. Also, it

follows that S(2) is the better sensor to be used by S(1) as a reference for anomaly detection,

because its greater similarity with S(1) implies greater sensitivity to anomalies.

Lemma 1 also highlights an important relationship detail. Consider S(1) and S(5) in

Fig. 4.5. S(1) uses S(5) as a reference sensor, meaning S(5) sends S(1) its measurements. S(5)

may not use S(1) as a reference sensor because it may have found other sensors that are more

similar to it. Therefore, S(5) does not consider whether S
(1)
t is anomalous at time t, but if

it did, and the similarity between S(1) and S(5) were greater than that between S(1) and

S(3), then it would have detected S
(1)
t as anomalous with greater probability than S(3) would

have (by Property 2). However, from Lemma 1, S(5) does not need to consider whether

S
(1)
t is anomalous at time t for S(1) to know that it did. As long as S(1) found S

(5)
t to be

anomalous, we know that S(5) would have found S
(1)
t to be anomalous with equal probability

(by Property 1). Therefore the reference sensor relationship does not need to be a two-way

relationship for the protocol to work.

In [6], the authors suggest than any sensor that detects an anomalous measurement must

report the anomaly to the sink. However, that leads to unnecessary energy overhead for the

various sensors that detect the anomaly, and for the sensors on their multi-hop routing paths.

We now show that the erroneous sensor will recognize that other sensors have found it to be

anomalous without requiring those sensors to waste messages transmissions communicating

their knowledge of the anomaly.

Theorem 1. In the system model described in Section 2.1, let S(A) be a sensor whose

measurement at time t, S
(A)
t , is deemed anomalous by any neighboring sensor S(V ). Then,

the P2P error detection protocol, described in Section 4.1, ensures that S(A) will implicitly

recognize that S
(A)
t is anomalous with respect to that sensor’s measurement, S

(V )
t .

Proof. If S(V ) is one of S(A)’s reference sensors, S(A) would evaluate its own measurements

with respect to S(V )’s measurements and will recognize that S(V ) found S
(A)
t to be anomalous

as soon as it finds that S
(V )
t was anomalous (by Property 1).

If S(V ) is not one of S(A)’s reference sensors, S(A) would not check its measurements against

S(V ), and will not know that S
(A)
t is anomalous with respect to S

(V )
t . However, based on
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how reference sensors are chosen, S(V ) not being one of S(A)’s reference sensors implies that

S(A)’s reference sensors are more similar to S(A) than S(V ) is to S(A). From Lemma 1, that

means that if S
(A)
t were anomalous with respect to S

(V )
t , S

(A)
t would also be anomalous with

respect to the measurements of all of S(A)’s reference sensors. In that scenario, although

S(A) is not checking its measurements against S(V ), S(A) will implicitly recognize that it is

anomalous using its reference sensors’ measurements.

Corollary 1. In the system model described in Section 2.1, consider a sensor that generates

a measurement that is deemed anomalous by the majority of that sensor’s reference sensors.

Exactly one message is sufficient to report the fact that the majority of multiple reference

sensors detected the anomaly.

Corollary 1 follows from Theorem 1, for if a sensor implicitly recognizes itself as erroneous,

it is not necessary for any sensor other than the erroneous sensor to report itself as erroneous

to the sink. We believe that this result is a major contribution of our work, combining results

from anomaly detection and routing theory in the design of an energy-optimal error detection

protocol that is easy to implement.

The path of the single message reported by erroneous sensor S(1) is given by the solid red

line in Fig. 4.5. That message is sufficient to capture the anomaly detected by the majority

of S(1)’s reference sensors. No other sensor is required to report the error, unlike in the

approach suggested in [6].

4.6 Main Strength and Limitation

The main strength of our approach lies in the fact that we minimize the number of messages

required to report an error to the sink. Exactly one message needs to be sent to the sink

when the network agrees that a sensor is in error, which happens when the majority of the

sensors most sensitive to an anomaly find that the sensor’s reading is anomalous.

The P2P protocol scales well to dense sensor networks where each sensor might have

several sensors within range to choose from. By controlling the parameter M described in
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Section 4.1, the memory requirement for each sensor can be limited to order O(1), for fixed

M and T .

The P2P protocol can also be used in the context of mobile sensors, since we periodically

refresh the list of M candidate sensors from which R reference sensors are chosen.

The main limitation of our approach is the reliance of each sensor on the existence of

at least two similar sensors within its wireless communication range to serve as reference

sensors. For simplicity, we assume that reference sensors are always within one hop of the

sensor that is using them for reference. Since the one-hop distance implies spatial closeness

in a setting where sensors have a limited wireless communication range, it is assumed that

a sensor would find sufficient reference sensors to meaningfully vote on an error. However,

in a setting with isolated sensors or wireless signal barriers separating nearby sensors, our

protocol may not be able to find sufficient reference sensors to vote on an anomaly.

In order to address that limitation, the protocol can be trivially extended to allow sensors

to report their own measurements as erroneous, using their own past measurements for refer-

ence (without requiring any other sensor). Discussion of that extension is beyond the scope

of this thesis, but we provide a solution in [21]. That approach uses the Auto-regressive Inte-

grated Moving Average (ARIMA) model from past measurements to construct a confidence

interval to validate future measurements. The choice of confidence interval impacts detection

and false positive rates. Those rates can be controlled by setting appropriate thresholds set

for classifying measurements as anomalous. An Auto-regressive (AR) model alone may be

sufficient to detect anomalies at a computation cost much lower than that of the ARIMA

model. The computation cost is important to consider because running complex algorithms

on sensor hardware impacts the battery life.
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CHAPTER 5

VALIDATION OF SENSOR MEASUREMENTS

In this chapter, we present a detailed description of an anomaly detection approach and an

associated similarity metric that satisfy both the properties required by our P2P protocol

(stated in Section 4.2). We use isocontours on a bivariate normal distribution to draw an

anomaly detection boundary, assuming that T measurements of two sensors have a joint

distribution that can be approximated by the normal distribution.

5.1 Summary of Approach

Consider two sensors SX and SY that take T measurements in T time periods. We seek

to determine whether a new measurement tuple (x, y) (from the two sensors SX and SY

respectively) is statistically consistent with the past T measurements taken by SX and SY .

The new measurement would typically arrive at time period T + 1.

Consider the simple model where SY sends all its measurements to SX . Let X and Y

denote the vector of the past T measurements from SX and SY respectively. Then SX

has both X and Y in its memory. Our assumption is that X and Y are jointly normally

distributed. Therefore, SX can create an isocontour from the jointly normal distribution to

define a region of normal and anomalous points.

For illustration (Fig. 5.1), we use two arbitrary sensors from the NZ dataset, and set

T = 300 to capture measurements during a 5 minute interval. In order to remove the effects

of having X and Y at different scales, and to simplify the anomaly detection procedure

(to meet low power constraints on sensors), we center the data and divide by the standard

deviation. That explains the range of the vertical and horizontal scales in the figure, and

why the isocontour is centered at the origin. The red point is an anomalous point (caused
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Figure 5.1: Single anomalous measurement (in red) in the NZ dataset is detected by
constructing an isocontour (blue shaded elliptical region) as a detection boundary. Normal
measurements are inside the isocontour and are jointly Gaussian.

by an earthquake). Note that the measurement was not anomalous as per Sensor 16’s

measurements, but was anomalous as per Sensor 1’s measurements. That is explained in

Section 5.7, but for now we just point out that the anomalies are relative to the joint Gaussian

model of two sensors.

5.2 Anomaly Detection Approach Assumptions

The main assumptions for this anomaly detection approach are: 1) anomalies can lie any-

where in the two-dimensional vector space spanned by both sensors’ normalized measure-

ments, 2) anomalies lie farther away from the cluster centroid than proper measurements,

and in a manner that an elliptic isocontour can be used to separate them from proper mea-

surements (as shown in Fig 5.2), while maintaining an acceptable trade-off between true

positives and false positives, and 3) that elliptical isocontour must be centered at the cen-

troid of the proper measurements. The choice of the sliding window size, T , is crucial to

ensuring that these assumptions hold.

The reasoning behind our anomaly detection procedure applies to two sensors whose mea-
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surements are jointly Gaussian. In practice, if they are jointly Gaussian, then detection

thresholds can be defined by well-known confidence intervals (or probabilities) for the Gaus-

sian distribution. If they are not strictly Gaussian, we may not be able to associate the

threshold with a confidence interval or probability. Even so, as along as the three afore-

mentioned assumptions hold, a valid detection boundary can be drawn using the approach

presented in this chapter.

5.3 Isocontours of the Bivariate Normal Distribution

The joint PDF of the Gaussian distribution for two random variables X ∼ N(µX , σ
2
X) and

Y ∼ N(µY , σ
2
Y ) is given as follows:

fX,Y (x, y) =
1

2πσXσY
√

1− ρ2
exp{− 1

2(1− ρ2)
[CX,Y (x, y)]} (5.1)

CX,Y (x, y) =
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ((x− µX)(y − µY )

σXσY
(5.2)

An isocontour is the equation of a hyperplane (in this case, a line) for which the joint

distribution has the same value (denoted by U). The equation of the isocontour can be

derived as follows:

fX,Y (x, y) = U (5.3)

⇒ 1

2πσXσY
√

1− ρ2
exp{− 1

2(1− ρ2)
[CX,Y (x, y)]} = U (5.4)

⇒ CX,Y (x, y) =
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ((x− µX)(y − µY )

σXσY
= V (5.5)

V = −2(1− ρ2)log(2πσXσY
√

1− ρ2U) (5.6)

Here, V is a constant (a function of U , which is also a constant). Thus, CX,Y (x, y) defines

the equation of an ellipse centered at (µX , µY ) at an angle with respect to the X and Y axes.

Clearly, it would be very complicated and computationally expensive to compute CX,Y (x, y)
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in the above form. This motivates a simplified approach.

5.3.1 Simplified Isocontours of Two Uncorrelated Gaussians

If we were to assume that X and Y were already centered uncorrelated, then µX = µY =

ρ = 0, and Eqn. (5.6) simplifies to

CX,Y (x, y) =
x2

σ2
X

+
y2

σ2
Y

= V (5.7)

V = −2log(2πσXσYU) (5.8)

In addition, let us find the isocontour with the value U such that U is k standard deviations

from the mean. Then,

U = fX,Y (kσX , kσY ) =
1

2πσXσY
exp{−1

2
[CX,Y (kσX , kσY )]} (5.9)

Substituting into V in Eqn. (5.8), we get

CX,Y (x, y) =
x2

σ2
X

+
y2

σ2
Y

= CX,Y (kσX , kσY ) = 2k2 (5.10)

This is a much simpler isocontour of an ellipse that is parallel to the X and Y axes, centered

at the origin with major/minor radii given by
√

2σX and
√

2σY .

5.3.2 Obtaining the Simplified Isocontour

The first step in obtaining the simplified isocontour is to center the data by subtracting the

means from both X and Y . The second step is to obtain a transformation matrix such that

the transformed data is uncorrelated. That transformation matrix is obtained as follows.

Let A =
[
X Y

]
be a T × 2 matrix containing the data. Then the 2× 2 covariance matrix

for X and Y is given as follows:

A′A

T − 1
=
[ V ar(X) Cov(X,Y )
Cov(Y,X) V ar(Y )

]
(5.11)
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The covariance matrix is symmetric because Cov(X, Y ) = Cov(Y,X). We want to estimate

the matrix E that performs the following transformation:

AE = A∗ (5.12)

where A∗ =
[
X∗ Y ∗

]
is a T × 2 projection of A, and has uncorrelated columns X∗ and Y ∗.

If Cov(X, Y ) = 0, there is nothing further to be done because A = A∗, and we can directly

apply the simplified isocontour Eqn. (5.10).

Cov(X, Y ) 6= 0, we are effectively interested in rotating the measurements into a new axis

where the covariance is zero. That is obtained by Principal Component Analysis (PCA),

which states that the orthonormal eigenvectors of the covariance matrix rotate the original

data into the principal component space where the data is uncorrelated. After applying

PCA, we get the covariance matrix of A∗ as

(A∗)′A∗

T − 1
=
[
L1 0
0 L2

]
(5.13)

where L1 and L2 are the eigenvalues of A′A/(T −1), and represent the variance in the direc-

tion of the new space spanned by the eigenvectors given by the columns of E in Eqn. (5.12).

To show that E is the matrix that produces X∗ and Y ∗ that are uncorrelated, consider the

following:
(A∗)′A∗

T − 1
=

(AE)′(AE)

T − 1
=
E ′(A′A)E

T − 1
(5.14)

From the definition of eigenvectors E =
[
E1 E2

]
and eigenvalues L =

[
L1 0
0 L2

]
, of the

matrix CA = A′A
T−1 ,

CAE = EL (5.15)

⇒ E−1CAE = L (5.16)

That is a simple proof of one of the basic principles from Linear Algebra, called the diagonal-

ization of CA. Noting that by orthonormality, E ′ = E−1, we can substitute into Eqn. (5.14)
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Figure 5.2: Anomalies (red crosses) in the NZ dataset due to earthquake observed in
normalized measurement space (left) and the space spanned by the two principal
components (right).

to get the following:

(A∗)′A∗

T − 1
=
E ′(A′A)E

T − 1
=
E−1(A′A)E

T − 1
= L (5.17)

where L is a diagonal matrix containing the eigenvalues of A′A. Therefore (A∗)′A∗

T−1 is diagonal,

and the columns of A∗, which are X∗ and Y ∗, are thus uncorrelated. X∗ and Y ∗ represent

the principal components in the orthogonal subspace Fig. 5.2 (right plot), while X and Y

represent the points in the original space of sensor measurements (left plot).

With these new uncorrelated vectors in the new principal component space, we can apply

Eqn. (5.10). Note that we cannot apply that equation directly on X and Y when they are

correlated.

CX∗,Y ∗(x
∗, y∗) =

(x∗)2

σ2
(X∗)

+
(y∗)2

σ2
(Y ∗)

= 2k2 (5.18)

Note that in order for this to work, we had to rotate not only X and Y , but also the

test data point (x, y) to get (x∗, y∗). The rotation was obtained from the transformation E,
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resulting in the points being aligned in a way that the direction of maximum variance is in

line with the horizontal axis. This is illustrated for two sensors in the NZ dataset in Fig. 5.2.

5.3.3 Calculating the Angle of Rotation

The data X and Y was rotated in the 2-D space to produce X∗ and Y ∗ which were un-

correlated. Note that X and Y are to some extent blended together in X∗ and Y ∗. So in

the new principal component space (Fig. 5.2 (right)), X∗ and Y ∗ do not directly correspond

to the original sensor measurements, but to some blend of the measurements. This rota-

tion was performed purely for mathematical simplification, which in turn leads to efficient

computation.

The ellipse CX∗,Y ∗ is essentially the rotation of the ellipse CX,Y . The angle of rotation

describes the angle of the rotated ellipse with respect to the axes of the original ellipse.

Calculating the angle of rotation is not useful for anomaly detection, but we present it here

for completeness of the mathematical intuition. We used this approach in plotting the ellipse

in the figures because the plotting tools required the angle to be specified as a parameter.

Let us give names to the elements of E. Let E =
[
e00 e01
e10 e11

]
. And let θ be the angle of

rotation. Then there is a one-to-one correspondence between the elements of E and the

rotation matrix.

E =
[
e00 e01
e10 e11

]
=
[
cos θ − sin θ
sin θ cos θ

]
(5.19)

⇒ θ = arctan(e10/e00) (5.20)

In implementing the function in code, one must note that it is possible (though in our

applications highly unlikely) that e00 = 0, leading to a divide by zero error. That simply

means that θ = 90◦ (if e10 > 0) or θ = 270◦ (if e10 < 0). The Numpy library in Python has

a function called arctan2 which is an alternative to arctan, and takes care of those special

cases.
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5.4 Anomaly Detection Procedure

In this section, we explain the algorithm that goes into is anomalous(), the function used

in Stage 2 of the P2P protocol in line 5 of Fig. 4.3. If Sensor SX receives all measurements

from sensor SY , then SX can determine whether a particular reading of SY was anomalous.

Let the test reading be y and have a corresponding reading x measured by SX at the same

time period. SX builds a model of SY ’s measurements using T measurements from the past.

If y was found to be anomalous as per that model, then SX declares y to be in error. The

model we use is the bivariate normal distribution described in Section 5.3.

Let X be the past T measurements of SX and Y be the past T measurements of SY .

Let ← denote the assignment operator. In summary, the anomaly detection approach is

composed of the following steps:

1. Center the data for numerical simplicity so that the scatter plot is centered at the

origin. Here data refers to both the historic measurements X and Y as well as the test

point (x, y)

X ← X − µX Y ← Y − µY (5.21)

x← x− µX y ← y − µY (5.22)

2. Normalize the data by dividing by standard deviation. This ensures that the difference

in scale of magnitudes does not matter. For example, a sensor that is located closer

to a region of large seismic activity (a volcano, for example) may have an amplitude

much greater than that of a farther away sensor. We want to remove that amplitude

disparity because that allows us to give equal weight to anomalies in the direction of

both sensors. If we had not done that, a deviation in the direction of the sensor that

measures a larger amplitude would automatically be weighted more than a deviation

in the direction of the smaller amplitude. Normalization also takes care of the fact

that some sensors may not be calibrated to have a standard unit (like the cast of all
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our NZ data).

X ← X/σX Y ← Y/σY (5.23)

x← x/σX y ← y/σY (5.24)

As a consequence of this step, σX = σY = 1.

3. Compute the covariance matrix CA of X and Y , as explained in Eqn. (5.3).

A←
[
X Y

]
(5.25)

CA ←
A′A

T − 1
(5.26)

4. Compute the orthonormal eigenvectors E and eigenvalues L of CA. A computationally

simple way of doing this is presented in Section 5.4.1.

E,L← eig(CA) (5.27)

The diagonal elements of L give the variance in the rotated space. L =
[ σ2

(X∗) 0

0 σ2
(Y ∗)

]
5. Transform the test point into the principal component space given by E.

[
x∗ y∗

]
←
[
x y

]
E (5.28)

6. For a given detection threshold k, the point test point (x, y) is anomalous if the fol-

lowing condition holds, as explained in Eqn. (5.18):

(x∗)2

σ2
(X∗)

+
(y∗)2

σ2
(Y ∗)

> 2k2 (5.29)
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5.4.1 Cost-efficient Computation of Orthonormal Eigenvectors and
Eigenvalues

While designing the validation approach for a peer-to-peer validation mechanism, it is im-

portant to consider the computation cost of validation. In this subsection we show that

the above detection scheme can be computed with very simple addition and multiplication

operations.

For a 2x2 covariance matrix, the eigenvectors and eigenvalues can be computed using the

following simple Python code. Note that no library functions were called other than the sqrt

(square root function).

1 import numpy as np

2 de f e i g (X) :

3 D = X[ 0 , 0 ] ∗X[1 ,1 ]−X[ 0 , 1 ] ∗X[ 1 , 0 ]

4 Tr = X[0 ,0 ]+X[ 1 , 1 ]

5 L1 = Tr/2 .0 + np . sq r t (Tr∗∗2/4.0 −D)

6 L2 = Tr/2 .0 − np . sq r t (Tr∗∗2/4.0 −D)

7 i f X[ 1 , 0 ] != 0 :

8 E1 = np . matrix ( [ L1−X[ 1 , 1 ] , X[ 1 , 0 ] ] ) . reshape (2 , 1 )

9 E2 = np . matrix ( [ L2−X[ 1 , 1 ] , X[ 1 , 0 ] ] ) . reshape (2 , 1 )

10 E1 = E1/np . l i n a l g . norm(E1)

11 E2 = E2/np . l i n a l g . norm(E2)

12 e l s e :

13 E1 = [ 1 , 0 ]

14 E2 = [ 0 , 1 ]

15 re turn np . array ( [ L1 , L2 ] ) , np . hstack ( [ E1 , E2 ] )

Listing 5.1: A simplified implementation of the eig function

Note that the matrix X in the above example must be symmetric (a property inherent to

covariance matrices). Therefore X[0, 1] = X[1, 0], and the first condition checks to see if the

matrix is a diagonal matrix. If it is a diagonal matrix, it means that the two sensors were

uncorrelated to begin with. Hence there is no need to transform them onto a space where

they are uncorrelated, and the transformation matrix is the identity matrix.

We now explain the mathematics of the code. Let X =
[
a b
c d

]
. By definition of eigenvectors
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(E) and eigenvalues (L),

Xv = λv ⇔ (X − λI)v = 0 (5.30)

where v is a 2 × 1 eigenvector, λ is a scalar eigenvalue, and I is the 2 × 2 identity matrix.

In order for Eqn. (5.30) to have a non-trivial solution, we require

det(X − λI) = 0⇒ det(
[
a−λ b
c d−λ

]
) = 0 (5.31)

⇒ λ2 − (a+ d)λ+ (ad− bc) = 0 (5.32)

where det is the determinant function. Let the D = det(X) = ad−bc and Tr = tr(X) = a+d

(these are defined in lines 3 and 4 of Code 5.1). The two eigenvalues can be obtained by

solving the quadratic Eqn. (5.32), and the solutions are given in lines 5 and 6 of Code 5.1.

Let the first eigenvector E1 =
[
e00
e10

]
have the corresponding eigenvalue L1. Then, from

Eqn. (5.30),

ce00 + (d− L1)e10 = 0⇒ e00
e10

=
(L1− d)

c
(5.33)

Since we require orthonormal vectors, E1 is the normalized (by L − 2 norm) form of the

vector
[
(L1−d)

c

]
. This is given for E1 (and similarly for E2) in lines 8 to 11 of Code 5.1.

Note that this solution is only valid in the case where X[1, 0] = c 6= 0 because of the

division by c in Eqn. (5.33). The eigenvectors are combined into a transformation matrix

E = [E1, E2] =
[
e00 e01
e10 e11

]
Note that lines 8 to 11 of Code 5.1 can be collapsed into a single line of Python code, but

we have separated them here for better readability. Our separation of code explains how the

eigenvectors are related to their eigenvalues.
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5.4.2 Algorithm Complexity

Since the anomaly detection approach is executed on low-cost sensor hardware, it is essential

that the implementation be simple and memory requirements be minimal. The computations

in Steps 1–3 of the procedure in Section 5.4 are all O(T ), and Steps 4–6 are O(1). Since the

procedure is repeated for R reference sensors, the total algorithm complexity is O(RT ) =

O(1) since R and T are fixed for a given WSN.

5.4.3 Robustness of Implementation

When we say that X and Y contain the past T measurements taken by sensors SX and SY ,

we mean the past T normal measurements. Therefore, if a test measurement (x, y) is found

to be anomalous, it is discarded from the model. This ensures that the model is robust and

cannot easily become biased due to outliers. If the anomalies were included in the model,

the area of the isocontour would effectively increase, and measurements that were earlier

flagged as anomalous may no longer be flagged as anomalous as they may now fall within

the isocontour.

5.5 Similarity Metric

We say that the measurements of two sensors are similar if they are tightly clustered in the

2-dimensional space. That tight clustering may be defined in many ways, but we use the

area of the kσ isocontour to determine how similar two sensors are. Mathematically, the

degree of similarity is expressed as the area of the ellipse in Eqn. (5.18). That is given as

follows:

Similarity(SX , SY ) = [2πk2σ(X∗)σ(Y ∗)]
−1 (5.34)

5.5.1 Computation of Similarity Metric

The formula given in Eqn. (5.34) is the correct formula to calculate the area of the ellipse,

and is a perfectly valid similarity metric. The purpose of the similarity metric, however,
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is for a sensor to compare its similarity to other sensors and obtain an ordering of similar

sensors from which it can obtain its reference sensors. Consider three sensors SX , SY , SZ .

If SY is more similar to SX than SZ is to SX ,

[2πk2σ(X∗)σ(Y ∗)]
−1 < [2πk2σ(X∗)σ(Z∗)]

−1 ⇒ [σ2
(X∗)σ

2
(Y ∗)]

−1 < [σ2
(X∗)σ

2
(Z∗)]

−1 (5.35)

The above relationship is valid because we use the same value for k across all sensors to

define a threshold. Therefore, we can define an equivalent similarity metric (for ranking

purposes) as follows:

Similarity(SX , SY ) = [σ2
(X∗)σ

2
(Y ∗)]

−1 (5.36)

Computing the formula in Eqn. (5.36) is more efficient than computing the formula in

Eqn. (5.34) because we already had L1 = σ2
(X∗) and L2 = σ2

(Y ∗) from the two eigenvalues of

the covariance matrix of
[
X Y

]
. So we simply take their product, and skip taking the square

root and other operations. Also note that this version of the similarity metric is independent

of the anomaly detection threshold k.

5.6 Demonstrating Required Properties of Approach

This approach has two properties that are critical to our design of the P2P validation pro-

tocol. The two properties were assumed in the analysis of the protocol in Section 4.5 when

proving that our approach can achieve the minimum number of messages that need to be sent

in order to report the error. We now show that our approach satisfies those two properties,

and is thereby suitable for the protocol.

5.6.1 Symmetry

In this subsection, we show that our anomaly detection approach satisfies Property 1, as

stated in Section 4.2.

In Section 5.4, we assumed that Sensor SX receives all measurements from sensor SY and
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performs anomaly detection. If we also assumed that Sensor SY receives all measurements

from sensor SX , then the question is whether or not the same pair (x, y) would be determined

as anomalous by SY .

Symmetry is not always guaranteed by anomaly detection approaches (see Appendix A.1

for an example of an approach that fails to provide symmetry). Let X and Y be centered

and normalized measurements of two sensors SX and SY . When SX performs anomaly

detection, it constructs the matrix in Step 3 of Section 5.4 as A ←
[
X Y

]
. SY would

similarly construct the matrix as Â ←
[
Y X

]
. In order to show symmetry, we now show

that this construction leads to the same condition for anomaly detection in Eqn. (5.29). We

use the ‘hat’ notation to distinguish the results of the Â construction.

Notice that the following column swap elementary transformation can be used to relate A

and Â

Â = A

0 1

1 0

 , A = Â

0 1

1 0

 (5.37)

The corresponding covariance matrix is given as follows:

ĈA ←
Â′Â

T − 1
(5.38)

(5.39)

Substituting from Eqn. (5.37),

ĈA =

0 1

1 0

A′A
0 1

1 0


T − 1

=

0 1

1 0

CA
0 1

1 0

 (5.40)

CA =

a b

c d

⇒ ĈA =

d c

b a

 (5.41)

Note that the characteristic equation for ĈA is identical to the equation for CA given in

Eqn. (5.32). Therefore, the eigenvalues are exactly the same, except that we must name the
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larger of the eigenvalues as σ̂∗Y .

σ̂∗Y = σ∗X (5.42)

σ̂∗X = σ∗Y (5.43)

The equation for computing eigenvectors and eigenvalues of ĈA is given as follows:

ĈAÊ = ÊL̂ (5.44)

where ĈA, Ê and L̂ are all 2× 2 matrices. L is a 2× 2 diagonal matrix of eigenvalues. We

showed that L = L̂. Similarly we can apply Eqn. (5.33) to show that Ê =

0 1

1 0

E.

In Step 4. of Section 5.4, SX rotated the test point
[
x y

]
as follows:

[
x∗ y∗

]
←
[
x y

]
E (5.45)

Similarly, SY would rotate the test point
[
y x

]
as follows:

[
ŷ∗ x̂∗

]
←
[
y x

]
Ê =

[
y x

]0 1

1 0

E =
[
x∗ y∗

]
(5.46)

Combining the above equation with Eqn. (5.43), we obtain the anomaly detection equation

for SY , which is the same as it is for SX in Eqn. (5.29).

5.6.2 Greater Similarity Implies Greater Sensitivity to Anomalies

In this subsection, we show that our similarity metric (described in Section 5.5) satisfies

Property 2, as stated in Section 4.2.

Let Similarity(SX , SY ) > Similarity(SX , SZ) for some sensors SX , SY , and SZ . From the

definition of the similarity metric in Eqn. (5.34), the area of the isocontour spanned by the

normalized measurements of SX and SY is smaller than the corresponding area spanned by
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the normalized measurements of SX and SZ . With the assumption that anomalies are spread

out farther away from the centroid than are proper measurements, SX is more likely to detect

anomalies if it were to choose SY instead of SZ as a reference sensor because anomalies are

more likely to fall outside the smaller isocontour formed by SX and SY . Hence Property 2

is satisfied.

Note that if the area of the isocontour is smaller, more anomalies will be detected, but

also more false positives may result. If the area is larger, fewer anomalies will be detected,

but there would also be fewer false positives. Therefore, an appropriate threshold k must be

set to a good trade-off between true and false positives. In all our experiments, we set k = 3

and found that it achieves a perfect detection rate for all sensors and a zero false-positive

rate.

5.7 Illustration of Approach on Datasets

In this section, we demonstrate anomaly detection approach and also demonstrate important

features of the similarity metric on our three datasets. For the Berkeley dataset we use

T = 30, grouping 30 hours of data in one cluster. For the TAO dataset we use T = 30,

grouping 5 hours of data in one cluster. For the NZ dataset we use T = 300, grouping 5

minutes of data in one cluster.

5.7.1 Detecting Anomalies in the Datasets

In this subsection, we demonstrate our anomaly detection approach on all three datasets.

Consider the two sensors Sensor 1 and Sensor 16 in the NZ dataset. In Fig. 5.1, it can

be seen that the anomalous point is only anomalous with respect to Sensor 1 and not with

respect to Sensor 16. That is because Sensor 16 measured the earthquake later than Sensor 1

did. The waveforms along with anomalies flagged by the approach are illustrated in Fig. 5.3,

and the lag between Sensor 1 and Sensor 16 detecting the quake is clear in Fig. 5.3.

We also experimentally verified that our anomaly detection approach does indeed have

the symmetric property. From Sensor 1’s perspective, 67 anomalies were discovered in 86400
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measurements during the 24 hr period with respect to Sensor 16’s measurements. Conversely,

from Sensor 16’s perspective, 67 anomalies were discovered during that period with respect

to Sensor 1’s measurements and those anomalies were reported at the exact same time indices

as those reported by Sensor 1. Note that each of the two sensors are performing anomaly

detection independent of the other. That is, the fact that one sensor finds the other sensor

to be anomalous is in no way communicated to the other sensor. Therefore the probability

of the two sensors having the exact same match in this case is 6× 10−7. That highly precise

match was expected because we know that symmetry is mathematically supported.

The 67 anomalies detected from the 86400 measurements were a result of the robust

anomaly detection approach discussed in Section 5.4.3. If the robust approach were not

used, we found from experiments that 33 anomalies would have been detected in the same

time period. That is because the initial anomalies would bias the model in a way that makes

future anomalies seem normal. That is, the isocontour would be expanded to accommodate

the initial anomalies in the model, leading to a wider range of what is normal.
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Figure 5.3: Anomalies (yellow stars) due to the earthquake presented in the seismic
waveform in the NZ Dataset (200 sec view).

Figure 5.3 highlights that it is not necessary for both sensors to produce anomalous mea-
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(b) TAO- Isocontour drawn at
k = 500
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(c) NZ- Isocontour drawn at k = 75

Figure 5.4: Anomalies (red crosses) in the three datasets are egregious. They would be
detected even if the isocontour were drawn 75, 500 and 3600 standard deviations from the
mean in the Berkeley, TAO and NZ datasets, respectively.

surements at the same time for the anomaly to be detected. Since anomalies are detected in

pairs of sensor measurements, it can be seen in Fig. 5.3 that at times anomalies are due to

Sensor 1’s measurements and at other times anomalies are due to Sensor 16’s measurements.

In order to ascertain which sensor is actually in error, we invoke the majority voting proce-

dure described in the protocol in Chapter 4. If a sensor believes its own reading is anomalous

based on the measurements taken at the same time by the majority of its reference sensors,

it will report itself as being in error to the sink.

An important point to notice in Fig. 5.2 is that there are points that are not anomalous

with respect to either Sensor 11 or Sensor 16. They are anomalous with respect to the

joint distribution of both sensors’ measurements. In other words, if the region capturing

normal consumption were rectangular, those anomalies would not be detected. They are

only detected because the region is elliptical. Since we did want to capture those anomalies,

the elliptical isocontour captured the detection boundary better than a rectangular region

would have.

In all three datasets, the anomalies due to errors were so egregious that our approach easily

detected them. Centering the data in the TAO dataset caused the anomalous points at −9.99

◦C to go further negative (to approximately −35 ◦C), where the correct measurements were

around the origin. Dividing that by a fractional standard deviation further exaggerated
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the anomaly to the extent that it would be detected even if the isocontour were drawn 500

standard deviations from the mean. Similarly, the errors in the Berkeley and NZ dataset

could be detected by isocontours drawn at 75 and 3600 standard deviations from the mean,

respectively. As shown in Fig. 5.4 for all three datasets, the anomalies due to errors were so

egregious that they could be easily distinguished from legitimate rare events. For example,

in the NZ dataset, a k = 3600 isocontour could detect an anomaly caused by a fault, but

it would have been too large to detect an earthquake. A k = 3 isocontour would detect

errors due to faults and earthquakes. Using both isocontours, the two errors types can be

differentiated.

5.7.2 Similarity Metric and Physical Distance

In this section we illustrate the relationship between the similarity metric and physical

distance in our dataset. Recall that we had analyzed the properties of the similarity metric

in relation to the protocol in Section 4.1.

Consider the 4 location markers in the largest circle in the top left of Fig. 5.5. Those

sensors are located around a volcano. We picked one of those sensors, and ranked the

similarity of all 40 other sensors in the dataset with that sensor (let us refer to it as SX).

The 41 sensors were located all around the country of New Zealand including small islands

(like Chatham Island). Of those 41 sensors, 5 are marked with smaller circles in the figure,

to avoid confusion with the other highway symbols shown by Google Maps.

Our first observation is important to show that our choice of similarity metric (explained

in Section 4.2) works for our protocol. That observation is that the top 3 sensors on the

ranked list of sensors were the nearest three at that same volcano as SX . Therefore, our

similarity metric picked the sensors that were physically closest to the one being considered.

We believe that it is because the sensor readings are from an almost identical distribution.

Our second observation is that the normalizing constant used in normalizing the sensor

data before deriving the similarity metric cannot be arbitrarily chosen (Step 3 of the anomaly

detection approach in Section 5.4). To test the effect, we normalized the data by the L− 2

norm of the T measurement values, instead of the standard deviation. We found that the

45



Figure 5.5: Map of physical location of select seismic wave sensors in the NZ dataset. The
four sensors grouped in the largest circle are located around a volcano.

resultant similarity metric produced a ranking that had arbitrary sensors in the top 3 for

SX , none of which were at the volcano. That is because the standard deviation preserves

properties of the original distribution that the L− 2 norm does not.

Our third observation is that the ranking (using the standard deviation) outside of the

top 3 is not really indicative of physical distance. For instance, SX ’s similarity with the

sensor at the top right of Fig. 5.5 is less than the similarity with the sensor at the bottom

right of the figure. despite the fact that the sensor at the top right is clearly closer to SX .

We believe that this is because of two reasons. First, the sensors farther away from the

volcano belonged to a different seismic network maintained by a different organization, and

therefore the data collection and calibration methods might have been different. The sensors

at the volcano all belonged to the same network. Second, the location of the sensor, with

respect to the surface terrain might have affected the readings. Those effects might be due
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to the way winds blow or other geological factors. The sensors at the volcano, on the other

hand, were all on the same hill so similar to each other. Third, external disturbances due to

moving vehicles, animals, machinery, etc., may create different amounts of noise at different

locations.

The conclusion is that the similarity metric captures physical distance only within a local

area. Outside of that area, no guarantees can be made on the relationship between similarity

and physical distance. That does not necessarily hurt our approach because each sensor is

only identifying reference sensors within its wireless range which is inherently restricted to

a local area.
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CHAPTER 6

PROTOCOL EVALUATION

We evaluated the centralized and P2P validation protocols using our own implementation

of the protocols in a trace-driven simulator. In this section, we present the simulator and

our simulation results. The simulator allows us to quantify the longevity and reachability

of the network, when using the centralized and P2P protocols. Longevity and reachability

are the two metrics we care about, and were defined in Chapter 2. Our results show that

the P2P protocol described in Chapter 4 increases longevity and reachability, highlighting

its usefulness. The simulations are performed on the three datasets described in Chapter 3.

6.1 Sensor Network Protocol Simulator

Several simulators exist for modeling WSNs, as described in [22]. However, those simulators

either fail to conveniently support the implementation of P2P validation on top of existing

functionality, or fail to capture the impact of various sensor actions on battery consumption.

NS-2 [23] is a general-purpose network simulator that is targeted towards IP networks, but it

does not consider power consumption or cost metrics for energy-efficient routing as adjustable

parameters. TOSSIM [24] is an emulator specifically for TinyOS sensors developed by the

TinyOS project team, but it suffers from many of the same limitations [22]. To focus on

the application and routing layers of the network stack in developing an energy-efficient

P2P validation protocol, we developed a trace-driven simulator of a WSN in Python. The

simulator performs shortest-path routing and implements the application-layer protocols for

both centralized and P2P validation.
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6.1.1 Simulator Design

The simulator is logically divided into three components: 1) the simulation engine that

bootstraps the simulation, 2) the sensor class that contains the code that would run on

sensor motes, and 3) the sink class that contains the code that would be executed at the

sink (on a server at the base station). The components are illustrated in Fig. 6.1.

SIMULATION	ENGINE

SENSOR	CLASS SINK	CLASS

Communication	Module

Event	Manager

Routing	Manager

Anomaly	Detection	Module

Main	Module

Communication	Module

Anomaly	Detection	Module

Main	Module

Input	Parser

Event	Logger

Figure 6.1: Components of the custom-built discrete event simulator.

In the P2P protocol implementation, the sensor class implements all three stages of the

protocol, described in Section 4.1. In the centralized implementation, the sensor class simply

sends all measurements to the sink at every time period, so that the sink may perform

anomaly detection in real-time. In both the centralized and P2P protocol implementations,

the sink class implements Stage 3 of the protocol, as described in Fig. 4.4.

Both the sensor and the sink classes contain a communication module that handles the

application and routing layer protocol messages, an anomaly detection module that imple-

ments the mechanism described in Chapter 5, and a main module that coordinates the other

two modules as per the protocol. On the sink, anomaly detection is performed with respect

to reference sensors that may be chosen from any sensor in the network (not limited to the

wireless range of each sensor). We obtain the top 5 reference sensors for each sensor when

performing anomaly detection at the sink.

The simulation engine contains an input parser, event manager, routing manager and
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event logger. The input manager parses datasets and sensor layout description files (con-

taining spatial coordinates of sensors). The event manager stores and runs synchronous and

asynchronous events performed by the sensor and sink. Synchronous events include mea-

surement reading and reporting. Asynchronous events are communication events relating to

error reports. The sensor and sink class communicate with each other through the routing

manager in the simulation engine, which reads and writes to message buffers in the sensor

and sink classes. The routing manager implements static and time-varying routing protocols

to route messages between sensors and the sink. The event logger is used by the sensor and

sink classes to records statistics that allow us to trace the trajectory of the simulation and

evaluate performance metrics for different experiments.

6.1.2 Simulation Parameters

The simulator contains several configurable parameters that describe WSN settings. Lo-

cation coordinates are one such parameter, and they describe the physical locations of the

sensors and the sink. We place sensors in a 2-dimensional coordinate space for illustrative

simplicity, although we note that the implementation can be trivially extended to support

a 3-dimensional space. The second set of parameters describes the energy consumption of

the sensor motes in the network. We categorized CPU processes into long and short pro-

cesses. Long processes occur only in the P2P validation protocol (where the processing onus

is on the sensors), causing more battery drain due to CPU than in the centralized validation

protocol.

For the evaluation in this thesis, we assumed the use of the Mica2Dot sensors with weather

boards deployed at the Intel Berkeley Research Lab [2]. We obtained values for the energy

consumption of the CPU, radio transmission and radio receive from the third-generation

Mica2Dot sensor datasheet [25], and note that the choice of those values can have a major

effect on the evaluation results. The values for the Berkeley dataset deployment are presented

in Table 6.1.

In order to complete the simulation in reasonable time, we scaled down the battery capacity

of the sensors. For simplicity, we assume that the time at which sensors die will scale
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linearly with increased battery capacity. We believe that is a reasonable assumption given

homogeneous sensor hardware. We leave a simulation time scaling analysis for future work.

We assume the same time scaling factor given in Table 6.1 for all three datasets deployments.

That assumption is reasonable if we also assume the following: if the sensor transmitter

hardware consumes more power in one deployment, then that deployment is equipped with

proportionately greater battery capacity.

The sensor battery capacity in the simulation (0.2 mAh) corresponds to 4 button cells of

200 mAh each1. We include a correction factor to account for battery capacity degradation

(due to imperfect battery quality or environmental effects), and to account for sensor activ-

ities that we did not carefully model (such as the idle state when asleep). Therefore, we say

the effective battery life of four button cells is reduced from 800 mAh to 666 mAh (a reduc-

tion of nearly 18%. In each time step, all alive sensors broadcast their readings to neighbors

within their wireless transmission range. By diving all times shown in the results and plots

by the time scaling factor given in Table 6.1, one can obtain the number of simulation time

steps that were run.

6.2 Protocol Implementation

In the centralized validation protocol, the sensors report their measurements to the sink at

every time epoch. These messages are forwarded by sensors that lie between the sender

and the sink. Upon receiving each measurement, the sink performs anomaly detection, as

described in Chapter 5.

In the P2P validation protocol, the sensors broadcast their measurements to their one-hop

neighbors at every time epoch. Each sensor determines whether its own measurement is in

error with regard to measurements from its reference sensors. If a measurement is in error,

the sensor reports the error to the sink through the shortest path, and falls back to a forward-

ing mode. In this forwarding mode, the sensor does not report its own measurements, but

acts as a routing intermediary between other sensors and the sink. All sensors periodically

send a single message containing a batch of B measurements every B time periods to the

1Button cell capacity obtained from http://www.ti.com/lit/ug/tidu797c/tidu797c.pdf
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Table 6.1: Simulation Parameters for Berkeley Dataset

Parameter Value Description

Sensor batter capacity 0.2 mAh

This is a time scaling choice so we can observe
the death of the system.
We use the realistic value of 666 mAh
in performing time scaling.

Energy for transmit 2e-4 mAh

Transmitter current is 25 mA as per Mica2
datasheet.
We assume the time to transmit is 0.3 seconds.
Value is 25mA× 0.3 ms/3600

Energy for receive 6.7e-5 mAh

Transmitter current is 8 mA as per Mica2
datasheet.
We assume the time to transmit is 0.3 seconds.
Value is 8mA× 0.3 ms/3600

Energy for CPU 6.7e-5 mAh
Same as energy for receive.
Applicable only to the P2P protocol for
anomaly detection.

Batch Period 3600
We assume the data is packaged and sent to the
sink in the P2P approach after 3600 packets
have been collected.

Reporting Frequency 1 min
1 simulation step is 1 min in the original
simulation time (before scaling).

Time scaling factor 2.31 ×

1 simulation step is 2.31 days after time scaling.
1440 min are in 1 day.
Scale by 666/0.2 to adjust for battery life.
Value is 666/(0.2× 1440)
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sink. Those raw measurements may be used by the WSN operator to estimate the state of

the environment being monitored. B is configurable, and in our evaluation, we chose B = 10

time periods.

Both the P2P and centralized validation protocols can run on top of a dynamic, battery-

aware routing protocol, such as those described in [15], to further improve survivability. For

this thesis, we implement the Minimum Battery Cost Routing (MBCR) presented in [15] for

its advantage in extending the overall network reachability.

For illustration, we simulate the 54-sensor network from the Intel Berkeley dataset, as-

suming a 9 × 6 grid layout with the sink near the center (see Fig. 6.6). The sensors were

spaced apart from each other such that each sensor’s range could allow for communication

with only its immediate neighbor (no diagonal interactions). That grid layout is envisioned

for multiple rooms in a single floor of a building, and there could be walls anywhere between

the sensors as long as they do not interfere with the wireless range. That layout could also

potentially be used for monitoring soil moisture in a rectangular field. We chose the layout

for its simplicity in illustrating the impact of different routing and validation protocols.

6.2.1 Protocol Implementation in Simulator

In the centralized error detection protocol, the sensors report their measurements to the sink

at every time epoch. These messages are forwarded by sensors that lie between the sender

and the sink. Upon receiving each measurement, the sink performs anomaly detection, as

described in Chapter 5.

In the P2P error detection protocol, the sensors broadcast their measurements to their one-

hop neighbors at every time epoch. Each sensor determines whether its own measurement is

in error with regard to measurements from its reference sensors. If a measurement is in error,

the sensor reports the error to the sink through the shortest path, and falls back to a routing-

only mode. In this routing-only mode, the sensor does not report its own measurements,

but acts as a routing intermediary between other sensors and the sink.
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6.2.2 Routing Implementation in Simulator

Both the P2P and centralized error detection protocols can run on top of a variety of rout-

ing protocols, including battery-aware routing protocols described in [15] and [26], to further

improve reachability. For this thesis, we implemented static rounding and the Minimum Bat-

tery Cost Routing (MBCR) approach presented in [15]. MBCR was chosen for its advantage

in extending the overall network reachability.

Static Routing

In static routing, we used Dijkstra’s algorithm to calculate the shortest path between each

sensor and the sink, using a homogeneous edge cost of 1. These routes were never updated

(hence the name “static”).

Minimum Battery Cost Routing

In MBCR, we used Dijkstra’s algorithm to calculate the shortest path between each sensor

and the sink, using a time-varying edge cost.

Let R be the set of all root sensors (the sensors located within wireless range of the sink),

and N(SX) be the set of neighbors of sensors SX . The cost to sink, C, for a sensor SX at

time t can be given as follows:

C(SX , t) =

0 if SX ∈ R

minSi∈N(SX)[
1

Battery(Si,t)
+ C(Si, t)] else

(6.1)

The edge cost for the root sensors is always zero. At each time t, each root sensor sends

its own measurements to its neighboring sensors for anomaly detection. When it sends the

measurements, it piggybacks a cost to sink value that is the inverse of its battery life. Each

neighbor of that root sensor in turn sends its measurements to its own neighboring sensors

along with a cost to sink that is the inverse of that sensor’s battery life added to the root

sensor’s cost to sink. The process continues recursively until all sensors have a cost to sink

defined at time t. The piggybacking ensures that the protocol does not generate any extra
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messages.

There are scenarios where piggybacking is insufficient and extra messages need to be

generated. Consider a sensor SX /∈ R that is connected to a root sensor through two

different paths. At time t, SX receives its first cost to sink. Since this is the first cost to

sink at time t, SX must set its own cost to sink to the value it receives. It then propagates

that cost to its own neighbors by piggybacking it onto its own measurements. If SX receives

another cost to sink message from a different path at time t after the first message, then

it compares this new cost with its existing cost to sink. If the new cost is greater, nothing

needs to be done and the message is ignored. If the new cost is lower, then SX must update

its cost to sink and propagate that update to its neighbors by means of a dedicated cost to

sink message. As a result, additional messages are generated.

6.2.3 Illustration of Simulation Results

Berkeley: Actual Layout

We illustrate the 54-sensor network from the Intel Berkeley dataset, simulating the Mica2Dot

sensors used in that dataset [2], and assuming the sink is at the center of the lab. All

sensors were configured to use wireless transmission power that provided a range of 10 meters

indoors. In agreement with the authors of [14], we did not set the wireless range too large

because increasing it requires an exponential increase in transmission power. Decreasing

the range, however, forces multi-hop routing, which increases the reliance of sensors farther

away from the sink on routing sensors to maintain connectivity with the sink.

Figures 6.2- 6.5 are drawn to scale with the sensor layouts obtained from the real deploy-

ment in the Intel Berkeley lab. The figures include snapshots at four different days since

the start of the simulation. The first snapshot shows the start of the simulation, when all

sensors were alive, and the last snapshot was taken when all sensors except the root sensors

had lost connectivity with the sink.

Figures 6.4 and 6.5 illustrate the MBCR protocol. As seen for Day 185 and Day 245 in

Figs. 6.4 and 6.5, the sensors that were closest to the sink in the centralized protocol tended
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to exhaust their battery the fastest because they had to frequently forward messages on

behalf of more distant sensors.

In the P2P protocol, all sensors compute whether their measurements are anomalous with

respect to the measurements that they receive from reference sensors, and that adds to

computation costs. Therefore, it can be seen that on Day 185, the energy depleted is more

uniform across the sensor network in the P2P protocol than in the centralized protocol. Even

so, it takes 200 more days for 53 sensors to become unreachable in the P2P approach than in

the centralized approach, as seen in Figs 6.4(c) and 6.5(d). Hence, our P2P protocol obtains

a good trade-off between computation and communication costs, improving reachability by

over 80%.

6.2.4 Berkeley: Grid Layout

In this experimental layout, the 54 sensors are arranged in a 9 × 6 grid with the sink near

the center. Figures 6.6 and 6.7 illustrate battery drain in the centralized and P2P protocols

for static routing, respectively. 30 sensors lose reachability after 115 days, and they all lose

reachability after 145 days in the centralized protocol. It takes 638 days (over 5× as long)

for the P2P approach to disconnect those 30 sensors, and 645 days (over 4× as long) to

disconnect all sensors.

It is clear from the illustrations in Fig. 6.8 and Fig. 6.9 that the routing paths change over

time. Those paths represent the paths between the sensors and sink that are optimal on the

MBCR cost function. All observations for the static routing (such as the uniformly P2P load

on sensors in the P2P approach) apply to the MBCR protocol. In the centralized protocol,

MBCR routing disconnects only 2 sensors after 115 days, while it disconnected 30 sensors

at that same time with static routing (in Fig. 6.6). However, ultimately static routing

takes more time to disconnect all sensors because MBCR re-routes sensors to maintain

connectivity, while increasing the load on sensors near the sink. The P2P approach has a

greater gain over the centralized approach in MBCR than it did in static routing, extending

overall reachability by nearly 5 times.
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(b) Battery life at 185 days
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(c) Battery life at 245 days
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(d) All sensors unreachable at 446 days

Figure 6.2: Centralized validation protocol (Berkeley: Actual Layout): Battery life
illustration for static routing with routing paths shown for 4 arbitrary sensors. Sink is the
star in the center. Crossed-out sensors are unreachable.
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(c) Battery life at 245 days
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(d) All sensors unreachable at 446 days

Figure 6.3: P2P validation protocol (Berkeley: Actual Layout): Battery life illustration for
static routing with routing paths shown for 4 arbitrary sensors. Sink is the star in the
center. Crossed-out sensors are unreachable.
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(d) All sensors unreachable at 446 days

Figure 6.4: Centralized validation protocol (Berkeley: Actual Layout): Battery life
illustration for MBCR routing with routing paths shown for 4 arbitrary sensors. Sink is the
star in the center. Crossed-out sensors are unreachable.
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(b) Battery life at 185 days
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(c) Battery life at 245 days
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(d) All sensors unreachable at 446 days

Figure 6.5: P2P validation protocol (Berkeley: Actual Layout): Battery life illustration for
MBCR routing with routing paths shown for 4 arbitrary sensors. Sink is the star in the
center. Crossed-out sensors are unreachable.
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(b) Battery life at 115 days
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(c) Battery life at 145 days
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(d) All sensors unreachable at 645 days

Figure 6.6: Centralized validation protocol (Berkeley: Grid Layout): Battery life
illustration for static routing with routing paths shown for 4 arbitrary sensors. Sink is near
the center. Crossed-out sensors are unreachable.
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(b) Battery life at 638 days
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(c) Battery life at 643 days
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(d) All sensors unreachable at 645 days

Figure 6.7: P2P validation protocol (Berkeley: Grid Layout): Battery life illustration for
static routing with routing paths shown for 4 arbitrary sensors. Sink is near the center.
Crossed-out sensors are unreachable.
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(c) Battery life at 131 days

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

0

10

20

30

40

50

60

70

80

90

100

B
a
tt

e
ry

 %

(d) All sensors unreachable at 645 days

Figure 6.8: Centralized validation protocol (Berkeley: Grid Layout): Battery life
illustration for MBCR routing with routing paths shown for 4 arbitrary sensors. Sink is
near the center. Crossed-out sensors are unreachable.
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(d) All sensors unreachable at 645 days

Figure 6.9: P2P validation protocol (Berkeley: Grid Layout): Battery life illustration for
MBCR routing with routing paths shown for 4 arbitrary sensors. Sink is near the center.
Crossed-out sensors are unreachable.
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6.2.5 NZ: Actual Layout

For the NZ dataset, we consider five sensors spaced around Mount Ruapehu (which is an

active volcano in New Zealand) in a ring topology. We do not consider the remaining

sensors in the dataset because they are spread out hundreds of miles apart, and located in

different regional networks. The sink could not be placed in the center of the ring (inside

the volcano), so it was placed in the ring, within range of two of the sensors (which achieves

better reachability than having it within range of only one sensor, which would be a routing

bottleneck). Snapshots for static routing in both protocols are illustrated in Fig. 6.10 and

Fig. 6.11. On Day 629, 3 sensors had just lost reachability with the centralized protocol.

That day is also clearly marked by the solid red line in Fig. 6.17.

Snapshots for MBCR routing in both protocols are illustrated in Fig. 6.12 and Fig. 6.13.

It is clear from both static and MBCR illustrations that the P2P approach dramatically

improves reachability.
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(d) All sensors unreachable at 1004 days

Figure 6.10: Centralized validation protocol (NZ: Actual Layout): Battery life illustration
for static routing with routing paths shown for 2 arbitrary sensors. Sink is the star in the
ring topology. Crossed-out sensors are unreachable.
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(d) All sensors unreachable at 1004 days

Figure 6.11: P2P validation protocol (NZ: Actual Layout): Battery life illustration for
static routing with routing paths shown for 2 arbitrary sensors. Sink is the star in the ring
topology
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(d) All sensors unreachable at 1004 days

Figure 6.12: Centralized validation protocol (NZ: Actual Layout): Battery life illustration
for MBCR routing with routing paths shown for 2 arbitrary sensors. Sink is the star in the
ring topology
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(b) Battery life at 629 days
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(d) All sensors unreachable at 1004 days

Figure 6.13: P2P validation protocol (NZ: Actual Layout): Battery life illustration for
MBCR routing with routing paths shown for 2 arbitrary sensors. Sink is the star in the
ring topology
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6.3 Detection Accuracy Results

In terms of error detection accuracy, both the centralized and P2P algorithms performed

equally well on all datasets, consistently identifying the faulty sensors and reporting zero false

positives at an isocontour threshold of k = 3. For the NZ dataset, that threshold successfully

reported anomalies due to faults as well as abnormal seismic activity. We manually inspected

potential false positives and noticed that there were indeed deviations in the data when errors

were reported.

6.4 Reachability Results

We designed experiments on our simulator that illustrate the impact of the P2P and central-

ized validation protocols on sensor network longevity and reachability. We evaluated both

protocols on three different datasets having different sensor layouts. In general, the results

show that reachability is maximized with our P2P protocol using MBCR routing. The P2P

protocol also improves longevity up until sensors get disconnected. Once sensors are discon-

nected, the centralized protocol provides better longevity due to less CPU drain. However

that advantage of the centralized protocol is irrelevant because the sensors are effectively

dead from the sink’s perspective once they are disconnected.

6.4.1 Notation for Metrics

We describe our evaluation metrics, stated in Section 2, formally in this subsection.

Let Λ(t) = λ be the number of sensors that are dead (due to battery depletion) at time t.

Then Longevity(λ) = min{t : Λ(t) = λ}. In other words, longevity can be described as

the inverse function of Λ(t). However, illustrating Λ(t) is more intuitive because functions

of time are more commonly illustrated. Therefore, we illustrate Λ(t) instead.

Let Ω(t) = ω be the number of sensors that have lost end-to-end connectivity with the

sink (in other words, become unreachable) at time t.

Then Reachability(ω) = min{t : Ω(t) = ω}. In other words, reachability can be described
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as the inverse function of Ω(t). However, illustrating Ω(t) is more intuitive for the same

reasons as it was for Λ(t).

The system should ideally have both high Longevity and high Reachability. That is

because we want the sensors to last longer and be reachable for longer periods of time.

6.4.2 Berkeley Dataset (Actual Layout)

Figure 6.14(a) is in agreement with Figs. 6.4 and 6.5. As shown in Fig. 6.14(a), the P2P

approach improves reachability for all of the sensors in MBCR and 85% of the sensors

in static routing. The remaining few sensors that survived in static routing were on few

or zero multi-hop routes to begin with because of their location in the lab. Thus, their

communication overhead was the same in both protocols, and the computation overhead

high in P2P.

For 50% of the sensors in static routing, the P2P protocol improved reachability by over

4× that of the centralized protocol. Those sensors became unreachable when the root nodes

they forwarded through died. MBCR improved their reachability because it dynamically

found a new route to maintain connectivity with the sink. Therefore, our P2P protocol had

lesser of an advantage over the centralized protocol with MBCR routing.

6.4.3 Berkeley Dataset (Grid Layout)

It is clear from Fig. 6.15 that the P2P approach improves reachability by three to four times.

The MBCR routing protocol provides negligible improvement over static routing in reacha-

bility of the network as a whole, not favoring any specific sensors for greater reachability.
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Figure 6.14: Results for Intel Berkeley Dataset (Actual Layout). The inverse functions of
Longevity and Reachability, which are the number of sensors dead and unreachable,
respectively, are plotted.
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Figure 6.15: Results for Intel Berkeley Dataset (Grid Layout). The inverse functions of
Longevity and Reachability, which are the number of sensors dead and unreachable,
respectively, are plotted.
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6.4.4 TAO Dataset Experiments

In this layout, all 8 sensors were placed in a linear physical topology to resemble their actual

placement on the equator. The sink was placed at one end. The P2P protocol improved

reachability by 4.5× over the centralized protocol for both static and MBCR routing, as

shown in Fig. 6.16.

6.4.5 NZ Dataset Experiments

The P2P protocol improved reachability by 60% and 30% over the centralized protocol

for static and MBCR routing, respectively for 60% of sensors, as illustrated in Fig. 6.17.

The P2P protocol performed equally well with static and MBCR routing because of a lack

of routing options in the limited topology (reachability was extended by MBCR by only

two days, and the overlapping curves are not shown separately in the figure to improve

readability).
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Figure 6.16: Results for TAO Dataset. The inverse functions of Longevity and Reachability,
which are the number of sensors dead and unreachable, respectively, are plotted.
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Figure 6.17: Results for NZ Dataset. The inverse functions of Longevity and Reachability,
which are the number of sensors dead and unreachable, respectively, are plotted.
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CHAPTER 7

RELATED WORK

There is an extensive literature on the design of anomaly detection protocols (surveyed

in [27]), and on energy-efficient protocols for WSNs (surveyed in [9]). The literatures on

those two topics are largely separate, despite the need for an integrated solution. The topics

have separately received attention from the dependable systems and networks community [7,

13,14,17,19], as cited throughout the thesis.

Elnahrawy and Nath [28] leverage contextual information in the form of spatial correlations

to detect anomalies, similar to our approach. However, they fail to address the impact of

adding validation features on sensor battery and WSN survivability.

Paola et al. [29], propose an adaptive distributed outlier detector algorithm to detect

faults in WSNs. The algorithm overlays a Bayesian network on the network topology that

propagates belief in the sensor’s correctness. The limitation of that approach is that con-

ditional probabilities on the hidden variables in the Bayesian network need to be computed

for each sensor offline using supervised learning. In contrast, our approach is completely

unsupervised, significantly simplifying its installation and set-up.

Dua et al. [30] rely on a hardware-based trusted platform module (TPM) on each sensor

to enable trust by attesting to the integrity of the data. We do not require an expensive

TPM approach because we assume that a sensor may report false data, but not maliciously

or in collusion with others.

Meng et al. [11] present two techniques to ascertain the true value reported by multiple,

possibly unreliable sensors by leveraging the correlation among different sensors. In their

system, the sensors act as clients and submit their information to a centralized server. The

server solves an optimization problem to detect anomalies. Our method takes a different

approach and allows each sensor to act locally as a measurement validator to minimize the
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overhead of routing packets through the WSN to a centralized server.

Rajasegarar et al. [31] propose an in-network anomaly detector that uses a cluster-based

approach for energy efficiency. However, the way the authors measure dissimilarity and

form clusters differs from our approach. The authors use Euclidean distances as a way to

measure dissimilarity and use a fixed-width clustering algorithm, while we use regression

based techniques to measure dissimilarity.

Branch et al. [32] also demonstrate an in-network anomaly detection approach, but they

make the assumption that every sensor in the network has to be made aware of the anomaly.

We relax that assumption in our model and require that a quorum of validating sensors in

a group be aware of the anomalous sensor in that group. This results in reduced message

transmission in the power-constrained network, yet it effectively and efficiently serves the

purpose of identifying the faulty sensor.

A patent by Samsung [33] proposes a scheme in which an aggregator collects information

from a number of sensors and informs the base station (sink). A base station selects one or

more verifiers and commands the aggregator to submit the information to the verifiers for

verification. The verifiers choose a random subset of the sensors and query them to determine

whether the aggregator’s result is truthful. This differs from our approach, in which every

sensor could in theory act as a validator with no explicit coordination or command from an

aggregator or base station.

Sundaram and Eugster [17] provide a lightweight tracing mechanism for debugging sensor

networks when messages are lost, dropped or received out of order. We do not consider such

errors, and instead focus on measurement errors.

Zhang and Liu [34] present DataGuard, a software-based approach to protect the integrity

of the memory and software running on the sensors from attacks. Unlike our work, that

approach is not concerned with detecting non-malicious measurement errors.

Khalil et al. [13] present SLAM, a method to monitor neighboring sensors for suspicious

behavior using a Sleep-Wake protocol that extends battery life. While our approach can

use similar sleep-wake methods, we monitor sensors for erroneous measurements, and not

suspicious behavior.

Basile et al. [19] provide a method that uses Hidden Markov Models to characterize anoma-
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lies as caused by malicious or non-malicious faults. That method can be used in conjunction

with our work, if a network administrator desired to make that differentiation.

Liu et al. [7] describe the detection of erroneous measurements in structural health moni-

toring applications. They do no consider the impact of their methods on sensor battery life,

and their approaches may dramatically benefit from our work.
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CHAPTER 8

CONCLUSION

In this thesis, we developed a P2P protocol that detects erroneous measurements in a WSN

while simultaneously minimizing the impact of the detection overhead on its reachability.

Using a simulation tool built to evaluate the protocol, we confirmed our hypothesis that

sensor networks that employ the naive centralized error detection approach will drain sensors

near the sink, disconnecting sensors farther away from it. In contrast, the P2P approach is

less harsh on the sensors near the sink. The P2P protocol trades off computation savings for

communication savings; it moves the onus of error detection from the sink onto the sensors

themselves, and in doing so, it minimizes the number of messages required to report an error.

Since communication consumes more energy on a sensor than computation, that trade-off

effectively allows sensors to remain connected to the sink for a significantly longer period of

time.

In our distributed protocol, anomalous data from erroneous sensors were flagged by the

sensors themselves and reported to the sink. In future work, we may explore a self-healing

approach in which sensors report anomalies to a validators in the network that are nearer

to them than the sink. A validator would command an erroneous sensor to stop measuring

and reporting data. That would obviate the need to report to the sink, saving even more

energy. However, the sink would lose some knowledge of what is happening in the network

and therein lies a trade-off.
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APPENDIX A

UNSUITABLE ANOMALY DETECTION
APPROACHES

In this appendix we describe anomaly detection approaches that were considered, but not

adopted because of their unsuitability for the purpose of validating sensor measurements.

A.1 OLS Linear Regression

Our first thought was to use ordinary least squares (OLS) linear regression because we

observed that sensor values tended to be linearly related, as seen in Fig. 3.3, in all our

datasets.

Consider two sensors S(1) and S(19) whose measurements at time t, S
(1)
t and S

(19)
t , are

linearly related as follows:

S
(19)
t = mS

(1)
t + c+ ε (A.1)

The variables m and c are scalars representing the slope and intercept of the linear re-

lationship, and the residual ε ∼ N(0, σ2) represents Gaussian white noise in the relative

measurements. Given this Gaussian assumption, which is also made in [10], OLS linear

regression is solved by minimizing the L2-norm of the residuals (which is itself a vector of ε

values obtained from T latest sensor measurements). Since T is not large, the closed-form

solution for linear regression can be computed without having to resort to CPU-intensive

gradient descent methods.

Consider the scenario in which sensor S(19) validates its measurements with respect to

another sensor S(1) with which it is linearly related. S(19) does so by building a model of

S(1)’s measurements using linear regression and storing the model parameters m, c, and σ.

Those model parameters are estimated using the latest T measurements of S(1), which were
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Figure A.1: NZ dataset: OLS regression used in anomaly detection.

stored in S(19)’s memory. At time t, S(19) computes the residual εt = S
(2)
t − (mS(1) + c) and

compares this to a threshold. This is illustrated in Fig. A.1, where the past residuals (or

fitting errors) of S(1) clearly form a Gaussian distribution.

There are many ways to choose a threshold for anomaly detection, and the choice de-

termines the detection (true positive) and false positive rate. We adopt the common 3σ

threshold, where ε ∼ N(0, σ2). If the observed residual |εt| > 3σ, then the probability that

S
(2)
t is valid given S

(1)
t is P (|εt| > 3σ) = 0.3%, so S

(2)
t will be flagged as anomalous.

The similarity metric is used by each sensor in our protocol to decide which other sensors

should be its reference sensors for the purposes of anomaly detection. If S(1) and S(2) are

perfectly collinear, then εt = S
(2)
t − (mS

(1)
t + c) = 0. If they are highly collinear, then

|εt| = |S(2)
t − (mS

(1)
t + c)| approaches zero. This implies that σ must also approach zero,

since ε ∼ N(0, σ2) can be written as ε = σz, where z ∼ N(0, 1). As a result, high collinearity

implies a smaller σ (sensor measurements are very similar), and low collinearity implies a

larger σ (sensor measurements are dissimilar). Therefore, collinearity is a suitable similarity

metric.

The failure of this method lies in its asymmetry. Symmetry was an essential property

of the algorithm for our protocol, as described in Section 4.5. Figure A.2 shows that even
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Figure A.2: NZ dataset: Failure of OLS regression used in anomaly detection.

though the measurement taken by Sensor 1 appears anomalous with respect to Sensor 19, the

reverse does not hold. The measurement taken by Sensor 19 is not anomalous with respect

to Sensor 1 because of the manner in which the fitting line is drawn by OLS regression. The

line is drawn to minimize the vertical distance (parallel to the vertical axis) between points

and the line.

A.2 TLS Linear Regression

Total least squares (TLS) linear regression or orthogonal regression provides a symmetric

approach to finding a fitting line by finding a line that minimizes the orthogonal distance

between the points and the line.

In order to estimate the line, we can use the Eckart-Young theorem to relate the mini-

mization of the Frobenius norm of the projection errors with the principal components of

the measurement data. We omit the details here, but it can be proven that this method is

symmetric in the fitting line it produces. The projection errors of the original data points

on the fitting line are Gaussian, as shown in Fig. A.3.
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Figure A.3: NZ dataset: TLS regression used in anomaly detection.
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Although this approach provides symmetry, unlike OLS regression, it is not suitable for

anomaly detection. As can be seen in Fig. A.3, the anomalous point lies almost on the best

fit line. Therefore, the approach does not detect the anomaly.

A good approach would not look for anomalies in only one dimension because that could

miss the anomaly in the orthogonal dimension. Therefore we choose to use a two-dimensional

approach leveraging bivariate Gaussian isocontours.

A.3 Correlation and Dot Products

Correlation and dot products have been suggested in related work [27] for anomaly detec-

tion. We believe that these are reasonable similarity metrics, but impractical for anomaly

detection. Both correlation and dot products apply to vectors. Assume that we have T

points of historic data from two sensors. That can produce one value for the correlation or

the dot product. With that one value it is difficult to tell whether a new pair of points from

the two sensors is anomalous or not. One would need to calculate the change that the new

value causes to the correlation or dot product, assuming that those values do not tend to

change much (to the best of our knowledge, there is no well-known underlying probabilistic

behavior associated with that change). In our approach, however, there is a clear decision

boundary constructed from a bivariate normal distribution, which captures the tendency of

the data to cluster together.
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APPENDIX B

SENSOR ID AND NAME MAPPING

B.1 Berkeley Dataset

The sensors were numbered as given in the layout in [2].

B.2 TAO Dataset

0 - sst0n110w

1 - sst0n125w

2 - sst0n140w

3 - sst0n155w

4 - sst0n165e

5 - sst0n170w

6 - sst0n180w

7 - sst0n95w

B.3 NZ Dataset

0 - APZ.HHZ.10.NZ

1 - BFZ.HHZ.10.NZ

2 - BKZ.HHZ.10.NZ

3 - COVZ.HHZ.10.NZ

4 - CTZ.HHZ.10.NZ
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5 - CVZ.HHZ.10.NZ

6 - DCZ.HHZ.10.NZ

7 - DSZ.HHZ.10.NZ

8 - EAZ.HHZ.10.NZ

9 - ETVZ.HHZ.10.NZ

10 - FOZ.HHZ.10.NZ

11 - FWVZ.HHZ.10.NZ

12 - GLKZ.HHZ.10.NZ

13 - GRZ.HHZ.10.NZ

14 - GVZ.HHZ.10.NZ

15 - HAZ.HHZ.10.NZ

16 - MAVZ.HHZ.10.NZ

17 - MLZ.HHZ.10.NZ

18 - MQZ.HHZ.10.NZ

19 - MRZ.HHZ.10.NZ

20 - MSZ.HHZ.10.NZ

21 - MWZ.HHZ.10.NZ

22 - MXZ.HHZ.10.NZ

23 - PUZ.HHZ.10.NZ

24 - PXZ.HHZ.10.NZ

25 - PYZ.HHZ.10.NZ

26 - THZ.HHZ.10.NZ

27 - TLZ.HHZ.10.NZ

28 - TMVZ.HHZ.10.NZ

29 - TOZ.HHZ.10.NZ

30 - TRVZ.HHZ.10.NZ

31 - TSZ.HHZ.10.NZ

32 - TUZ.HHZ.10.NZ

33 - WCZ.HHZ.10.NZ

34 - WEL.HHZ.10.NZ
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35 - WHVZ.HHZ.10.NZ

36 - WHZ.HHZ.10.NZ

37 - WIZ.HHZ.10.NZ

38 - WKZ.HHZ.10.NZ

39 - WSRZ.HHZ.10.NZ

40 - WVZ.HHZ.10.NZ
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