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Abstract	

Smartphone	capabilities	have	been	expanding	rapidly	since	Apple	Inc.	introduced	the	iPhone	in	early	

2007.	Today’s	smartphones	offer	decent	computational	power,	good	internet	connectivity	and	high-

pixel-count	cameras.		In	this	thesis,	we	leverage	these	resources	in	novel	ways,	using	a	smartphone	

CMOS	camera	as	a	sensing	device	and	performing	biological	analyses	immediately	on	the	smartphone.	

We	show	two	novel	ways	to	exploit	the	capacities	of	the	smartphone	and	discuss	the	challenges	that	we	

faced	in	the	development	of	these	applications.	

We	first	demonstrate	a	mobile	system	to	identify	counterfeit	and	substandard	drug	products	effectively	

and	inexpensively.	Our	system	costs	roughly	$250,	which	is	affordable	in	developing	countries	in	Africa	

and	Asia,	where	counterfeit	and	substandard	drug	products	are	flooding	the	markets.	The	system	also	

enables	analyses	at	the	point	of	testing,	which	is	particularly	valuable	when	laboratory	facilities	are	

remote	or	unavailable.	The	system	consists	of	a	3D-printed	cradle,	a	cheap	Android	based	smartphone	

and	an	UV	lamp.	The	system	is	inspired	by	the	use	of	the	thin	layer	chromatography	(TLC)	method,	

which	is	known	to	be	efficient	in	verifying	the	identity	of	drug	products	from	unknown	sources.	The	core	

analysis	of	a	TLC	plate	is	performed	though	a	series	of	image	processing	algorithms	on	the	Android	

smartphone.	For	drugs	with	a	single	active	pharmaceutical	ingredient	(API)	that	absorbs	ultraviolet	(UV)	

light,	the	mobile	phone-based	detection	system	is	able	to	discern	5%	drug	concentration	differences,	

which	is	equivalent	to	a	commercially	available	lab-based	desktop	TLC	reader	priced	at	roughly	$40,000.		

We	then	demonstrate	absorption-based	biological	assays	by	performing	an	enzyme-linked	

immunosorbent	assay	(ELISA)	experiment.	ELISA	is	an	assay	technique	used	to	detect	and	quantify	

substances	such	as	proteins,	antibodies,	hormones,	etc.	When	combined	with	some	simple	optical	

components,	the	rear-facing	CMOS	camera	in	a	smartphone	can	capture	spectral	data	for	biological	

samples.		We	developed	image	processing	algorithms	to	calibrate	and	to	analyze	these	spectra	to	match	

the	results	produced	by	conventional	laboratory	instruments.	In	order	to	enable	unskilled	users	to	

perform	ELISA	experiment	accurately,	we	integrated	these	techniques	into	an	Android	application	with	a	

simple	user	interface	that	walks	users	though	assay	steps.	

Finally,	we	generalize	some	of	the	lessons	learned	and	challenges	faced	during	development	of	the	TLC	

and	ELISA	applications	in	order	to	provide	a	broader	and	more	useful	picture	for	developing	smartphone	

bioassay	applications	in	general.	 	
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1.	Introduction	
In	early	2007,	Apple	Inc.	introduced	the	iPhone,	one	of	the	first	smartphones	having	a	multi-touch	

interface.	The	IPhone	debut	was	a	great	success	and	drove	the	industry	toward	the	smartphone	

generation.	Since	then,	the	capabilities	of	smartphones	have	quickly	expanded.	Today,	we	can	buy	a	

smartphone	with	decent	computational	power,	good	internet	connectivity	and	high-pixel-count	cameras	

with	a	few	hundred	dollars.	Inspired	by	the	rapid	advance	in	smartphone	technology,	many	applications	

have	been	developed	to	fulfill	humanity’s	needs	in	areas	such	as	social	networks,	messaging,	web	

searching,	online	dating,	etc.	In	this	thesis,	we	explore	the	possibility	of	leveraging	smartphone	

capabilities	in	an	unprecedented	way	by	utilizing	a	smartphone	for	performing	biological	experiments.	

Traditionally,	a	typical	biological	equipment	needs	a	high-end	camera	to	capture	biological	image	data	

and	a	desktop	computer	to	process	the	data.	Since	we	have	a	decent	computational	power	and	good	

cameras	on	a	smartphone,	with	appropriate	extensions,	we	can	turn	a	smartphone	CMOS	camera	into	a	

sensing	device	and	perform	biological	analyses	directly	on	the	smartphone.	Towards	that	end,	we	

demonstrate	two	novel	ways	to	exploit	the	capacities	of	the	smartphone:	identification	of	counterfeit	

and	substandard	drug	products	and	absorption-based	biological	assays.	

1.1	Identification	of	counterfeit	and	substandard	drug	products	
Counterfeit	and	substandard	drug	trade,	a	multibillion	dollar	industry,	is	thriving	in	the	markets	of	many	

developing	countries.	According	to	the	World	Health	Organization,	counterfeit	and	substandard	drugs	

account	for	up	to	30%	of	sales	of	pharmaceuticals	in	many	developing	countries	of	Africa	and	parts	of	

Asia	[1].	These	products	pose	severe	health	risks	for	patients	who	receive	doses	that	are	lower	than	

those	that	are	required	for	effectiveness,	or	receive	doses	that	have	no	therapeutic	indication	for	the	

disease	of	concern.	The	most	common	incidences	of	falsified	critical	drugs	are	encountered	in	the	

treatment	of	malaria,	HIV/AIDS,	tuberculosis,	and	cancer,	thus	these	products	pose	an	extreme	health	

risk	to	the	patients	who	take	them.	An	estimated	100,000	deaths	per	year	have	been	linked	to	the	fake	

drug	trade	in	Africa	[2].	Thus,	there	is	an	urgent	demand	for	an	efficient	and	low-cost	technology	for	

identification	of	these	products	in	the	drug	supply	chain.	Furthermore,	such	a	detection	system	can	be	

combined	with	an	information-sharing	network	that	will	enable	such	products	to	be	rapidly	identified	

and	marked	by	their	source,	batch	number,	packaging	and	physical	appearance.		

Thin	layer	chromatography	(TLC),	originally	introduced	in	the	1950s	to	separate	compounds,	is	also	

known	to	be	effective	in	verifying	the	identity	of	drug	compounds,	especially	of	suspicious	drug	

compounds	from	unknown	sources.	TLC	is	performed	on	a	TLC	plate	which	is	a	sheet	of	glass,	plastic	or	
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aluminum	foil,	coated	with	an	absorbent	layer.	After	developing	TLC	plates,	we	need	to	send	them	into	a	

TLC	reader	to	perform	image	capturing	and	then	image	analysis.	Commercial	TLC	readers	incorporating	

flatbed	scanners	or	CCD	cameras,	white	light	illumination	or	high	intensity	UV	lamps	interfacing	with	a	

personal	computer	have	been	developed	and	widely	adopted,	with	prices	in	the	range	of		

US	$5000	-	45000.	These	prices	are	inaccessible	to	labs	in	developing	countries	in	Africa	and	Asia.		

In	this	work,	we	present	a	mobile	TLC	reader	comprising	a	3D-printed	plastic	cradle,	a	Samsung	Galaxy	

Fame	smartphone	and	a	battery-powered	UV	lamp	together	with	a	series	of	efficient	image	processing	

algorithms	to	realize	the	goal	of	smartphone	TLC.	The	system	is	compact,	light-weight	(700	g,	including	

the	smartphone	and	the	UV	lamp	with	four	1.5	V	AA	batteries),	and	inexpensive	(3D-printed	cradle:	US	

$130,	handheld	UV	lamp:	US	$63,	smartphone:	US	$59.99).	While	we	chose	to	use	an	inexpensive	

smartphone	for	affordability	in	developing	countries,	the	approach	demonstrated	can	be	easily	adjusted	

to	any	mobile	device	with	decent	computational	power	and	high	pixel	count	rear-facing	camera.	In	

addition	to	the	detection	hardware,	we	developed	an	Android	application	with	a	series	of	image	

processing	algorithms	to	identify	the	location	and	intensity	of	spots.	Spots	appear	at	positions	related	to	

the	specific	molecular	composition	of	drugs	present	in	the	samples,	and	the	intensities	of	the	spots	are	

related	to	the	concentrations	of	those	drugs.	These	two	together	enable	our	system	to	estimate	both	

the	type	and	the	concentration	of	a	drug	in	an	unknown	sample.	We	compared	our	system	directly	to	

measurements	taken	with	a	commercially	available	densitometer	(TLC	Scanner	3;	CAMAG,	Muttenz,	

Switzerland)	for	a	set	of	TLC	plates	prepared	with	100%,	95%,	and	75%	concentrations	of	nevirapine	(an	

anti-retroviral	product),	amodiaquine	(an	anti-malarial	and	anti-inflammatory	product),	and	

paracetamol	(an	anti-inflammatory	product).	The	results	show	that	the	smartphone-based	TLC	system	

provides	measurements	for	location	and	spot	intensity	that	are	equivalent	to	those	taken	with	the	

commercial	instrument	[3].		

1.2	Absorption-based	biological	assays	
Using	a	basic	spectroscopy	system	to	detect	light	reflected/transmitted	from	a	biosensor	surface,	a	

smartphone-based	detection	instrument	can	be	readily	extended	to	perform	most	common	classes	of	

label-based	assays.	In	this	work,	we	perform	enzyme	linked	immunosorbent	assay	(ELISA)	by	measuring	

the	optical	absorption	spectra	of	a	liquid	test	sample	as	an	enzyme-substrate	interaction,	modulated	by	

the	presence	of	a	specific	analyte	that	generates	colored	products.		

The	system	employed	in	this	work	comprises	a	3D	printed	cradle	and	a	Samsung	Galaxy	S3	smartphone.	

The	cradle	holds	several	optical	components	aligned	so	as	to	maximize	the	intensity	of	light	delivered	to	
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the	phone's	CMOS	camera	sensors.	We	developed	an	application	that	runs	on	the	smartphone	to	enable	

an	unskilled	user	to	perform	assays	accurately,	and	that	provides	assay	results	to	the	user.	ELISA	

requires	per-experiment	standardization	based	on	curve-fitting,	which	can	be	performed	completely	on	

the	phone	so	as	to	eliminate	the	need	for	users	to	perform	data	recording	and	entry	into	a	desktop	

application.	
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2.	Background	

2.1	Drug	identification	using	thin	layer	chromatography	
Originally	invented	to	separate	colored	plant	pigments,	thin	layer	chromatography	(TLC)	evolved	over	

time	and	became	a	method	for	visualization	of	uncolored	compounds	on	exposure	to	UV	radiation.		

Figure	1	illustrates	sample	preparation	of	a	TLC	system.	The	samples	(solutes),	once	in	solution,	are	

applied	onto	a	TLC	plate.	Usually,	three	samples	are	spotted	onto	a	TLC	plate:	the	lower	and	higher	

acceptable	limits	of	the	drug	we	wish	to	identify	and	an	unknown	drug	sample	we	wish	to	test	against.	

The	plate	itself	consists	of	a	solid	support,	for	instance	plastic,	glass	or	aluminum,	coated	with	an	

adsorbent	layer	(stationary	phase)	specially	chosen	for	the	separation	and	fluorescent	compound.	The	

solutes	are	applied	to	the	plate	along	an	origin	line	parallel	to	the	bottom	of	the	plate.	The	plate	is	then	

placed	in	a	tank	(developing	chamber)	containing	an	eluting	solvent	(mobile	phase)	which	flows	over	the	

Figure	1:	(replicated	from	[3])	Illustration	of	TLC	plate	development	process.	TLC	utilizes	a	solid	substrate	support	(most	
commonly	a	200	μm	thick	strip	of	aluminum)	that	is	coated	with	a	stationary	phase	(silica	gel,	layer	thickness:	200	~	250	
μm).	The	stationary	phase	is	infused	with	a	fluorescent	indicator	compound	(manganese	activated	zinc	silicate)	that	
emits	a	broad	band	of	wavelengths	in	the	green	part	of	the	visible	spectrum	when	excited	by	UV	light	(λ	=	254	nm).	The	
substrate	and	stationary	phase	compose	the	TLC	plate.	TLC	plates	are	mass-manufactured	in	standard	size	format,	and	
the	conventional	format	used	in	our	work	is	50	×	100	mm.	Chromatographic	separation	using	TLC	is	initiated	by	
manually	spotting	aliquots	of	the	drug	sample	and	the	references	along	an	origin	line	placed	15	mm	from	one	edge.	The	
origin	line	is	marked	with	a	horizontally	drawn	pencil	line.	After	the	spots	dry,	the	plates	are	placed	into	a	developing	
solution	(mobile	phase)	in	a	closed	jar.	The	mobile	phase	travels	vertically	along	the	stationary	phase	via	capillary	
action.	As	the	mobile	phase	moves	past	the	origin	line,	the	drug	components	are	drawn	upwards	and	travel	with	the	
mobile	phase	through	the	stationary	phase	at	different	rates	depending	on	their	molecular	polarities.	The	distance	that	
the	mobile	phase	front	(or	solvent	front)	should	travel	during	the	test	is	typically	marked	with	a	pencil-drawn	line	
before	the	plate	development.	The	TLC	plate	development	is	stopped	when	the	mobile	phase	reaches	this	line.	The	
plate	is	then	removed	from	the	jar	and	allowed	to	dry.	Even	though	the	principal	spots	are	not	visible	without	UV	
illumination,	they	will	be	located	between	the	origin	line	and	the	solvent	front	line.	This	TLC	development	process	takes	
an	hour.	
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plate	due	to	capillary	action	and	drives	the	solute	away	from	its	origin	across	the	plate.	Before	the	

solvent	front	reaches	the	plate’s	top	end,	the	plate	is	removed	from	the	tank	and	the	solvent’s	finish	

position	is	marked	as	the	front	line.	After	development,	the	chromatoplate	is	dried	off	to	remove	all	

residual	solvent.	For	UV-absorbing	drugs,	when	the	plate	is	illuminated	with	the	UV	light,	the	fluorescent	

compound	emits	green	light	that	is	reduced	in	intensity	by	the	UV-absorbing	drugs,	resulting	in	dark	

spots	on	a	bright	green	background.		

Drug	identity	is	verified	by	retention	factor	(𝑅")	which	is	defined	as:		

𝑅" =
𝑡ℎ𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑	𝑏𝑦	𝑡ℎ𝑒	𝑠𝑝𝑜𝑡

𝑡ℎ𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑	𝑏𝑦	𝑡ℎ𝑒	𝑠𝑜𝑙𝑣𝑒𝑛𝑡	𝑓𝑟𝑜𝑛𝑡
	

Whether	an	unknown	sample	contains	the	desired	active	ingredient	can	be	determined	by	comparing	

the	𝑅"	of	the	unknown	sample	with	the	𝑅"	of	the	calibration	samples.	For	qualitative	analysis,	there	is	

strong	evidence	that	the	drugs	in	the	test	and	standard	solution	are	identical	if	the	spots	of	both	

samples	show	roughly	the	same	𝑅"	values.	When	the	unknown	sample	identity	is	confirmed	to	be	the	

same	as	calibration	samples,	the	concentration	of	the	unknown	sample	can	be	evaluated	using	spot	

intensity.	By	comparing	the	spot	intensity	resulting	from	the	unknown	sample	to	the	calibration	

samples,	the	concentration	of	the	target	drug	in	the	unknown	sample	can	be	estimated.	

2.2	Enzyme	linked	immunosorbent	assays	(ELISA)	
The	following	description	of	ELISA	was	written	by	Kenneth	D.	Long	[4]:	

“ELISA	assays	represent	one	of	the	most	widely	used	methods	for	detection	of	a	substance	(typically	an	

antigen,	such	as	a	virus	or	a	protein)	in	a	liquid	sample.	They	are	commonly	used	as	medical	diagnostic	

tests,	but	they	have	also	been	adopted	for	many	other	applications	that	include	plant	pathology	and	

various	forms	of	manufacturing	quality	control.	Briefly,	a	solid	surface	(such	as	the	surface	of	a	

microplate	well)	is	prepared	with	an	antibody	that	selectively	captures	an	analyte	from	a	test	sample.	

After	capture	of	the	analyte,	a	secondary	antibody	(recognizing	a	different	location	on	the	analyte	than	

the	capture	antibody)	is	applied	to	the	surface.	The	secondary	antibody	is	linked	to	an	enzyme,	and	a	

substrate	to	that	enzyme	is	introduced	to	the	liquid	solution,	so	that	the	enzyme-substrate	interaction	

generates	colored	products.	In	this	process,	the	enzyme	is	not	consumed,	so	the	amount	of	colored	

product	accumulates	the	longer	the	interaction	can	occur.	Based	upon	this	basic	principle,	several	

distinct	types	of	ELISA	assays	have	been	developed	(Indirect	ELISA,	Sandwich	ELISA,	Competitive	ELISA),	

which	share	the	detection	method	of	quantifying	the	“optical	density”	of	the	liquid	sample	to	determine	
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the	concentration	of	colored	reaction	products.	ELISA	assays	are	performed	in	a	transparent	container	

of	known	dimensions	(a	“cuvette”),	by	measuring	the	intensity	of	light	transmission	through	the	cuvette	

at	specific	wavelengths.	

“Because	ELISA	can	measure	the	presence	of	an	antibody	or	antigen	in	a	sample,	it	has	proven	to	be	a	

useful	tool	for	determining	serum	antibody	concentrations	(such	as	for	the	HIV	and	hepatitis	B	viruses),	

and	for	detection	of	allergens	in	food.	ELISA	is	also	used	in	toxicology	applications	for	detection	of	

certain	classes	of	drugs.	A	wide	variety	of	laboratory	ELISA	assay	readers,	configured	for	use	with	

microplates,	are	commercially	available,	while	only	a	few	handheld	portable	ELISA	readers	are	offered	

for	specific	applications.	Smartphone-based	ELISA	detection	has	not	been	demonstrated	to	our	

knowledge.”	
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3.	Thin	layer	chromatography	context	
In	this	study,	we	selected	drugs	that	are	often	targeted	for	imitation	by	unscrupulous	drug	

manufactures:	paracetamol,	nevirapine,	and	amodiaquine.	Paracetamol	is	a	drug	used	to	treat	pain	and	

fever	[5].	Nevirapine	is	a	drug	used	to	treat	and	prevent	HIV/AIDS,	particularly	HIV-1	[6].	Amodiaquine	is	

a	drug	used	to	treat	malaria	[7].	Each	drug	is	sold	in	tablet	form	and	contains	a	single	API	that	absorbs	

UV	light	[8].	Paracetamol	was	obtained	from	Zenufa	Laboratories,	Ltd.	(Dar-Es-Salaam,	Tanzania);	

nevirapine	from	Laboratories,	Ltd.	(Secunderabad,	India);	amodiaquine	from	Shelys	Pharmaceutical,	Ltd.	

(Dar-Es-Salaam,	Tanzania).	For	other	TLC	preparation	materials,	please	refer	to	our	paper	[3].		

3.1	Preparation	of	sample	stock	and	working	solutions	
The	sample	stock	and	working	solutions	were	prepared	by	Dr.	Eliangiringa	Kaale.	The	following	is	his	

description:	

“The	procedures	used	for	performing	the	TLC	spotting	and	development	are	described	in	the	Global	

Pharma	Health	Fund	Minilab®	manuals.	One	tablet	(paracetamol	500	mg,	amodiaquine	200	mg,	or	

nevirapine	200	mg)	was	ground	into	a	fine	powder	while	wrapped	in	aluminum	foil,	and	the	powder	was	

transferred	into	a	100-mL	volumetric	flask	containing	40	mL	of	methanol.	The	flask	was	shaken	for	three	

minutes	to	dissolve	the	API	and	was	set	to	stand	for	approximately	five	minutes	to	allow	the	undissolved	

residue	to	settle,	leaving	a	clear	supernatant	liquid.	Appropriate	amounts	of	methanol	were	then	added	

to	the	flask	to	obtain	the	target	of	5	mg/ml.	Aliquots	were	drawn	from	the	supernatant	stock	sample	

solutions	to	prepare	100%,	95%,	and	75%	solutions	(Table	1)”.	[3]	

Table	1:	Summary	of	sample	stock	and	working	solution	concentrations	

Pharmaceutical product 
Stock sample 

solution [mg/ml] 

Working sample solutions [mg/ml] 

100% 95% 75% 

Paracetamol 5.0 1.25 1.19 0.94 

Amodiaquine 5.0 0.63 0.59 0.47 

Nevirapine 5.0 1.25 1.19 0.94 
 

* The amounts of API added depended on the absorptivity of the compound; the higher the absorptivity, the lower 
the concentration to keep the quench at an optimum level.   
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3.2	Chromatography	and	densitometric	scanning	
The	chromatography	and	densitometric	scanning	were	performed	by	Dr.	Thomas	Layloff.	The	procedure	
he	followed	to	perform	the	scanning	was	as	follows:	

“The	solvent	front	line	was	pre-marked	at	70	mm	from	the	bottom	of	the	TLC	plate.	Two	microliters	of	

the	test	solutions	were	manually	placed	on	the	plate	along	the	origin	line	as	a	spot	using	precision		

2-microliter	capillaries.	After	spotting,	the	plates	were	air-dried	and	then	placed	into	the	developing	jar.	

The	developing	jar	was	lined	with	filter	paper	on	one	long	side	to	aid	saturation,	and	the	mobile	phase	

was	poured	into	the	jar.	The	composition	of	the	mobile	phase	for	each	drug	is	shown	in	Table	2.	The	jar	

lid	was	closed	for	20	minutes	to	saturate	the	tank	before	the	plate	was	developed.	After	the	plate	was	

placed	into	the	jar	and	the	mobile	phase	front	proceeded	to	the	pre-marked	solvent	front	line,	the	plate	

was	removed	and	allowed	to	dry	for	three	to	five	minutes.	After	drying,	the	plates	were	scanned	using	

the	conventional	densitometer	(UV	illumination:	peak	=	254	nm).	The	detector	slit	parameters	were	set	

at	6	×	0.45	mm,	the	scanning	speed	was	set	at	20	mm/s,	and	the	data	resolution	was	set	at	100	m/step.	

The	data	capture	and	calculations	obtained	from	the	scanned	plates	were	performed	with	the	

instrument-supplied	planar	chromatography	manager	software	(winCATS	1.4.3;	CAMAG).”[3]	

Table	2:	Mobile	phase	composition	ratio	

Pharmaceutical product 
Composition ratios 

Ethyl acetate Toluene Methanol Ammonia 

Paracetamol1 24 · 3 1 

Amodiaquine2 10 · 40 1 

Nevirapine3 11 4 5 · 
 

(1) Pharmweb Web site. http://www.pharmweb.net/pwmirror/library/tlc/tlcall.pdf (accessed Dec 26, 2015).  
(2) GPHF-Minilab Web site. http://www.gphf.org/images/downloads/previous_manuals/manual_2_vol4_en.pdf (accessed Dec 26, 2015).  
(3) GPHF-Minilab Web site. http://www.gphf.org/images/downloads/previous_manuals/manual_2_vol3_en.pdf (accessed Dec 26, 2015).  

3.3	Smartphone	thin	layer	chromatography	analyzer	
Our	smartphone	TLC	analyzer	hardware	as	described	in	Fig.	2	consists	of	a	cradle	fabricated	using	a	3D-

printer,	a	Samsung	Fame	smartphone	and	an	UV	lamp.	The	cradle	acts	as	a	container	to	hold	the	

smartphone	and	the	UV	lamp.	We	chose	Samsung	Fame	based	on	the	balance	of	good	camera	

capabilities	and	reasonable	price.	Another	benefit	of	this	smartphone	is	that	it	runs	the	Android	

operating	system,	which	allows	us	to	modify	settings	such	as	white	balance,	exposure	time	etc.	The	UV	

lamp	is	a	small,	handheld	model	that	provides	UV	illumination	centered	at	254nm.	To	keep	the	UV	lamp	
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lighting	stable,	we	need	to	warm	it	up	for	about	200	seconds.	The	hardware	was	designed	and	

fabricated	by	Hojeong	Yu.		

Figure	2(f)	shows	a	sample	TLC	plate	image	captured	by	our	system.	From	the	sample	TLC	image,	we	

determine	the	origin	line,	the	solvent	front,	and	then	segment	out	spots.	Next,	we	identify	spot	centers	

and	calculate	𝑅"	values	as	defined	in	Section	2.1.	Finally,	if	𝑅"		values	are	roughly	the	same,	we	

distinguish	spots	based	on	spot	intensities,	as	described	in	Section	4.4.		

	

Figure	2:	Illustration	of	the	smartphone	TLC	analyzer	and	photographs	of	the	system.	(a,	b)	Illustration	of	the	cradle	that	
holds	a	smartphone,	a	UV	lamp,	and	a	TLC	plate.	(c)	Illustration	of	the	cover	provides	a	dark	environment	and	that	
mechanically	supports	the	lamp.	(d)	Photo	of	the	assembled	smartphone	TLC	analyzer.	(e)	Photo	of	the	TLC	plate	analysis	
(image	capturing/processing).	(f)	Captured	full	image	of	the	TLC	plate.		
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4.	TLC	image	analysis	algorithms	
This	section	describes	image	processing	algorithms	that	we	developed	to	perform	TLC	analysis	on	a	

smartphone.	We	start	with	pre-processing	steps,	then	show	how	we	detect	the	origin	and	the	solvent	

front	line.	After	that,	we	present	our	spot	detection	algorithm	and	end	with	how	we	measure	UV	light	

absorption	to	estimate	drug	concentration.	

4.1	Pre-processing	
An	unprocessed	RGB	image	taken	by	the	smartphone	consists	of	a	matrix	of	2560	x	1920	x	3	pixels,	

where	pixel	value	is	an	integer	in	the	range	[0,	255].	To	simplify	processing,	we	convert	pixel	values	to	

floating	point	numbers	in	the	range	[0,	1].	Images	captured	by	CMOS	sensors	suffer	from	various	noise	

sources,	including	shot	noise,	thermal	noise,	and	readout	noise,	that	lead	to	fairly	high	variance	in	

individual	pixel	measurements	if	only	a	single	image	is	used,	as	described	in	Chapter	6.3.	To	increase	

signal-to-noise	ratio	(SNR),	we	average	10	consecutive	images	to	generate	a	single	image.	Thus,	from	

this	point,	the	TLC	image	refers	to	the	averaged	image.	The	black	boundaries	that	appear	in	the	TLC	

image	are	due	to	physical	constraints	in	the	cradle,	and	are	fixed	across	images.	Consequently,	to	make	

subsequent	steps	become	easier,	we	remove	those	boundaries.	Since	for	detecting	lines	and	segmenting	

out	spots,	luminance	matters	most	for	us,	we	convert	the	image	from	RGB	color	space	to	YCrCb	color	

space	using	the	following	formula	and	process	on	the	luminance	channel	(Y).	There	is	no	unique	way	to	

convert	from	RGB	to	illuminance;	the	way	we	demonstrate	here	is	based	on	the	human	perception	and	

the	conversion	works	for	us	so	we	just	stick	to	the	formula	for	now.	

𝑌 = 0.2989𝑅 + 0.5866𝐺 + 0.1144𝐵	

4.2	Origin	and	solvent	front	detection		
Our	detection	algorithm	for	determining	the	position	of	the	origin	line	and	solvent	front	line	is	derived	

from	edge	detection	algorithms	[9]	with	an	assumption	that	these	lines	are	parallel	to	the	top	and	

bottom	edges	of	the	TLC	plate.	First,	we	blur	the	TLC	image	by	filtering	the	TLC	image	with	a	2D	Gaussian	

filter	with	sigma	of	four.	This	step	smooths	the	image	and	removes	high-frequency	noise.	However,	the	

lines	that	we	need	to	detect	belong	to	the	high-frequency	part	of	the	image	as	well.	Therefore,	we	face	

a	tradeoff	between	blurring	and	localizing	the	edges.	The	tradeoff	is	determined	by	the	width	(sigma)	of	

the	Gaussian	filter.	Sigma	of	four	works	well	for	our	dataset	in	terms	of	blurring	the	image	without	

losing	the	localization	of	the	edges.	Also,	when	applying	a	2D	Gaussian	filter,	it	is	customary	to	choose	a	

filter	size	of	six	sigma	with	an	odd	width	and	height	for	symmetry	with	the	central	peak.	With	sigma	of	

four,	six	sigma	is	24,	our	filter	size	is	25	by	25.	After	smoothing	with	the	Gaussian,	we	filter	the	resulting	
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image	with	the	filter	[1	-2	1]T.	This	step	serves	the	purpose	of	taking	the	second	derivative	of	the	image	

in	the	vertical	direction.	Since	we	assume	that	lines	are	parallel	to	the	top	and	bottom	edges	of	the	TLC	

plate,	we	sum	the	result	of	the	previous	step	in	the	horizontal	direction	to	make	the	final	localization	

step	easier.	To	localize	lines	in	the	last	step,	we	search	for	the	positions	of	the	two	strongest	local	peaks.	

A	local	peak	is	defined	as	a	data	sample	larger	than	its	two	neighbors.	The	peak	near	the	top	of	the	

image	corresponds	to	the	solvent	front,	and	the	peak	near	the	bottom	of	the	image	corresponds	to	the	

origin.	The	front	line	and	origin	line	detection	algorithm	is	summarized	as	Algorithm	1	and	an	instance	of	

executing	the	algorithm	is	illustrated	in	Figure	3.	After	locating	the	origin	line	and	the	front	line,	we	crop	

them	from	the	original	image	and	use	the	cropped	original	for	the	spot	detection	step.		

Algorithm	1:	Origin	and	Solvent	Front	Detection	

1. Filter	the	TLC	image	by	2D	Gaussian	filter	with	sigma	of	four.	

2. Filter	the	result	of	step	1	with	filter	[1	-2	1]T.	

3. Horizontally	sum	the	result	of	step	2.		

4. Search	for	the	positions	of	two	strongest	local	peaks.	The	peak	near	the	top	of	the	image	

corresponds	to	the	solvent	front,	and	the	peak	near	the	bottom	of	the	image	corresponds	to	the	

origin.		

Figure	3:	(a)	Result	of	horizontally	summing	filtered	response.	(b)	Result	of	lines	detection	algorithm.	

(a)	 (b)	
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4.3	Spot	detection		
Spots	are	composed	of	the	lowest	intensity	pixels	in	a	TLC	image.	Therefore,	we	choose	to	employ	global	

thresholding,	which	means	using	a	threshold	to	convert	an	image	into	a	binary	image.	Pixels	with	values	

at	or	above	the	threshold	are	assigned	a	value	of	1,	and	pixels	with	values	below	the	threshold	are	

assigned	a	value	of	0.	Global	thresholding	is	simple,	fast,	and	requires	little	computation.	However,	

variations	in	the	UV	illumination	intensity	across	the	plate	cause	problems	with	direct	application	of	

global	thresholding.	We	correct	for	this	effect	by	multiplying	the	image	by	the	inverse	of	a	blank	plate	

image.	Figure	4(a)	illustrates	the	result	of	this	normalization	step.	After	blank	plate	correction,	we	

segment	out	spots	by	setting	a	threshold	that	separates	out	the	darkest	4%	pixels.	This	threshold	was	

chosen	experimentally	using	several	plates	in	our	dataset,	then	shown	to	be	effective	for	the	remaining	

plates	in	the	dataset	(27	in	total),	and	results	in	good	visual	results	for	spot	segmentation.	We	further	

clean	up	noise	in	the	binary	image	using	a	morphological	image	processing	technique.	Figure	4(b)	

illustrates	the	result	of	segmentation.	At	this	stage,	we	have	a	binarized	image	with	spots	separated	

from	the	background.	Spots	are	then	located	using	a	connected	component	algorithm	with	eight	

connectivity,	which	means	that	any	two	pixels	are	considered	connected	whenever	they	are	adjacent	in	

horizontal,	vertical,	or	diagonal	directions.	We	then	extract	data	from	the	resulting	components	(each	is	

a	spot).	To	find	the	center	of	a	spot,	we	draw	a	bounding	box	around	the	spot	and	sum	the	region	in	the	

normalized	image	(not	the	binary	one)	in	both	the	vertical	and	horizontal	directions.	The	center	

coordinates	are	located	by	finding	the	minima	of	fitted	quadratic	curves	to	those	1D	summed	signals.	

We	could	use	the	center	of	the	box	as	the	center	of	the	spot,	but	spot	edge	effects	(due	to	residual	

illumination	as	well	as	variations	in	motion	of	the	drug)	can	be	non-uniform,	so	fitting	is	a	better	

approach.	From	the	center	position	of	each	spot,	we	can	derive	the	𝑅"	as	defined	in	Section	2.2.	The	

entire	algorithm	is	summarized	as	Algorithm	2.	At	this	point,	we	can	render	a	decision	whether	the	

unknown	sample	contains	the	same	active	ingredient	as	the	calibration	samples	based	on	𝑅"	values.	If	

the	𝑅"	value	of	the	unknown	sample	is	significantly	different	from	𝑅"	values	of	calibration	samples,	the	

unknown	sample	does	not	contain	the	desired	active	ingredient	and	should	be	rejected.	If	𝑅"	values	are	

roughly	the	same,	we	continue	by	estimating	UV	light	absorption	in	order	to	evaluate	the	concentration	

of	the	unknown	sample.		
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Algorithm	2:	Spot	detection	

1. Multiply	the	image	by	the	inverse	of	a	blank	plate	image	to	obtain	the	corrected	illumination	

image.		

2. Compute	a	histogram	of	image	brightness	and	select	a	threshold	to	separate	the	4%	darkest	

pixels.	

3. Use	global	thresholding	to	obtain	a	binary	image	based	on	the	4%	threshold.	

4. Apply	binary	opening	mathematical	morphological	operator	[10]	with	disk	structure	of	radius	

15,	which	remove	small	dots	that	are	unlikely	the	spot	of	interest.	

5. Locate	spot	regions	using	a	connected	components	algorithm	with	eight	connectivity.	This	step	

produces	a	mask	image	for	each	spot.	

6. Using	the	mask	for	each	spot	in	step	5,	extract	spot	data	from	corrected	illumination	image	from	

step	1.	

7. For	a	spot,	draw	a	bounding	box	around	it,	then	locate	the	center	coordinates	by	finding	the	

minima	of	fitted	second	polynomial	curves	to	the	horizontal	and	vertical	sum	of	the	region.	

8. Derive	the	𝑅"	value	for	each	spot,	which	is	just	the	normalized	vertical	position	of	the	spot	in	the	

photo,	where	0	is	the	origin	line	and	1	is	the	solvent	front	line.	

(a)	 (b)	

Figure	4:	(a)	Result	of	multiplying	the	image	by	the	inverse	of	a	blank	plate	image.	(b)	Result	of	converting	(a)	
into	a	binary	image	by	using	a	global	threshold.	
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4.4	Absorption	measurement		
Although	quantification	of	TLC	measurements	has	received	significant	attention	from	the	chemistry	

research	community,	none	of	the	models	that	we	found	could	be	applied	directly	to	our	system.	In	this	

work,	we	suggest	a	metric	to	quantify	absorption	measurement	of	UV	absorbing	drugs.	Observe	that	the	

amount	of	UV	light	absorbed	depends	on	the	amount	of	active	ingredient	present	on	the	TLC	plate,	

which	in	turn	depends	on	the	concentration	of	the	sample.	Lower	concentrations	absorb	less	UV	light	

and	produce	lighter	spots,	while	higher	concentrations	absorb	more	light	and	produce	darker	spots.	

Thus,	to	quantify	absorption	measurement,	we	integrate	the	absorption	values	of	the	441	pixel	

intensities	around	the	center	of	each	spot	(which	is	10-pixel	distance	from	the	center	of	the	spot	each	

side).	The	number	of	integrated	pixels	was	chosen	empirically	based	on	our	test	TLC	plates.	The	

absorption	value	is	measured	as	1-pixel	intensity,	where	pixel	intensity	ranges	from	0	to	1.	Since	the	TLC	

image	that	we	obtain	from	the	camera	is	in	RGB	color	space,	we	developed	a	technique	to	make	use	of	

all	channel	information	by	linearly	combining	the	channels	using	weights	𝐴D, 𝐴F, and	𝐴J.	

For	each	pixel	of	the	sample	plate	image,	the	normalized	result	is	a	dot	product	between	chosen	

parameters	(𝐴D, 𝐴F, 𝐴J)	and	(𝑅, 𝐺, 𝐵)	red,	green,	blue	pixel	intensity	of	the	sample	plate	subjected	to	

the	constraint	that:		

𝐴D𝑅MN + 	𝐴F𝐺MN + 𝐴J𝐵MN = 1	

where	(𝑅MN, 𝐺MN, 𝐵MN)	are	red,	green,	blue	intensity	of	the	blank	plate.		

Assume	that	quantization	noise	Q	dominates	other	noise	sources	and	is	a	constant.	Since	error	on	R,	G	

and	B	is	Q,	error	on	the	normalized	result	is:		

𝐴DF ∆𝑅 F + 𝐴FF ∆𝐺 F + 𝐴JF ∆𝐵 F	

																																																													= 𝐴DF𝑄F + 𝐴FF𝑄F + 𝐴JF𝑄F	

																																																													= 𝐴DF + 𝐴FF + 𝐴JF 𝑄F	

We	need	to	pick	 𝐴D, 𝐴F, 𝐴J 	to	minimize	 𝐴DF + 𝐴FF + 𝐴JF .	
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Theorem	1:	

𝐴DF + 𝐴FF + 𝐴JF 	is	minimized	when		

𝐴D =
𝑅MN

𝑅MNF + 𝐺MNF + 𝐵MNF
	

𝐴F =
𝐺MN

𝑅MNF + 𝐺MNF + 𝐵MNF
	

𝐴J =
𝐵MN

𝑅MNF + 𝐺MNF + 𝐵MNF
	

Proof:	

By	Cauchy–Schwarz	inequality:	

𝐴DF + 𝐴FF + 𝐴JF 𝑅MNF + 𝐺MNF + 𝐵MNF ≥ 𝐴D𝑅MN + 	𝐴F𝐺MN + 𝐴J𝐵MN = 1	

																													↔ 𝐴DF + 𝐴FF + 𝐴JF ≥ 	
1

𝑅MNF + 𝐺MNF + 𝐵MNF
	

Equality	happens	at	𝐴D, 𝐴F, 𝐴J	as	stated.	

The	procedure	to	differentiate	spots	is	described	in	Algorithm	3.	Furthermore,	from	spot	absorption	

measurements,	we	can	predict	the	concentration	of	the	unknown	sample	given	concentrations	of	

calibration	samples	using	line	fitting.		

Algorithm	3:	Spot	differentiation	

1. Normalize	the	intensity	of	each	spot	with	the	corresponding	background	part	using	formula	in	

Theorem	1.	

2. Integrate	the	absorption	of	the	441	intensity	pixels	around	the	center	of	each	spot.	At	a	specific	

pixel	location,	if	the	normalized	intensity	is	a,	absorption	is	then	1	–	a.	

3. Based	on	the	absorption	values,	differentiate	spots.	
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4.5	Multi-spot	processing	
Unfortunately,	the	single	spot	analysis	steps	cannot	be	applied	directly	to	multi-spot	analysis	due	to	

illumination	constraint	as	shown	in	Fig.	5.	We	successfully	detected	the	front	line	and	the	origin	line	as	

in	Fig.	5(b).	However,	it	is	hard	to	pick	up	the	spot	in	the	middle	of	the	right	most	column	as	in	Fig.	5(c).	

	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

(a)	 (b)	 (c)	

Figure	5:	(a)	Multi-spot	sample	image.	(b)	Result	of	line	detection.	(c)	Result	of	spot	detection.	
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5.	Absorption-based	biological	assays	
This	section	describes	the	hardware	and	software	that	we	developed	to	demonstrate	absorption-based	

biological	assays	by	performing	an	enzyme-linked	immunosorbent	assay	(ELISA)	experiment.	We	start	

with	the	hardware	design,	then	move	on	to	software	design	which	consists	image	processing	steps	that	

process	captured	ELISA	images	and	user	interface	to	guide	unexperienced	users	through	assay	steps.	

5.1	Hardware	design	
The	hardware	was	designed	and	fabricated	by	Kenneth	D.	Long.	A	Samsung	Galaxy	S3	was	used	as	the	

smartphone,	and	a	3D	custom	designed	cradle	was	used	as	the	spectrometer	for	the	absorption	

measurements.	This	cradle	was	designed	with	several	optical	components	in	alignment	to	maximize	the	

collection	of	transmitted	light	to	the	CMOS	chip	as	shown	in	Fig.	6.	The	CMOS	images	captured	by	the	

smartphone	show	full	spectra	from	400nm	to	700	nm,	which	accounts	for	most	of	the	visible	range.	

Figure	7(a)	shows	the	spectral	response	through	a	cuvette	of	water,	which	we	refer	to	as	broadband	

image.	Figure	7(b)	shows	the	spectral	response	through	yellow	dye,	so	other	colors	are	absorbed	and	

the	yellow	appears	as	a	mix	of	red	and	green.	Figure	7(b)	is	referred	to	as	a	sample	image.	

	

	

	

	

	

	

	

	

	

Figure	6:	Absorption	modularity	cradle	design	(figure	drawn	by	Kenneth.	D.	Long)	
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5.2	Software	design	
The	goal	of	the	App	is	to	enable	an	unskilled	user	to	perform	assays	accurately	and	provide	the	user	with	

assay	results.	The	results	can	also	be	delivered	to	an	online	database	and	seen	by	a	physician	in	order	to	

perform	more	complex	analysis.	The	App	also	enables	the	user	to	combine	assay	results	and	shows	full	

spectral	images.	To	achieve	these	goals,	we	provide	a	user	interface	that	guides	the	user	through	the	

steps	of	performing	an	assay	and	completely	hides	the	computation	steps	(image	analysis,	calibration.	

Etc.)	from	the	user.	We	pop	up	messages	when	the	user	makes	an	error	and	ask	them	to	redo	that.	The	

App	is	also	capable	of	communicating	securely	with	Dropbox,	enabling	a	user	to	replicate	all	images	and	

analysis	in	the	cloud.	The	high-level	diagram	for	performing	the	assay	is	in	Fig.	8:	

(a)	 (b)	
Figure	7:	(a)	Broadband	image.	(b)	Yellow	dye	sample	image	

Laser	Calibration	

Broadband	Spectrum	Processing	

Sample	Spectrum	Processing	

Repeat	for	
each	known	
concentration	

4PL	curve	fitting	

Figure	8:	Assay	performing	procedure	
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Each	step	of	the	procedure	then	goes	through	a	chain	of	image	processing.	The	full	image	analysis	

pipeline	is	illustrated	in	Fig.	9	(not	all	the	steps	follow	the	complete	chain	of	processing).	

The	analysis	is	computationally	intensive	and	takes	around	6.5	seconds	on	average	on	the	phone.	

Therefore,	to	avoid	putting	a	burden	on	the	UI	thread,	we	choose	to	process	the	analysis	in	the	

background	using	an	asynchronous	task	that	posts	results	back	to	the	UI	thread.	This	way	of	processing	

also	allows	us	to	render	a	progress	dialog	to	notify	the	user	to	wait	while	we	are	processing.	

5.2.1	Pre-processing	

We	use	pre-processing	algorithm	in	order	to	extract	the	color	part	in	a	typical	ELISA	image	(Fig.	7),	which	
is	the	signal	we	are	interested	in.	

Algorithm	1:	Extract	the	color	part	in	a	typical	ELISA	image	

1. Sum	pixel	intensities	in	the	horizontal	direction.	

2. Get	the	70-percentile	threshold.	

3. Extract	indexes	with	pixel	intensities	larger	than	the	threshold.	

4. From	indexes	got	from	step	3,	extract	its	“continuous”	part	based	on	the	criterion	that	the	gap	

between	two	indexes	is	less	than	or	equal	to	100.	

5. Check	if	we	have	at	least	20%	of	data,	otherwise	raise	an	error.	

6. Record	the	start	and	end	of	the	interval	to	prepare	for	the	next	step.	

5.2.2	Laser	calibration	

Since	the	spectrum	moves	around	in	the	images	produced	by	the	camera	due	to	motion	of	the	cuvette	
in	the	cradle,	we	must	calibrate	the	system	by	finding	the	position	of	a	known	wavelength.		We	then	
assume	a	linear	relationship	(measured	once,	in	advance)	between	wavelength	and	position	in	the	
image.		To	find	a	known	point,	we	use	a	green	laser	of	wavelength	532	nm	for	calibration.	The	following	
algorithm	shows	how	we	process	an	image	of	a	green	laser	illumination	to	get	the	corresponding	pixel	
value.	

	

	

Figure	9:	Image	analysis	pipeline	

Pre-processing	 Circle	Fitting	 Integration	 Absorption	measurement	
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Algorithm	2:	Calibrate	green	laser	

1. Pre-processing	(see	Algorithm	1	above)	

2. Circle	fitting:	

We	will	fit	a	circle	through	the	interest	interval	of	data	extracted	in	the	preprocessing	step.	

For	percentage	p	from	-90	to	90	(except	0):	

a. For	each	column	from	start	to	end	of	the	interval	extracted	in	the	preprocessing	step,	find	

point	which	is	p%	from	the	maximum	pixel	intensity.		

b. Points	from	step	a	may	contain	some	outliers;	we	use	the	test	of	two	standard	deviations	

from	the	mean	to	remove	outliers.	

c. Fit	a	circle	through	points	and	record	the	error	as	well	as	the	intersection	with	the	horizontal	

axis.	

Choose	the	circle	which	gives	us	the	least	mean	square	error.	

3. Integration	

a. From	the	minimum	and	maximum	intersection	with	the	horizontal	axis	in	the	previous	step,	

integrate	along	the	circle.	

b. Based	on	the	integrated	spectrum	results	from	step	3(a),	fit	a	third	degree	polynomial	to	

find	the	peak	of	laser.	

5.2.3	Spectrum	processing	

We	use	the	same	algorithm	to	process	broadband	and	sample	spectra	

Algorithm	3:	Process	a	broadband	spectrum	or	sample	spectrum	

1. Pre-processing	(see	Algorithm	1	above)	

2. Circle	fitting:	Like	the	circle	fitting	step	of	laser	calibration	except	that	we	do	not	record	the	

intersection	with	horizontal	axis	since	we	will	integrate	entirely	from	0	to	width	–	1	of	the	image	

(we	use	the	same	normalization	technique	to	merge	RGB	channels	as	shown	in	Section	4.4).	

3. Integration	

Perform	integration	from	0	to	width	–	1	of	the	image	along	the	circle	found	in	step	2;	we	get	a	1D	

spectrum.		
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4. Convert	from	pixel	positions	to	wavelengths	by	linear	mapping	using	the	pixel	value	of	green	

laser.	

5. Measure	absorption	at	450	nm.	

5.2.4	Absorption	measurement	

From	1D	spectrum	of	broadband	and	sample	measurement,	we	will	be	able	to	get	the	absorption	by	

subtracting	sample	measurement	from	broadband	measurement.		

5.2.5	Four	parameter	logistic	regression	
Absorption	measurements	in	ELISA	assays	can	vary	by	many	factors	outside	of	the	control	of	the	

experimenter,	such	as	ambient	temperature.	Such	assays	generally	make	use	of	a	set	of	known	

concentrations	and	curve-fitting	in	order	to	account	for	these	unknowns.		In	particular,	the	absorptions	

for	samples	with	known	concentrations	are	fit	to	an	S-curve	using	four	parameter	logistic	

regression	(4PL)	[11]	to	find	the	mapping	between	known	concentrations	and	absorption	values,	which	

can	then	be	measured	as	discussed	in	Section	5.2.4:	

𝑦 = 𝑑 +
𝑎 − 𝑑

1 + (𝑥𝑐)
M
	

where		

a	=	the	minimum	value	that	can	be	obtained	

d	=	the	maximum	value	that	can	be	obtained	

c	=	the	point	of	inflection	

b	=	Hill’s	slope	of	the	curve	

x	=	the	known	concentration	value	

y	=	the	absorption	measurement	for	the	corresponding	known	concentration	
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6.	Lessons	learned	and	challenges	
In	this	chapter,	we	generalize	some	of	the	lessons	learned	and	challenges	faced	during	development	of	

the	TLC	and	ELISA	applications	in	order	to	provide	a	broader	and	more	useful	picture	for	developing	

smartphone	bioassay	applications	in	general.	

6.1	Unstable	and	uneven	illumination	
To	keep	our	TLC	platform	affordable	in	developing	countries,	we	use	an	inexpensive	($50)	UV	lamp	for	

illumination.	However,	this	lamp’s	illumination	is	uneven	and	unstable,	both	of	which	lead	to	difficulty	in	

processing	the	resulting	images.	

6.1.1	Unstable	illumination	
To	show	that	the	combination	UV	lamp	illumination	and	TLC	plate	is	unstable,	we	performed	the	

following	experiment:	

- Put	a	TLC	plate	inside	the	cradle.	

- Turn	on	the	UV	lamp	and	let	the	camera	take	1024	consecutive	images.	The	phone	can	take	a	

photo	roughly	once	per	second.	

- Divide	and	label	a	TLC	image	into	multiple	regions	as	shown	in	Fig.	10,	each	region	having	

roughly	300	pixels.	

- Average	the	intensity	in	each	region	of	each	image.	

This	experiment	produces	1024	data	points	for	each	of	the	nine	regions.		The	results	appear	in	Fig.	11.	

Average	intensity	increases	over	time,	asymptotically	approaching	a	stable	value.	It	takes	around	one	

second	to	take	one	photo.	From	Fig.	11,	the	average	intensities	reach	the	stable	points	around	image	

200.	Thus,	it	takes	us	around	200	seconds	to	get	a	stable	signal.		

We	did	further	analysis	on	region	(1,	1)	by	taking	each	pixel	in	each	region	and	subtracting	its	intensity	

from	the	average	intensity	of	that	region.	This	gives	us	the	pixel	error	of	each	region.	We	plot	the	error	

of	regions	in	Fig.	12.	As	shown	in	the	figure,	pixel	error	is	skewed	when	the	lamp	is	cold	(the	first	200	

photos),	but	gradually	converges	to	a	classic	Gaussian-like	shape.	

We	also	wondered	whether	the	phosphorous	material	of	a	TLC	needs	time	to	reach	a	stable	stage.	To	

show	that	the	problem	came	from	the	UV	lamp	itself,	we	did	the	following	experiment:	

- Warm	up	the	UV	lamp	for	200	seconds.	

- Put	a	TLC	plate	inside	the	cradle	and	let	the	camera	take	1024	consecutive	images.	
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- Divide	and	label	a	TLC	image	into	multiple	regions	as	shown	in	Fig.	10,	each	region	having	

roughly	300	pixels.	

- Average	the	intensity	in	each	region	of	each	image.	

The	key	difference	between	the	second	experiment	and	the	first	is	that	the	UV	lamp	is	warmed	up	for	

200	seconds	prior	to	insertion	of	the	TLC	plate.		If	the	variation	arises	from	the	lamp,	we	expect	to	see	

the	same	results	as	from	the	previous	experiment,	but	shifted	by	200	photos.		If,	however,	variation	is	

due	to	the	plate,	we	expect	to	see	results	similar	to	those	of	the	last	experiment.	The	result	of	this	

experiment	is	shown	in	Fig.	13.	There	is	no	fluctuation	in	the	signal	of	each	region.	

We	also	did	the	same	analysis	as	above	for	region	(1,	1)	as	shown	in	Fig.	14.	There	is	no	shift	in	the	

Gaussian	shape.	

To	conclude	this	challenge,	there	is	evidence	that	the	UV	illumination	changes	over	time	until	it	reaches	

some	stable	state.	That	time	is	200	seconds	for	our	UV	lamp	model.	Therefore,	we	need	to	warm	up	the	

UV	lamp	for	200	seconds	before	doing	an	experiment.	If	the	lamp	is	not	warm	enough	when	photos	are	

taken,	the	illumination	level	of	the	blank	plate	photo	(taken	second)	is	higher	on	average	than	that	of	

the	TLC	plate	photo	(taken	first),	leading	to	artificially	high	absorption	estimates.	

	

Figure	10:	Region	based	division	of	a	TLC	image	
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Figure	11:	Average	TLC	image	intensity	for	each	region	over	time	without	warming	up	the	UV	lamp	

	

Figure	12:	Error	analysis	of	region	(1,	1)	without	UV	lamp	warming	up	
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Figure	13:	Average	TLC	image	intensity	for	each	region	over	time	with	warming	up	the	UV	lamp	

	

Figure	14:	Error	analysis	of	region	(1,	1)	with	UV	lamp	warming	up	
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6.1.2	Uneven	illumination		
As	discussed	previously,	illumination	is	not	uniform	across	the	TLC	plate.	There	is	a	region	in	the	center	

of	the	image	in	which	the	camera's	sensors	are	saturated	(and	thus	artificially	underreport	the	

brightness),	and	the	image	fades	off	towards	each	edge.	To	solve	this	challenge,	we	introduced	the	idea	

of	normalization	by	using	a	blank	plate	as	pointed	out	in	Section	4.3.	In	order	to	achieve	consistent	

results,	the	two	images	must	be	at	the	same	focus	distance	as	well	as	having	the	same	white	balance	

compensation	and	exposure	value.	Since	there	is	nothing	to	focus	on	the	blank	plate,	we	decide	to	call	

the	autofocus	procedure	when	we	take	the	chromatoplate	image	and	later	keep	that	focus	value	for	the	

blank	plate.	The	problem	with	this	approach	is	that	the	phosphorous	material	of	the	plate	fades	off	over	

time	and	the	intensities	of	the	TLC	sample	plate	and	TLC	blank	plate	may	not	match	to	each	other.		

6.2	Thin	layer	chromatography	modeling	
The	model	for	thin	layer	chromatography	is	not	well	studied	in	the	literature.	Ryder	suggests	a	model	of	

infinite	layers	of	a	chromatoplate	[12]	but	his	mathematics	does	not	apply	directly	to	our	system.	In	

section	3.4.4,	we	suggested	the	ratio	between	the	sample	plate	intensity	and	the	blank	plate	is	

proportional	to	the	concentration	of	the	drug;	we	call	this	model	the	absorption	model.	However,	Stern-

Volmer	[13]	proposed	that	the	ratio	between	the	blank	plate	and	the	sample	plate	is	proportional	to	the	

concentration	of	the	drug.	In	summary,	

• Absorption	model:	

𝑠𝑎𝑚𝑝𝑙𝑒
𝑏𝑙𝑎𝑛𝑘

= 1	 − 𝑘D ∗ 𝑐	

where	𝑘D	is	some	constant	and	C	is	the	concentration.	

• Stern-Volmer	model:	

𝑏𝑙𝑎𝑛𝑘
𝑠𝑎𝑚𝑝𝑙𝑒

= 1 + 𝑘F ∗ 𝑐	

where	𝑘F	is	some	constant	and	C	is	the	concentration.	

The	result	is	summarized	in	Table	3.	The	mean	square	error	of	the	absorption	model	is	11.55	and	the	

mean	square	error	of	the	Stern-Volmer	model	is	11.2.	Thus,	the	performances	of	the	two	models	are	

roughly	the	same.	
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Table	3:	Comparison	of	absorption	model	and	Stern-Volmer	model	

	 	 	 	 Absorption	Model	 Pred	 S-V	Model	 Pred	
A2	 75	 95	 100	 202.18	 184.61	 171.17	 89.17	 962.39	 1054.95	 1137.93	 88.18	
A3	 75	 95	 100	 211.88	 203.02	 190.77	 85.49	 920.01	 958.44	 1020.38	 84.57	
N1	 75	 95	 100	 287.76	 269.17	 253.69	 88.64	 676.19	 722.87	 767.49	 87.78	
N2	 75	 95	 100	 257.44	 247.56	 231.17	 84.41	 755.96	 785.88	 841.76	 83.72	
N3	 75	 95	 100	 277.55	 260.82	 247.22	 88.80	 701.10	 746.08	 787.10	 88.08	
P1	 75	 95	 100	 233.56	 223.67	 199.35	 82.22	 832.75	 869.64	 975.75	 81.45	
P2	 75	 95	 100	 253.93	 241.95	 232.39	 88.91	 766.25	 804.27	 837.47	 88.35	
P3	 75	 95	 100	 236.01	 232.16	 209.11	 78.58	 824.55	 838.16	 930.95	 78.20	
A2	 100	 50	 75	 223.83	 287.91	 262.62	 58.70	 869.77	 676.08	 741.06	 62.38	
A3	 100	 50	 75	 232.12	 295.89	 265.25	 51.87	 838.26	 657.65	 734.05	 56.67	
N1	 100	 50	 75	 264.65	 327.39	 289.71	 37.42	 735.60	 594.19	 671.89	 44.52	
N2	 100	 50	 75	 283.23	 325.86	 295.18	 10.77	 687.01	 596.99	 659.14	 19.26	
P2	 100	 50	 75	 232.59	 272.11	 247.56	 33.97	 836.66	 714.85	 786.28	 39.56	
P3	 100	 50	 75	 221.99	 272.27	 255.42	 62.40	 876.86	 714.63	 762.09	 64.66	
A2	 100	 90	 75	 262.79	 276.04	 280.30	 81.09	 740.44	 705.28	 694.32	 80.94	
A3	 100	 90	 75	 252.12	 267.77	 273.82	 81.97	 771.87	 726.59	 710.58	 81.53	
N2	 100	 90	 75	 244.33	 249.19	 255.70	 89.30	 796.30	 780.69	 760.92	 88.97	
N3	 100	 90	 75	 240.87	 247.37	 256.82	 89.81	 807.71	 786.89	 757.56	 89.62	
N3	 100	 90	 75	 274.54	 289.29	 312.08	 90.18	 708.76	 672.51	 623.37	 89.39	
P3	 100	 90	 75	 215.40	 230.96	 244.39	 86.58	 903.56	 842.52	 796.23	 85.78	
A1	 100	 90	 80	 222.11	 239.64	 248.94	 86.93	 876.26	 811.91	 782.32	 86.30	
A3	 100	 90	 80	 221.81	 243.77	 248.46	 83.51	 877.55	 798.48	 783.50	 83.19	
N1	 100	 90	 80	 243.05	 252.62	 255.41	 84.52	 800.64	 770.16	 761.83	 84.29	
N2	 100	 90	 80	 281.00	 286.40	 287.84	 84.22	 692.36	 679.42	 676.11	 84.08	
P1	 100	 90	 80	 176.41	 192.59	 199.24	 85.83	 1103.13	 1010.64	 976.88	 85.35	

6.3	Camera	characteristics	
Since	the	smartphone	camera	is	designed	to	take	images	of	our	daily	life	and	not	images	of	biological	

experiments,	there	are	a	lot	of	unknown	image	processing	algorithms	that	introduce	noise	to	our	data	

such	as	ISO	(ADC	gain),	image	compression	and	post	image	processing	algorithm	(e.g.,	white	balance,	

etc.).	Deducing	the	details	of	these	algorithms	and	inverting	their	effect	on	photographs	is	quite	

challenging.		In	later	projects,	we	were	able	to	use	raw	camera	sensor	output	(using	Android	Camera	API	

2),	which	sidesteps	this	question	entirely.		However,	only	expensive,	state-of-the-art	smartphones	

currently	offer	this	option.	
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One	effect	that	we	were	able	to	measure	and	address	is	the	variation	in	individual	pixels	from	photo	to	

photo.		The	source	of	these	variations	may	be	the	plate	itself,	or	the	camera	sensors,	or	the	unknown	

image	processing	algorithms	being	executed	on	our	behalf.	

We	measured	and	plotted	pixel	noise	in	Fig.	15,	which	exhibits	a	Gaussian-like	shape,	so	we	believe	that	

noise	is	random.	In	that	case,	image	averaging	would	work	well.		

	

Figure	15:	Pixel	noise	of	TLC	image	

Also,	it	is	worth	mentioning	that	some	camera	settings	produce	better	results	than	others.	For	TLC	

application,	we	found	that	daylight	white	balance	and	ISO	of	200	works	best.	For	ELISA	application,	we	

found	that	incandescent	white	balance	and	ISO	of	100	works	best.	
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6.4	Optimization	for	smartphone	computation	

6.4.1	Optimization	using	single	instruction	multiple	data	(SIMD)	instructions	
Our	original	implementation	of	TLC	analysis	was	fairly	slow	for	the	user.	To	understand	the	problem,	we	

measured	and	broke	down	the	timing	of	TLC	processing:	

- Reading	an	image	using	libjpeg	takes	about	500	milliseconds	

• 10	blank	images:	500	milliseconds	*	10	=	5	seconds	

• 10	sample	images:	500	milliseconds	*	10	=	5	seconds	

In	total,	reading	images	takes	about	10	seconds.	

- Image	averaging:	25	seconds	per	set.	In	total,	averaging	images	takes	about	50	seconds.	

- Additional	image	processing:	20	seconds	total.	

In	total,	TLC	analysis	required	80	seconds,	and	image	averaging	is	clearly	the	bottleneck,	taking	62.5%	of	

the	total	time.	

The	ARM	v9	CPU	in	the	Samsung	Fame	6810	supports	Neon	single	instruction	multiple	data	(SIMD)	

instructions	to	accelerate	multimedia	and	image	processing	algorithms,	so	we	rewrote	the	image	

averaging	part	using	Neon	instructions.	As	shown	in	Table	4,	this	change	reduces	the	processing	time	

significantly,	from	25	seconds	per	set	down	to	4	seconds	per	set.	Total	time	for	TLC	analysis	reduces	to	

38	seconds,	less	than	half	of	the	original	time.	

Table	4:	Timing	measurement	for	image	averaging	with	and	without	Neon	optimization	

Image	averaging	without	Neon	 Image	averaging	with	Neon	
25	seconds	 4	seconds	

6.4.2	Filter	consideration		
Image	filtering	plays	an	important	role	in	our	image	processing	algorithms.		For	example,	we	used	

Gaussian	filter	as	a	low-pass	filter	to	denoise	when	detecting	lines	in	Section	4.2.	To	have	fast	image	

denoising	with	large	filter,	we	need	to	choose	large	filters	that	can	be	decomposed	into	multiple	smaller	

filters.	For	TLC,	we	chose	Gaussian	filter	since	2D	Gaussian	filter	is	a	separable	filter,	it	can	be	

decomposed	into	two	1D	filters:	one	horizontal	and	one	vertical.	

6.5	Hardware	design	
Originally,	the	TLC	cradle	was	fabricated	from	white	plastic,	as	shown	in	Fig.	2.		The	final	design	uses	

opaque,	black	plastic	as	shown	in	Fig.	16.	The	reason	for	the	change	is	that	the	white	cradle	version	lets	

the	environmental	light	pass	through	and	affect	the	TLC	image	we	capture.	This	effect	is	demonstrated	
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in	Fig.	17,	which	shows	sample	TLC	images	taken	using	the	white	cradle	with	and	without	environmental	

lighting.	Such	lighting	adds	unnecessary	noise	to	the	TLC	image.	We	discovered	this	drawback	in	the	

original	(white)	design	by	comparing	TLC	images	taken	in	a	bright	environment	with	images	taken	in	a	

dark	environment.	The	difference	in	pixel	intensity	between	such	images	is	about	20	on	average	(about	

8%	of	the	full	scale	of	an	8-bit-per-channel	image).	

	

	

	

	

	 	

Figure	16:	Final	cradle	version.	

(a)	 (b)	

Figure	17:	(a)	Sample	TLC	image	with	environment	lighting.	(b)	Sample	TLC	image	without	environment	lighting.	
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7.	Conclusion	
In	this	work,	we	demonstrate	two	working	applications	to	perform	biological	experiments	on	a	

smartphone.	The	hardware	was	fabricated	using	a	3D	printer	and	the	software	was	written	to	run	on	

Android	smartphones.	The	algorithms	we	developed	are	efficient	to	run	on	a	computationally	limited	

platform	like	a	smartphone.	We	described	challenges,	such	as	unstable	and	uneven	illumination,	thin	

layer	chromatography	modeling,	the	noise	introduced	by	unknown	image	processing	algorithms,	

hardware	design,	filter	consideration	and	discussed	how	we	overcome	those	challenges.	We	also	

presented	how	we	optimized	the	smartphone	computation	using	Neon	SIMD	instructions	to	reduce	a	

TLC	analysis	time	by	more	than	half	of	the	original	time.	Although	we	have	successfully	solved	two	

problems	in	this	space,	generalizing	the	approach	remains	incomplete.	There	are	still	many	problems	

that	remain	to	be	solved,	as	smartphone	cameras	are	not	designed	for	biological	experiments.	
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