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ABSTRACT

This thesis presents a parallel Space Time Discontinuous Galerkin (SDG) finite element

method which makes use of the method’s unstructured mesh generation and localized solu-

tion technique to achieve a high level of parallel scalability. Our SDG method is different

from most traditional adaptive finite element methods in that the solution process gener-

ates fully unstructured spacetime grids that satisfy a special causality constraint ensuring

that computations can occur locally on small cluster of spacetime elements. The resulting

asynchronous solution scheme offers several desirable features: element-wise conservation

of solution quantities, strong stability properties without the need for explicit stabilization,

local mesh adaptivity operations and linear complexity in the number of spacetime elements.

In this thesis we propose an algorithm that effectively parallelizes the Tent Pitcher al-

gorithm developed by [1] using the POSIX Thread (or Pthread) parallel execution model.

Multiple software threads can simultaneously and asynchronously perform patch computa-

tions by advancing vertices in time. By enforcing the causality constraint on the time step,

we can guarantee that each thread only performs calculations using data computed previ-

ously. Additionally, improvements to the adaptivity scheme allow for local mesh refinement

and coarsening while maintaining globally conforming triangulation. Numerical tests show

that our algorithm achieves high parallel scalability using shared-memory parallelization.
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CHAPTER 1

INTRODUCTION

In this thesis we develop a parallel solver for the spacetime discontinuous Galerkin (SDG)

finite element method which takes advantage of the method’s localized solution technique

to achieve a high degree of parallel scalability. The SDG method has two main differences

over traditional time-stepping methods that makes parallelism extremely effective. First,

by constructing meshes that cover the entire spacetime domain, the SDG method does

not require a fixed global time step on the mesh at each iteration. Instead, it imposes a

special causality constraint to advance a single vertex forward in time, creating elements in

spacetime. This constraint ensures that the solution in the new element depends only on

information from previously computed elements. Thus, the solution for new elements can

be computed locally and independent of other element computations. The process creates

a fully unstructured and asynchronous mesh. Second, the SDG method performs mesh

adaptivity operations on the same granularity as element computations, ensuring that the

mesh can be locally refined or coarsened in response to a posteriori error estimates computed

locally. This allows mesh adaptivity to occur simultaneously with element computations.

The resulting finite element method offers several desirable features over traditional time-

marching methods. Linear and angular momentum are exactly balanced over every spacetime

element. It is dissipative so no extra stabilization is required to prevents spurious oscillations

when shocks are present. Adaptive meshing operations are computed exactly, without the

need for error-prone projections. The computational complexity is linear in the number of

of spacetime elements. These features allow for efficient parallelization of the existing serial

SDG code developed earlier by [1, 2, 3].
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1.1 Literature Survey

Since the early days of parallel computing, efforts have been made to efficiently parallelize fi-

nite element (FE) codes in an effort to reduce computation times. The domain decomposition

technique is the traditional way to divide a FE problem into multiple, smaller subproblems

that can be solved simultaneously [4, 5, 6]. In such a method, the decomposition must be

done in a manner that minimizes dependence between the subproblems. This way, par-

allel processors can be assigned to perform computations on a subproblem with minimum

communication between processors. Load balancing must also be performed to dynami-

cally redistribute workload evenly among each processor. Popular decomposition schemes

include graph-based techniques [7] and geometry-based techniques [8, 9]. One noteworthy

method that has considerable research interest is the finite element tearing and intercon-

necting (FETI) method [9, 10]. This method requires fewer interprocessor communications

than traditional domain decomposition schemes by partitioning the spatial domain into a

set of totally disconnected subdomains. The global continuity across subdomain interfaces

is enforced via Lagrange multipliers rather than explicit interprocessor dependence.

The solution to elliptic partial differential equations (PDEs) generally depend on all points

of the domain, thus leading to global coupling and the need for domain decomposition

techniques outlined above. Hyperbolic PDEs on the other hand have finite propagation

speed of disturbances. This allows for more efficient parallelization schemes as coupling

between elements in localized. The discontinuous Galerkin (DG) finite element method is

particularly efficient for hyperbolic problems wherein discontinuous basis functions are used

to formulate the Galerkin approximation [11, 12, 13]. Early works to parallelize the DG

method have utilized the domain decomposition technique [14, 15], thus squandering the

advantages of the underlying method. In this thesis, we have used the unstructured mesh

generation capabilities inherent to the “Tent Pitching” method [1, 2] and developed a fully

asynchronous parallel method.
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1.2 Organization

The thesis is organized as follows. Chapter 2 provides background on the SDG method, defin-

ing quantities that will be used in later chapters. The main features of the asynchronous

meshing strategy is presented here along with the governing equations of linearized elastody-

namics which are formulated for the SDG method. In chapter 3, we detail the shared-memory

parallel implementation of the SDG method. The operations associated with maintaining

the front mesh is decoupled from the solution procedure. In this way are able to optimally

distribute computational resources between these tasks. In chapter 4 we examine the perfor-

mance of the parallel method using the metric of strong scaling efficiency. Finally, in chapter

5 we present some concluding remarks as well as outline areas for future development of the

method such as for the case of adaptivity.
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CHAPTER 2

THE SPACETIME DISCONTINUOUS GALERKIN
FINITE ELEMENT METHOD

2.1 Introduction

In this chapter we provide background on the Spacetime Discontinuous Galerkin Finite Ele-

ment Method as it applies to the solution of linear hyperbolic partial differential equations.

Section 2.2 discusses the spacetime meshing scheme used by the method and introduces the

concept of causality, a key requirement for the asynchronous parallel solver. Section 2.3

covers the one-field, linearized elastodynamics equations solved by the SDG method which

is used to verify the capabilities of our parallel implementation (c.f. chapter 3). We provide

only a brief overview of the SDG method in the following sections. Interested readers can

refer to the works cited in this chapter for a more complete development.

2.2 Spacetime Meshing

The SDG method works on meshes constructed in spacetime. A four-dimensional spacetime

mesh is required for a problem that involves evolving behavior in a three-dimensional spatial

domain (3 spatial dimensions × time), for example. This contrasts with traditional semi-

discrete methods where spatial dimensions are discretized independently of time.

The spacetime meshing algorithm, known as Tent Pitcher (developed by [1, 2]), produces a

fully unstructured, simplicial spacetime mesh where the time step in each spacetime element

only depends on the properties of the local, underlying space mesh. By weakly enforcing

the governing equations over each spacetime element the SDG method eliminates the need

for a time-marching procedure. Global time-marching schemes suffer from the following

drawbacks - either the maximum possible time step is constrained by the worst quality
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element in the space mesh 1, or a large coupled system has to be solved at each time

increment. By construction, the Tent Pitcher algorithm avoids both these issues. In fact,

by computing solutions within groups of spacetime elements, or patches, the computational

cost is linear in the number of spacetime elements.

2.2.1 Causality and Progress Constraint

The characterizing feature of hyperbolic partial differential equations (PDEs) is the notion

of causality. Disturbances in initial data of hyperbolic boundary value problems travel in a

“wave-like” nature along characteristics of the equation with a bounded wave speed. The

characteristics of a hyperbolic spacetime PDE represents the flow of information through

space with time.

Points in spacetime are partially ordered2 by this concept of causality. We say that a

point P depends on another point Q if and only if changes to physical quantities (such as

temperature, displacement, etc.) at point P influences Q. The domain of influence of P

is the set of points that depend on P and the domain of dependence is the set of points

that P depends on. If the governing equations are linear and the material properties are

homogeneous and isotropic, as in the case considered here, the wave speed ω is a constant

and the domains of influence and dependence are circular cones as depicted in Figure 2.1.

We say that one spacetime element 4 depends on another spacetime element 4′ if any point

P ∈ 4 depends on any point Q ∈ 4′, i.e. if Q is in the domain of influence of P .

We say that a face, or facet, F of a spacetime element is causal if it separates the cone of

influence from the cone of dependence at every point on F (see Figure 2.1). Stated another

way, causality requires each facet to be faster (or closer to horizontal, in spacetime) than

the maximum wave speed, i.e. ||∇F || ≤ 1/ω. If a facet is causal, information only flows in

one direction across that facet. The solution to the hyperbolic boundary value problem can

be computed simultaneously in spacetime elements that obey the causality constraint and

1Work by [16] allows larger time steps than dictated by the worst quality element in explicit time-stepping
methods by adaptively taking multiple stabilizing steps in each time increment

2A partially ordered set is a set P with a binary relation R ⊂ P×P satisfying the properties of reflexivity,
antisymmetry and transitivity in set theory.
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A

B

Time C

Figure 2.1: (Left) Points A and B are independent since B lies outside the cone of
influence of A and A lies outside the cone of dependence of B. (Right) The facet centered
on point C separates the cone of influence from the cone of dependence.

do not depend on each other.

Figure 2.2 illustrates the concept of causality for the simple case of 1d × time. The top

part of the figure depicts an unstructured mesh generated by the Tent Pitcher algorithm

where the arrows indicate the characteristics of the problem. In this case, characteristics

propagate in both directions at a constant speed. The construction of element facets obeys

the causality constraint so information flows only in one direction across each facet. We

can thus label the earlier facets of an element as the inflow facets and the later ones as

the outflow facets based on the direction of the flow of information. As long as the partial

element ordering is observed, solutions to the boundary value problem can be computed

locally and independently within causal elements. For example, if we consider all the level-1

elements, the solution within these elements only depends on the initial conditions along

their bottom facets and boundary conditions along the left and right domain boundaries.

As such, the solutions within the level-1 elements can be computed locally and concurrently.

Any level-2 element can be solved as soon as its immediate level-1 neighbor has been solved,

even if other level-1 element remains unsolved. It becomes clear from this simple example

that a causal spacetime mesh enables asynchronous element-by-element solution with linear

complexity.

On the other hand, the bottom part of Figure 2.2 depicts a noncausal mesh corresponding
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to a traditional time-marching scheme where each element depends on the other. In this

case all elements must be solved together. Such a meshing scheme does not take advantage

of the causal property inherent to hyperbolic PDEs. A parallel implementation would not

be particularly useful for this situation.

Figure 2.2: 1d × time domain meshed with causal (top) and noncausal (bottom) elements.
Reproduced from [17].

To construct an efficient spacetime mesh, the Tent Pitcher algorithm groups elements in

patches each containing a constant number of spacetime elements. All the elements in a

patch must be solved simultaneously as facets of the elements within a patch are not causal.

The spacetime mesh can be solved in a patch-by-patch manner that respects the partial

ordering of points in the spacetime analysis domain. If we assume polynomial basis function

of bounded degree the resulting system of equations in each patch has bounded size and can

therefore be solved in constant time. We say that the solution strategy is efficient if the
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total computation time is proportional to the number of elements in the mesh.

In addition to the causality condition, it was determined that another so called progress

constraint is needed to construct the spacetime mesh. Without this constraint, there may be

cases where the construction of causal elements would make it impossible for subsequently

constructed elements to obey the causality constraint, thus making progress impossible.

Practically, this places a further limit on the maximum time-step that can be taken when

constructing a new patch (see section 2.2.2).

We refer readers to the paper by [18] for a more detailed discussion on the causality and

progress constraint.

2.2.2 Advancing Front Spacetime Meshing

The patch-by-patch solution strategy described in section 2.2.1 respects the partial ordering

of patches in spacetime. Our goal is to now incrementally construct the spacetime mesh that

respects both the causality and progress constraint. This is achieved by the advancing front

meshing procedure. For any time, the front τ is the graph of a continuous time function

τ : Ed → R, such that within every triangle, τ is linear and ||∇τ || ≤ 1/ω ([18]), i.e. the

front is a maximal set of points such that no two points of τ influence each other. The front

is a d-dimensional piecewise linear terrain, a subset of the spacetime domain Ed × R. Each

point P on the front τ can be written as P = (p, τ(p)) where p is the spatial projection of

P and τ(p) is the temporal projection.

Given an initial triangulated front τ : Ed → R, Tent Pitcher selects an arbitrary local

minimum vertex P = (p, τ(p)) and moves it forward in time to a new point P ′ = (p, τ ′(p)),

thus also advancing the local neighborhood. The volume between the new and old front

is called a tent and the edge corresponding to the time increment, i.e. PP ′, is called the

tentpole. The advancing front method is depicted for the case of 2d × time in Figure 2.3.

The tent is decomposed into spacetime elements (or patch) sharing the noncausal edge PP ′

and thus, must be solved as a coupled system. However, since the causality constraint is

placed on the maximum time step taken when advancing the front, each patch constructed

by the advancing front method depends only on elements adjacent to its inflow boundary,
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in which the solution has already been computed. Therefore, the solution within the a new

patch can be computed as soon as the patch is constructed.

The algorithm advances local minimum vertices since this guarantees a finite amount of

progress can be made. A list of all local minima are maintained as a time ordered heap.

When deciding the next vertex to pitch over, Tent Pitcher chooses the first entry in this

heap, corresponding to the global minimum vertex. This heuristic approach to selecting the

next pitchable vertex has been found to perform better than others.

Figure 2.3: Pitching patches (or tents) in spacetime using the advancing front algorithm.
Newly formed patches are shown in wireframe whereas solid surfaces are patches solved by
the SDG solver. Note the partial ordering of patches in accordance to causality. The
sequence is advancing from top to bottom while time is increasing upwards. Reproduced
from [3]

The advancing front procedure thus allows us to decouple the patch generation process

from the solution process. This feature has been used in the parallel implementation de-
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scribed in Chapter 3 where the meshing and solution tasks have been separated into distinct

units of work which can be carried out simultaneously.

Another unique capability of the advancing front algorithm is the inherent capability

of localized mesh adaptivity operations. The solution within each patch produces an a

posteriori estimate of the numerical error incurred during the solution. This error estimate

can be used to drive an adaptive meshing algorithm as presented in [19]. Adaptive refinement

and coarsening of the individual patches can occur locally and independently of each other

where dictated by the error. Adaptive operations can be confined within the patch (or at

worst, to a small cluster of patches) and the solution only needs to be recomputed within that

region. Additionally, patch generation and adaptive operations can take place simultaneously

with the SDG solution procedure in causal patches. This is an incredibly powerful feature of

the SDG method that can be exploited by parallel execution. We plan to extend our current

parallel implementation (discussed in chapter 3 for the non-adaptive case) to make use of

an adaptive meshing procedure in future works.

2.3 Linearized Elastodynamics

In this section, we first discuss some common numerical methods that have been used for

linearized elastodynamics and then present the spacetime discontinuous Galerkin formulation

that has been implemented in the parallel algorithm.

2.3.1 Comparison of Numerical Methods

Semi-discrete finite elements have traditionally been favored for solving elastodynamics prob-

lems. However, in addition to the shortfalls in meshing (discussed in section 2.2) these

methods suffer from additional issues when solving elastodynamics problems. These include

failure to preserve the invariants of the mechanical system and the inability to accurately

capture strong discontinuities, such as shocks, without the use of additional stabilization

techniques. In fact, the implicit Newmark family of methods, one of the most widely used

semi-discrete algorithm in structural dynamics, are not designed to conserve energy and also
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fail to conserve momentum [20]. However, recent work by [21, 22] make use of variational

time integrators that require multiple nonlinear iterations to simultaneously achieve energy

and momentum conservation in time-stepping methods.

The time-discontinuous Galerkin methods, first introduced by [23], discretize space and

time simultaneously with space-time finite elements that are continuous in space but have

discontinuities in time. These discontinuities correspond to the boundaries of constant-time

slabs where jump conditions are used to enforce the appropriate level of continuity between

adjacent slabs. Works by [24, 25] find that the time-discontinuous Galerkin methods have

better convergence rates and stability properties than the traditional time-stepping algo-

rithms. The higher computational cost associated with the discontinuous Galerkin methods

is compensated by the ability to use a larger time step in each iteration.

Spacetime discontinuous Galerkin methods were first applied for elastodynamics by [26].

Similar to time-discontinuous Galerkin methods the SDG method discretizes both space

and time with space-time elements however discontinuities are allowed between all element

boundaries. This results in the unstructured meshes detailed in earlier sections. The appeal

of this method for the case of elastodynamics is the element level conservation property as

achieved in [27]. Additionally, in shock-capturing problems, no extra stabilization is needed

to suppress spurious oscillations. When implemented on causal spacetime meshes, we have

observed that the computational cost is linear in the number of elements and the underlying

method has a rich parallel structure.

2.3.2 Spacetime Discontinuous Galerkin Formulation of Linearized
Elastodynamics

The method presented here is adapted from work by [27] and later generalized in [28] for the

three-field case. This has been implemented in the SDG solver used by our parallel algorithm.

We use the notation of differential forms and exterior calculus on manifolds to develop the

spacetime continuum theory for linearized elastodynamics. This notation, though unconven-

tional, is very well suited for spacetime mechanics formulations. For example, it provides a

coordinate-free way to express fluxes across interfaces with arbitrary orientations in space-
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time and circumvents problems relating to frame invariance that arise with traditional tensor

notation. We then apply a Bubnov-Galerkin weighted residual procedure to formulate the

finite element method. In this section, we present only a brief, qualitative description of

the single-field formulation as presented in [27] where the displacement field u is the sole

primary unknown field.

Consider a flat spacetime manifold D ⊂M := Ed × R. The balance of linear momentum

is written in forms notation as

∫
∂Q
M −

∫
Q
ρb = 0 ∀ Q ⊂ D , (2.1)

where Q is any spacetime domain with a suitably regular boundary. M is the spacetime

d-form that delivers the flux of linear momentum across any spacetime d-manifold, ρ is the

mass density, and b is the (d+ 1)-form for body force per unit mass. The spacetime flux of

linear momentum is obtained as

M := p− σ , (2.2)

where p and σ are the d-forms for linear momentum density and stress respectively. These

d-forms have vector and tensor coefficients: p = p?dt, and σ = σ ∧ ?dx respectively. Note

that we have used bold italicized typeface to denote forms and bold upright typeface for their

vector and tensor coefficients. The d-form ?dx := ei?dx
i where the Hodge star operator is

used.

Since we use the single-field formulation for linear elastodynamics, the relations between u

and the one-forms for velocity and strain, v and E, are strictly enforced on element interiors.

The one-forms combine to give the spacetime strain-velocity one-form

dε := v +E (2.3)

where d is the exterior derivative

The strain-velocity relation is expressed as

∇̃v − Ė = 0 (2.4)
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in which ∇̃ is the symmetric part of the spatial gradient operator. Equation (2.4) is valid in

regions where the strain-velocity ε is continuous, but it is incomplete in regions where ε suf-

fers jumps. We need the kinematic compatibility relations to couple the strain displacement

and strain fields across jumps.

Let S be the space of symmetric, second-order tensor fields with components in the space

of test functions on D. The first compatibility relation requires that for all T ∈ S and for

all open regions Q ⊂ D with suitably regular boundaries,

(dε ∧ T )|Q\Γ J
ε

= 0 (2.5a)

[(ε∗ − ε) ∧ T ]|∂Q∪(Q∩Γ J
ε )

= 0 , (2.5b)

where T := T∧i?dx and Γ J
ε is the jump set of ε. Equations (2.5a) and (2.5b) are components

of the same equation, where dε|D\Γ J
ε

and (ε∗ − ε)|∂Q∪(Q∩Γ J
ε )

represent the diffuse and jump

parts of the exterior derivative of ε. The quantity ε∗ is the target value of the strain-velocity

on ∂Q , which is discussed later.

The second kinematic compatibility condition is the displacement-velocity relation. This

says for all Q ⊂ D

[(du− v) ∧ ?dt]|Q\Γ J
u

= 0 (2.6a)

[(u∗ − u) ?dt]|∂Q∪(Q∩Γ J
u)

= 0 (2.6b)

where Γ J
u is the jump set of u, u|∂Q is the interior trace of u on ∂Q and u∗ is a target value

of the displacement on Γ J
u . Equations (2.6a) and (2.6b) are again the diffuse and jump parts

of a single equation involving the complete exterior derivative of u.

We localize the momentum balance equation (2.1) and apply the Stokes theorem for

differential forms,
∫
∂QM =

∫
Q dM. This yields ∀ Q ⊂ D,

(dM − ρb)|Q\Γ J
ε

= 0 (2.7a)

(M ∗ −M )|∂Q∪(Q∩Γ J
ε )

= 0 . (2.7b)
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where (2.7a) is the diffuse part and (2.7b) is the jump part of the equation of motion. Γ J
ε

is the jump set of M on Q. In (2.7b), M |∂Q∪(Q∩Γ J
ε )

denotes the interior trace of M on

∂Q∪ (Q∩ Γ J
ε ), while M ∗ is the target spacetime momentum flux.

The equations (2.5), (2.6) and (2.7) are strictly enforced on element interiors. On the

element boundaries, the solution field may suffer jumps. Thus, the exterior derivatives in

these equations must be interpreted in the sense of distribution theory. All three exterior

derivatives generate jump conditions across element boundaries (c.f. equations (2.5b), (2.6b)

and (2.7b)). These jump conditions are weakly enforced along with the quantities on the

interior of the elements in the SDG formulation. Rather than write a single jump equation

across element interfaces, we use separate jump conditions from each side of the boundary

that equate various interior trace quantities to the interface target values which are denoted

by the * superscript. The target values are determined depending the spacetime orientation

of the facet and depending on the problem being solved. These can be selected to be Riemann

solution values or functions of prescribed boundary/initial conditions. For the case of 1-field

and 3-field elastodynamics, the expressions for these target values are given in [27] and [28]

respectively. The use of target values for the jump terms greatly improves accuracy and

stability of the method.

The per-element weighted residual statement of the SDG method can be written as fol-

lows. We denote weighting functions and associated derived quantities with aˆdecoration.

The unknown displacement field u and the corresponding weighting function û lie in the

polynomial space U constructed on the interior of spacetime element Q of order kQ.

Problem 1 (One-field Weighted Residuals Statement) Find u ∈ U such that for ev-

ery element Q

∫
Q

iε̂ ∧ (dM − ρb)

+

∫
∂Q

[
iε̂ ∧ (M ∗ −M) + (ε∗ − ε) ∧ iM̂ + (u∗ − u) ∧ f̂I

]
= 0

∀ û ∈ UQ , (2.8)

where v := u̇dt, iε̂ := ˙̂u, σ := C
(
∇̃u
)

, iM̂ := C
(
∇̃û
)
∧ i?dx and C is the positve

14



fourth-order elasticity tensor field.

The corresponding weak form is obtained by applying the Stoke’s theorem to the weighted

residual statement (2.8).

Problem 2 (One-field Weak Statement) Find u ∈ U such that for every element Q

−
∫
Q

(diε̂ ∧M + iε̂ ∧ ρb)

+

∫
∂Q

[
iε̂ ∧M ∗ + (ε∗ − ε) ∧ iM̂ + (u∗ − u) ∧ f̂I

]
= 0

∀ û ∈ UQ . (2.9)

The solution to Problem 2 is solved within each element in the patch constructed using

the advancing front method (c.f. section 2.2.2). The data from the inflow facets are used

to construct the target values for the jump terms across the element boundaries. This

formulation has optimal convergence rate of O(hp+1) for interpolation fields of polynomial

order p ([28]).
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CHAPTER 3

NONADAPTIVE SHARED-MEMORY PARALLEL
IMPLEMENTATION

3.1 Introduction

This chapter discusses the shared memory parallelization of the SDG code. In the shared

memory model, computations are performed on processor cores that share a common phys-

ical memory space. All data is immediately accessible from every core without explicit

communication between them. This allows for efficient parallelization of existing serial code

without the need for message passing or load balancing across distributed nodes.

An ideal program for parallelization is one that can be divided into separate subproblems of

equal size that require little to no communication between the subproblems. Problems of this

type are commonly called embarrassingly parallel. The SDG method satisfies this criteria

implicitly since the solution of a new patch depends only on previously computed data.

Additionally the localized patch-by-patch solution technique limits the number of degrees

of freedom per solve, ensuring much smaller matrix-vector operations when compared to

traditional finite element methods which need to solve large, global matrix equations. For

a front mesh of constant degree, each patch solve operation takes constant time. These

features make the SDG method uniquely well-suited for parallel implementation.

Within the shared memory model, threads can be used to implement parallelism. A thread

is defined as “an independent stream of instructions that can be scheduled to run as such

by the operating system”. We utilize the POSIX Threads, or Pthreads, execution model to

implement the parallelism in the SDG Method. The Pthreads framework allows a program

to launch and maintain a number of threads that can run simultaneously and independently.

Care has to be taken to ensure that the instructions carried out by each thread do not access

memory locations used by other threads. One method to overcome this is to use locks to
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guard critical sections of the code. This however introduces serializations within parallel

sections of the code. Based on the patch-by-patch solution technique of the SDG method,

we have implemented an element level locking scheme that enforces lock-free operation.

In this chapter, we first discuss the main structure of our shared-memory implementa-

tion. We then present the locking scheme employed to guarantee the threads run without

race-conditions and low overhead. Finally, we present a few optimizations that improved

performance on the machine architecture considered.

3.2 Thread Pool Model

The parallel SDG method is implemented using a thread pool software design pattern wherein

a predetermined number of threads are spawned at the start of the simulation and can be

used to solve different tasks concurrently. The number of threads spawned is based on the

computational resources available at runtime. The tasks to be performed by the threads,

such as a patch solve, are stored in a task queue which is maintained by a master thread.

The threads request tasks from the queue, perform the task, and then request more work.

A simple algorithmic description for this model is as follows:

Main Thread

1. Spawn thread pool of worker threads and initialize task queue

2. Wait for threads to exit

3. Join threads, terminate program

Worker Threads

1. Read task from task queue

2. If work is finished:

2.1. Exit to main thread
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3. Else:

3.1. Remove task from task queue

3.2. Perform task

3.3. Add new task to task queue, if any

The advantage of using the thread pool model rather than spawning one thread to run one

task is to prevent the overhead present in thread creation. Additionally, as long as the task

queue is not empty, worker threads can perform tasks simultaneously. Care must be taken

to ensure that the task performed by each thread has no data dependencies with other tasks.

The drawback with this model is that the task queue becomes a shared resource and access

to it must be protected. This can cause contention when the number of worker threads is

large.

We point readers to the book by [29] for a more detailed description of parallel execution

models.

3.3 SDG Thread Pool Model

In this section, we discuss how the thread pool model has been adapted to the SDG method.

As noted before, the patch-by-patch solution technique is embarrassingly parallel, a unique

feature of the SDG method. This is crucial to ensure that the worker threads can perform

concurrently without the need for synchronization.

The main tasks of the SDG Method are performed by two pools of threads: the Physics

and Geometry thread pool. Each thread pool has a separate task queue from which work is

performed, the Physics task queue and the Geometry task queue. The Geometry thread pool

advances the front by selecting a local minimum vertex and constructs a space-time patch

over that vertex whereas the Physics thread pool invokes the SDG finite-element method

to compute the solution within that patch. By utilizing the two thread pool structure,

the construction of patches happens independently of the solution procedure. Thus, the

compute-intensive tasks performed by the Physics thread pool can be assigned a larger
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portion of the available system resources. Figure 3.1 depicts the simplified structure of the

thread pool model utilized in the SDG code. Note that each Physics thread has a private

task queue to reduce contention for cases where the number of Physics threads are large.

Start

Main Thread

Thread 1

Thread 2

Geom. Worker Threads

Thread m

Geom. Task Queue Physics Task Queues

Thread n

Physics Worker Threads

Thread 1

Thread 2

Spawn

Solve Tasks

Store Tasks

End

Terminate

Geometry Master Thread

Front Mesh Data  

Physics Master Thread

Geometry Thread Pool Physics Thread Pool

Computed Solutions

Figure 3.1: Thread pool model for SDG code. Geometry and Physics thread pools perform
tasks from their respective task queues and can generate additional tasks.

The Main thread is responsible for reading the supplied input files and setting up the

initial front mesh. The two thread pools are launched by the Main thread and the progress

of the simulation is monitored here. After completion, the worker threads are joined and

terminated from the Main thread. The control flow of the main thread is depicted in Figure

3.2.

3.3.1 Physics Thread Pool

The Physics thread pool is responsible for the patch-by-patch solution procedure over patches

constructed by the Geometry thread pool. The flowchart detailing the operations of the

Physics thread pool is given in Figure 3.3. For each patch of elements, the Physics thread

pool computes a solution for Problem 2, c.f. section 2.3.2. The embarrassingly parallel
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Read input file and construct 

initial front mesh

Spawn Geometry and 

Physics thread pools 
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Have all vertices 

passed the end time

Y

N

Terminate thread pools 

Start

End

Figure 3.2: Flowchart of operations performed by the Main thread

nature of the SDG method ensures the Physics pool can complete tasks as long as there

are tasks available as it only depends on boundary data and solution data from previously

computed patches. As such, the Physics pool is constructed to be as large as possible, subject

to the availability of tasks supplied by the Geometry pool. This unique feature of the SDG

method allows for the high degree of parallel scalability observed in our code, presented in

section 4.2.

In general, the Physics thread would compute an a posteriori estimate of the numerical

error incurred during the solution of a patch. If the error in any element is above some

threshold, the patch is rejected and the solution must be recomputed after refinement has

occurred. However, for the non-adaptive case considered here, the error is not relevant and

the computed solution is passed to the Geometry pool which updates the front mesh.

One of the limitations of the thread pool model is the contention on the task queue, espe-
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Physics queue

Compute the solution within 

the patch, c.f. problem 2

Store the computed solution 

in memory and indicate to 

Geometry master thread

Figure 3.3: Flowchart of operations performed by the Physics threads

cially as the number of worker threads becomes very large. To circumvent this, each Physics

thread has a separate task queue. Each queue has a maximum size that is heuristically

determined to minimize the possibility of the queue emptying.

3.3.2 Geometry Thread Pool

The Geometry thread pool advances the front mesh by constructing space-time patches over

local minima vertices, as outlined in section 2.2. These patches are then solved by the

Physics pool. After a solution has been computed, the Geometry pool updates the front

mesh and stores the solution for post-processing.

The main goal of the Geometry pool is to supply the Physics pool with enough work.

This is achieved through a dynamic scheduling system performed by the Geometry master

thread as depicted in Figure 3.4. A simple round-robin technique is used to monitor the

number of patch solve tasks in each Physics task queue. If any of these queues are not

full the Geometry master thread adds a patch generation task to the Geometry queue. A

patch generation task involves the standard advancing-front spacetime meshing algorithm

where local minima vertices are advanced in time to form spacetime patches. Since there are
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Figure 3.4: Flowchart of operations performed by the Geometry master thread

multiple Geometry threads in the pool, a locking scheme is needed to ensure that the patches

generated have no data dependencies with each other. This has been achieved by placing a

lock on all elements belonging to the patch footprint, as discussed in section 3.4. The newly

constructed patch is then placed in the appropriate Physics queue. On completion of each

pass over the Physics queues, the Geometry master thread checks for any patches solved

by the Physics pool. The solved patches are streamed to a separate queue for each Physics

thread (as depicted in Figure 3.1) If any exist, a patch store task is placed on the Geometry

task queue. This instructs a Geometry thread to update the front mesh with the computed

solution within the patch and store the solution in long-term storage for post-processing.

The local minima time heap is then modified based on the new terrain. The patch generation

and store operations performed by each Geometry thread in detailed in Figure 3.5.

This scheduling scheme prioritizes patch store operations subject to the condition that

the Physics queues are full.
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Y
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Figure 3.5: Flowchart of tasks performed by the Geometry worker threads: (left) patch
generation and (right) patch storage

Due to the imbalance in workload of the Geometry and Physics thread pools, it is very

possible for the Geometry pool to idle, wasting computational resources. This is especially

the case when running on systems where there is very little scope for parallelization, such

as a personal computer. Since we make use of thread affinity to improve cache performance

(see section 3.5.1), this leads to a load-balancing problem. In such a situation,the Geometry

master thread allows a subset of the Geometry threads to perform patch solve operations,thus

balancing the computational workload across both thread pools. The actual number of

geometry threads allowed to solve patches depends on the system architecture and should

be chosen to let the remaining Geometry threads satisfy the demand of the Physics thread

pool. There is a limit on the number of patch solve requests placed in the Geometry queue.

The other extreme is when the number of Physics threads is much larger than Geometry
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threads or when the cost of the patch solve is very small (for linear interpolation functions,

for example). In this scenario patches are solved at a faster rate than what can be produced

by the Geometry pool. This results in idling of Physics threads which reduces parallel

scalability. The number of Geometry threads must be increased in this case to satisfy the

demand of the Physics threads.

3.4 Thread Synchronization and Locking Schemes

The use of the shared-memory parallelization model allows for extremely efficient commu-

nication between threads. The trade-off is the need for synchronization between threads

to ensure that shared data is protected from simultaneous modification. Synchronization

introduces undesirable overhead in multi-threaded programs where threads are forced to

wait, or block, to access shared resources. In order to achieve maximum parallel scalability,

the parallel SDG code has been designed to eliminate these expensive blocking locks. This

has been achieved partly due to the independence of patch solves guaranteed by the SDG

method and partly due to careful redesign of the serial code.

Managing the shared front mesh data is one place where contention can occur between

threads. By design, the Geometry thread pool manages all operations involving manipulating

the front mesh. Multiple Geometry threads read and modify data related to the front

mesh simultaneously. The first safeguard needed is during a patch generation operation

when a vertex is selected as the base of a new patch (known as a tentpole vertex). The

vertices in elements surrounding the tentpole vertex are locked by setting an internal flag,

referred to as a vertex lock, which signals that these vertices are now part of an active

patch footprint. Additionally, vertices in any elements adjacent to the patch footprint are

also locked. This feature has been preemptively added to accommodate mesh adaptivity,

although that capability is beyond the scope of this thesis. The yellow-shaded elements in

Figure 3.6 indicate the extent of the vertex locks placed during the construction of a patch

centered around the vertex A. Any element which contains locked vertices can no longer be

used as part of a new patch footprint, such as the case for a subsequent pitch over vertex

B, due to the conflict in vetrex C1 and C2. The setting of vertex locks is implemented as
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an atomic operation 1 which prevents unpredictable outcomes when two threads try to set

the locks of the same vertex simultaneously. The vertex lock guarantees patches generated

by the Geometry thread pool use memory locations that are only accessed by one thread

at a time and can thus be freely modified by that thread without the need for expensive

synchronization. Once the patch has been solved by the Physics thread pool and the front

mesh has been updated, the vertex lock can be removed.

C1

C2

A

B

Figure 3.6: Space mesh depicting vertex locking scheme. A pitch over vertex A places locks
on the vertices in the yellow-shaded (single-hatched) elements. This prevents a subsequent
pitch over vertex B which would require locks on vertices in the red-shaded (cross-hatched)
elements due to the conflicts in vertices C1 and C2.

Multi-threaded programs have the additional need for thread safety. This is where ma-

nipulations of shared data by multiple threads at the same time is possible without data

1An atomic operation is one that is indivisible. When one thread performs an atomic operation, all other
threads see it as completing instantaneously. Using an atomic operation enforces synchronization without
much overhead. However, only simple operations can be made atomic.
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races. The standard data structures used by serial programs (such as arrays, queues, etc.)

are not thread safe. Modifications to these structures by multiple threads would lead to

unpredictable results due to reordering of allocated memory during a write operation, for

example. In the adaptive version of the SDG code, thread safety becomes all the more

necessary. As such, we have used the concurrent vector from the Intel R© Thread Building

Blocks (TBB) library as storage for mesh data. The concurrent vector has been designed to

be thread safe. Multiple threads can concurrently insert or remove elements without invali-

dating existing indices. Storage of physics data is done using Blitz++, a high-performance

library for scientific computing. By default, Blitz uses expensive mutual exclusion locks, or

mutexes, to guarantee thread safety. We have used atomic operations provided from the

TBB library to replace the mutexes, yielding a more efficient implementation.

Once the patch has been created by the Geometry thread in the above manner, the solution

of the patch by the Physics thread pool can proceed lock-free.

3.5 Optimizations

We employ many standard techniques to optimize the performance of the parallel SDG code.

We must note that some of these improvements are machine dependent and may need to be

carefully tuned to yield optimal results.

3.5.1 Thread Affinity Mapping, Non-uniform Memory Access and
Hyper-threading

Thread or processor affinity mapping is the explicit binding of execution threads to specific

hardware resources. This may be on the granularity of individual cores or even hardware

threads. By default, threads are not tied to a particular resource but rather, the available

resources are divided in some way by the scheduler. This is usually done in a way that

ensures fairness among the current tasks such that no task will be denied access to the

resources for extended periods of time. The scheduler “swaps” the currently executing

task for another at regular intervals. This is done at significant expense as the state of
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the currently executed task must be saved and the new task must be loaded. The fast

cache memory must be evacuated to make space for the new task and data may need to

be fetched from the slower Random Access Memory (RAM) at greater frequency due to

thread swapping. This phenomenon is exacerbated when the hardware resources are not

sufficient for the number of tasks. Thread affinity mapping is used to override the default

scheduler when the performance properties of the program are well known. By doing so, each

execution thread is granted exclusive ownership of hardware resources, improving memory

performance.

Another feature of modern-day multi-threaded processors is the non-uniform memory

access (NUMA) architecture where memory is physically distributed but logically shared.

Due to the distributed nature, memory access time depends on the location of memory

relative to the processor. The thread affinity mapping should take into account the NUMA

architecture of the system and store data in such a way that the memory access times are

minimized.

For the SDG code, we employ affinity mapping for the main thread as well as the Geometry

and Physics thread pools. The initial front mesh is constructed by the main thread and stored

in memory closest to the core where the thread is mapped. Thus, we map the Geometry

thread pool to the same core to take advantage of the proximity to the memory where the

front mesh is stored. The Physics thread pool is mapped to the remaining cores of the

system, prioritizing cores that have closest location to the memory that is utilized by the

Geometry thread. Based on the architecture of the system, additional cores may be required

for the Geometry pool in order to satisfy the demand from the Physics pool.

Since the tasks performed by the Geometry threads involve reading and writing to memory

locations as well as to disk, idle periods will occur during execution as data is collected. As

a result, we choose to map multiple Geometry threads to the same core to take advantage

of the hyper-threading or out-of-order execution feature available on modern processors.

Hyper-threading is where each physical core is represented by two virtual cores that share

the workload between them. Since these virtual cores share resources, when one task stalls,

the other task can continue without any disruption. Each physics thread on the other hand

is mapped to a single core since there is very little idle time during the patch solve operation.
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3.5.2 Reducing Contention on Mesh Data Structures

Data stored in the mesh data structures is used extensively during simulations. Since we

make use of the shared-memory model, all threads have immediate access to this data.

Through the use of vertex locks and thread-safe containers (section 3.4) multiple threads

can access mesh data without issues. However, this imposes large contention on the memory

bandwidth when the number of threads increases. To reduce the contention on the mesh

data structures, we create a copy of the patch footprint at the point of patch creation. This

allows the patch to be created without reference to the original memory location. When the

patch is given to the physics thread to solve, the data associated with the patch object is

private to that thread. This potentially allows the data to be moved closer to the core on

which the Physics thread is mapped. Currently, we utilize the serialization operation offered

by the Boost C++ Library due to its convenience. Further optimization will replace this

library call with a specialized copy command which would reduce overhead.

3.5.3 Parallel Streaming of Output Data

As part of a patch store operation solution data is stored as a binary file on disk storage for

post-processing purposes. Output to disk is buffered on RAM until a large enough file can

be written at once. For the parallel code, each geometry thread streams output data to a

different location in memory and disk in order to remove the need for synchronization. The

parallel streams are merged at the end of the solution process.
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CHAPTER 4

NUMERICAL RESULTS

This chapter presents numerical results for the nonadaptive shared-memory parallel SDG

method. The parallel scalability of the overall code has been verified on a system with 48

physical cores, the specifications for which has been detailed in section 4.1. We achieve

very good scalability even for 48 cores. These results have been presented in section 4.2.

Additionally, we achieve greater scalability for higher polynomial order of the solution field.

4.1 Experimental Set-up

The implemented method is verified using the one-field elastodynamics equations (c.f. Sec-

tion 2.3.2) for the case of two spatial dimensions × time. The degrees of freedom per

spacetime element n can be determined as

n = 3
(p+ d)!

p!d!
, (4.1)

where p is the polynomial order of the function interpolating the solution field and d is the

total dimensions of the problem (d = 3 for two spatial dimensions). The factor 3 is to account

for the three components of a single vector field. Since solutions are usually computed over

patches of elements, we have the total number of degrees of freedom per patch as

N = Kn, (4.2)

where K is the number of elements per patch. Generally, K is a function of the degree of a

vertex in the front.
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4.1.1 Computing Platform

We have used the Innovative Systems Lab (ISL) at the National Center for Supercomputing

Applications (NCSA) to develop and benchmark our code. The testing configuration consists

of a single Dell PowerEdge R920 node with four Intel Xeon E7 4860V2 CPUs, each with

12 cores operating at 2.6 GHz, for a total of 48 computing cores. Each core has 32 KB of

L1 and 256 KB of L2 cache memory. Each CPU has a total of 30 MB of L3 cache that is

shared across its 12 cores. The system contained a total of 3 TB of RAM. This exceptionally

large amount of system RAM prevents paging to disk that may occur when the memory is

full. However, since the SDG method performs computations on localized patches rather

than on the entire mesh, this is not a problem even on systems with much smaller memory.

Each physical core is hyper-threaded to improve parallel execution. By virtue of the NUMA

architecture (c.f section 3.5.1) each CPU core has slightly different latency when accessing

data stored on memory associated with another CPU.

4.1.2 Thread Affinity Mapping

Given the system topology as described above, we first have to determine the optimal map-

ping of worker threads to physical cores. We propose three different mapping strategies.

The first is where none of the threads are explicitly mapped to the CPU cores and the

scheduler decides the order in which threads are executed. This case is used as the baseline

in Figure 4.1. For the second strategy the worker threads are mapped in such a way that all

cores on a given CPU socket 1 are saturated before threads are assigned to the next socket.

The final strategy involves round-robin distribution of threads across the sockets. Figure

4.1 compares the execution times for these mapping strategies. We find that using thread

affinity mapping is not always beneficial. If we distribute threads across sockets, as in the

case of the third strategy, the performance degrades due to increased latency and reduced

cache performance when communicating across sockets. The optimal mapping strategy is

the second one which minimizes communication across sockets. This has been chosen as the

1A CPU socket is the physical housing of a CPU, connecting it to the other components of the computer.
In the test system, each CPU is placed in a separate socket. Additional latency exists when communicating
between sockets
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default mapping strategy for the results presented later in the chapter.
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Figure 4.1: Comparison of execution time for different thread affinity mapping schemes
relative to the unmapped case.

The other consideration when mapping the worker threads is whether to utilize the hyper-

threading capability of the CPU cores. If we map more than one thread to a single core, these

threads will, for the majority of the time, execute serially. However when one thread stalls,

the other thread can be executed without any disruption. This reduces the idle time in each

core, effectively improving parallel performance. We determine that optimal performance is

achieved when the Geometry threads are hyper-threaded (2 Geometry threads are mapped

to one core) and the Physics threads are not. This is due to the nature of tasks performed

by each of these threads, as discussed in chapter 3. Additionally, we require a much smaller
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number of Geometry threads to satisfy the Physics threads. For the fully saturated system,

it we determine that two Geometry threads are sufficient to provide enough worker for the

Physics threads. Thus, we always use two Geometry threads mapped onto a single core

for the given system topology. We map the Geometry threads onto the same core where

the main thread is executed. This ensures the least amount of latency when accessing data

associated with the initial mesh.

The final thread affinity mapping for the given system topology is as follow:

Core 1

• Main Thread

• Hyper-threaded Geometry threads

Core 2 - 48

• Single Physics thread, subject to saturating the current socket

4.1.3 Test Problem

The test problem considered is a unit square plate as given in Figure 4.2(a). A uniform

pressure P is applied to the top edge of the plate while the bottom edge is fixed. The

left and right edge have periodic boundary conditions. The pressure is applied as a step

function at time zero. The initial front mesh is produced by triangulating the domain,

producing roughly 8000 elements. A coarser mesh of 500 elements is given in Figure 4.2(b).

The simulation is run for a fixed number of spacetime patch solves to ensure that the unit

of work is constant across all runs. Quadratic (p = 2) interpolating functions are used for

the solution fields.

4.2 Scaling Studies and Discussion

In this section we investigate the parallel scalability of the implemented parallel SDG code.

This is an indication of how efficiently the code takes advantage of increasing number of
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Figure 4.2: Test problem used to verify the parallel scalability of the method. (a)
Schematic of unit plate loaded with uniform pressure, (b) coarse triangulated front mesh
containing 500 elements

parallel processing elements, or cores in this case. This can be measured by the strong

scaling efficiency and is defined as

εs =
T1

N × TN
× 100%, (4.3)

where T1 is the time needed to complete a task using 1 processing element and TN is the

time needed to complete the same task using N processing elements. For strong scaling,

the problem size stays fixed. For a perfectly scaling problem, εs is 100 %. In general, it is

hard to get good scaling for large number of cores as the communication cost increases in

proportion to the number of cores.

Before we can measure the scaling efficiency of our program, the definition of the baseline

or serial performance, T1 must be discussed. Since we use two separate thread pools in

our parallel method, T1 is not straight forward to define. If we consider our thread affinity

mapping (c.f. section 4.1.2) the 1 core case would correspond to only one Geometry thread

running in serial. The Geometry threads are equipped to solve patches if there is no demand

from the Physics thread pool. If we do not launch any Physics threads, the Geometry

thread automatically switches between generating, solving and storing patches, in other

words, acting like a truly serial algorithm. This is the serial baseline. If, on the other hand,

we have two Geometry threads on a single core though hyper-threading, only one of these
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can solve patches. The other thread would perform purely geometry related tasks. This is

the hyper-threaded baseline.
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Figure 4.3: Strong scaling efficiency of the parallel SDG code using the hyper-threaded
baseline plotted on the left axis. Number of patches solved per second is plotted on the
right axis.

We test the strong scaling efficiency of the parallel SDG method using the hyper-threaded

baseline as shown in Figure 4.3. It is immediately noticeable that we achieve efficiency

greater than 100%, or super-linear scaling for the case of 2 and 4 cores. This is due to

the choice of baseline as described earlier. The single core case consists of one Geometry

thread that can solve patches, albeit less efficiently than a dedicated Physics thread as

it shares a core with another Geometry thread through hyper-threading. When we go to

the 2 core case, we are more than doubling the performance as we have added a Physics

thread on the second core which is dedicated to solving patches. The efficiency drops off
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as we add more cores but is still over 98% when we are at the fully saturated system. The

drop off can be explained by the increased cost of synchronization and communication as

the number of cores increases. The SDG method inherently has minimal communication

during execution however synchronization between threads is still required. This involves

the various atomic operations that are required to ensure threads execute without errors due

to race conditions. Adding more cores also reduces cache performance. By this we mean that

the high performance cache memory becomes filled more easily and data must be read in

from the slower system RAM. Another potential source of degradation to performance is the

inability of the Geometry thread pool to provide enough work to keep the Physics threads

busy. This would cause system resources to go idle while the Physics threads wait for patches

from the Geometry pool. This is likely to happen when the number of Physics threads greatly

outnumbers the Geometry threads. Based on our experience, 2 hyper-threaded Geometry

threads are sufficient for 47 Physics threads.

In Figure 4.4 we compare the efficiency obtained for both the serial and hyper-threaded

Geometry pool cases. The definition of T1 in equation 4.3 for this case is that for the serial

geometry thread, indicated as “baseline” in the figure. The results form Figure 4.3 (blue

curve) is simply shifted higher in Figure 4.4 due to the different choice of baseline when

defining the scaling efficiency. As expected, the case where there is only a single thread in

the Geometry thread pool (black curve) performs worse than when we have hyper-threading.

Here the geometry thread can barely provide enough work to keep the Physics threads busy,

especially for over 16 cores. This results in periods where Physics threads are idle.

Increasing the order for the interpolating polynomial fields increases the scaling efficiency

as presented in Figure 4.5. This result may seem contradictory as higher order polynomial

functions should increase communication costs, thus reducing parallel scalability. However,

as we have shown the SDG method exhibits linear complexity in the number of patches

solved. Increasing the polynomial order would increase the time per patch solve but would

not add any further communication or synchronization costs due to the independence of

patch solves. The relatively small size of each patch limits the total number of degrees of

freedom during the solution stage, ensuring these operations can take place from the cache

memory, even as the polynomial order increases. Finally, the increase in time spent per patch
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Figure 4.4: Comparison of strong scaling efficiency using two different number of threads
for the Geometry thread pool. The definition of the baseline T1 in equation 4.3 is taken to
be the execution time for the 1 threaded Geometry pool case.

solve allows the Geometry thread pool to more easily keep the Physics threads satisfied with

work.

These results clearly show the excellent parallel capabilities of the SDG method. The use

of two separate thread pools allows us to decouple the patch solve procedure from that of

the mesh related operations, enabling us to optimally distribute physical resources between

these tasks. We determine the optimal distribution of worker threads that is able to achieve

parallel scalability of over 98% for the case of a fully saturated system.
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CHAPTER 5

CONCLUSION AND FUTURE EXTENSION

In this thesis, we have implemented a parallel solver for the SDG finite element method that

has scaling efficiency of over 95% for the case of shared-memory parallelism on a cluster

of up to 48 processors, even achieving super-linear scaling in some cases. This high degree

of parallel scalability was possible in part due to the “embarrassingly parallel” nature of

the SDG method and in part due to careful design of the parallel algorithm to eliminate

most synchronization overheads and communication costs between parallel threads. We have

entirely decoupled mesh-generation from the solution procedure, allowing us to dynamically

distribute available computing resources between these operations, ensuring that idle time

is minimized. The resulting method is fully scalable for much larger systems than the one

considered here.

Future extensions of this work will add the capability of mesh adaptivity to the parallel

solver. Adaptive refinement and coarsening occurs on the same granularity as the SDG

solution procedure and these operations can take place simultaneously [19]. This is very

conducive to a parallel implementation as it avoids the need for a global re-meshing step

which interrupts the solution procedure. The adaptive SDG method is very well suited for

problems involving tracking shocks or other sharp solution features.

Another possible extension is to the case of distributed-memory parallelism. In this case,

memory is physically distributed across computing nodes and explicit communication is re-

quired to transfer data across these nodes. Again, the asynchronous nature of the SDG

method provides a clear path to an efficient algorithm for this case. The existing shared-

memory method already requires newly constructed patches to contain within them all the

data necessary to compute the solution within the patch. By distributing pieces of the

front mesh across different nodes, such as in the case of a domain decomposition technique,
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causal patches generated on each node can be solved independently from other nodes. Com-

munication would only be required for the case where vertices are on the boundary of a

domain.
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